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ABSTRACT 

The nonlinear coupling of intense, monochromatic, e1ectro-

magnetic radiation with plasma is considered in a number of special 

cases. The first part of the thesis serves as an introduction to 

three-wave interactions. A general formulation of the stimulated 

scattering of transverse waves by longitudinal modes in a warm, 

unmagnetized, uniform plasma is c9nstructed. We derive a general 

dispersion relation that describes Raman and, Brillouin scattering, 

modulational instability, and induced Thomson scattering. 

In the second part Raman scattering (the scattering of a 

photon into another photon and an electron plasma wave) is investigated 

as a possible plasma heating scheme. Analytic theory complemented 

by computer simulation is presented describing the nonlinear mode 

coupling of laser light with small and large amplitude, resonantly 

excited electron plasma waves. Trapping of electrons in the electron 

plasma wave is found to be an important nonlinear feature. We 

formally analyze the nonlinear, time-dependent response for a 

resonantly excited longitudinal wave and demonstrate our construction 

in simulation. Trapping influences the nonlinear dispersion relation 

of the plasma wave, whose back-reaction on the beating of the lasers 
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plays a significant role in the transfer of energy from the transverse 

waves to the plasma. 

The third part investigates the stimulated scattering of a 

coherent electromagnetic wave by low frequency density perturbations 

in homogeneous plasma. A composite picture of the linear dispersion 

relations for filamentation and Brillouin scattering is constructed. 

Finally we describe in detail the absolute instability of Brillouin 

weak and strong coupling by analytic and numerical means. 
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I. INTRODUCTION 

A. Overview of Three-Wave Interactions 

The processes considered in this thesis are representative 

of a much more general class of phenomena, common to many branches 

of physics, described as three-wave interactions. We restrict con-

sideration here to those three-wave interactions occurring in an 

unmagnetized plasma involving the scattering of a transverse wave, 

i.e., a photon, into another transverse wave and a longitudinal wave, 

i.e., a plasmon. When the longitudinal wave is an electron plasma 

i ·· 1-4 wave, the three-wave nteract10n is called Raman scattering. If 

the longitudinal wave is an ion acoustic wave, the process is called 

Brillouin scattering.5-9 

All three waves in the interaction need not be normal modes 

however. We shall show how finite amplitude effects can lead to 

the production of driven modes as decay products in the three-wave 

interaction. We shall also show how the simultaneous scattering of 

monochromatic transverse waves into two other transverse waves 

accompanied by a growing density disturbance can be viewed as two 

three-wave interactions which are coupled by a virtual or nonpropaga-

ting wave. These last two phenomena are described as modified 

Brillouin or Raman scattering10 (also known as strong coup1ingl1,12) 

and modulationa1 instability12 (examples of which are fi1amentationl3 

and se1f_focusingI4,15). 

To make these ideas somewhat clearer we shall introduce 

model equations that represent the three-wave interaction of three 

normal modes in a homogeneous plasma. For the sake of simplicity we 

consider the coupling of three waves all propagating in one dimension. 



-2-

The three interacting normal modes are each assumed to satisfy, in 

the absence of coupling, a linear partial differential equation of the 

form 

v 2a 2) aj(x,t) = 0 J x (j = 1,2,3) 

(1) 

where {V
J

} represent dissipation, {a
J

} represent field quantities, 

and the normal mode frequencies satisfy (in the absence of dissipation) 

2 2 2. 2 
the linear dispersion relations Wj = nj + vJ~J (k

J 
is the 

wavenumber of the Lth wave). If the waves are allowed to couple, 

then the set Eq. (1) becomes 

= 

(2) 

The constants aj are real coupling constants, and a1(x,t) is 

taken to be the pump wave. For specific three-wave interactions use 

of Maxwell's equations, fluid or kinetic equations, and equations of 

motion for ions and electrons results in the set Eq. (2).16,17 We 

shall explicitly derive the linearized coupled mode equations for the 

interaction of a transverse wave with another transverse wave and an 

electron plasma wave in Section II.C. 

We assume that the field quantities aJ(x,t) can be written 

(J = 1,2,3), where 

. ,.. 
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the a/ x, t ) are slowly varying quanti ties. If the three waves 

satisfy the frequency and wavenumber matching conditions, 

(J) 

The terms involving at 2aj and ax 2aJ have been ignored. If we 

divide each equation by 2iwj respectively, and introduce the group 

velocities V. = kJVJ
2

/WJ and new coupling constants a. = S./2w., 
'J ' J J J 

then we obtain the linearized coupled mode equations 

We thus consider all three waves on an equal basis. MUch 

work has been done on these equations in various limi. ts. 18-21 In the 

limit that la21,laJI« lall, the coupled set of equations reduces 

to two equations describing the evolution in space and time of the 

field quanti ties ai x, t) and a
JC x, t) coupled by the pwnp whose 

amplitude is assumed constant. ll ,12,22-24 The research on various 
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parametric instabilities induced by the coupling of two initially 

small amplitude waves by a pump wave has been vigorous: the work by 

Rosenbluth2J and also by Nishikawa24 has been especially significant. 

In this thesis examples of three-wave interactions are considered both 

where the pump-wave amplitude is held fixed, and where changes in the 

pump-wave amplitude are essential. 

The three-wave process described by Eqs. (4) is illustrated 

in Fig. la. The decay of a high frequency pump wave (wl ) into two 

lower frequency product waves (w2,w
J

) is pictured. Figure lb shows 

two three-wave interactions coupled by a virtual wave; this could 

represent filamentation for example. For the case of three-wave 

interactions among coherent, normal modes, the coupled mode equations 

Eqs. (4) lead to certain conservation laws. If there is no dissipa

tion,". = 0, then multiplication of Eqs. (4) by ii.*a.-l and 
J . J J 

addition of the equations taking the complex conjugate yield 

(5) 

The expressions in Eqs. (5) are statements of the well-known 

Manley-Rowe relations. 25- 29 Loosely speaking, the sum of the wave 

actions of the pump wi th either of the decay products is a constant 

{wave action Since we have assumed that frequency and 

wavenumber matching prevail and since the wave energy is equal to 

the frequency times the action (as we shall explicitly show in Part II1 

then the relative portion of energy transferred to the decay products 

is given by w2/~ for the wave with frequency w2 and WJ/Wl for 

the wave with frequencywJ. Similarly for the wav-e momentum, 
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equal to the wavenumber times the action, the relative momentum 

transfer goes as the ratio of wavenumbers. These results should not 

be surprising; we know from quantum mechanics that the wave energy 

is given by ilwjNj and the wave momentum by ..nkJN
J

, where N
j 

is 

the number of quanta. Action conservation is just a statement of the 

conservation of quanta. 

B. Thesis Synopsis 

This thesis presents studies of nonlinear wave-wave inter-

actions involving intense, coherent radiation in an underdense plasma 

(We <w). We examine the possibilities for heating plasma by 

utiiizing the resonance of the beat wave produced by two electro-

magnetic waves with an electron plasma wave. The exci ted plasma 

wave is allowed to be largeln amplitude, and the nonlinear effects 

of electron trapping are considered in detail. We further examine 

the stimulated scattering of an intense, coherent electromagnetic 

wave by longitudional plasma waves or driven plasma modes at low 

frequency involving both ions and electrons, which is of much interest 

in laser-fusion applications. A unified picture of stimulated 

Brillouin scattering and modulationalinstability (filamentation 

or self-focusing) is descriged. We compare linear and nonlinear 

theory with compu~er simulation where possible. 

In Part I we provide an overview of the basic plasma phenomena 

of interest here, viz. three-wave interactions among coherent 

normal modes or driven modes. If the waves can satisfy certain, 

resonance conditions and if their coupling is sufficiently larg~ a 

vigorous transfer of energy can occur. The resonance conditions 

correspond classically to phase matching both in time and space. 

Quantum mechanically, frequency and wavenumber matching correspond 
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to energy and momentum conservation. These ideas are made explicit in 

Section I. A and Section I. C. ~e mechanisms leading to the nonlinear 

energy transfer,or mode coupling, are provided by the nonlinear 

medium, in this case the plasma. The specific nonlinearities respons-

ible for the mode coupling will be manifest in the general treatment 

appearing in Section I.C, which is concluded with the derivation of an 

implicit disyersion relation describing the stimulated scattering of a 

transverse wave by plasma. 

Part II of the thesis treats the scattering of light into a 

longitudinal electron plasma wave and a scattered transverse wave 

for the purpose of heating plasma. Section II.A begins by specializing 

our general formulation to the case of beat heating, i.e., the resonant 

excitation of an electron plasma wave by two electromagnetic waves 

(of frequencies WOiwI with Wo > wI andwavenumbers !O'!l) whose 

difference frequency (n == Wo - wI) and wavenumber (~==!O - !l) 

nearly satis~ the Bo~Gross dispersion relation· for an electron plasma 

wave. This process is closely related to Raman scattering, but the 

finite amplitude of the lower frequency electromagnetic wave requires 

equal treatment of both the lower and the higher frequency electro

magnetic wave. The excited plasma wave then damps, either due to 

collisions, Landau damping, or nonlinearly. 

provided by the electron plasma wave. 

The plasma heating is 

tn order to lay the proper groundwork for the subsequent, 

extensive use of particle simulation, Section II.B describes a 

relativistic, electromagnetic, particle code. The code was created in 

collaboration with A. B. Langdon, Mike Mostrom, and DNight 

Nicholson, to study a variety of electromagnetic phenomena in linear 

. ,.,.. 
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and nonlinear regimes. The code implements an efficient Maxwell's 

equations solver for the one dimensional propagation of light,that is 

quite free from numerical instability. Poisson's equation is solved 

by Fourier transform. Langdon's electrostatic version of the code 

utilizes the same fast Fourier transform of Poisson's equation and 

was used to study some of the nonlinear aspects of beat heating. 

Section II.C is devoted to the stud! of the beat heating of 

opposed lasers. The nonlinear interaction may be considered as an 

induced decay (wo ~ ~ + Q), in which a fraction R of the incident 

power at frequency Wo is converted to frequencies ~ and Q, with 

the fraction Rn/wO appearing as a longitudinal plasma oscillation 

and, because of damping, ultimately as heat. Theory and simulations 

are utilized in Section ILC.l to determine the dependence of the 

efficiency parameter R on the available parameters: laser intensi-

ties, density scale length, and temperature. We find that beat heating 

in a nonuniform plasma. with linear density gradient is largely 

independent of the electron wave dissipation rate. 

We describe the steady-state energy transfer to the plasma, first 

treating the small amplitude electron plasma wave as a quasi-steadilY 

driven disturbance ignoring convection. Subsection II.C.2 examines 

the space-time interaction of the two lasers, again assuming that the 

electron wave is quasi-steadily driven by the ponderomotive force of 

the two lasers. In Section II.C.3 we relax this assumption and inte-

grate (in space and time) the linearized coupled mode equations 

describing all three waves on an equal basis. 

We continue our study of beat heating in Section II.C.4 by in

vestigating the influence of electron trapping in the plasma wave. The 

threshold and time scale for trapping are compared to those for the 
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Raman backscatter, electron-ion decay, and oscillating two-stream 

instabilities to determine for what parameters trapping is the 

dominant nonlinear feature in beat heating. In reviewing the beat 

heating simulations exhibiting trapping, we find that certain 

unphysical effects, caused by the comparatively short length of the 

plasma, motivate the construction of a simplified model problem. 

As a first step in determining the nonlinear plasma response 

to resonant excitation by the low frequency beat of two high frequency 

waves, we solve a model problem. For the sake of simplicity, we 

assume that the plasma is uniform, and that the excitation of the 

longitudinal beat-wave is provided by a constant-amplitude pondero

motive potential. In Section II.C.5, we formulate an explicit theoret

ical prescription for the time-dependent nonlinear plasma response to 

resonant excitation within the context of our simplified model problem. 

The time-dependence of this nonlinear response, and its approach 

to equilibrium, are related to the behavior of a nonlinear normal mode, 

and in particular to its time-dependent eigenfrequency. We determine 

the equilibria possible for electron plasma waves with trapping, and 

the stability of the equilibria. Our analysis is demonstrated in 

simulation, and comparison is made with theory. 

Our discussion of the beat heating of opposed lasers is con

cluded in Section II.C.6, where we consider the back-reaction of the 

nonlinear electron plasma wave on the evolution of the transverse 

waves. We specifically investigate the influence of particle trapping 

in the beat wave and how trapped particle effects can be removed by 

plasma inhomogeneity. 
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Section IIoD reviews the idea of cascading: parallel 

propagating electromagnetic waves can be multiply scattered by an 

electron plasma wave resonantly excited by the ponderomotive v x B 
f -

force of any two successive electromagnetic waves in the cascade . 

We discuss the influence of ,plasma inhomogeneity on cascading and 

how cascading might occur preferentially over Raman backscatter. 

When the induced scattering of light involves a beat wave 

of low frequency Inl« wi' both electrons and ions can respond. 

This occurs in many interesting situations, e.g., in astrophysical 

plasmas, the ionosphere,laser fusion, and radio-frequency heating. 

Incident radiation can backscatter from an ion acoustic wave or, 

at higher intensities, from a driven, low frequency density perturba-
, 

tion (strong coupling). These are both examples of stimulated 

Brillouin backscattering. If the" radiation scatters from a growing 

density perturbation into two sidebands, modulational instability is 

occurring. The incident radiation can then filament or self-focus. 

These scattering instabilities involving ions pose a particular 

threat to laser-pellet fusion. They have relatively low intensity 

thresholds and can lead to considerable scattering of the laser light 

and deformation of the target with perhaps deleterious effects on 

absorption mechanisms requiring relatively uniform illumination of 

highly spherically symmetric targets. Part III of the thesis .is 

devoted to an examination of stimulated Brillouin scattering and 

filamentation in a homogeneous, unmagnetized plasma. 

Section III.A presents an introduction to the stimulated 

scattering of light by low frequency ion modes. We construct a 

general dispersion relation describing Brillouin and filamentation 

instabilities in Section II.B. The linear dispersion relation for 
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filamentation is solved in Section III.C, while Brillouin is considered 

in Section III.D. We examine BrillQuin strong co~pling and filamenta

tion from a unified point of view. We conclude with a detailed study 

of Brillouin absolute instability and the construction of its asymptotic 

Green's function. 

C. Coupling of High Frequency Transverse Waves 

to Unmagnetized Plasma 

Of particular interest in laser fusion, radiation from pulsars, 

radio frequency heating, and ionospheric scattering is the class of 

parametric instabilities involving the scattering of light from longi-

tudinal electron and ion waves. The instabilities involving ions 

characteristically exhibit lower thresholds for onset of instability 

and lower growth rates than their counterparts irivolvingonly 

electrons. ll ,l2,JO Examination here will be restricted to just the 

scattering of a monochromatic electromagnetic wave from longitudinal 

density. perturbations in unmagnetized plasma. The formulation will 

be sufficiently general to include induced Thomson scattering, but 

evaluation of dispersion relations and partial differential equations 

describing the scattering will be confined to situations where the 

scattering involves collective plasma behavior: stimulated Raman 

and Brillouin scattering and filamentation. 

The discussion beings with a qualitative picture of the 
, 

physical mechanism responsible for this class of parametric insta-

bility. We assUme that the electron and ion motion is nonrelativistic 

and for the sake of simplicity that radiation with frequency Wo and 

wavenumber !o is incident upon a uniform, unmagnetized, warm 

plasma. We relax the assumption of plasma uniformity in Section II.C. 

~. 
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The electrons and ions acquire transverse "quiver" velocities 

as their lowest order response to the radiation. Of course the 

electron quiver velocity Ye --.vill be larger than the ion quiver 

velocity by the mass ratio mi/me» 1. If there is an electron 

density perturbation or fluctuation present one' e.g., due to noise, 

then a coupling to the radiation can occur via the electron current 

oj produced by the transverse quiver ve~ocity and the density -e 
, perturbation:. 0; = eon V , where the electron charge is defined "e e-e 

bye. This current will act as an antenna for scattered radiation 

propagating at the sum and difference frequencies and wavenuIDbers 

of the density perturbation and the transverse oscillation velocity: 

* * (Wo + 11,~O + ~) and (wO - 11 ,~O - ~ ), where the frequency and 

wavenumber of the densi ty perturba ti on is given by ( 11, ~ ) • 

The feedback necessary to produce parametric instability is 

provided by the coupling of the scattered radiation with the incident 

radiation via the Lorentz force v x B. The Lorentz force is produced 

by the cross-product of the transverse oscillation velocities with 

the transverse magnetic fields at the various existing frequencies 

and wavenumbers of the transverse fields, namely the incident and 

scattered radiation. The Lorentz force provides a driver for high 

frequency and high wavenumber density perturbations (2wO,2~O)' 

(2wO + 11,2~O +~), and (2wO - 11*,2~O - ~*) which contribute to 

the lowest order nonlinear frequency shifts. Jl In addition to the 

high frequency density perturbations however, there will be the 

low frequency v x B beat at (11,~) which serves to reinforce the 

original density perturbation and can give rise to instability. 

The Lorentz force acts like an external, electrostatic 

driving field in creating density perturbations. If the beat 
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frequency and wavenumber nearly satisfy the Bo~Gross dispersion law 

for electron plasma waves, 02 ~ w 2(1 + 3K2A 2) where w is the 
. e e e 

electron plasma frequency and A the electron Debye length, then e 

Raman scat tering can occur. If 101 ~ wi where wi is the ion plasma 

frequency, both the ions and the electrons will respond to the Lorentz ,~ 

force. Then Brillouin scattering and filamentation can occur. In 

any case the Lorentz force depends bilinearly on the amplitudes of 

the incident and scattered radiation. The current producing the 

scattered radiation depends in turn on the amplitudes of the density 

perturba tion and again on the electromagnetic pump. Thus the 

scattered light is shifted up and down from the pump frequency and 

wavenumber by the beat frequency and wavenumber, (wO + Q,~o+ ~) 

and (wO - Q*,~O - ~*), respectively and can grow exponentially. 

If the depletion of the electromagnetic pump wave is ignored, then the 

pump intensity becomes a parameter governing the "parametric" 

instability. 

No attempt at this point has been made to describe the 

influence on the scattering of the relative polarization and scatter-

ing angle of the scattered radiation and the pump. For particular 
, 

scattering configurations, e.g., forward, both scattered electro-

magnetic waves can grow exponentially with comparable amplitudes. II ,12 

The incident laser light appears to develop a modulation with 

I n I < Wi and can eventually break up int·o many filaments or self

focus. 13,14,32,33 For 0::::: we and ~::::: (we/c)kO multiple Raman 

scatterings from a single electron plasma wave can occur. 34, 35 If 

instead radiation is observed to backscatter, it is sufficient to 

consider only the scattered radiation shifted down by the beat 
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frequency and wavenumber and describe it as B.timulated Brillouin or 

. 11 12 
Raman backscatter. ' 

Several authors have constructed general formalisms describing 

parametric instabilities. ll ,12,J6-39 The most complete work on the 

normal mode structure is due .. to Drake, Kaw, Lee, Schmidt, Liu, and 

Rosenbluth,12 whose analysis is three dimensional and nonrelativistic, 

and assumes the plasma to be uniform, isotropic, and unmagnetized. 

We adopt an approach similar to theirs here, but further simplify 

by considering only the scattering of parallel, linearly polarized 

light in two dimensions. Comments on the generalization of this 

formalism to three dimensions are found in Section III.D. 

We formulate our description of the induced scattering of 

radiation by density perturbations in terms of complex vector 

potentials. We assume that all radiation is linearly polarized in 

the y direction and propagates in the x-z plane (see Fig. 2). 

The real vector potential is written as a sum over the modes 

present, omit~ing· the multiplicative factor y, 

(6) 

In deriving the dispersion relations de~cribing the various parametric 

instabilities that can arise here, we assume that IA+I, IA-' « IAOI 
and AO is held constant. The vector potential represented in Eq. 

(6) includes the pump wave and the radiation shifted up and down by 

the beat frequency and wavenumber. If fUrther scattering occurs to 

produce radiation at frequencies and wavenumbers 



and (wO + 2n,~O + 2~) for example, then these modes must be explicitly 

included in Eq. (6). The beat wavenumber K is restricted to lie 

in the x-z plane. 

An examination of the equation of motion for the charges 

quivering in the electromagnetic fields described in Eq. (6) allows 

the identification of an effective external potential. The equation 

of motion for a charged particle of species s in the field of an 

electromagnetic wave and in an electrostatic field with potential 

cf>(!:,t) is given in the nonrelativistic limit by 

(7) 

We solve Eq. (7) approximately, expanding in powers of the 

small parameter The Lorentz force term can be rewritten 

in approximate form as the gradient of an effective potential. From 

the conservation of canonical momentum in the y direction (due to, 

translational invariance), we have v.y = -e A/msc + constant = - s 

V + constant. For a cold plasma the constant can be set equal to s 

zero for all charges, and the component of the Lorentz force term 

in the scattering plane becomes' 

222 = -e· 'VA /2m c s s 
(8) 

For a warm plasma canonical y momentum is still conserved. 

However, the y velocities are given by v.y = v + VI where VI 
- s Y Y 

is the velocity of charge described by an arbitrary thermal distribu-

tion of velocities in the absence of external fields. The thermal 

corrections that result will be discussed when the n9n1inear current 

is evaluated. 
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From Eq. (8) we can define the effective or ponderomotive 

potentia140-42 driving longitudinal electron density perturbations: 

(9) 

The quiver velocity and the effective potential for the ions are 

both smaller by -the mass ratio me/lllt; and are ignored, 

The density perturbation is described by the self-consistent 

Coulomb potential ~(E,t) = ~ exp(i~·E - int) + c.c. We define the 

total potential ~s(~,t) as the sum of the Coulomb potential ~ 
s and the ponderomotive potential ~O due to the Lorentz force 

according to ~s(~,t) = ~(~,t) + ~os(E,t). The total and the pondero

motive potentials are represented with the same dominant phase 

dependence as the Coulomb po'tential. Poisson's equation becomes 

~ = 41TK-
2 L es;}s 

s 

, (10) 

where fis is the amplitude of the number density for species s, 

wi th phase dependence exp( i~. ~ - im) factored out. We introduce 

the linear susceptibilities, Xs(n,~) = -41TK-2esfis/~s, and the linear 

dielectric function, £(n,~) = 1 + I: Xs(n,~), in order to replace 
s -s 

fis in Eq. ( 10) by a linear function of ~. 

From Eq • (10) and the definitions of the linear susceptibili-

ties, we obtain 

"'e 
~ = [1 + Xi(n,~)] ~Oe/£(n,~)= 

= e(l + Xi(n,~)] A2(n,~)I12meC2£(n,~)] (11) , 
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. 2 
where by A (n,~) we mean the sum overall coefficients of terms 

in A 2 varying with phase e~( i~.!: - H2t). The linear electron 

susceptibility describes the accompanying electron charge density 

perturbation: 

(12) 

The wave equation for the ve.ctor potential in Coulomb gauge is 

To evaluate the transverse current J(!,t) we adopt the simple fluid 

model that the electromagnetic fields induce a linear electron 

current and a lowest order nonlinear contributionll,12 

(14) 

where nO is the unperturbed number density. Equation (12) is 

employed to construct the perturbed electron number density. The 

ion contribution to the current is down by the mass ratio and is 

consequently ignored. 

A treatment including finite temperature effects in the 

ponderomotive potential and the nonlinear current, based on, for 

example, an analytic solution of the Vlasov-Poisson-wave equation 

2 system expanding systematically in powers of leAO/mec I « 1, 

shows that thermal correctionsJl arise of order T 1m c2, where Te e e 

.-
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is the electron temperature. For plasmas with nonre1ativistic 

thermal velocities v = (T 1m )i « c, these corrections can be s s s 

safely ignored. This is not to say that the plasma is assumed cold 

when the linear susceptibilities and the dielectric response are 

evaluated; temperature effects here can be very important. 

We define r(n,~) = [Xe(l + Xi)/C]n,~ and postulate a 

general kinetic description in order to evaluate the linear plasma 

response, say the Vlasov or Fokker-P1anck equations. We can now 

systematically manipulate Eqs. (12) and (13) to derive coupled mode 

equations. We shall examine all couplings that lead to nonlinear 

contributions to the current of order IAoI3. 

First of all, for the nonlinear correction to the dispersion 

relation for the pump wave due to the Lorentz force with phase 

dependence exp(i2!O·~ - i2wot), we obtain from Eqs. (12), (13), 

and (14), considering only the terms with phase dependence 

exp(i~O·!: - iWot) in Eq. (13), 

. (15) 

The amplitude dependence of the electromagnetic wave dispersion 

relation is, however, of the same order as relativistic effects. If 

we include both the Lorentz force and relativity following Arons and 

Max3l and if we evaluate the susceptibilities in the high frequency 

2 2 
limit (2wO » we' wO/kO »ve ), Xe(W'~) ~ -we Iw and Xi ~ 0, 

we obtain 

k 2 2 = 0 c 
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We henceforth assume that the frequency wOand wavenumber ~O of 

the pump satisfy the nonlinear dispersion relation. In this way the 

coupling to the high frequency density disturbance with phase depen

dence exp( i~O·:: - i2wot) has been absorbed into a nonlinear 

frequency shift. 

For the scattered radiation, we look for couplings which 

involve large r(n,~) and recall its definition and the lineariz

tion IA+I,IA-'« IAoI. In addition to the density oscillation at 

frequency 2wO there are density oscillations driven by the Lorentz 

force at frequencies * 43 2wO + n, ) 2WO - n , and O. For the low 

frequency beat (n), the near vanishing of E(O,~) at a resonance, 

which appears in the denominator of r(n,~), characterizes the 

scattering by a longitudinal normal mode. If n ~ KCs where 

c = (T 1m. )1, then stimulated Brillouin scattering is said to occur. 
s e ~ 

If Re n ~ (w 2 + 3K2V 2)1 then stimulated Raman scattering occurs. e e 

The linear susceptibilities Xs ' from which E and r are constructe~ 

are evaluated in an appendix from a Vlasov model for a Maxwellian 

plasma. For high frequencies »ws and phase velocities »v s 

r is real. Consequently the couplings 2wO + n and 2wO - n* lead 

to nonlinear frequency shifts which are of the same order as described 

in Eq. (15), but only when the parametric instability enters the 

nonlinear regime, Le., IA+I,IAJ _ ttClAaI).3l ,43 

If we SUbstitute Eq. (14) into Eq. (13) and use Eqs. (11) 

and (12), we obtain 

and 
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, (16b) 

- 2 ' 2 2 2 
where D± = D(~ ± n,~O ± ~) = +201.&>0 - n ± 2~0·~c + K C , and 

_ 2 2 2 . 2 
DC w,~) = we + k c - W • , We recognize D( w,k) = 0 as the linear 

dispersion relation for an electromagnetic wave. Thus D± are 
( , 

measures of the mismatch of the scattered waves A+ and A_ from 

their linear dispersion relations. In obtaining Eqs.(16), the high 

f . n * i requency coup11ngs at 2wO' 2wO + a" and 2wO - n are gnored, 

, * * since Ir(n,~)I» Ir(2wO + n,2!!0 + ~>I, Ir(2wo - n" ~O - ~ )1, 

I r( 2WO,2~0) I :::: (!J(We 2/4Wo 
2 ). These couplings lead to nonlinear 

frequency shifts and not to instability.43 

MOdulational instability is described by the cross-coupling 

and simultaneous growth of A+ and A_ with comparable amplitudes 

in Eqs. (16). Brillouin or Raman s,cattering is said to occur when 

A_ grows with amplitude much larger than A+. The scattering of light 

into two plasmons at the quarter-critical point (w =2w )12,44,45 o e 

,and the parametric decay of light at the critical surface 

(000 = we) 24 into an electron plasma wave and an ion acoustic wave, 

or into two electron plasma waves and a purely growing ion density 

perturbation, have been omitted from our description.' This is 

because we demanded that the incident light scatter into another 

transverse wave and an electron plasma wave, I.e., Wo > 2we , or 

into another transverse wave and an ion wave, i.e., WO > W • , e 

To simplify the notation we, introduce the dimensionless 

ampli tudes a
O 

= eAO/( me c 2 ) and a+, a _ similarly. The maximum 

transverse quiver velocity vo in the electric field of the incident 

electromagnetic wave is determined by V0
2/c2 .= 4a02 (taking aO 

to be real arbitrarily). We define 1l2=K2v02r(n,~)/4, which 
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measures the coupling strength in units of frequency squared. 

!qua tions (16) can be rewr! t ten 

[ 2] * 2 D - ~ a - ~ a 
- - + 

= 0 

[D ~ ~2]a _ ~2a* = 0 
+ + -

(17a) 

(17b ) 

Setti~ the determinant of the coefficients equal to zero, the general 

dispersion relation describing modulation, induced Thomson scattering, 

and stimulated Brillouin and Raman scattering is obtained: 

D D - (D + D )~2 =0 
+ - + -

(18 ) 

For stimulated Raman and Brillouin scattering, ID I « ID I -, + 

and la+1 is consequently small compared to la_I, so that Eqs. (17) 

can be reduced to 

D - ~2 = 0 (19 ) 

Equations (18) and (19) are implicit dispersion relations describing 

the parametric instability of the stimulated scattering of light in 

an unmagnetized, uniform plasma. We shall make use of various 

aspects of this formalism in the subsequent calculations. 

II. BEAT HEATING OF A PLASMA 

A. Introduction to the Coupling of Transverse Waves 

to Electron Plasma Waves 

In this section we consider ,the resonant interaction of two 

lasers whose difference frequency ,n and wavenumber ~ nearly 

satisfy the linear dispersion relation for an electron plasma wave 

02 ~ w 2 + 3K2V 2. This process is an example of stimulated Raman 
e e 

-. 
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scattering. In as much as we begin with two electromagnetic waves of 

frequency Wo and ~ (CAb> "1.), corresponding to the vector poten

tials with amplitudes Au and A_ in Eq. (6), we are ~ looking at 

an example of parametric instability and must treat Aa and A_ 

equally. The three-wave interaction in this limit is called beat 

h~ating34 or' optical mixing.46-50 The mechanism for the coupling of 

the two high frequency waves (wo'''1. > we) with the electron plasma. 

wave is, however, the same as for the parametric instability of Raman 

scattering and is described in the Introduction, Section I.C. 

We are motivated to study this process by the fact that it 

affords the opportunity to couple the very intense energy at high 

frequency in lasers to lower frequency plasma modes where the energy 

might be absorbed as heat. An important consideration that determines 

the upper limit on the efficiency of this process is the fact that a 

heating process making use of three-wave interactions is subject to the 

Manley-Rowe conditions Eqs. (5). If R is the relative efficiency of 

the action transfer, then no more than the relative amount of energy 

Rwe/wO can be ultimately absorbed by the plasma. 

The resonant interaction between two transverse waves and one 

longitudinal wave or mode for the purpose of plasma heating or as a di-

agnostic has been investigated by many. Kroll, Ron, and Rostoker (1964) 

first proposed optical mixing as a diagnostic tool for determining 

plasma density and calculated the enhanced scattering cross section due 

to the induced density perturbation. 46 Wolff (1971) theoretically stu-

died Raman scattering in semiconductors using cold fluid equations and 

the conservation of transverse canonical momentum to formulate neatly 

the nonlinear density perturbation and the nonlinear transverse current~ 

Wolff found that the scattering instability could be saturated by a 
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nonlinear Doppler shift in the electron plasma wave produced by an 

induced longitudinal drift. 

James and Thompson (1%7) and Capjack and James (1970) 

applied the principle of optical mixing to the theoretical study of 

the heating of ions in magnetized plasma by beating high frequency 

transverse waves at the ion cyclotron resonance47 or by mixing 

Whistler waves at either the ion cyclotror. resonance or in the regime 

of induced scattering by: the ions. 48 They found a marked sensitivity 

of the resonant process to detuning influences: finite pump band

width, variation in the magnetic field, and plasma inhomogeneity. 

Because of the small ratio of the ion cyclotron frequency to the 

pump frequencies, the ultimate efficiency of these schemes suffers 

greatly. Weyl (1970) considered optical mixing for diagnostic 

application in cold, underdense, magnetized plasma at the cold electron 

plasma frequency and the upper hybrid frequency.49 Weyl further exam

ined the effects of finite pump bandwidth and plasma inhomogeneity to 

first approximation. Stansfield, ;Nodw.ell-r,and Meyer (1971) mixed two 

dye laser beams at an angle of 450 ina plasma jet to observe the resonant 

density fluctuation enhancement when the beat wave resonantly excited 

an electron plasma wave. 50 In all the foregoing studies a low fre-

quency beat wave is driven by two high frequency waves in a uniform 

plasma. If a magnetic field is present, it also is assumed uniform. 

The physics of beat heating and parametric instability in 

general in a nonuniform plasma is significantly different from the 

case of uniform plasma. Three of the more significant papers 

discussing parametric instabilities in a nonuniform plasma are by 

Perkins and Flick (1971)23 and by Rosenbluth, Liu, and White 

(1972).51,52 Rosenbluth and Liu (1972) studied beat heating in a 

'. 
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homgeneous plasm considerir.g tlle case where the beat frequency 

equals twice the cold electron plasma frequency.53 They also consider 

beat heating in a warm, inhomogeneous plasma where the difference 

frequency somewhere equals the BobIn-Gross frequency. However, in both 

cases the high frequency transverse waves are assumed to have constant 

amplitude. Beaudry and Martineau (1973) extended Rosenbluth and Liu's 

calculations to include collisional dissipation in the plasma wave. 54 

Strel'tsov (1973) calculated the parametric amplification of the decay 

products for ~ backscatter in a very sharp density gradient 

assuming the higher frequency transverse wave to have fixed amplitude.55 

Fuchs, Neufeld, Teichman, and Engelhardt (1973) studied beat 

heating in a nonuniform medium calculating the self-consistent ampli

tudes of .the high frequency pumps.56 Their results for the dependence 

of the action transfer upon pump strength, input ratio, and density 

scale length agree with Ref. 59. However, Fuchs et al. erroneouslY 

infer that the resonance region is proportional to the wavelength of 

the plasma wave rather than the scale length of the plasma. Schmidt 

(1973) described the excitation of electron orion waves due to the 

beating of opposed transverse waves in homogeneous plasma including 

the nonlinear electromagnetic frequency shifts due to the ponderomotive 

force but neglecting the comparable shift· due to relativity.57 He 

observed that in order to deposit energy into the low frequency, 

longitudinal wave, there must be a concomitant energy transfer from 
, 

the higher frequency transverse wave to the lower. Beaudry (1974) 

investigated beat heating in the limit that convection dominates 

dissipation for an ~nhomogeneous medium finding agreement with Ref. 59 

which established that action transfer wa~ insensitive to the details 
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of the dissipation mechanism, be it Landau damping, collisions, or 

convection. 58 

In the remaining sections in Part II we will review in detail 

and extend the results of Kaufman, Cohen, Watson, MOstrom, Nicholson, 

Max, and Langdon, in chronological order Refs. 34, 59, 60, and 43. The 

general aim of those papers is to consider the interaction of transverse 

waves with longitudinal electron plasma waves in their linear regimes. 

All wave amplitudes are treated equallY. The beat heating of two 

electromagnetic pump waves propagating in opposed and parallel 

directions in uniform plasma is examined in Refs. 60 and 34 respec-

tively. Beat heating of opposed lasers in a nonuniform plasma is 

studied analytically and in simulation in Refs. 59 and 43. In Section 

II.C we extend the study of beat heating of opposed lasers to the 

regime of nonlinear electron waves. Our detailed examination of beat 

heating begins with a review of the electromagnetic code43 introduced 

to study beat heating. 

B. Electromagnetic Simulation Code 

There is a considerable literature concerning electromagnetic 

codes. 6l MOst algorithms for solution of Maxwell's equations require 

solving a current-driven wave equation for the vector potential. In 

our code, we solve for the electromagnetic fields explicitlY by 

integrating Maxwell's equations along their characteristics. Dawson 

and Langdon62 first used this method in 1966. 

Charged particles are represented by clouds of infinite 

cross-sectional area in the plane transverse to the grid. In the one 

dimension in which spatial variations are followed and particle posi-

tions are assigned, particles have finite-size. Charge densities are 

calculated by linear interpolation according. to the cloud-in-cell 
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model.63 In this same dimension, designated "long! tudinal", there are 

oomponents of particle velocity and electric field, ~~d all wave 

propagation occurs. The electromagnetic waves axe linearly polarized 

in the direction of the single transver.se velocity component (see 

Fig. 2). The self-consistent and external magnetic fields lie in the 

transverse plane and ate perpendicular to the polarization direction. 

The equations of motion are relativistic. There are versions of the 

code for which the plasma is assumed periodic ox, alternatively, 

finite. 

For the particula~ configuration we descxibe (Fig. 3), the 

two Maxwell curl equations take the form: 

By adding and subtracting these equations, we obtain 

If we define the right- and left-going electromagnetic field quantities 

respectively, .as F+ = E ± B , the two Maxwell equations become 
- y z 

(21) 

Equation (21) is integrated along the vacuum characteristics 

x + ct = const., the current J being given by the particle posi
y 

tions and velocities. Gridpoints in the space-time mesh are linked by 

the vacuum characteristics. Then 6x/6t = c, and there is no Courant 

condition in the usual sense. A standard Courant condition for the 
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stability of the finite-differenced wave equation is ~x/~t ~ c 

where ~x and l1t are otherwise independent. In our case 

~x = c~t, and stability and accuracy depend only on how small ~t is. 

Spurious numerical dispersion is minimized because we solve 

explicitly for the electromagnetic fields and introduce some smoothing 

in calculating the transverse current (Fig. 4). Transverse currents 

+ Jy and J; are calculated from the velocities at half time-step 

intervals and charge positions at whole time-step intervals and then 

averaged along the vacuum characteristics to obtain J = (J+ + J-)/2. 
. y, Y Y 

Consequently, if we treat.the particle motion relativistically there 
. . 

i i · i 64 should be no numer cal Cerenkov nstab~l ty. Furthermore, the 

parameters for which light waves in a drifting plasma can become 

unstable, due to finite differencing, are unphysical and can easily 

be avoided with a reasonable choice of (j) ~t. . Only for 'W ~t - 6)'( 1 ) 
o e e 

does numerical instability occur for the largest wavenumbers character-

istic of the grid, i.e., 2~/~x; and saturation of the instability 

occurs at low levels of the associated field amplitude. 

