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Bruce Ira Cohen
Lawrence Berkeley Laboratory
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Berkeley, California 94720

August 15, 1975

ABSTRACT

The noniinear coupling of intense, monochromatic, electro-
magnetic radiation with plasma is considered in a number of special
cases. The first part of the thesls serves as an introduction to
three-wave interactions. A general formulation of the stimulated
scattering of transverse waves by longitudinal modes in a warm,
unmagnétizgd, uniform plasma is constructed. We derive a general
- dispersion relation that describes Raman and Brillouin scattering,
mbdulational instability, and induced Thomson scattering.

In the second part Raman scattering (the scattering of a
photon into another photon and an électron Plasma wave) is investigated
as a possible plasma heating scheme. Analytic'theory complemented
by computer simulation is presented describing the nonlinea; mode
coupling of laser light with small and large amplitude, resonantly
excited electron plasma waves. Trapping of electrons in the electron
plasma wave is found to be an important noniinear feature. We
formaliy analyze the nonlinear, time-dependent response for a
resonantly excited longitudinal wave and demonstrate our construction
in simulation. Trapping influences the Aonlinéar dispersion relation

of the plasma wave, whose back-reaction on the beating of the lasers



-viii-

Plays a éignificant :ole in the transfer of energy from the transverse
waves to the plasma.'

-‘The thifd part investigates the stimulated scatterihg of a
coheréntvélectromagnetic wave by low freéuency density perturbations
in homogeneous plasma. A compésite picture of the linear dispersion
. relations for filamentation and Brillouin scaitering is constructed.
Finally we describe in detail the absolute instability of Brillouin

weak and strong coupling by analytic and numerical means.
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I. INTRODUCTION
A.. Overview of Three-Wa&e'Interactions

The'brocesses considered in this thesis are represenﬁative
of a much more genéral class of phenomena, common to many'branches
of physics, described as thyee-wave interactions. We restriet cén—
sideration here to those three-wave interactioﬁs occurring in an |
‘unmagnetized plasma involving the scattering of a transverse wave,
i.e., a photon, into another transverse wave aﬁd a longitudinal wave,
i.e., a plasmon. When the longitudinél wave is an electron plasma
wave, the three-wave interaction is‘called Raman scattering.l-4 If
the 1ongi£udinal wave is an lon acoustic wave, the process is called
Brillouin scattering.s'9 |

A1l three waves in the interaction need not be normal modes
howevei. We shall show how finite amplitude effects can lead to
the production of driven modes as decay products in the three-wave
interaction. We shall also show how the simultaneous scattering of
monochromatic transverse waves into two other transverse waves
accompanied by a growing density disturbance can be viewed as two
three-wave interactions which are coupled by a virtual or nonpropaga-
ting wave. These last two phenomena are described as modified

Brillouin or Raman scatteringlo (also known as strong couplingll:lz)

and modulational instabilityl? (examples of which are filamentation’>

and self-focusing14’l5).

To make these ideas somewhat clearer we shall introduce
model equations that represent the three-wave ihteraction of three
normal modes in a homogeneous plasma.  For the sake of simplicity we

consider the coupling of three waves all propagating in one dimension.



-2~

The three interacting normal modes are each assumed to satisfy, in-
the absence of coupling, a linear partial differential equation of the

form

2

J2 - v %) ay(xt) = 0 (J =1,2,3)

2
(3, - 21v;3, + @

| | (1)
where {vj} represent dissipation, {aj} represent field quantities,

and the normal mode frequencies satisfy (in the absence of dissipation)

the linear dispersion relations wjz = 952 + vjzka (kj is the

wavenumber of the i}h wave). If the waves are allowed to couple,

then the set Eq. (1) becomes

2 2 2, 2 -
(at - 21\)13t t T -y ax ) al(x,t) = Blaz(x,t) aB(x,t)
2 2 2, 2 _ Lk
(8t - 2{v28t Q)" -, ?x ) az(x,t) = Bzal(x,t) a3(x,t)
2 . 2 2,2 o ¥ .
(at - 21?38t +»93 - Vg ax ) a3(x,t) = BBal(x,t) az(x,t) :

(2)
The constants Bj are real coupling constants, and al(x,t) is
taken to be the pump wave. For specific three-wave interactions use
of Maxwell's equations, fluid or kinetic equations, and equations of

16,17 We

F33

motion for ions and electrons results in the set Eq. (2).
shall explicitly derive the linearized coupled mode equations for the
interactioh of a transverse wave with another transverse wave and an

. electron plasma wave in Section II.C.

We assume that.the field quantities aj(x,t) can be written

aJ(x,t) =.§j(x,t) exp(-iwjt + iij) + ¢.c. :(J = 1,2,3), where



the Ej(x,t) are slowly varying quantities. If the three waves
satisfy the frequency and wavenumber matching conditions,
w o= w, t Wy and kl = k2 + k3, then Eqs.(2) become

[otege, 2o ¢ 2tv e JE (x1) = BE(x,t) dy(x,t)

v . o P
[Ziwzat + 2iv, + Zivz?kzax] az(x,t) = Bzal(x,t) a3(x,t)

. 2 - . ¥

[21(»38t + 21v3w3 + 21v3 k33x] aB(x,t) = BBal(x,t) a2(x,t) .
(3)

The terms involving 8t2§j_ and 3x2§j have been ignored. If we

divide each equation by 2:?.(1):j respectively, and introduce the group

velocities VJ = kaJZ/uu'j and new coupling constants aj_E BJ/2mj,

then we obtain the linearized coupled mode équatipns

| [at A Viax] 5l(x,t) -ialﬁz(x,t) ;B(X,t)

. {% *vyt v?_ax] a,(x,8) = -dagd(x,t) 8(x,0)  (4)

[at + v3 + VBBx] 53(x,£) = -ia3§1(x,t) Eg(x,t)

We thus consider all three waves on an équal basis. Much

work hasvbeen done on these equations in various lixni’c.s.l&'21 In the

1imit that |a2|,|a3| << |a;|, the coupled set of equations reduces

" to two equations describing the evolution in space and time of the

field quantities a2(x,t) and a3(x,t) coupled by the pump whose

amplitude is assumed constant,11712:2224 . research on various
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parametric instabilities induced by the coupling of two initially
small amplitude waves by a pump wave has been vigorous: the ﬁorkvby

Rosenbluth?> and also by Nishikawa?

has been especially significant.
In this thesis examples-of three-wave interaciions are considered both
where the pump-wave amplitude is held fixed, and where changes in the
pump-wave amplitude are essential.

The three-wave process described by Eqs. (4) is illustrated
: in Fig. la. The decay of a high frequency pump wave -(wl)_ into two
~ lower frequency product waves (wz,w3) is pictured. Figuré 1b shows
Vtwo'threefwave interactions coupled by a virtual wave; this could
represent>filamentation for example. For the case of three-wave
interactions among coherent, normal modes, the coupled mode equations
Eqs. (4) lead to certain conservation laws. .If there is no dissipa-
¥ =1

tion, -vj = 0, then multiplication of Egs. (4) by aj aj— and

addition of the equations taking the complex conjugate yield

it
o

[, * EN L AR A 3;.:,} 0 la, 3
(5)

2y« V2, oy 1512 + [oy . v;2, ] a3'1|.53|2v o .

The expressions in Eqs. (5) are statements of the well-known

25-29 Loosely speaking, the sum of the wave

Mhnley—Rowe>re1ations.
actions of the pump with either of the decay products is a constant
(wave actién <=aj-1|§j|2). Since we have assumed that frequency and
wavenumber_matching prevail and since the wave energy is equal to

the frequency times the aétion (as we shall explicitly show in Part II)
then the relative portipn of energy transferred to the decay products
is given by mz/ml for the wave with frequency ‘ub and wB/Ql for

the wave with frequehcy w,. Similarly for the wave momentum,

3
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equal to the iavenumber times the action, the relative momentum
transfer goes as the ratio of wavenumbers. These fesults should not
be surprising; we know from quantum mechaniés that the wave energy-
is givenbb& ‘nmJNJ and the wave momentum by thijJ, where Nj i;
the number of quanta. Actio9 gonservation is just a statement of the
conservation of quanta. ‘

B. Thesis Synopsis

This thesis presents studies of nonlinear wave-wave inter-

actions involving‘intense, coherent radiation in an underdense plasma

(we <'w). We examine the possibilities for heating plasma by
utiiizing'the‘resonance of the beat wave produced by two electro-
magnetic waves with an electron plasma wave. The excited plasma
wave is allowed to be large in amplitude, and the nonlinear effects
of electron trapping are considered in detail. IWe further examine
the stimulated scattering of an intense, coherent electromagnetic
wave by longitudional plasma waves or driven plasmg modes at low
frequency involving both ions and electrons,iwhiéh is of much interest
in laser-fusion applications. A unified picture of stimulated -
Brillouin scattering and modulational instability (filamentation
or self-focusing) is described. We compare linear and nonlinear
theory with computer simulation where possible,' |

In Part I we provide an overview of the basic plasma phenomena

¥ .

- of interest here, viz. three-wave interactions among coherent

normal modes or driven modes. If the waves can satisfy certain .
resonance conditiohs and if their coupling is sufficientiy large, a
vigorous transfer of energy can occur. The resonance conditions
correspond claSsically to phase matching both in time and space.

Quantum mechanically, freqﬁency and wavenumber matching correspond
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_to.énergy'and momentum conservation. These ideas are made explicit in
Section I. A and Section I.C. The'mechanisms leading to the noniihéar
energy transfer, or mode coupling, are provided by the nonlinéar
medium, in this case thé plasma. The specific nonlinearities respons-
ible for the mode coupling will be ﬁanifest in the general treatment
appearing in Section I.C, which 1s concluded with the derivation of an
implicit dispersion relation describing the stimulated scattering of a
transverse wave by plasma,
Part II of the thesis treats the scéttering of light into a

longitudinal electron plasma wave and a scattered transverse wave
for the purpose of heating plasma. Section II.A begins by specializing
our genéral formulation té the case of beat heating, i.e., the resonant
ekcitatioh of an electron plasma wave by two electromagnetic waves
(of frequencies mo;wl with wo > wl and wavenumbers go,gl) whose
difference frequency (& = Wy = wl) and wavenumber (K = ky - gi)
nearly satisfy the Bohm-Gross dispersion relation for an electron plasma
wave. This process is closely related to Raman scattering, but the
finite amplitude of the lower freQuency eleétfomagnetic wave requires
equai treatment of both the lower andithe higher frequency electro-
magnetic wave. The excited plasma wave then damps, either due to
collisions, Landau damping, or nonlinearly. The plasma heating is
provided by the electron plasma wave. |

' In order to lay the propér groundwork for the subsequent,
extensive use of particle simulation, Section II.B describes a
relativis£ic, electromagnetic, particle code. The code was created in
collaboration with A. B. Langdon, Mike Mostrom, and Dwight |

Nicholson, to study a variety of'electromagnétic phenomena in linear



and.nCnlinear regimes. The code 1mp1ements ah efficient Maxwell's
equations solver for the one dimensional propagation of light, that is
quite free from numerical instability. Poiseen's equation is solved
by Fourier transform. Langdon's electrostatic version of the code
utilizes the same fast Fourier transform of Poisson's equation and
was used to study some of the nonlinear aspecte of beat heating.

Section II.C is devoted to the study of the beat heating of
Qﬁposed lasers. The nonlinear interaction may be considered as an
induced decay (wo > + @), in which a:fraction R of the incident
power at frequency mo is converted to freqﬁencies wy and (, with
the fraction Rn/wo appearing as a longitudinal plasma oscillation
and, because of damping; ultimately as heat. Theory and simulations
are utilized in Section II.C.1 to determine the dependence of the
effieiency parameter R on the available parameters: laser intensi-
ties, density scale length, and temperature. We find that beat heating
in a nonuniform plasma with linear density gradient is largely |
independent of the electron wave dissipation rate.

We describe the steady-state energy fransfer to the plasma, first
treatihg the smell amplitude electron plasma wave as a quasi-steadily |
driven disturbance ignoring convection. Subsection II.C.2 examines
the space-time interaction of the two lasers, egain assuming that the
electfon wave is qﬁasi-steadily driven by theiponderomotivé force of
the two IASers. In Section II.C.3 we relax this assumption and inte-
grate (in space and time) the linearized coupled mode equations
vdescribing all three waves on an equal baeis; |

~ We continue our study of beat heeting_in Section II.C.4 by in-
vestigating the influence of electron trapping in the plasma wave. The

threshold and time scale for trapping are compared to these for the
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Raman backscatter, eiectron;ion éécay, and oscillating two-streanm
instabilities to determine for what parameters trapping is the
dominant'nonlinear feature in beat heating. In reviewing the beat
heating'simulations’exhibiting trapping, we find that certain:
unphysical effects, caused by the comparatively short length of the
plasma, motivate the construction of a simplified model problem.

| As a first step in determining the nonlinear plasﬁa response
to resonant excitation by the low frequency beat of two high frequency
waves, we solve a model problem. For the sake of simplicity, we
agssume that the plasma is uniform, and that thé excitation of the
longitudinal beat-wave is provided by a constant-amplitude pondero-
motive potential. In Section II.C.5, we formulate an explicit theoret-
ical prescription for the time-dependent nonlinear plasma response to
resonant excitation within the context of our simplified model problem.
vThe'time-dependence of this nonlinear response, and its approach
to equilibrium, are related to the behavior of.a nonlinear normal mode,
and in particular to its time-dependent eigeﬁffequency. We determine
the equilibria possible for electron plasma waves with trapping, and
the stabiiity of the equilibria. Our analysis is demonstrated in
simulation, and comparison is made with theory.

Our discussion of the beat heating of oﬁposed lasers is con-
cluded in Section II.C.6, where we consider the back-reaction of the
nﬁnlinear electron plasma wave on the evolution of the transverée
waves. We specifically investigate the influence of particle trapping
in the beat wave and how trapped particle effects can be removed by

plasma inhomogeneity.



~a

=9-

Section II.D reviews the idea of cascading: parallel

'propagating electromagnetic waves can be mltiply scattered by an

electrop plasma wave resonantly excited by the ponderomotive vxB
force of any two successive electromagnetic waves in the cascade.
We discuss the influence of)plasmg inhomogeneity on cascading and
how caséading might occur preferéntially over Raman backscatter.

When the induced scattering of light involves a beat wave
of low frequency |Q|7<< w;, both electrons and ions can respond.
This occurs in many inferesting‘situations, e.g., in astrophysical
plasmas, the ionosphere, laser fusion, and fadio-frequency heating.
Incident raéiation can backscatter from an ion acoustic wave or,
at higher intensities, from a driven, low frequency density perturba-
tion (sttong coupling). These are both examples of stimulated
Brillouin backscattering. If the radiation scatteré from a growing
density perturbation into two sidebénds, modulational instability is
occurring. The incident radiation can then filament or self-focus.
These scattering instabilities involving ions pose a particular
threat to iaser-pellet fusion. They have relaﬁively low intensity
thresholds and can léad to considerable scattering of the laser light
and deférmation of the target with perhaps deleterious effects.on
absorption mechanisms requiring relatively uniform illumination of
highly spherically symmetric targets. Part III of the thesis is
devoted to én examination of stimulated Brillduin scattéring and
filamentation in a homogeneous, unmagnetized plasm;. |

Section III.A preéents an introduction to the stimulafed
scattering of light by low frequency ion modes . Wé construct é
general dispersion relation descfibing Brillouin and filamentatibn

instabilities in Section II.B. The linear dispersion relation for
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f{lamentation is solved in Section III.C, while Brillouin ié considered
in Section III.D. We examine Brillouin strong coupling and filamenta-
tion from a unified point of view. We conclude with a detailed study
- of Brillouin absolute instability and the construction of its asymptotic

Green's function.

C. Coupling of High Frequency'Transverse Waves
to Unmagnetized Plasma |

Of particular interestviﬁ laser fusion; radiation from puisérs,
radio freqﬁency heating, and ionospheric scattering is the class of
parametric instabilities involving the scatteringof light from 1ongi;
tudinal electron and ion waves. The instabilities involving ions
cha:acteristically exhibit lower thresholds for onset of instability
and lower growth rates than their counterparts involving.only

11,12,30 Examination here will be restricted to just the

-electrons.

scattering of a monochromatic electromagnetic wave from longitudinal

-density perturbations in unmagnetized plasma. The formulation will

be sufficiently general to inciude induced Thomson scattering, but

evaluation.of disperéion relations and partial differential equations

describing the scatteriné will be confined to»situations where the

scattering involves collective plasma behavior: stimulated Raman

and Brillouin scattering and filamentation. : .
The discussion beings with a qualitative picture of the .

physical mechanism responsible for this class of parametric insta-

bility. We assume that the electron and ion motion is nonrelativistic

| and for the sake of simplicity that radiation with frequency Wy and

wavenumber k. 1is incident upon a uniform, unmagnetized, warm |

_0
plasma. We relax the assumption of plasma uniformity in Section II.C.
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The electrons and ions acquire transverse "quiver" velocities
as their lowest order response to the rédiation. Of course the
electron quiver velocity ie -¥111 be larger than the ion quiver
velocity by the mass ratio mi/me >> 1. If there is an electron
density_pgrturbation or fluc;uation present Gne, e.g., due to noise,
then a éoupling to the radiation can occur via the electron current
GJe produced by the transverse quiver veiocity and the density
*perturbation: Gie = eénéie, where the electrén chargé is defined
by e. This current will act as an antenna for scattered radiation
propagating at the sum.and difference frequencies and wavenumbers
of the density perturbation and the transverse oscillation velocity:
(wb + Q,go + k) and (mo - Q*,g - 5*), vwhere the frequency and

0

wavenumber of the density perturbation is given by (Q,k).

The feedback necessary to p;oduce parametric instability is
provided'by the coupling of the scattered radiation with the incident
radiation via the Lorentz force v x B. The Lorentz force is produced
by the cross-product of the transverse oscillation velocitles with
the tranéverse magnetic fields at the various existing frequencies
and wavenumbers éf fhe transverse fields, namely the incident and
scattered radiatioﬁ. The Lorentz force provides a driver for high
frequenéy and high wavenumber density pertuibations (2w0,2§o),

(2wO + 9’250 + k), and (2wO - Q*,Zgo - 5*)' which contribute to

- the lowest order nonlinear frequency shifts.31 In addition to the
high frequency density perturbations however, there will be the
low freqﬁendy yyx B beat at (Q,S) which serves to reinforce the
original density perturbation and can give risg to iﬂstability.

The Lorentz force acts like an external, electrostatic

driving field in creating density perturbations. If the beat
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frequency'and wavenumber nearly satisfy the Bohm—Grst dispersion law
for electron plasma waves, 92 = we2(1 + 3K2A82) where w, is the
eleétron plasma frequency and 'ke the electron Debye length, then
Raman scéttering can occur. If [Q] < we where Wy is the ion plasma
frequency, both‘the"ions and the electrons will respond to the Lorentz
force. ' Then Brillouin scattering and f'ilamentation can occur. In
any case the Lorentz force depends bilinearly on the amplitudes of
the incident and scattered radiation. The current producing the
scattered radiation depends in turn on the amplitudes of the density
perturbation and again on the electromagrietic pump. Thus the
scattered light is shifted up and down from the pump frequency and
wavenumbef by the beat frequency and wavenumber, (wo + Q’EO.+ 5)
and (wo - Q*,go - 5*), respectively and can grow exponentially.
If the depletion of the electromagnetic pump wave is ignored, then the
pump intensity becomes a parameter governing the "parametric" |
instability.

Nd attempt at this point has been made to describe the
influence on the s;attering of the relative polarization and scétter—
ing angle of the scattered radiation and the pump. For particular
scattering configurations, e.g., forward, both scattered electro-
magnetic waves can grow exponentially with comparable amplitudes.ll’12
‘The incident laser light appears to develop a modulation with
o] < w; and can eventually breek up into many filaments or self-
focus.13’14’32’33 For Q = We and Kk = (we/c)ﬁO multiple Raman
scatterings from a single electron plasma wave can occur.Bl*’35 If;

instead radiation is observed to backscatter, it is sufficient to

consider only the scattered radiation shifted down by the beat



freqﬁency and wavenumber and describe it as stimulated Brillouin or
Raman backscatter. t’12

Several authors have constructed general formalisﬁs describing
parametric instabilities,11212:30-39 p¢ most complete work on the
normal mode structure is due.to Drake, Kaw, Lee, Schmidt, Liu, and
Rosenbluth,12 whose analysis is three dimensional and nonrelativistiec,
and assumes the plasma to be wniform, isotropic, and unmagnetized.
We adopt an approach similar to theirs here, but further simplify
by considering only the scattering of parallel,llinearly polarizéd
light in two dimensions. Comments on the generalization of this
formalism to three dimensions are found in Section ITI.D. 7

Wé formilate our déscription‘of-the induced scattering'of
radiation by density perturbations in terms of complex vector
potenfials. We assume that all radiation is linearly polarized in
the y direction and propagates in the x-z plane (see Fig. 2).

The real vector potential is written as a sum over the modes

present, omitting the multiplicative factor ¥,

: - . . * *
A(r,t) = Ab exp(lgo-g - iwot) + A exp[l(go - K )-3 - (wo -Q )t]

+ A, exp[i(go +k)r - i(wb + Q)t] + ¢.Cc. . (6)

In deriving the dispersion relations deseribing the various parametric
instabilities that can arise here, we assume that [A [,[A_| << [Aj]

and A. 1is held constant. The vector potential represented in Eq.

0
(6) includes the pump wave and the radiation shifted up and down by
the beat frequency and wavenumber., If further scattering occurs to

* *
produce radiation at frequencies and wavenumbers (wo - 20,k - )
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and (wo + 20,k + 25) for example, then these modes must be explicitly

o]
1ncluded_in-Eq. (6). The beat wavenumber K 1is restricted to lie
in the'_x-z plane.