The differential equations which the code solves can be 

summarized as follows: the equations for the fields, given the 

sources, i.e., charge density and current, are Eq. (21) and the 

Poisson equation 

where no is the uniform neutralizing·charge density. Electrons have 

charge e. We assume a single species here (with fixed neutralizing 

background), but generally the code deals with two. The equations 

for the particle and current densities (before linear interpolation) 

are 
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n{x) = L 6(x - xl) 

1 

(23) 

J (x) L ,ev
y

i i = 6{x - x ) 
Y 

1 

The equation of moiton for the particles is 

(d/dt) [ mt 1 - v2/c
2 r' ] = eCE + v x B/c) (24) - - -

The closed set of equations can be integrated forward in time 

leap-frog style using a differencing scheme centered in space and time 

(Fig. 4). The~equation of motion (24) is integrated forward in time 

using a hybrid, fast half-acceleration and rotation method. 65 Because 

we are interested in the Fourier transform of the electrostatic 

potential, we solve Poisson's equation by means of fast Fourier 

transforms. The differences between the bounded and periodic versions 

of the code appear in the boundary conditions on the pote~tial ~, the 

particles, and the electrostatic and electromagnetic fields at the 

system walls. Our simulation of a finite plasma assumes that the 

walls are radiation transparent and-particle reflecting. In the 

bounded version, the longitudinal field E vanishes at the system· , x 

walls. The magnetostatic, vacuum field contribution to B is an z 

arbitrary constant value throughout, in either version of.the code. We 

have found the code quite inexpensive to use; typical computer experi-

ments with 4000 particles have required 0.25 sec of central processing 

unit time per time-step on the CDC 7600 at the Lawrence Berkeley 
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Laboratory (this includes all operations: field solving, particle 

pushing, and diagnostics). 

c. Beat Heating of Opposed Lasers 

We exRm1ne here the nonlinear interaction of two oppositely 

propagating, linearly polarized electromagnetic waves resonantly 

exciting an electron plasma wave in an inhomogeneous plasma. We 

review the work in our publications, Refs. 59 and 4~ in Section II.C.I 

and include Ref. 60 in Section II.C.2. These papers consider primarily 

the plasma response in the small amplitude limit. In Section II.C.3 

we integrate in space and time the three linearized coupled-mode 

equations Eqs. (4) and compare the results with those in the preceding 

section and with the literature. 20 In the remaining sections of this 

chapter nonlinear beat-wave effects are examined. A detailed study 

of the r"esonant excitation of nonlinear plasma oscillations appears in 

Section II.C.5. Finally the back-reaction of electron wave trapping 

on beat heating is considered in Section II.C.6. 

1. Theory of Beat Heating for Small Amplitude Electron Plasma Waves 

The theory of beat heating has been discussed at some length 

in the literature, Refs. 34, 43, -53, 57-60. For the sake of complete

ness we include the derivation due ~ostly to Kaufman that appears in 

Ref. 43, and for convenience we adopt the same notation. We shall, 

however, make much use of the formalism presented in Section I.C. 

We begin by recalling that the invariance of the canonical y momentum 

permits the identification of the electron transverse oscillation 

velocity: we define u(!,t) = v = -eA(!,t)/mc. We assume that for 

beat heating the ions form an immobile, charge neutralizing background 

and drop the subscripts denoting electrons. 
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We adopt a fluid model for the transverse current 

J = ev(na(~) + on(!1t)], Eq. <'14) generalized to a nonuniform medium. 

Then use of the wave equation Eq.(lJ) for the vector potential and 

substi tution for A(!, t) in terms of u(!, t) yields 

(25 ) 

To make the notation less cumbersome we adopt the convention that 

w :: w (a) and n...:: na(a). Corrections to the model for the 
e e· u 

current and thus to Eq. (25) are of relative order u2/c2 and 

v 2/c2•Jl We utilize a WKB representation for the transverse waves, e 
and express the vector potential or in this case the transverse 

oscillation velocity as 
. x 

u(!.t) = "o(~.t) exp[-iwot + i f- !O(!' ).~,] + c.c. 

+ "1(!.t) exp[-i"'l t + if! !!:l(lI' ).~' ] + c.c. (26) 

where ua and ul are the slowly varying complex transverse velocity 

amplitudes of the two electromagnetic waves. The wavenumbers of the 

two transverse waves satisfy the local dispersion r~lations 

k12(!) :: [W12 - we
2(!)]c-2• 

The density perturbation is excited by the low frequency beat 

of the two high frequency waves via the Lorentz force on the electrons. 

The density perturbation is ~ assumed small: 
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where n = Wo - "1. is the beat frequency, and ~ = !o - ~ is the 

local beat wavenumber, restricted to lie in the x-z plane perpendicu-

lar to the transverse electric field polarizations. The electron 

plasma. wave is resonantly excited if the beat frequency and wavenumber 

nearly satisfY the Bohm-Gross linear dispersion relation, 

n 2 _ 2 + 3 2 2 
i' we K ve • 

We can ignore the density perturbations at the sum frequencies 

CWo + W:l' 2wO' and 2w1 ) for the following reason. Since they 

represent high frequency, high phase velocity, nonresonant perturba-

tions, they can be only collisionally damped and are not normal modes. 

However, if we consistently ignore collisional loss in the high 

frequency perturbations, the coupling constant r = X (1 + X. )/E e ]. 

is real and small, r == (J( -We 2 14wO 2 ). Then the density perturbations 

at these sum frequencies simply couple back into the electromagnetic 

waves to produce nonlinear frequency shifts as in Eq. (15). Further 

consideration of these nonlinear frequency shifts is deferred until 

later in the section. 

We assume that Ii(!, t ) is slowly varying on the beat fre-

quency and beat wavenumber time and space scales respectively. If we 

substitute Eqs.(26) and (27) into Eq. (25) and keep only the resonantt 

noniinear coupling terms, i.e., only terms with slow temporal and 

spatial variation, we obtain 

(28) 
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Equations (28) describe the mode coupling of the transverse 

wave amplitudes without any assumption on the amplitude of the density 

perturbation n. The energy density of each transverse wave is given 

_.. -1 ( 2)] 21 12 2 2 2 by Wt = wt a(w E: law (wt/c) At /4rr = Wt 1Atl /2rrc 

= (mle)2wt2IutI2/2rr where E(W) = 1 - We2/w2.34159 The transverse 

wave actions WtWt~l are th~n proportional to wtlutl2. MUltiplying 

Eqs. (28) by Wo ~. and ~ u~ and then adding the complex con

Jugates of these equations, we obtain by analogy to Eq. (5) the conser-

vation law for transverse action (Manley-Rowe or photon conservation): 

The Manley-Rowe relation is evidently quite generally true: it 

requires only that the WKBanalysis be valid. No assumption has been 

made on the size of the density perturbation. We have assumed that 

there is no collisional damping of the electromagnetic waves. 

Transverse action is therefore conserved for uniform or weakly 

nonuniform plasma, and for a linear ~r nonlinear density perturba

tion. 26- 29 The conservation of action implies that transverse energy 

is not conserved. As action is transferred from the higher frequency 

wave (~) to the lower frequency one (wl ), ~e energy difference, of 

relative size Q/wO' is de:posited in the plasma as a coherent oscilla

tion or as heat. If the energy difference is absorbed as heat, the 

energy transfer is irreversible. If a coherent oscillation persists, 

however, the energy transfer can be reversed, and the transition 

can occur. This is observed in simulations and predicted 

theoretically when the beat wave is small in amplitude and weakly 

damped, arid when the beat wave is large enough in amplitude to trap 

electrons. 
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The rate of action transfer is, from Eqs.(28), given by 

On using the Poisson equation for the density and scalar potential 

amplitudes, K2~ = 4niie, the right side of Eq. (30) becomes 

(31 ) 

The potential ~ is the longitudinal response to the ponderomotive 

potential energy4D-42 W(!,t) _ < ~ mu2 )(!,t) of the electrons; 

the angular brackets represent an average over the rapid temporal 

variation at wo'~ yielding a beat variation 

1{I(!,t) = ~(!,t) exp(-int + if ~.~) + c.c., $(!,t) = muo~. From 

Eqs. (9), (10), and (11) we obtain for the linear longitudinal response 

( ) ( ) -1 (-1) (-1) * .. ~ !,t = 1 + Xi E ~O ~ ~o Z E - 1 ~o = E - 1 mUoulie 

(32 ) 

where E is the linear dielectric f~ction, evaluated at n,~. The 

pomderomotive potential energy is evidently related to the effective, 

-external potential introduced in Eq. (9) by the expression IjJ = e~O. 

If the space-time variation of (uO,ul ) is not sufficiently 
. 

slow we should instead use n + iat and K - iV as the arguments of 

E. To illustrate this we undertake the following construction. 

Suppose the electron plasma wave to be driven at frequency n and to 

exhibit dissipation rate v. Define the real, linear normal mode 

frequency nL by He E(nL'~) = O. 

obtain: 

Then expanding about nL we 
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+ E[O + iat + (awld~)·iV - ~] + ••• 

())) 

where E = aRe E/aw is evaluated at 0L and we have made use of 

Re E(nt,~) = 0, v = 1m E/E' and for electron plasma waves 

- 2 2 
E ~ 20L/we and awla! = )~Ve 10L. This construction requires that 

In - nL + i( at ... v + )~ ve 2~OL ).v] I «we to justify truncation of 

the Taylor series where shown in Eq. ())). In Section II.C.5 a 

similar expansion is examined in more detail for the case of a non-

linear dielectric function where certain of the nonlinear aspects 

may be incorporated by modifying the form of E, so that E depends 

on ~ implicitly. 

In the case that Eq. ())) is applicable, i.e., if spatial and 

temporal variations in the longitudiona1 response are appreciable, 

then the formulation making use of Eq. ()2) is not the most expedient. 

The three-wave analysis in Section II.C.) becomes preferable. The 

opposite limit, where Eq. ()2) is applicable, defines what we mean 

by the "quasi-steady" longitudinal response. 

We now use Eqs. ()2) and()l) to express the right side of 

Eq.( 30) as 

21 121 12 -1 K Uo . u1 1m E (n,~) 
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We observe that the action transfer-depends upon the beat wavenumber 

as K2, if the variation of Im £-l(n,K) with K is neglected. By . -
orienting the lasers oppositely to one another (K = kO + kl ), the 

beat wavenumber and hence the coupling are maximized. All wave propa

gation then occurs in one dimension, say x (see Fig. 5). 

For a uniform medium, the nonlinear equations for 1~12(x,t) 

and 2 I ~ I (x, t ) can be solved analytically, as dis'cussed in Ref. 60 

included here as Section II.C.2. Numerical solution of the action 

transfer Equations (29) and (30) for the case of a nonuniform medium 

using (31) is also discussed in Section II.C.2. For~a nonuniform 

medium, we limit our analytic study here to the steady state 

(at~ = at ~ = 0), whence Eqs. (29) and (30) become 

(d/dx)(kOluoI2)= (d/dx)(kll~12) = K2c-2IuoI21~12 Im £-1 

(35 ) 

where £( n, K; x) has an explicit x variation through the plasma 

parameters: density, temperature, possibly non-Maxwellian electron 

distribution. 

In order to understand Eq. (35), we introduce the action flux 

density, which is merely the action density J t multiplied by the 

group velocity ~t = ~tC2/Wt' We express the action flux density in 

natural units as ~t = (e/mc
2

)2 2tWt/Wt = (~t/2~)lut/cI2. Then Eq. 

(35) reads as in Eq. (3) of Ref. 59: dSO/dx= dSl/dx = BSOSIIm £-l(x), 

with 8 = 2K2/kOkl == 8 for n« Wcr .Upon integrating over x, we 

found the solution 

, (36 ) 
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where ~f = fex = a) - f(x = b);. a and b are any two x planes 

(such as the boundaries of the plasma) I and S = So - Sl is the 

constant action density flux. 

In the limit of weak damping (lIm ~ = 1e:'1« 1), the x 

integral can be carried out exactly.59 We write 1m £-l(x) = -~O[£'(x)], 

where e:' = Re e:. The integral on the right-hand side of Eq. (36) is 

then 

f
b 

-1 
a dx Im e: (x) = -~lae:'/ax 

-1 

e:'=0 
-7fL· 

n 
( 37) 

defining the effective density scale length L. In this limit, the 
n 

action transfer of Eq. (35) t.akes place over the infinitesimal region 

where e:'(n,K; x) =0, i.e., at that position x where the beat 

frequency n matches the Bohm-Gross frequency at the beat wavenumber 

~(K; x). 

More realistically with finite e:", we have 

Im e:-l = -e:"/( 1e:'(x)1 2 
+ 1e:"1 2 ). It can be shown that 1m e:-l has a 

half-width of order e:"L :::: 2VL Iw (see Fig. 5), where v is the nne 

total damping rate of a Langmuir oscillation. Equation (37) remains 

unaltered, however, in the limit that the half-width is small compared 

to the plasma length. In order that the WKB representation be valid, 

the transfer zone width VL Iw must exceed the wavelengths, i.e., n e 

(VlWe ) »(ktLn)-l. (TYPical parameters for a a-pinch, no - 1017 cm-3, 

T - 100 eV, w IwO - 0.1, and L - 10 em, satisfy this inequality, e e n 
. . -2 ()-1-4 since vlwe ~ 10 while kOLn . - 10 • For our simulations the 

resonance zone was of order ten wavelengths long.) If the damping is 

not weak (V - we)' then e:( x) may not be considered small. However, 

the integration in Eq. (37) can still be performed for known e:(x) • 

. Since strong damping implies Im e: -1 = - ere 1 ), we obtain in place of ( 37) 
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, (38) 

where L is the length of the plasma. In a real plasma, when 

L - (/(L ), we haye the important result that the action transfer is, 
n 

in order of magnitude, the ~ for strong as for weak damping of 

the longi tudinal response. This is true provided IE"L I « L, othern 

wise the action transfer, proportional to the integral in Eq. (38) , 

is incomplete. Thus, for given K, the dependence on KAe is weak; 

and for KA «1, the dependence vaishes, since the integral is truly e 

independent of v for the model of a linear gradient. 

At this point we return to our earlier examination of the 

nonresonant [I E I - ('J( 1 )] high-frequency density oscillations, which 

give rise to nonlinear frequency shifts in the two electromagnetic 

pumps. Arons and Max31 have derived the frequency shift for a single, 

linearly polarized electromagnetic wave: we recall from Section I.C 

their result 

where Vy is the amplitude of the transverse electron velocity, 

Vy = eEy/(mw). The frequency shift due to relativity only is 

- ~ 00(00 Iw)2(v Ic)2, while that due to ev. xB Ic (the Lorentz or 
.1..0 p Y -y -z 

'''ponderoJD.oti ve" force) is -41 w( 00 100 )2( vic )2( 00
2 _ 00 2 )/( 4w2 _ w 2) 

P Y P P . 

using Eq.(15). The ponderomotive frequency shift describes the effects 

of density perturbations at the frequencies 2wO and 2w1• There is 

an additional ponderomotive frequency shift due to the v x B 
-y -z 

coupling at wo + ~. 
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In the steady-state, there can be considerable spatial varia-

tlon of the amplitude of each of the electromagnetic W8.\""eS. We can 

nevertheless set an upper bound on the relative frequency shifts, viz. 

t I dl . 2 in 2} Aw/w ~ --l4 (we/w) (vy /c) • To e~timate their effect on the 

action transfer, they should be compared to the quantity 

IE(x)I/la£~x)/awln ~ 0.02 w which represents both the linear 
~"K e 

- dissipation and the mismatch of the elect~on plasma wave. Since that 

quantity is more than an order of magnitude larger than the electro

magnetic frequency shifts IAwI $ 0.001 we (for typical simulations 

wO/we ... et( 5) and 21 ~/cl in= 21 ~/cl in ~ 0.1) , we have neglected 

those shifts in Eq. (35). An investigation of the nonlinear frequency 

shift and dissipation of the driven electron plasma wave, and of their 

influences upon beat heating, is considered in subsequent sections. 

In a simulation model, for reasons of economy the slab 

thickness L may be smaller than L, and even smaller than the n 

resonance width (v/w )L. In that case appropriate corrections must - e n 

be made in comparing theory and simulation. A typical simulation for 

beat heating when the density perturbations are linear is shown in 

Fig. 6. 

Inserting (37) into (36), we have the result (Eq. (5) of 

Ref. 59): 

~ SIr koLnluo/cl~ = (1 -R - p,-l R.n[(l - R)(P + R)/P] , 

(39 ) 

in 
an implicit equation for the relative action transfer R = ~S/SO ' 

in terms of the input ratio P = Slin/Soin and the input amplitude 

luOlin. (See Fig. 2 of Ref. 59 for a plot, also Fig. 7 here.) This 

result is remarkable not only in its independence of the damping rate 
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v (and thus of the temperature, the collision rate, and the damping 

mechanism), but also in that its dependence on the power parameter 

and the scale length L is only through their product. 
n 

To test relation (39), a set of simulation runs was made for 

the case of equal input actions (p = 1), corresponding to approxi-

mat ely maximum transfer for a given total power input. For the set 

reported here, the power was kept suffici(ontly low that the longitud-

inal response could be treated as linear. The dependence of action 

transfer R on the product of scale length and input power is shown 

in Fig. 7; the simulations and the theory are seen to be in excellent 

~ement. The action transfer was measured by averaging in time over 

the decaying oscillations of the instantaneous action transfer rate, 

which approaches a steady state. The error bars represent the 

statistically weighted magnitudes of these oscillations. 

To verify the theoretical prediction that the dependence on 

scale length and input power is only through their product, three runs 

were made, with different scale lengths and powers, but constant 

product. The action transfers (also shown in Fig. 7) were found to 

agree, within statistical error. 

The damping of the longitudinal response in these simulations 

was due to resonant particles, i. e., Landau damping. Wi th K\ chosen 

-2 between 0.30 and 0.45, the damping rate v lay between 10 we 

and 10-1 we' The v-independence of the action transfer was tested 

by varying fixed. The simulations corrobor-

ated this independence. 

We have thus used the electroma~etic simulation code to study 

beat heating of a plasma in the linear regime of the driven density 
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disturbance. Steady-state theory was found to be useful in under-

standing the action transfer and plasma heatir~ for small amplitude 

electron waves. There was good quantitative agreement between 

simulation and theory. 
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2. Space .. tlme interaction of opposed transverse waves In a plasma 

Bruce I. Cohen 
Department of Physics and Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 

(Received 17 August 1973) 

The interaction of two opposed, intense electromagnetic waves, whose difference 
frequency approximates the plasma frequency, is studied. Plasma heating ensues. 
Energy is transferred to the lower-frequency wave throughout a uniform plasma, but 
only in a resonance zone in a nonuniform plasma. 

The nonlinear interaction of coherent electromagnetic 
waves (lasers) in an underdense plasma (wp < w) is of 
interest because of the· potential for heating when the 
difference frequency of the two waves is near the local' 
plasma frequency.l-6 When this is the case, energy is 
partially transferred from one transverse wave to the 
other and is partially deposited in the plasma in the form 
of electrostatic plasma oscillations. In the present note, 
we extend the work of Kaufman and Cohen6 by including 
the temporal evolution of the interaction. 

We examine the transfer of energy between two trans
verse waves of frequencies Wo, WI, with Wo > Wi, The 
transfer is driven at the beat frequency Q == Wo - Wi and 
at the beat wavenumber K == ko + kl (for opposed wave 
vectors). The plasma is considered to be infinite in extent. 
We assume that the dissipation rate I' of the plasma wave 
and the mismatch Aw(z) = Q - wp(z) are small, so the 
interaction is nearly resonant. 

The analysis follows that of Ref. 6, employing the 
longitudinal dielectric function and using the same nota
tion. Both the temporal and the spatial evolution of the 
intensities of the electromagnetic waves are studied. The 
electrostatic potential in response to a vector potential 
A(z, t) is q,(z, t) ex: [t:- I 

- I]A2(z, t) + noise. The behavior 
of the transverse waves will be analyzed over time scales 
long compared with 1'-1; thus, any potential q,(z, I) pres
ent at either the initiation or termination of the laser 
pulses can be ignored as a transient whose decay occurs 
in a time of the order of 1'-1. The generalization of 
Kaufman and Cohen's6 nonlinear coupled mode equa
tion for the action fluxes in natural units is 

(az + e- I at )Jo = (az - e- I at)J. = - 2f Jo.fJ , (l) 

where f == -4'IT 1m t:-I(Q,K) and .It == k"Ad 2e2 

/(2'TTm 2 e4
). The group velocities of the two electromagnet

ic waves have been set equal to e, since we assume 
W » Wp. Because f > 0, the higher-frequency wave loses 
action flux Jo as it propagates to the right (increasing z). 
The action flux .fJ of the lower-frequency wave increases 
as it propagates to the left. The conservation law for 
action flux, from (1), is at (Jo + .fJ) + az (eJo - e.fJ) = O. 

For a uniform plasma the solution of (1), subject to 
conditions that the w;, wave is incident from the left and 
the WI wave from the right with step function profiles 
B(et - z) and B(el + z) respectiv~ly, is straightforward. 
The mismatch Aw and damping I' are constant. One 
transforms to new variables el - z and et + z, the char
acteristics of the operators of (I). The equations are then 
solved using the method of Maier et af.7 In terms of the 
input action fluxes, Jd and .fJ; let p == .fJ;/Jd, '1'/ == (et 
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- z)fJd and € = (et + z)fJd. The solutions for the rela
tive action fluxes are 

.lo(t,z) == Jo(t,z)/Jd = e-~ (e-~ + eo{ - It I , 

J;(t,z) == .fJ(t,z)/Jd = peo{(e-~ + eo{ - I)-I, 
(2) 

valid for '1'/, € ~ O. For a cold plasma'2 t: = I - W;{(~2 
+ iQpei), so that f :::::::: 4'lT(p.Jwp)[(p.Jwp) + (2Aw/wp)] . 
The energl density deposited in the longitudinal wave, 
L(me2/e) Jo.fJIt:-I(Q,K)- 11 2

, is ultimately available for 
plasma heating. 

We consider the example of CO2 lasers (wo - 2 
X 1014 sec- l

) with wp/Wo = 0.1, p.JwP = 2p/wp = om, 
pulse lengths:::::::: 601';;1, and Aw :::::::: 1'.;. Significant transfer 
of actIon occurs when the dimensionless space and time 
variables are of order unity: '1'/, ~ - f Jd et = Wo 1'-1 

X wp t(po/2.5 X 1016 W/cm2) = 0(1). Hence, appreciable 
interaction occurs for intensities po ~ 2 X 1OIOW /cm2. 

Figure l(a) shows the solutions (2) for p = I. Dimen
sionless time and space variables t' = f Jd et and z' 
= f Jd z are employed. The pulse shape of the WI wave 
peaks and sharpens as the Wo photons are turned around 
and converted to WI photons. The WI photons "pile up" as 
the WI wave propagates through the Wo wave. Energy 
transferred to the plasma then grows as the WI wave front 
progresses to the left. Since the interaction rate depends 
upon the product of the actions, we have chosen p = I 
to maximize the action transfer. 

Analytic solutions to (I) for a uniform plasma but with 
linearly varying leading edges for the t~o pulses are 
obtained similarly. If we define Ji == laJ;I, IT == (ct - z) 
(f Jo)I/2, and T == (et + z)(f JO)I/2, the action transfer 
between the two transverse waves is described by 

k(t,z) == Jo(t,z)(f/JO)1/2 = oexp(-02/2) 

X [exp(-02/2) + exp(p-r2/2) - 1]-1, 

J;(t,z) == .fJ,<t,z)(f/JO)1/2 = p-rexp(p-r2/2) 

X [exp(-02/2) + exp(p-r2/2) - tr l
, 

(3 ) 

valid for 0, T ~ O. Again marked amplification and "pile
up" of the WI wave occurs just behind its leading edge 
[Fig. 1(b)]. 

We next examine the case of a linear density inhomoc 
geneity. We define the density scale length L 
== Idln n/dzl-I

• The frequency mismatch now depends 
upon position: Aw(z)' == Q - wp(z) :::::::: Qz(2Ltl. It fol
lows that f(z) ~ 411'JI~,Q[p;; + (Qz/L)2rl. For a nonuni-
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form plasma, r(z) is large (coupling is appreciable) only 

. in a narrow zone around z = 0 [a = wp(O)]. The width of 
this resonance zone has been defined as h = 27r Lv./ n by 
Mostrom et al.8 We assume that koh » 1 to permit a 
WKB analysis. 

Again, we follow the evolution of step function and 
linear initial pulse profiles. Since r ex V-I at the exact 
resonance position z = 0, while the response width h 
ex: ~, the total action transfer is only a weak function of 
the damping v. In absolute units the action transfer is 
linear in both the scale length of the plasma and the laser 
intensity (for p = 1).6 Again, p = I gives the maximum 
transfer efficiency. Figures I(c) and led) display the 
numerical solution of (I) for p/n = 0.01. Figure l(c) is 
the case h = 0.OO25(47rJdr', while h = 0.OO5(47rJ~tI/2 in 
Fig. led). Nearly all pulse profile modification occurs 
within the resonance zone. For the step-function profiles 
a steady state for the conversion of the Wo wave to the w, 
wave is achieved at times greater than 6h/c for the 
dimensionless parameter h' == h47rJd chosen. There is no 
such steady state in the case of linear pulse profiles, 
because the unperturbed wave intensities are linearly 
increasing functions of time. 

These solutions to the coupled mode equations (I) are 
valid as long as the transverse waves overlap within the 
plasma. For a finite length plasma, the interaction can be 
very different; for example, the possibility of relaxation 
oscillation arises.9 However, for a nonuniform plasma, 
the interaction is appreciable only in the resonance zone. 
In this case the solutions remain valid as long as the 
region over which the transverse waves overlap contains 
the resonance region, regardless of the finite extent of the 
plasma. 
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3. Three-wave Analysis of Beat Heating Coupled MOde Equations 

This section will describe the three-wave analysis that becomes 

necessary when in Eq. (32) the space-time variation of (~,~) is 

sufficient to demand the inclusion of space and time deri vati ves in E. 

The arguments of the warm plasma E become 0 + tat and K - ia
x 

in 

one dimension, Eq. (33). If we assume IEI« 1 and make use of Eq. 

(33), then instead of Eq. (32) we obtain 

, 

?~We-2[o - ~.+ i(at + v + 3K'Ve~-lax)]~(x,t)~ = 

• 2 2 2 2 where nL is the Bohm-G~oss frequency 0L = we + 3K ve' Poisson's 

equation allows us to replace ~ by 4~K-2en. Then Eqs. (28) and (40) 

form a complete set of first order partial differential equations 

describing the three-wave interaction. 

In the limit that the temporal or spatial rate of action 

transfer dominates dissipation and mismatch, then the three linearized 

coupled mode equations in a homogeneous, underdense (we «w1,wO) 

plasma can be written 

(41) 

• here a:: K2e/( 2IDWo) and a:: llX.lle 
21( 2'en). Analytic solutions for 

the coupled mode equations in this form have been found. 18- 21 Nozaki 

and Taniuti obtain a special class of solutions corresponding to the 
. . 20 

steady propagation of solitary pulses. The solutions for the three 

waves are functions of only x - At where A is the constant 

-. 
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propagation speed and is amplitude dependent. Nozaki and Taniuti 

find solutions whose forms are hyperbolic secants for ~(x - At) 

-and q,( x - At), and hyperbolic .tangent for li
O

( x - At) with only two 

of the three amplitudes as free parameters. Since the system of 

equations (41) in general possesses an arbitrary initial configuration 

ua{x,O), ~(x,o), and ~(x,o), there is no guarantee that the inter

action will always evolve into a solitary pulse or pulses (see Fig. 10 

and discussion below). 

To examine Nozaki and Taniuti' s solitary pulses we have recast 

Eqs. (41) in the form 

(at + Vlax)al 
= -ia2a, 

(at + V23x )a2 = . * -1.a,al 

(at + V,3x )a, * :;: -ia2al 

and set Vl = -V2 :;: V, = 1 arbitrarily. A right-going solitary pulse 

solution is illustrated in Fig. 8, where we directly numerically 

integrate the coupled mode equations. In performing the numerical 

integration we employ the space-time characteristics of the linear, 

partial differential operators to reduce the differential operators 

to ordinary, first derivatives which are straightforwardly finite-

differenced and integrated by a first order predictor-corrector 

method. 67 The steady propagation of pulses conforming to the solu

tions of Nozaki and Taniuti is verified and pictured in Fig. 8 for 

value of A = 1.01. 

If we consider perturbations to the solitary pulse solution 

corresponding to an excess of energy in one or more 'of the three waves, 
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a solitary pulse can evolve if normal convection can carry the excess 

energy away from the solitary pulse interaction region. In Fig. 9 the 

initial pulse profile for a2 corresponds to ten times the solitary 

pulse amplitude in Fig. 8. The excess energy is convected to the left 

and out of the system. The residual propagates to the right as part of 

a solitary pulse in a direction counter to normal convectio~ resembling 

the solitary pulse in Fig. 8. For the case of superposed, counter-

streaming (colliding) solitary pulses with propagation velocities 

nearly equal and opposite A = ±1.0, no return to steady propagation 

of solitary pulses is observed within the duration of the integration 

(see Fig. 10). In fact lall and la), in Fig. 10 appear to fragment 

into three localized components. 

In interpreting these numerical experiments we emphasize that 

in all cases the three-wave interactions are initially localized; but, 

while some of the wave amplitudes are localized, others are not. The 

pump wave is present everyWhere being proportional to tanh(x - At). 

If there is steady propagation of the interaction as a solitary pulse, 
.! .' 

then the interaction remains localized in the frame x - At = constant. 

Zakharov and Manokov use the inverse scattering method to 

construct a prescription for the general solution of Eq. (41) to 

21 describe the resonant three-wave interaction of wave packets. They 

construct the necessary nonlinear operators in matrix form that render 

Eq. (41) equivalent to the solution of linear integral and differential 

equations. For the case of three-wave decay certain general classes 

of solutions are discussed; however, for specific initial conditions no 

explicit solutions are constructed in Ref. 21. 

.' 
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Zakharov and Manokov claim that if the pump velocity Vl 

satisfies either the condition V,3 < Vl < V2 or V2 < Vl < V
3
, then 

the wave envelopes can suffer large changes in their shape and incur 

spectral broadening due to the nonlinear interaction (nonlinear 

collision of the three interacting wave packets). However, no signifi-

cant energy exchange occurs asymptotically at t = 00. They further 

claim that if the pump velocity satisfies the condition V,3 < V2 < VI 

. and one considers collisions of wave packets a1 with a2 where 

initially (t = -00) I ~ I , I a21 » I a,3/' then complete transfer can 

occur subject to a threshold condition on the energy in the inter-

acting wave packets. If insteadal collides with a
3 

where 

initially /all,la,3I» la21 or if a2 collides with a,3 where 
. .' 

initially la21,la,3I» lall, no final (t = 00) redistribution of 

energy results. 

If we include finite dissipation in Eq. (41) and generalize 

to a nonuniform medium, then following Rosenbluthll,23,52 we obtain the 

coupled equations . , 

* . 2 = -ia,3~ exp(iK'x /2) (42 ) 

The unit of time has been scaled so that the characteristic growth 

rate YO of Raman backscatter instability in a uniform medium 

( 18.1 1 » la21, I a,31 and K' = 0) is given by 

Y02 = 12~/cI2WeWo= lal l2• The complex amplitudes al , a2, and a3 .. 
correspond to uo' ul ' and ~ respectively. 
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The quantity kO(X) - kl(x)- [02 - We2(x)]i/(3ve2)i is the 

difference between the spatially dependent beat wavenumber K(X)-

ko(x) - ~ (x) and the wavenumber kp(X) satisf'ying the local disper-

. 2 2 2 2 
sion relation for a L~r wave: n = we (x) + 3kp (x)ve ' If we d~ 

f". 2 2 i' . 2 i\ 
fine K' = (d/d~\kO(X) - kl(x) - [n - we (x)] /(Jve ) j,Where x = 0 

is the position of exact frequency and wavenumber matching, then the 

quantity K'x2/2 measures the spatially aependent phase mismatch of 

the three-wave coupling, produced by the plasma nonuniformity. The 

linear dissipation rates of the three waves are given by vI' v2 ' 

. and "3 respectively. The group velocities are denoted by VI' V2, 

and V3 which are all positive quantities, whose WKB variations are 

ignored. 

For initial conditions corresponding to la21,l a
3
1« la

l
l , 

integration of Eq. (42) verified the linear parametric backscatter 

instabili ty growth rate for a uniform plasma (~I = 0), which in our 

units is YO = lall. For a nonuniform plasma assuming a linear density 

profile (K' = constant), we obtain convective saturation with a net 

amplification factor exp(TIY02/IK'VlV21) for the backscattered ampli

tude provided negligible pump depletion occurs: 

lal 01» exp( 7TYO 2;1~Vl v21 )1 a2°1. A detailed examination of the 

influence of plasma nonuniformity on parametric instability appears 

in Ref. 22. In the limit of significant pump depletion, characteristic 

reversible oscillations of energy from the decay products a2,a
3 

to 

the pump wave al were observed. We shall refer to this phenomenon 

as nonlinear oscillations. 66 

The numerical integration of the system of Eqs. (42) corres-

ponding to beat heating is shown in Figs. 11 and 12. In both the warm 
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and cold plasma cases we have set the input ratio equal to unity, 

I~I = la21 = 1, and chosen !aJI = 0 initially. In Fig". 11 we 

assume a cold plasma with dissipation of the Langmuir wave assumed due 

to Coulomb collisions. The group velocity for the Langmuir wave 

vanishes, V
J

<= OJ and we ignore the dissipation of the high frequency 

waves, v1 = V2 = O. We select parameters v
J 

= 0.2, V1 = V2 = I, 

and K' = O. The results (Fig. 11) are reminiscent of those picturedin 
( 

Fig. 1 of Section II.C.2, if we average over the nonlinear osci11a-

tions. 

In our solutions for beat heating in Sections II.C.l and 

II.C.2, we assumed that the density perturbation could be expressed 

in terms of the ponderomotive potential and the linear dielectric 

function. Our integrations here retain the time derivative and, in" 

subsequent cases, the spatial derivative in the equation for the 

longitudinal response, Eq. (40). Numerical integrations of the coupled 

mode equations, retaining at and ax in the equations for all three 

modes, Eq. (42), were performed with various dissipation rates. In 

the limit of rather large dissipation, IvJI» lat in ~I, IvJax R.Il~I, 

the results of the integrations here conform with those in Section 

n:C~2. This regime of the nonlinear intera.ction corresponds to the 

plasma wave being overdamped on the Slow, nonlinear time scale. 

With increasing plasma wave dissipation, the nonlinear oscillations 

diminish, and there is improved quantitative agreement with solutions 

where the small amplitude plasma wave is treated as being quasi-

steadily driven. 

The results of the integration of Eq. (42) in the warm plasma 

case are shown in Fig. 12 for parameters V1 = V2 = 5, V
J 

= 1, 

v
1 

= v2 = 0, v 3 = 0.2, and K' = O. The convection of the Langmuir 
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wave appears as an asymmetric distortion in space of its amplitude, 

a/ x, t ) in Fig. 12.· The effect of convection can be viewed as a 

spatially dependent dissipative term Veff(x) = v)ax . Then increasing 

V) is similar to increasing the dissipation v). Nonlinear oscilla

tions decrease; however, there is a pulse asymmetry or disto:r-tion 

produced by the sign change in v)a
X 

operating on the front as 

compared to the back of the plasma wave er,velope ai x, t) (see Fig. 

12). The three-wave interaction dominated by convection (Fig. 12) is 

otherwise qualitatively similar to that dominated by dissipation 

(Fig. ll),~ich agrees with the conclusion of Ref. 58. 

In this section we have seen how beat heating is influenced 

by relaxing the assumption that ~::: [g -1.0, K) - 1] mttat\/e, and by 

replacing it with a linearized wave equation for ~ where at~ and 

ax~ appear. We have reviewed the case of parametric instability. 

For the case of mode coupling when there is appreciable energy 

transfer from the pump to the decay products we have found two 

phenomena which can occur only when we retain at and ax in our 

equations for all three modes: reversible nonlinear oscillations66 

and the propagation of solitary pulses. 20 ,2l We have concluded this 

section by demonstrating under what circumstances solutions for the 

three-wave interaction with the terms at~ and a ~ present are x 

similar to those considered earlier without them, i.e., at~ = ax~ = 0. 

4. Introduction to Nonlinear Beat-Wave Effects 

In this section we begin consideration of beat heating in the 

nonlinear beat-wave regime. We survey competing nonlinear phenomena 

and establish for what parameters electron trapping is the dominant 

nonlinear effect. 
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a.Onset of trapping in beat heating simulations 

We have used simulations to investigate beat heating when the 

electrostatic wave becomes of sufficiently large amplitude to trap 

electrons. Trapping can cause resonant particles to act as an energy 

source or sink for the longitudinal wave which is scattering the 

photons. Consequently the overall efficiency of action transfer, and 

hence heating, can significantly decrease after the onset of trapping. 

Once a large amplitude beat wave is excited, after an interval 

of time of the order 

(43) 

the ''boWlce period", the trapped particles can return energy and 

momentum to the longitudinal wave. 6S- 75 If the orbit modification due to 

the trapping is included in the dielectric fWlction, the dielectric 

function becomes time dependent; and its imaginary part changes sign 

on the time scale of the bounce period. 73 From Eq. (34), we see that 

the direction of action transfer co~~equently re~erses (Fig. l3b): 

energy flows from the lower frequency electromagnetic wave and the 

electron plasma wave back to the higher frequency electromagnetic 

wave. This is observed in simulation whenever a significant fraction 

(~IO%) of the particles is trapped. 