An examination of the equation of motion for the charges
quivefing in the electromagnetic fields.described in Eq. (6) allows
the identification of an effective external potential. The equation
of motion for a charged particle of species s in the field of an

electromagnetic wave and in an electrostatic field with potential

: ¢(g,t) is given in the nonrelativistic 1imit by
msdg/dt = egv X [V x A§l/% - es§3A/c8t - eV . (7 |

w§ solve Eq. (7) approximately, expandiﬁg in powers of the
small parameter esAO/mscz. The Lorentz force term can be rewritten ,
in approximate form as the gradient of an effective potential. From
the conservation of canonical momentum in the y direction (due to
translationalvinvariance), we have g-? = AeSA/mSc + constant =
ﬁs + constant. For a cold plasmg the constant can be set équal to
zero for all charges, and the component of the Lorentz force term

in the scattering plane becomes’

[§8(2°§)§X(VxA§)/c] = -e-sz<71&.2/2nr15<:2 . (8)

For a warm ﬁlasma canonical y momentum is still conserved.
However, the y velocities are given by y-§'= Vs + v} where v&
is the velocity of charge described by an arbitrary thérmal distribu-
tion of velocities in the absence of external fields. The thermal

corrections that result will be discussed when the nonlinear current

is evaluated.
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" From Eq. (8) we can define the effective or ponderomotive'

po‘t.en‘l:iza.lz'o-42 driving longitudinal electron density perturbaticns:
: ¢Oe(£)t) = e[A(E)t)]Z/Zmecz . . (9)

The quiver velocity and the gffective potential for the ions are

both srhéller by ‘the mass ratio me/mi; and are ignored, ‘71 = ¢Oi ~ 0,
The density perturbation is described by the self-consistent

Coulomb potential ¢(r,t) = é exp(ik-r - iQt) + c.c. We define the

total potential <I>S(§,t) .as the sum of the Coulomb potential ¢

and the ponderomotive potential ¢OS due to the Lorentz forcé

according to <I>S(_1_',t) = ¢(§,t) + ¢Os(g,t). - The total and the pondero-

motive potentials are represented with the same dominant phase

- dependence as the Coulomb potential. Poisson's equation becomes

$ = 4m<'2 Zeﬁ , , (10)

S s
8

where fi, is the amplitude of the number density for species s,
with phase dependence exp( ik.r - iﬁt) factored out. We introduce
the linear susceptibilities, ¥ S(Q’E) = —4m<-2esﬁs/5s , and the linear
dielectric function, e(Q,x) =1+ Z XS(Q’E)’ in order to replace
fis in Eq. (10) by a linear functioi of _53.

From Eq. (10) and the definitions of the 1inear susceptibili-

0

ties, we obtain

¢ - [1 * Xi'(Q,s)] §,°/e(2,x) =

- e[l + %4(2,x)] A2(Q,5y[2mecze(fz,5)] , (11)
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where by' A?(Q,E) we mean the sum over all coefficients of terms v

2

in A varying with phase e;p(is.g - iqt). The linear electron

susceptibility describes the accompanying electron charge density

perturbation:

e

~ o _ 2ze - 2 ] 2 2

en Xe( k) K7O7/4m K [xe(l + X )€ Q,c A (Q,%)/(8m_c”)
(12)

The wave equation for thevector potential in Coulomb gauge is

(P - c20,2m = —4mie™t | (13)

To evaluate the transverse current 'J(g,t) we adopt the simple fluid
model that the electromagnetic fields induce a linear electron

cur:ent and a lowest order nonlinear contribution11’12

J(}_‘:t)

ew’i[no + {r’ie exp(ik-r - iQt) + c.c.‘}
. "

(14)

== |7 + A exp(ik-r - iQt) + c.c.

where n, is the unperturbed ﬁumber density. Equation (12) is
employed to construct the perturbed electron number density. The
ion.contribution to the current is down by the mass ratio and is
consequently ignored.

A treatment including finite temperature effects in the
ponderomotive potential and the nonlinear current, based on, for
example, an analytic solution of the Vlasov-Poisson-wave equation
system exﬁanding systematically in powérs of IeAO/me02| << 1,

3

shows that thermal corrections”™ arise of order Te/mecz, where Te
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e S

is the electron temperaturé. For plasmas with honrelativistic
therma; velocities v, = (Ts/ms)i << ¢, these ccrrections can be
safely‘ignored. This is not to say that the plasma is assumed cold
when fhe linear susceptibilities and the dieleétric response are
evaluated; temperature effects here can be very important;

We define F(Q,E) z [xe(l + xi)/e]ﬂ,n ‘and postulate a
general kinetic description in order to eval:xate the linear plasma
response, say the Vlasov or Fokker-Planck equations. We can now
systematically manipulate Eqs.(12)and(13)£b derive coupled mode
equations. We shall examine all couplings that lead to n§nlinear
contributions to the current of order IAOIB.

First of all, for the nonlinear correction to thevdispersion
relatiqn'for the pump wave due to the Lorenéz férce with phase
' dependence exp(i2go-£ - iZmot), we obtain frbm Eqgs. (12), (13),
and (14), considering only the terms with phase dependence
e'xp(n_go'.; - iwgt) in Eq. (13),

2 _ 2 22 2 2, 24
wy® = w,” * kye [1 + 2T(2uy, 2k e IAOI /m e ] . (15)

The amplitude dependence of the electromagnetic wave dispersion
relation is, however, of the same order as relativistic effects. If
we include both the Lorentz force and relativity following Arons and
Max31 and if we evaluate the susceptibilities in the high frequency
| 2,2 .

limit (2wO >> Wy wylky >> Ve), xe(w,k) = ~w, /W and ¥; * O,
we obtain
2 _ .22 2 218 12(1 o2 -2[ L 22 2 _ 2 ]

= k *w A1+ de |A0| (mc®) 7374 - Xy c™/(4uy” - .

wo OC
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We henceforth assume that the frequency wy end wavenumber k. of
the pﬁmp satisfy the noniinear dispersion relation. In this waj the
coupling to the high frequency density disturbance with phase.depen-
dence 'exp(izgo-g - iZwot) has been absorbed into a nonlinear
~ frequency shift. |

For the scattered radiation, we look for couplings which
involve large T(Q,k) and recall its definition and the lineariz-
tion [A |,]A ] <« IAOI. In addition to the density oscillation at
frequency 2wo there are density oscillations dfiven by the Lorentz
force ét'frequencies 2w0 +Q,° 2w0 - Q*, and 9.43 For the low
frequency beat (Q),.the near vanishing of €(Q,x) at'a resonance,
which appears in the denominator of I'(Q,«), characterizes the
scattering by a longitudinal normal mode. If Q= Keg where
cé = (Te/mi)i, then stimulated Brillouin scattering is said to ocecur.

2 + 3K2Vé2)% then stimulated Raman scattering occurs.

If Re Q= (we
The linear susceptibilitiés xs, from which ¢ and T afe conStructe@
are evaluated in an appendix from a Vlasov model for a Maxwellian
plasma. _For high frequencies >> wg and phase velocities » v
I' 1s real. Consequéntly the couplings 2w0 + Q and 2w0 - Q* lead
to nonlinéar frequency shifts which are of the same order as described
in Eq. (15), but only when the parametric instability enters the
nonlinear regime, i.e., |4,[,]1a | - (s ]). 743

Ir we substitute Eq. (14) into Eq. (13) and use Egs. (11)

and (12), we obtain
. A * ;
D;Af = ,-eZ(AiIAOIZ + A+A02)K2c2F(Q,5)/(mecz)2 (16a)

- and
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2 2, % 2,22 : 2 " ’
D+A+ = =€ (A+’AO’ + A_Aoa)'c c F(Q,E)/(mec )2 ’ , (16b)
where D_ = D(wb + Q,go t'f) = Izﬂwo - QZ i Zgo-scz + chz, end

Dw,k) = wez + kzc2 - wz., We recognize D(w,k) = O as the linear

dispersiohirelation for an elecframagnetic wave. Thus Dt are
measures of the mismatch of the scattered waves A, and A_ from
their linear dispersion relations.. In théining Eqs.(16), the high
frequency couplings at 2wo, Zwo + Q, and 2w0 - Q* are ignored,
since |T(2,6)] >> [M(2u + 2,2k, + )|, [N(2u, - 2%, 2k, - &™),
(2w ,2§O)I'= CY(mez/Awoz). These éouplings lead to nonlinear
frequency shifts and not to instability.43 vv o
Modulational instability isvdescribed.by the cross-coupling
and simultaneous growth of A, and A_ with coﬁparable amplitudes
in Eqs. (16). Brillouin or Raman scattefing is said to occur when

A_ grows with amplitude much larger than A,. The scattering of light
into two plasmons at the quarter-critical point (wo ?"Zwe)12’44’45'

.and the parametric decay of light at the critical surface

(mo = we).zA into an electron plasma wave and an lon acoustic wave,
or into two electron plasma waves and a purely growing ion density'
perturbation, have been omitted from our descripfion.' This is
because we demanded that the incident light scatter into another
transverse wavé and an electron plasma wave, i.e., wo > 2u%, or
into another transverse wave and an ion wave, i.e., w4 > W

To simplify the notation we introduce the dimensiohless
amplitudes g = O/(m.ecz) and a,,a_ similarly. The maximum

0 ,
transverse quiver velocity ?O in the electric field of the incident

electromagnetic wave is determined by ?bg/cz = 4&02 (taking ag

to be real arbitrarily). We define ’u2 E'Kzﬁb?r(ﬁ,s)/4, which



-20-

measures the éoupling strength in units of frequency squared.

Equations (16) can be rewritten

(17a)

]
o

[D_ - uz]af - ﬁ2a+

*

(170)

1]
(@]

[D+‘~ uz]a+ - uza

Setting the determinant of the coefficients equal to zero, the general
dispersion relation describing modulation, induced Thomson scattering,

and stimulated Brillouin and Raman scattering is obtained:
D,D_ - (D, +D W = 0 : (18)
+ - + - *

For stimulated Raman and Brillouin scattering, |D_| << |D_|

and |a

.| 1s consequently small compared to |a_|, so that Egs. (17)

can be reduced to

D -u? =0 . | (19)
Equations:(l8) and (19) are implicit dispersion relations descriﬁing
the parametric instability of the stimulated scattering of light in

an unmagnetized, uniform plasma. We shall make use of wvarious

aspects of this formalism in the subsequent calculations.

-

II. BEAT HEATING OF A PLASMA
A. Introduction fo the Coupling of Transverse Waves
to Electron Plasma Wavés
‘In this section we consider the resonant interaction of two
lasers whose difference frequency‘\Q and wavenumber K nearly
satisfy the linear dispersion relation for an electron plasma wave

92 = we2 + 3K2Ve2. This process is an example of stimulated Raman

.t



scattering. In as much as we begin with two electromagnetic waves of
_frequency mb and ml (mo >,q1), corresponding to the vector poten-
tials with amplitudes A, and A in Eq. (6), we are not looking at
an example of parametric instability and must treat Ay and A_
equally. The three-wave interaction in this limit is called beat

34 46-50

ortoptical mixing. The mechanism for the coupling of

heating
the two high frequency waves (mb,wl > we) with the electron plasma
wéve is, However, the same as for the parametric instability of Raman
scattering and is described in the Introduction, Section I.C.

We are motivated to study this process by the fact that it
affords the opportunity to couple the Qery intense energy at high
frequency in lasers to lower frequency plasma modes where the energy
might be absorbed as heat. An important consideration thaf determines
fhe upper limit on the efficiency of this process is the fact that a
heating process making use of three-wave interactions is subject to the
Manley-Rowe conditions Egs. (5). If R 1is the relétive efficiency of
the action transfer, then no more than the relative amount of energy
Rmé/mo can be ultimately absorbed by the plasma.

The resohant interaction between two transverse waves and one
longitudinal wave or mode for the purpose of plasma heating or as a di-
agnostic has been investigated by many. Kroll,‘Rdn, and Rbstoker (1964)
first proposed optical mixing as a diagnostic tool for detérmining
plasma density and calculated the enhahced scattering cross section due
to the inducéd density pertur‘bation.46 Wolff (1971) theoreticaliy stu-
died Raman écattering in semiconductors using cold fluid equations and .‘
the conservation'of transverse canonical momenfum to formulate neat;y
| | 3

the nonlinear density perturbation and the nonlinear transverse current:

Wolff found that the scatterihg instability could be saturated by a
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nonlinear Doppler shift in the eiectron plasma wave produced by an
induced longitudinal drift. | | |

- James and‘Thompson (1967) and Capjaék and James (1970)
applied the principle of optical mixing to ihe theoretical study of
the heatihg of ions in magnetized plasma by beating high frequency
transverse waves at the ion cyclotron zfesona'nce47 or by mixing
Whisfler waves at either the ion cyclotror resonance or in the regime

48 They found a marked sensitivity

of induced scattering by: the ioms.
6f the resonant process to detuning influences: finite pump band-
width, variation in the magnetlc field, and plasma inhomogeneity.
Because of the smali ratio of the lon cyclotron frequency to the

pump frequencies, the ultimate efficiency of these schemes suffers
greatly. Weyl (1970) considered optical mixing for diagnostic
application in cold, underdense, magnetized plasma at the coid electron

49 Weyl further exam-

plasma frequency and the upper hybrid frequency.
ined the effects of finite pump bandwidth and plasma inhomogeneity to
first approximation. Stansfield,‘Nodwell,,and Meyer (1971) mixed two
dye laser Beamsatan angle of 450 in a plasma jet to observe the resonamt
density fluctuation enhancement when the beat wave resonantly excited

50 In all the foregoing studies a low fre-

an electron plasma wave.
quency beat wave is driven by two high frequency waves in a uniform
plasma. If a magnetic field is present, it also is assumed uniform.
The physics of beat heating and parametric instability in
general.in a nonuniform plasma is significantly different from the
case of uniform plasma. Three of the more significant papers
discussing parametric instabilities in a noﬁuniform plasma are by

Perkins and Flick (1971)%° and by Rosenbluth, Liu, and White

(1972).5'1’52 Rosenbluth and Liu (1972) studied beat heating in a
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vhomogeneous plasma considering the case where the beat frequency -
equals twice the cold electron plasma frequency.53 They also consider
beat heating in a warm, inhomogeneous plasma where the difference
frequency somewhere equals the Bohm~Gross frequency. However, in both
cases the high frequency transverse waves are assumed to have constant
amplitude. Beaudry and Martineau (1973) extended Rosenbluth and Liu's
calculations to inclﬁde collisional dissipation inthe plasma wave.54
Strel'tsov (1973) calculated the parametric amplification of the decay
products for Raman backscatter in a very sharp density gradient
assuming the higher frequency transverse wave to have fixed amplitude.55
| Fuchs, Neufeld, Teichman, and Engelhardt (1973) studied beat
heating in a nonuniform medium calculating the self-consistent Ampli-

56 Their results for the dependence

tudes of the high frequency pumps.,
of the action transfer upon pump strength, input fatio, and density
scale length agree with Ref. 59. However, Fuchs et al. erroneously
infer that the resonance region 1s proportibnal to the wavelength of
the plasma wave rather than the scale lengthrof the plasma. Schmidt
(1973) described the excitation of electron?nrion waves due to the
beating of opposed transverse waves in homogeneous'plasma including

ihe nonlinear electromagnetic frequency shifts due to the ponderomotive

57

force but neglecting the comparable shift due to relativity. He

observed that in order to deposit energy into the 16w frequency,

_ longitudinal wave, there.must be a concomitant energy transfer from
the highér frequency transverse wave to the léwer.: Beaudry (1974)
investigated beat heating in the 1limit that convection dominétes
dissipétion for an inhomogeneous medium finding agreement with Ref. 59

which established that action transfer wag insensitive to the details



=24~

ﬁf the dissipation mechanism, be it Landau damping, collisions, or
éonvection.58

In the remaining sections in Part II we will review in detail
and extend the results of Kaufman, Cohen, Watson, Mostrom, Nicholson,
Max, and Langdon, in chronological order Refs. 34, 59, 60, and 43. The
~general aim of those papers is to consider tﬁe interaction of transverse
waves with longitudinal electron plasma waves in their linear regimes.
A1l wave amplitudes are treated equally. The beat heating of two
electromagnetic pump ﬁaves propagating in opposed and parallel
directions in uniform plasma is examined in Refs. 60 and 34 respec-—
tively. Beat heating of opposed lasers in a nonuniform plasma is
studied analytically and in simulation in Refs.‘59 and 43. In Section
II.C we extend the study of beat heating of opposed lasers to the
regime of nonlinear electron waves. Our detailed examination of beat

43

heating begins with a review of the electromagnetic code’ introduced

to study beat heating.

B. Electromagnetic Simulation Code

There is a considerable literature concerning electromagnetic
codes.61 Most glgorithms for solution of Maxwell's equations require
solving a current-driven wave equation for the vector potential. In
our code, we solve for the electromagnetic fields explicitly by
integrating Maxwell's equations along their characteristics. Dawson
and Langdon62 first used this method in 1966.‘

Charged particles are represented by clouds of infinite
cross-sectlional area in the plane transverse to the grid. In the one
dimension in which spatial variations are followed and particle poéi-
tions are assigned, particles have finite-size. Charge dénsities are

calculated by linear interpolation according.to the cloud-in-cell

e
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msr:ode1.63 In this same dimension; designéted "longitudinal, there are
componeﬁts of particle velocity and electric field, and all wave
propagation occurs.i The electromagnetic waves are linearly polarizeé
in the direction of the éingle transveﬁse velocity component (see
Fig. 2). The self-consistent and external magnetic fields lie in the
transverse plane and are peréendicuiar to the polarization direction.
The equAtions of motion are relativistic. There are versions of the
code for which the plasma is assumed periodic oi, alternatively,
finite. | -

For the.particular configuration we describe (Fig. 3), the

two Maxwell curl equations take the form:

-1 _
-aBZ/ax -c BEy/Bt 4ﬂJy/c

o .

]

-1
3gy/3x +c aBz/at
By adding and subtracting these equations, we obtain

(3/3x) [Ey e8] £ cMosat) [gy8) = Furige . (20)

~ If we define the right- and left-going electromagnetic field quantities

respectively, as F, = Ey * Bz, the two Maxwell equations become

[(orax) £ Hara0)] 7, = Fumsse . (21)

Equation (21) is integrated along the vacuum characteristics
x * ct = const., the current J& beihg given by the particle posi-
tions and velocities. Gridpoints in the space-time mesh are linked by

the vacuum characteristiecs. Then Ax/At = ¢, and there is no Courant

condition in the usual sense. A standard Courant condition for the
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stability‘of the finite-differenced wave equation is Ax/At > ¢

where Ax and At are otherwise independent. In our case

Ax = cAt, and stability and accuracy depend only on how small At is.
Spurious ﬁumerical dispersion is minimized because we solve

explicitly for the electromagnetic fields and introduce some smoothing

in calculating the transverse current (Fig. 4). Transverse currents

J; 'and J; are calculated from the velocities gt half time-step

intervals and charge positions at whole time-step intervals and then
averaged along the vacuum characteristics to obtain y’= (J; + J;)/Z.
Consequently, if we treat the particle motion relativistically there
should be no numerical Cerenkov instability.64 Furthermore, the
_ parametefs for which light waves in a drifting plasma can become
unstable, due to finite differenciﬁg, are unphysical and can easily
be avoidedbwith a reasonable choice of weAt. .Only_for u@At ~ C9(1)v
does numerical instability occur for the largesf wavenumbers character-
istic of the grid, i.e., éﬂ/Ax; and saturation of the instabiiity
océurs at low ievels of the associated field amplitude;l

The differential equations which the code solves_éan be
summarized as follows: +the equations for thé fields, given the

sources, i.e., charge density and current, are Eq. (21) and the

Poisson equation
2 2 s
-30/3x° = /me(n - no) (22)

where 0y is the uniform neutralizing:charge density. Electrons have
charge e. We assume a single species here (with fixed neutralizing
background), but generally the code deals with two. The equations

for the pafticle and current densities (before linear interpolation)

are

e
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nx) = ) &x-xh)
1 .
| (23)
I(x) = Z»-evyi &x - x7) .
i
The equation of moiton for the particles is
(a/at) [mu(1 - 2] - e(m ey xmre) . (24)

The closed set of equations can be integrated forward in time
leap-frog style using a differencing scheme centered in space and time
(Fig. 4). bThe'equation of motion (24) is integrated forward in time

using a hYbrid, fast half-acceleration and rotation method.65

Because
we_are interested in the Fourier transfgrm of the electrostatic |
poténtial, we solve Poisson'srequation by means of fast Fourier
transfbrms. The differences between the bounded and periodic versions
.of the code appear in the boundary conditions on'the potential ¢, the
particles; and the electrostatic and electromagnetic fields at the
system walls. Our Simulation of a finite plasma assumes that the
walls afe radiatidn transpafent and- particle reflecting. In the
bounded version, the longitudinal fié;d Ex Jvanishes at the sysfem
walls. The magnetostatic, vacuﬁm field contribution to BZ is aﬁ
arbitrary constant value throughout, in either vérsion of the code. We
have'found the code quite inexpensive to use; typical computer experi-

" ments with 4000 particles have required 0.25 sec of central processing

unit time per time¥step on the CDC 7600 at the Lawrence Berkeley
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Laboratory (thié includes all operations:- field solving, particle

pushing, and diagnostics).

C. ﬂeat Heating of Opposed Lasers
We examine here the nonlinear interaction of two oppositely
propagating, linearly polarized electroﬁagnetic waves resonantly‘
exciting an electron plasma wave in an inhomogeneous plasma. We
review the work in our publications, Refs. 59 and 43,in Section II;C.l
and.include Ref. 60 in Seétion II.C.2.'_These pabers consider primarily
the plasma response in the small ampiitude limit. In Section II;C.3
we integrate in space and time the three linearized coupled-mode
equations Eqs.‘(4) and compare the results with those in the preceding
section and with the literature.go In the remgining sections of this
chapter nonlinear beat-wave effects are examined. A detailed study
of the resonant excitation of nonlinear plasma dscillations éppéars }n.

Section II.C.5. Finally the back-reaction of electron wave trapping

on beat heating is considered in Section II.C.6.

1. Theory of Beat Heating for Small Ampiitude Electron Plasma Waves

'The theory of beat heating has been diséussed at some length
in the literature, Refs. 34, 43, 53, 57-60. ‘Forvthe sake of complete-
ness we include the derivation due mbstly to Kaufman that appears in
Ref. 43, and for convenience we adopt the same notation. We shall,
.howevef, make much use of the formalism presented in Section I.C.
We begin'by recalling that the invariance of thé cancnical y momentum
permits the identification of the electron transverée oscillation
veiocity: we define wu(x,t) = v = -eA(g,t)/mé; We assume that for
beat heating the ions form an immobile, charge neutralizing background

and drop the subscripts denoting electrons.



~ We adopt a fluid model for the transverse current
J= eﬁtno(g) + Gn(g,t)], Eq. (14) generalized to a nonuniform medium.
Then use of the wave equation Eq.(13) for the vector potential and

substitution for A(x,t) 1in terms of wu(x,t) yields

[3,2 + 0. 2x) - 2P] wx,t) = -u20)6n(x,t)/0(0)] u(x,t) .
(25)
To make the notation less cumbersome we adopt'the convention that
wé = we(o) and njy = ny(0). Corrections to the model for the
current and thus to Eq. (25) are of relative order u2/c2 and
véz/cz.31 _We utilize a WKB representation for the transverse waves,
and express the vector potential or in this case the transverse

oscillation velocity as

x
u(x,t) = uo(g,t) exp[—imot + i.[ 30(5')ed§'] + c.C.

X
+ u.(x,t) expj-iw,t + 1 k (x').dx'] + c.c. (26)
1'= w =3 AT

where Uy and u, are the slowly varying complex transferse velocity
amplitudes of the two electrpmagnetic waves. - The wavenumbers of the
two transverse waves satisfy the local dispersion relations
6200 = o - ] .

The density perturbation is excited by the low frequency beat
of the two high frequency waves via the Lorentz force on the electrons.

The density perturbation is not assumed small: -

X

én(x,t) = ni(x,t) exp[—iQt + ip[ 5(;')-@3'] + ¢c.c. (27)
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where 1 = Wy = W is the beat freQuency,vand :§ = EO - 31 is'thé
local‘beat wavenumber, restricted to lie in the x-z plane perpendicu-
Jar to the transverse electric field polarizations. The electron
plasma wave is resonantly excited if‘the beat frequency and wavenumber
ﬁearly Satisfy the Bohm-Gross linear dispersion relaticn,
92 ~ weZ + 3K2Ve2.

‘We can ignore the density perturbatiohs at the sum frequencies
(mb * w, 20, and 2w1) for the following reason. Since they
.represent high frequency, high phase velocify, nonresonant perturba-
tions, they can be only collisionally damped and are not normal modes.
However, if we consistently ignore collisional loss in the high
frequency perturbations, the coupling canstant T = xe(l + xi)/e
is real ahd small, T = C?(-wez/zwoz). Then thé density perturbations
at these sum freduencies simply couple back inﬁo fhe electromagnetic
waves,tovproduce nonlinear frequency shiftsvas in Eq. (15). Further
consideration of these nonlinear frequency shifts is deferred until
later in the section. | |

We assume that 1i(x,t) 1is slowly varying on the beat fre-
quency and beat wavenumber time and space scales respectively. If we
substitute Eqs.(26) and (27) into Eq. (25) and keep only the resonant;

nonlinear coupling terms, i.e., only terms with slow temporal and

spatial variation, we obtain
3 - 2 ~
(3 + coV+ o Vanky " Juy(x,t) = =(1/2)Nw,“/ug XVng)u,

(28)

(3, + e + oy Wmg D (,0) = (172w, 2 & /mghyy -



Equations (28) describe the mode coupling of the transverse
wave amplitudes without any assumption on the amplitude of the density
perturbation n. The energy density of each transverse wave is given

- =1 2 2 2 2 2 2
by Wz = wz [3(&) e)/aw}(wz/c) [Af.! /4TI’ = wz ’All /2‘"’0
= (m/e)zwzzlullz/Zﬂ where e(w) =1 - wez/ 2.34’59 The transverse
wave actions szz;l are then proportional to wzluzlz. Multipiying
Eqs. (28) by -wous  and wlui and then adding the complex con-
Jugates of these equations, we obtain by analogy to Eq. (5) the conser-

vation law for transverse action (Manley—Rdwe or photon conservation):
2 2 2 o2y
9 (wglugl® + wlug|) + Velequglugl®™ + cquqfuy|7) = 0. (29)

The Manley-Rowe relation is evidently quite generallyrtrue: it
requiresionly that the WKB analysis be valid. Nb assumption has been
made on the size of the density perturbation. We have assumed that
there is no collisional damping of the eleciromagnetic waves.
Transverse action is therefore conserved for uniform or weakly
nonuniform plasma, and for a linear qr nonlinear density perturba-

26-29 The conservation of action implies that transverse energy

tion.
is not conserved. As action is trénsferred from the higher frequency
wave (gb)' to the lower frequency one (ml), the energy difference, of
relative size n/mo, is deposited in the plasma a&s a cohereht oscilla-
tion or as heat. If the energy difference is absorbed as heat, the
energy trénsfer is irreversible. If a coherent oscillation persists,
however, the energy transfer can be reversed, and the transition

w *+u can occur. This is observed in simlations and predicted
theoretically when the beat wave is small. in amplitude and weakly

damped, and when the beat wave is large enoﬁgh in amplitude to trap

electrons.
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The rate of action transfer 1s,-from Eqs;(28), given by
2 2 _ 2 % ¥ -
3ta_10|u0| + V'Somoluol = -u, Im(uouln /no) . (30)

On using the Poisson equation for the density'and scalar potential

amplitudes, K2$ = 4whe, the right side of Eq. (30) becomes
_KZ Im[ud@¥e$*/m)] . (31)

| The potentlal ¢ is the longitudinal response to the ponderomotive
potentiai energyl’o-l’z W(x,t) = <% mu2>(1_c,t) of the electrons;
the angular bfackets represent an average over the rapid temporal
variation at wo,Qi yielding a beat variation

wWx,t) = @(g,t) exp(-iQt + ij’s-df) + c.c., $(§,t) = muou;. From

Eqs. (9), (10), and (11) we obtain for the linear longitudinal response
-1 -1 -1 t
&(J_C:t)_' = (1 + xi)e 30 - 60 = (e - 1)60 = (g - l)muoul/e

(32)
where € is the linear dielectiric function, evaluated at Q,k. The
pomderomotive potential energy is evidenily related to the effective,
externél potential introduced in Eq. (9) by the expression Y = 650‘

If the space-time variation of (uo,ul) is not sufficiently
slow we should instead use § + 13; and K - iV as the arguments of
€. To‘illustrate this we undertake the following construction.
Suppose the electron plasma wave to be driveh,at freduency ¢ and to
exhibit dissipation rate v. Define the real, linear normal mode
frequency QL by Re E(QL’E) = 0. Then expanding about Q we

obtain:
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e(@ + 13,,x - 1V) = Re &(Q,x) + iIn &(Q,K)

+ E[Q + 13, + (dw/3k)-1v - QL] + oeen

= (20, /0.0 - o + i(a, + +3v€2v'
Q/wg Q= O 9 * v 5?2-1"--

(33)

where ¢ = 5Re ¢/3w 1is evaluated at QL and we have made use of
Re e(QL’E) = O; v = Im ¢/e, and for electron plasma waves
€ = ZQL/we2 and w3k = 35ve2/QL' This construction requires that
‘IQ -t i[at +y + 35(v82(QL)-v]| << w, to justify trunéation of
the Taylor series where shown in Eq. (33). In Section II.C.5 a
similar expansion is examined in more detail for the case of a non-
linear dielectric function where certain of the nonlinear aspects
may be ihcorporated by modifying the form of ¢, so that ¢ depends
on ¢ implicitly. |

In the case that Eq. (33) is applicable, i.e., if spatial and
. temporal variations in the longitudional response are appreciable,
then the formulation making use of Eq. (32) is not the moétvexpedient.
The three-wave analysis in Section II.C.3 becomes preferable. The
opposite limit, where Eq. (32) is applicable, defines what we mean
by the "quasi-steady" longitudinal response. |

‘We now use Egqs. (32) and(31) to express the right side of

Eq.(30) as

Clugl?lu | meHae) . (34)



Y
We observe that the action transfer depends upon the beat wavenumber
as xz, if the varietion of Im e-lfﬂ,f) ‘with. k 1is neglected. By
orienting the lasers oppositely to one another (x = kg * kl), the
beat wavenumber and hence the coupling are maximizéd. All wave propa-
gation then occurs in one dimension, say x (see Fig. 5).

For a uniform medium, the nonlinear equations for luolz(x,t)
and |u1|2(x,t) can be solved analytically, és discussed in Ref. 60
included here as Section II.C.2. Nuﬁerical soiution of the action
transfer Equations (29) and (30) for the case of a nénuniform medium
using (31) is also discussed in Section II.C.2. For a nonuniform
medium,'wevlimit our analytic stﬁdy here to the stéady state |

(afuo =9u = 0), whence Egs. (29) and (30) become

(a/ax)xglugl®) = (a/ada oy |®) = e fug| oy | m ™

(35)
where e(Q,K; x) has an explicit x variation through the plaéma
parameters: density, temperature, possiblj non-Maxwellian electron
distribution. |

In order to understand Eq. (35), we introduce the action flux
density, which is merely the action density JZ multiplied by the
group velocity 73 = gzcz/wl. We express the action flux density in

natural units as S, = (e/me)° e W, /u, = (52/2“)|u2/°|2- Then Eq.

=2
(35) reads as in Eq. (3) of Ref. 59: dSy/dx = S, /ax = BS,S;In € (x),
with 8 = 2K2/k0kl =8 for Q <<ugy Upon integrating over x, we
found the solution
b v :
A n(Sy5,)) = Bn§| axm eXx) (36)
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where Af = f(x = a)-f(x=Db); a and b are any two x planes
(such as the boundaries of the plasma), and S = Sg - S 1is the
constant action density flux.

In the limit of weak damping ([Im ¢ = |e" << 1), the «x
integral can be carried out exactly.59 We write Im e-l(x) = -wé[s'(x)L
where €' = Re €. The integral on the right-hand side of Eq. (36) is
then

b _

ax Im e Nx) = -m|3e'/3x -1
€'=0

‘TTLA s ( 37 )
a .
defining the effective density scale length 'Ln. In this limit, the

aétion transfer of Eq. (35) takes place over the infinitesimal region
where ¢'(Q,x; x) = 0, i.e., at that position x where the beat
frequenéy Q matches the Bohm-Gross frequency at the beat wavenumber
QL(K; x).

More realistically with finite g", we have

1

Ime™t = —en/(Je(x)]? + |€"|?). It can be shown that Im et

has a
half-width of order E"Ln = 2th/me» (see Fig. 5), where V is the
total damping rate of a Langmuir oscillation. Equation (37) remains
unaltered, however, in the limit that the half-width is small compared
to the plasma length. In order that the WKB representation be valid,
the transfér éone width VLn/we must exceed the wavelengths, i.e.,
(v/me) >> (kan)-l. (Typical parameters for a 0-pinch, n, ~ 1017 cm-3,
T, ~ 100 eV, we/wo ~ 0.1, and L ~ 10 cm, satisfy this inequality,
gince v/be 2 10 while (kOLn)-l ~ 1074, For our simulations the
resonance zone was of order ten wavelengths long.) If the damping is
not weak (v ~ we), then e(x) may not be considered small. However,
the integration in Eq. (37) can still be performed for known e(x).

1

. Since strong damping implies Im €~ = - (1), we obtain in place of (37)



-36-

fdxlme‘l(x) = -&(L) , | (38)

where iL is the length of the plasma. .In a real plasma, when
L~ CﬂYLn), we have the important result that the action transfer is,
in.order of magnitude, the §g§g.for strong as for weak damping of
the longitudinal response. This is true provided [e"Lnl << L, other-
wise the action transfer, proportional to the integral in Eq. (38),
is incomplete. Thus, for given «, the depgndehce on KAe is weak;
and for Kke << 1, the dependence vaishes, since the integral is truly
independent of v for the model of a linear gradient.

At this point we return to our earlier examination of the
nonresonant [Iel ~ C7(1)] .high-frequency density oscillations, which
- glve rise to nonlinear frequency shifts in the.two electromagnetic

31 have derived the frequency shift for a single,

pumps. Arons and Max
linearly polarized electromagnetic wave: we recall from Section I.C
their result

w2 = k202 + wez 1- % (vy/c)z[g - (w2 - mez)/(4w2 -‘mez)] s

where v_ is the amplitude of the transverse electron velocity,

vy = eEy/(mm). The frequency shift due to relativity only is
-'f%-w(wp/w)z(vy/c)z, while that duezto ef& X,gz/c (the Lorentz or
*"ponderomotive" force) is % w(wp/w) (vy/c)2(m2 - sz)/(4w2 - sz).

usihg Eq.(15). The ponderomotive frequency shift describes the effects
of density perturbations at the frequencies 2mo and _2w1. There is
an additional ponderomotive frequency shift due to the 3& x gz

coupling at W, + w, -



00w 042 9 g3 ﬁg' 8

-17-

'In thé steady-state, there can be consiﬁerable spétial varia-
tion of the amplitude of each of the eiectrcmagnetic waves, We can
nevertheless set an upper bound on the relative frequency shifts, viz.
1Aw/w] $ CB[% (me/ﬁ)z(vyin/c)z}. To g§timate their effect on the
action tfansfer, they should be compared to.the quantity |
Ie(x)bﬂae(x)/awIQ’K 2 O.OZEwe which represents both the linear
: dissipatioh and the mismatch of the electron plasma wave. Since that
énantity is more than an order of magnitude larger than the electro-
magnetic frequency shifts [Aw| < 0.001 Wy (for typical simulations
mcﬂné'~ &(5) and 2|u0/c|in = 2|u1/c|in < Q.l), we have neglected
those shifts in Eq. (35). An investigation of the nonlinear freguency
vshift and dissipation of the drivenelectron plasma wave, and of théir
influences upon beat heating, is considered in subsequent sections.

in a simuiation model, for reasons of economy the slab
thickness L may be smaller than Ln’ and even smaller than the
resonance width (V/we)Ln. In that_case appropriate corrections must
be made in comparing theory and simulation. A typical simulation for
beat heéting when the density perturbations are linear is shown in

Fig. 6.
Inserting (37) into (36), we have the result (Eq. (5) of

Ref. 59) :
' 1 ’ 2 = - : - -1, - |
_§§"koLn|uQ/°|in (1-8-0) "t R)(p + R)/p]
(39)
an implicit_equation for the relative action transfer R z AS/Soln,

in terms of the input ratio p = Slin/Soin and the input amplitude
IuOIin' (See Fig. 2 of Ref. 59 for a plot, also Fig. 7 here.) This

result is remarkable not only in its independence of the damping rate
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Q (and thus of the temperature, the collision rate, and the.dampingv
mechaniém), but also in that its dependence on the power parameter
IuO'in and the scale length L is onlyuthroﬁgh their product.

To test relation (39), a set of simulation runs was made for
the case of equal input actions (p = 1), corresponding.to approxi-
mately méximum transfef for a given total poﬁer input. For the set
reported here, the power was keﬁt sufficiently iow that the longitud-
inal résponse could be treated as linear. The dependence of action
iransfer R on the product of scale length and input power is shown
in Fig. 7; the simulations and the theory are seen to be in excellent
agreement. The action transfer was measured by averaging in time over
the decaying oscillations of the instantaneous action transfer rate,
which approaches a steady state. The error bars represent the
statistically weighted magnitudes of these oscillations.

To ierify the theoretical prediction that the dependence on »
scale 1ength and input power is only through their product, three rﬁns
weré made, with different scale lengths and powers, but constant
product. ' The action transfersv(also shown in Fig. 7) were found to
agree, within statistical error.

The damping of the longitudinal respdnse in these simulatiohs
was due to resonant particles, i.e., Landau damping. With KAE chosen

between 0.30 and 0.45, the damping rate v lay between 107> u_

1‘w The v-independence of the action transfer was tested

2
|

and 10

by varying «\,, holding kOLnIuO fixed. The simulations corrobor-
ated this independence.
We have thus used the electromagnetic simulation code to study

beat heating of a plasma in the linear regime of the driven density



disturbance. Steady-state theory was found to be useful in under-
standing the action transfer and plasma heating for small amplitude
electron waves. There was good quantitative agreement between

simulation and theory.
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2. Space-time mteractlon of opposed transverse waves in a plasma

Department of Physics and Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

{Received 17 August 1973)

The interaction of two opposed, intense electromagnetic waves, whose difference
frequency approximates the plasma frequency, is studied. Plasma heating ensues.
Energy is transferred to the lower-frequency wave throughout a uniform plasma, but

only in a resonance zone in a nonuniform plasma.

The nonlinear interaction of coherent electromagnetic
waves (lasers) in an underdense plasma (w, < w) is of

interest because of the potential for heating when the

difference frequency of the two waves is near the local
plasma frequency.* When this is the case, energy is
partially transferred from one transverse wave to the
other and is partially deposited in the plasma in the form

of electrostatic plasma oscillations. In the present note, -

we extend the work of Kaufman and Cohen® by including
the temporal evolution of the interaction.

We examine the transfer of energy between two trans-
verse waves of frequencies wo, wi, With wo > w. The
transfer is driven at the beat frequency € = wo — w1 and
at the beat wavenumber K = ko + k; (for opposed wave
vectors). The plasma is considered to be infinite in extent.
We assume that the dissipation rate » of the plasma wave
and the mismatch Aw(z) = @ — w,(z) are small, so the
interaction is nearly resonant.

The analysis follows that of Ref. 6, employing the
longitudinal dielectric function and using the same nota-
tion. Both the temporal and the spatial evolution of the
intensities of the electromagnetic waves are studied. The
electrostatic potential in response to a vector potential
A(z,1) is ¢(z,1) o [e' — 1]4%*(z,£) + noise. The behavior
of the transverse waves will be analyzed over time scales
long compared with »~'; thus, any potential ¢(z, ) pres-
ent at either the initiation or termination of the laser
pulses can be ignored as a transient whose decay occurs
in a time of the order of »~
Kaufman and Cohen’s® nonlinear coupled mode equa-
tion for the action fluxes in natural units is

@: + ¢ = (3. — ¢'3)h = —2Th4, 1)
where T'= -4rIme'(Q,K) and J = k|4|é
/(2mm?c*). The group velocities of the two electromagnet-
ic waves have been set equal to ¢, since we assume
w > w,. Because I' > 0, the higher-frequency wave loses
action flux J as it propagates to the right (increasing 2).
The action flux J; of the lower-frequency wave increases
as it propagates to the left. The conservation law for
action flux, from (1), is 3,(Jpo + Ji) + 3.(c/o — c/i) = 0.

For a uniform plasma the solution of (1), subject to
conditions that the w, wave is incident from the left and
the « wave from the right with step function profiles
O(ct — z) and O(ct + z) respectively, is straightforward.
The mismatch Aw and damping » are constant. One
transforms to new variables ¢t — z and ¢t + z, the char-

acteristics of the operators of (1). The equations are then

solved using the method of Maier er al.” In terms of the
input action fluxes, JJ and J' let p = J/J, n = (ct
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'. The generalization of

— 2)TX and ¢ = (cr + 2)I'J. The solutions for the rela-

tive action fluxes are
e e+t - 1),

pe*(e™™ + e* — l)‘l

Tot,2) = Jo(t,2)Jds =
Jt,2) = 0(t,2) /) =

valid for 5, £ > 0. For a cold plasma, ¢ = 1 — w / (Q2
+ iQ.i), so that I' =~ 41r(v,,/w,)[(v,,/w,,) + (2Aw/w, )]
The energy density deposited in the longitudinal wave,
Br(mc*/e)' oSl (R, k) — 1f, is ultimately available for
plasma heating.

@)

We consider the example of CO, lasers (wo ~ 2
X 10"sec™') with w,/wo = 0.1, »./w, = 2v/w, = 001,
pulse lengths =~ 60v;', and Aw ~ .. Significant transfer
of action occurs when the dimensionless space and time
variables are of order unity: n, & ~ TWict = wor™!
X wp t{(P%/2.5 X 10°W/em?) = O(1). Hence, appreciable
interaction occurs for intensities P? > 2 X 10°W/cm?.

Figure 1(a) shows the solutions (2) for p = 1. Dimen-
sionless time and space variables ¢’ = I'Jict and 2’
= ['Jf'z are employed. The pulse shape of the « wave
peaks and sharpens as the wo photons are turned around
and converted to w photons. The w photons “pile up” as
the w, wave propagates through the w, wave. Energy
transferred to the plasma then grows as the w, wave front
progresses to the left. Since the interaction rate depends
upon the product of the actions, we have chosen p = 1
to maximize the action transfer.

Analytic solutions to (1) for a uniform plasma but with
linearly varying leading edges for the two pulses are
obtained snmllarly If we define Ji = [3,J}], ¢ = (ct — 2)
(TJ6)"*, and r = (ct + z)(TJ4)"?, the action transfer
between the two transverse waves is described by

J(t.2) = 5(t,2)(T/I5)" = oexp(—o¥/2)

X [exp(—0?/2) + exp(pr?/2) — 1],
J(t,2) = S, 2)(T/T5)"* = prexp(pr?/2)

X [exp(—0?/2) + exp(pr?/2) — 1]7',

&)

valid for o, 7 > 0. Again marked amplification and *“pile-
up” of the w wave occurs just behind its leading edge

(Fig. 1()].

We next examine the case of a linear density inhomo-
geneity. We define the density scale length L
= |dIn n/dz|™'. The frequency mismatch now depends
upon position: Aw(z) = @ — w,(z) = Qz(2L)"'. 1t fol-
lows that T'(2) & 4mw; Q2 + (22z/L)*]"". For a nonuni-
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FIG. 1. Dimension-
less action fluxes Jo(1,
?) ————, . and
];(I,Z) ————— as
functions of dimen-
sionless time ¢’ and
position z’ defined be-
low, for input ratio p
= 1. Case (a) shows
step-function  pulse
profiles for a uniform
plasma, with

=

‘TJict and 2 = T'Jz.

Case (b) shows linear
pulse profiles for a

' -umform plasma, with

= (TJ;)%ct, and 2’

m (T7:)"?z. Case (c)
shows  step-function
pulse profiles for a lin-
ear density variation,
with ¢/ = 4uJct and
Case (d)
shows linear’ pulse
profiles for a linear
dens:ty variation, with
= (4gJ;)%ct and 2/

= (4nJ5)’z. In (a)

“and (b) for a uniform
" plasma,

T = 4mif’
+ (280)']". In (c) and
(d) for a linear varia-
tion of the plasma
density,
and 0.005, respectively
in the dimensionless
units of z’.
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K = 00025 -

form plasma, I'(z) is large (coupling is appreciable) only

-in a narrow zone around z = 0 [Q = w,(0)]. The width of
“this resonance zone has been defined as & = 27Ly,/Q by

Mostrom et al® We assume that koh > 1 to permit a
WKB analysis. :

Again, we follow the evolution of step function and
linear initial pulse profiles. Since T' o« »™' at the exact
resonance position z = 0, while the response width A
o », the total action transfer is only a weak function of
the damping ». In absolute units the action transfer is
linear in both the scale length of the plasma and the laser
intensity (for p = 1).5 Again, p = 1 gives the maximum
transfer _ efficiency. Figures 1(c) and 1(d) display the

‘numerical solution of (1) for »/@ = 0.01. Figure 1(c) is

the case h = 0.0025(47Js)™', while & = 0.005(4nJ;) * in
Fig. 1(d). Nearly all pulse profile modification occurs
within the resonance zone. For the step-function profiles
a steady state for the conversion of the w, wave to the
wave is achieved at times greater than 6h/c for the
dimensionless parameter i’ = h4xnJy chosen. There is no
such steady state in the case of linear pulse profiles,
because the unperturbed wave intensities are linearly
increasing functions of time.