We offer a theory for beat heating when the electron wave is 

no longer small in amplitude and when trapping is the principle 

nonlinearity. For trapping to pe important, the longitudinal waye 

must be of sufficiently large amplitude to reach back into the distri-

bution fWlction and trap an appreciable fraction of particles. If 

we define a velocity characteristic of th~trapping vT ~ (2el¢l/m)', 
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then the condition for trapping becomes v 4> - v T ~ (!{( 2ve ) where 

v 4> is the phase velocity of t~e longitudinal wave and ve is the 

electron thermal velocity. MOreover the period over which trapping 

occurs must be shorter than the length of the experiment T or the exp 

characteristic time for some igno~ed effect to become important TI 

(e.g., significant growth of modulational or parametric decay 

instability2L). We can then observe trapping if TB < Texp,TI . Our 

simulations typically last times T of order 100 ~ we T ~ 400. 

The condition for there to be an appreciable number of trapped 

particles can be rewritten as 

Further if we replace the left side of (44 )v
T 

by 211/KTB, we can 

neatly summarize all the above conditions on trapping as follows: 

In practice, for parameters of a particular simulation, one 

can use linear theory to predict (2el~l/m)1 v4>~l or I~I/no and 

to check the criteria above, Eq. (45), to ascertain a priori whether 

there will be much trapping. If we use Eq. (32) and assume I e: I « 1, 

then we can evaluate the scalar po~ential and write the condition (44) 

as 

MOtivated by Eq. (33), we propose that a suitable model for the linear 

or nonlinear dielectric function evaluated near a resonance (e: = 0) 

is given by 



" 
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£ = 2(A + iv)/n (46) 

where ~ is the mismatch, v, is the dissipation rate, and the beat 

frequency n satisfiesn ~ w. We shall construct the nonlinear e . 

dielectric function in the next section. We have defined the mismatch 

as the difference between the beat frequency n and the Bohm-Gros's 

frequency ~: ~ = n - ~,' ~ = (we 2 
+ 3i.:2ve 2 )1. If we assume that 

close to a resonance the frequency mismatch is small compared to the 

dissipation rate (IRe EI « lIm EI), then the criterion for appreciable 

trapping to occur is 

2 > (2v - W /K) (v/w ) - e e e (47) 

To evaluate the second criterion, that trapping be observed 

during the experiment, we use Eqs. (10) and (43) to obtain 

(48) 

From Eqs. (43) and (32), and again evaluating the linear dielectric 

function near resonance, we express the condition TB < T . exp as 

(49 ) 

where we have made use of TB = 2~/~ = 2~/KvT. If the condition (47) 

is marginally satisfied then (49) takes on the form 
. 1 

WeT xp > 2~ll - 2KA 1- . e e 

For realistic plasma parameters, e.g., a dense a-pinch: 

17 -3 no = 10 cm , T = <'( 50 eV), w /v = 100, KC/We = 10, and e e 'Co 2 

lasers (9.6 ~ and 10.6 ~ wavelengths, setting luol = J~I), one 

obtains from (47) 
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( 50a) 

and fromEq. (49) 

(50b) 

If (50a) is marginally satisfied and We/K = ef(]v e)' then to observe 

trapping we :equire 

all our simulations. 

W l > 6~, which is quite easily satisfied in eexp 

b. Simulations of nonlinear beat heating: electromagnetic code 

We have employed our electromagnetic simulation code to study 

beat heating when the electron wave traps particles. For the sake 

of simplicity the plasma was taken to be homogeneous. The simulations 

were severely limited however, by the finite plasma slab width being 

only of order five beat wavelengths (see Fig. 14). This leads to a 

certain number of unphysical effects which will be described in this 

discussion. 

In our comments and observations concerning the simulations, 

some mention of temperature and heating is made. Temperature is ca1-

culated in the code by subtracting the (re1ati nstic) kinetic energy 

density of the local sloshing motion of the particles from the total 

kinetic energy density, in the fr~ of the grid. Heating is defined 

as the time rate of change of the average local temperature. 

In Fig. 13 the temperature and the action flux transfer are. 

plotted as functions of time for a simulation exhibiting trapping 

(corresponding to Fig. 14). There is strong action transfer and 

heating at early times while the density disturbance and the distribu

tionfunction modification are still linear. There then follows a 

marked decrease in the heating of the plasma at a time lB after . 
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initiation of the beat disturbance, accompanying the reversal of 

action transfer. Meanwhile the velocity distribution function has 

evolved appreciably with a distended nonmaxwellian tail forming 

beyond the phase velocity and a plateau occurring near the beat-wave 

phase velocity (Fig. l4b). 

Scattering continues, however, and there is a return of the 

heating and action transfer to somewhat diminished rates as compared 

to the early stage of strong beat heating. Beat heating continues as 

the three-wave interaction evolves into a regime best described as 

11 12 76 induced Thomson scattering, KAe ~ 0.35. ' , . Now the beat-wave 

phase velocity falls much closer into the body of the velocity distri-

bution function at a point where the distribution has negative slope 

(Fig. 14c). By the considerable mdification of the distribution 

funtion and from the plot of the electron termperature, we observe 

that there has been considerable electron heating over a relatively 

short time: 6T IT (0) z 5 over w 6t = 40. ee e 

Figure 15 displays the results of several simulations of beat 

heating in a uniform, finite plasma slab where the increase in 

effective thermal velocity squared over the bounce period TB is 

plotted against initial ponderomotive potential in natural units 

* -2 . 2 2 
IUo~lc • We find emp1rically that ve (TB) - ve (0) is linearly 

* proportional to I~~I. We would be motivated to seek an explanation 

for this interesting result were it not for certain unphysical simula-

tion effects that occur. 
/ 

When there is appreciable trapping, particles absorb momentum 

from the beat-wave and are more readily carried to the right end of 

the system, where they are either electrostatically returned, or 
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elastically reflected if they reach the system wall. In a longer 

system, trapped particles would have a longer time to bounce back and 

forth in the potential well of the beat-wave, exchanging energy and 

momentum, before encountering the edge of the 'plasma. In our simula-

tions after one or two bounce periods a significant fraction of the 

particles has been reflected from the right wall of the system. 

Once reflected these particles no longer can resonantly interact with 

the beat wave, and they artifically symmetrize the distribution 

function and phase space (Fig. 14c). In a more realistic plasma model 

strong wave particle interaction persists for a much longer time. Then 

additional dissipation mechanisms should be considered for finite 

amplitude beat waves, e.g., the side-band instability.77 In the next 

subsection competing dissipation mechanisms, the electron-ion para

metric decay and modulational instability,24 are considered. 

c. Competition of beat heating and beat-wave trapping with 

other effects 

We begin by examining'under.what condition the two electro-

magnetic waves can propagate across the plasma to induce beat heating 

without first suffering Significant attenuation due to parametric 

Raman backscatter instability. We shall subsequently investigate 

nonlinear processes competing with particle trapping by the beat-wave. 

In Section II.C.3 we reviewed the result due to Rosenbluth 

et al. 53 describing the parametric amplification of decay products due 

to Raman backscatter in an inhomogeneous medium. The condition that 

appreciable pump attenuation occurs due to Raman backscatter in an 

inhomogeneous medium of scale length L is given by 
n 

2 I I 78 79 ' Ln = 2'IT'YO / K 'VI V2 »L' For the .plasma parameters 
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corresponding to a dense a-pinch with L n = 6'( 10 em) and CO2 lasers, 

the condition becomes luol2 ~> [Ln(cm)]-1(109 cm/sec)2 = 
JIIb 17 2 2 
V\ 10 em Isec ). Comparison with the threshold for trapping, given 

by expression (50a), indicates that trapping can occur without there 

being much attentuation due ~oRaman backscatter. 

Because the ions are fixed in our simulations, there is no 

possibility for parametric decay, modulational instability,24 or 

nonlinear Landau damping by ions. In a real plasma these processes 

will, however, compete with trapping. The thresholds for these pro-

cesses can be quite low compared to trapping. But since their growth 

rates scale to a higher power in the small parameter vT/v~, there is 

a regime of beat-wave strengths in which electron trapping occurs 

first. 

To illustrate thi~we examine the possible parametric electron-

ion decay of the beat-wave. For purposes of discussion we quote the 

threshold and growth rate derived by Nishikawa24 for the decay of an 

infinite wavelength Langmuir pump wave into finite wavelength Langmuir 

and ion acoustic waves.. For the actual case of a finite wavelength 

beat wave acting as the pump, the thresholds for parametric decay or 

modulational instability are reduced but the growth rates do not 

change much. 80 

Nishikawa found that the threshold for the decay instability 

'is given by 

, ( 51) 

where v is the magnitude of the longitudinal oscillation velocity, 

Vs is the dissipation rate for the electron or ion acoustic wave, 
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and wa is the ion acoustic frequency. For the growth rate Yei 

of the decay ins tabili ty, well above tbresho.ld, Nishikawa found 

(52 ) 

It will be useful in the following to observe that from Eq. 

(43) and the electron longitudinal equation of motion we obtain 

V = vT 
2 Iv 4>. From Eq. (32) and Eq. (43) we recall that 

2 * v T = 21uo ~ I I I e: I. The threshold for trapping Eq. (44) can be 

rewritten as 

(53 ) 

Comparison of Eq. (53) with Eq. (51) reveals that the threshold for 

decay instability can be very much lower than that for trapping in 

a-pinches and laser-pellet plasmas, for example. 

If we, however, compare the growth rate of parametric decay 

Eq. (52) to the electron bounce frequency wB = KVT ~ wev/vT, we find 

that 

At threshold for trapping, described by an equality in (44), we 

obtain by substituting for vT 

For 0.2 < KAe < 0.4 and mi ~ 1836 me' then Yei/WB < EY(O.l). 

We conclude that trapping can occur before there is significant 

growth of the decay instability. 
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In our simulations trapping and the ensuing deformation of the 

velocity distribution function are the mst important features affecting 

beat heating. There is also convection in both ~~e linear and nonlinear 

regimes of beat heating which can produce effective loss and mismatch. 

To test the importance of convection, we recall the formulation of the 

coupled mode equations as considered in the previous section, Eqs. 

(40)-(42). In Eq. (40) the Coulomb potential, or, using Poisson's 

equation, the density perturbation satisfies a linearized wave equation 

driven by the ponderomotive force whose left side becomes (in the 

WI<B limit) 

where v 1 is the group velocity for an electron plasma wave, g 

is the dissipation rate, and 6 is the frequency mismatch 6 = Q - ~. 

We can estimate the effect of convection as being of order 

v 1/1 = J( K2). 2/KL )W = ~ O.Ol)w COmpared to v = ~ O.l)w gee e e 

for typical simulations, where we have estimated a _ L-l using x 

the length of the plasma L. 

We have therefore ignored convection and treat the beat distur-

bance as a Wave driven near resonance with both damping and mismatch 

functions of time and implicitly of wave amplitude. We shall incor-

porate these nonlinearities into the slowly time dependent dielectric 

response of the plasma ENL(Q,K; t) = E' + iE". The nonlinear 

. dielectric response is formulated by including the nonlinear, time 

dependent, complex frequency shift to the linear normal mode fre-

quency due to trapped particles. We construct the nonlinear dielectric 

function and the nonlinear normal mode frequency in Section II.C.5. 
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d. MOtivation for a model problem 

The qualitative dependence of action transfer upon E~~ has 

been verified in the fully electromagnetic simulations discussed so 

far. The difficulty with a quantitative analysis of ENL in our 

electromagnetic simulation derives from the finite length of the 

plasma which is only of order five beat wavelengths (see Fig. 14). 

In our simulations after a time as short as one or two bounce periods 

of a representative trapped electron, a large number of accelerated 

electrons have elastically scattered off the right-hand system 

boundary. The ensuing artificial symmetrization of the distribution 

function and the sudden termination of strong wave-particle inter-

action after wall reflection of an individual electron distort the 

evolution of nonlinear beat heating in an unphysical way. In addition 

there is a nonlinear oscillation of the entire plasma slab because of 

the accumulation of space charge at the slab edges due to the trapping. 

We have therefore constructed a model problem where we consider the 

ponderomotive force driving the beat wave as a fixed amplitude 

external driver in a uniform, infinite, periodic plasma. 

For purposes of simplification, we hold the driver steady and 

simulate the electrostatic ponderomotive driver in a one dimensional, 

electrostatic particle code describing a periodic, homogeneous, warm 

electron plasma. Section II.C.5 takes up the theoretical analysis of 

the model problem generalized to include a time dependent driver 

amplitude and discusses the simulations. Section II.C.6 considers 

the consequent back-reaction of the nonlinear dielectric response 

on b.eat heating. Electrostatic simulations are performed with the 

previously fixed amplitude ponderomotive potential ~o replaced by 

mu6u1/e,· and we integrate the linearized coupled mode equations (28) 
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describing Uo and ~ in the temporal l.iIiIi t (a + 0). 
J[ 

We emphasize 

that, in the model electrostatic simulations t~ follow, connection 

with our theory of beat heating is made by using the following expres

sion for the ponderomotive potential: 

. * (In/e) u
O

( x, t) ~ ( x, t ) (55 ) 

Equation (55) is obtained from the relatiol:' between the vector 

potential and the transverse oscillation velocity, and from Eqs. (9) 

and (26). 

5. Resonant Excitation of Nonlinear Plasma Waves 

a. Introduction 

There has been considerable experimental68- 71 and theoreti

cal72- 75 attention given the study of the damping and frequency shift 

of freely propagating, large-amplitude, longitudinal electron plasma 

oscillations. Relatively little work has been done concerning finite 

amplitude waves resonantly excited by the modulation of a high 

frequency wave17,81,82 or by the low frequency beat of two high fre

quency waves. 34 ,43 In this section we study the propagation of 

resonantly excited, longitudinal plasma waves. We formulate the 

resonant plasma response from the point of view of considering the 

approach to a self-consistent equilibrium determined by a nonlinearly 

induced frequency shift. The formalism is based on the construction 

of a nonlinear normal mode, allowing for the time depepdence of the 

nonlinear eigenfrequency. 
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b. General fcrmulationof the model problem 

For simplicity we consider an initial value problem, and 

assume the plasma is infinite and uniform. We begin by defining the 

total potential ~s( x, t) to be the sum of the external potential 

~os(x,t) (possibly species-dependent, for example, a ponderomotive 

potentialj40-42 or a true external potential supplied by a grid or a 

slow-wave structure), and the self-consistent Coulomb potential 

~(x,t): ~s(x,t) = ~(x,t) + ~os(x,t). (Litvak83 ,84 and S. Johnston76 

have exploited the utility of the idea of a beat-wave potential to 

high degree in describing induced scattering.) The unperturbed 

plasma is assumed to be spatially uniform; all wave forms and perturbed 

quantities have the same spatial phase dependence: 

~s(x,t) :: ~s(t) exp iKx + c.c. Poisson's equation can be written 

2 . 
= 47rlct p{ t ) (56 ) 

where pet) is . the total charge density summed over species and over 

linear and nonlinear components, 

L [PL s ( t) + op S ( t ) ] . 
s . 

p( t):: L pSe t) :: 
s 

We postulate a relation for the nonlinear susceptibilities: 

pS(t) :: -[K2/47r] Jo~ dT XS(T) ~(t - T), with the wavenumber and 

amplitude dependence implicit. The kernels for the linear suscepti-

bili ties XL se T ) are obtained by replacing p s( t ) with only its 

linear part PLs ( t) on the' left side. If we separate the dominant 

time dependence, pS(t) = pS(t) exp[-int] + c.c., and similarly for 

the potentials, we obtain 
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where we have used the propagator exp(-T(d/dt)] ~(t) = ~(t - T). 

The operator (d/dt) within the argument of the exponential in 

Eq. (57) therefore only acts to the right. 

(57) 

Utilizing the definition of the Laplace transform of the 

susceptibili ty X s(w) :: J: ciT is( T) exp( lwT J ' we sum Eq. (57) over 

species and substitute for p( t) from Eq. (56), which we have 

rewritten in the form ~(t) = [4~/K2]p(t), to obtain. 

£(0 + id/dt) ~(t) + L XS(n + id/dt) ~os(t) = o. (58) 
S 

We have derined the 'nonlinear dielectric function 

£(w):: L 1 + XS(w), with its wavenumber and amplitude dependence 
s 

implicit. For the frequency-like argument w, we use n + i(d/dt). 

-
The differential operator again acts only to the right on 4l(t) 

and - s 410 (t). 

If the external ion potential is negligible, which is the 

case for the ! x B ponderomotive force (Eq. (8») considered here, 

and for the ponderomotive forces considered in Refs. 12, 25, 40, 41, 

and 42, then Eq. (58) becomes 
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If the ertemal potential acts equally on the species, e.g., the 

potential due to a grid, or if the ion suscept~bility is negligible, 

Eq. (58) gives e:(n + id/dt) ~e(t) .= ~Oe(t). 

At this point we digress briefly to consider the concept of a 

nonlinear normal mode. In the absence of the external potential 

~os(t) ~ 0, and for slow time dependence O-l(d/dt) ~ 0, Eq. (5~) 

defines a nonlinear normal mode: E(WNLi K,~)~ = 0, i.e., 

e:(~; K,~) = O. If we express the nonlinear dielectric response as 

e:(Wj K,~) = EL(W; K) + OE(W; K,$), where OE is the .nonlinear 

increment to t~e dielectric function, then we can determine the complex, 

nonlinear normal mode frequency ~ = ~ + ow. The complex, linear 

normal mode frequency ~ = ~ + iYL is determined by EL(~,K) = 0, 

and ow is then the complex, nonlinear frequency shift. We can 

Taylor series expand E(W NL ; K,~) around IJ.1, to obtain 

e:(~; K,~) = EL(i.; K) + OE(~; K,$) + E(~)OW + ... = 0 where 

o 
E = 3E/aW. Assuming I oW/Wr, I «1 in order to truncate the expansion, 

we find 

( 59) 

We return to Eq. (;8) and now Taylor series expand E around 

~L to obtain E(WNL + 0 - Wm. + id/dt) = E~L) + 

E(~)[n - WNL + i(d/~t)J + •••• We consequently find that to lowest 

order in In - ~ + i(d/dt)I/I~1 « 1, and for I$Oil« l;Poel, 

, 

Er~L)[n - wNL + i(d/dt)] ~e(t) = [1 + Xi(n + id/dt)] ~Oe(t) 

(60) 

" 
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Equation (60) describes the self :-consistent evolution of the nonlinear 

plasma. response i(t) to the driver ~o(t). Tbeproblem of explicitly 

deducing the nonlinear normal mode frequency Wm.' and of evaluating. 

Eq.(59) from a calculation of the actual orbit modifications induced 

by the finite wave amplitude, remains. 
" 

For ~oe(t) = 0 and Id tn ~(t)/dtl + 0, use of the Poisson 

equation and Eqs. (57) and (59) leads to 

(61) 

From Eq. (61), we observe that it is the nonlinear increment to the 

total charge density perturbation that gives rise directly to the 

complex frequency shift. We can make some progress in calculating the 

particle orbit modifications if lie can assume that the wave amplitude 

is nearly constant, d~/dt:: 0, i.e., Id R.n ~/dtl «lowl.72,7) 

c. Application to the excitation of electron plasma waves 

The separation of the linear and nonlinear plasma response is 

the essence of the subtraction proce~ure of MOrales and 0'Nei1. 7) 

They appealed to a Vlasov analysis for a specific kinetic model from 

which they derived the dielectric function £ and deduced the temporal 

or spatial dependence of the free propagation of finite amplitude 

electron plasma waves. We can adopt for the driven-wave problem, the 

results of any specific calculation of orbit modifications due to 

finite wave amplitude for the free-wave problem, provided that in the 

kinetic description employed, the particle acceleration depends on 

the gradient of the total potential, -[es/ms]v ~s(x,t). Thus 

-results derived for the complex frequency shift OW, depending on ~ 

in the problem of freely propagating wave~, can be used to describe 



-64-

the driven-wave problem, if we replace ~ by ~s in the particle 

orbit calculations and in the ,nonlinear eigenfrequency relation. 

To illustrate our theoretical construction, we consider 

resonantly excited electron plasma waves in the case that trapping 

constitutes the principal nonlinear effect. If the plasma response is 

quasi-steady, i.e., if we can set d/dt + 0 in Eq. (60), then we can 

utilize the calculation of MOrales and O'Neil, for example, to deduce 

-"lll, and 4» self-consistently. (We have dropped the superscript 

denoting that ~ is the total potential for electrons.) At this 

point we emphasize the fact that MOrales and O'Neil's theory is 

analytic and perturbative, but ~ self-consistent. As in most of 

. . . 72-75 • i' i A. the analyt1c theor1es' descr1b ng trapp1ng, the potent al ~ 

is assumed constant. 

Specific application of MOrales and O'Neil's theory requires 

that certain assumptions be valid to jus~ify their perturbation 

expansion. The perturbation analysis requires that vTrl'/K« ve 2, Le., 

weak nonlinearity, and in order that the wave amplitude be nearly 

constant IYLI/~« 1, i.e., weak Landau growth or damping relative 

to the bounce frequency. The two conditions require that n/K ~ 4v . e 

We have defined the bounce frequency and the trapping velocity: 

wa = KVT = K[2Ie~l/meJt. At this point it is convenient to introduce 

the real and imaginary parts ow(t) = on(t) + ioy(t) of the complex 

frequency shift. 

To evaluate the right side of Eq. (61) we replace ~(t) by 

i(t) in Morales and O'Neil's calculation. The unperturbed distribu

tion function f O( v ) is Taylor expanded to second order around n/K 

to find that on« d2fo/dV2 and oy« dfO/dv evaluated at the phase 
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veloc1 ty nIle. The time dependences of on( t ) . and on t ) are shown 

in Figs. 1 and 2 of Ref. 73. Morales and 0 I Ne.11 find that the dissipa

tion -[YL + Oy(t)] has a damped, ·oscillatOry time dependence with 

frequency wB' and phase-mixes to zero over a time er(5 to lO)(2n/~). 

The frequency shift oscilla~es at 2WS and asymptotically approaches 

a value, 

(62) 

where oQ
O 

= Re £L -l( Or. )vT[ we 2 1~2] d2fO/dV2. Asymptotically there is 

no dissipation, but the resonant~ excited wave acquires a finite 

negative frequency shift proportional to WS. 

d. Equilibrium response 

The vanishing of the total dissipation and the approach of 

the frequency shift to a steady value determine an equilibrium. By 

setting (d/dt) = 0 in Eq. (60) and defining the relative response 

R : ~/¢O' the normalized linear mismatch frequency 

~ = £(~L)[Q - QL]' and the normalized nonlinear frequency shift 

o~(IRI) = £(WNL) oQ(t = ~), we can describe the equilibrium by 

(63) 

If we express the response as R = r exp( i9 ) where r - I ~/¢o I and 

e 1s the relative phase, then Eq. (63) becomes 

[~L - o~( r ) ] r =. ±l (64 ) 

The Sign of the right-hand side of Eq. (64) corresponds to a value of 

e = 0 orn, which is determined by the sign of ~L - o~( r ). 
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Equation (64) implicitly determines the magnitude r of the 

response. If we attempt to prepar~ the linear mismatch and wave 

amplitude in such a manner as to make t\ -o~( r) vanish, or a random 

fluctuation in the response occurs to effect the same, then according 

to Eq. (64) the response r should diverge. Rather than diverge, 

however, the response eXhibits finite dissipation and time dependence 

necessarily. The approach to a new equilibrium is then described once 

again by Eq. (60). 

For the case of trapped electrons the nonlinear frequency shift 

can be modeled o~(r) = _ori where Eq. (62) determines a. Then 

Eq. (64) leads to a cubic equation in the variable ri describing the 

possible equilibria. Presuming the plasma parameters to be fixed, 

the free parameter governing the nature of the equilibria is the 

normalized linear mismatch ~L' The driver amplitude has been 

removed by scaling, r = I~/~ol. 
Figure 16 illustrates graphically the nature of the possible 

equilibria. For ~L > 0 there is only one equilibrium possible. 

Multiple equilibria occur for ~L < 0 and (-~L)3 ~ (27/4 )(i. We 

conclude that at least one equilibrium solution always exists and is 

described by Eq. (64) subject to its consistency with earlier assump-

tiona on the weakness of the nonlinearity. We defer discussion of 

the stability of the equilibrium until after we consider momentum and 

energy transfer. 

e. Energy and momentum conservation laws 

To understand the time dependence of the nonlinear frequency 

shift and dissipation, and consequently to appreciate some of the 

details of the approach to and departure from equilibrium, we calculate 

.. 
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the energy and momentum exchange. between the driving potential and 

the nonlinear plasma response. The derivation here assumes no particu-

lar kinetic model for the plasma. The momentum and energy balance 

considerations of MOrales and OtNei17J are generalized to the case of 

an externally driven p1asma .. wave. 

For the momentum exchange, we express the .time derivative of 

the momentum density P averaged over the length 

dP/dt = fCW)..) t[-ax*o(x,t) - ax*(x,t)l} = 

iKP( t) 4> * ( t) + c. c • + eJ( 14> 14 ) • 

_ ~1 
A = 21TK , 

(65) 

We have used the identity 0 = f dx P VIP( x, t ) in obtaining Eq. (65). 

The higher order terms in Eq. (65) will be ignored. Using 

pS(t) = -[K2/41T] XS(n + id/dt) is(t), we sum over species to obtain 

j5(t) = [K2/41Tl~1 - £(0 + id/dt)] ~(t) - f l(o + id/dt) ;jioS(t)} . 

Appropriate to the electron wave case, we ignore ion contributions 
, . 

and expand E( n + id/dt) around Wm.' as in Eq. (60), in order to 
, 

express the right side of Eq. (65) as a function of. i. 

We can formally express the nonlinear contribution to E in 

Eq. (60) as follows: E(~L) = (a/aw)(~ + 6E)I~ = 

EL(WNL) + a6E/awl~L ::: [EL + c5W(aE/aW) + aOE/awJ~ = 

£L[l + a(6E/EL)/aW] = £L[l +a], where we have used' Eq. (59). We 

evaluate ~ and a = a( c5 E/~ )/aw' at ~ • At this point we intro

duce an explicit ordering scheme sugggested by theory and verified in 

our simulations: we assume that S'2,~ ... d( 1 )we ; 

W:e,c5n,we Re a,en - ~),(d/dt) - ~n)we; and .weIm a,yL'0Y ... G<n2 )(A.\e' . 

where n« 1. 
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From Eq. (65), we then fin9. that to lowest order in n the 

momentum exchange is gi ven by 

(66 ) 

Transposing the time derivative of the linear wave momentum, 

(d/dt) K Re£LIK~12/41T' to the left side of Eq. (66), we can reduce 

Eq. (66) to Ii statement describing the momentum in the resonant 

particles: 

(67) 

The momentum P can be thought of as the sum over the linear and 

nonlinear parts of the wave momentum, and the particle momentum in 

resonant and nonresonant particles exclusive of that attributed to the 

wave momentum. Thus on the left side of Eq. (67) the linear wave 

momentum has been subtracted, leaving to lowest order in n the 

linear and nonlinear changes of the momentum in the resonant particles. 

We have generalized to the nonlinear case the linear concept that the 

change in the momentum of the nonresonant particles, exclusive of the 

wave momentum, is negligible. 

For the energy exchange we 'construct the time derivative of 

the average kinetic energy density K, integrating by parts and using 

the continuity equation and Parseval's equality, 

dK./dt = !(dx/).,) J(- ax~) = '- !(dx/).,) ~(dP/dt) = 

(68) 

.. 
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where J is the longitudinal current density. In the extensive 

algebraic manipulation that Eq. (68) leads to, we assume the same 

ordering scheme used earlier and calculate the kinetic energy in the 

driven wave frame, i.e., 0 = O. If we substitute 

£(id/dt) = E(~L)[O - ~L + i(d/dt)] + (1/2) £(~L)[O - ~L + i(d/dt)]2 

and define the linear wave action density JK(t) = Re ELIK~(t)12/4~, 

we find that to ~ n3 ) 

(69 ) 

In the plasma frame; the linear wave energy of a free wave 

(i =~) is given by [a(w Re EJ.)/aw]oLIKi(t)12/4~ = ~JK. Because 

the driven wave is excited at frequency 0 rather than at nL, we 

must evaluate ~(w Re £L)/awJ at 0, which gives [0 + (0 -~)]JK 
for the linear wave energy in the plalil~ frame (in the dri~en wave 

frame: (n - ~)JK). Since the field energy is given by 

the left side of (69) is the time derivative of the total particle 

kinetic energy with the kinetic part of the linear wave energy 

subtracted away. We interpret the residual as the energy exchange 

rate due to resonant particles, evaluated in the driven wave frame. 

Then to lowest order in n, we have the expression 

(70) 
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Where we define KaW = K - [en - ~)JK - IKiI2/4~] as the average 

kinetic energy density of the resonant particles in the driven wave 

frame. 

We now introduce a simple model which illustrates some of the 

physics hidden in Eqs. (67)-(70). Our objective is to gain insight 

into how the trapped particles can give rise to time dependence in 

the dissipation and the frequency shift. The model crudely represents 

the resonant, trapped particles by, a clump of density ~ oscillating 

in the wave frame with velocity v = vT sin ~t. Effects due to the 

time dependence of the resonant, but untrapped, particles and due to 

nonlinear orbit modification of the nonresonant particles are ignored. 

Furthermore, we make no attempt to include phase-mixing. 

The momentum and kinetic energy of the resonant, trapped 

particles are given by PR = ~ mn/K + nrmvT sin ~t and 

KaW = (1/2)n~T2 sin2 wat in the driven wave frame. Since the depth 

of the potential well seen by a trapped particle in the wave frame is 

influenced by the presence of the other trapped particles via Poisson's 

equation, the potential acquires a time dependence 

i(t) ~ ~(O) + ~(l) exp - i~t. 

We substitute into Eqs. (67.) and (70) our model equations for 

the momentum and kinetic energy of the trapped particles in the wave 

frame and for the time dependent potential amplitude. We obtain to 

e(n2 ) the momentum, 

(71 ) 

. . 
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We deduce from Eq. (71) that the total dissipation has a 

time dependence given by -(YL + ~y) CIt cos ~t. This is a lower order . 
effect than the time dependence of the nonlinear frequency shift, which 

is 8'(113).72,73 To further e:x:a.mine the time dependence of the wave 

amplitude; the dissipation, and the frequency shift at frequency We' 
we substitute the Fourier series ~(t) = 41( 0 ) + 4'( 1) exp - i~t + 

and ow = ow(O) + ow(l) exp -i~t + ••• into Eq. (60). The lowest 

order time independent part of Eq. (60) is given by 

£( 0 )l1w( 0 )41( 0 ) = ~O' where llw( 0 ) = 0 - ~ - oo( 0 ). Subtracting this 

from Eq. (60) and collecting terms with exp - i~ t time dependence, 

we find to lowest order in 11 

Then both the dissipation and the component of the frequency shift 

oscillating at "13 are related to the wave amplitude oscillations: 

(73) 

The time dependence of the frequency shift and the dissipation 

in our simulation concurs with that described in Eqs. (71) and (73), 

implying-that the model time dependence of the velocity of the clump 

of trapped particles and the potential amplitude are consistent. 

Furthermore, we can use the equation for the kinetic energy to deduce 

that the frequency shift can oscillate at .2wa as well as at "13. 

Substitution of our models for the time-dependent wave amplitude and 

the trapped particle velocities into Eq. (70) yields 

( 1/2 ¥ /"'BSin( 2"'B t ) = {-2( d~n/dt} + ~("'B - ~n) 

x Im[[~(l}/~(O}] exp - i"'Bt]}Re e:LIK~(O}12/4" (74) 



-72-

Equation (74) suggests that the frequency shift on has time 

dependence at both the bOlmce frequency ~ and twice the bounce 

frequency 2~. For the case of a free wave, Morales and O'Neil find 

that for vTv~« ve
2 and v~ ~ 4ve the time dependence at frequency 

2wa dominates. 73 In the work of O'Neil, Winfrey, and Malmberg85 

however, the frequency shift of a large amplitude electron plasma wave 

excited by the weak beam-plasma instability varies at both Ws and 

2wa, with the former dominant. 

We can Fourier analyze Eq. (74) to determine the relative 

variations of the frequency shift at the frequencies We and 2Ws. 

In so doing we recall the assumptions that I~(l)/~(O)I - ff(n) and 

that on,wa - ~ n)we. Then from Eq. (74) we find that to lowest order 

in n 

(75) 

and 

(76 ) 

In our simulations we find that the osci~lation in the frequency shift 

at wa domina tes that at 2Ws. '!be ma.gni tude of one 1 ) in simula

tion is consistent with Eq. (75) to within 25%, if we use on(O) from 

the simulation directly or if we take on(O) ~ -(3/4)v~Jd2fo/dV2 as 

given by Morales and OlNeil's theory. 

f. Stability of equilibria 

The stability of the nonlinear equilibrium Eq. (64) can be 

examined by employing Eq. (60) and considering a complex, infini tesi-

mal perturbation to the equilibrium plas~ response of the form 
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6R = {r + or} exp(ie + ioe} - r·exp(ie). If we define the dimension

less quantity T = £-It and derivative i = dx/dT and ignore the 

nonlinear dissipation perturbed from its equilibrium value of zero, 

then from Eqs. (60) and (64) we obtain the coupled equations: 

(77a) 

and 

~r ± 69 = .0 (77b ) 

The + and - signs correspond to equilibrium phases 9 = 0 and 1T 

respectively. 

Differentiation of Eqs. (77) with respect to T and straight-

forward algebraic manipulation give 

(78) 

The frequency of a stable oscillation or the growth rate of instability 

is given by (1 ± o.r J/2/2 )1/2/Er. Recalling that the equilibrium is 

. described by Eq. (64), o. r J/2 can be replaced by ±l - 61r wherever 

convenient. 

We observe from Eq. (78) that for 9 = 0 the equilibrium 

is obviously stable, 1 + o.r 3/2/2 > O. For 9 = 1T and 61 < 0, 

multiple equilibria can occur if (-61 )3 ~ 270.
2/4. The condition for 

stability in this case, o.r J/2 < 2 or equivalently o.rl/2 < -26
1/3 

using Eq. (78), coincides with the equilibrium response r l .. lying 

to the left of the minimum of r[~ -06(r)] in Fig. l6b, given by 

arl / 2 = -U
1
/3. Thus we conclude that for a large response, in phase 
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with the driver, the equilibrium is stable, corresponding to rO or 

r
J 

in Fig. l6b. 

For sufficientlY large, negative linear frequency mismatch, 

a pair of additional equilibria are possible, corresponding to r l and 

r 2 in Fig. l6b, of which onlY r l is stable. 4l Both r l and r 2 

have relative phase n with respect to the driver. Our simulations 

correspond to a ~ 0.4 and ~L ~ -0.33 which do not satisfy the 

condition for multiple equilibria. We therefore expect the simulated 

equilibrium to be stable as it corresponds to rO in Fig. 16b. 

We point out that one cannot rigorouslY omit the perturbed 

nonlinear diSSipation. Without going into a detailed derivation we, 

however, can make some qualitative remarks. From the conservation 

laws we observe that the nonlinear dissipation is fundamentally 

related to the nonlinear momentum. The trapped particles have no 

momenta in the wave frame. The untrapped particles have either 

positive or negative momenta in the wave frame depending on. whether 

they travel faster or slower than the wave. A perturbation to the 

wave amplitude and its phase, will alter the separatrix, trapping or 

de trapping particles and consequently producing a small momentum 

exchange. The momenta of the particles remaining trapped is still 

zero. However, the momenta of the free particles and the waye itself 

will be altered since they are wave amplitude dependent. 

In conjunction with the momentum exchange there will be a 

dissipation increment as described by Eq. (67). We expect the unstable 

equilibrium to remain unstable, the growth rate acquiring a complex 

increment perhaps. For the "stable" equilibria the influence of 

positive or negative dissipation may cause the oscillations about the 
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equilibrium to grow or relax. Our simulations indicate that for the 

equilibrium labeled rO in Fig. 16 the dissipation increment is such 

that perturbations relax, and the equilibrium is stable. 

g. Simulations with constant-amplitude ponderomotive potential 

To illustrate and apply our theoretical construction we 

have performed computer simulations. For the sake of simplicity we 

have considered a model in which the plasma is unmagnetized, uniform, 

and periodic. Electron plasma oscillations are excited with a fixed 

ion background. The computer simulation uses a finite-sized particle 

code originally furnished by A. B. Langdon and extended by this author 

and G. Smith. We simulate the entire Maxwellian velocity distribution 

wi th a modest number of par.ticles (2500) and mesh points (64) in one 

dimension. 

Many researchers have investigated in simulation the free 

propagation of electron plasma waves studying the effects due to wave 

particle resonance. 86- 92 Particular attention has been paid to the 

case of finite YL/ wa. 86- 89 ,92 Resonantly excited ion waves have been 

rec~ntlY considered by Book and Sprangle.93 In our simulations we 

resonantly excite an electron plasma wave of finite wavelength equal 

to the system length. 

We have attempted to simplify our simulation model as much 

as possible., Because of the discrete Fourier spectrum, excitation of 

a large amplitude electron wave at the fundamental wave length cannot 
, 

give rise to the sideband instability;77 the spacing of wave numbers 

around the fundamental is much too broad to acconunodate the spacing of 

the sidebands Furthermore, since the ions are 

held fixed, parametric decay and modulational,instability are 
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excluded. 24 We measure directly in simulation the amplitude and phase 

-of the total electric field amplitude -iKt relative to the pondero-

-motive force -iK~O. Then use ofEq. (60) permits identification of 

the nonlinear dissipation and frequency shift as functions of time 

(Fig. 18). Comparison of the asymptotic frequency shift with theory, 

Eq. (62)j is made in Fig. 19. 

Results of typical simulations are shown in Figs. 17, 18, 

and 19. For the set of simulations, the electron distribution was 

initially Maxwellian with parameters nlKVe = 3.0, KA = 0.33, and e 

n = we. Therefore the linear mismatch derived from the Bohm-Gross 

dispersion relation is n - ~= -0.17 we' and the linear dissipation 

is -yL/we ~ 0.03. In Figure 17 we observe the characteristics of the 

large amplitude response (shown here driven in phase with the pondero

motive force), electron phase space, and the velocity distribution all 

There is evidence of considerable trapping. Particles 

are trapped much closer to the separatrix than to the bottom of the 

potential well, however. The typical orbital period of these particles 

in the wave frame is of order 6~/~ and concurs with the observed 

oscillation period of the nonlinear dissipation in Fig. 18b. We seem 

to have a preponderence of particles trapped fairly high in the 

potential well and relatively few down at the bottom; this gives rise 

to the hole observed in phase space, Fig. 17b. 

We recall that from Eqs,. (71) and (76) we expect both the non-

linear dissipation and the frequency shift to vary at frequency ~ 

for our parameters (v~ = 3 ve ). We observe in Fig. 18 that 

-(y L + oy), on, and the amplitude and phase of the response all vary 

at the bounce frequency, but not at the bounce frequency of the deeply 

". 
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trapped particles. Instead it is the average bounce frequency of 

the bUlk of the particles trapped near the separatrix that determines 

the time dependence of -( YL +oy) andoS'2. To understand this and 

other features in our simulations, we must appreciate certain condi-

tions of the simulations nQt a.."1ticipated by existing analytic theory. 

Rather large amplitude waves have been induced in the simula-

2 tions, i.e., vTv~ ~ ve. Since v~ = 3ve initially, the trapping 

width vT is large enough to extend back into the main body of 

the distribution function to do considerable trapping (Fig. 17c). 

With only 2500 particles, we do not have good statistics for the 

particles that become deeply trapped, i.e., the nearly, exactly 

resonant particles v ~ v~. The trapping then of relatively many 

particles near the separatrix and fewer deeper in the potential well 

is not so surprising. 

The ponderomotive potential amplitude was varied over a range 

such that 0.2 ~ KVr/S'2 ~ 0.6 in order to check the dependence of 

the ~on1inear frequency shift on the total potential amplitude (Fig. 

19). The ponderomotive potential was switched on instantaneously and 

also over rise-times wet = 50rr which was of order two or three 

characteristic bounce periods of the simulated trapped electrons. 

More rapid phase-mixing and relaxation to equilibrium (in terms of 

-the number of bounce periods 27r/~) was observed for the s'lower 

driver switch-on and for weaker amplitudes, effects similar to those 

in Kruer I ssimulations. 94 The initial conditions and the rise-time 

of the driver influence the details of the asymptotic state. However, 

as the slower drive switch-on was not very long compared to a typical 

bounce period, the asymptotic state was not significantly different 

from the sudden switch-on case (Fig. 19). 
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The power law dependence on( t = co) « I;' i and rnagni tude of 

the frequency shifts seem to roughly agree with the nonlinear normal 

mode calculation of JAOrales and O'Neil, although both the ratio 

v~/ve = 3.0 and magnitude of the wave amplitude lie 

outside the regime where their theory is applicable. The nonlinear 

frequency shifts are quite appreciable on = -~(O.lO to 0.25)w , and 
e 

the distribution functions are considerably perturbed acquiring 

distinct tails at v > O/K. The body of the distribution functions 

remain approximately Maxwellian, however. Furthermore, the wave ampli-

tude and phase in simulation show appreciable variation, although the 

relative changes are not large. Thus the particle trajectories have 

slightly different histories as compared with Morales and O'Neil's 

theoretical description. We therefore conclude that the quantitative 

agreement of the simulated asymptotic frequency shift with theory 

(Fig. 19) is quite remarkable. 

For the case of resonantly excited, longitudinal waves in a 
.. 

uniform, unmagnetized plasma, we have constructed the nonlinear 

dielectric response. We have formulated the resonant response in 

terms of the mismatch between the driving frequency and the time-

dependent, complex, nonlinear eigenfrequency of a normal mode. We 

have used simulations to illustrate our formalism and find that ". 

simulations compare remarkably well with nonlinear normal-mode theory 

in a regime of parameters outside the range where analytic perturbation 

theory is valid. We have derived energy and momentum conservation laws 

and used them to explain phenomena observed in the simulations, for 

example the time dependence of the response. 
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6 •. Beat Heating with Trapped Electrons 

We return to our discussion of beat heating for large amplitude 

beat waves. Now that we understand to some extent the role that finite 

amplitude effects play in determining the resonantly excited response 

of the plasma when the dri~ potential has a fixed amplitude, we 

examine the back-reaction that the nonlinear, time-dependent response 

has upon the ponderomoti ve potential. Specifically, we investigate 

beat heating, relaxing the constraint that the ponderomotive potential 

has a constant amplitude. We consider the entire system composed of 

. the coupl~d mode equations describing the transverse wave amplitudes 

ua and ~,Eqs. (28); the Poisson equation, Eq. (10); the equation 

describing the nonlinear dielectric response, given in the temporal 

limit (a = 0) by Eq. (60); and the constitutive relation between 
x 

. * <1>0 and uaul' Eq •. ( 55). We shall also discuss further simulations and 

make some remarks on the influence of plasma inhomogeneity on trapping 

and beat heating. 

a •. General consideration of the'coupledmode equations 

We recall Eq. (29) which expresses the conservation of trans-

verse wave action. The equation is rewritten here defining the 

operators DO,l = at ± co,l ax' where c1 = k1c
2

/W1 are the group 

velocities, and the transverse wave actionsJ1 = wllull2: then Eq. 

( 29) becomes 

Introducing the phases 60,1' defined by uO,l - IUo,ll exp(-i60,1)' 

we manipulate Eq. (28) to obtain the relation 
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(80) 

We can rewrite Eq. (30) describing the rate of action transfer as 

= (81 ) 

. and similarly for the phases 

( 82) 

Equations (81) and (82) are quite general; the plasma is 

allowed to be weakly nonuniform, and the density disturbance can have 

quite arbitrary amplitude n excluding, however, higher order couplings. 

To understand the energy exchange between the plasma and the 

transverse waves, we manipulate Eq. (81), recalling the definition of 

the transverse wave energy density in terms of the wave action in cas 

units Wi = wiJi = (m/e2)wi2IuiI2/2~. We obtain the energy density 

conservation law: 

, ( 83) 

This conservation law states that 

the rate of energy loss or gain by the transverse waves must be equiva-

lent to the rate of work done on the plasma by the ponderomotive force. 

We observe from Eq. (83) that no further work is done when 

-EO and n have a relative phase of ~/2 or 3~/2, which is equiva-

lent to ~ and ~O having relative phase 0 or~. Then as des

cribed by Eqs. (81) and (82) there is no action transfer, and the 

transverse waves acquire nonlinear frequency shifts as the only con-

sequence of the coupling: 

. 
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b. Quasi-steady nor~inear plasma response 

When the temporal and spatial variation of the amplitude of 

, the total potential ~ is sufficiently weak to permit settj,ng 

at = ax == 0 in evaluating the dielectric function, i.e., 

£(0 + idt,K - idx)~ ~ £(O,K)~, then we describe the plasma response 

as "quasi-stea~". We can then use Eq. (32), .~ = [£ -l( 0, K) - 1] ~o e, 

and Poisson's equation to algebraically solve for n and express 

Eqs. (81) and (82) as 

(85) 

.' 

and. 

2 2 2 2 2 -1 woluol DOSO = wllull D1Sl = -K IUol I~I Re(£ - 1)/2 

(86) 

The quasi-steady response approximation requires 10 - ~I » Idtl, 

(JKV 2/01 )ld I,'if we use Eqs. (33) and (60) to determine the relative e x -

importance of finite dt and a effects in the dielectric response. x 

In SectionII.C.5 the nonlinear dielectric function was 

evaluated by expanding about the nonlinear eigenfrequency, Eqs. (59) 

and (60). We find that in the quasi-steady limit the nonlinear 

dielectric response evaluated near a resonance is given approximately 

by 

(87) 
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where the mismatch is defined ~ = n - ~ - on, and the dissipation is 

defined by y ... -Im um.. To ,lowest order of approximation £ can be 

replaced by E(~) = EL = 2we- 1 for electron plasma waves assuming 

K~ «1. For IE-11» 1 and I~I» Irl the right sides of Eqs. e 

( 85) and (86) can' be re-expressed in terms of ~ and y by use of 

Eq. (87), obtaining respectively 

(88) 

and 

(89) 

From Eq. (88) it is evident that action transfer requires 

finite dissipation. Since for trapped particles the total dissipation 

of the electron plasma. wave oscillates around zero at the bounce 

frequency (Fig. 18), the action transfer will also oscillate at the 

bounce frequency. If the dissipation asymptotically vanishes while the 

frequency shift approaches a finite value, as was the case for a 

constant ponderomoti ve driver (Section ILC. 5), then the action 

transfer will cease; and the transverse waves will acquire nonlinear 
. r 

frequency shifts. 

c. Simulations with self-consistent ponderomotive potential 

and coupled mode equations 

To investigate the back-reaction of trapping on the transverse 

wave action transfer and to determine the actual usefulness of the 

quasi-steadY plasma response approximation, further simulations were 

performed. The coupled mode equations for the transverse waves, Eqs. 

(28) with V = 0, and the constitutive relation (55) ~O = (m/e)uo~ 



o 0: (I 'l/;jl o 

-83-

were appended to the one dimensional, electrostatic, particle code 

discussed in Section II.C.5. 

Integration forward in time of the coupled mode equations 

describing the beat heating of two transverse waves in a uniform, 

infinite, periodic plasma is performed as an initial value problem. 

At each time-step, the transverse wave amplitudes are incremented, 

and the ponderomotive potential is constructed. The particle velocities 

and positions are then advanced using the electric field constructed 

from the gradient of the ponderomotive and self-consistent plasma 

potentials. The self-consistent plasma potential is obtained from the 

solution of the Poisson equation given the charge density. Finally the 

Fourier component of the density perturbation at the beat wavenumber 

is determined from which the coupling of the transverse modes is 

calculated in Eqs. (28). Simulations in much the same spirit as these 

have been performed for the case of induced scattering by Litvak 

et al. 83 ,84 

One of the advantages of adding the coupled mode equations to 

an electrostatic simulation over the direct electromagnetic simulation 

is that there is then no restriction on the time-step of the integratIon 

tion due to the high frequency waves, which would otherwise require 

that wO,16t« 1 .in addition to we6t« 1. In practice the time

step was restricted to a value we/}.t < 0.2. For ease in comparing 

with earlier electrostatic simulations where the ponderomotive poten~ 

tial was held constant, the following plasma parameters were again 

chosen: elm = n = we = I<: = 1 and nil<: = 3V e. The range of transverse 

wave amplitudes considered was 0.1 ~ /110(0)/ = /~(O)I S; 0.3 which 

induced ponderomotive electric fields 0.01 ~ IEol ~ 0.09. The 



transverse wave frequencies were chosen arbitrarily, w = 5w and o e 

WI = 4we • 

Results typical of simulations exhibiting considerable trapping 

are displayed in Figs. 20, 21, 22, and 23. The electric field response, 

longitudinal phase space, and the longitudinal velocity distribution 

function are shown in Fig. 20 at wet = 431 and wet = 784. At the 

earlier time the results are in many ways ~imilar to simulations in 

which the ponderomotive potential amplitude was fixed. There is a 

large amplitude response driven nearly in phase with the ponderomotive 

force (Fig. 20a)j longitudinal phase space has a hole centered over 

the bottom.of the total potential well (Fig. 20b); and the distribution 

function has a distended, nonmaxwellian tail for v ~ Q/K (Fig. 20c). 

At the later time the electric field response and the ponderomotive 

force are both weaker than at the earlier time and not in phase. In 

addition, there is considerable harmonic structure induced. The total 

potential well being not so deep as before, the hole in phase space 

(related closely to the separatrix) is reduced. The distribution 

function is further.perturbed by the scattering •. 

In Figs. 2la and 2lb are plotted the histories of the pondero-

motive potential and response amplitudes ~O and ~ and phases 80 

and e. The response amplitude and phase oscillate on the time scale 

of the bouncing of the trapped electrons as in earlier simulations. 

The ponderomotive potential amplitude and phase also oscillate on this 

time scale due to the back-reaction.of the trapping on the transvers~ 

waves as illustrated by Eqs. (88) and (89); however, the oscillations 

are of lesser degree than for the response. The phase of the response 

relative to the driver oscillates with a considerably larger excursion 

around zero than was observed in our earlier simulations (Fig. ~8). 
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The general decrease of the amplitude of the ponderomotive 

potential is due to pump depletion of the higher frequency transverse 

wave. The general increase of the nonlinear frequency shift and 

dissipation (Figs. 22a and b) due to the continued deformation of the 

distribution flIDction fairly steadily reduces the relative amplitude 

of the response. Beat heating enters the regime of induced 

scattering. 83,84 Many particles can satisfy the condition n ~ KV, 

and within a trapping width vT of v = O/K the distribution function 

has finite slope (Fig. 20c). 

When the frequency shift and nonlinear dissipation become 

appreciable compareq. to the plasma. frequency we' we ,can no longer 

make expansions which require In - Wm. + i(d/dt)I/I~LI « 1; then 

Eq. (60) is no longer valid. Our construction of the nonlinear 

frequency shift and dissipation consequently fails when either of the 

following are appreciable compared to unity: In - (~ + on)llwe or 

IYL + oy.- i(d R.n ~/dt)llwe· 

In Fig. 23 the amplitude and phases of the three interacting 

waves ~, ~, and Ii are plot ted as flIDctions of time. The ampli tude 

of the density perturbation n = (K2/4~e)~ oscillates at the bOlIDce 

frequency and diminishes due to the increasing dissipation and fre-

quency shift and due to the decrease of the ponderomotive potential. 

The wave energy in the higher frequency transverse wave depletes by 

approximately 90%. With a relative action transfer efficiency then 

of R = 0.9, the relative energy transfer to the plasma is given by 

Rn/wo ~ (0.9)(0.2) = 0.18. On the trapped particle bOlIDce time scale, 

the amplitudes IUol and' lUll vary slightly in accordance with the 

sign of the dissipation (Fig. 22b) in Eq. (88). The slowly varying 
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wave phase 8
1 

does not significantly vary over the duration of the 

s:1mu1ation, but eO varies an~ nuctuates much more since compara

tively much less action is associated with it (see Eqs. (82) and (86»). 

The continued appreciable time dependence of the nonlinear 

phenomena, the extensive trapping and deformation of the distribution 

function, the relatively large nonlinear frequency shift and dissipatio~ 

and the trandtion of the scattering from resonant (n = we and 

O/K = Jv) to nonresonant (induced scattering) are all features not e 

anticipated in our discussion in Section II.C.5. Nevertheless the 

simulations seem to be self-consistent using all qualitative and 

quantitative considerations still at our disposal. Energy and trans-

verse wave action are conserved to within a few percent, Eqs. (83) 

and (81). Various effects due to particle trapping are observed 

consistently in the longitudinal electric field response, the non-

linear frequency shift and dissipation, and the back-reaction of the 

nonlinear response on the action transfer and the beat heating. 

However, the phase-mixing and relaxation to a quasi-steadY state, 

wherein the longitudinal and transverse waves acquire frequency 

shifts and no further changes in amplitudes occur, is not observed. 

The supposition that beat heating approaches a nonlinear 

equilibrium as described in SectionoII.C.5 is predicated on the 

assumption that the longitudinal plasma distribution function is 

only weakly perturbed by a weakly nonlinear plasma wave. To compare 

simulation with an analytic, perturbative, nonlinear theory, a 

longitudinal plasma wave would have to be excited much farther out on 

the tail of the distribution function n/K ~ 4ve, with sufficient linear 

mismatch to guarantee a weak plasma response. We have chosen here to 

simulate the physically more interesting case where an electron plasma 
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wave is resonantly eJeci ted (a = w and 0/" = ]v ), inducing a e e 

large perturbation of the plasma, considerable depletion of the higher 

frequency laser, and consequently significant mo~ntum and energy 

transfer to the plasma. 

d. Removal of trapping effects by plasma inhomogeneity 

For the case of a nonuniform plasma, trapped particles can 

become untrapped in an electron plasma wave and finite dissipation 

recovered. 95 ,96 The degree of inhomogeneity is characterized by 

.(a~ /~ 2 )( d:X/dx), where 'X':: k -1 and k( x) = (~l - we 2( x) ]~/( JVe 2)i. 

Asseo et al. 95 consider a freely propagating wave. They show, in 

the limit of a verystroni inhomogeneity (r?/~ 2)(d'X'/dx):> 1, that 

because of the effective accele~ationin the wave frame provided by 

the finite spatial density gradient and consequent spatial dependence 

of the phase velocity, there are ~ trapped particles; and linear 

Landau damping is recovered •. They make the same assumption on the 

weakness of the.wave amplitude' as do MOrales and O'Neil, viz. 

« v 2 vTv$ . e • 

For weak inhomogeneity, (n2/~2)(d~/dx)« 1, trapping 'occurs; 

however, the free but nearly resonant particles can exchange energy 

with the longitudinal wave at a finite, nonlinear rate proportional 

to the Landau damping or growth rate. Asseoet al. derive a spatial 

damping coefficient OK(X), assuming that the number of trapped 

particles is constant over the distance the wave has traveled, 0 to 

x, and also asslllDing that IAk/kl« 1, where Ak" foX dx'(dk/dx'}: 
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for IAk/kI« n/~ 

(90a) 

I&/k/ »n/~ 

(90b) 

where vg' the group velocity, is given by 

is the spatially dependent phase velocity. 

2 
3ve /v<p' and v<p == n/k(x) 

The critical dimensionless parameter 2 2 
(n /~ )( d~/dx) can 

be recast for purposes of comparison with typical parameters character-

izing beat heating. Assuming a linear density gradient, we define the 

point of exact frequency and wavenumber matching by 

We obtain at the point x = 0 

(91) 

where vT == WS/K == (2el~l/m)i and in == [d tn no(x)/dX]~:o • 

Expressions equivalent to (91) can be written, recalling from Eq. (48) 

the relation vT
2 /V<p 2 ~ ~2/We2 = 2Inl/no. 

We emphasize that in either the case of weak or strong 

plasma inhomogeneity there is finite dissipation within the scope of 

the theory of Asseo et al. Therefore action transfer and heating 

should persist. The relative action transfer R remains parametrized 

by kOLnluo/cl2 and the input ratio p of the electromagnetic wave 

intensities in Eq. (39). On the other hand, the plasma response and 

hence vT,wB' and the nonlinear dissipation are determined 

.. 



• 

O~.· Of .. ~ . U o 7 &I 

-89-

self-consistentlY by the relation ~e -~oel[E(n - ~)J, Eq. (63) • 

This relation is parametrized, by the ratl'o 'v~/ve through the non-

linear frequency shift and by the ponderomotive potential amplitude 

... e * ~O = (m/e )uO~ • There are a sufficient number of independent 

parameters to a~low, in principle, the achieving of efficient transfer 

of action and heating of inhomogeneous plasma ina regime where the 

beat wave ib resonantly excited to moderately large amplitude, while 

dissipation persists. 

D. Cascading 

We conclude our discussion of the beat heating of 'plasma by 

briefly reviewing research on the beat heating and induced cascading 

of a set of parallel propagating transverse waves all coupled by a 

single resonantly excited electron plasma wave.34i35,97 This heating 

scheme is another example of stimulated Raman scattering. The mode 

coupling relies on the same physical mechanisms described in 

Section I.C. 

The cascade is initiated by two lasers propagating parallel to 

one another, for example, two CO2 lasers with wavelengths 9.6 llJD. 

and 10.6 llJD.. The cross-coupling of the two lasers to produce a !ox B 

. ponderomotive force resonantly excites a longitudinal electron plasma 

wave. The density perturbation can then couple to the transverse 

oscillation velocity of either of the two lasers producing trans'verse 

currents. The transverse currents act as antennas to resonantly excite 

transverse waves shifted up and down infrequency and wavenwnber from 

the incident laser frequencies and wavenumbers by the beat frequency 

andwaventunber. The coupling thus induces new transverse waves as 

well as amplifying or attenuating the pre-existing lasers. The induced 
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transverse waves can then couple with the existing transverse waves to 

stimulate further transitions. Thus the stimulated scatterit.g can lead . 
to a transfer of the incident laser energy into the electron plasma 

wave and into transverse waves at lower and higher frequencies. 

We shall be more explicit in our description of cascading and 

in addition provide a quantum mechanical picture. In this heating 

scheme the energy is supplied by the two :asers with frequencies 
. 

tor, and ~-l differing by approximately the plasma frequency: 

n :: :: W + 6. where the mismatch 6. is assumed small. The ~ - ~-l e 

transverse waves couple via the Lorentz force v x B to excite a 

longitudinal wave with wavenumber !p = !t - !t-l· For efficient 

coupling there must be nearly exact phase matching which implies fre-

quency and wavenumber resonance conditions. For we « UJ..'~-l the 

beat wavenumber is relatively small, kp::: we/c. Since the longi

tudinal wave is a very long wavelength disturbance, W /k ,. c » v , e p e 

there is no Landau damping. In practice collisional damping is too 

weak to effect efficient plasma heating. Nonlinear dissipation is 

presumed and verified a posteriori. 34 

The longitudinal wave in turn interacts with each of the two 

transverse waves (L,L-l) to induce nonlinear currents and produce two 

more waves at !t-2 = !t-l - ~ and ~L+I = ~L-l + ~p with frequencies 

~-2 = ~ - 2n and wt+l = ~ + O. The new transverse waves interact 

to produce further scattering. The new frequency mismatches 
'. 

_ 2 2 2 , 
AR, = wR,. - (we + kR, c) are given by the difference of the frequen-

cies of the induced transverse waves ~±n = ~ ± nn and their 

corresponding normal mode frequencies given by (We2 + kR,.2c2 )' where 

!r.±n = !t ± n~. When ~ and kL-l are nearly parallel, the new 

.. 
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mismatches ~1 are also small compared to the plasma frequency we" 

Otherwise the new mismatches become appreciable, and multiple scattering 

from the same plasmon is inhibited by progressively larger mismatches 

In Fig. 24 cascading is diagrwmned schematically. In quantum 

language, a coherent set of photons L undergo stimulated decay into 

photons 1-1 already present and plasmons. The plasmons stimulate 

further transitions upward and downward in frequency by converting 

. photons L into L+1 and so on, and by inducing the coherent cascade 

of photons L-l into 1-2' and so on to lower frequency. The damping 

of the plasmons deposits energy irreversibly into the plasma. 

Because energy and also the number of photons are conserved in these 

interactions (Manley-Rowe), the process must be preferentially down-

ward, to allow for the plasma heating. In quantum language the 

heating is described as the irreversible absorption of plasmons by 

the plasma. 

The rate of photon conversion downward in frequency competes 

with upward spreading. Kaufman, Watson, and CohenJ4 have considered 

under what circumstances the downward cascade rate can be maximized as 

a function of the input ratio ~f laser intensities and initial mis-

match. For sake of simplicity they assumed the plasma to be uniform 

and nonre1ativistic, v «c. e Kaufman?4 obtained an analytic solution 

describing the cascade of the transverse modes in the limit of a 

steady state. He solved the boundary value problem in which two 

laser beams with steady intensities are incident on a semi-infinite 

plasma. His solution, however, required the assumption that all the 

The transverse waves suffered an equal mismatch, 6
1 

= constant. 

neglect of variable mismatch, i.e., the ignoring of the dispersion 
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of the electromagnetic waves, requires that we « w1: which limits the 

ultimate heating efficiency of the cascade because of the Manley-Rowe 

relations. 

Cohen97 and WatsonJ4 independently examined the influence of 

variable mismatch numerically. Cohen solved the coupled mode equations 

describing the steady-state cascade as a boundary value problem. 

Watson investigated the temporal development of the initial value 

problem in which all transverse wave amplitudes are considered to be 

uniform in space. For ,parameters corresponding to CO2 lasers and 

a dense a-pinch, ~/we = 10, the cascade was found to proceed in 

accordance with Kaufman's theory for the modes ,separated in frequency 

by no more than ±JS'2. fran the incident laser frequencies. Cascading 

to much lower frequencies was found to be sensitive to the initial 

choice of ~. Watson determined that one could choose ~ in such a 

way as t~ cause ~1 to pass through zero at lower frequencies 

w1 < wL and monotonically increase for the higher frequency modes 

optimizing the downward cascade rate. Mima and Nishikawa35 studied 

the forward Raman scattering and cascading ofa single electromagnetic 

wave ina very underdense plasma W «wO' e 

By analogy to the earlier derivation of the beat heating by 

two opposed transverse waves, Eqs: (25)-(28), the equations describing 

the cascade of parallel propagating transverse waves in inhomogeneous 

plasma can be derived. For the transverse oscillation velocity one 

obtains instead of Eq.(26) 

x 

u(x,t) = L uix,t) exp[-i"'tt. + if . kt(x' )dx'] + c.c., (92) 

1 
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where ~:: ~ ± nO, k(x):: kL(x) ± n kp(x), 

kt,(x) = ["t.2 
- we2(x)]' c-1, .and kp(x) = ["t.2 - we

2(x)]'c-1 -

[WL1 - we 2(x)]'c-1• The density perturbation is given similarly to 

Eq. (27) by 

c5n(x,t) = ii(x,t) e~ [-int '+ i fX kp<-x' )dx'] + c:c. (93) 

. 
Use of the wave equation,(25), gives the equation describing 

) 

the coupling of the transverse waves 

-(i/2)(we
2

/WR,){UR,+1(ii*/no) + uR,_l(ii/no)] 

where cR,('x):: kR,(x)c2/wR," we
2 ::: We2(x = 0), and nO = nO(x = 0). 

We have ignored the WKB variations in kR,(x) compared to the spatial 

variation of the amplitudes. From arguments similar to those employed 

in deriving Eqs. (32) and (33) we obtain the equation describing the 

coupling of the density perturbation to the ponderomotive potential 

[at +V -. il1(x) + 3(KVe
2/OL)(}x](ii/no) = -i(kp

2/we ) [UR,u;_l 
R, 

where the dissipation rate of the plasma wave is given by v and 

r.L is the Bohm-Gross frequency 0L2:: W 2(1 + 3k 2A 2). --r, e p e 

(95) 

Equation (94) describes explicitly the coupling by the qensity 

perturbation of any particular transverse wav~ to both the higher and 

lower frequency adjacent transverse modes. Adjacent transverse modes 

in the cascade then beat together to drive the density oscillation in 

Eq.(95), thus supplying the necessary feedback for the stimulated 

scattering. Kaufman's analytic solution of Eqs. (94) and (95) in the 
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steady-state limit (at =0)· describes cascading in a uniform plasma 

assuming that variable mismatch can be ignored and that the dissipation 

and mismatch of the plasma wave dominate convection: 

I \I - i6L I » I (3KV 2/n )a I. Kaufman obtains a formula for the cascade 
e x 

rate from which the dependence of cascading on the input ratio of the 

laser intensities and on the plasma wave dissipation rate and mismatch 

is explicit CEq. (5) of Ref. 34). 

As compared to the case of opposed lasers the coupling to the 

longitudinal density perturbation (right side of Eq. (95~ is reduced 

by the factor kp 21(kL + ~_1)2::: we 2/4w.r,2 for we « w.r.. Thus the 

intensity threshold for effective forward scatter is likely to be much 

higher than for backscatter. However, for backscatter there can be 

no further photon transitions, as the beat wavenumber 

! = !L - !L-I ~ 2~ couples with the lasers to give 

!r.-2 = !t-l - ~ :: - 3!t and !t+ I =.!t + ~ :i:: 3~. Since both these 

wavenumbers violate the electromagnetic dispersion relation, large 

mismatches 61, arise terminating both the cascade of energy to lower 

frequency and upward spreading as well. The implication is that 

further decay due to backscatter requires seeding by a third laser 

beam L-2 exciting a new longitudinal wave with wavenumber 

~t :::.' !r,-l - !t-2 1~. No energy need be lost on conversion to higher 

frequency transverse waves, since each transition requires seeding by 

its own laser beam. This heating mechanism was studied in detail in 

Ref. 59 and reviewed in Section II.C.I. 

We conclude this review of cascading by describing an innovative 

idea due to W. Kunkel. In Ref. 59 Kaufman and Cohen compare the laser 

. intensity threshold for effective cascading with that for significant 
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Raman backscatter, finding that in a uniform plasma backscatter has 

a lower threshold. The backscatter of the two, laser beams that act as 

PUmps would of course prohibit efficient cascading. As is reviewed in 

Section II.C.I, Kaufman and Cohen: further determine that beat heating 

of opposed 'lasers in a linear density gradient and Raman backscatter 

occur effectively in a finite length resonance zone proportional to 

(VIWe)Ln Where the density scale length is defined by 

Ln :: [d in nOex )/dx rl . If the plasma is much larger than the resonance 

zone, the action transfer is independent of the dissipation mechanism, 

Eqs. (36) and (37). As is evident from the structure of Eqs. (94) 

and (95 ~ the same arguments are basically true for cascading as well. 

Kunkel points out that in the limit of very large dissipation 

of the electron plasma wave concomitant with backscatter, the plasma may 

possibly not contain the entire resonance zone or the electron plasma wave 

may be nowhere close to resonance within the plasma. The reduction in 

action transfer or in attentuation of the laser beams due to stimulated 

backscatter can be exactly calculated from Eq. (36), an estimate of 

which appears in Eq. (38). The reduction of backscatter when the 

electron plasma wave is strongly damped, e.g., when 2kLAe ~ 0.4, 

effectively raises the threshold for appreciable Raman backscatter. 

However, since the beat wave in cascading is almost always weakly 

linearly damped k A ~ v Ic « 1, the plasma might quite easily contain , pee 

the entire resonance zone for cascading. Cascading could then occur 

at lower laser intensities than the'intensity threshold for appreciable 

backscatter. The question of under what realistic experimental 

circumstances cascading can preferentially occur, over Raman backscatter 

and effectively heat plasma r~mains open. 
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III. FILAMENTATION AND STIMULATED BRILLOUIN SCATTERING 

This part of the thesis describes in detail parametric insta-. 
bilities involving the induced scattering of electromagnetic waves by 

low frequency ion modes (<Wi )." The theory constructed in Section I.e 

is sufficiently general to describe both collective phenomena, e.g., 

stimulated' Raman and Brillouin scattering and modulational instabili-

ties, and induced Thomson scattering from electrons and ions. We shall 

limit our discussion here to onlY the scattering from collective ion 

~des: Brillouin and filamentation instabilities. 

We shall describe Brillouin scattering and filamentation from 

a unified point of view. The distinction between Brillouin strong 

coupling and filamentation is examined. We construct in detail the 

dispersion relations for filamentat!on and Brillouin. We also consider 

the absolute instability of Brillouin strong coupling, demonstrating 

that the asymptotic Green's function for Brillouin instability is 

described by analytic weak cO.upling ·theory derived for all pump inten-

sities within the Brillouin regime. : We further show that very strong 

pump waves can induce growth of the scattered transverse wave at 

(tIlo + n,!o +~) comparable to that at * * (lAb - n ,~ - ~ ). We shall 

not discuss the nonlinear saturation of Brillouin38 or filamentation. 98 

A. Introduction to the Coupling of 

Transverse Waves to Ion MOdes 

An ion acoustic wave can be weakly coupled to transverse 

waves by means of the ponderomotiveforce, corresponding to Brillouin 

weak coupling. The frequency of the ion acoustic wave is given by 

n = KC + 0 where s is a small «< KC ) 
S 

complex-valued frequency shirt dependent on the pump wave amplitude. 
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For a more intense pump wavethe'ponderomotive force and consequently 

the coupling to the density perturbation increase. In the limit that 

the oscillation frequency of the density perturbation is significantly 

perturbed by the pump, the scattering is defined as Brillouin strong 

coupling. 

Brillouin strong coupling is an example of the stimulated 

scattering of the pump wave into a transverse wave shifted to lower 

* * frequency Wo - 0 with wavenumber !o - !5' Both the scattered 

transverse wave and the concomitant driven ion mode, or "quasi-mode", 

grow exponentially in the linear regime of the parametric instability. 

When the pump wave scatters off a driven ion mode into transverse 

waves shifted in wavenumber up and down by the wavenumber of the density 

* perturbation, !o + ~ and !o - ~ , with resulting exponential growth 

of the scattered transverse waves and the density perturbation, the 

instability is described as filamentation. The density perturbation 

excited by the scattering is typically a purely growing mode not 

otherwise present. We consider this. 'as another example of the stimu-

lated scattering of light by a quasi-mode. 

B •. General Formulation of Brillouin and Filamentation 

In Section I.e we derived a very general dispersion relation 

(18) which implicitly includes Brillouin and filamentation. Equation 

(18) requires the evaluation of r(O,~) = [Xe(l + xt)/E]o,! for complex 

beat frequencies 0 and beat wavenumbers K. In Appendix 1 we 

show that for Maxwellian velocity distribution functions the electron 

and ion susceptibilities are given by Xe(O,K)::: l/K2A 2 and 
- e 

2 2 
Xi(O,~) ~ -Wi 10 where Ae = velwe' We have assumed that 



-98-

Vi « 10/KJ « ve ' and that linear Landau damping and collisions are 

negligible. Then for r( O,~) we obtain 

If we substitute this form of r into Eq. (18) and multiply by 

(02(1 + K2" 2) _ K2
C 21 ' Eq. (18) becomes 

e s· 

[ 2 2 2 2 2) r: 2 2 2 2 2 2 J o (1 + K he ) - K Cs ~O - K C ) - 4(~ - ~'!oc ) 

(96 ) 

Equation (96) describes both filamentation and Brillouin 

scattering. Analytic solution of (96) for various special cases and 

numerical solution of the general dispersion relation will be presented. 

If we define cos e = K'~O' then Eq.(96) can be rewritten as 

[02(1 + K2"e2 ) - K2
Cs

2J[(02 - K2
C
2 )2 - 4(S1wO - KkO 'cos e c2 )2] 

2 2~ 2 2 2 2) + (l/2)wi K Vo (K C - O· = 0 (97) 

We note that in Eq., (97) changing both the signs of cos e and 0 J 

viz. O.~ -0 and cos e ~ -cos e = cos(n - e), leaves Eq. (97) 

invariant. We shall therefore solve Eqs. (96) and (97) for 

o < e < n/2 realizing that n(K,n-e) = -n(-K,e). 

C. Filamentation Dispersion Relation 

We first consider Eq.' (96) in the special case where it 

describes filamentation. In the limit that IKAel« 1 and 

Inl « IKcl, Eq. (96) can be somewhat simplified to give 
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crt - ~cs2)[CO - .!::!g)2 - ,,4c4/4w02] - w12(YO/c)2K4c4/8W02 : 0 

(98 ) 

where !g:: !oc2/WO is the group velocity of the pump wave. Drake 

et al.12 derive the same dispersion relation. Since this equation is 

quartic in 0 and sixth order in Ie, we must further simplify the dls-

persion relation to make analytic progrese. 

For the formation of filaments whose dimension (see Fig. 2) 

transverse to the pump propagation direction ko is quite small 

compared to its characteristic length of variation in the x direction 

parallel to xo' I"~KZI« I, we obtain 0 = ~.!g + iy = "xVg + iy. 

The temporal growth rate y then satisfies the equation 

(99 ) 

The expressions 0 = "V + iy and Eq. (99) are equivalent to Eq. 
xg 

(98) to lowest order in IK /K I and' IK v fyi, both of which are x z x g' 

assumed small. This biquadratic dispersion relation has been obtained 

also by Drake et al. 12 and Langdon and Lasinski. 33 The biquadratic 

is readily solved giving 

y = ±(Y02 - Kz
2Cs

2 )i [1 + (cs/c)2(2~/KZC)2]-i 

where r/-:: (1/2) Wi 2( v 0/ c )2. The following lim! ting forms are 

obtained from Eq. (100): for I Kzc/2C1Jo I « cs/c, 

y = ±Y0(KzC/2WO)(c/cs)j and for I Kzc/2wOI » cs/c, 

(100) 

2 2 2 i y = ±(yo - KZ Cs ). For KX = 0, 0 = iy which is schematically 

diagrammed as a function of KZ in Fig. 25. 
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Further discussion of fllamentation is relegated to the 

existing literatl,lI"e and to a forthcoming paper, by C. Max and this 

author, wherein the Green's function describing the linear, convective 

_ growth of filamentation is constructed. Drake et al. 12 and Manheimer 

and Ott39 consider the temporal problem, whereas Kaw et al. 13 investi-

gate spatial growth of filamentation. The extensive literature due 

to researchers in the nonlinear optics field is in general more 

directed at the nonlinear structure of steady-state or quasi-steady 

state filamentation or self_focusing.14,15,30 

D. Brillouin Scattering 

1. Introduction to Brillouin Weak and Strong Coupling 

We present a detailed examination of Brillouin weak and strong 

coupling. Assuming that the scattered wave a_ suffers a much smaller 

mismatch from its linear dispersion relation than the a+ scattered 

wave, i.e., /D_ID+I« 1, the Brillouin dispersion relation can be 

immediately obtained from Eq. (19). We evaluate the linear suscepti

bilities in the limit vi « /n/KI «veo If we further assume that 

2 2-
K Ae ,/n//wO « 1 - then Eq. (19) becomes a dispersion relation 

describing stimulated Brillouin scattering: 

To justifY the assumption that /D_/« ID+/, we require that 

/~ - 2~.!o/ « /K2 + 2~'!% We continue to assume that the plasma 

is underdense, ,we < wOo The dispersion relation Eq. (101) was also 

obtained by Bodner and Eddleman37 using a fluid equations approach. 