These solutions to the coupled mode equations (1) are
valid as long as the transverse waves overlap within the
plasma. For a finite length plasma, the interaction can be
very different; for example, the possibility of relaxation
oscillation arises.” However, for a nonuniform plasma,
the interaction is appreciable only in the resonance zone.
In this case the solutions remain valid as iong as the
region over which the transverse waves overlap contains
the resonance reglon, regardless of the finite extent of the
plasma.
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3. Three-wave Analysis of Beaf Heating Coupled‘Mbde Eqﬁations.

_ This section will describe the three-wave analysis that becomes
necessary when in Eq. (32) the space-time variation of (uO’ul) is
sufficient to demand the inclusion of space and time derivatives in €.
The arguments of the warm plasma € become  + iat and & -'iax in
one dimension,‘Eq. (33). If Wwe assume le] << 1 and make use of Eq.

(33), then instead of Eq. (32) we obtain

e L A R AWl LGP

(40)

where QL -1s the Bohm—Gross frequency‘ QLZ = we2 + 3K2Ve2. Poisson's

equation allows us to replace § by 4ﬂK-2eﬁ. Then Eqs. (28) and (40)

form a complete set of first qrder partial differential equations

describing the three-wave interaction.

In the limit that the temporal or spatial rate of action
transfer dominates dissipation and mismatch, then the three linearized

coupled mode equations in a homogeneous, underdense (u%'<<wl,w0)

plasma can be written
(3, + coax) uo(x,t) = 8(15)111
(8t - clax) ul(x,t)' = -8(15)*u0 : (41)

‘ 2, -1 _ *
(3t *+ 3V, QL ax) if(x,t) = gy

where B = KZe/(meo) and a mmez/(ééﬂ). Analytic solutions for

the coupled mode equations in this form have been f‘ound.lg-21 Nozaki
and Taniuti obtain a special class of solutions corresponding to the

steady propagatioh of solitary pulses.20 Thé_solutions for the three

waves are functions of only x - At where A is the constant
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propagation speed and is amplitude dependent. Nozaki and Taniuti
find solutions whose forms are hyperbolic secants for ul(x - At)
and a(x - At), and hyperbolic itangent for uo(x - At) with only two
of the three amplifudes as free parameters. Since tﬁe system of
equations (41) in general possesses an arbitrary initial configuration
uo(x,O), ul(x,O), and ¢(x,0), there is no guarantée that the inter-
action will always evolve into a solitary pulse or pulses (see Fig. 10
and discussion below), '

To examine Nozaki and Taniuti's solitar& pulses we have recast

Eqs. (41) in the form

(3t + Vlax)al = -ia2a3
B .'*
(3t + V'Zax)a2 = -1a331
' *
(at + V38x)a3 = —iazal

and set Vi = —V2 = V3 = 1 arbitrarily. A‘right-going solitary pulse
solution is illustrated in Fig. 8, where we directly numerically
integrate the coupled mode équations. In performing the numerical
integration we employ the space-time characteristics of the linesar,
partiai differential operators to feduce the differential operators

to ordinary, first derivatives whigh are stfaightforwardly finite-
differenced and integrated by a first order predicfor-corrector N
method.67 The steady propagation of pulses éonforming to the soiu-
tions of Nozakl and Taniuti is verified and pictured in Fig. 8 for
value of - A = 1.01, -

If we consider perturbations to the solitary pulse solution

corresponding to an excess of energy in one or more of the three waves,
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a solitary pulse can evolve ;f normal convection can carry the excess
energy away from the solitary pulsevinieraction region. In Fig. 9 the

initial pulse profile for a. corresponds tb ten times the solitary

2
pulse amplitude in Fig. 8. The excess energy is convected to the left
and out of the system. The residual propagates to the right as part of
a éolitary»bulse in a direction counter to normal convection resembling
the solitary pulse in Fig; 8. For the cése of superposed, counter-
streaming (colliding ) solitary pulses with propagation velocities
nearly equal and opposite A = #1.0, no return tb steady propagation -
of soiitary pulses is observed within the duration of the integration

(see Fig. 10). In fact ]all and |a in Fig. 10 appear to fragment

5l
into three localized components.
In interpreting these numerical experiments we emphasize that

in all cases the three-wave interactions are initially localized; but,

while some of the wave amplitudes are localized, othérs are not. The
pump wave is present everywhere being proportional to tanh(x - At).
If there is steady propagation of thp;interaction as a solitary pulse,
then the interaction remains localized in the frame x - At = constant;
Zakharov and Manokov use the inverse scattering method to
construct a prescription for the general solutiop of Eq. (41) to
describe the resonant three-wave interaction of wave'packets.21 They
construct the necessary nonlinear operators in matrix form that render
Eq. (41) equivalent to the solution of linear integral and differential -
equations. For the case of three-wave decay certain general classes

of solutions are discussed; however, for specific initial conditions no

explicit solutions are constructed in Ref. 21, .
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Zakharov end Manokov claim that if Fhe pump velocity V1
satisfies either the condition Vj < Vi < V2 or Vé < V < V3, then
the wave envelopes can suffer large changes in their shape and incur
spectfal;broadeningvdue to the nonlineer interaction (nonlinear
c¢ollision of the three interacting wave packets). However, no signifi-
“cant energy exchange oceurs asymptotically at t = ; They further
claim that if the pump velocity satisfies the ‘condition V3 < V2 < Vi
_and one considers collisions of wave packets a1 with a, where

initially (t = -=) Iall |a2| >> laBI, then complete transfer can
occur subject to a threshold condition on the energy in the inter-

acting wave packets. If instead a collides with a3 where

N |a | > |a,| orif a, collides with a; where

initially |a,|, |33| >> lall no final (t = «) redistribution of

initially |a

energy results. _
If we include finite dissipation in Eq. (41) and generalize

11,23,52

to a nonuniform medium, then following Rosenbluth we obtain the

coupled equations o

_ 12
_(3t vyt Viax)al_ = -iazajlexp(-ixfx /2)

- V'zax)a2

'_(3t * v, -ia;al exp(ilez/z) (42)

(3t + v3 + VBax)a3 = -ia2a1 exp(ilez/Z) .

The unit of time has been scaled so that the characteristic growth
rate Yo of Raman backscatter inStabilitylin a uniform medium
(Iall >>-{a2|,|a3| and k' =0) is given by
2 _ 2 12 o ' .
= |2u0/cl Wy = la; [ The complex amplitudes a,, a,, and a,

correspond to Ugs Uys and 5 respectively.
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The quantity ko(x) - kl(x):- [QZ —vmez(x)]i/(Bvez)é' is the
difference between the spatially dependent beat wavenumber «k(x) =
ko(x) -vkl(x) and the wavenumber kp(x) satisfyingthelocal disper-
sion relation for a Langmuir wave: _92 = wez(x) + 3kp2(1)vez. If we de-
fine «' = (d/d:b ko(x) - kl(x) - [92 - mez(x)]%/(év'ez)é},where x=0
is the position of exact frequency and wavenumber matching, then the
quantity  K'x2/2 measures the spatially aependent phase mismatch of
the three-wave coupling, produced by the plasma nonuniformity. The -
linear dissipation rates of the three waves are given by vl, Vs

~and v3 respectively. The group velocities are denoted by V., V2,

and Vé which are all positive quantities, whose WKB variations are

ignored.
For initial conditions corresponding to -laZI,IaBI << |a |,
1
integration of Eq. (42) verified the linear parametric backscatter

instability growth rate for a uniform plasma (k' = 0), which in our

units is Yo |a For a nonuniform plasma assuming a linéar density

1l
constant ), we obtain convective saturation with a net

profile (k'
amplification factor exp(nyoz/lm'vlvzl) for the backscattered ampli-
tude provided negligible pump depletion occursf
'alol'>>.exp(nYO%/thlVZI)lazol. A detailed examination of the
influence pf plasma nonuniformity on parametfic instability appears

in Ref. 22. 1In the limit of significant pump depletion, chafacteristic

reversible oscillations of energy from the decay products a2,a3 to

- the pump wave a, were observed. -We shall refer to this phenomenon

as nonlinear oscillations.66

The numerical integration of the system of Egs. (42) corres-

ponding to beat heating is shown in Figs. 11 and 12. In both the warm
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ﬁnd cold plasma cases we have set the input ratio equal to unity,‘
|a1| = [azl = 1, and chosen !a3| = 0 1initially. InFig. 11 we
assume a cold plasma with dissipation of the Langmuir wave assumed due
» to Coulomb collisions. The group~vélocity for the Langmuir wave
vanishes, V. = 0; and we ignore the dissipation of the high frequency

3

1 = v2 = 0. We select parameters v3 = 0.2, Vi = V2 =1,

and «' = 0. The results (Fig. 11) are reminiscent of those pictured in

waves, Vv

vFig. 1 of Section II.C.2, if we average err the nonlinear éscilla-
tions. _ 7
_ Iﬁ.our solutions for beat heating in Sections II.C.1 and

II.C.2, we assumed that the density pertuibation could be expressed

in terms of the ponderomotive potential and the linear dielectric
function. Our integrations here retain the jime derivative and, in’
subsequent cases, the spatial derivative in the equation fdr thé
longitudinal response, Eq. (40).‘ Numerical integrations of thé coupled
mode equations, retaining Bt and ax in the equations for all three
modes, Eq. (42), were performed with various dissipation rates. .In
the 1imit of rather large dissipation, |v3-'|->>_|at 2n §1, |V38x kn§|,
the results'df the integrationévhere conform with those in Section.
IT.C.2. This regime of the nonlinear interaction corresponds to the
plasma wave being overdamped on thé slow, nonlinear time scale.

With increasing plasma wave dissipation, the nonlinear oscillations
diminish, énd there is improved quantitative agreement with solutions
where the small amplitude plasma wave is ireated as being quasi-
steadily driven. |

The results of the integration of Eq. (42) in the warm plasma

case are shown in Fig. 12 for parameters Vi = Vé = 5, V3 =1,

vl =V, = o, V3 = 0.2, and K' = 0. The convection of the Langmuir
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wave appears as an asymmetric distortion in space of its amplitude,
aB(x,t) in Fig. 12. The effect of convection can be viewed as a
spatially dependent dissipative term veff(x) = V33x. Then increasing
. 3° Nonlinear oscilla-
-tions decrease; however, there is a pulse asymmefry or distortion

V3 is similar to increasing the dissipation v

produped by the sign change in vgax operating on the front as
compéred to the back of the plasma wave ernvelope a3(x,t) (see Fig.
_ 12). The three-wave interaction dominated by convection (Fig. 12) is
otherwise qualitatively similar to that dominated by dissipation
(Fig. 11),vhich agrees with the conclusion of Ref. 58.

~In thls section we have seen how beat heating is influenced
by relaxing the assumption that § = [e{kQ,K)-j]}nmou;/e, and by
replacihg it with a linearized wave equation for ¢ where 8t$ and
: 3x6 appeaf. We have reviewed the case of pafametric instability.
For the case of mode coupling when>there is appreciable energy
transfer from_the pump to the decay products we have found two
phenomena which can occur only when we retain at and ax in our

equations for all three modes: reversible nonlinear oscillations66

20,21 We have concluded this

and the propagation of solitary pulses.
section by demonstrating under what circumstances solutions for the
three-wave interaction with the terms 3t6 and 3x$ present are

similar to those considered earlier without them, i.e., 8t6 = ax$ = 0,

4. Introduction to Nonlinear Beat-Wave Effects

In this section we begin consideration of beat heating in the
nonlinear beat-wave regime. We survey competing nonlinear phenomena
and establish for what parameters electron trapping is the dominant

nonlinear effect.
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a. Onset of trepping in beat heating simulations

We have used simulations to investigate beat heating when the
electrostatic wave becomes of sufficiently large amplitude to trap
electrons. Trapping can cause resonant particles to act as an energy
source or sink for the longitudinal wave which is scattering the
'photons. Consequently the overall efficiency of action transfer, and
hence‘heating, can significantly decrease after the onset of trapping.

Once a large amplitude beat wave is excited, after an interval

of time of the order

Ty = 2n/mB = 21r(2n<2e|$|'/m).é . (43)

the 'bounce pefiod", the trapped particles can return energy and

68-75 If the orbit modification due to

momentum to the longitudinal wave.
the trapping is included in the dielectric fuhction, the dieleqtric
function becomes time dependent; and its imaginary part changes sign
on the fime scale of the bounce period.73 From Eq. (34), we see that
the direction of action transfer congequent1y reYerses (Pig. 13v):
energy fléws from the lower frequency electromagnetic wave and the
electron plasma wave back to the higher frequeﬁcy electromagnetic
wave. This is obsefved in simulation whenever a significant fraction
(210%) of the particles is trapped.

We offer a theory for beat heating when the electron wave is
no longer small in amplitude and when trapping is the principle
nonlinearity. For trapping to be important, the longitudinal wave
must be of sufficiently large amplitude to reach back into the distri-

bution function and trap an appreciable fraction of particles. If

we define a velocity characteristic of the trapping v, = (2e{¢|/m)é,
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then the condition for trapping becomes v¢ - Vp £ C?TZve) where

v

$
electron thermal velocity. Moreover the period over which trapping

is the phase velocity of the longitudinal wave and Vo is the

occurs must be éhorter than the length of the experiment Texp or the
characteristic time for some ignored effect to become important T
(e.g., significant growth of modulational or parametric decay

21.)

instability™ ). We can then observe trapping if Ty < Texp’TI' Our

simulations typically last times T of order 100 S w T $ 400,
The condition for there to be an appreciable number of trapped

particles can be rewritten as
- ' - i .
ve = (2e|¢|/m)® 2 v [2-1/a | . | (44)_

Further if we replace the left side of (44) Vi by ZW/KTB, we can

neatly summarize all the above conditions on trapping as follows:
. -1 e
Ty < (ZW/KVe)IZ - l/KAel ' Toxp? T - (45)

In practice, for parameters of a particular simulation, one
can use linear theory to predict (2e|5|/m)%'v¢'-1 or |f1|/nO and
to check the criteria above, Eq. (45), to ascertain a.priori whether
there will be much trapping. If we use Eq. (32) and assume le| << 1,

then we can evaluate the scalar potential and write the condition (44)

as
% | 2
Iuou1 | 2 (1/2)(2\(e - we/K) |;| .

Motivated by Eq. (33), we propose that a suitable model for the linear

or nonlinear dielectric function evaluated near a resonance (e = 0)

is given by
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€ = 2(A+iv)/R ' - (46)

where A isfthe mismatch, vis the dissipation rate, and the beat
frequency Q satisfies Q = w,. We shall construct the nonlinear
dielectric function in the next section. We have defined the mismatch
as the difference between the beat frequency  and the Bohm-Gross

. - . - 2 _.2' 2 é
frequency Q: AzZQ-Q, QL = (we + 3, )<,

close to a resonance the frequency mismatch is small compared to the

If we assume that

dissipation rate (|Re €| << |Im €|), then the criterion for appreciable

trapping to occur is ' )

|u0u;| > (av, - we/K)Z(v/me) . | (47)

To evaluate the second criterion, that'trapping be observed

during the experiment, we use Eqs. (10) and (43) to obtain
2|ﬁ|/n0 = sz/we2 . o (48)

From Eqs. (43) and (32), and again evaluating the linear dielectric

function near resonance, we express the condition 5 < Texp as

)2 (49)

* 2
luge, | > (w /x) (v/we)(Zw/Qerexp ,
where we have made use of Tg = 2n/qB = Zﬂ/KVT. If the condition (47)
is marginally satisfied then (49) takes on the form |
WeTeyp 2rfl - 2er, | .
For realistic plasma parameters, e.g., a dense 6-pinch:
17 - S |

ny =107 e, T_= G50 V), w /v =100, ke/w, = 10, and ©O,
lasers (9;6 um and 10.6 um waveléngths, setting Iuol =‘|u1|), one

obtains from (47)
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2 - &3 %10 eu/sec)? " (508)

and from Eq. (49)

’

(w1 )2 > (2n)2|u0|-2(v/wé)(we/K)2 . : - (50b)

If (50a) is marginally satisfied and me/K i*éﬂ?BVe), then to observe

trapping we require w_ T > ém, which is quite easily satisfied in

e exp
all our simulations.

‘b. Simulations of nonlinear beat heating: electromagnetic code

We have employed our electromagnetic simulation code to study
beat heating when the electfon wave traps particles. For the sake
of simpliciiy the plasma was taken to be homogeneous. The simulations
were severely limited hoﬁever, by the finite plasma slab width being
only of order five beat wavelengths (see Fig. 14). This leads to a
certain number of unphysical effects which will be described in this
discussion.

In our comments and observations conce:ning the simulations,
some mention of temperature and heating is made. Temperature is cal-
culated in the code by subtracting the (relativiétic) kinetic energy
density of the local sloshing motion of the particles from the total
kinetic eﬁergy density, in‘the frame of the grid; Heating is defined
as the time ratevof change of the average local temperature.

\

"In Fig. 13 the temperature and the action flux transfer are,
plotted as functions of time for a simulation exhibiting trapping
(corresponding to Fig. 14). There is strong action transfer and
heating at early times while the density disturbance and the distribu-
tion function modification are still linear. There then follows a

marked decrease in the heating of the plasma at a time T8 after



-53-

initiation of the beat distérbanée, accompapying the reversal of
action transfer. Meanwhile the velocity distribution function has
evolved appreciably with a distepded nonmaxwellian tail forming
beyond fhe phasé velocity:and a plateauboccurring near the beat-wave
phase velocity (Fig. 14b). |

_ Séattéring.continues, however, and there is a return of the
heating'and action transfer to somewhat diminished rates as compared
to the early stage of strong beat heating. Beat heating continues as
the three-wave Interaction evolves into a regime best described as

11,12,76 Now the beat-wave

induced Thomson scattering, KAe > 0.35.
phase velocity falls much closer into the body of the velocity distri-
butioh fuhction at a-point'where the distributién has negative slope
(Fig. l4c). By the consideréble modification of the distribution
funtion and from thé plot of the electron térmperature, Wwe observe
that there has been considerable electron heating over a relatively
short time: ATe/Ie(O) z 5 over weAt = 40. | |
Figure 15 displays the results of sevefal simulations of beat
heating in a uniform, finite plasma slab wheré the increase in
effective thermal veloeity squared ovef the bounce period Tg is
plotted_against initial ponderomotive potential in natural units
|u0uI|c—2.‘ We find empirically that vez(ré) - véz(o) is linearly
proportional to ]uouil. We would be motivated to seek an explanation
for‘this interesting result were it not for certain unphysical simula-
tion effects that occur. l_ | |
When there is appreciable frapping, particles absorb momentum

from the beat-wave and are mdre'readily'carried to the right end of

the system, where they are either electrostatically returned, or
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eléstically reflected if they reach the system wall. In a longer
system, trapped particles would have a longer time to bounce back and
forth in the potential well of the beat-wave, exchanging energy and
momentum, before encountering the edge of the plasma. In our simula-
tions after one or two bounce periods a significant fraction of the
pafticlés has been reflected from the right wall of the system..
Once reflected.these particles no longer can resonantly interact with
the beat wave, and they artifically symmétrize the distribution. |
function and phase space (Fig. 1l4c). In a mbre realistic plasma model
'strong wave particle interaction persists forAa much longer time. Then
additional dissipation mechanisms should be cohéidered for finite

77

amplitude beat wéves, e.g., the side-band instability. In the next

subsection competing dissipation mechanisms,‘the electron-ion para-
24

metric decay and modulational instability,” are considered;

c.. Competition of beat heating and beat—wéve trapping with

other effects

We begin by examining’ under.what condition the two electro-
magnetic waves can»bropagate across the plasma to induce beat heating
without_first suffering significant attenuation due to parametric
Raman backscatter instability. We shall subsequently investigate
nonlinear processes competing with particle traﬁping by the beat-wave.

In Section II.C.3 we reviewed the result due to Rosenbluth
et al.53 describing the parametric amplification of decay products due
to Raman backscatter in an inhomogeneous medium. The condition that
appreciable pump attenuation occurs due to Raman backscatter in an
inhomogeneous medium of scale 1ength Ln is given by

L, = 2n702/|K'V1Vé| >> 1,78’79 For the .plasma parametérs
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corresponding to a dense S-p;nch with Pn = @(10 em) and CO2 lasers;
~ the condition becomes |u0|2'§$ [Ln(cm')]'l(lo9 Cm/sec)2 =
CR1017 cmz/secz). Comparison iith the threshold for trapping, given
by expression (50§), indicates that trapping can occur without there
being much attentuation due to Raman backscatter.
 Be6ause the ions afe fixed in owr simulations, there is no
possibility for parametrid decay, modulational inétability,z4 or’
noplinear Landau damping by ions. In a real plasma these.processes
will, h&wever, compete with trapping. The thresholds for these pro-
- cesses canvbe quite low compared to trapping. But since their growth
rates scale to a higher power in the small parameter vT/V , there is
a regime of beat-wave strengths in which electron trapping occurs
first. ‘ |
To 1llustrate this, we examine thé possibie parametricAelectron-
ion decaj of the beat-wafe. For purposes of discussion we quote the
threshold and growth rate derived by Nishikawaz4 for the decay of an
Anfinite wavelength Langmuir pump wave into finite wavelength Langmuir
and ion acoustic waves.. For the actual case of a finite wavelength
beat wave acting as the pump,.the thresholds for parametric decay or
modulationai instébility are reduced but the growth rates do not

change much.80

Nishikawa found that the threshold for the decay instability

‘is givenvby

Vv, = 4(vevi/wewa)é , | (51)

where Vv 1s the magniiuaé of the longitudinal oscillation velocity,

Vg is the dissipation rate for the electron'or ion acoustic wave,
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and Wy is the ion acoustic frequency. For the growth rate Yei

of the decay instability, well above threshold, Nishikawa found
Yo lu, = (17400 No /ot (52)
el e e et e’ i '_ .

It will be useful in the following to observe that from Eq.
(43) and the electron longitudinal equation of motion we obtain
¥ = sz/v¢. From Eq. (32) and Eq. (43) we recall that
sz = 2luOuI]/|e|. The threshold for trapping Eq. (44) can be

rewritten as

¥/v

s =142
e 2 KA[2 - (x )7 . (53)

Comparison of Eq. (53) with Eq. (51) reveals that the threshold for
decay instability can be very much lower than that for trapping in

8-pinches and laser-pellet plasmas, for example;

If we, however, compare the growth rate of parametric decay
Eq. (52) to the electron bounce frequency wg T KVp = we?/vT, we find

that
Yetlop = (14Xm/m F0 ) (vsv,) (54)

At threshold for trapping, described by an equality in (44), we

obtain by substituting for 'vT

Yop/ug * (1/4)(me/mi)é(|<xe)*|2'- (K)\e)-ll .