.. 
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In the absence of the electromagnetic pump, - 2 vo = 0, there 

are only free oscillations: ian acoustic waves o = ±I(C 
S 

and freely 

propagating electromagnetic waves D_(O,!) = o. In the presence of the 

pump, the two waves are coupled. The dispersion relation of each wave is 

altered by the scattering of the radiation by the density perturba-

tion and the accompanying ponderomotive force driving the low frequency 

density perturbation. In the absence of dissipation, an infinitesimal 

pump gives rise to a growing ion acoustic oscillation and scattered 

electromagnetic wave, i.e., Im n « Re 0 = KC
S 

for real K. This 

constitutes Brillouin weak coupling. 

For stronger pump-wave amplitudes the growth rate of the 

instability and modifications to the oscillation frequency increase. 

The ponderomoti ve force becomes comparable to the normal fluid restoring 

force of an ion acoustic wave. In the strong coupling limit the 

ponderomotive force is dominant: the oscillation frequency is signifi

cantly modified. For 101» IKcsl we obtain 03 ~ _K2V02Wi2/8wo 

from Eq. (101). This is similar toA'i1amentation in that the density 

perturbation is a driven mode, or quasi_mode,ll whose pump-dependent 

dispersion relation differs dramatically from a plasma normal mode. 

2. Generalization of Brillouin Analysis to Three Dimensions 

Before proceeding with a detailed, quantitative discussion of 

two dimensional Brillouin, some comments on the generalization of our 

theoretical description to include scattering in three dimensions are 

appropriate. If the scattered radiation propagates in a direction 

having a component parallel to the pump-wave polarization, then trans-

verse canonical momentum is no longer conserved; our formalism then 
, . 12 

breaks down. To describe three dimensional Brillouin, Drake et a1., 

Rosenbluth et a1.,11 and Bodner and Eddelman37 consider Maxwell's 
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equations and fiuid equations. They all employ the simple fluid 

model for the nonlinear current Eq. (14), however, allowing the polari-

zation of the scattered radiation to make an arbitrary angle ~ with 

the polarization of the incident electromagnetic wave. 

In calculating the ponderomotivepotential driving the low 

frequency longitudinal oscillation, the generalization of Eq. (8), one 

factor of cos ~ enters due to the v x B Lorentz force of the pump 

and scattered waves. For the component of the total current in the 

direction parallel to the polarization of the scattered radiation 

driving the nonlinear wave equation, a second factor of cos ~ occurs 

due to the inner product of the pump quiver velocity with the 

scattered wave polarization direction. 

The result then of including the angle of relative polarization 

is to alter the Brillouin dispersion relation by the replacement of 

- 2 • - 2 2 i ( 01) i· h h Vo W1th va cos ~ n Eq. 1 . By requ r~ng t e pump and t e 

scattered radiation to be polarized perpendicular to the plane defined 

by their propagation directions, the coupling term in Eq. (101) is 

maxi • ~ 2 2,It - 2 F • 1 JDl.zed va cos 't' -+ va. or scatter~ ang es such that ~ I 0 

ff i h - 2 2 ", • d the e ect ve pump strengt va cos 't' ~s re uced. 

J. Brillouin DiSpersion Relations 

We consider first the weak coupling limit of Eq. (101) and 

define the following variables: 

velocity Vg = c~o/wo; and ~ = 
cos 

KC 
S 

e = K.~O; rO = vO/wO; the group 

+ (K2 - 2~.!o)c2/2WO' the fre-

quency mismatch of the scattered electromagnetic wave. (The frequency 

mismatch is obtained from the electromagnetic dispersion relation: 

~ = (2w0 )-lD _, with 0 = KC
S 
«~. If we define ow = 0 - KCs and 

assume lo(U/gl« 1, then from Eq. (101) we obtain 

.. 
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2 2 2 2 
:: &l (KOs + 6/2) + ow Kos6 + K Os ~(rO/4\) 

(102) 

The solution of Eq. (102) is given by 

(103 ) 

The growth rate, Im 6w, is a maximum, with respect to wavenwnber 

(taken here to be real) for fixed angle, at 6= O. This determines 

the wavenumber K = 2kO(cos8 - cs/vg), for which tJ. = 0, and thus 

corresponds to exact wavenumber and frequency matching for the inter-

action of the three normal modes. From Eq. (103) the maximum growth 

rate is given by 

(104) 

in agreement with Refs. 11, 12, 36, and 37. 

Figure 26 schematically displays the dispersion relation 

D:e(O,!) = 0 in the weak coupling regime, plotting the normalized 

frequency O/2kOCs as a function of K/2kO . for fixed angle e and 

pump strength. The width of the unstable K region is found from 

Eq. (103) to be 2kO( cs/v g)( rO/4Ae) [( wO/kOcs )/( cos e - cs/v g)]t, for 
·2 . 

(rO/4Ae) (~/kOcs) « Icos e - cs/Vgl. In the unstable K region 

there are complex conjugate solutions for6w. Both solutions 

correspond to the three waves ,being effectively phase-locked at a 

relative phase TI/2 or 3~/2· in Eq. (3). One value of the relative 

phase leads to instability and the other to decay. In the stable K 

region, 161» 2w0(rO/4\)2, the three-wave coupling induces a 

frequency shift which again, depending on the relative phasing of the 
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three waves, can be either positive or negative. This accounts for the 

splitting of the oscillation frequency whose dependence on pump-wave 

intensity, wavenumber, and scattering angle is given by Eq. (103). 

To consider the strong coupling limit of Eq. (101) we do not 

make the assumption that the density perturbation is a weakly growing 

ion acoustic wave. Equation (101) is a cubic equation in r2: 

(105 ) 

The solution for the roots of a c~ic equation is standard •. Results 

for n as a function of K for fixed cos 9 and pump strength 

in the strong coupling regime are shown in Fig. 27a. For fixed 9 the 

region of K around 2kOcos 9 is restricted in order that we main

tain the condition ID_/D+I« 1, which is re~uired in the derivation 

of the Brillouin dispersion relation Eq. (101). 

When the ponderomotive force·very much dominates the restoring 

force associated with a free ion acoustic oscillation (in terms of 

L 2 2 1/3 . characteristic frequencies (wi~O va 12wo> >>. KCs ) the follo~ng 

simplification results. We set kocslwO 
+ b in Eq. (105) to obtain 

= 0. 

(106 ) 

The complex frequency of the density perturbation is then completely 

determined by the scattering of the radiation and the degree of mis-

match of the scattered wave from a normal mode, represented by the 

term involving K2 - 2KkOcos 9. 
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For K and cos 8 such that ID_I« ID.', growth is 
2 . 

maximized by K = 2KkOcos'8 = 0 giving the standard result for strong 

lingll,12,37 coup 

For Icos 81 = IK.kol « 1, the Brillouin analysis breaks down, and 

Eq. (96) must be solved. We note that the largest growth rates for 

weak and strong coupling Brillouin occur for exact backscatter, 

,K/2ko = cos e = 1. Figure:' 27a shows a plot of the normalized fre

quency n/wO' using Eq. (106), as a function of the normalized real 

wavenumbers K/2kO for various fixed values of cos e and fixed 

( 2.. 2- 2/ 4 )1/3, parameters wi~O Vo Wo = 0.04 and kOAe = 0.02. 

We emphasize that Eqs. (101) and (106) give a general descrip-

tion of Brillouin weak and strong coupling. The two regimes of 

scattering are distinguished by (ro/Ae)2(wo/2koCs ) compared to unity. 

This is obtained by taking the ratio of the strong coupling frequency 

in Eq. (107) to 2kOcs ' and then cuting the result, ignoring numerical 

factors of order unity and the dependence on cos e. Strong coupling 

corresponds to (rO/Ae )2( WO/2kOCs ) ~ 1; weak coupling occurs for 

(ro/Ae)2(Wo/2kocs ) «1. However, to correctly extract weak coupling, 

one must carefully insure frequency and wavenumber matching, i.e., 

fj, ::: O. 

Brillouin strong coupling can exhibit a regime of nearly 

nonoscillatory growth whose parameter dependence closely resembles 

the growth rate of filamentation in the limit V02/c2 » K2Ae2. For 

K ~2ko cos e and wi/wo' (K
2 

- 2Kkocos e)/2k02 » n/wo » KCs/WO' 
2 2 2' 

Eq. (105) becomes DB(n,K,cos e) ::: n (K • 2Kkocos e)c /2wo 
2 ... 2 2 

+ K Vo Wi /Bwo = O. We must, however, continue to maintain the 
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inequality fD-'« ID+I, which requires K2 - 2KkOcos e :: 0, to 

Justify the neglect of a+ compared to a_ and identifies the 

instability as Brillouin. Solution. of the quadratic dispersion relation 

is readily obtained, n = ±i[K/(K - ZkOcos 6)]i wikOvO/wO. When the 

right side of the preceding expression becomes comparable to 

2 2 2- 2 1/3 3 (cos a wi ko Vo /2wO) ,the n term in DB(n,K,cos a) must be 

retained. 

EXcept for the ~eometrica1 coefficient [K/(K - 2kOcos e)]t, 

~e growth rate for nearly purely growing Brillouin strong coupling 

is identical in its parameter dependence to that for filamentation 

in the limit vO/c» KAe' wOlkO ~ c', KC/2wO » cs/c, and 

I cos a 1< 1, viz. from' Eq. (100) n:: ±iyO = ±iwi vo/-y2 c. AI though 

strong coupling and filamentation have similar growth rates and both 

are characterized by the coupling of transverse normal modes to a 

strongly driven longitudinal mode, they differ radically in that for 

strong coupling the growth of the a sideband is dominant and is a 

maximum 'for K - 2kOcos a. For filementation the two sidebands 

a_,a+have comparable amplitudes; and for the regime of filamentation 

of interest here, we have the condition Icosal« 1. 

As the a sideband acquires a larger mismatch D_, Brillouin 

strong coupling exhibits a smooth transition into modulational 

instability. The transition is complete for I D _/D + I ::: ~ 1 ). In 

Figure 27b, the numerical solution of Eq. (96) is exhibited plotting 

n/wO vs K/2kO for various values of a. For K::: 2kOcos e there is 

good agreement with the Brillouin strong coupling solutions shown in 

Fig. 27a. For K» 2kOcos a, filamentation occurs with growth rate 

.. 
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n ~ iyo corresponding to the limit of 2Wocs/c2 « K « (Ae)-lvo/c 

in Eq. (100) and Fig. 25. 

We would like to include the influence of the concomitant 

growth of the a+ sideband on Brillotlin in such a way as to permit 

further analysis without resorting to the numerical solution of the 

complete dispersion relation (96) displayed in Fig. 27b. We can 

rewrite Eqs. (17) without approximation 

(108 ) 

Then defining Q(n,~):: D-,n,~)/D+(n,k) where (n,~) satisfy the 

Brillouin dispersion relation Eq. (19),. D_ - K2v02f/4 = 0, the first 

correction to the Brillouin dispersion relation due to finite 15 is 

included as follows: 

(109) 

If the solution (n~) of Eq. (109)' is iterated back into 15, then 

Eq. (109) constitutes a recursive dispersion relation equivalent to 

the branches of Eq. (18) which correspond to Brillouin. 

The dimensionless quantity 15 thus characterizes the condi

tion for the existence of " the Brillouin instability and the validity 

and accuracy of its dispersion relation. The mismatch D relative 

to D+ can increase for a variety of reasons: D can cease to be 

nearly zero because of its dependence on K and a, and because of 

its dependence on pump strength through n. As 115 I approaches order 

unity filamentation smoothly supercedes Brillouin strong coupling. 

By way of an illustration of Brillouin backscattering, a 

numerical simulation was ,performed. The electromagnetic code dis

cussed in Section II.B was employed to study ~rillouin scattering in 
., 
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. 
one dimension. A linearly polarized monochromatic wave, 

C&l.... = 1.414 W , impinged upon an UIll!IB.gIletized, finite, .. arm plasma u e . 
slab. Electrons were warm (T /m ~2 = 0.01) and singly charged ions 

e e 

cold. There were a modest number of particles, 2000 of each species 

with mi/me = 25. In terms of the parameters used in Eqs. (105) 

and (106), the dimensionless pump strength was chosen to be 

(Wi/~ )2(kO 2ro 2)/2 Jl/3 = 1.26 x 10-2 ane. the dimensionless sound 

-2 speed kOcs/WO = 1.414 x 10 • This corresponds to a regime marginally 

between weak and strong coupling. 

Because of the discrete Fourier spectrum of wavenumbers in 

the simulation, only one backscatter mode waS excited from noise, 

~ ::I 2!0' Figures 28 and 29 show the growth of a large amplitude 

density perturbation in electron and ion phase spaces. From the ion 

phase space plots a phase velocity nearly equal to the ion sound 

speed was observed, Re O/K ~ Cs = 0.02c. An accurate measurement of 

a growth rate was somewhat hopeless because of the very weak growth 

rate, the early onset of nonlinear features (ion wave breaking) the 

reflection of particles and waves in our rather short system, and the 

relativelY large noise levels present in the simulation (see Fig. 30). 

A detailed simulation study of Brillouin instability has been made by 

Forslund et al. 38 in which linear growth rates are carefully measured 

and the importance of competing nonlinear features are assessed. 

4. Absolute Instability of Brillouin 

We next consider the asymptotic Green's function analysis for 

Brillouin. We follow the procedure of Bers and Briggs to ascertain 

the existence of absolute linear instability99,100 as applied to 

Brillouin weak and strong coupling and extend the work of Jorna36 

'. 



-109-

and Chambers, Bers, ~d Watson.10,101 A ~-runction perturbation in 

space and time is assumed for the space-time dependence of the source in 

the Laplace-transformed initial-value problem for the linearlY 

unstable coupled modes a_ and ~ns •.. ,For the source term we follow 

Oberman and Auer,l02 allowing discrete particles in a collisionless 

plasma to produce longitudinal noise. We then construct the Green's 

functions f0r the scattered electromagnetic wave and for the electron 

and ion density perturbations, and analYze the Green's functions 

asymptotically. 

The noise enters the charge.density as follows. Poisson'S 

equation is 

2-· 
-V ~(.!, t) 

The charge density of species 

e· tSns( x, t) 
s -

s, tSn (x,t), includes the charge s-

(110) 

density due to noise and the perturbed charge density induced by the 

longitudinal electric field and the longitudinal component of the 

ponderomotive force. 
. 102 

From Oberman and Auer, the Fourier and 

Laplace-transformed charge densities are given by 

(111 ) 

where x· = X (Q,K) is the linear susceptibility and S s(x,t) 
s s - n -

is the longitudinal charge density due to noise, whose Laplace-

transforms in time and Fourier transforms in two spatial dimensions 

are given by 

exp( Hlt - iK·x') s Set '.,x' ) 
- n -



-110-

Substitution of Eq. (111) for cSiis into the Fourier and 

Laplace-transformed Eq. (110) and use of e;(n,£):: 1 + [Xs(n,!), 
s s i e S 

t = ~ + ~o ' and I ~O I « ~o I yield 

(112) 

In Eq. (112) we solve for ~e and substitute the result into Eq. (Ill) 

to obtain 

2 ( ) -1- e ( ) -Ix e -l/'f i ( ) 6ne = -K Xe 1 + Xi E ~o /4ue + 1 + Xi E ~n + XeE ~n ' 113 

where the frequency and wavenumber dependence (n,.!£) in the suscepti

bilities and the transformed amplitudes is implicit. 

Substituting the electron charge density into the fluid model 

for the nonlinear transverse current J = eve[no + one(~,t)] , 

Eq. (14), and Fourier and Laplace-transforming give 

... ~ ... * * * - ecaOv n (2w - n ,2k - K ) e 0 ::0-

where (mc2/e)a = (mc2/e)a(wo -n*,::ok -l) and 
e - e -

(mec2/e)ao = (mec2/e) a(wO'!o) are the Fourier and Laplace-transformed 

amplitudes of the perturbed and pump-wave vector potentials, respec

tively. The term -eca_cSn: (2w
O 

- 2n*,2!Q - 2K*) is higher order 

in aO and ~ns and has been ignored. For Re(2wO -n*) »we ' 

- s * the longitudinal noise Sn (2w
O 

- n) does not incur the increased 

- s plasma shielding that low frequency noise Sn (n) can, and therefore 
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its contribution is ignored.102 The electron charge density induced 

. * by the ponderomoti ve .potential wi ~ phase dependence (2W
O 

- Q , 

. *. * 2 ~ - !:) is proportional to I~ - ! I Xe(l + Xr )E-l and is 

likewise small compared to the low frequency induced charge density: 

1Xe/E1 .. We2/4W02 «1 and for'backscatter 12!o _ !*12 « 1~12. 

The ponderomotive potential given by Eq. (9) can be Fourier 

and Laplace-transformed to give 

Substitution of the above expression into Eq. (113) determines 

6ii (0, K) as a function of aOal* and S s. We then substitute for 
e - n 

the charge density in Eq.(114) to express the nonlinear current 

..... - - s likewise as a function of a1 , a
O

' and Sn. We Fourier and Laplace-

transform the electromagnetic wave equation, Eq. (13), to close the 

set of equations. Recalling the definitions D_ = K2
C
2 - 2!o.~c2 -

0.2 
+ 2QwO and r(n,~) = Xe(Oi~)[l + XiUl,~)]/E(n,~), the transformed 

wave equation including the effects due to longitudinal noise is 

[D_ - K2c2raoI2r(n,~)]a: = 

- ,,/£~l(n,~) ii~ {[I + Xi(n,~)l Sne(n,~)/no + Xe(n,~) Sni(n,~)/no} 

(115) 

For IKA I «1, vi « In/KI « v , and In2/w. 21« 1, the . e e ~ 

.. 2 2 2 2 linear susceptibilities are X .. l/K A and Xi ~ -We /0. Then the e e ~ 

dielectric response r(n,~) can be expressed as 
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Equation (115) becomes 

2-*[ 2 ... 1 2 2'" e ' 
tI) aO n s (n,K)/nO - K C s .(n,K)/noJ ' e n - s n -

where DB(n,!) is defined in Eq. (101). The dispersion relation for 

Brilloufu scattering is determined by DB(n,~) = O. 

We can now exhibit equations for From 

Eq. (116) we find that 

-*( * *) ... * a tI) - n,k - K = a = o 0 - -

(117a) 

and from Eq. (113) 

(117b ) 

Use of Eqs. (110) and (111) with cf>0 i :::: 0 gives an expression for 

c5n
i

(n,.!S.) of form similar to Eq. (117b). 

To construct the Green's functions for the scattered e1ectro-

magnetic wave a J.!, t) and for the perturbed electron charge density 

one(.!,t), we multiply Eq. (117a) by exp[i(wo - n)t - i(~ - .!S.)o.!] 

and Eq. (117b) by exp(-iS'lt + i~ • .!) and perform the inverse Laplace 
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and Fourier transforms. We consider the Green1s functions with sources 

due to ion or electron noise separately, asserting that the ion noise 

and electron noise due to discreteness are independent. We replace 

on '( x, t) by a Dirac o-fl.mction in space and time whose Fourier and 
s - . 

Laplace transform is unity., The Green's functions G s(x,t) for 
, a -

a_(~,t), due to initiation by longitudinal electron or ion noise 

respectively, are 

G e(x, t) 
a -

i G (x,t) 
·a -

2 2' , -I< C I 

x exp[i(wo - Wt - i(~ - £)o!.] S J 
r? 

where Cn is the Laplac~ or Bromwich contour and 

(118) 

C , before de forma
I< 

tion, is the real 1<-1< plane. The corresponding Green's functions x z 
for the electron and ion density perturbations can be similarly 

constructed. 

TIle Green's functions for a -,~, t), Eq. (118), and also for 

the density perturbations can be written as follows, where we have 

performed the n-integration by depressing the, Cn contour down as far 

as possible and deforming the contour around the highest poles of the 

integrand: 

GS(x,t) =-i 
a -

(119) 
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Ias(~;j'~) absorbs all the coristant coefficients and the remaining 

n and. ~ dependence of the integrand. The superscripts s denote 

the species of the noise source. 

and denotes the sum over the various branches of the dispersion 

relation DB(n,_K) = O. We take only the roots for which Re n . > 0, 
~;J 

since we add the complex conjugate on the right side of Eq. (119). 

In calculating the Green's functions for ons(~,t), there are additional 

poles of the integrand due to terms appearing in the denominator like 

222 n - K Cs ' for example. Since for these poles Im n = Im(±KCs ) = 0, 

they do not lead to instability; however, they remind us of the 

presence of the low frequency normal modes that can also be initiated 

by longitudinal noise, i.e., ion acoustic waves. 

In performing 'the remaining ~-integration in Eq. (119), the 

C1f contour can be deformed as long as the zeroes ~n of DB( n,~) = 0 

remain on their respective sides of th~ contours CK in the complex 
100 

K - and K -planes. Since n t will lead to a rapid phase variation x z K 

exp(-i Re nKt) and perhaps to an e~ponential growth exp(Im nKt), 

the dominant contribution to the integral in the complex K-space will 

arise from the saddle or stationary phase points described by 

an~aK = O. Provided that aDB(n,~)/anln 1 0, the saddle point 
K .• 

condition is equivalent to the simultaneous conditions DB(n,~) = 0 

and aDB(n,~)/a~ = O. This corresponds to two roots of the dispersion 

relation pinching together. 

If the pinching roots come from opposite sides of the CK 

contours., then no further contour deformations can be performed at 

the pinch point. The Cn contour can be depressed elsewhere in the 

complex O-plane but C is trapped at K' by causality requirements 
K -p 

-. 
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between the pinching roots ~ =. ~p • If Im n > 0 . at the 
K 

pinch point, then the instability grows in time everywhere in space 

100 (absolute instability ) with asymptotic Green's functions: 

c. Co 

and similarly 

G B( X, t) a: 
n -

I B( n ,K jX, t) exp( -in t + iK ox) 
n p;> - .p :1> -
---~a~D~B""( n~'-.!:."")~l~an:-I""'),-o:.., !Sp __ ...ot... __ + co c. , 

where np and ~ are the pinch-point 

largest positive Im n 0 The functions p 

frequency and wavenumber with 

s s I and I incorporate a n 

the different frequency- and wavenumber-dependent factors remaining 

in polynomial form in the numerators and denominators of the respective 

Gre.en's functions' integrands 0 They also include the dependence on 

np ' K , X, and t, as the result of the saddle-point integration: 
;> -

Jd\t exp[-i,G,": !,'£'t + i!,' .!o] 

where n" = a2n/akakl 
== - - n ,K 

P:1> 

To analyze the nature of the absolute instability of stimulated 

Brillouin scattering in all regimes of pump strength, the pinch 

condi tions can be directly applied to Eq 0 • (101) or (105) 0 The pinch 

conditions become 
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(120a) 

(120b) 

(120c) 

Equation (120c) gives 2K sin a(K2Cs
2 - 02 ) = 0, which has non

trivial solutions for a =-O,~ and K t O. The other solutions to 

Eq. (112c), o = ±KC , merely describe free ion acoustic oscillations s 

and are inconsistent with Eq. (120a). The a = 0 solution corresponds 

to Brillouin backscatter. Setting cos a = 1 reduces Eqs. (120a) 

and (120b) to a one dimensional description. 

The asymptotic behavior for modes where a t 0 is constructed 

from the simultaneous solution of Eqs. (120a) and (12Ob) as functiorn 

of n and K and with fixed parameter cos a. These modes can grow 

in time as well. However, as they do not represent simultaneous 

solution of the entire set of Eqs. (120), these modes will have weaker 

growth rates; i. e., their growth rates have not been maximized with 

respect to scattering angle a. This is corroborated by Eqs. (104) 

and (107) which show that the growth rates of Brillouin weak and 

strong coupling are maximized for exact backscatter, a = O. 

The pinch-point solutions for complex 0 describe the temporal 

growth, if 1m 0 > 0, and oscillation, if Re n t 0, of the low 

frequency density perturbation. The scattered electromagnetic wave 

* has shifted complex frequency Wo - 0:. A finite imaginary part of K 

will produce a spatial growth or attenuation of the amplitudes of the 

density perturbation and the scattered electromagnetic wave: in fac~ 

both grow in space in the direction of the backscatter. 

.. 
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To explicitlY determine the pinch-point frequencies and wave

numbers for Brillouin, Eq. (10,) is substituted into Eqs. (l20a) 

and (12Ob) with cos e = 1. We then solve numericallY. Since the 

ratio [(Wi/wo)2(koro)2/2]1/J/(koCs/Wo) determines the distinction 

between the weak and strong coupling regimes of the Brillouin disper-

sion relation, we set kOcs/wO = 0.01 for convenience and vary 

p = [{wi/wo)2(koro)2/2]1/J as a free parameter. Figure 30 shows a 

plot of Re n/wO and 1m n/wO vs {Wi/WO)2(korO)2/2, while Fig. 31 

plots Re K/2kO' 1m K/2kO' and Re SVRe KCS vs (Wi/WO )2( kOt 0 )2/2. 

By slowly increasing the pump strength from pJ« (kOCs/WO)J = 10-6 

to pJ» (kOCs/WO)J = 10-6, the continuous transition from weak to 

strong coupling should be exhibited, if it exists. Before comment .. ing 

on the results, we digress to solve Eqs. (120a) and (12Ob) algebraically 

for weak coupling. 

We can write Eq. (101) as 

(121) 

If we make an expansion n = KOC
S 

+ QW and K = KO + 15K, where 

KO/2kO = cos e - cs/Vg is the wavenumber for exact frequency and 

wave~uinber matching I and assUJI1e that appropriate for weak coupling 

I OK/KO , , IOW/KOC
S 

I « 1, then from Eq. (121) we find that 

( 122) 
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To obtain the pinchpoiht describing the absolute instability 

of weak coupling Brillouin, we set e = 0 in accordance wi th Eq. 

(12Oc) to obtain KO = 2ko(1 - Cs/Vg) and 

(123) 

where Y02 = WiWo(Koro)2(16KoAe)-1 and wa = 2kOcs ' Then Eq. (120b) 

becomes 

(124) 

If we define c1 = C2(KO - kO)/wO' the magnitude of the group velocity 

of the backscattered electromagnetic wave, then the simultaneous 

solutions of Eqs. (123) and (124), determining the pinch point, are 

(125a) 

and 

(125b ) 

where K1 = QWs/c1 and Ks = QWs/cs.103 The ratio kOcs/WO has 

been assumed small throughout. The generalization of these results 

to include dissipation is found in the literature. ll ,103 

The weak coupling pinch-point solutions Eqs. (125) are plotted 

for purposes of reference in Figs. 30 and 31 as dashed lines. The 

lower limit of pump strength in these figures corresponds to 

2 2 3 -6 . (Wi/WO) (kOrO) /2 = (kOCs/wO) = 10 , wh1ch, according to the normal 

mode analysis, is the upper limit of th~ weak coupling regime. One 

observes that the weak coupling analytic formulae describe Brillouin 
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absolute instability to an excellent approximation over a broad range 

of pump strengths (Wf/Wo)2(kor O)2'2 > (kOCs /wo)3 well into the strong 

coupling regime of normal modes. The weak coupling formulae represent 

valid pinch-point solutions for the general Brillouin dispersion 

relation, Eq. (101) or (105) provided low /Kcl «1. The condition s s ' 

{Wf/WO)2(korO)2/2 «(kOCs/Wo)3 applies to the linear dispersion 

relation describing the normal mode spectrum, i.e., the complex 

frequency OK as a function of real ~. In terms of a condition on 

the pump strength V02/c2, the weak coupling pinch point formulae 

require that 

while the weak coupling linear normal mode dispersion relation 

demands that 

where numerical factors of order unity and dependence on K/2kO have 

been dropped. Comparison of the two conditions demonstrates that 

the weak coupling formulae describe absolute Brillouin instability for 

pump-wave amplitudes (VO/c)2 allowed to be larger by 

v /c = c~o/woc than those for which the linear dispersion relation g s s 

of Brillouin Q becomes strong, ly modified. 
, K 

In Figs. 30 and 31, only for pump strengths 

(Wi/Wo)2(k02r02/2) ~ 10-3 do the pinch-point solutions diverge from 

the weak coupling formulae. In this regime of pump strengths finite 

o = D_/D+ corrections to the Brillouin dispersion relation become 

necessary. We recall from Eq. (109) that replacement of (iio/c)2 
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by CVO/c)2(1 +&/{l- <5)], in. the Brillouin dispersion relation where 

cS is to be evaluated for complex n and Ie, provides an implied 
. -

recursion relation for including the effects of the ~+ sideband in 

Brillouin. In Fig. 32 161 evaluated at the pinch-point frequency 
. 222 

and wavenumber is plotted as a function of (wi/wO) (kO rO /2). We 

conclude from Figs. 30, 31, and 32 that the absolute instability of 

Brillouin is adequately described by the weak coupling formulae for all 

pump strengths, except for those so intense as to drive both A . + 

and A_ sidebands to comparable amplitude and therefore necessitate 

solution for the general filamentation and Brillouin pinch-point 

frequencies andwavenumbers using Eq. (96). 

A final but necessary demonstration of the Brillouin pinch-

point behavior for large and small pump strengths is furnished in 

Figs. 33 and 34. Level contours of ,DB(n,Ie,e = 0)1 in the complex K 

plane for parameter . n are plotted using Eq. (105). Re n is held 

constant at its pinch-point value for given pump strength, and Im n 

is varied from slightly below the pinch point,· through it, and then 

above. Roots of the dispersion relation appear as a nesting of con-

centric contours. Figure 34 shows the coalescing and retreat of 

( 2/ 2 )( 2 2) -7 pinching roots for weak coupling Wi Wo kO rO /2 = 10 « 

(kOCs /wo)3 = 10-6 • The identical topological behavior occurs in 

2 2 2 2) -2 ( )3-6 Fig. 34 for (Wi /wO )(kO rO /2 = 10 »kOcs/wO = 10 • 

5. Plasma and Laser Parameters for Brillouin Strong Coupling 

and Filamentation 

For existing laser-plasma experiments, e.g., laser-pellet 

experiments using neodymium glass lasers and laser heated a~pinch 

experiments using CO2 gas lasers, we consider what pump intensities 

'. 

. . , 
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are necessary to induce strong coupling and filamentation. Table I 

exhibits parameters typical of these experiments. pO is the laser 

power intensity in watts/cm2• For strong coupling we use Eq~. (107) 

to obtain 

USing Table I and comparing n (K = 2k0 ) to W = .2kOcs ' we 
K - - a 

determine the effective power densities for the occurrence of strong 

coupling Brillouin scattering in a homogeneous plasma.. For 

o 13 2 17 2 n > w we find that P ~ 10 W/cm for CO2 and 10 W/cm 
K a 

for Nd. 

In the limit (Kc/2WO»> (cs/c), and Icos el « 1, 

filamentation occurs for (vO/c) > KAoorresponding to e . 

pO > 2K2Ae2 x (1016 W/cm2 for CO
2

, 101S w/CIi for· Nd). In the 

absence of dissipation, the thresholds for the growth of long wave-

length filaments therefore can be quite low. Of course the size 

of the laser beam and the plasma target determine limits on the 

wavelengths. The lifetimes of the laser pulse and the plasma target 

,set further limitations on how strong the filamentation growth rates 

must be to be significant. 



Table I. Laser-plasma Experimental Parameters 

n
O
( cm-3 ) wee sec -1) wi (sec-1 ) wOe sec-1 ) kO~e 

... 2/ 2 Vo c 

CO2-gas 1017 3 x 1013 5 x 1011 2 x 1014 0.1-0.3 pO/1.2 x 1016 W/cm2 

Nd-g1ass 1020 6 x 1014 1 x 1013 2 x 1015 0.1-0.3 pO/1.2 x 1018 W/cm2 

I 

~ , 

, . . , 
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APPENDIX I: LINEAR SUSCEPTIBTI.ITIES 

To derive the.1imiting forms for the linear susceptibilities 

we consider the Vlasov equation as a.mode1 kinetic equation: 

atfa(x,v; t) + va f (x,v; t) - (e /ms)3 </>3 f (x,v; t) = 0 (A.I) . xs s x vs 
"" 

where fa( x, Vi t) is the normalized distribution function. Then use 

of ns = noJdvf s( x, Vj t), the Poisson eqm:.tion _32</>/3x2 
= 41T L n e , 

s s s 
and the definitions of the Fourier transformed linear susceptibilities 

Xs(w,k) = -41Tk-2esfis/~ in terms of the Fourier amplitudes ns and ~ 

yields 

u = w/k, and f 0 s 

(A.2 ) 

is the velocitY-dependent, time and space-independent, unperturbed 

distribution function. 

There are two cases of particular interest when evaluating 

Eq. (A. 2). For I Im( w/k >I « I Re( w/k ) I we utilize the Landau 

prescription in evaluating the Hilbert transform: 

lim 
1m u-+O±v - u 

1 (A.; ) 

where p( ) indicates the principal value of the implied integral. 

For the case that I Im(w/k)/ ~ / Re «IJ/K I and I Im(w/k)1 > 0, there 

is no difficulty in evaluating Eq.(A.2) directly; there is no 

singularity on or near the contour of integration. 

If we consider Maxwellian velocity distribution functions for 

o 2 -1/2 2 2 the separate species f s (v) = (2rr v s) exp( -v /2v s ) where 

v = (T /m )1/2 is the species thermal velocity, then asymptotic s s s 
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torms for the susceptibilities can be straightforwardlY derived. 

104 Numerical tables have also been compiled. If we define 

Tl :: v/-...;2 Vs and ~:: w/-y2 levs ' ~hen the Fried-Conte functionl04 

Zs(w/k) can be defined as follows: 

Z(w/k) s 

, 
<In exp(-n2 )/(n - ~)j 

(A.4 ) 

In evaluating the susceptibilities, the following identity is useful: 

'lI' -i 1 CI) dn( -2n) exp( -n2 )1( n - ~) = dz /d~ :: z' ( ~). The suscepti-
~s s 

bilities take the form Xs(w,k) = -ws
2 Z'(w/k)/k2 where 

Z~(w/k) :: dZs(w/k)/d(w/k). 

For the case that w/kvs = V. ~ is nearly real,then using 

Eqs. (A.2), (A.3), and (A.4) one obtains 

and asymptoticallY 

and 

2 lim Re z = -2~(1 - 2/3~ + ••• ), 
~-+() s 

-l( -2 ) lim Re z = -~ 1 + ~ /2 + ••• 
s· 

~-tOO 

lim Re 
~-+O 

z' = -2 + 4~2 + s 

(A. 5a) 

(A.5b ) 

, 

, 
(A. 5c) 
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For w/kv = V2 t comp1~X then the results (A. 5b) and s 

(A. 5c) describe the complex asymptotic forms of the Fried-Conte 
.. 

functions if lone drops the designation "Re" on the left sides. of 

the equations. Weakly damped electron plasma oscillations correspond 

to w::: we »wi and Iw/kl» ve. Then the ion susceptibility is 

negligible, and the electron susceptibility 1s given by 

Xe ~ -lI)e2/(w2 - Jk2
Ve

2 ) + i(n/2)!(we fkve )J exp(-w2/2k2
Ve

2 ). For ion 

modes in the limit that w1 » Iwl and ve » (w/k) » Vi' then to 

lowest order of approximation the susceptibilities are given by 
. 2 2 . 2 2 

Xe =s 1/k \ and Xi::: -wr /w • 
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APPENDIX 2: ELECTROMAGNETIC CODE . . 

Pj)OGPA'" E"l( I~FlJT j'Ql'TPUT, T /lPE2= t~PUT, UP~3 .TAPE41 
C PHE-~'M?NSI(NAl ElECTR~M4GNETI~ PLASMA SIUULATtON cnOE. 
e REl/l'tV(STIC El~cr~(N~, ~C~-~~lATIVISTtC IJ~S. 
C WRtTTE~ ~y ,. e~UCE lIMGDO~, LIVEPuS~E, lq72. 
C BEAUTIFIED BY e. CQ~EM; M. ~aSTP~Y, AND o. NICHelSON se~KELEY ~ARCH.1913 
c 

c 

c 

CCM"'n~/CFIELn/NG,l,AEL,CX,CGSHL, JY~(257J,Pl(2S71.PHaO(2571. 