For 0.2 <kA, < 0.4 and m 2 1836 m_, then Yei/wB < &(0.1).
We conclude that trapping can occur before there is significaht

growth of the decay instability.
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In our simulations trapping and the ensuing deformation of the
velocity distribution function are the most important features affecting
beat hégting. There is also convection in both the linear and nonlinear
regimes of beat heating which can produée effective loss and mismatch.
To test the importance of convection, we recall the formulation of the
~ coupled mode équations as considered in the pféﬁious section, Egs.
(40)-(42). In Eq. (40) the Coulomb potential, or, using Poisson's
equation, the density pertquation satisfies a linearized wave equation
driven bj»the ponderomotive force whose left s%de becomes (in the

WKB limit)

L

(3t + v+ Vg 3, - iAa) f(x,t)

where vgl is the group velocity for an electron plasma wave, Vv

1s the dissipation rate, and A is the frequency mismatch A = Q - QL.
We can estimate the effect of convection as being of order
vgz/L = 3(K2Xe2/KL)we = C?(0.0l)we compared to Vv = C?io.l)we

1

for typical4simulations, where we have estimafed Bx ~ L7 usihg

the length of the plasma L.

We havethereforeignored convection and treat the beat distur-
bance as a ﬁave driven near résonance with both damping and mismatch
functions of time and implicitiy of ;ave amplitude. We shall incor-
porate theée nonlinearities into the slowly time dependent dielectric
responseiof the plasma ENL(Q,K; t) = €' + ie". The nonlinear
| "dielectric response is formulated by including the nonlinear, time
dependent, complex frequency shift to the’linear normal mode fre-
quency due to trapped particles. We construct the nonlinear dielectric

function and the nonlinear normal mode frequency in Section II.C.5.
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‘ d. _Mbtivation for a model problem

| The qualitative dependence of action transfer upon €L has
been verified ih the fully electromagnetic simulations discussed so
far. The difficulty with a quantitative analysis.of ENL in our
electromagnetic simulation derives from the finite length of the
plasma which is only of order five beat wavelengths (see Fig. 14).
In our simulations after a time as short as one or two bounce periods
of a rebresentative trapped electron; a large number of accelerated
électrons have elastically scattered off the right-hand system
boundary. The ensuing artificial symmetrization of the distribution
function and the sudden termination of strong wave-particle inter-
action after wall reflection of an individual electron distort the
evolution of nonlinear beat heating in an unphysical way. In addition
there is a nonlinear oscillation of the entire plasma slab beéause of
the accumulation of space charge at the slab edges due to the trapping.
We have therefore constructed a model problem where we cqnsider the
ponderomotive force driving the beat wave as a.fixed amplitude
external driver in a uniform, infinite, periodic plasma.

| For purposes of simplification; we hold the driver steady and
simulate the electrostatic ponderomotive driver in a one dimensicnal,
electrostatic particle code describing a periodic, homogeneous, warm
electron plasma. Section II.C.5 takes up the theoretical analysis of
the model problem generalized to include a time dependent driver
amplitude and discusses the simulations. Section II.C.6 considers
the consequent back-reaction of the nonlinear dielectric response
on beat heating. Electrostatic simulations are performed with the
previously}fixed amplitude ponderomofive'pgtential $0 replaced by

mﬁdu;/e;' and we integrate the linearized coupled mode equations (28)
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describing U, and 4 in the temporal limit (3x + 0). We emphasize
that, in the model electrostatic simulations to follow, connection

with our theory of beat heating is made by using the following expres-

sion for the ponderomotive potential:
¢0(x’t)‘ = (m/e) uO(x:t) ul(x:t) . (55)

Equation (55) is obtained from the relation between the vector
potential and the transverse oscillation velocity, and from Eqs. (9)

and (26).

5. Resonant Excitation of Nonlinear Plasma Waves

a. Introduction

There has been considerable experiment3168-71 and fheoreti-

ca172°7§ attention given the study of the damping and frequency shift
of freely propagating, 1arge;amplitude, longitudinal electron piasma ‘
oécillations. Relatively little work has been done conéerning finite
amplitude waves resonantly éxcited by the modulation of a high

17,81,82 or by the low frequency beat of two high fre-

frequency wave
quency waves.34’43 In this section we study the propagafion of
resonaﬁtly éxcited, longitudinal plasma waves. We formulate the
resonant plasms response f{rom the point of view of considering the
approach to a self;consistent equiiibrimmdeterminedby a nonlinearly
induced frequency shift. The formalism is based on the construction

of a nonlinear normal mode, allowing for the time dependence of the

nonlinear eigenfrequency.
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"b. General fermulation of the modei problem

For simplicity ie consider an initial value problem, and
assume the plasma is infinite and uniform. We begin b& defining the
total potential @s(x,t) to be the sum of the external potential
¢os(x,t) (possibly species~-dependent, for example, a ponderombtive

40-42 or a true external potential supplied by a grid or a

potential;
slow-wave structure), and the self-consistent Coulomb potential

o(x,t): 0%(x,1) = o(x,1) + 9.%(x, ). (L1tvax®?784 ang s. Johnston O
have exploited the utility of the idea of a beat-wave potential to
hiéh'degree in describing induced scattering.) The unperturbed

Plasma is assumed to be spatially uniform; ali wave forms and perturbed

quantities have the same spatial phase dependence:

o%(x,t) = 65(¢) exp ikx + c.c. Poisson's equation can be written
8%(t) - 0,°() = 4mcZo(t) (56)

where p(t) is the total charge density summed over species and over
linear and nonlinear components, p(t) = i: ps(t) =

T o) + s0%0)). T

° We postulate a relation for the nonlinear susceptibilities:
p3(t) = -[K2/4n] J'w dr QS(T) #(t - 1), with the wavenumber and
amplitude dependenge implicit. The kernels for the linear suscepti-
bilities QLS(T) are obtained by replacing 0°(t) with only its
linear.pgrt pLs(t) on the - left side. If we separate the dominant
time dependence, p>(t) = p°(t) exp[-iQt] + c.c., and similarly for

the potentials, we obtain
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5%(t) = '-[xz)z,n»} [ ar §%(7) expftor] &t - 1)
) . | |

-[n2/4wM dr (1) exp[iQ‘r'- 'r(d/d%, )] 5(f) , (57)

where we have‘used the propagator exp [—‘r(d/dt )] () = 3(t - ).
The _bperator. (d/at) within the argument of the exponential in
Eq. (57) therefore only acts to the right. -

'Utilizing the definition of the Laplaée transform of the
susceptibility x°(w) _f dr (1) exp[mrJ » we sum Eq. (57) over
species and substitute for p(t) from Eq (56), which we have

" rewritten in the form &(t) = [41r/nc ]B(t), to obtain.

e(n + 1d/at) §(t) + Z x3(2 + 1a/at) $Os(t) = 0. (58)
. |

We have defined the nonlinear dielectric function
e(w) = Z 1 + x%(w), with its wavenumber and amplitude depehdence

S .
implicit. For the frequency-like argument w, we use & + i(d/dt).
The differéntial operator again acts only to the right on 5( t)
and $,%(t). |

If the external ion potential is negligible, which is the
case for the v x B ponderomotive force (Eq. ( 8)) considered here,

and for the ponderomotive forces considered in Refs. 12, 25, 40, 41,

and 42, then Eq. (58) becomes

e(Q + 1d/dt) Vée(t)y = [1 +xiq + id/dt)] 8,°(t)
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If the externsl potential acts equally on the species, e.g., the
potential due to.a grid, or if the ion susceptibility is negligible,
Eq. (58) gives e(q + 1d/at) 8%(¢) = §,%(¢).

- At this point we digress briefly to consider the concept of a
nonlinear normal mode. In the absence of the external potential
¢os(t) »> 0, and for slow time dependence Q-l(d/dt) + 0, Eq. (5?)_
defines a nonlinear normal mode: s(wNL; K,$)5 =0, i.e.,
e(wNL; K,&).= 0. 1If we express the nonlinear dielectric response és-
‘e(w; K,$) = ei(w; k) + 8e(w; k,$), where 8¢ 1is the nonlinear
increment to the dielectric function, then we can determine the complex,
nonlinear normal mode frequency Wy, ES W + Sw. The complex, &igggg
normal mode frequency w = QL + iyL is determined by eL(wL,K) = Q,
and - 8w is then the complex, nonlinear frequency shift. We can
Taylor series expand eﬁuNL; k,$) around wp to obtain
E(wNL; K,0) = EL(QQ; K) + és(wL; K, $) +.E(wL)6w + ... = 0 where

_ 0 |
€ = 3e/dw. Asspming Idumel << 1 in order to truncate‘the expansion,

we find

Sw = -Gé/E, . (59)

wL; K,$
We return to Eq. (58) and now Taylor series expand € around

wy to optain e(wNL *Q -yt id/dt) = sigﬁL) +

E(wNL)[Q - Wyt i(d/dt)] + +++ ., We consequently find that to lowest

order in [Q - wg + 1(a/at)|/[wy| << 1, and for l$oil << |$Oel’.

E(QNL)[Q "t i(d/dt)] ®) = [1 s xHa+ id/dt)] <7>oe(t)

(60)



Equation (60) describes the selfrsOnsistent evolution of the nonlisear
plasma response &(t) to the driver $O(t). The problem of explicitly
deducing the nonlinear normal mode frequency Wy, ! and of evaluating .
Eq (59) from a calculation of the actual orbit modifications induced
by the finite wave amplitude, ‘remains.

For 60 ®(t) = 0 and ld gn ¢(t)/dt]| » 0, use of the Poisson

equation and Eqs. (57) and (59) leads to
sult) = [anaetup)] [300) - 50 ate) . (61)

From Eq. (61), we observe that it is the nonlinear incrément to the
total charge density perturbatioh that gives rise difectly to the
complex frequency shift. We can make some progress in calculating the
particle orbit modifications if we can assume that the wave amplitude
is nearly constant, d§/dt = 0, i.e., |d fn §/dt| << |6w|.”273

c. Application to the excitation of electron plasma waves

The separation of the linear and nonlinear plasma response is
‘the essence of the subtraction procedure of Mbrales and 0'Néil.73

They appealed toa Vlasov analysis for a specific kinetic model from
which'they derived the dielectric function € and deduced the temporal
or spatial dependence of the free propagation of finite amplitude
electron plasma waves. We can adopt for tﬁevdriven-wave problem, the
results of any specific calculatioﬁ'of orbit‘ﬁodifications due to
finite wave amplitude for the free-wave problem, ﬁrovided_that in the
kinetic description employed, the particle accéleration depends on

the gradient of the total potential,‘ -[es/ms]v ¢%(x,t). Thus

results derived for the complex frequency shiftv Sw, depending on $

in the problem of freely propagating waves, can be used to describe
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the driven-wave problem, if we replace 5 by &° in the partibie
orbit calculations and in the nonlinear eigenfrequency relation.

To illustrate our theoretical construction, we consider
resonantly excited electron plasma waves in thé case that trapping
constitutes the principal nonlinear effect. If‘the plasma response is
quasi-steady, i.e., if we can set d/dt =+ 0 in Eq. (60), then we can
utilize the calculation of Morales and O'Neii,_for example, to deduce
Wy, and & self-consistently. (We have dropped the superscript
denoting that ¢ is the total potential for electrons.) At this
point we emphasize the fact that Morales and O'Neil's theory is
analytic and perturbative, but not self-consistent. As in most of
-75 ¢

the analytic theories72 describing trapping, the potential

1s assumed constant.

épecific application of Mbraies and O'Neil's theory requires
that certain assumptions be valid to juspify their perturbation
expansion. The perturbation analysis requires that VTQ/K << ve2, i.e,,
weak nonlinearity, and = in order that the wave amplitude be nearly
constant lyLl/mB << 1, i.e., weak Landau growth or damping relative
to the bounceifrequency. The two conditions require that Q/k 2 4ve.
We have defined the Bounce frequency and the trapping velocity:
wy = Kvg = K[2|e5|/me}%. At this ﬁoint it is convenient to introduce
the real and imaginary parts GQ(t)'E S(t) + iSY(t) of the complex
frequency shift.

To evaluate the right side of Eq. (61) we réplace $k£) by
#(t) in Morales and O'Neil's calculation. The unperturbed distribu-
tion fuﬁction fo(v) is Taylor expanded to second order around £/k

to find that 6Q = d°fy/dv’ and 8§y « dfy/dv evaluated at the phase
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velocity /x. The time dependences of &t) 'and. 8y(t) are shown
in Figs. 1 and 2 of Ref. 73. Morales and 0'Neil find that the dissipa-
tion '[YL + GY(t)] has a damped,.oscillatofy time dependence with
frequency wB' and phase-mixes to zero over a time & (5 to lO)(2ﬂ/mB).
The freqﬁency shift oscillates at ZwB and asymptotically approaches

a value,
sa(t +=) = -1.63 6, | (62)

| o= -1 [2’2]2 2 | ,
where _GQO Re € .(QL)VT Wg /| a fo/dv . Asymptotically there is
no dissipation, but the resonantly excited wave acquires a finite

negative frequency shift proportional to wg-

d. Equilibrium response

The vanishing of the total dissipation ahdvthe approach of
the freQueﬁcy shift to a stead& value determine an equilibrium. By
setting (d/dt) = 0 in Eq. (60) and defining the relative response
R = 5/$O, the normalized linear mismatch frequency

AL = E(mNL)[Q "QL]’ and the normalized nonlinear f:equency shift

SAC|R]) = ;(mNi) 50(t = »), we can describe the equilibrium by
oy - oRD)R =1 (63)

If we express the response as R = r exp(i6) where r = |$/$o| and

® 1is the relative phase, then Eq. (63) becomes

(64)

+
=
L]

[AL - aA(r)] r =

The sign 6f the right-hand side of Eq. (64)'cqrresponds to a value of

8 =0orm, which is determined by the sign of 4, - 8A(r).
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Equation (64 ) implicitly determines the magnitude r of the
response.  If we attempt to prepare the lineér'mismatch and wave
amplitude in such a manner as to make A -VSA(r)‘ vanish, or a random
fluctuation in the response occurs to effect the same, then according
to Eq. (64) the response r should diverge; Rather than diverge,
however, the respohse.exhibits finite dissipation and time dependence
necessarily.- The approach to a‘new equilibrium is then described once
again by Eq. (60).

For the case of trapped electrons the nonlinear frequency shift

3

can be modeled &8A(r) = -ar® where Eq. (62) determines a. Then

3

Eq. (64) leads to a cubic equation in the variable r* describing the
possible equilibria. Presuming the plasma parameters to be fixed,
the free parameter governing the nature of the equilibria isvthe
normalized linear mismatch AL. The driver amplitude has been
removed by scaling, r = |5/$0|.

Figure 16 illustrates graphically the hature of the possible
equilibria. For AL > 0 there is only one equilibrium poséible.
Multiple equilibria occur for ap < 0 and (-AL-)3 > (27/4)&2. We
concludé.that at least one equilibrium solution always exists and is
~described by Eq. (64) subject to.its consistency with earlier assump-
tions on the weakness of the nonlinearity. We defer discussion of

the stability of the equilibrium until after we consider momentum and

energy transfer.

e. Energy and momentum conservation laws

To understand the time dependence of the nonlinear frequency
shift and dissipation, and consequehtly to appreciate some of the

details of the approach to and departure from equilibrium, we calculate



000042035363

- e |
the energy and moméntmn exchange between the driving potential and
_.the noﬁiinear plasma response. The derivation here assumes no particu-
lar kinetic model for the plasma. The momentum and energy balance
considerations of Morales and 0fNe1173 are generalized to the case of
an externally driven plasma wave. |

| _ 'Fox} the momentum exéhange, we expres.s -the time derivative of

the momentum density P averaged over the length X = 21n<-1,

dP/dt = f(‘dX/X) p[-axtbo(x,t)-ax«b(x,t)]} =

1ep(t) 87(t) + cc. + X |o|%) . (65)

We have used the identity O = fdx pVé(x,t) 1in obtaining Eq. (65).
The higﬁer order terms in Eq. (65 ) will be ign_d:ed. Using -
bs(t) = -[Kz/lnr] xs(fz + id/dt) 58(1".),. we sum over species to obtain
p(t) = [K2/4Tr]{[l - g(Q + id/dt)] #(t) - z_:' X (2 + ida/dt) 508(13)} .
Appropriate to the electron wavé case, we ignore ion contributions
and erpénd e(Q + id/dt) arouﬁd w‘NL.’ és in Eq (60), in order to
gx;n'es's the right side of Eq. (65) as a function of. 9.

| We can wformally express the nonlinear contribution to & in
Eq. (60) as follows: Elwy) = (3/2u)(ey + '<se)|““L -

) + 3¢/ x |, + Sw(9e/dw) + defdw| =
€ ml“NL [EL w w ]‘”L

_ EL[]' + 3(Ge/€L)/3w] = e-L[l +B}, where we have used'Eq.' (59). We

epluyg

evaluate EL and B = a(Ge/EL)/aw:vat wr - At this point we intro-
duce an explicit ordering scheme sugggested by theory and verified in
our simulations: we assume that Q,Qi‘ ~ O’(l)we H

mB,GQ,we Re B:(Q - QL):(d/dt) ~ @'(h')we; and vwe Im B)YL)GY ~ O(nz)me:

where n << 1.
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From Eq. (65), we then find that to lowest order in n the

momentum exchange isgiven by
dP/dt = x Re EI‘Fd/dt) - 2y + 67)] IK5|2/4n . (66)

Transposing the time derivative of the linear wave momentum,
(d/dt) x Re EL|K5|2/4w, to the left side of Eq. (66), we can reduce
Eq. (66) to a statement describing the momentum in the resonant

particles:

(a/at) [P - « Re & |x8]2/4m] = -2(v; + 6v) « Re &/ |xB|%/um .
(67)
The momentum P can be thought of as the sum over the linear and
nonlinear parts of the wave momentum, and the particle momentum‘in
resonant and nonresonant partieles exclusive of that attributed to the
wave momentum. Thus on the left side‘of Eq. (67)_the linear wave
momentum.has been subtracted, leaving to lowest order in n the
iinear and nonlinear chanées of -the momentum in the resonant particles.
We have generalized to thevnonlinear case the linear concept that the
change in the momentum of,the'nonresonant pafticles, exclusive of the
wave momentum, is negligible.
For the energy exchange we -construct the time derivative of
the average kinetic energy density K, integrating by parts and using

the continuity equation and Parseval's equality,

dKk/at = -f-(dx/l) J(— 8x°>= ;-f(dx/x) o(dp/dt) =

[ Pran) 8-10 + (asat)) {0 + 1asat) - 1]6 +eoe. + O([3[%)

(68)
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" where J'.is-the longitudinal current density. In the extensive
algebraicvmanipulation that Eq. (68) leads to, we assume the same

ordering scheme used earlier and calculate the kinetic energy invthe

driven wave frame, i.e., Q = 0. If we substitute

e(id/dt) = E(u;NL)[n - ur * i(d/dt)] + (1/2) E(“}«L)[Q - W+ i(d/dt)]z
and define the linear wave action density JK(t).= Re ELlng(t)|2/4n,

we find that to Ofn’)
(d/dt){x - [ta- a9, - |.<$|2/4n]} ]

- [entazar) + aasazar)] g, + Re E(Pum[18(a%/atDIE + cucl] .
(69)
 In the plasma frame, the linear wave energy of a free wave
(¢ - ¢) is given by [3((0 Re sL)/am]QL.Im(t)I /41r = QLJK. Because
the driven wave is excited at frequency  rather than at QL’ we
‘ ]
must evaluate [3(w Re eL)/aw] at , which gives {Q + (Q -1QL)JJK
for the linear waveenergy in the plasma frame (ih the driven wave
frame: (Q - QL)JK). Since the field energy is given by |K5|2/4n,
. the left side of (69) is the time derivative of the total particle
kinetic energy with the kinetic part of the linear wave energy
subtracted away. We interpret the residual as'the energy exchange

rate due‘to resonant particles, evaluated in the driven wave frame.

Then to lowest order in n, we have the expreésion

(d/dt)KRv —[2(d69/dt) + GQ(d/dt)]JK o

+ Re & (Pm)[187(a%/at® ) « e.c] (70)
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where we define KRw

K - [(Q - QL)JK - |K5|2/4ﬂ] as the average
kinetic energy density of the:resonant particleé in the driven wave
frame.. | |

We now introduce a simple model which illustrates some of the
physics hidden in Egs. (67)-(70). Our objective is to gain insight
into how the trapped particles can give rise to time dependence in
the dissipation and the frequency shift. The model crudely represents
the resonant, trapped particles by a clump of density I, oscillating
in the wave frame with velocity v = Vo sin wBt. Effects due to the
time depéndence of the resonant, but untrapped, particles and due to
nonlinear orbit modification of the nonresonant particles are ignored.
Furthermore, we make no attempt to include phasé-mixing. !

The momentum and kinetic energy of the resonant, trapped
parfic;es_are given by PR = D m/k + DV, sin wBt and
KRw = (1/2)nvaT2 sin2 wBt in the driven wave frame.‘ Since the depth
of the poiential well seen by a trapped particle in the wave frame is
influenced by the presence of the other trapped barticles via Poisson's
equatibn, the pﬁtential acquires a time dependence
E(t) % Q(O) + <I>(1) exp - ith.

We substitute into Eqs. (67) and (70) our model equations for
the momentum and kinetic energy of the trapped particles in the wave

frame and for the time dependent potential amplitude. We obtain to

e(nz) the momentum,

NIV oy €oS wpt = -2(YL + 8y ) Re~EL|Ko(O)l2/4w'. (71)



_We deduce from Eq. (71) fhat the total dissipation has a
time dependence given by -(YL + 8y) = cos wBt; This is a lower order
effect_than the time dependence of.the nonlinear frequency shift, which
is é?(n3).72’73 To further examine the tiﬁe dependence of the wave
amplitude; the dissipation, and the frequency éhift at frequency oY
we substitute the Fourier series () = ¢(0) + ¢(l) exp - imB't + e
(0)

+ 6w

and dw = 6w (1) exp —int + ... into Eq. (60). The lowest

order time independent part of Eq. (60) is given by
E(O)Am(o)¢(o) = ¢0, where_ Au‘o) =Q - Qﬁ - 69(0). Subtracting this
from Eq. (60) and collecting terms with exp - int time dependence,

we find‘tollowest order in n

Thén both the dissiﬁation and the component of the frequency shift

oscillating at wy are related to the wave:émplitude 6scillatiogs:
R T [ TS . (73)

The timé dependence of the frequency shift énd the dissipation
in our simulation concurs with that described in Egs. (71) and (73),
implyihg'that the model time depenﬂence of fhe‘velocity of the clump
of trapped particles and the potential amplitﬁde are consistent.
Furthermore, we can use the equation for the kinetic energy to deduce
that the frequency shift can oscillatevat_ ZwB as well as ét Wy
Substitution of our models for the:time-dependeht wave amplitude and

the trapped particle velocities into Eq. (70) ylelds
. 2 _
(1{2)nvaT wBsin(ZwBt) = -2(d69/dt) + ZwB(wB - 89)

X Im[[[¢(1)/¢(°)] exp . intB}ReELIKQ(O)|2/41r . (74)
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Equation (74)suggests thét the frequency shift 6Q has time
dependenée at both the bounce frequency Wy and twice the bounce |
freque#cy 2wB. For the case of a free wave, Morales and O'Neil find

that for v.v, << v 2 and v b 2 4ve the time dependence at frequency

T¢ e

ZmB dominates.'?3 In the work of O'Neil, Winfrey, and Mzalmberg85
however, the frequency shift of a large amplitude electron plasma .Wave
excited by the weak beam-plasma instability varies at both wg and
%, with the former dominant. '

We can Fourier analyze Eq.’ (74) to 'd.etermine the relative
variations of the frequency shift at the frequehcies' wg and ZmB.
In so doing we recall the assumptions that |<I>(1)/¢(O)| - &) and
| that GQ,mB ~ O’(n)me. Then from Eq. (74) we find that to lowest order
in n

) L s - o) oMY (75)
and

69(2) ~ 61(we/8)nvaT2/weJK| . | (76)

In our 'simulati‘ons we find that the oscillaiion in the frequency shift
at wy dominates that at ZmB The magnitude of 69(1) in simula-
tion is consistent with Eq. (75) to within 25%, if we use sl0) from
the simulation directly or if we take GQ(O) s -(3/4 )vd)def‘o/dv2 as

given by Morales and O'Neil's theory.

f. Stability of equilibria

The stability of the nonlinear equilibrium Eq. (64) can be
examined by employing Eq. (60) and considering a complex, infinitesi-

mal perturbation to the equilibrium plasma response of the form
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SR = (r + 6r) exp(i0 + 188) - r-exp(16). If we define the dimension-
1 _

less quantity T Z € 't and derivative x I dx/dt and ignore the
nonlinear dissipation perturbed from its equilibrium value of zero,

then from Egs. (60) and (64) we obtain the coupled equations:

7 i?&e -bdr(tl + ar3/2/2) = o ‘ | : (772)

ér+80 = 0 . | ‘ (77)

The + and - signs correspond to equilibrium phases 6 =0 and 7
respectively. |

Differentiation of Eqs. (77) with respéct to 1T and stréight—
forward élgebraic manipulation give

v 86 ‘ 86

r(a?/a?)| |+ (1t ards2) -0 . - (78)

or : Lér

The frequency of a stable oscillation or the growth rate of instability.
is gi&én by (1% dr3/2/2)l/2/5r. ﬁ;calling_that the equilibrium is
~ described by Eq. (645, ar3/2 ‘can be repIééed by +1 - AL? wherever
convenient. )

We observe from Eq. (78) that for 6 = 0 the equilibrium
- 1s obviOusly-siable, 1+ ar3/2/2 >0. For 6 =7 and AL < 0,
multiple equiiibria can occur if (-AL )3, > 27(1‘_2/1,. The condition for
stability in this case, .ar3/2 < 2 or equivalently ar1/2_< -ZAL/B
using Eq. (78), coincides with the équilibrium response Ty lying
to the left of the minimum of r{AL - §A(r)] in Fig. 16b, given by

drl/z ='—2AL/3. Thus we conclude that for a iargé response, in phase
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with the driver, the equilibrium is stable, éorresponding to ry or

r., in Fig. 1éb.

3
For sufficiently large, negative linear frequency mismatch,
a pair of additional equilibria are possible, corresponding to ry and
| T, in Fig. 16b, of which only ry is stablé.41 Both r, and T,
have relative phase 1n with respect to the driver. Our simulations
correspond to o = 0.4 and AL = ~0.33 which do not satisfy the
condition for multiple equilibria. We therefore expect the simulated.
equilibrium to be stable as it corresponds to Ty in Fig. 16b.

We point out that one cannot rigorously omit the perturbed
nonlinear dissipation. Without going into a detailed derivation we,
however, can make some quaiitative remarks. From the conservation
laws we observe that the nonlinear dissipation is fundamentally
related to the nonlinear momentum. The trapped. particles have no
momenta in the wave frame. The untrapped particles have either
positive of negative momenta in the wave frame depending on whether
they trével faster or slower than the wave. A perturbation to the |
wave amplitude and its phase, will alter the separatrix, trapping or
~ detrapping particles and consequently producing a small momentum
exchange. The momenta of the particles remaining trapped is still
zero. However, the momenta of the free particles and the wave itself
will be altered since they are wave amplitude dependent.

In conjunction with the momentum exchange there will be a
dissipation increment as described by Eq. (67). We expect the unstable
| equilibrium to remain unsﬁable, the growth rate acquiring a complex’

increment perhaps. For the "stable" equilibria the influence of

positive or negative dissipation may cause the oscillations about the
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equilibrium to grow or relax. OQur simulations indicate that for the

equilibrium labeled r, in Fig. 16 the dissipation increment is such

0
that perturbations relax, and the equilibrium is steble.

g Simulations with constant-amplitude ronderomotive potential

To illustrate and apply éur theoretical construction we
have performed computer simulations. For the sake of simplicify we
have considered a model in which the plasma is unmagnetized, uniform,
and periodic. Electron plasma oscillétions are excited with a fixed
ion background. The computervsimulation uses a finite-sized particle
code originally furnished by A. B. Langdon‘and extended by this author
and G. Smith. We simulate the entire Maxwellian velocity distribution
with a modest number of particles (2500) and mesh points (64) in one
dimension. o

Many researchers have investigated in simulation the free
propagation of electron plasma waves studying the effects due to wave

particle resonance.ge"92 Particular attention has been paid to the

86-89,92 Rescnantly excited ion waves have been

case of finite 'YL/wB'
recéntly considered by Book and Sprangle.93 In our simulations we
resonantly excite an electron plasma wave of finite wavelength equal
to the system length.

We have attempted to simplify our simulétion model as much
as possible. Because of the discrete Fourier-spectrum, excitation of
a large amplitude electron wave at the fundémental wave length cannot
give rise to the sideband instability;77 the spacihg of wavenumbers
aroundvthe fundamental is much too broad to accommodate the spacing of

the sidebands *Ak x *w.w_/3xVv 2. Furthermore, since the ions are
Upve/ Ve e

held fixed, parametric decéy and modulatiénél,instability are
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excluded.24 We measure directly in simulation the amplitude and phase
of the total electric fleld amplitude -1:6‘ relative to the pondero-
motive force -ixio. Theﬁ use of Eq. (60) permits identification of
the nonlinear dissipatidn and frequency shift as functions of time
. (Fig. 18). Comparison of the ssymptotic frequency shif£ with theory,
Eq. (62), is made in Fig. 19.
Results of typiqal simulations are shown in Figs. 17, 18,

and 19.. For the set of simulations, the electron distribution was
initially Maxwellian with parameters Q/Kve = 3.0, Kke = 0.33, and
Q= me.v Therefore the linear mismatch derived from fhe Bohm-Gross
dispersion relation is Q - QL'= -0.17 W s and the linear dissipation
is —YL/we ~ 0.03. In Figure 17 we observe the characteristics of the
large amplifude response (shown here driven in phase with the pondero-
motive force), electron phase space, and the velocity distribution all
at wet = 300. There is evidence of considerable trapping. Particles
are trapped much cloéer to the separatrix than to the bottom of the
potential well, however, The typical orbital périéd of these barticles
in the wave frame is of order 6w/wB and conéursvwith thevobserved
oscillation period of the nonlinear diSsipatioﬁ in Fig. 18b. We‘seem
to have a preponderence of particles trapped fairly high in the
potential well and relatively few down at the bottom; this gives rise
to the hole observed in phase space, Fig. 17b.

| We recall thaf from Eqs. (71) and (76) we expect both the non-
linear dissipation and the frequency shift to vary at frequency wp
for our parameters (v¢ =3 ve). We observe in Fig. 18 that
-(YL + 8y), 82, and the amplitude and phase of the response all vary

at the bounce frequency, but not at the bounce frequencj of the deeply
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trapped perticles. Instead it is the average bounce frequency of
the bulk of the particles trapped near the separatrix that determines
the time dependence of --(YL'+_GY) and 6Q. To\understand this and
other fgafures in our simulations, we must appfeciate ceftaiﬁ condi-
tions of the simulations not anticipated by existing analytic theory.
_Rathef iargg amplitude waves have been induced in the simula-
tions, i.e., VpVy ® vez. Since v

¢
is large enough to extend back into ‘the main body of

= 3ve "initially, the trapping
width Vo
the distribution function to do considerable trapping (Fig. 17c¢).
With oﬁxy 2500 particles, we do not have good statistics for the
particles that begome deeply trapped, i.e., the~nearly, exactly
resonaht particles v = v¢._ The trapping then‘of relatively many
particlés near the separafrix and fewer deeper in the potential well
1s ﬁot éo surprising. |

| The ponderomotive potential amplitude was varied over a range
such thaf 0.2 ¢ KVi/Q < 0.6 vin order to check the dependence of

the nonlinear frequency shift on the total potential amplitude (Fig.
19). The ponderomotive potential was switphed'on instantaneously and.
also over rise-times 'met = 507 . which was.ofvorder two or three
characteristic bounce periods of the simulated trapped electrons.
More rapid phase-mixing and felaxa:tion to equilibrium (in terms of
-the numbef of bounce periods_ 2n/wB) was observed for the slower
driver switch-on and for weaker_amplitudes, effects similar to those
in Kruerfs-simulations.94 The initial conditions and the rise-time
of the driver influencé the details.of the aéymﬁtotic state. However,
as the slower drive switch-on was‘not vefy long compared to a typical

bounce period, the asymptotic stéte was not significantly different

from the sudden switch-on case (Fig. 19).
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The power law dependence &t = =) « lglé and magnitude of
the frequency shifts seem to rough%y agree with the nonlinear normal
mode calculation of Morales and O'Neil, although both the ratio
.v¢/ve = 3.0 and magnitude of the wave amplitude vTv¢ = ve2 lie
outside the regime where their theory is applicable. The nonlinear
frequency shifts are quite appreciable 4Q = -ﬂfto.lo to O.25)ne, and
the distribution functions are considerably perturbed acquiring
d;stinct tails at v > Q/k. The body of the distribution functions
remain approximately Maxwellian, however., Furthermore, the wavé ampli-
tude and phase in simulation show appreciable variation, although the
relative changes are not large. Thus the partiéle trajectories have |
slightly different histories as compared with Morales and O'Neil's
theoretical description. We therefore conclude that the quantitative
agreément of the simulated asymptotic frequency shift with theory
(Fig. 19) is quite remarkable.

For the case of resonantly excited, longitudinal waves in a
uniform, ﬁnmagnetized plasma, we have constructed the nohlinear
dielectric response. We have formulated the resonant response in
terms of the mismatch betﬁeen the driving frequency and thé time-
dependent,.complex, nonlinear eigenfrequency of a normal mode. We
have used simulations to illustrate our formalism and find that
simulations compare remarkably well with nonlinear normal-modé theory
in a reéime of parameters outside the range where analytic perturbation
theory is valid. We have derived energy and momentum conservation laws
and used them to explain phenomena observed in the simulations, for

example the time dependence of the response.



6. Beat Heating with Trapped Electrons

We return to our discussion of beat heating for lérge amplitude
beat waves. Now that we understand to some extent the role that finife
amplitudeveffects play in determining the resonantly excited response
of the plasma when the driving potential has a fixed amplitude, we
examine the back-reaction that the nonlineaf, time-dependent response
has upon the ponderomotive potential. Specifically, we investigate
beat heating, relaxing the constraint that the ponderomotive potential
has a constant amplitude. We consider the entire system composed of
:the coupled mode equations describing the transverse wave amplitudes
ﬁo and ), Egs. (28); the Poisson equation, Eq. (10); the equation
describing.the nonlinear'dielectric response, given in the temporal
limit (ax = 0) by‘Eq. (60); and the constitutive relation between
¢O And ﬁou;, Eq. (55). We shall also discuss further simulations and
make‘sémé remarks on the influence of plasma inhomogeneity on trapping

and beat heating.

a. General consideration of the'coupled mode equations

We recall Eq. (29) which expresses the conservation of trans-
verse wave action. The equatibn is rewritten here defining the
- - 2
operators DO,l = at * co,1 ax, where ey = kzc /mz arg the group
velocities, and the transverse wave actions':Jz

wzluzlzz then Eq.

(29) becomes

Dyl + D3y = 0 . a (79)

Introducing the phases 8 ), defined by v, ) Iuo’ll exp(-ieo,l),

we manipulate Eq. (28) to obtain the relation
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IoP% - 908 = O (g0)

We can rewrite Eq. (30) describing the rate of action transfer as

_ .2 %%
DOJO = -DlJ1 w, InKuOuln /no) , (81)

. and similarly for the phases

_ ' _ 2 X% '
JoDon = Jlnlel = W Re(uouln /2110) . (82)

Equations (81) and (82) are quite general; the plasma is
allowed to be weakly nonuniform, and the density disturbance can have
quite arbitrary amplitude 1n excluding, however, higher order couplings.

To understand the energy exchange between the plasma and the
transverse waves, we manipulate Eq. (81), recalling the definition of
the transverse wave energy density in terms of the wave action in CGS
units W, = w,J, = (m/ez)w£2|u2[2/2n. We obtain the energy density

conservation law:

. . ¥
DoWo *+ DyW; + (/k) 2 Re[EO(x,t) efi (x,t)] =0 , (83)
where EO = -iK$O = -iK(m/e)uOuI. This conservation law states that

the rate of energy loss or gain by the transverse waves must be equiva-
lent to the rate of work done on the plasma by the ponderomotive force.

We observe from Eq. (83) that no further work is done when

-

E

~

0 and 1 have a relative phase of m/2 or _3n/2, which is equiva-
lent to ¢ and 60 having relative phase O or w. Then as des-
cribed by Eqs. (81) and (82) there is no action trénsfer, and the

transverse waves acquire nonlinear frequency shifts as the only con-

sequence of the coupling:
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_ = . ; | 2.=-1 | 2 %
| (84)

b. Quasi-steady nonlinear plasma response

When the temporal and spatial variation of the amplitude of

" the total potential & 1is Sufficiently weak to permit setting

at = ax = 0 in evaluating the dielectric function, i.e.,

e(Q + iat,x - iax)5 -+ e(ﬂ,x)5, then we describe the plasma response
as "quasi-steady". We cen then use Eq. (32), ¢ = [e-l(n,k) - i]&be,

and Poisson's equation to algebraically solve for 1 and express
Eqs. (81) and (82) as
' 2 _ 2 _ 2y 42y 2., -1 :
Dwoluol® = -Dyoylwy|® = gl "oy |* mle™ - 1) (85)
and.
2 _ 2 2y 42y 21 _
wolugl Dby = wylu [“D18; = —ug|“fuy |7 Re(e™ - 1)/2
| | (g6)
The quasi—steady response ‘approximation requires |Q - wNLl >> (Btl,
(3Kve2/QL)|ax[,‘if we use Eqs. (33) and (60) to determine the relative
importance of finite at and ax effects in the dielectric response.
- In Section II.C.5 thgfnonlinear dielectric function was
evaluated by expanding’about the nonlinear elgenfrequency, Egs. (59)
and (60). We find that in the quasi-steady limit the nonlinear
dielectric response evaluated near a rescnance is given approxiﬁétely

by

e(a,6) = )0 - uy) = s + 1] (87)



-82-

where the miématch is defined A = Q - - 6Q, and the dissipation is
defined by vy = -Im Wyt * To lowest order of approximatioﬂ € can be
replaced by E(wNL) z‘EL s 2me-l for electron plasma waves assuming
" kA, << 1. For le‘ll > 1 and |A] > Iyl the right sides of Egs.

(85) and (86) can be re-expressed in terms of A and Yy by use of

Eq. (87), obtaining respectively -
| 2, 2
-K2|u0| fu, | Yme/2A2 ' | (88)
and
2 2 2 ’
-K luol |u1| me/4A . . (89)

From Eq. (88) it is evident that action transfer requires
finite dissipation. Since for trapped particieé the total dissipation
of the electron plasma wave oscillates around zero at the Bounce
frequency (Fig. 18), the action transfer will also oscillate at the
bounce frequency. If the dissipation asymptotically vanishes while the
frequency shift approaches a finite value, as was the case for a
constant ponderomotive driver (Section II.C.5), then thé action
transfer will cease; and the transverse waves will acquire nonlinear

. "

frequency shifts. ‘ ' s

c. Simulations with self-consistent ponderomotive potential

and coupled mode equations

To investigate the back-reaction of trapping on the transverse
wave action transfer and to determine the actual usefulness of the
quasi-steady plasma response approiimation, further simulations were
performed. The coupled mode equgtions for the transverse waves, Egs.

(28) with V = 0, and the constitutive relation (55) 50 = (m/e)ﬁoﬁ;
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were apﬁended to the one dimensional, electrostatic, particle code
discussed in Section II.C.5.

Integration forward in time of the coupled mode equations
describing the béat heating of two transverse waves in a uniform,
infinite, periodic plasma is performed as an initial value problem.

At each time-step, the transverse wave amplitudes are incremented,

and the ponderomotive potentiﬁl is constructed. The particle velocities
and positions are then advanced using the electric field constructed
from the gradient of the ponderomotive and self-consistent Plasma
potentials. The self-consistent plasma potential is obtained from the
solution of the Poisson equation given the charge density. Finally the
Fourier component of the densify perturbation at the beat wavenumber -
is determined from which the coupling of the transverse modes is
calculated in Eqs. (28). Simulations in much the saﬁe spirit as these
have been performed for the case of induced scattering by Litvak

et al-.83’84

One of the advantages of adding the coupled mode equations to
an electrostatic simulation over the direct electromagnetic simulation
is that there is then no restriction on the fime—step of the integratlion
tion due io the high frequency waves, which would otherwise require |
that wo;IAt << 1 in addition to wAt << 1. In practice the time-
step was restricted to a value wéAt < 0.2. For ease in comparing
with earlier electrostatic simulations where the ponderomotive poten-
tial was held constant, thé following plasma parameters were again
chosen: e/m = Q = Wy =K = 1 and Q/k = 3ve. The range of transverse

wave amplitudes considered was 0.1 ¢ |ﬁ0(0)| = |ﬁl(0)[ < 0.3 which

induced ponderomotive electric fields 0.01 < |Ej| < 0.09. The



~84-
transvérée wave frequéncies were ;hosen arbitrarily, wy = 5me gnd
w = 4me.
Results typical of simulations exhibiting considerable trapping
are displayed in Figs. 20, 21, 22, and 23. The electric field response,
longitudinal phase space, and the longitudinal velocity distribution
function are shown in Fig..20 at wet = 431 and wet = 784. At the
earlier time the results are in many ways similar to simulations in
which the ponderomotive potential amplitude was fixed. There is a
large amplitude response driven nearly in phase with the ponderomotive
forqe (Fig. 20a); longitudinal phase space has a‘hole centered oﬁer
the bottom.of the total potential well (Fig. 20b); and the distribution
function has a distended, nonmaxwellian tail for v 2> Q/x (Fig. 20c).
At the later time the electric field response and the ponderomotive
force are both weaker than at the earlier time and not in phase. In
additibn, theré is considerable harmonic structure induced. The totai
potentiai well being not so deep as before, the hole in phase space
(related closely.to the separatrix) is reduced. The distribution
functioﬁ is further perturbed by the scattering.
| In Figs. 2la and 21b are plotted the histories of the pondero-
motive potential and response amplitudes ¢0 and ¢ and phéses 60
and 6. The response amplitude and phase oscillate on the time scale
of the bouncing of the trapped electrons>as in earlier simulations.
The ponderomotive potential amplitude and phase also oscillate on this
time scale due to the back-reaction .of the trapping on the transverse
waves as illustrated by Eqs. (88) and (89); however, the oscillations
are of lesser degree than for the response. The phase of the response
relative to the driver oscillates with a considerably larger excursion

around zero than was observed in our earlier simulations (Fig. 18).
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The general decrease of the amplitudé of the ponderomotive
potential is due to pump depletion of the higher frequency transverse
wave. The general increase of the nonlinear frequency shift and
dissipation (Figs. 22a and b) due to the continued deformation of the
distribution function fairly steadily reduces the relative amplitude
of tﬁevresponsé. Beat heating enters the regime of induced
scattering.83’84 Many particies can éatisfy the condition @ ~ «v,
and within a trapping width Vi of v = Q/k the distribution function
has finifoebslope (Fig. 20c).

When the frequency shift and nonlinear dissipation bécome
appreciable cémpared to the plasma frequency mé,‘we,can nd longer
make expansions which requ?re @ - wyy, * i(d/dt)|/|QNL| §< 1; then
Eq. (60) is no longer valid. Ouf construction of the nqniihear
frequency shift and dissipation éonsequently fails wheh'either of the
following are appfeciable.compared to.unity: IQV- (QL»+ 6Q)|/we or
vy + 6v:- 1(d 20 /at)|/u,. |

~ In Fig. 23 the amplitude and phases of the three interacting
waves . Uy Wy, and 1 are plottéd as functions of time. The amplitude
of the density perturbation 1 = (K2/4ne)$ oscillates at the bounce
frequencf énd diminishes due to the increasing dissipation and fre-
quency shift and due to the decrease of the pondéromotive potential.
The wave energy in the higher ffequency tranSvérse wave depletes by
vapproximatély 90%. With a relative actioﬁ transfer efficiency then
of R =IQ.9, the felative energy transfer td the plasma is given by '
RQ/mO = (0.9)(0.2)‘= 0.18. On the trapped particle bounce time scale,
the amplitudes |u0| and i[uli vary slightly in accordance with the

sign of the dissipation (Fig. 22b) in Eq. (88). The slowly varying
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wave phase QI does not significantly vary over the duration of the
simulation, but 60 varies and fluctuates much more since compara-
tively much less action is associated with ii, (see Eqs. (82) and (86)).