RHfH 2571 ,P H 1 ( 25 7) • EX ( 257 I ,JY P (2571. E Yl' t5 71. EYF. ( !57' • EY ( 257t 
PE~L l, JY~, JYP 

COMM1N/I/XC20CO),VX(ZOOl',VY(ZOOOI 
-cn~~OMICNTR(/IT,CT.TtHE,IEX.IJY,IEYL,lEY~, 
oPlOTS,NTH,IT~L,[Ey,leZ, 

.IRHO,IRHJS,lP~I,lXVX,IVXVY 
CO~MO~/SAVEI H(8,301"hH(301),KAy(e),NKAYS,ITHtNTtNF,~l 

. LOGICAL Pll)TS, tFT 
COMMON/T~ERMAL I IT~FRM 

[C~Mn~/UNlrS/~NMlC21,?N~2C2I,R~lC2I,~~2C2It~2C2EV 
CGMNON/ODRY/~CAr,[COlL,~YR~,EYl~,EYRr.,EYPNtEYLC.EYlN 
CC~MJN IPLMPI ~P~PR,WP~Pl,EP~PR,EPMPl 
"EAl lP,VP.(Z),f.!lC2,M2C2 
~INTEGER TITlE(~1 

COM~1N/2/EXE(3Jl.,EY~(3~1"EYlE(3011,EYRE(3Jl'.KE1(3Jl)t 
» KE2(301),~lX(3021,PIY(3021,PZX(3021,P2Y(302),~Ml,~HZ 

PEAL KEl, KE2, ~~1, ~M2 
"EAl ~l, 1'2, KE, KO 

-·--··NAMELIST IINI ~l,N2,NTtNGf MGOF.,V10,V20,Xll,X21;· .---.-.. --.. -.---. ····. __ 4 __ •• __ ._ 

• WltW2,WCl,C;~1,(j)42,KI),{)T,PLOTS,IPHO,IP"'OS,IPHI, 

I Y.'JX l' t '/ ';'{ 'J 't , ! r: ~ • : f;'! , : f! Z • : JY , r ~ YL , I r ':'!' • sc~ L S. f 5 C~L ~ ,: :;; 
o ,TEHPltTEMP2,WP~P~.~~MPL,EPMP~,EP~PL,MOAT,IThE~M,~FtNl 

--- C OEFAl;l T INPUT PAKAMETEI'S. 
raTA Wl,H2.WCltQ~1,C;~2/1.,1 •• O.,-1.,-1.1 
[A T A V 1 0, v 20, x t 1 ,X21 ,MCf'tE , KO/O. , .. ·0. ,2*Q.0 -; 1 ~ 1.1 ----- ... - - .... --- -- - .. -_. 
DATA NG,Nl.N?~T,OT/3l,128,128~400,.11 
DATA PLeT S, I RHC , 1 RHCS, I PH I. I XV X. I v XVY I" TPUEo ,40, r) ,40,20,20 I -
OlTA [EX,IEY,J~l.tJy,[EYL,IEYP,IFT/6*40t.TRUE.1 

CATA SCAlE,SCAL2,"'t:IO.l;:tSO,O.1:+50,O.1 
rATA TEMP1,TEMP2/J.,O.1 
O'\TA wP~PR ,\";P~Pl, ~Pt,.p", EP~Pl,'·~Cj,T /4f1.(i.O,3/-·_·· .. - ...... ·-P._- ...... __ .. - -
CATA ITHE.R'-1,I~F,Nl/20,64,241 

OATA NKtYS,KftY/8,2,3,4,5,6,7,8,~1 
OATA IT,TI~E.ITH.ITHL,MiH/OtJ.,O,~t3001 
C'\TA TITl.f:/q.OI 
~~AO(ZtINI 

_._._-_.- W~ lTE (3, IN' 
CAll HlSTRY 
tCCLL:O 
IT TH=l 
EYRC=EYRN=EYLC=~YlN=EYFM=EYl~=O. 
Er'~Al(:O.C 

------- -- et-./oIAXR=\).O 

·c 

Ef\MAXL=u.u 
ElCSS=Oo 
TWCPI=8.·ATA~(1.' 
CGSHl=L=TWCPI/KO 

1I40AT I~T~OOUCEO 
OlC=LING 
T l=WC 1.OT IZ. 
NP=Nl+f.;Z 
OlsWl~~1·(f\G-MCAT)/(~1.QM1·NG' 

. _.. . . .- _ ..... . 

.. 

.. 
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f'!i,.QIICMl 
M41 =N 1.~41 
IF(Nl.tU.C)QZ=O.O 
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IF (1\2 .i\:E.O I Q2= )/2" Io.Z. (NG-MOATI 1 P~2 *QM2 *NG' 
~Z=C2/C"'Z 
T2=O. 
IF(M2.GT.O~1 T2='1*Tl/M2 
M!2=~l2·~2 . 

C ~lC2EV=.5110041~06 [lE(T~CN V~LTS. 
~2C2~V=~2/~1$.51IS041E06 

c· SCAlItlC It-I U,\ITS GF REST f~ASS ENE!)GY OF.NSITY·· 
~lC2=Ml~(C~/CTI·~l 
~2C2=~2.(DX/CTI~·2 

P~ICZI"1./(MIC21 
PNMIC2I=1./(Nl*MlC21 
IF(~2.NE.DI ~~2C2I=1./(~2C21 

".- --'--1 F (N2. r-.r:. 0) fl.';. 112C2 1= 1.1 ("IZ*~2C 2 ) 
C· • • • * * * * * • • * • * • • * * •• • • • 
C OENSTITY AND VELCCITY LOADING 
C MOAT INT~COUC(D 
C MOAT MUST aE AN l~TEGER GREATER THAN Z 

O~OA r =~O. T .OX 
--._-- .... lP=l-OfJCAT 

~l1=Nl+l 
C QUIET STJRT FCR tENSITY 
C SCALE IS IN UNITS OF LP-----CCNVc;RT TI) ABSDLUTE UNITS 'OF LENGTH 
C DENSITY PRCF[LE 
r. SCALE fJUST EXCEED 05 

----.. -- .. -SCALE=SCAL E*lP/OX 
SCALZ=~5*CDX/SCtL21*·2/LP.·Z 

BB= SCAL!: 
XMI~=FlUATIMOATI/2.0 
~MAX2NG-FLCAT(fJOATI/2.0 
CALL OENSE~Ea,SCAl2,HW,X,Nl,~2tXM!NtXMAX' 

- .... - .. --- CO 10 I=t.~1 . . . .... -.----.-.--- ... --... -.-.---.--.. 

VY(1I=O. 
VX( I I=VLO 

10 CONTINUE 
CALL CREATCRCVX,VY,VIO,l,Nl, TE~Plt36HlOHGtTUOINAl VELOCITY PIST 

.RIBUTtCN It34HTRI>~ISVERSF. V(LOCITY orsTPteUTlON U 
.... _.--- -.- CAll SI-'EAilC X, 1 t Nil ' .. ----. ----.. - -- --.----

IF(Nl1.GT.NP)GC TO 17 
00 11 I =Nll.NP 
"Y(I'=O.O 

I ~ -- - . '11 VX( [)=V20 
CALL CR~ATORIVX.Vy,V20,Nl1,NPt TE~P2t3~HLO~GITUOINAL VELOCITY 01 

lO-------;STR I~UT IGN Z ,34HTHNSVERSE VELOCITY 'Dr STRI8UTION' Z' 
CALL S~EAR(XtNll,~PI 

17 CCNTtNUE 
NG1=NG'+1 
00 12 J=l,T\Gl 

12 EYL(JI=EYR(j)=JY~(JI=JYP(JI=RHaC(JI=O.O 
. -- '·C·--·-·THIS WILL Z.ERC ~AOI!\.TtCN FIELDS AT T=O.- -.-----.--. - ... --.--.--. -... - .. -.--.. . .... --.. -

C DC ~OT NEED CU~PENT AT T=-01/2 NOW. 
CAll SF.TRHO(l.~\,Ql) 
CALL SETR~C(Nll,~P,Q21 

C AT THIS POINT THE ~ET DENSITY IS ~XA~TLY· ZERO. IF YOU WANT TO 
C TWIDf)LE THE OE,,"SITY, YOU MLST Dr) IT .'\FTEP THIS P:JINT. lit ......... . 

0-·_--'--'00 13 1=1,1'\1 ... ------.- .... --.- ... -.-- .. ---- .. --- .. 

~ . 

X(Ti=x'I)+Xll·(GS(T~OP[*~OOE.X(I)/NG) 
13' CONT [NUE 

c. • • • • * • • • • • • • • • • • • • • • • • 
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CAll F I El OS C E XE C 11 , fyL( ( 11, EyP IE C 11 • EY!= Ctl , SZE I 
CAll SETV(1,rU,C1,H1,Jf,Tl,PlXllt,PIYI1» 
CAll SETV(~11.~P,Q2,~2,DT,T2,P2X(LJ,P2Y(lJ' 

WRITE(4,Q49'. 
949 FORMATC4X,* TIHE*.~X,* EXE*,13X,. fYlE*,12X,*EY~E •• 13X,. EYE., 

.l4X,* KE~,* ICOLL*,9X,* cYlMCU"',7X,. EYPM(NGU./J 
C BEGIN TIME STEP LeeF. . 

100 CONTINUE 
CAll ACCElCl,Nl.Cl,~l,DT,TltPlXC!TH+ZJ ,P1Y(ITH+2),KEU ITTH I,KE, 

----- --;-IT) - _ .. 
CAll ACCELINll,NP,C2,M2,DT,T2,P2X(ITH+2J,P2Y(tTH+2~,KE2(ITTH 't 

.KE,IT, 
I<E=KE/Nt-'l 
~P.ITEC4,950) TI~E,EXECITH+l"EYlE(ITH+l',EYRfCITH+1"EYECITH+ll,KE 

•• TCOLl,F.YLM,EYRM 
---950 FCR~aT (Fe .. 2,5F.lf.. a'[s, 2'=l6.8 J -

C ACCU~ULATES RADIATED ENERGY lOSS 
ELOS5=EYI~G11*El(NGl'-EVCIJ*BZI1'+ELOSS 
T~TAL=EXE(IT~+ll+EYF(ITH+l)+KE+~lE 

TOTAL=TOTAL+EL(SS·DX·~~~lC21/CGSHl 
~RtT~C4,951' TCTAl 

--CJ51 -- FOPI-lAT ,>01 TOTAL Ef\c PCY IF IELC+K I NETIC+lossr NORMALIZ EO TO Nr4C2 • ;---------
.El6.8' 

Vl=VtJ=O. 
CAll PLCTXVIl,Nl,Vl,VU,L, 
Vl=VU.:O.O 
CALL PLOTXV( l,Nl,Vl,VIJ.L, 

9HElECTRfJNS,lJ 
'.-. - ---- .... 

9HELEC TReNS ,2) 
-. -._. --V~U=Oo _ ... _. __ .. _--------- -

OJ .•.. 

CALL PLTVXYCl,N1,Vt-'U, 
Vl=VU=O. 

9HELEC TRCNS] 

CALL PLCTXV(~ll.~P,Vl,VU,l, 
- VL=VtJ=O.O 

CALL PlGTXV(Nll,NP,VL,VU,l, 
---- "I"U=Oo - ~-.---

4HICNS,lJ 

4HIGNS,2J ._. ___________ " __________ • ___ . __ '. __ •• __ . ___ ~ __ .·_.·4 ___ _ 

CALL PLTV~Y(Nll,NP,V~U, 4HICNS' 
IF( (T.EQ.NT , GC TO tal 
IF( ITH"EC .. NTH ) CALL HISTRY 
(T "'IT'" 1 . . -- -. -.- - -.. - - - - - - -

C PARTICLE DENSITY AND VEL~CITY OISTRyeUTION PLeTS 
IF((IT/lThERMI.llHERr-!oN!'olT'· GO TO 99- ---.. -.- .. --.. ----------.---------.--. 

ITTH=! TTH+l 
C;t\=Fl OAT (NG' 
ENCCOE(qC,SOQ,TITlE' TIME 

500 FORMATC*ElECTRCN DENSITY (NO. OF PTClS. ·VS. x/ox, AT TIME"., 
.F10.4' 

,(I --- - CA II FCFV ( 1 ,N!. o. ,GN, X, lOH POS trION -., T lTlE r- .--.-.---~-.-- .- ---._- .---- .. - .-- -----
.j--

8 

. .: -. 

TTT=TI~E+.5~DT 
ENCOOEC90,a,TITlE) TTT 
F~R~ATI*ELECTR(N VELOCITY OISTRIPUTICM (~O. OF ~TClS. VS. VIC' 

• AT TIME=.,FIO.4) 
VI< (l '=VR I 21.=0. 

---CAll RAf\GEYIVX,VR,Nll - .. -----.-.-- ------------.-- .... --.-.-.--- ... --.-----.--
VM=.f,:"AX lIABS(VR( 111 ,A~S(VRC2" I 
CAll FCFV(l,Nl,-VM,VM,VX,lOHX-VELOCITY,TITlE' 
VR(ll=VRIZ'=O. 
CALL RANGEY(VY,VR,f\l' 
V JII=,HIAX 1 ( A BS I VII. I 1 ) , , A E\ S ( VI' ( 2 , I , 
CA II F OFV (1 ,Nl ,-VM ,V~ t VV, lOHY-VELOC lTV "~'ITlE' . - -------.----

99 CONTINUE 
T I ~E= I HOT 
ITH=IT-lTHL 
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C4Ll MCVEIl,Nl,Cll 
CALL MCVE(~lL,~P.Q~) 
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tAll FlfLUSI tX~(ITH.L)~fYLf(ITH.11.EYPEIITH.1I.EYE(:TH.lt.~ZEJ 
CO TO IvO 

.- - C 

C END CF PUN. 
l'Jl CCNT[t.IUE 

C . .\LL HlSTRY 
CALL EXIT 
E~D 

SlJBICOUTtNE SI'4EAR( X .IL. tUI 
C TH[S SU~ROUTINE R'NGPMIlES A VECTO~ ARPAY BY RANDOM PAIR eXCHANGE 

01MFNSIGN XI·U 
Jl.UP4=IU-ILtl 
DO 70 I" 1L ,t U . 
II=NU~~RA~F(OI+lL 

--_ ..... --- XX"X( I I -- ----.---- _._-------,- .. _--_ .. __ . --
X(1)=XIIII 
XCI It =XX 

70 CONTINUE 
RETURN 
ENO 
SUBROUTINE DENSE(SCALE.C.HW,x,Nl,r··12.X~IN,XMAX) .-.--.-.- --.-.-- -- .-- .. 
DIMENSICN XIII . 
INTfGE'R TITLEI") 
COMMON/BDRY/~CAT,!COLL,~YR~,EYL~,rYRC,EYFH,eYlC,EYlN 
COfool"'r,N/C F t c:LDn.G,l , ~EL • ox, CGSHl. .J y~ 12571 , ~ Z ( 2571 , RHOO ( 2511 • 

• RHO(Z571,PHII251),EX(2511,JvP(2571,EVl(Z571,~YAI2571.5Y(2571 
----- FDENS'(XI=(N /(XMJ\X-XMH!lI*1 1 •• (X-O.~~x.'14X+O.5~XHtNl/SC:'LE 

• -C*(X-.5qXMAXt.5~X~IMI**21*ANOP~ 
ANCRi-I=l./ (1.-( )::"t.X-~IHNI"''''2qC/!2.l 
OATA TlTUi9*0/ 
t.:=NN=Nl 
J=l 

---.- -.---. ~STEPS= 100000 
O~lTA='XMAX-X~INI/NSTEPS 
AINT=0.5 

50 CCNTINUE 
00 100 I=l,NSTEPS 
AINT=AtNT + FCENS( DELTA.II * DELTA 

-------.- IF (A tNT .GT .FLOAT (J II X ( J I =X IH~ • DEL TA* 1-"- - -.--- ----.------.- _ ... 
tF(AtNTmGT.FLC'TIJIIJ=J+l 
IF(J.GT.NNI GC Te 250 

.100 COtHINUE 
00 150 I=J,NN 
X(I'=X(I-ll + 10.0* ~ELTA 

,'J----··-150 CONTINUE 
250 IF(NZoEa~ol GC Te 350 

IF(N~.GT.NLI GO TO 350 
AINT~FLOAT(Nll+0.5 ,,_ .. - - J:oNl+l 
N=N2 

; ---.-- flfo.=Nl+N2 

(. -_ ..... IF(NL.(Q.~ZI GC TO 60 
GO TO 50 

60 00 65 I=J,~N 

65 XlIl=XII-r..U 
350 COr.;ilNUE 

, ___ - - ____ 0_-___ .- _._ ..... _ .. 

~ -:-- --- G";=FlClAT HiG I -- .. -.-------------.---- -.------.--.. 0_'.' --- -.-.. - -. 

fNCO~E(90.400.TITlEI . 
400 FOP~AT(*DENSITY PROF[l~ (NO. ~F PTClS. VS. XI AT T"O.) 

CALL FCFV(l.Nl,a.,GN~x.16H POSITION .TITlE' 

... 
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suepOUTtNE (R~.ATCq "'-~'(,VV,V~. !L.IU, TF.~p.T1TL~l, Tn'tE2, 
"'~ USE T~f: VX AR"!.V A<; :. ru!"'1Y .lpuAv FOR TQT"l f' A"II) TnTAL V 

NSTF.PS IS T~E tvf;ACE ~u~REP Uf INTEGP4TION STEPS PER PtR1IClE 
OP'PI5 teN VX (11 ,VYlll 
INTEGER T[TLE1(41,TITl~l(4' 
l~TfGER TITLE(Q),XtAA 
FCJI=EXP(-SO~T(loO.P~2*J··2)/T)·OP.o2·C 
GCJI=EXP(-.5*OPZ*J'J/TI*r.P·*2*C . 
IF( IL.GE. Iu.a". TE'-1P.EI.l.O.I RETUPN' ....... ---- ... - -.-... ----".--. 
T=TEHP 
NFCU'h (l U- I L + 11/4 
t..FCUq: t.FOUR *4 
t..1II1=NFCUR+1 
~=tU-IL+l 

.' PI -ATAN( 1.1*4. 
~STEPS = 200 
VELOCITIES ARE IN UNITS OF C AND MC~ENTA IN Me 
F~AX24.0.SQ~TIT.4ou·T·*21 
OP=PMAX'(N*~STEPS) 
cPz=oP··Z 
IF IT 2GT .,0.002) C:. ZS*N *EXP (100/';) I IT+T.Tr----·-----······------·-·---··· .. -- -.-.,. 
IF(T.lE.O.OOZ) C=.ZS*N/IT+T*TI 
J= 1 
1=1 
AINT·O.O 

50 CO~TINUE 
--.. ---.. IF (ToGT .O.O()2) A INT:."I NT+J*F(J ).-- .. -----.---.-.--------

IF(T.lE.O.OOZ) AINT=AINT+J*G(J) 
I4=4*1+IL-4 
IFtAINT.GT o [I VXII4t=J*O.., 
IFIAINT.GT.lll=l+l 
IF(4*I.GT.NFCU~.C~.J.DP.GT.PMAXlGn TO 100 --------·· .. J:J+l -. . .. .. ., ...... - .. -.. ------.---... ---.. ~.------ .... -.-_.---.. -.-. 

GO TO 50 
100 CGNTINUE 

IF(4*1.GToN) GC Ta 170 
I4=4*I+IL-4 
00 150 K=l/t, IU 

------ 150 VX(t<I=O.O 
170 CONTlNlJE 

00 lllO I=ll,IU 
180 VX(rl=VX(II'SQRTlloO+VXIII*.ZI 

t.:Fl=NFCUR-4 
co 200 J=1,NFl,4 

'::----.-- ... - I -J-l+ Il . ---- -.----.----.-

TH~TA&RANF(OI*PI*.5 
. PX"VX ( I I 
VXCII=PX*COS{T~ET~) 
VY(II=PX*SlN{T~ETA) 
"X(I+ 1) "'-V:« I) 

i --~- -.- VV( 1+1) =-\lY( -I) 
VX(I+2)=-VY(ll 
VY(I-+ZI""VXCI) 
VY(t-+3)=-VX(t) 

200 VX(I+31-VYCII 
IFINFOUR.ECo~IGa TO 20Z 

;------.-...... ILNF=I L+NFCUR - .. ---.. ---.. --.-------- ... -.... --.. - .. -...... -.. - .... -.-... -.---- ... .,. ... -
:IJ OC ZOl J=ILI'-lF,lU 

. 201 VX(JI=VYIJI=O.O 
202 CllNTINUE 



0 0 0 0 t~ 2 0 J 

VY~AXaPMAX/SCRTll.0 .. P~AX··2) 
VXMAX-I "() ..... y~J\ x 1/'1. +v O*VV,.u, 
('~=SO~T(l.- ... a*VOJ 
00 300 l=iL.lU 
\I Y I I ) = G M. \I Y ( t II ( 1 ... \I J. 'll( ( [ I I 
\IX I [ I- (VX (11+\10 III 1 •• VO.Vlt« 11 I 

'j! 

~ k} ~.~ 

:) 
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300 CONTI fl;UE 
XLAB=lOHX-VELCCITY 
fl'.C!lDt;190,tJ,TITLEI TITLEI,XlM 

8 FnR~AT(4AIO,.(~~. Of PT~lS. V5. $,AIO,*ICI AT TIME = 0., 
CAll fCFVlll,IL,-VX~AX,VXMAX,vx,XlAe,TITlE) 
XlAA=lOHV~VELOCITV 
ENCODi(90,8,TITLEI TITLE2,XlA9 
CALL FCFV(IL.IL.-VY~AX,VYMAX,yy,XlAB,TITLE' 
PETURN 
fNO 

.. _. SUBROUTHIE fOFV( Il ,IU,VXMtN,\lX~1AX,VV,Xlt.8,TITl=l· 
C ~UNCHES PTCLS. I~10 BI~S OF WIDTH IVX~AX-vx~t~I/~BtNS 
C ANO PLeTS NO o OF PTCLS. VS. FCSITICN Cf ~IN CENTER. 

OI~ENSION BIN(lOll,VXBIN(tOll 
O[~ENSIGNVV( 11 
INTEGER TITLE(91.XLAB 

--- . __ . tvRtNS=lOO 
61NMAX::0.O 
00 100 J~I,NBI~S 
eINIJ'=O. 
VX8tN(J)=VXHIN.(VXMAX-VXMIN).(FLaAT(J)-0.5)/FlOAT(Ner~S, -

100 CC~T[NUE • 

0- __ -000 200 

DO 2tlO t=IL,IU ... _ ...... -.--.-----.------.-.-----... -.-.. --..... ~ .. --

XXX=N8INS·IVVIII-VXMIN'/IVX~~X-VX~IN' 
JJ=XX~+l 
IF(JJ.GT.NSINS.CF.JJ.LT.I1GC TO 200 
er~(JJ)=8IN(JJI+I. 
I FIB I N (JJ) • GT • B l fI MA X 18 If: MAX=B 1 N I JJ , 
CONTINUE 
CALL PPlT(VX81~,eIN,vXMIN,VX~Ax,o>,aJNMAX.NB'NS.XLAB,T[TlEI 
RETURN _ . 
END 
SUBROUTINE PPlT(X,Y~XHI~.X~AX,YMt~,YMAX.NUMtXlA6,TITlE) 

""!:...-

C PPlT0020 --_·c··_····· .'--....... 0 - •••••••••• - PPL TOO):) 
C THIS SUBROUTINE, GIVEN 4 S~T o~ N X-V CO~RDtNATES, WIll PLOT THEM PPLT0040 

,. C··· elll A 51 BY 101 XV Gil to-----------'!'HE X ANY Y AR;~'\YS ARE UNAFFECTED 
C ev THIS ROUTINE AND OUT OF P~NG= POINTS ~RE IGNO~EO 
C PPLTOOqO 
C PPLTQ100 

"J-----INTEGER TITLE(S) ,XlA8 .... -.-- .. -.-.. --.. ----.--.. - ... -.-. ----.. --.-.- .... 
OI~ENSION XII), YIII. XGRICIll" YGRIOI11), GRIOII01) PPLTOIIO 
OI~ENStCN SlA(37) . 
OAT~ (OLAII),1?1,311/1H ,lH.,lHZ,lH3,1~4,lH5,lH6,lH7,IH8~IH9. 

• IHA, lHB. U~C , UoO, 1,", F, IHF, H-G, II-'H. IHI , IHJ, IHK. IHL, IHH, lHN, IHO, IHP, 
• lHC,lHP.,lHS,lHT,lHU,lHV,lHW,lHX,lI-'V,HiZ,I!ISI 

:------·'lNTE'-;ER BLA,GRID 
~RITE(3,lOI TITLE 

10 fORMATIIH1,2X,SAI01 
20 Tl = (XMAX - XI'IN) I 10. 

12 = IVMAX - V:-IIN) I 10~ 
XGR (D( 1) = XMIf\ 

·:-·'·--·VGRI0(1) = VMAX 
OC 25 [ = 2, II 
XGRIOII) = XGRIOII II + T1 

25 veRtOllI = VGR ICI t - 11 - T2 

PPLTIl280 
PPL TOZ9,) 
PPlT0300 
PPl.Hnl() 
PPL T0320 
PPLT0330 
PPLT034() 
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IFCYMAX.EC.O' yr~Ax=1&-OE-08 
IF( ASS(YGRIOCll) IYM'Xl.lT.l.0E-10J VGRIOCIIJ=O.O 
l ~ 1 
,... 1 
DO 65 K ::r I. 10 
00 50 I '" 1, 101 

50 GR IO( 1) "1 
As/'4 
Q: (VMAX • (51~ - AI" YHIN * (A - 1.))/ 50. 
DO 53 IL = 1, ~u~ 
IF CASSIQ - '( Ill) - (Y,'-IAX - YH!'n / 100.) 41, 53,- 53 

41'IXP = 1000 $ (X!ILI - X'41NI I (X~~AX - XMWI .. 105 
51 IF(IXP.GE.1 .AhO. lXP.LE~1011 GRtD(tXP)=GRIO(IXP)+1 
53 CONTINUE 
52 CO 54 Jl=l,lOl 

J2:~tNO(GRID(j11.371 
54 GPIC(J11=eLA(J21 

~RITE (3,751 Y(~IO(Ll,(GRID(J)~ I • 1, 101) 
N .. ... .. 1 
.. '" N .. 3 
00 60 J '" N. M 

PPLT04tO 
PPL T0420 
Pi>LT043? 
PPLTOt.,40 

PPLT0470 
PPL T048\1 
PPLT;H90 
PPLT0500 

PPLTI)520 

PPl T0540 
·PPLTll550 
PPLT0560 
PPl T0570 ___ ._ 00 55 I -= I. 101 

55 GPID(Il=l 
A"'J 

-. - ._- ----.--_ .. -._-----------------_ ..... _---_ ...... -.-

46 
---.--- 56 

57 

Q : (YMAX * (51. - Al + VHIN * (A - 1.))/ 50. 
DO 51 IL = I. NU~ 
IF ('85(0 - V(ILl) - (YHAX - VMINI J 1000 ' 46; 51, 57 
IXP '" 10 1). * D(1Ll - X'1INII (X!'!.X - XMIN' .. 1.5 
IF(lXP.GE.1 .,:.1\0. IXP.Li:.101l GRIOt1XP'=GRIO<IXP)+i'---"---' 
CCNTlNUE 
OC 51 J! "'!. J 1')1 
J2=MI~~(G~!D(J11.31) 

59 GRIOeJLI=RLA(J2J 
60 W~ITE (3,76) GRIO 

--._. . H .. to! .. 1 .... ---....... --.. ---.--------.-.--------. 

65 L = L .. 1 
CO 66 I = 1, 101 

(;6 GRIO(ll:1 

-'-'--' -69 

70 
12 
71 

'1 -,-.-

DO 72 IL : 1 t r-UM .' . 
IF tASS(YMIN - Y tIll J - 'VMAX - Ylq~n / 100.) 69, 72, 12 
IXP = 1000 * {)\ULl - X'1IN' I (XfoAAX - XI'4IN) .. 1.5 
IFIIXP.GE.l .AND. IXP.LE.101) GRID(tXPI=GRIOIIXPI+l 
CaNT [NUE 
CO 73 Jl=1,101 
J2=~lNO(GRI0IJl1.311 

13 GRIC(Jll=gLA(J2) 

PPLT0600 
PPLT0610 
PPLT0620 
PPL T0630 

PPLT0650 

PPL T0670 
PPLT0680 
PPLT069Q 

PPL T01111 
PPLT0720 
PPL T0730 

PPLT01S0 

'u----··· "RITE (3,751 YGRID(U',(GRICII), 
15 FOR~AT (lJX, E~.2, lX, 101Al) 
76 FORMAT (lOX, 101Al) 

=-1;-·1011-··------... -.-..... "-'-' 

; . 
WRITE D,B5) OCGJ;IC(ll, I = 1, 111 

85 FOR~AT (16X. ll( (9.2, IXI' 
~RITE(3,901 XLAR 

--'-"-'90 FOR HAT (/ 60X, ~ 10) 
PETURN 
ENO 
SURRCUTINE HIS1RV 

CPLOT ENERGIES ETC. VS. TIM~. 
COMMuN/CNTRl/IT,CT,TI~E,IEX,IJY,IEYL,lEVR • 

. , --·-----·0 PLOTS, ~tTH, I THl, lEV, tfH, ......... --.-. - ... -.- .. -.-.. ---.-- .. 

IJ .IRHO,IRHOS.IPHl,IXVX,I"XVY 
CCMMON/S~VEI h(8,101"HH(30ll,K.Y(B"NKAYS,(TH,NT,NF.~L 
LOGICAL PLCTS,lFT 

PPLT0180 
PPLT0810 

PPlT0830 
PPlTOS40 



C 

c 
C 

o 0 o o 9. 6 
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tC~MON/THERMAL/ITHEPM 

COMMON/2/~XE(301),EYEt]Gl).,EYLEC30!),~YPE(3~1"KE1(30I), 
• KE2(301I,PIX(]021,PIY(3Q2).p2X(302"P2Y(302"N~lt~~Z 
Ae~L. KElt KE2 t ~~l, ~~2 
01 foIf N S ION Tl M ( 301 ) , T I .. T H (1 00 I 
IF( IT .F.Q.O , (;0 TO 10 
TL=ITHL$OT 
flTH=l T- [ THL+ 1 
CO 1 1=1,MTI:I 

1 TtM(11=(I-11.CT+TL 

PLeT FIELD ENERGIES. 
CALL PLTHST(,2~FI~LD 
CALL PLTHST(Z3HFIElO 
CALL PLTHST(23~FIELD 

~XEtM~C2"EXE,TIM,MTH,TL,TI~E,l,O) 

-----.--.- -·CALL PL THST (22HI ELO 

ENE~GY 

-: 'I':PGY 
::NERGY 
EN';~GY 

!: Y l.'; ( ~ u,,::: 2 I ,tv L E , TI M, M T H, T L • T I '" F. • 1 , 0 ) 
EYRE(~~C21,EY~E.TIM,~TH,TL.TIMe.l,O) 
EY E tr;"CZ) , EYE, TIM. MT Ii. Tl, n ~E , 1,0 I 

C 
C 
C 
C 

PLOT 1VERAGE CRIFT 
PLOT IS lA~ELED TL 
ARE ACTUALLY KNa~~ 

P1XL=PIXIMTHI 
;- PIYL=PlY(:1THI _ .. 

~OMF.NTU~ PER PTeI. t~1 UNITS OF MI: I E PLOT GA"IMA*V/G 
TO TIME WHEREAS Mn~ENTuM VALUES 
FRC~ Tl-OT/z TO Ti~[-DT/2. 

IFtNM2.NE.Q.OI P2XL=P2XtMTI:II 
IFC~M2.NE.O.OI P2YL=PZYIMTH, 
CAll PlTHSTtZ7HAVERAGc PTCll 

- -- -_.. • ,0,0) 
CALL PLTHST(ZnAVE~AGE ;'TCLl YMCI"~NTU~("'CI,~ly"Ht~,MTH,Tl,TIME ---. -.; ,0,0' -...--..- - -_. . -- -----

c 

IF(NM2.NE.O.01 
.• C ALL PLiHST (27I-1A'1 E~ACE pre 1.2 ltMO"l/;NTIIM (MC' • P 2X ,TI;4 ,foITH, Tl, Tt ME 
.,0,01 
IFC;~~2.NE.O.OI 

.CALL PL THS T (271-AV EiH.GE PTel2 YM~ME~TUM CM_C}.P 2Y ~ TI_M.,t-I~~ !!l ,.!.l ME 
. --·.·,0,01 

PLOT fS MODE ENEFGIES 
00 499 K=l,~KAYS 
00 500 {=l,MTH 
I1H(I'=H(K,I' 

500 CCr-.TlNUE 
--.. -- ··KAY1=KAYtK)-1 

11 . - C 

CALL PLTHST(20t-ES MC'lOE ENI;;RGvtm-lCZI,HH,TIM,MTH,TL.TIMf::,l,KAYlI 
499 CO~TI NUE 

IFCIT.NE.NTIGO TO 700 

e PLOT THE~~~l ENEFG[ES~ 
'''.--_ ... -. - NP TH-= IT I ITHE:<'M t 1 --_._----_._-_ .. __ ._._ ... -----. - ----

CO 20e I=l,NPTI1 
TI~rH(II=(I-l)*ITHEPM.OT 

7.00 CONTINUe 
CALL PLTHSHZ1HTt-EP"'AL ENE~GY(EV.' l,KE1,Tl'1TH,NPTH,t).,Tt~E,1,0) 
IF tN).IZ.NE .. 0.01 

7--····-·-----~CALL PLiHST(ZlHTHERMAL ENE?GYtE'I.) 2,KEZ;TIHTH,NPTH,O •• TI~E,1,0' 
c 

700 CONTINUE 
ITHt:=lT 

C LAST VALUES NOW ARE FIRST VALUES FOR NEXT TIME INTERVAL. 
PUC 11 =PIXl 

.,-- ---.- PIYClI=PIYL ~---.- --------------_._---.-_. ~-.- --- -----------_.-
IFCNM2e~E.J.O'P2X(11=P2xl 
IF(NMZ.NE.0.OIP2YCl'=PZYl 
P1X(7.I=PIX(MTH+ll 



:0 

c 

P1Y(1'~P1YCMT"'.1) _. 
IFCN~2.~~.O.OIP2XC7'=P2~(~TH.l' 
IF(~M2.~Ew~.~IPZV(2)·P2YC~TH.l) 

OC 33 l<=l."K~YS 
33 H(K.l'~H(~.~TH) 

EXEC11=EXE(MTI-1 
~EVLF(ll=EYLE(MT~1 
EYRECll-~yqE(~TH) 

EYECl)=cYECMTr.l 
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00 2 1=2,MTH 
PlxrI+ll:P1VCI+ll=P2XCI+1)=P2Y(I+1'=O.O 
CO 22 K=l,NKAYS 

22 H(.K.1I=O.· 
2 EXE(I)~EYLECII~~YRE(II=EYE(II=O. 

PETURN 

C ~T T=O JUST ZERO 'R~AYS. 
10 .-.TH=N1H+l 

00 11 I-l,,,,TH 
K E l( I ) - K E 2 ( I 1 - P 1 X ( I + 11 '" P 1. Y ( [ +'1 , =p 2 X ( t + 11 =P 2 Y ( I +11 :: o • 

.. 11 EX E ( I I = F. Y L E ( I ) = E Y R F. ( II = EY E ( I I = 0 ~ 
Flxtl)=P1YI1,=P2XI11=P2YI1,=O. 

------- RETURN ~-.- --------- -----.---.-------------. -------

END 
SUBROUTINE FIELOSIEXe,EYlE,EYRE,EVE,eZE) 

C SOLVES FOR PHI A~C EX, COMPUTES FlELO ENeRGY, eTC. 
C(1MMoN/C F I EL 01 NG .t, AEL , OX, CGS HL, J Yt-I (257 I ,BU 257) , iU't"O (2 HI, 

• RHQ(257),PHlrZ57).EX(257"JYP(257),EVlr2~7),EYRI257),EVI2~7' 
.----.-- -'CO,",M!JN/tWRY II.ICAT , I CClL, EVK II, EYU', FYR.C, EYRN, EYLC,':Y IN, 

CO",MnN IPUMPI ~~MPP,WPMPL,EPMPR,EP~PL 
REAL L, JYV, JY~ 

C llMi-;JNI S t. V E / h (:3,3 U 1) , hHI 3011 • K'\ '( ( 8) ,~I K:' YS, ITH, ~T J ~F ,NL 
(': 0 '''l.~:mu C N T R L / IT , I;T , TIM E, t E)(, I J Y , I!: Y L , I E v P. , 

.PlOTS.NTH,ITHl,IEY,Iel, 
"--·.lRHQ, I RHOS, I PH I, I X 'IX, I VX'JY ... -- .. ---.------.------.---.-.--.- -.. ---. __ .- -.. -- -.-- .. ----- -- .. 

c 

LCGICAL PLOTS, 1fT 
CO~~~N/UNIIS/R~M1C21,RN~2C2t.RM1CZI.RM2C21,M2C2~V 
INTEGER TITlEIS),XlAB 

Dt~ENSION EVRK(257),EYLK(Z571,XJ(lOl),GIVENIZ) 
'---"'REAL RHOK(lJ. ~HtK(l), SCK~CH(l) - .. ---.---.~----"-'--'-'--- ... 

ECUIVALENCE (RI-C',R"CKI, (I>t"I,PHIK), (F.X,SCRACH' 
REAL KOX2, KSOIIZ~I, LI, S(128) 
CATA T ITLE/9*O/ 

c· 
c . FIRST TIM~ STEP DUTIES. 

c--- --.--- OAT A NG2IO/ 
tJ-=ITH+l 
IF( NG2.NE.O ) GO TO 2 
NG2=NG/2 
~Gt=NG+l 
~DX=O.5"'DX 

... -.--~---. L !:: l. 0 Il 
tlDXI=O.5/DX 
TfM=.25*CGSHL*CT 

C seT UP ~ATIO PHIK/FHOK. 
PI=4.C~ATA~ll.C) 
00 1 K=1,NG2 

. _._ ..... - KOX2=(PI/l\G)*K 

SII<)=1.0 

. _._----------- ---

1 ~SQ(K)=+CGSHl/I12.0*SINIKDX2)/OX)~.2).SIK) •• 2 
If(~F.LE.O) GO Te 2 



--CO' 

ITf!ll'l:oQ 
HDT.,.o.s*nr 
fl;Fl-"IF/l 
t:PTS-Nl 

o a~. 2 0 JJ 

.. NPTS:I'lItIOINPTSrlOU-- --.--
ro 71 J=l,~PTS 

77 .)JIJI-FlOATIJ'-l 
XlAB=lOH ~COE ~C. 
XRIGHT:NPTS 

2 CONTINUE 

e TRA~$FORM CHARGE CE~SITY. 
C APfRODIC 60UNOA~Y CCNDITIONS 

FHCI11=PHCING1'=O. 

') 

CAll FlCTFIRHC,14HCP~RGE OEN5ITy,IRH~) 
00 10 J:l,NG 

------ ---RHCK(J )=R ... CtJ) .... cx 
10 SCRACHIJI"O. 

CAll CPFT IRHGK.SCP~CH,NGtlt1) 
CAll RPFT2IRHt~,SCPACH,NGt11 
PHOKIlI=O. 

7 

C 
C-CALCUlATEPHIK 

ESES=O. 
PHIKI1'=O. 

A~C Ft ELD ENEP.GV. - ---------------- .... ----.-- --. --

c 
c , 
C COMPUTE THE E-NI:PGY IN .\ PARTICUlM fOURIER MODE 

-, 

-------00 15 KN=l,~KAYS .... - ...... -- .. - -- .... -------'-- .. --.--.... -------------.---
tc=KAYIKIIII 
'FIKAYIKNI.EO.1I ~(K~,tJ'.O.O 
IF(KAYIKNI.EC.ll GO Ta 15 
IFIKAY(~~I.~Q.NG2+1) GO TO 13 
KK=NG+2-K 

--------FK=KSQ(K-ll*RHCKIK' .. 
FKK=KSQ(K-ll¢RHCKIKK' 
H(KN,IJI=IRHOK(KI*FK + RHOKCKKI*FKKI/L*RNMIC21 
CO TO 15 

13 HIKN,IJ,=.5*KSCCK-l)*RHOK(K'**2/l*RNM1C21 
15 CCNTINUE -.--c---. - .-. 

C 
,.'- -. --. DO 20 1<:2,NGl 

'1- _. ---.-
KK=NG+l-K 
PHIK(K I=KSQ(K-l1*RHr.K(K ) 
PHI~IKKI=KSC(K-11~PHaKIXK) 

.o-------ESES=ESES+RHCK IK) *PHIK(K)+PHCKIKK I~PHTK(KK' - ----- -----.---- ._.--- ... --.- .- -- ... -

s .. 

PHCKIK '=S(K-lI*f'HGK,(K , 
. 20 RHCKIKKI=S(K-11*~HCKIKK' 

PHtKING2+1)=KSCI~G21*:~HOKING2+1' . 
EXE=12.0*ESES.FHCK(N~2+11·PHIKING2+1'1/(2.0*ll·~NMIC2t 
RHOK(NG2+11=SING21*~HOKING2.1) 

7 --c---·· ----.---------... ----------.. -- --. 
C INVERSF TRANSFORM PHI. 

~---- DO 30 K=l,~G 
~HO(KI=RHCKIKI·lI 

30 PH[IKI=PHIK(KI*LI 
CALL RPFTI2(PIH ,FHC,NG,t) 

• --.--- CALL CPFT (PHI ,FHC,,"G',l ,-11 ------.~-. -------.. -.----- -.. -- .--._.- ... -.-- .---. 
C PERIODIC EIGENFUNCT[ONS 

RHCC11=PHO(NGll=C~ 
PHI(NGl):PHIIU 
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C IMPOSE 1l0lJNOhllV CONDtT lr.N CF ZEflO ES FIELD AT J-l AND J .. NGl 
DElP~I=HUXIO(~Hl(~GI-~Ht(211 

c 

CO 31 J"'l,Ma 
31 PHllJJ:PHr(J'+CELr~t-IJ-11 

CALL PLGTF(t;HG,ll:HS"'I;On"EO OE,'ISITy,I~HOS) -
CALL PLOTF(PHI,18HElECTQI: P~:E~TIAL,lPHI) 

C CENTERED OIFFERE~CE ACPOSS Z CELLS. 
00 101 J=2,NG 

101 EXIJI=( Pld(J-l'-PHt(J+lI I*HOXI 
C BOUNDARY CO~DITl(N~ ~X(l)=EXlNG!)=O 

EXll'=EXlNG11=C. 
CALL PLOTF(EX,llHF.X ,lEX) 

C 
C ~AX~ELL EQUATICN SOLVE~ FOR RADIATION FIELDS 

CALL, PlOTF (JYP,l1IiJYP ,IJY' 
-.C.-----. INPUT EXTEK~~L J.I.~DtATICN FIeLOS HERE - .-. ---.~--.---.. -.-~.-

c 

EVl(NG1)=EP~Pl~SIN(TIME~~PMPL' 
EYRll) =EPMP~.SIN(TIME~Wr~pPI 
ADO HALF CF CURRENT, F!:)~:~ED FPO"',Xtr, AND VYIT+DTl21. 
OG 50 J=l,NGl 
EYl(JI=F.YLIJI-TE~*JY~(J' 

-.---.' 50' EY:l( J) :-:EYR (J )-TE"'. JYt-I (J) 

C 
C 

lET C=DX/OT. T~E~ EYL IS JUST MOVED ONE CELL TO lEFT 
AND EYR ONE CELL rc RIGHT. 
00 51 J=l,NG 

- EYl(J)sEYllJ+l) 
JJ=t:tH-J 

- 51 EYRIJJ+U =F.YR(JJ'- -----------.... ----
C AGAIN INPUT EXTEF~AL RAnlATIOM FIELDS 

c 

EVR(1) =EPMPR*SIN(ITIME+DTI.WPM~~' 
eVLING1)sEPMPL*SlNIITIM~+DT).WPMPl' 

ADD CTHEn HALF CF CUR~ENT, FOR~ED FRO~ X(T+DT) AND VYlT+DT/Z). 
00 52 J=l,NGl 

-- --- f.YlIJ' =EYL( J I-IE~*JYPl'J) 
52 EVR'J)=EYRlJ'-TE~*JYPlJI 

: ~ .-. 

- CAll PlOTFlEYL,16HLEFT-GOI~G FI~LO,JEVl) 
CALL PLaTFlEYR,17H~lGHr-GO(NG Fl=LO,IEVR) 

C *. • * ~ * * • • * • * • * • • • * • • • • • 
C CALCUL~TE PUMP TRA~SMISSION 

[V~C:EYRC 

EYll1=EYlC 
EVRC=EYRN 
EYI.C =E YlN 
EYRN=ABSlEYPINGll) 
EYLN=ABS(EYL(l)1 

-.. _" - ------- ~ ... ---------- .-._-_._-_.- .. _,.-.- ------_ .•. __ ._ .. -,. 

:~ -----.---.-. J F (EVRC.GE .• E Yf{C. AND. EYRe.CE. EYRN, EYA'4~EYRC" ~--------'-------'-'-- .-. --_.-.-.----- .-". _. - --.-... 

IFlEYLC.GE.;VLC.AND.EYLC.GE.EYLN) EYLMsEYLC 
C '. • • • • * * * * • • $ • • • • ." • • • • • • '. - -,- - , 

DO 61) J=l,NGl 
EY(JI=EYR(JI+EYL(J) 

60 BZ(JI=EYR(J)-EYLlJI ;,----_ .. - CALL PLOTF(EY,llHEV ---- - ,I eYJ ---,-----' ----.. ----------.-.:------------'-
CALL PLOTFlBZ,11~8Z ,I BZ) 

6- , c - -
C CALCULATE RADtATtCN FIELD ENfRGtES. 

~; --- EYlES=E¥RES=EVES=O. 
PlFS=D. 

! ~-- ... --_ ........ CO 7() J:Z ,NG - - -.-------.-- -- "" ------'---'----- ----""~------..;;.-- _." --.--- _ ... -

:IJ EYLES=EVLES+EYLlj).·2 
, EVRES:EYRES+EVRlJ)··2 

8ZES=8lES+BZlJ)··2 



o 0 o o 8 

70 EYES cEvES +Ev IJ) •• Z 
EYlES:r.Yl~S+O.5.'(YL(11··Z.F.Yl(~r,1).·?) 
fY~~5·EY~ESi'O.5·(EyC(1)··J.EYF(~~lJ··Z) 
E Y F S = !: n s + o. ~ • ( ;: Y I 1 I •• 2* ~ Y I ,'j(, 1 I "2 J 
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C lfFT tNC ~IGHT c(r'~ ~t=lOE~E?Gt~S. 
EYlE=E Yl ES.OX/CGS~'l ",o~;'HC21 
EYPE=EY~ES·DX/(GSHL·gNM1C21 

C - EY ENERGY. 

c 
c 
c 
c 

EYE=EYF.$*rX/(2.·CG~hLI.~N"lC21 
-eZE=~lES*CX/(2.·CGSHLI·~~M1C2I 

FOURtE? A"'It"LVlE EYRIX=L1 A~O EVLIl(=OI OVER ~F V4LUES OF TI~S:; 10 TO 
NF-l, ~F TO 2NF-l, FTC.I. SU~ OVER F~EQ. MQDES GIVES ENERGY DENSITY 
(TN U~ITS OF NHIC2/LI AVER~GfO OVER AN INTERVAL NF~OT 

IFINF.LE.O.I GC TO SJ 
ITEf'=I T-I TE~li'1 

---- - --- EYkK( ITFM I=EVH ING11*HOT 
EVlKI tTf.M)=EYLI11')I-r.T 
IFCITEf'.LT.NFI GC TO 80 
CAll CPFTIEYRK,EVLK,NF,l,lJ 
CALL RP'T2(E~R~,EVL~,NF,11 
EV~~(1)=EVLK(11=C.O 

- CO 75 M=lt NF2 
""':f.;Fi'2-M 
EYRK 1M 1.:( EVRK ('" I U 2 tEYPl<. (I\O~) ""2) +( 2 .O/CGSHL I *l.RN~ 1C21 I (NF *Orl.-2 

75 E YLI< (l-')= I cYLK 1M I *"'?+C::Y L,( I I~l'll" n te( 2.0/Cr-SHLI >ilL .P.~M lC7. (I (NF"OT) **Z 
EY~K(NF2+li=EvPKINF2+1).*2*(lo0/CGSHLI*L.F~M1C2!/(NF.DTI~.Z 
EVlK(NFl+l)·EYLK(NF2i'tl.*2.(1.O/C~S~LI.L.RNMl(2(/jNF.OT) •• 2 

------ --- rc 19 1'1= 1 , NP T S 

79 
EYPK(MI=ALOGID(EYRK(MI+1.OE-201 
EYLKIMI.:ALGGlOIEYlK(M)+1.OE-20) 
CALL RA~G~Y(~Y~KtGi~~H.NPTSI 
YBCT=G{VE'NIlI-!:. 
GIVE~1121=AMA:'<lIGIVEN(2) ,VBCTI 

-~.---- .... --. DC 76 M=l,NPTS 
76 EYRK(~)=AM~XIIEVR~IM).GIVEN(2IJ 

TEML=I EML*DT ~ 
ENC00~(90t18.TITLE) TEML.TIME 

78 FOF:~H(*KtGHT-GOINr, F!F.LD ~'CDE E~!:RGV OENSITV(t.I'41C2iL), X=L, FFT 
• OV~R T=*.FIO.4.* TO- *,FIO.41 

---'-'--- CALL PPLT(XJ,EYRI<,t.,XQIGHT,GtVEi'J(Z),GIV.EN('l),NPTs,XLAa,TITLE) 
CALL F~NGEV(EYLK.GIVEN,~PT51 
VaOT-:GI ~ENI 1 )-5. ;;. -- . -. 

GIVEN(Z)=lHAX1(GIVEN(ZJ,YBOT' 
i 1 ----- 00 97 i-I=l,NPTS 

91 EYlKIM)=AMAXl(EVLKI~I,GIVEN(2JJ 
"J---- --- TITLE( 11:: 10HLEFT -GOIN 

TITlE(6)=lOHX=C, FFT 0 
-------_._---_ .... --- -. --_.-_._-_. "----, 

C 

CAll P~lTIXJ.EYlK,1.tXRIG~T,GIVEN(Z),GIVEN(l"N~TS.XLA6.TITlEJ 
ITEMl= IT+l 

80 (aNTI NUE ' 

;----C- ELECTRIC FIElC .HAS r-:OT BEEN II.ENCRMAtllEO YET;;, ----.--------- - .. -._._--_.---

,; . 

~, .-

AEl=l .. 
- RETURN 

END 
SUBROUTINE ACCEL(tl.lU.Q.M.OT.TT,pX.Py,THER~T.KE.ITJ 

C ADVANCES V::LfJCfTY ('r.E TIMt: STEP. CQPoHlUTFS MCMi::NTUM '\'10 KINHIC ENE~GY 
----- PEAL KE, H-----

COMMON/CFIElD/~G.L.AEL,OX.CGSHL. JVM(2571.8Z(251'.RH00(251), 
• RHO ( Z ~ 71 ,PH I ( 257) • :: x I Z 51) • J VI' (257' • E VL (251) ,EYR C Z51) t EY (7.511 

REAL l,JY~~JYF.MC2,NRKE.NJNREl . 



CrMWlN/1/XC2C"O, .V;(12(lOO, .~vI2000' 
CC~~~~/~El/G~~~~(2Q~u, 

CCM~JN/T~E~~AL/ITHf~~ 

. -138;.. 

COM"4t)tilUN IT SI ~L IHC 2 t .iI ,..N?C2 I ,r: M 1('2 t .P>41C 2f ,H2C2!;V 

c 

PEAL AX(1"AY(1'.Tl(lt.THE~MXlI2S7'.THf~~X2fZS1'.VXOSCC2S71 • 
• V2SX( ZS71 .N( Z51, .VVOSC (Z57 I 

EOUIVALcNCE'(AJI,EXJ, (t.t,EY', (Tz.ez,. (TH!:RI'IX1,THEFM'<Z,VlS)(,PHII 
EQUIVALENCE (VXOSC,JY~H, CVYOSC.JYPI, fN,RHO) 
REAL M2C2EV 

IFelL.GT.[U)RETUPN 
~Gl=/IIG+l 

CO 100 J=l,NGl 
THERMX1(J'=N(J,=VXOSClJ'aVVOSClJ'-OoO 

100 CONTI NUF. 
C RENCRMtLIZE ACCElER~TION IF ~EEO BE. 

Ae- (Q/M». (CT *01 lOX )/2~ .. --- - . ---.... ----- .-.-.. -. ---- - ... --- .. -_. -. -~.--.-

IFl AE.EO.AEL , GO TO 2 
TE"' .. AElAEl 
DC 1 J=l,Niol 

-AXeJ,-AXCJ,*TEH 
AYIJ'-AVCJ'*TEM 

----- 1 Tl(J)=TZ(J)~T.E"'· .' 
AEt=AE 

2 CCr-..TlNUE 
IFell.EQ.t, KE=O. 
IFeABS(Q/~'.LT.O.IJ GO TO 5 

C 
---C~---·-LINEA~. MCMENTlIM CO'SERVING, INCLUOING- ALL "'AGNETtC FIElOS;---- ------.-----.. -- ----

C PELATIVISTIC ELECTRCNS. 
RElKE-NPKE=O.O 
00 itj\) I=IL.iU 
J=XlII 
XX=XlI'-J 

-------- T-TT+T Z I J+ 11 +;(x* l Tl (J+2 ,-Tl( J+l) - ,-------.------- -- -------- ---- ---' ----.- ---" .. ----------------

c 

;.' - - -". 

AAX=AX(J+1J+XX*C AX(J+21-AXIJ+l) ) 
~AV=AVCJ+l'+XX*( AV(J+2)-AYIJ+l) ) 
HALF ACCEl~ TWO-!TEP ROTo METHOO WITH QUICK ROT. SCHEME. 
GVXX=V)(CI)*GA~~A(I'+AAX 
GVVY=VVII)*G,MVACI,+AAY 
C,V2=GVXX*G~XX+GVYY*G~YY 

GA:-C~A2=1.+GV2 
GA~MA1=SQRT(GA~MA2' 
T .. TANeT IGAMMAl) 

, S~IT+T)/(l.+T·T) 
~ElKE=RELKE+(GA~~AI-1D)·M 

) .--- ~--.- NQKE =NRKEt;IJ. 5~~ .GV2lGA~MA2· ---- -... -.--------..... -------.-- .. 
GVXX"GVXX+T*GVYY 
GVYY=GVYV-S*CVXX 
GVX=CVXX+T*GVYY+AAX 
GVV=GVYY+~AY 

GV2=GVX*G~X+GVY~GVV 
.-... -.~-.- .•.. Cl~Ml(I)=SQKT·(1.+GV2J 

VX(I)=GVX/tA~~A(II 
VYII)=GVY/GA~~Atl' 
PX=PJ(+GVX 
PY=PY+GVY 
I<=X(1'+.5 

~ ----.-.--... N(K+l 1 =rj(K+l) +l. 
:rJ VX~SCCK+t)=VXOSCIK+l)+VXlI) 

VYOSC(K+llaVYCSC(K+lJ+VY(I) 
. 250 CONTI NUE 



000 0 ~ 2 0 J ~ 9 9 

Ke=A~AXl(pelME,~p~~. 
c DPtFT ~aM./UNIT ~Qss I~ UNITS OF C. 

PX=PX/(IU-JL+l' 
PY",PY/ (111- IL+l' ' 
IF( ITHF.R."I.L=.C. ceo TO '3 
IF«Il/IT~E~MJ.tTHE~M.~E.ITI GO T03 
D~ 300 J=l,NGl 
tF(N(J •• LE.0.' GC TO '30) 
VXCSC(JI=VXQSC(J'/N(J' 
VYOSCIJ'=VYQSC(JJ/NtJ' 

3JO CONTt~U= 
CO 350 I=IL,IU 
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1(=)(([1+.5 
C.C=l./S~RT(!.-VXCSCIK+ll.VXOSC(Ktl'-VYCSC(K+l'.VVOSC(K+1" 

-C RELATIVISTIC C~LCULATIrN 
PXTHER/O!=VX(II·G~"'/o!b(Ir 

--- --- - PYTHE~M=V Y' 1 • *GAfo;:-! A ( I I 
PXSQ=GG*VXCSc. (;(+11 t-CG(JV;(OSC(t<+l I 
pVSO=GG*~YOS~(Ktll*GG.VYOSCtK+ll 

C RELHIVE KE OEFIIlEO AS KE(WG. MOTIC~HJlt;GLE'-KE(AVG. MOTION I 
RELT=SQ~Ttl.+PXTHEPM~PXTHERM+PYTHERM.PYTHERM'-SQRTll.+PXSQ+PYSQI 

FFLT=.511nC~lEC6*RELT 
NC~~ELArIVISTICAlLY CQRPECT 

NONPELATIVISTIC CALCULATIC~ 
VXTHERM=VXII'-VXCSC(K.l' 

- VYTHER~=VYII '-~YCSCIK+ll 
NO~P~L=O.5*.511a041~U~.(VXTHtRM.VXTH~Q~+VYTHERM.VYTHERHI 

------- TEMPP.:AI-IAX lt P.EL T ,NC~REL) - -------
THERMT=THEPMT+T~~PP/(IU-IL+IJ 
THEiU'X 11;0 1) =7:;E~:IX l( K:-l) tT::-oppnll K+ 1) 

350 CONTINUE 
-CALL PLCTFCTHEPMX1,lSHREL. TE(EV.J VS. X,tTHERH) 
GO TO 3 

-- 5 -- CONTINUE 
C 
C 
C 

ltNEAR~ MCMENTUM C(NSEQY(NG, INCLUOING ALL ~AGNETtC FIELDS, 
HON-PELATIVISTIC leNS. 

- -YIXS=VIYS=V2S=O. 
00 251 (=lL. IU 

------- J=X II , 
XX=X(I'-J 
T=TT+TZ(J+11+XX.CTZ(J+21-TZ(J+IJI 
T=TANI TJ 
S-(T+T)/( 1.+T*11 
JAX=AXIJ+l'+XX*( AXIJ+2,-AX(J+ll , 

la----- ~AY=AYt J+l)+XX*' AY(J+2'-AY( J+lI r-- ------ --.------- --- -- ------------
C HALF ACCEL. TWO-STEP POT. METHOD wtTH(SUNEMAN' QUICK POT. SCHEME. 

YXX=VXCI'tAAX 
VYV=VY( I) +.\AY 
V2S=V2S+VXX*VXX+~YY*VYY 
VXX=VXX + T -~VYY 

1· _____ --- Vyy=vyy-s*vx·x 

G -- - ---

'j - --.-

VXC['=VXX+T*V~Y+AAX 
VY(I'=VYY+AAY 
I(=XIIJ+.5 
N'K+l'=N(K+l'+l. 
YXOSC(K+l'=VX8SC,K+l'tVX(I' 

-\----------- VYOSC (K+l, ",vvesc (K t1 )+VY( T I ---------------------------------- ---- .. ----- - --- --.- -' -- --------
V2SX(K+ll=V2sxtK+l,+VX(t,*YX«('+YY(YJ·VY([1 
V1XS=VIXStVXIIJ 

251 VIYS=VIYS+~Y(t) 
:! .. 



c 
IF(rTHER~.LE.OI ~O TO 4 
JF"IT/IT~ERMI.ITHE~M.N;.IT' GO TO ~ 
THEPMT"O. 
DC 400 J=l.NGl 
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IF(N(JI.LE.O.I I.e TC 401 
VlSOSC=(VXOSC(J)·VX~SC(J)·VYGSC(J'*vvnSC(J')/N'J) 
THEP~Xl(JI=0.5~~2C2EV.(VlSX(JI-V2SnSC) 

THER'H = TH!;R"'T + IHr ~!"Xl ( J II ( LU- IL"I) 
T~E~~Xl(J'=TrEP~Xl(JI/N(JI 

-~. -.- 400 COtlTI NUE 
CALL PLOTFITHEPMX2.13HTICEV.1 VS. X,lTHfRM, 

,. COt-oTINUE 
ICE=KE "0. S*M.VlS 

C OPIFT MQ~./UNIT MASS 
PX=VlXS/CIU-IL+11 
PV=V1YS/(1~-IL"1) 

IN UNITS OF C. 

3 Cf)!'.TINUE 
"ETU~N 
END 
SUCRClUTHJE SHV( Il.ItJ.C.~.DT,TT.PX,PV) 

C CONVERTS PARTICLE VElf'CliIES AT T=O TO cn,.,PUTER NOR~ALtHTIC!'4 AT 
C Te-OT/2. . -- ... -..... . 

CCM~ON/CFl~lO/~G.l.A~L,OX.CGSHL, JVM(257),RZ(ZS71.RHOO(2571. 
$ RHO(Z57),PHI(l571.EXI257"JYP(257),EVL(ZS7),EVP(2571.EV(257) 
REAL L. JV~. J'p. N 

- --. - COM"'1NllIX(20COI.VX(201l01.VY(J.OOO) 
CO~"'ON/REL/GA~H~(2000) -_·c-_·_-· 

c 

IFIIL.GT.IUIRETUPN 
-- T-TT 

oTOX=OT/Ox 
POTATE V THRU ANGLE +O.S*WC.OT, NON-RELATIVISTIC. 
tF(T~EQ900) GO TO Z 

-. "-"--'-' 'T=T AN' T) 
C=l.O/SQRTll.O+T*T' 
S-C*T 
DO 1 1=1 L, tu 
YX)(=VX(I' 
VX(l)~C*VXx-s*~y(r) 

··-·-···-1 VY( I ,=s*vxX+C.~V( I' 

-c 

,,---- c· 

C 

·2 CCNTINUE 
NQP~ALllE VX A~C VVo 
00 3 [;Il, IU 
VY(I'=VY( II*OTOX 

3 VX(tl·vxlt.~OTDX 
CNLV SL~CTROMS RELATIVISTIC.· 
IF(4BS(Q/M1.lT.O.Z) GO TO 4 
00 9q I=IL,lU 
Y2=VX(II·VXIII+~~(I)·VY(t) 
GA~MA(I'=1./SQRT(1.-V21 

99 CGNTtNUE 
. It CONTINUE .- .-----.. -.---... - .. -.--.- .. - - - .. 

ELECTRIC t~PULSE TO GO 3ACK liZ TIME STEP. 
OATA OUMltDU~2tDUM3/0.,O.tll 
CALL ACCELIIL,IUt-005.Qt~.OT,O.,PX,PV,OUMltDUM2,DU~3' 
F.ETURN 
f"D : - ---._ .. SUeR'1UTHlF. MOVE (IL, IU,O' -. ---------------------- - --.. .- .... --

:::rJ C AOVAIIICES POSITIC~ CNE TP1E STEP ANO 
~ 'CCUMULATES CHA~GE AND CUPPENT OENSIT!ES. 

COMMO~/CNTRL/ITttT,TIM~tIEX,IJY,tEYL,[Eyp, 



c 
C 

.... -. 

o u 0 0 4 -2 OJ ~ 0 0 
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.PlOTS,NTH,tTHl,Ify,~P.Z • 
• IRW", I~,HOS, (PHI, I Xlt,(, 1".VV 
CC~M~~/(FIFLC/NG.l,AEL,DX.CGSHL. JVMI257J.Bl'2S7J~RHOO(257), 

• ~Hnll571.PrlI(Z~II,E((Z51"JY~1251),EYlI257),EY~1257J.EY(Z57) 

LOGICAL PLOTS 
~ElL L, JY~, J'P.JY 
CO~~ON/l/xIZCOCI.VXI2000"VYI2000' 
( O"l-'ONI ~nR v I ~C t.T , I (CoLL ,EYR,." E VL". £:VPC, EY!'N, EYLC ,EY LN 
IFltl.GT.t~)RETU~N . 
CDX=O/OX 
QDT=O/DT 
IF IS FlqST G~CUP rF PA~TICLES, THFN 
CLEM CUT OLO CUP.GE AND CIJRRHIT DENSITIES. 
IFlll.NE.1) GO TG 10 
t.Gl=NG+1' 
IIN=NG 

----~-.- 00 .41 J=l,NGl 

C 

PHCIJ,=RHUOIJI 
41 JY~(JI=JVP(JI=Oo 

10 CONTINUE 
'-

C U-'EAR 

C 

_ ... ".-- ... 

00 ZO 1 1:: IL, I U 
LINEAR WeIGHTI~G USING OLD POSITIONS. 
J=X({ » 
XX"XIII-J 
JY=QOT*VY(I) 
DJY=)(X*JV 

--.----- JYMlJ+-ll=JVi-IIJ+l )-DJY+-JY 
JYfoIIJ+-Z)=JY"IJ+ZI+CJY 

C 
Xl I 1=)(( I )'+V)( I) 

'\PE:f'.ODIC ~1)1J:\l[ARY CQNOlTIONS 
tF(XllleGEo1 0 1 GO TO 202 
ICCLL=ICOLL+1 

-------- X( ll=X(lI+Z*( 1.-)(.( In -- , "~-. - --.. -.-.. -.-... ----.--~....:. -.-~---- ._----_ .. -.- -'" 

"X I II ::-VX I I I 
202 C QNTt NUE 

IFIX(II.LE.IXN-l.l) GO TO 203 
ICCLL=ICOLl+l 
XIII=X(I)+(XN-l.-X(II)*Z 
VX (1 ) =-'/X ( I' 

203 CONTINUE 
C LINEAR wEIGHTING USING N~W POSTrIONS. 

J=X" I 
xx=)/ (ll-J 
OJY=XX*JY 

,J .--,---- JYP (J+l , =JYP (J+t' -DJY+JY ---- --- --, 

'," 
JYPIJ+ZI=JVP(J+ZI~DJY 

CRHO=ODX*XX 
RHO(J+11=RHO(J+\I-C~~O+QOX 

RHOIJ+21=RHO(J+21+0RhO 
201 Cor;T!NUE 

. -------- - - -RETURN 
C 

rNO 
SU~ROUTINE SET~~C(Il,IU.QI 

----------,------_.- ----

c ACCU~UlATES C~A~GE DENSITY. POSITIONS NCRMALIZEO IN DENSE 
COMMON/CFIELD/NG,L.AEL,OX,CGSHL. JYM(1571,Bl(2511,QHOO(Z571, 

; .-- ------~ RHC)( 2 57) • PH I 12S 7 I. EX f.J. 5 7 I • J Y P (257) ,FYUZ 571 • EYil I 2571 ,E'{( 25 n 
REAL L, JY~, J~p 
CCMMON/I/X(ZOOOI.V)/(ZOOOI,VY(ZOOO, 

C 



IFCJL.GT.ILIRETURN 
cnx=o/Ox 
Xf\·,.C. 
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C IF IS F[RST GROUP 1F PAP-TitLES. THEN CLEAR CUT RHO. 

c 

IF( lL.tH:.l ) (0 TO Z 
DC 1 J = 1, tlG 

1 P.lOCJI"R~lrC(J)=c.1) 
RHOI~G+lI=qHGO(NG+ll=O.O 

2 COHINUE 

C· LWEAR 

C 
. DO 101 I =lLtlU 

APfRGUlt eGLN~ARY CONDITIONS 
IF(X(I).GE.l.) r.U TO 202 
X( I I=XI I) +2"'(1.-XI I)' 

202 CONTINUE 
IFIX( ['.lE.IXII-I.11 GO TO 203 
Xltl=XIII+tXN-I~-X(III"'l 

203 CONTINUE 
J=X (l ) 
OPHQ=QOX*( XI['-J I 
~HO(J+ll=RHO(J+ll-ORHO+QDX 

-." --201 PHCt J+2 )=RHO IJ +2 )+OFt-tJ ..... ---------- .-- .. _- ---~------.- -" .-.-. - -
NG1=NG+1 
CO 300 J=1,NG1 
RHOOIJI=RHCO(JI - R~O(J) 
RH(l(JI '" 0.0 

300 CONTINUE 
----.-.- . -'- Fe E TURN 

END 
SUBROUTINE, PLOTF(F,LABEL.It\TRVL) -

C PLOT FIELO AT C~~TAl~ Tl~ES. 
Dif'lENS[ON lAeELCZ' .CIVEN(21,XJ(257l. 
COMIOtOC Ff CLCi/l"G ,l.AH, OX, CG~Hl, JVl04 (2 57' ,ell 2511, P.HOO (257', 

-------. PHO(257' ,PI1I (2571 ,EX t 257' ,JYP'( 257' ,EVU 2511 .. EYR( 257' ,EY1257l 
REAL l, JY~, JYP ,F(l' . 

-- COMMQN/CNT?l/[T,CT,TIHE,IEX,lJy,I~Vl,!~VR, .
.PlOTS,NTtt,ITIiL,IEY,I8l, 

.• lqHa,l~HOS,IPH[,IXVX,IVXVY 
LOGICAL HGTS 

-.-----... --- I NiECE R TITLE (9' ,x LAe .. - -. -- -- ... - -.------. ----------.. ---.-. 

C 

DATA XJ( 21101 
tATA TITLE/9*OI 

IF( tNTRVl.LE.O ) RETURN 
IF( (IT/INTRVLI*INTRVl.NE.IT 

'----·~--IF( 'oNOToPLOTS ) RETURN 
C 

IF( XJ(Z'.EO.OX , GO TO 2 
t;PTS=NG~l 
XlEFT=O. 
XRIGHT=L 

;' _ ... __ .. -. - ... XlAB=lOH PC5.1TICN 

00 1 J"'l,NPTS 
1 XJ(J'=(J-1'*DX 
Z CONTINUE 

c 
CALL RANGEY(F,GIVEN,NPTS) 

,.------- - ENCOOE(<)O,3,TITlEI LABEL,T!ME 

RETURN -----_._--_ .. ----.-.-- ---_._ .. - ..... -.--... -

, .... 

IJ 3 FORI~AT(ZA10<* AT TIMf=*.FlO.4' 
.. CALL PPLT(XJ,F,XLEFT,XRIGHT.GIVE~(2),GtVEN(11,NPTS,XlAB,TITLEI 

RETURN 



C 
C 

c 

000042034 0 
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EN~ 
SURROUTINE PLCTXV(IL,IU.~L.~U,L.L~9El,~AP~E~' 

Plot X-VI SPACE AT CE~TAl~ TI~ES IF ~~P~FR IS 1 
AT CfRTAIN THIES If ~A;'.KER IS z. 
~EAL L, JY~, JYP 
COM~ON/I/X (20Ce I .vx 12"0')) ,~Y (200,.,' 
CO~MON/(NT~L/IT,OT.TI~E,IEx,tJY.IEYL,IEYo, 

o PLOTS ,NTH, I THL. 1 EY, IF!l • 
• IRHC,IRHOS,LPH[,IXVX,IVXVY 

LOGICAL PLOTS 
INTE~EP TITLECQ),XL!B 
DIMe~SIOM G[VE~( 2),LABEL(ZI 
rA TA T ITL E/9*OI 

IFIIL.GT.r~)RETU~N 
IF( IXVX.Lt:.o II<ETlIP.N 
IF( (IT/IX~X).IXVXo~EoIT 
IFI .NOT.PLOTS , P.ETURN 

I RETIHHI 

JF(IL.GT.l) CALL SWAP(X.VX,VY,Il) 
NPTS=IU-IL+l 
GIVEN(Z)=VL 

a~ PLOT X-VY SPACE 

-- -- -- GIVEN( 11=VU . -.--- .. 
C seT VELOCITY PANG~ ETC. IF NEED BE 

IF(VL.lT.VU) GC TO 1 
CALL ~A~GEY(VX.GIVEN.NPTS) 

1 CONTINUE 
XRJGHT=L 

--_. __ . XLAB= 1 OH POS IT IC'N . ----_ .. _-.--_. __ . -. 
T [M=TI M::+O.5 tOT 
IFIMARKER.EQ~2IGC TO 10 
ENCOnE(90,3,T[TLEI TIM,LABEL 

3 FORMAT(* VX VS. X. Tl~~=~.FlO.4.5X.~A101 
CALL PPLT(X.VX,O •• XRIGHT.GIVEN(Z),GIVFNIl',NPTS,XLAB.TITL!J -.--..... -. GO TO 11 -.. ..- . 

c 

10 CALL RAI\:GEYIVY ,GIVFN.NPTS, 
ENCODE(9u.5.TITLE) TI~.LABEL 

5 FOR~AT'* VY vs. x. TI~E=*.FIO.4.5X.~AIOI 
CALL PPLT(X,VY.O •• XRrG~T.GIVE~IZ).GIVEN(lltNPTS,XLAB.TtTLEI 

11 IF(IL.GT~l)CALL SWAP(X.VX,VY,ILI ' FeTURN . .-.-. -- ... ---.. ---- ........ -.-.---
END 
SUBROUTINE PLTVXYCIL,IU,VMU,LABFLJ 
PLOT VX-VY PHASE SPAC~ AT CEPTAIN T!MES. 
CO~M~N/I/X(200C"VXI2000),VY(20001 
COMMON/CNTRL/IT,CT,TI~E,t(X.IJy,IEYL,IEYR. 

'j--'._'- ~PlOTS .NTH, ITHL. I r;y. II:\Z. . .. - ... ---.... -------.. -. - .. '-' -.... - .. -- .. 
• I~~C,IRHJS,IPHI,IXVY.,IVXVY 
LOGICAL PLOTS 
INTEGER TITLE(91,XLAS 
CJMENSION GIVENC ZI,LABELIZI 
OATA T1 TLE/9'"OI 

. ----C - -.,- .. 

c 

C 

IF(IL.GT.IUIRETUR~ 
IF C IVXvY .. L E. 0 I I1ETUPN 
IF( (lT/!~XVY)*[VXVY.NE.IT' R~TUPN 

IFC.NOT.PLOTS) ~ETUR.N 

I FIll. G T ~ l I CAL l S WA P ( x , 'IX, W , tt ,. -.... -.-- - - - - ..... - .. -.. - . 
t.PTS';'IU-IL+l 
SET VELOCITY RANGE fle •• IF ~EEO BE 
IF(VMU.NE.O.I GO TO 1 



:0 

CALL RA~GEY(Vx.GfVEN.~PTS' 
VMU=AMAX1( ABSI~IVfN(1)I,AOSIGIVEN(2" 
XPIGHT=GIVEN(l):V~U 

XLEFT=G(VEN(21=-V~U 
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CALL QAr-.."GEV('JV,'iIVcN,NPTS) . -.-~ ---
VMU=AMAXl( AOS(GIVH:( 11·'.ABS(GIVENe21J' 
YT(lP=G I VEIl( 11 "'VNlJ 
Y80T-GIVEN(Zl--VMU 

1 CONTINUE 
TII'=TI"'E+O .. S*OT 
XLAB=lOH VX 
fNCOOEI90,3,TITLEI TrM.LA~El 

3 F~R"'ATC* VY ·VS .. "X. T P1E.::.,FlO,4.5X.2AIOI 
CALL PPLT(VX.VY.XLfFT.XR[G~IT.Y6CT.YT\JP,NPTS,XlABtTtTlEI 
IFIll.GT.ll CALL SI,APIX.VX,VY.IL' 
RETURN 
END 
SUBROUTINE swAPeXX.Vl.V2,NNI 
Dtl"EtlSION XX(lI,Vl(t),V2IU 
Itt:TEGER NN 
I'.N=NN-l 
CC 10 l=l,NN 

-··Sl=xxefl 
52=Vl e I I. 
S3=Y2111 
XX(I ,=xxe I+NN) 
Y 1 ( J I = V 1 ( I +N 1'1 ) 
V2CI 1=V2( I+NN) 

-_._- . -- XX e t+NN I:: S 1 

Vl(I+NN)=S2 
V2II+/IINI=S3 

10 CC~ITINUE 
~N=NN+l 

RETURN • 
----- ... - END - - - - --.-- - --.- -... -.------- - -. --._ .... -- -- _.- - ... ---. 

-- c· SUBROUTINE PLTHSTelA8El,REC,TIH,MTH,Tl,TU,lINLCG,MOOENI 
PLOT TIME HISTORY. LI~fAK OR LCG. 
DIMENSION GIVE~( 2).LABEL(31,REC(~TH),TIMIMTH' 
INTEGER TITLE(SI.XLAn 
CATA TITLE/9*OI 

-r.;PTS."MTH 
XLAB=lOH TI~E 
CALL RANGEY(PEC,GIVEN.NPTS' 
1~(lINLGG.EQ.OI GO TO 2 
Y80T=loOE-5*GIVE~(11 
[;UM=RECIMTrl) 

_·_-·_·--·--00 3 I=l.MTH 
RECIII=A~AX1IREc(rl.YBOTI 
P2C(II=ALOGIO(~fC(II) 

3 CONTINUE 
CAll Rl~GEVeREC.GTVE~.NPTS) 
IF(MJO~N.N~.OI GG TO 5 

.... ENCODE (90. 2U0, TITLE I L'I3El, TL, Tll -- - -- - .. -- -- - .... 
200 FOR~AT(* LOGlO OF *.3AIO,* Tt~E= •• FIO.4.* TO *,FIO.4) 

GO TO 6 
5 ENCOOE(90.30Q,TITLEI l~~El.MCDEN.Tl,TU 

300 FOR~ATI* LOGIO OF .,3~10,*, MQOE ~O.*,I3.. TIME=*.FIO.4.* 
•• FIO.4) 

-6 CAll PPlT(TIH.~EC,Tl.TU.GIVEN(2),GIVEN(11,NPTS.XlAD,TITlEI 
REC("4TH)=OUM 
GO TO 102 

2 CCNTINUE 

TO 



' .. 