The continued appreciable time dependence of the nonlinear
phenomena, the extensive trapping and deformation of the distribution
function, the relatively large nonlinear frequency shift and dissipation,
and the trancition of the scattering from resonant (Q = W and
Q/x = 3ve) to nonresonant (induced scattering) are all features not
anticipated in our discussion in Section II.C.5. Nevertheless the
éimulations seem to be self-consistent using all qualitative and
quantitative considerations still at our disposal. FEnergy and trans-
verse wave action are conserved to within a few percent, Egs. (83)
~and (8l). Various effects due to particle trapping are ébserved
consistently in the longitudinal electric field response, the non-
linear frequency shift and dissipation, and the back-reaction of the
nonlinear responée on the action transfer and the beat heating.

However, the phase-mixing and relaxation to a quasi-steady state,
wherein the longitudinal and transverse wavés acquire frequency
shifts and no further changes in amplitudes occur, is not observed.

The supposition that beat heating apprdaches a nonlinear
equilibrium as described in Section ‘II.C.5 is prédicated on the
assumption that the longitudinal plasma distribution function is
only weakly perturbed by a weakly nonlinear plasma wave. To compare
simulation with an analytic, perturbative, nonlinear theory, a
longitudinél plasma wave would have to be excited much farther out on
the tail of the distribution function €/« 2v4ve, with sufficient linear
mismatch tb'guarantee a weék plasma response. We have chosen here to

simulate the physically more interesting case where an electron plasma



wave is resonantly excited (Q = Wy and Q/k = 3ve), inducing a
large perturbation of the plasma, considerable depletion of the higher

frequency laser, and consequently significant momentum and energy

transfer to the plasma.

d. Removal of trapping effects by plasma inhomogeneity

For the case of a nonuniform plasma,vtrapped particles can
becomeiuntrapped in an electron plasma wave and finite dissipation

95,96

récovered. The degree of inhomogeneity is characterized by

(9%/uy® X ax/dx), where %= k' and K(x) - [o? - wez(x)]é/( w2

Asseq et 51.95

‘consider a'freély propagating wave. They shbn, in
the 1imitiof a very stroné inhomogeneity '-(Qz/sz)(dXde).> 1, that
beéause of the effective acceleration in the wave frame provided by
the finité'spatial dénsity gradient and_consequent spatial dependence
of the phase velocity, there are ng.trappedvparticlesj and linear
-.Landau damping is recovered. They make the same assumption on the
weakness of the wave amplitude~as do Morales and O'Nell, viz.
vTv¢ <<_v€2. |

For weak inhomogeneity, (Qz/sz)(dXde) << 1, trapping occurs;
however, the free but nearly resonant particles can'exchange enérgy
with the longitudinal wave at a finite, nonlinear rate proportional
to the Landau damping or growth rate. Asseo et al. derive a spatial
damping coefficient GK(x); assuming that the number of trapped

particles is constant over the distance the wave has traveled, O to

o x
x, and also assuming that IAk/kl << 1, where Ak 5‘jr dx'(dk/dx' ):
0
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/(92/%2)<dx/dg)(y'x‘/vg) for |Mk/x| <<a/wy ,
(90a)
fc(x) = {
(Qz/wsz)z(df/dx)Z(YLmBX/vgvd,) for |Ak/k| >> Q/uwy

\ - (90p)

where vg, the group velocity, is given by 3v62/v¢, and v¢ E‘Q/k(x)
is the spatially dependent phase veloéity.

The critical dimensionless parameter (QZ/mBZ)(dXYdi) can
be recast for purposes of comparison with typical parameters character-‘
izing béat heating. Assuming a linear density gradient, we definé the

point of exact frequency and wavenumber matching by
_ _ 2 2, 1113 -1 22, vl L
X(x = 0) = [wo - 0 X(0)]% + fw? -, (O)]c = «(0) .
We obtain at the point x =0
2, 2 e 2, 2v..2y 241 -1
(@ /wB WdX/dx) = (v¢ /VT ) 6k le ) (KLn) o . (91)

-1

where 'vT = QB/K = (2e]5|/m)% “and .Lﬁ = {d &n no(x)/dx}xzo .

Expressions equivalent to (91) can be written, recalling from Eq. (48)
the relation VTZ/V¢2 = sz/we2 = 2|ﬁ|/no. |

We emphasize that in either the case of weak or strong
plasma inhomogeneity there is finite dissipation within the scope of
the theory of Asseo et al. Therefore action transfer and heating
should persist. The relative action transfer R remains parametrized
by koLn[uO/cl2 and the input rati§ p of the electromagnetic wave
intensities in Eq. (39). On the other hand, the plasma response and

hence Vo, Ups and the nonlinear dissipation are determined
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self-consistently bj the relation &° ~'$Oe/[E(Q - wNL)], Eq. (63).
¢ This relation is parametrized by the ratio -v¢/ve through the non-
linear frequency shift and.by the ponderomotive potential émplitude
$0e = (m/e)uou;. There are a sufficient number of-independenf
paraméters to allow, in principle, the achieving of efficient transfer
of action and heating of inhomogeneous plasma in a regime where the
beat wave is resonantly excited to moderateiy iarge amplitude, while
dissipation persists. |
_ | D. Cascading
»IWé conclude our discussion of the beat_heating of‘plasma_by
briefly reviewing research on the beat heating.and induced cascading
of a set of parallel propagating trgnsverse waves all coupled by a
single resoﬁantly excited electron plasma wave.34;35’97 This heating
| séhéme is another example of stimulated Raman scattering. The ﬁode

coupling relies on the same physical mechanisms described in

Section I.C.

-

The cascade 1s initiated by two lasers propagating parallel to
one another, for example, two CO, lasers with wavelengths 9.6 um
and 10.6 um. The cross-coupling of the two lasers to produce a v X B
. ponderomotive force'resonantly excites a longitudinal electron plasma
wave. The density perturbation can then couple to the transverse
oscillation velocity of either of the two lasers producing tranSvefse
currénts. The transverse currents act aé Antennas to resonantly excite
transverse waves shifted up and down in frequency and wavenumber from |
the incident. laser frequencies and wavenumbers b& the beat frequency
and ~anenﬁmber. The coupling thus induces newvtransverse waves as

well as amplifying or attenuating the pre-existing lasers. The induced -
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transverse waves can then couple ;ith the existing transverse waves‘to
stimulate further transitions.. Thus ihe stimu;atéd.scattéring can éead |
~to a transfer of therincident lase; energy into the electron plasma
wave and intq transvérse waves at lower and higher frequencieé.

We shall be more explicit in our description of cascading and
in addition profide a quantum mechapical picture. In this heating
schemé the enérgy is suﬁpliéd by the two lasers with frequencies
w; and ‘wL-l differing by approximately the plaéma frequency:

Q= @L - S, t A .where the mismatch A is assumed émall. The
transverse waves couplé via the Lorentz force v x B to excite a
1ongitudina1 wave ﬁith wavenumber Eé =k - EL-l' For efficient
“coupling there must be nearly exact phase matching which implies fre--
quency and wavenumber .resonance conditions. For. We << QL’wi-l the
beat wavenumber is relatively small, kp = we/c. Since‘the longi-
tudinal wave is a very long wavelength disturbance,. wé/kp s ¢ >> Vg
there is no Landau damping. In practice collisional damping is too

weak to effect efficient plasma heating. Nonlinear dissipation is

presumed and verified a posteriori.34

The longitudinal wave in turn interacts with each of the two
transverse waves (L,L-1) to induce nonlinear currents and produce two
more waves at EL-Z = EL-l - Ep and §L+l = BL-l + Bp with frequencies
W o T - 20 and Wy Tt . The new transverse waves interact
to produce further scatfering. The new frequency mismatches_

Az = wy ; (we2 + k1202)é are given by the difference of the frequen-

cles of the induced transverse waves Wap = wL + ) and their

2.k 2c2)é where

corresponding normal mode frequencies given by (we 2

ELtn = EL,t n Ep‘ When EL and EL—I are nearly parallel, the new
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mismatches A, are also small compared to the plasma frequency we,'

2
Otherwise the new mismatches become appreciable, and multiple scattering
from the same plasmon is inhibited by progreésively larger mismatcheé
4. |
In'Fig. 24 céséading is diagrammed schematically. In quantum

langgage, a cohereht set of photons .L undergo stimulated decay into
photons L-1 salready present and plasmons. The plasmons stimulate
further transitions upward and downward in freqﬁencj by converting
photons L intb L+l and so on, and by inducing the coherent cascade
of photons L—1- into L-2 'and so on to lower frequency. The damping
of the plasmons deposits energy irreversibly into the plasma.
Because energy and also the humber of pﬁotons'are conserved in these
interactions (Manley-Rowe ), the process must be preferentially down-
ward, to allow for the plasma heating; - In quantum language the
heating is described as the irreversible absorption of plasmons by
the plasma.

The rate of photon conversion downward in frequency competes

34

.with ﬁpward spreading. Kaufman, Watson, and Cohen-* have considered
under what circumstances the downward cascade rate 6an be maximized as
a function of the input ratio of laser intensities and initial mis-
match. Fér sake of simplicity the& assumed the plasma to be uniform
aﬁd noﬁrelativistic, Ve <<‘c. Kaufman.34 obtained an analytic solution
describing‘the cascade of the transverse modes in the limit of a
steady state. He solved the boundary value problem in which two

laser beamé with steady intensities are‘incident on a semi—infiﬁite
plasma. His éolution, however, required the.assumption that all the

transverse waves suffered an equal mismatch, Az'= constant. The

neglect of variable mismatch, i.e., the ignoring of the dispersion
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of the glectromagnetic waves, requires that We «< mszhich limits the
ultimaterheating efficiency of the cascade because of the Manley-Rowe
relatiéns. |

Cohen97 and Watson>* independently examined the influence of
variable.mismatch numerically. Cchen solved the coupled mode equations
descfibihgrthe.steady-state caScadevas a boﬁndary value problem.
| Watson investigated the temporal development'of the initial value
problem in‘Which all transverse wave amplitudeé are considered to be
‘uniform in space. For .parameters correspdnding to_ CO2 lasgrs aﬁd
a dense 6-pinch, w /w, = 10, the cascade was found to proceed in
accordance with Kaufman's theory for the modes .separated in frequency
by no more than #3Q from the incident laser frequencies. Cascading
to much lower frequencies was found to be sensitive to the initial
choice of A. Watson determined that one could choose A in such a
way as to cause Az, to pass through zero at lower frequencies
wy < mi and monotonically iﬁc:ease for the higher frequepcy modes
optimizing the downward cascade rate. Mima and Nishikaw535 studied
the forward Raman scattering and cascading of a single electromagnetic
wave in a very underdense plasma we_<< Wy«

.By analogy to the earlier derivation of the beat heating by
two oppOSed transverse waves, Eds.'(25)-(28), the equatiéns describing
the cascade of parallel propagating transverse waves in inhomogéneous
plasma_éan»ﬁe derived. For the transverse oscillation velocity one
obtaiﬁs_instead of Eq.(26) g

'S _
Cu(x,t) = z: uz(x,t) exp{-iwzt.+ij"kz(xf)dx'] + c.c. ., (92)
. ') : .
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where ., = ay tn8, K(x) = ki(x) £ nky(x),
xL(x) =‘[012 - wez(x)]i c'l, and kp(x) = [sz - mez(x)]l‘}c'1 -
B”f—l - uéz(x)l§c°1. The density perturbation is given similarly to

Eq. (27) by
. ’ - P X
f,IGAn(x,t) = n(x,t) exp[—im + if k’p(x')dx'] +cse. . (93)

USé of the wave equation,(25), gives the equation describing

the coupling of the transverse waves
[at- - 1a,(x) + czax]ul(x,t) =

-(1/2)w, %y )ugyy (5*/ng) + u,_y(F/my)] (94)

;_'_ \ 2, ’ _ . :
where clﬂx) = kz(x)c /wz, we? = wez(x = 0), and o = no(x = 0).

We have ignored the WKB variations in kz(x) compared to the spatial
variation of the amplitudes. From arguments similar to those employed
in deriving Egs. (32) and (33) we obtain the equation describing the

coupling of the density perturbation to the ponderomotive potential

. 2 " i 2 *
{at +v - 1A(x) + 3(kv, /QL)ax](n/no) = ‘ei(kp /ug) Zulul-l )

: _ _ 2

(95)
where the dissipation rate of the plasma wave is given by v and
ﬂL is the Bohm-Gross frequency QL2 =W 2(1 + 3k 2)\ 2).
e P e _

Equation (94) describes explicitly the coupling by the density
perturbation of any particular transverse wave to both the higher and
lower frequency adjacent transverse modes. Adjacent transverse modes
in the cascade then beat together to drive the density oscillation in

Eq.(95), thus supplying the necessary feedback for the stimulated

scattering. Kaufman's analytic solution of Eqs. (94) and (95) in the
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steady-state limit (3t = 0) describes caséading in a uniform plasma
assuming that variable mismatch can be ignored and that the diséipation
end miématéh of the plasma wave dominate convection:
Jv - iAL[ >> [(3Kv82/9)3x[. Kaufman obtains.a formula for the cascade
rate from which the dependence of caécading on the input ratio of the
laser intensities and on the plasma wave dissipation rate and mismatch
is explicit (Eq. (5) of Ref. 34).

| As compared to the case of opposed lasers the coupling té the
longitudinal density perturbation (righi side of Eq. (95)) is reduced
by the factor ke 2/ + kI;_l P« w/4w® for w << w. Thus the
ihtensity threshold for effective forward scatter is likely to be much
higher than for backscatter. However, for backséatter there can be
no further photon tranéitions, as the beat wavenumber
_5 =k - EL—l ~ ZEL couples with the lasers to give
I o=k -kx=-3k and k. =k +k=3k. Since 1’;oth these
wavenumbers violate the electromagnetic dispersion relation, large
mismatches A, arise terminating both the cascade. of energy to lower
frequency and upward spreading'as well. The implication is that
furthe: decay due to backscatter requires seeding by a third laser
beam L-2 exciting a new longitudinal wave with wavenumber:
K!' = k

Kok -7k
frequency transverse waves, since each transition requires seeding by

No energy need be lost on conversion to higher

its own laser béam. This heating mechanism was studied in detail in
“Ref. 59 and reviewed in Section II.C.i.

We conclude this review of cascading by deseribing an innovative
idea due to W. Kunkel. In Ref. 59 Kaufman and Cohen compare the laser

“intensity threshold for effective cascading with that for significant
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Raman backscatter, findinglthat in a uniform plasma backscatter has
a léwer threshold. The backscatte{ of the two laser Eeams that act as
pumps would of courée prohibit efficient cascading. As is reviewed in
Section II.C.1, Kaufman and Cchen- further detemine that beat heating
of opposed‘iasers in a linear density gradient and Raman backscatter
occur effectively in a finite lengﬁh resonance zohe proportional to
(v/we)L; where the density scale length is defined by
Ln = &iln no(x)/dx]-l. If the plasma is much larger than the resonance
zone, the action trénsfer is independent of the dissipation mechanism,
Egs. (36) and (37). As is evident from the structure of Egs. (94)
and (95) the same arguments afe basically true for cascading as well.
Kunkel points out thgt}in the limit of ﬁery large dissipation
of the eleétron plasma wave cOncomitgnt with backscatter, the plasme may
possibl& not contain the entire‘resonance zone or the electronplasma wave
may be nowhere close to resonance within the plasma. The reduction in
action transfer or in attentuation of the léserbeams_due to stimulated
backscatter can be exactly calculated from Eq. (36), an estimate of |
which appears in Eq. (38). The reduction of backscatter when the
electron plasma wave is strongly damped, é.g., when ZkLAé 2 0.4,
effectively raises the threshold for appreciable Raman backscatter.
However, since the beat wave in cascading is almost always weakly
linearlybdamped ,kple x v /e << 1, the plasma might quite easily contain
the entire resonance zone for cﬁscading. Cascading could then occur
at lower laser intensities than the intensity threshold for appreciable
backscatter. The question of under what realistic expérimental

circumstances cascading can preferentially occur over Raman backscatter

and effectively/heat plasma remains open.
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ITI. FILAMENTATION AND-STIMULAfED BRILLOUIN SCATTERING

This part of the thesis deécribes in detail parametric insta-
bilities invblving'the induqed'spattefing of electromagnetic waves by
‘low frequency ion modes (<mi):g The fheory constructed in Section I.C
is sufficiently general to descnibe;poth colleétive phenomens, e.g.,
stimulated Raman and Brillouingscatfering and modulational instabili-
ties, and induced Thomson»scattéring érom elecfrons and ions. We shall
l1imit our discussion here to only the scattering from collective ion
modes:. Brillouin and filamentation instabilities.

We shall describe Brilléuin scattering and filamentation from
a unified point of view. The,diétinction between Brillouin strong
coupling and filamentation is examined. We construct in detail the
dispgrsion relations for filamenfétion'and Brillouin. We also consider
the absélute instability of Brilloﬁin strong coupling, demonstrating
that the ésymptotic Green's‘functidn fbr Brillouin instability is
described by analytic weak coupligg‘pheory derived for all pump inten-
sities within the Brillouin régimé;} We further show that very strong
pump waves can induce groﬁth of thé Scaftered transverse wave at

_ ' : * * '
(wo * Ok, + K) comparable to that at (ub - Q ,k, - K ). We shall

38 98

not discuss the nonlinear saturation of Brillouin’® or filamentation.

A, Introduction to the Coupling of
Transverse Waves to Ion Modes
An ion acoustic_wave cén be weakly coupled to transverse
waves by means of the ponderomotive»force,-corresponding to Brillouin
weak coupling. The frequency of the ion acoustic wave is given by
Q= Keg + § where cg = (Te/mi)% and 6 1is a small (<< Kcs)

complex~-valued frequency shift dependent on the pump wave amplitude.
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For a moré,intéhse pump wave the;ponderomotive force and consequently
the coupling to the density perturbation increase. In the limit that
the oscillgtion frequency of the density perturbation is significantly
perturbed by the pump, the scattering is defined as Brillouin strong
'coupling; o

Brillouin strong coupling is an exampie of the stimulated
scattering of the pump ane.into a transverse wave shifted to 1oﬁer
frequency wj - ' with wavenumber ky - 5*.'vBoth the scattered
transverse wave and the éoncomitant driven ion mode, or_"quési-mode",
grow exponentially in the linear regime of the parametric instability.
When the pump waQe scatters off a driven ion mode into tfansverse
wavesshiftedin wavenumbér up and‘down by the wavenumber of the density
perturbatidn, EO + x and ’EO —.Ef, with resulting exponential growth
of fhe scattered transverse waves and the density perturbation, the
instability is described as filamentation. The density perturbation
excited by the scattering is typically a purely growing mode not

otherwise present. We consider this.-as another example of the stimu-

lated scattering of light by a quasi-mode.

B., General Formulation of Brillouin and Filamentation

iﬁ Section i.C we derived a very generél dispersion relation
(18) which implicitiy includes.Brillouin and filamentation. Equation
(18) reéuires the evaluation of I(Q,K) = [xe(l + Xi)/EJQ,K for compiex
beat frequencies § and beat wavenumbers x. In.Appendixfi we
show thét for Maxwellian velocity distribution functions the electron

2

and ion susceptibilities are given by xe(Q,E) x 1/K21e and

xi(Q,E) P -miz/fz2 where Ae = ve/we. We ?ave'assumed that
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vy << IQ/KI <<'ve, and that linear Landau damping and collisions are

negligible. Then for TI(Q,x) 'we obtain
r(Q,x) = (Qz -w 2)/[ﬂz(l + 2 ch ]

If we substitute this form of T into Eq. (18) and multiply by
[92(1 + 2 2) e 2] Eq. (18) becomes

[Fr e & - 2ol - 22 - g - £1527)

2k i - a®) = 0 (%)

Eéuation (96) describes both filamentation and Brillouin
scattering. Analytic solution of (96) for various special cases and
numerical solution of the general dispersion relation will be presented.

If we define cos 8 = ﬁ-ﬁo, then Eq.(96) can be rewritten as

{92(1 + szez) - ch 2][;92 - |<2c2)2 - 4(Qw0 - kk

o 2,2
s cos 9 c“) ]

0

2,2 2 (.< - a?)

+ (1/2)uy o . (97)

We note that in Eq.. (97) changing both the signé of cos 8 and R,
viz. Q-+ -0 and cos 8 + -cos O = cos(m - 8), leaves Eq. (97)
invariant. We shall therefore solve Egs. (96) and (97) for
0 <6 < n/2 realizing that Q(xk,m-8) = -(«,0). |

C. Filamentation Dispersion Relation
~ We first consider Eq. (96) in the special case where it
describes filamentation. In the limit that [kA | <<'1 and

|f] << |ke|, Eq. (96) can be somewhat simplified to give
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| (QZ‘ - chsz)[m - .'E.'_V.g) - K c','/l.w ] - wlz(?ro/c )2K4c4/8w = 0
| (98)

where. !g E,gocz/wo is thevgroup velogity of the pump wave.‘ Drake

et al. 12 derive the same dispersion relation. Since this equation is

quartic'in Q and sixth order in k, we must further simplify the dis-
persion relation to make ahdlytic'progress;

| For the formation of‘filaments whose dimension (see Fig. 2)
ffans&erse to the pump propagation directicn_'ﬁo is quite small

compared to its characteristic length of variation in the X direction

parallel to LY [k /x,| << 1, we obtain @ = KV + Iy = kv + iy,
The temporal growth rate vy then satisfies the equation
(Yz * K, c )(K e+ 4Y2w02) - wiz 23 2 0 /2 = 0 . (99)

‘The expressions Q = KyVg + iy and Eq. (99) are equivalent to Eq.
(98) to lowest order in |k /| and |vag/Y|: both of which are
assumed small. This biQuadratic dispersion relation has been obtained

12

also by Drake et al.”“ and Langdon and Lasinski.>? The biquadratic

is readily solved giving
Y = i(de - l<zzc$2 2 [1'+ (eg/c )2(2w0/'<zc )2]-é (100)

where 625 (1/2) wiz(?o/c )2. The following limiting forms are
obtained from Fq. (100): for Ich/z“bl <<'cs/c,
x tyo(kzé/2wo)(c/cs); and for ]gzc/2m0| >>‘cS/c,
2 2 24 _ . L .
Yy = t(yo - K, g Y. For Ky = 0, @ =iy which is schematically

diagrammed as a function of k, in Fig. 25.
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~ Further discussion of filamentation is relegated to the -
existing literature and to a forthcoming paper, by C. Max and this
author, wherein the Green's function describing the linear, convective

12 and Manheimer

~growth of filamentation_is constructed. Drake et al.
and 0tt39 consider the temporal problem, whereas Kaw et al.l3 investi-
gate spatiél growth of filamentation. The extensive literatuie due

to researéhers in the nonlinear opticé_field is in general more
directed ét the nonlinear structure 6f steady-state or quasi-steady

state filamentation or self-focusing. 14712+ 30

D, Brillouin Scattering

1. Ihtroduction to Brillouin Weak and Strong Coupling

We present a detailed examination of Briilou;n weak and strong
coupling. Assuming that the scattered wave ﬁ_ suffers a much smaller
mismatch from its linear dispersion relation than the a, scattered
wave, i.e., |D /D, | << 1, the Brillouin dispersion relation can 5e
immediately obtained from Eq. (19). We evaluate the linéar suscepti-
bilities in the limit v, << |Q/k] << vé. If we further assume that
szez;'lﬂl/wo << 1 Athen Eq. (19) becomes a dispersion relation

describing stimulated Brillouin scattering:

DB(Q’E) = (92 - chsz)[ﬂ + c‘2(:<2 - 25-_1_:('))/2(»0]
2~-2 2 _ '
+ K5,y /8wo = 0 . | . (101)

To justify the assumption that |D_| << |D |, we require that

[ - 2c-Xk,| << [? + 2¢'ko|. We continue to assume that the plasma

is underdense, we < wye The dispersion relation Eq. (101) was also

obtained by Bodner and Eddleman>’ using a fluid equations approach.
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In the absence of the electromagnetic pump, 50 = 0, there
are only free oscillations: 1ion acoustic waves Q = ths and freely
propagating'electromagnetic waves D_(Q{S) = 0. In the presence of the
pump, the two waves are coupled. The dispersion relation of each wave is
aitered by the scattering of the radiation by the density perturba-

"~ tion and the accompanying ponderomotive forée driving the low frequency
density perturbation. In the absénce of dissipation, an infinitesimal
pump gives rise to a growing ion acoustic oscillation and scattered
electromagnetlc wave, i.e., ImQ << Re Q = Keg for real k. This
constitutes Brillouin weak coupling.