:0 0 0 0 f' 2 0 
..... , 

&i ''1 ,J; 0 2 • 

IF(~l)llEN.NE.O' co m 7 
frlCl~pt: (90,100, T I Tl E) lABEL, Tl, TO 

100 fJ~~~T(3AlO,. TI~F •• ,Fl~.4,* TO .,FIOa 4' 
Gil T(1 8 

7 ENCnOEI90,40Q,TlllE) lABfl.~OOE~,Tt.TU 
400 FGQ~ATI3AIO,~, MrnE NO •• ,13,~ TI~F •• ,Fl~.4 •• Tn.,FiO.4' 

8 CALL rpLTITIM.R~C,TL,TU.GIV~~12"GIVEN(1),NPTS,XlA8,T1TlE' 
102 CONTINUE 

RFTUQN 
fNO 
SU~PCUTINE R~NGEYIY.GIVEH,NP) 
~eAl Y(11,GIVE~(2) 
Y~X=V(l) 
YMN=Y (11 
INCY:I 
CO \ IP=l,~P,I~CY 

--- -. --- 't~X.AMAX 1 (YMX, Y ( IP ) , 
1 YMN=AMtNIIYMN,YIIPI) 

IF(Y~X.lE.YMN)-Y~X=YMN+l. 

GI VEtH 1) =YMX 
GIVENIZI"YMN 
"ETU~N 

.------ . ..-:..-.. ----_._-----.---._------. -.-

-----.~- ENe ...... '" -.- ... ---.------------.-- .... --.-- .... -- .... 

SUBROUTINE RPFT2CA,e,M,INC~) 
REAL A ( 1), B ( 1) 

CREAL OtTA, PERIODIC, FCURIER TRANSFOPM, TWO AT A TIME. 
t .. 

C INTE~FACE TO CO~PLEX PE~tC~IC FOU~t~R TR&MSFOPM, TO 00 PAIRS OF 
-C--TRA"'SFORMS OF REAL SECUENCES.. - - - -- .. --- .--

RPFT2 
RPfT2 
RPFT2 
RPFT2 
RPFT2 

. RPFT2 
RPFT2 c 

C 
C 

THE TWO SEOUt:NC.=~ AH.c t::LE·I4!:i-iTS ii, lNC,Z*UIC ••• (:-1-1 ).WC OF .ARRAYC; ~,F\.RPFT2 

2 
3 
4 
5 
6 
7 
8 
9 

C AFTER l CCMPLEX PERIODIC FOUlIfR TRAMSFO~~, WITH A ~ND B AS T~E 
( REAL A~O IMAGINAPY PARTS, RPFT2 SEPARATES TPE TRANSFORMS OF A AND 8 

--'C - AND PACKS THEM, TIHE5 2, BilCK INTO A?RAYS ~ AND 8 .. 
, THUS, iHE CONTENTS UF A-AHD BARE QEPLA(!:D BY .TWICE l'HEIR TP.ANSFORHS 
C . BY Tt-E CALLS I 
C CPFT (A, B, N, lNC,' SIG~U 
C PPFT2(A, 8, N, INC) 
C TWIce THE REAL PARTS OF THE FIPST HALF OF THE COMPlEX.FOU~IER 

'-"C'COEFFICIENTS OF A (COSINE COEF~I APE IN AlOI. "(l1",,~(N/Z), IF 
( INC=l. TWICE THE !MAGINlRY PARTS (st~~ C1EF.1 ARE STnRfO I~ 
C REVERSE ORDER, IN ItN-I), A(~-21 ••• A(N/Z+l'. ltKE~ISE FOR B. 
C 
',NO PARAt-IETER ~SIG~~ IS PRQVID':O FOR THE PURP(lSE OF CHANGING THE SIGN 
C OF THE SINE COeFFICIENTS. THIS MAY BE DOME WITH PAR~~ETEM ~SIGN~ CF 

,(l--C--THE FOURIER TRANSFOFM, CPFT. ,,,-".' 
C 
C 
C 

TIME REQUIREO IS lESS THAN I/lJ OF THAT FeR CPFT. 
./ 

c· SH~ULO BE RE-CODEC I~ ASSE~BLY LANGUAGE. 
C 

:--C--WRITTENSY A. BRUCE l/.NGDCN, LRl l1VIERP'QPE, ~AY 1971~-' 
C 

• I~ _.,. 

~EAL [P, Ifl 
[111(= t NCP 
NH:C=N*INC . 
"(U:A(U+A(ll 

• ---------8' 1 F=S (1 he (1) 

lP=INC 
lfictU NC-l P 
If' lP.GE.ut GC TO 2 

RPFT2 
RPFT 2 
RPFT2 
P.PFT2 
RPFT 2 
RPFT2 
RPFT2 
ItPFT 2 
RPFTZ 
R?FT2 
R?FT2 
RPFT2 
RP~r2 

RPFT Z 
RPFT2 
RPFT2 
RPFT2 
RPFT 2 
RPFT2 
RPFT2 
RPFT2 
RPFT2 
RPFT2 
RPFT2 
RPFT 2 
RPFT2 
RPFT2 
RPFT2 
RPFT2 
RPFTZ 3~ 

RPFT2 40 

10 
11 
12 
l3 
14 
15 
16 
11 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37' 
36 



- . 

1 

2 

pp .. allP+l) 
fH~"~ I Uo1.l) 
IP=C'llP+L) 
I ",,.IH l"'. 1 ) 
AIlP·1J=rUHRP 
~ (l". L ) : cHI -R P 
BtlP+lI=tP+IM 
~ IUI"l' 0:1 P-IIA 
lP=lP+INC 
If'aNINC-lP 
IFC lP;'lT.l"1 , GC TC 1 
IF( LP.GT.~INC , PETURN 
AILP+ll=A(LP+L'+~(LP.l' 
BllP+l'=3(LP+l'tfCLP+l' 
PETU~N 
END 
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-----.--- -SUBPOUTINE RPFTt2CA,Btt\,INCP, -,------------.----- ----------

~PFT 2 41 
DPFTZ 42 
Qf)FT 2 ~3 

PPFT2 44 
RPFTZ 45 
RPFTZ 46 
ilPFT2 47 
RPFT2 48 
RPFT Z '.9 
RPFTZ 50 
RPFT2 51 
RPFTZ 5Z 
RPfTZ 53 
RPFT 2 54 
RPFTZ 55 
RPFT2 56 
RPfTl2 2 
RPFTIZ 3 

c 
c 

PEAL All)' 8(l) 
REAL DATA, PfRICDIC, FCUR!ER TR~NSFGRM INVERSE. TWO AT A TI~E. 

C INTE~FACE TO CO~PLEX PERIODIC FOURIER TRANSFORM. T~ DO PAIRS OF 
C TRANSFDR~S OF RfAL SEC~EMCES. 

------C ---- -- - - -_ .. -- - ------------------ - -- '-- .--- - --

C UNPACKS T~E COSINE A~O SINE COEFFICIENTS Of A AND B A~D COM9INE~ 
C T~EM so THAT A + I 8 IS THE CCMPLEX PERI00IC F~U~rE~ TRANS~OPM OF 
C THE OPIGINAL SEQUENCES. RPFTIZ PEVERSES THE EFFECT OF ~?FT2, EXCEPT 
C THAT A AND 8 ARE eQUBLED. 
C THE CALLS 

-C--- RPFTl2CA. fl, N, [NCt 
C CPFT (A~ S, N. I~Ct -SIGN) 

_RPFTl2 4 
RPFTI2 5 
RPFTIl 6 
RPfTIZ 7 

-RPFTIZ a 
~?FTI2 9 
P'PFTt210 
RPFTI211 
RPFTIZL2 
RPFTl213 
RPFTl214 
~PFTI liS 

C I~~E~T THE T~~~srCR~ OC~E E!RlIE~, EXCEPT THAT THE ARRAYS 
C MUlT[PllEO BY 2*N. 

HAVE BEEN RPFTI216 

C 
C SHOULD BE RE-CODEC I~ ASSEMBLY LANGUAGE. 

------C----- - -- -------- -----,--------

C WRITTEN BY A. BRuce lMIGDON. LF_L LIVERt"OP.E. HAY 1971. 
C -

RPFTIZ17 
RPFTI218 
RPFTIZlq 
RPFTI1ZO 
RPFTI221 
RPFTt212 

INC=JNCP RPFTI223 
NINC=N*INC ---- --- --- - RPFT 1224 
lP.t~C RPFTI225 

--.. -------lH=NtNC-LP ----------------------------- ---- RPFT1226 
IFC LP.GE.lH ) RETURN RPFTIZ21 

.:' -- - 3 - -'-C~"AClP+lJ -------------- -- ---- -- RPFTI2Z6 
SB=ellM+l) RPFT[ZZ9 

. i ~ .... CS=SlLP+1) --- - - --.----,------------ - RPfTlZ30 
SA=All~+l' RPFTI231 

" -------- AClP+!) =eA-sa ----------,-- ---.-------------- - RPFTI232 
ACL~+l )=CA+S8 RPFTt233 
B(LPtU=CB+SA RPFTI234 
B(LM+l)~CB-SA RPFTI235 
LP=lP+INC RPFTI236 

. lfol=".INC-LP RPFTI237 
----- .-- IF( lP.LT.LM ) GO TO 3 - ' - -----_.-----------.------ .. --_.-- RPFTI238 

c 
C 

----C· 

RfTURN RPFTIZ3Q 
. - END RPFTI240 

SUP~OUTINE CFFT(P, It N, INCP, SIGNP) CPFTPI22 
FC~T~AN TRANSlITEPATICN OF Sl~GLETON.S 6600 ASSE~9lY,COOEO FFT. CPFTPI23 
DIFftRS FROM SlNGLETa~,s O~IGINAL IN THAT THERE IS A SPECIAL LOOP CPFTPI2~ 
FOR ANGlE=PI~2o T~IS S~OULD BE FASTEQ eN MACHINES WHOSE FLQAT[~G CPFTP[25 

TI C 
C; 

POINT ARITHMETIC IS M~CH SLO~E~ THAN I~OEXING lNOT TRUE ON CDC 6600J.CPFTPI26 
seE cm:MENTS IN OTH;l. VfPSICN. CPFTPI7.1 

C A. BRUCE LANGDON, M D1VISION, l.L.La, 19710 CPFTPI28 



0 0 0 0 ':4 Ie .. ~ 

fI != Al R C 1'. 1 C 11 
. INTEGER SIGNP. SPAN. RC 
~fAl SINESC15'. 10, 11 
OATA SI~cS(l'/~./ 

() 

IFC SINESHI.EC.l. ) GO TI) 1 
SII';ESCU"L. 

" 

T=ATMH 1.' 
DC 2 IS=2.15 
S I Nf S ( IS) :: S HH T) 

2 T=T 12. 
1 CCNTINUE 

IF( N.EQ.l ) ~ETURN 
INC=INCP 
SG~=ISIGN(l.StGNP' 
SPAN=~INC"!-.·l/l;C 
naN/2 

---.----- CO 3 IS=I,15 
. 1ft tT.Ee.l , GO TO 12 

10 

3 1T=1T 12 

T= S+ ( $O*C-CO *s ) 
C=C-(CO*Ct-SO*S) --._._-- .. 5::T 

11 Kl=IUt-SPAN 
~O=~(KO+1' 
Rl,.PCK1+!J 
10=I(KO+1) 
11=ICKLt-1' 

'IHKO+l,=ROt-RI 
ICKO+1 ':10+11 
~G::RO-Rl 
10 .. 11)-11 
~CK1+11=C·RO-S*10 
I(Kl+l'=S*RO+C*lO 

--"----',I(O=K I+SPAN 

12 

IF( '<O.l T.NINe , GO TO 11 
Kl=KO-NlNC 
C .. -C 
KO .. SPO\N-K 1 
IF( Kl.LT.KO 
KO=KO+INC 
K1=SP.lN-KO 
IF( KO.LT .K1 
ccrHt,.lUE 
5PAN=SPAN/2 
KO=O 

GO TO 11 

GO TO 10 

·'----13--· K1=KO+SPAN .' 
RO=R(KOt-U 
1'1=RCK1+l) 
IC=ICKC"l) 

.....•. -.- 'Il=ICKl+1) 
~(I<.O+I'::RO+Rl 

. --.-. __ .. ICKO+U=IO".Il 

t- ._- •.. _._-- .. 
PC K 1" 1 ) =R O-R 1 
I(K1+1)=10-11 
KO=K l+SPAN 
IF( KO.LT.NINC ) GO Tn 13 
IF( SPAN.eC.INC GO TO 2~ 

~, . f.'1i 
.li 0 J 
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.. -'-'--- -. KO=SPAN/Z --. -- -----.--.----... -- ...... . 

14 Kl=KO+SPAN 
FO=RIKO+l) 
Rl=RIK1+U .. 

CPFTPIZq 
CPFT O t10 
CPFTI'Ill 
CPFTPI1Z 
CPFTPiU 
CPFTPl14 
CPFfPl1'i 
CPFTPI16 
CPFTPI17 
CPFTPI18 
CPFTP119 
CPFTPl20 
CPFTPt 21 
CPFTPI22 
CPFTP123 
CPFTPT2't 
CPFTPt25 
CPFTP126 
CPFTPI21 

- CPFTPI 2d 
CPFTPI 2') 
CPFTPI30 . 
CPFTPI31 
CPFTPI32 
CPFTPI33 
CPFTPt34 
CPFTP135 
CPFTPI36 
CPFTP131 
CPFTPI38 
CPFTP139 
CPFTP[4C 
C?FTP!41 
CPFTP142 
CPFTP143 
CPFTPI44 
CPFTPl45 
CPFTPI46 
CPFTPI41 
C PFT P [48 
CPfTP[49 
C?fTPISO 
CPFTPIS1 
CPFTPI52 
CPFTPI53 
CPFTPI54 
CPFTPI55 
CPFTPI56 
CPHPt57 
CPFTPI58 
CPFT PI 59 
CPFTPI60 
CPFTPI61 
CPHP [62 
CPFTPI63 
CPFTPI64 
CPFTP165 
CPFTPltJ6 
CPqPI67 
CPFTPI68 
CPFTPl69 
CPFTPI10 



10= f (1(0+1) 
I1-I(K1+1) 
RCKO+1)lIRO+R 1 I' KO+1)· [']+11 
~CK1+l)~SCN~(11-IO' . 
I(Kl+11-SGN*(RC-Rl' 
ICO=Kl+$PMI 
IFC KO.lT.NINC I GC TO 14 
kl=INC+INC 
IF( SPAN. EC .. Kl ) GC TO 12 
COa2.$SINESIIS'**Z 
ISaIS-1 
SO=S=SIGNI SINESCISJ,SGN 
C=l.-CO 
KOslNC 
GO TO 11 
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CPFTPI71 
CPFTP[7~ 

Ct>FTPI73 
CPFTP[74 

. ° ~PFTP I 75 
CPFT P I 1f. 
CPFTPI17 
CPfTP[78 
CPFTPI79 
CPFTPI80 
CPFTP[81 
CPFTPI82 
CPFTPI33 
CPFTPI34 
CPFTPI8S 
CPFTPIS6 .- -- --.... --~- - .- • ____ o __ ~ •• ________________________ -0---- - - CPFTP[S7 

20 N1 2 NINC-tNC 
N2=NI Nc/Z 
IJ=JI=RC=O 
IF( N2.EQ.INC RETqRN 
G~ TO 22 

--21--- IJ=N1-IJ------
JI=N1-JI 
T=R(IJ+1' 
R(IJ+l'=ftCJI+1) 

-- --- . R (J 1+1 ) = T 
T-I(IJ+lI 

----·-·---ICIJ+l'=I(JI+1)--- --.-------
I(JI+11=T 

-~.-- -- -- IF"( IJ.CT .::Z : GC- TC 21 
22 IJ=IJ+INC 

Jt=Jt+NZ 
T=R(IJ+lI 

- .---.--.- Ret J+ 11 =R (JI + 1) -.... ------. ---'- .- .... ----
RCJI+l'=T 
T= I ct J+lI 
I (tJ+i 1=1 (JI+11 
t I JI+U=T 
IT=N2 

---23 -- - IT=IT/2-···· --

.:'!---" 

-1-·-

PC=RC-IT 
IF( RC.GE.O J GO TO 23 
JI=PC=RC+2*IT 
IJ=IJ+I~C 
IFf IJ.LT.JI 

a---·--IFC IJ~LT.N2 
GO TO 21 
GO TO 22 

RETURN 
ENO 

CPFTP[98 
-CPFTPI89 

CPFTPI90 
CPFTP[91 
CPFTP(92 

.----- - CPFTPI93 
CPFTPI'J4 
CPFTPl95 
CPFTP[96 

- CPFTPt97 
CPFTPI98 

---------------. - CP FT PI 99 
CPFTPIOO 
CPFTPi<ll 
CPFTP102 
CPFTP103 
CPFTPI04 

- --.0------.-0----0 -CPFTP105 

CPFT o l06 
CPFTP1,)7 
CPFTP108 
CPFTPI09 
CPHPIIO 

- CPFTPl tl 
CPFTP1l2 
CPFTP113 
CPFTPll'~ 
CPFTPl15 
CPFTP1L6 

--··'CPFTPl17 
CPFTPl18 
CPFTPL19 
CPFTP120 

,--------------.-.. ------- .-.---.----------.--.--- .... ----------.~--- .. -- .. ------_."-
r) ___ .... - ___ _h 

! ---_.- ----_ .. ---------_._------- ... __ .---------------.. -._-- .... -.--.--.----



'0 0 a 0 4 2 0 J 4 0 4 

Symbol 

i J 
A,AO,A+,L,Ag, 

B 

!!o 
c 

c.c. 

D(w,k) 

e,e s 
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LIST OF SYMBOLS 

Description 

Latin Alphabet 

Complex field quantities 

Dimensionless vector pot~ntia1s 

Slowly varying or Fourier amplitudes 

Vector potentials 

Magnetic field 

External magnetic field 

Speed of light 

Group velocities 

Sound speed 

Ie-space contour 

Bromwich or Laplace cqntour 

Complex conjugate 

Dispersion relation for electromagnetic 

waves 

Dispersion relation for electromagnetic 

sidebands 

Brillouin dispersion relation 

Partial differential operators 

Electron charge, species charge 

Electric field 

Petrurbed and unpertUrbed velocity 

distribution functions 

Electromagnetic field quantities: 

F = E ±B ± y z 

Page where 
defined on 
first use 

2 

19 

2,110 

13,31 

9 

25 

12 

34 

18 

113 

113 

19 

19 

100 

79 

11,14 

25 

64,123 

25 



. 'Symbol 

G S(x,t) 
n -

h 

I s(w,k) 
n -

in 

J ,J(!, t ),j 

J 

J • J+ J
y' y' Y 

Jk 
J i JI 

R. ' R. 
k 

k j 

!o'~ 
kp(X) 

K 

KaW 

L 
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Description 

Green's function fora_(!,t) due to 

density noise in species s 

Green's function for number density due 

to density noise in species s 

Resonance zone 

Planck's constant modulo 2,"" 

MUltiplicative factors in Green's function 
integrand 

Multiplicative factors in Green's function 

integrand 

Subscript or superscript denoting input or 

boundary value 

Transverse current and amplitude 

Longi tudina1 current 

Simulation transverse currents 

Transverse wave action density 

Input action density and spatial derivative 

Wavenumber 

Wavenumber mode j 

Electromagnetic pump-wave wavenumbers 

WKB wavenumber for electron plasma wave 

Kinetic energy density 

Kinetic energy density.of resonant particles 

in wave frame 

Plasma system length 

Plasma density scale length 

Page where 
·defined on 
first use 

113 

113 

40 

5 

113 

115 

37 

16,110 

69 

26 

80 

40 

19 

2 

6 

93 

68 

70 

36 

35 

. . 
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ns,D: , s 

p( ) 

r 

R 

s 

-S 

S s S s 
n'n 

t 
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Description 

Electron mass 

Ion mass 

Unperturbed number density 

Number density in species s and 
, its amplitude 

Number of quanta in mode j 

Average momentum density 

Pump parameter ,,> 

Laser power ( watts/ cm2 ) 

Principal value integral 

MOmentum density in resonant particles 

Field position 

Magnitude of response: r = I~e/~oel 
Equilibrium response ~gnitude 

Relative action transfer 
'-.'" 

Complex response amplitude, R = ie/~oe 
Species index 

Action flux density, input action 

Action flux density difference: -S = So - Sl . 

Number density soUrce term for species s 

and Fourier-Laplace transform 

Time, 

Temperature of species s 

Transverse electron fluid velocity 

Transverse electron fluid' velocity for 

mode R. 

Page where 
defined on 

, 'first use 

11 

11 

16 

123,15 

5 

67 

117 

121 

123 

70 

15 

66 

66 

7 

65 

14 

34,37 

35 

109 

2 

16 

28 

31 



'Symbol 

v 

-v 

-s v -' 

y 

z 
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, Description 

Particle velocity 

Electromagnetic wave group velocity 

Longitudinal wave group velocity 

Characteristic wave velocity 

Thermal velocity species s 

Trapping velocity 

Phase velocity 

Oscillation velocity 

Transverse oscillation velocity for 

species s 

Maximum electron transverse velocity in 

pump wave field 

MOde j group velocity 

Wave energy density in mode j 

Field or particle position coordinate 

Position coordinate 

Position coordinate 

Related plasma dispersion function: 

z = ... '2 v z . s V G S s 

Plasma dispersion function 

Derivative of plasma dispersion function 

Page where 
defined on 
first use 

9 

99 

57,88 

2 

17 

49 

76 

55 

11,14 

3 

31 

2 

13 

13 

124 

124 

124 
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a 

aJ 
B 

BJ 
Y 

Yei 

YL 

YO 

r(w,! ) 

r 

~(w,! ) 

~j,~J e 

~ns 

~-ns 
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~(:x:) -

~£ .... 

~K 
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Description 
• 

Greek AlphEtpet 

Page where 
defined on 
first use 

Coupling constant 42,66 

Coupling constant mode J 3 

Coupling constant 42 

Coupling' constant mode j 2 

Dissipation or growth rate 82 

Electron-ion parametric decay growth rate 56 

Linear growth or damping rate 62 

Growth rates for Raman, fi1amentation, 

or Brillouin 45,99,118 

Coupling strength: ~ 

r(w,!) = xe(l + Xi)£-l 17 

Coupling constant: r = -41T 1m £-l(n,~) 40 

107 

Transverse electron current perturbation 11 

Number density perturbation 11 

Laplaceand Fourier transformed ~ns 109 

Dirac ~-function 27 

Nonlinear dielectric function perturbation 62 

Attenuation length 88 

Nonlinear charge density by species 

and amplitude 60 

Complex, nonlinear frequency shift 

Real part of ~w and related function 

62 

65 



·Szmbo1 

s( (&),~) 

elf 

-. E:,E: 

1"1 

a 

a 

af, 

e 
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. Descrintion . 
Dielectric function 

Real part of E 

Page where 
defined on 
first use 

15 

35 

Imaginary part of E: 3' 

Linear part of E 62 

Nonlinear dielectric function 57 

First and second frequency derivatives of E 33,69 

Characteristic, n:: (ct - z)rJo
i 40 

Small quantity 67 

Relative phase of response w.r.t. driver 65 

Angle of ~ w.r.t. to !o 98 

Phase of mode 1 79 

Heaviside unit-step function 40 

Wavenumber for density perturbation 6 

Pinch-point wavenumber 115 

Characteristic wavenumbers related to 117,118 

Brillouin . 

Spatial derivative of lf8.venumbermiSlllltch 

Debye length for species s 

Inverse wavenumber 

2 2- 2r( ) Coupling strength: lJ :: Ie v On, ~ /4 

Dissipation rate 

Effective dissipati.OIl rate 

Electron-ian collision frequency 

Dissipation rate for mode J 

Dissipation rate for electron wave or 

ion sound wave 

46 

12 

87 

19 

33 

48 

40 

2 

55 

.. 

. . 

", 
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Symbol _ . 

p 

pet) 
s . -s 

p (t),p 

a 

T 

T 

xs(w,!) 

XS,Xs(w,!) 

-1"-

-Des,:ription 

Characteristic, ~ = (ct + z)rJo
i 

D1mensionless phase velocity: 

-t=wrV2kv .' s 
Wave action flux density input ratio 

Total charge density 

Charge density species s and Fourier 

amplitude 

Linear part of species ,charge density and 

Fourier amplitude 

Characteristic, a = (ct - z)(r JO)1/2 

Characteristic, T = (ct + z)(rJ6)1/2 

Time 

Bounce period 

Duration of experiment (secs.) 

Characteristic time for ignored effect 

Coulomb potential and Fourier amplitude 

Effecti ve, ponderomoti ve potential and 

Fourier amplitude, species s 

Total potential and Fourier transform, 

species s 

Page where 
defined on 
first use 

40 

124 

37 

60 

60 

60 

40 

40 

50 

49 

50 

50 

15 

15 

15 

Susceptibili ty for species s 15 

Susceptibility kernel and nonlinear 

susceptibility 60,61 

Ponderomotive potential energy and amplitude 32 

Polarization angle 102 



· 'symbol 

w 

w. 
J 

Wr,'~L 

w s 

no 
J 
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Page where 
defined on 

Description first use 

Frequency 5 

Ion acoustic frequency 121 

Bounce frequency 49 

Mode frequency 2 

Linear and nonlinear eigenmode frequencies 62 

Plasma frequency 40 

Plasma frequency for species s 

Transverse wave frequencies 

Beat frequency 

Characteristic frequency in normal mode 

dispersion relation 

Real part of W L 

Pinch-point frequency 

12 

6 

6 

2 

32 

115 

'0 
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FIGURE CAPTIONS 

Fig. 1. (a) Stimulated scattering of a higher frequency transverse wave 

occurs into a lower frequency transverse wave and a longi-

tudinal plasma oscillation. 

(b) S,imultaneous three-wave interactions occur coupled by 

a common driven longitudinal density perturbation. The 

process is generally described as modulation. 

Fig. 2. Coordinate system for two dimensional scattering in the x-z 

Fig. J. 

plane with electric field polarizations in the y-direction. 

e is defined as the angle between real wavenumbers K and 

!O' 
(a) Three-wave coupling, e.g., Raman or Brillouin scattering. 

(b) Forward scattering or four-wave coupling, e.g., 

filamentation. 

The one and one-half dimensions (x,v,v) of the code are x y 

pictured schematically. Wave propagation and density variation 

occur parallel to x. Transverse waves are linearly polarized 

in the y-direction. Magnetic fields are parallel to z. The 

three-wave interaction is diagrammed. 

Fig. 4. The equations describing transverse waves and particle dynamics 

are integrated forward in time using a time-centered, leap-

. - . 

frog technique. Currents are calculated from charge locations <. 

measured over consecutive time-steps an'd from velocities at the 

half time-steps 

Fig. ;. Beat heating in an inhomogeneous medium. Because of the 

resonance condition, there arises a resonance region h. The 

density gradient, described by the scale length 
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Ln = (d1~/dz}-1, is parallel to the propagation direction 

of waves. 

Fig. 6. Beat heating in a finite, inhomogeneous medium: 

(a) the right- and left-going electromagnetic waves before 

onset of beating; , 

(b) (x,vx ) phase space after a fairly large amplitude 

electron plasma wave has been established. 

Fig. 7. .Relative energy or action depletion R of the high frequency 

wave vs dimensionless parameter (scale length x pump strength) 

4~koLnluol2/c2 for beat heating in an inhomogeneous medium 

in in with input ratio J l IJO = 1. The data points for 

2 2 41TkOLnluol Ic = 0.5 represent three parameter choices: 

V : 41~/c12 = 0.008 and kOLn = 18.3; 0: 41uo/cl 2 
= 0.010 

and kOLn = 15.2; and ~ : 41uo/cl
2 = 0.012 and kOLn = 13.7. 

Fig. 8. Steady propagation of a stationary pulse-like three-wave inter

action for parameters VI = V3 = -V2 = 1: al(x,t) = -0.1 

tanh(O.l~;), aix,t) = 0.00499 sech(O.lF;)' and 

a}x,t) = 0.1 sech(O.lF;) where F; = x - l.Olt. 

~ig. 9. Perturbed pulse propagation for parameters VI = V3 = -V2 = 1, 

and initial conditions al~x,O) = -0.1 tanh(O.lx), 

a2(x,0) = 0.0499 sech(O.lx), and a
3
(x,0) = 0.1 sech(O.lx). 

Fig. 10. Propagation of superposed right- and left-going solitary 

pulse solutions showing break-up for parameters 

VI = V3 = -V2 = 1, and initial conditions: al(x,O) = 

-O.l[tanh(O.lF;) + tanh(o.ln)], a2(x,O) = 0.00499 sech(O.lF;) -

[
:1 

2.01 sech(O.ln), and a
3
(x,0) = 0.1 sech(O.lF;) + sech(O.~n~ 

where F; = x + Xo and n = x - xO; . ±xO denote the initial 

locations of the left- and right-going pulses respectively. 
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Fig~ 11. Beat heating in a cold, uniform plasma with initial condi

tions ~(x,o) = 8(-x), .a2(x,0) = e(x), and a
3
(x,0) = 0, 

where 8 is the unit-step functiono We have chosen 
-~ 

parameters V1 = V2 = 1, "3 = 0.2, and V3 = "1 = "2 = 

"3 = K' = o. 
Fig. 12. Beat heating in a warm, uniform plasma, with initial condi-

tions ~(x,O) = S(-x), a2(x,0) = Sex), and a
3
(x,0) = o. 

We have chosen parameters V1 = V2 = 5, V3 = 1, "3 = 0.2, 

and "1 = "2 = K' = 0. 

Fig. 13. (a) Temperature (eV) is plotted as a funciton of time. 

Fig. 14. 

There is a temporary halt in the heating at around the first 

"bounce period" LB after the onset of beat heating. 

(b) The relative action transfer is plotted as a function 

of time for a simulation exhibiting trapping (corresponding 

to Fig. 14). 

Phase space (x,v) and the velocity distribution function 
x 

f(v ), for beat heating in a finite homogeneous plasma with x 

trapping, for parameters: lUll ""I~I = 0.03c, 

Ve(O) = O.042c, and Wo = 5.0W
e • 

(a) At wet = 6; IOn/no I = 0.3, As/SO = 0.25, and 

T /T (0) = 1.0. The action transfer rate is large, since e e 

the beat wave is still in a linear regime. 

(b) At W t =25·· e ., I on/no I = 0.7, ~S/SO = 0.11, and 

T /T (0) = 3.3. The density disturbance has become large in e e 

amplitude. Trapping has significantly reduced the action 

transfer rate. 

(c) At wet = 40; I on/no I = 0.4, ~S/SO = 0.1, and 

T /T (0) = 4.7. There has been significant plasma heating. 
e e 

'. 
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Beat heating is no longer resonant but continues in a regime 

described as induced Thomson scattering. 

Fig. 15. Heating Ve
2
(LB) - Ve2(0) is plotted against input laser 

intensity YO °Yl a (we have chosen equal inte~i ties 

Fig. 16. 

- a - 0) i va = VI • The per od of time over which the heating is 

measured is defined as the average ''bounce period" LB 

after the oriset of beating. The fixed parameters and initial 

conditions for these simulations are KC/W = 8.36, e 

WO/We = 5.0, and KAe(O) = 0.35. 

Plotted is [~L - o~(r)]r,for o~ = _ari wi th~: as , L 

a parameter. Equilibria described by Eq. (64) occur at 

intersections with ±1. 

(a) Equilibrium occurs only at rO for ~ > O. 

(b) For ~L = ~1'~2' where ~2 < '\ < 0, multiple 

equilibria occur for ~2 but not for ~. 

Fig. 17. (a) Total electric field E and driving electric field EO' 

in natural units vs KXj -' .. 

(b) Longitudinal phase space, KV/W VS KX; e 

( c ) Electron velocity distribution function f( v ) in 

arbitrary units vs KV/W j all at W t = 300. e e 

Fig. 18. (a) Relative response magnitude r and relative phase 8, 

r exp ia = ~/~O vs wet. 

(b) Frequency shift and nonlinear dissipation normalized to 

We vs wet. 

Fig. 19. Asymptotic frequency shift normalized to we vsnormalized 

wave amplitude le~(t = ~)I/(mw 2/2K2) = w-2/w 2 for slow e . .Jj e 

driver switch-on over we t = 507T {o) and for sudden 8wi tch-on 



-168-

(e). The solid line indicates the theoretical result of 

MOrales and O'Neil. 

Fig. 20. Simulation of resonant response of a Vaxwellian electron 

plasma. (thermal speed ve ) to a ponderomotive pla.'1e wave 

driving force, of frequency n (chosen to equal w) and e 

phase velocity v~ = n/K (chosen to equal Jve ), induced 

by the y x ~ coupling of two opposed lasers with oscilla

tion velocity amplitudes ua and ~(chosen initially 

equal to 0.2v~). InitiallYthe linear normal mode frequency 

is .Or. = 1.17we' and the linear Landau damping -YL is 

O.Olwe • The frequencies of the transverse waves are chosen 

to be Wo = 5we and ~ = We - n = 4we • For a typical 

simUlatio~weexhibit at W t = 431,784: e 

(a) The driving field EO and the total field E as 

functions of x, in natural units; 

(b) Longitudinal electron phase space; 

( c ) The velocity distribution, in arbitrary units. 

Fig. 21. For the serne simulation as in Fig. 20, we show, as functions 

of time: 

(a) The magnitude ~e(t) and ~oe(t) of the total and 

ponderomotive potentials; 

(b) Their respective phases e and eO: 

~e(x,t) = ~e(t) cos(nt - KX + e) and 

~Oe(x,t) = ~Oe(t) cos(nt - KX + 80 ), 

Fig. 22. For the same simulation as in Fig. 20, we Show, as functions 

of time: 

" 
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(a) The deduced frequency shift <sO; 

(b) '!be nonlinear damping-yNL• 

Figo 23. For the same simulation as in Fig. 20, we show, as functions 

of time: 

(a) Coupled mode· amplitudes 

liil/no; 
(b) Their respective phases 90 , 91 , and 9n• 

Fig. 24. Two lasers in channels L and 1-1 initiate the multiple 

scattering of photons (WR.,~R,) by a single plasmon 

(O,~p)' leading to :he generation of photons in both lower 

and higher frequency channels. 

Fig .25. A schematic sketch of Ren/wi -and 1m n/wi --- vs KA e 

for filamentatio~with ~·!o = o. 
Fig. 26. Weak -·coupling Brillouin scattering: Re n/2kOcs - and 

Im n/~Ocs --- vs K/2kO. 

Fig. 27. (a) Strong coupling Brillouin dispersion relation: 

Re nlWo - and 1m O/Wo --- va K/2kO' for cos 9 = 0.25, 

0.50, 0.75, and 1.0, with parameters kOAe = 0.02, 

W /wO = 0.2, and m./m = 25. e ~ e 

(b) Combined filamentation and strong coupling Brillouin 

dispersion relations: Re n/wO - and Im n/Wo --- vs 

K/2kO for cos 9 = 0.0, 0.25, 0.50, 0.75, and 1.0 and 

same parameters. 

Fig. 28. Longitudinal phase space (x, vx ) for Brillouin backscatter: 

electrons at 

(a) wet = 47.5 and 

(b) wet = 90.0; 



Fig. 29. 

. ions at 

( c ) w t = 47. 'j and e 

(d) W t = 90.0 e 
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Electrostatic energy density, 

for the K = 2!o mode. 

W t, e 

Fig. 30. Brillouin pinch-point frequency J Re n~/wO -, and growth 

rate 1m np/wo --~ vs. dimensionless pump strength 

2 2 3 (wi/wO) (kOrO) /2. The pump strengths exceed (kOcs/wO) = 

10-6 J and thus are in the regime of strong coupling normal 

modes. Results derived using the weak coupling approximation 

are shown by - •• -. 

Fig. 31. Brillouin pinch-point solutions for Re Kp/2kO -, 

1m Kp/2kO ~--, and Re n/Re ~cs --- vs (wi/wo)2(koro)2/2. 

Analytic approximation for weak coupling is shown by 

- .. -. 
Fig. 32. The ratio of mismatches ID_/D+I irs pump strength 

(wi/wo)2(korO)2/2, evaluated at the pinch-point frequency 

and wavenumber for Brillouin backscatter (8 = 0) and for 

parameters we « Wo and kOcs/WO = 10-2• 

Fig. 33. Contours of equal IDBI vs Re K/2kO (abscissa) and 
. 2 2 

Im K/2kO (ordinate) for a strong pump, (wi/wO) (kOrO) /2 = 

-7 r.. )3 _ -6 10 J\..kOC/WO - 10 , and we « w00 Re n is set equal 

to the pinch-point frequency. 

( a ) Im n less than the pinch-p.Qint growth rate. 

(b) Im G, equal to the pinch-point growth rate. 

(c) 1m G greater than the pinch-point growth rate. 

.. 
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Fig. 34. Contours of equal. I DB f vs Re 1C/2ko (abscissa) and 
. 2 2 

Im 1C/2kO {ordinate} for a weak pump, ( Wi/wO) (kOr 0) /2 = 
-3 3_ -i;, . 

10 ,(kOcs/wO) - 10 ,and we « WOe Re n is set equal 

to the pinch-point frequency. 

{a} 1m n less t'han the pinch-point growth rate. 

{b} 1m {2 equal to the pinch-point growth rate. 

(c) 1m n greater than the pinch-point growth rate. 
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( b ) 
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Fig. 1 
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