- For stronger pump-wave amplitudes the growth rate 6f the
instability and modifications. to thé oscillation frequency increase.
The ponderomotive force becoxhes comparable to the normal fluid restoring
force of an ion acoustic wave. In the strdng coupling limit the
ﬁonderomotive force is dominant: the oscillation frequency is signifi-

2~ 2 2/8w

cantly modified. For |Q| >> |ke | we obtain Q3 =
from Eq. (101). This is similar to-filamentation in that the density
perturbation‘is a driven mode, or quasi-mode,ll' whose pump-dependenf

dispersion relation differs dramatically from a plasma normal mode.

2. Generalization of Brillouin Analysis to Three Dimensions

'Befbre proceeding with a detailed, quantitative discussion of
two diménsionai Brillouin, some comments on the generalization of our
theoretical desc:iption to include scattering in three dimensions are
appropriate. If the scattered radiétion propagates in a direction
having a component parallel to the pump-wave poiarization, then trans-
verse canonical momentum is no longer conserved; our fo;malism then

breaks down. To describe three dimensional Brillouin, Drake et'al.,12

Rosenbluth et al., T and Bodner and Eddelman>’ consider Maxwell's
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equations and fluid equations. They all employ the simple fluid

model for the nonlinear current Eq. (14), however, allowing the polari-
zation of‘the scattefed radiation to make an‘arbitrary angle with
the polarization of the incident electromagnefic wave.

In calculating the pénderomotive-poténtial driving the low
frequency longitudinal osciilation, the generalization of Eq. (8), one
factor of cos y enters due to the‘ v x B Lorentz force of the pump
and scattered waves. For the component of the total current in the
direction parallel to the polarization of the scattered radiation
driving the nonlinear wave equation, a secondvfactor of cos y occurs
due to the inner product of the pump quiver velocity with the
scattered wave polarization direction.

' The result then of including the angle of relative polarization
is to aiter the Brillouin dispersion relation by the replacement of
i‘roz with ?;02
scattered radiation to be polarized perpendicular to the plane defined

cos? ¥ in Eq. (101). By requiring the pump and the

by their propagation directions, the coupling term in Eq. (101) is

cos2 Y- 602.‘ For scattering angies such that ¢ # O

2

maximized 502

the éffective pump‘strength 'VO cos2 ¥ is reduced.

3. Brillouin Dispersion Relations

We consider first the weak coupling 1imit of Eq. (101) and
define the following variables: cos 0 = Q.EO; Ty = ~0/wo; the group
- : - 2 g )62 a
velocity vg = c2k0/w ; and A = Kcs + (x ZE-EO)C /Zwo, the fre
qQuency mismatch of the scattered electromagnetic wave. (The frequency
mismatch is obtained from the electromagnetic dispersion relation:
-1 .
A = (2wy) D_, with Q = Keg << wy. If we define 6w = Q -xcg and

assume |6w/9| << 1, then from Eq. (101) we obtain
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(1/2) Dy(R,k) = Sulkey + 8/2) + 8w ko b + ke ? w(r/a)

(102)
The solution of Eq. (102) is given by
| ‘69.)( ke + 8/2) = -xe b/2 * [( msA/z)2 - chszwo(ro/l,Ae)z(Kcs + Af2 )] 3
(103)

The growth rate, Im Sw, is a maximum, with respect to wavenumber
(taken here to be real) for fixed angle, at A = 0. This determines
the wavenumber Kk = 2k0(cos'6 - cs/vg), for which A = 0, and thus
-corresponds to exact wavenumber and freQuency matching for the inter-
‘action of the three normal modes. From Eq. (103) the maximum growth

rate 1s given by
Ip Q = _[2k0¢8w0(cos 8 - gs/vg)]é (rO/AAe) | (104)

in agreement with Refs. 11, 12, 36, and 37. |

N Figure 26 schematically displays the dispersion relation
QB(QQE) = 0 in the weak coupling regime, plotting the normalized
frequency Q/Zkocs_ as a function of K/2ko :for fixed angle © and
pump strength. The width of.the unstable « vregion is found from
Eq. (103) to be 2k0(cs/vg)(fo/AAe)[(wo/kocs)/(cos 8 - cs/vg)}é,.for
(r0/4le)2(wb/kocs) << [cds g - cs/vg|. In the unstable x region
there are complex éonjugate solutions for 6w. Both solutions
’correspohd to the three waves being effectively phase-locked at a
relatiﬁé phase /2 or 3“/2’vin Eq. (3). One value of the felative
phase leads to instability and the other to decay. In the stable K
region, [A] > zmo(ro/4ke)2, the three-wave coupling induces a

frequency shift which again, depending on the relative phasing of the
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three waves, can be elther positive or‘negative. This accounts for the
splitting of the oscillation frequency whose dependence on puﬁp-wave
intensity, wavenumber, and scattering angle is given by Eq. (103).
To consider the strong coupling limit of Eq. (101) we do not
- make the assumption that the denSity perturbationlis a weakiy growing

ion acoustic wave. Equation (101) is a cubic equation in Q:

Dy(2,k,c08 8) = Q> + 9X«? - 2k cos 9)c2/2w0 - Qchsz

+ [KZVOZwiz - 4o AP - 2k cos e)czl/%wo =0 . (105)

The solution for the roots of a cubic. equation is standard. 'Resulté
for § as a function of x for fixed cos § and pump stréngth
in the strong coupling regime are shown in Fig. 27a. For fixed 68 the:
- region of ¢ around 2k0cos ® 1s restricted in order that we main- |
tain the condition |D_/D, | <<vl, which is required in the derivation
of the Brillouin dispersion relation Eq. (iOl)ﬁ |

Wﬁen the ponderomotive force very much dominates the restoring
fofce assoclated with a free ion acoustic osciliation (iﬁ terms of

characteristic frequencies (wi2k02v02/2w0)1/3'>> Kcs) the following

simplification results. We set kocé/mo » 0 in Eq. (105) to obtain

2~ 22,4 ¢ _
0 Vo 94 /8ub = Q

QB(Q,Kycos 8) = Q3 + QZ(K2 - 2kk.cos 8)c2/2wb + K
(106)
The complex frequency of the density perturbation is then completely
determined by the scattering of the radiation and the degree of mis-

match of the scattered wave from a normal mode, represented by the

term involving K2 - 2Kkocos .
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For x and cos 8  such that ID_I << ||, growth'is
maxinized by K = 2¢k.cos '@ = 0 giving the standard result for strong

0
coupling11,12,37
@ = [(/2)+ 1(V"/z>] (eos 873w, 2,75, /a3 L (107)

For |cos 8] = IQ-ﬁol << 1, the Briliouin analysis breaks down, and
Eq. (96) must be solved. We note that the iargest growth rates for
weak ahd strong coupling_Brillouin‘occur.for exact backscatter, |
.K/2k0v= cos 6 = 1. Figure: 27a shows a ploﬁbéf the normalized fre-
quency /w., using.Eq. (106), as a function of the normalized real
wavenumbers K/2k for various fixed values 6f cos 0 and fixed
parameters (w 2k /w 4)1/3 = 0.04 and Xk, A = 0.02.

We emphasize that Eqs. (101) and (106) give a general descrip-
vtion of Brillouin week and strong coupling. The two reglmes of
scattering are distinguished by (ro/ké)z(wo/Zkocs) compared to unity.
This is obtained by taking the ratio of the strong coupling frequency
in Eq; (107) to 2kocs, and then cuting the result, ignoring numerical
factors of order unity and the dependence on cos 8. Strong coupling
corresponds to (ro/l ) (w /2k e, ) 2 1; weak coupllng occurs for
(r /l ) (w /2k Cq ) << 1. However, to correctly extract weak coupling,
one must carefully insure frequency and wavenﬁmber matching, i.e.,

A = 0. |

- Brillouin strong coupling can exhlbit a regime of nearly
: nonosclllatory growth whose parameter dependence closely resembles
the growth rate of filamentation in the limit VO /c >> K2A 2 For
K 2‘2k0 cos § and wi/w., '(K2 - anocos-e)/Zk 2 5> Q/wy >> ke /oy,
Eq; (105) becomes D (Q K,cos 8). = Q (K - ZKKOCOS 9)0 /2wO

+ K2v02w12/8w0 = 0, We must, however,‘continue to maintain the
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inequality [D_| << |D,|, which requires K - 2Kk cos 8 = 0, to
Jﬁstify the neglect of a, compared to a_ and identifies the
instability as Brillouin. Solution of the quadratic dispersion relation
is readily obtained, Q = ii[n/(x - 2k0cos 6)]é mikoﬁo/wo. When the
iight éide'of the preceding expression becoﬁes comparable to
(cos 8 w12k02~0 /2w 1/3, the ©° term in D (Q,K,COS 8) must be
retained. |

| Except for the geqmetrical coefficient Ek/(m - 2kocos 6)]%,
the growth rate for nearly purely growing Brillouin strong coupling
is identicﬁl in its parameter dependence to that for filamentation
in the limit Go/c >> KA s wy/ky = c’,iKclsz >> ¢_/c, and
lcos 8] < 1, viz. from Eq. (100) @ = #iyy = *iu;¥ /V2 c. Although
strong coupling and filamentation have similar growth rates and both
are.characterized by the équpling of transverse normal modes to a
strongly driven longitudinal mode, they differ radically in that for
S£rong'coupling the growth of the a_ sideband is dominant and is a
maximum for « ~52kocos‘e. For filementation the two sidebands

a_,a, have comparable amplitudes; and for the regime of filamentation
of interest here, we have the condition |cos 8| << 1.

As'the a_ sideband acquires a larger mismatch D, Brillouin
strong‘coupling exhibits a smooth transition into modulational '
instability. The transition is complete for |D_/D+| x @1). In
Figure 27b, the numerical solution of Eq. (96) is exhibited plotting
Q/wo vs K/Zko for various values of 6. For Kk = 2k0cos & there is

- good égreement with the Brillouin strong coupling solutions shown in

Fig. 27a. For « >> 2k0cos.6, filamentation occurs with growth rate



-107-

-1§O/c

Q= iYo Acorresponding to the limit of 2wocs/c2 K k << (Ae)
in Eq. (100) and Fig. 25. |

We would like to include the influence of the concomitant
growth of the a_ sideband on Brillo&in in such a way as to permit
further analysis without resorting fo the numerical solution of the

complete dispersion relation (96) displayed in Fig. 27b. We can

rewrite Eqs. (17) without approximation
D_ - &%r/4 - (P20 /4)?/(D, - F5 /) = 0 . (108)

Then defining &(Q,c) = D_(Q,k)/D,(Q,k) where (Q,c) satisfy the
-Brillouin dispersion relation Eq. (19), D_ - K2V02F/4 =AO, the first
correction to the Brillouin dispersion relation due to finite § 1is

ingluded as follows:

D_ - k% 2[1 + 6/(1 - 6)]s4 = o (109)

If the solution (R x) of Eq. (109)fis iterated back into &, then
Eq. (109) constitutes a recursive dispefsibn relation equivalent to
the branches of Eq; (18) which correépond to Brillouin.

The dimensionless quantity § thus characterizes the condi-
tion for the existence of the Brillouin instﬁbility and thé validity
and accuracy of its dispersion reléfion. The.mismatch D_ relative
to D+ can increase for a variety of reasons: D_ can cease to be
nearlf zero because of its dependence on k and 6, and because of
its dependence on pump strength through Q. As |8| approaches order
unity filémentation smoothly supercedes'Brillouin strong coupling.

By way of an illustration of Brillouin backscattering, a
numerical simulation was performed. The electromagnetic code dis-

cussed in Section II.B was employed to study Brillouin scattering in
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one dimension. A linearly polarfzed monochromatic wave,

Wy = 1.414 Wy impinged upon an unmagnetized, finite, warm plasma

2 0.01) and singly charged ions

slab. Electrons were warm (Te/meé
cold.' There were a modest number of particles, 2000 of each species
with mi/me = 25. In terms of the parameters used in Eqs. (105)
and (106), the dimensionless pump strength was chosen to be

2.2 2 1/3 _ -2
[(“&/hb) (ko Ty )/2] = 1.26 x 10

speed kocs/wo = 1.414 X 10-2. This corresponds to a regime marginally

and the dimensionless sound

between weak and strong coupling.
Because of the discrete Fourier spectrum of wavenumbers in
_the simulation, only one backscatter mode was excited from noise,

k = 2k, . Figures 28 and 29 show the growth of a large amplitude

=0
density perturbation in electron and ion phase épaces. From the ion
phase space plots a phase velocity nearly equal to the ion sound
speed was observed, Re Q/x = cg = 0.02¢c. An accurate measurement of
a growth rate was somewhat hopeless because of the very weak growth
rate, the early‘cnset_of nonlinear:features (ion wave breaking) the
reflection of particles and waves in our rather short system, and the
relatively large noise levels present in the simﬁlation (see Fig. 30).
A detailed simulation study of Brillouin instabiiity has been made by
Forslund et al.38 in which linear growth rates are carefully measured

and the importance of competing nonlinear features are assessed.

4. Absolute Instability of Brillouin

We next consider the asymptotic Green's function analysis for

Brillouin. We follow ﬁﬁe procedure of Bers and‘Briggs to ascertain

99,100

the existence of absolute linear instability as applied to

Brillouin weak and strong coupling and extend the work of Jorna36
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10,101 A.6¥function pérturbation in

and Chambers, Bers, and Watscn.
space and time is assumed for.the space-time dependence of the source in
the Laplace-transformed initial-value problem for the linearly
unstable coupled modes a_ and dng...For the source term we follow
Oberman a.nd Auer,lo2 allowing disc:ete particles in a collisionl'ess
plasma to produce longitudinal noise. We then construct the Green's
functions fur the scattered electromagnetic wave and for the electron
and lon density perturbations, and anal&ze the:Green's functions
asymptotically.

:The noise enters the charge density as>follows. Poisson's.
equation is |

2 o(x,t) = 4m Z e dn(x,t) . (110)
8

The chargg density of species s, Gns(g,t), includes the charge
density due to noise and the perturbed charge density induced by the

longitudinal electric field and théllqngitudinal éomponent of the

102

ponderomotive force. From Oberman and Auer, the Fourier and

Laplace-transformed charge densities are given by

SR (R,K) = -xk7(R,K)/4me; + § 5(Q,x) (111)

where X, =’xs(9&5) is the linear susceptibility and Sns(z,t)
is the loﬁgitudinal charge density due to noise, whose Laplace-

transforms in time and qurier transforms in two spatial dimensions

® ’ ' i
f dt'fdzi' exp(iQt - _i_K_-x'.) Sns(t'.,J_c' )
s ,

are given by

8, (R,x)
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Substitution of Eq. (111) for Gfis into the Fourier and
Laplace-transfomed Eq. (110) and use of E(an) =1+ Z X (k)

¢+¢0,and leg | << %] viela

el,k) (o) = [1 + xi(Q,f_)] $oe(9,5)

v amdPe[8 a0 - S )] (112)

In Eq. (112) we solve for §° and substitute the result into Eq. (111) -

to obtain
= o2 -1~ ! -1y i |
iy = -« X(1 * xi) € ¢Oe/41re +(1+x)e Qne *xee 8, »(113)

where the frequency and wavenumber dependence (_Q, .’S) in the suscepti-
bilities..and‘the transformed amplitudes is implicit.

Substituting the electron charge density into the fluid model
for the nonlinear transverse current J = eiie{no + 5ne(§ ,'t)]

Eq. (i4 ) and Fourier and Laplace-transforming give

) = & - ecd) & (w,K)
%) - _ls = -enoca_ - ecao ne w,_K_

o *
- ecaoﬁz;e-(guo -Q 12k = K ),

2,00 2, \a X
where (lpec /e)d_ = (mec /e) (w - Q _0 - K ‘) and
(m c2/e a. = (m c2/e) d(w.,k.) are the Fourier. and Laplace-transformed
e 0 e 0’=0
amplitudes of the perturbed and pump-wave vector potentials, respec-
tively. The term -eca'_s’ﬁ: (2uoO - 2Q ,2_}50 - 25_*) is higher order
in EO and gns and has been ignored. For Re'( 2wy —Q*) >> Wy,
the longitudinal noise §ns( 2wy - Q*_) does not incur the increased

plasma shielding that low frequency noise § nS(Q) can, and therefore
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its contribution 1is ignored.102 The electron charge density induced

by the ponderomotive .potential with phase dependence (2w - Q*, |
.ZEO - K ) 1is proportional to |2k - K !2 Xe (1 + Xi)e and is

likewise small compared to the low frequency induced charge density:
IXe/€| ~:wez/4m02 << 1 and forvbackscatter |2§o - fflz << IEJZ-

The ponderomotive potential given by Eq. (9) éan be Fourier

and Laplace-transformed to give

85(2,6) = (mc®/e)ijar

Substitution of the above expression into Eq. (113) determines
dﬁe(ﬂ,f) as a function of EOE; and §ns. We then substitute for
the chargebdensity in Eq. (114) to expfess the honlinear current
likgwise as a function of al, 50, and gns’ We Fourier and Léplace—
transform the glectromagnetic wave equation, Eq. (13), to close the
lset of equations. Recalling tﬁe definitions D_ = 2 e - 2k, 592 -
92 + ZQwO and T(Q,k) = xe(Q{ﬁj[l + Xi(Q,f)]/E(Q,f), the transforﬁed

wave equation including the effects due to longitudinal noise is

[D - % |a0| F(Q,K)]
- w2 HQ,K) By {[1 + xq(e)] 8, 5(0.)/my + xy(0.x) §ni(§2,5)/no} :

(115)

For |kA | << 1, vy << |9/ << v, and Inz/wi?'l_ << 1, the

2

linear susceptibilities are Xe = 1/K2A and Xy ® —miz/QZ. Then the

dielectric response P(Q,E) can be expressed as
B(Rk) T -u2/0f - Pe ?)
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Equation (115) becomes

[(@ - P ?)p_+ P[5 IP]a" = auy(a,008

2-%[ 25 1,0 . 2,25 ¢
We 8‘0[9_ Sn (Q,l_c_)/no - K S (Q, K)/noj

where DB(Q’E) is defined in Eq. (101). The dispersion relation for
Brillouin scattering is determined by DB( Q,x) = 0.
We can now exhibit equations for “éf, &n o &nd Gﬁi. From

Eq. (116) we find that

Ny -0k - k) = & -
weZIZQSODB.(Q.,E)}._l.é;[ﬂzéni(ﬂ,ﬁ)/n - %0, %8 ®(9,)/n, | - (u7)
and fram Eq. (113) |
Gﬂé(ﬂ,g) - B2 - kP 2y [2“’9%(9"'5)]-1
x |§.0|2[92.§ni(9,5_)/n» -2 ?-s  S(2,6)/n, ]
- »<2c82(:sz2 K%e 2) 3 %(2,x)/my . C(117)

Use of Egs. (liO) and (111) with .cboi = 0 gives an expression for
85 (2,x) of form similar to Eq. (117).

To construct the Green's functions for the scattered electro-
magnetic wave a _(x,t) and for the perturbed electron charge density
Gne(g_,t), we multiply Eq. (117a) by exp[:_l(mo - Q) - 1(150 - ﬁ)'E]

and Eq. (117b) by exp(-iQt+ ik.x) and perform the inverse Laplace
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and Fourier transfdrms. We consider the Gz;eenfs functions with sources
due to ion or electron noise separately, asserting that the ion noise
and electron noise due to discreteness are independent;v We replace
Gns‘( _J_c;,_t) by a Dirac 8-function in space and time whose Fourier and
Laplace transform is unity. The Green's functions Gas( X,t) for
a_( 5,'1:), due to initiation by longitudinal electron or ion noise |

respectively, are

e .
Ga (.J-(.’t) w 28.*1'1 -1
= (2m)3 | anf &% 2390
G i( x,t) Cq Cx '
S8 Ve . -
2 b
| | -K"cg |
* exp(iluy -t - 1k, - x)x] (118)
where CQ is the Laplace or Bromwich contour and CK, before deforma-

t

tion, is the real Kx—kz plane. The corresponding Green's functions
for the electron and ion density perturbations can be similarly
c‘onétruc‘te’d. |

The Green's functions for a_(x,t), Eq. (118), and also for
" the density perturbations can be written as follows, where we have
perfdi'med the Q-ihtegration by depressing the _’ CQ contour down as far

as pds“sib_le and deforming the contour around the highest poles of the

integrand: _
Gas(gc_,t) = -i Z (2m)™2 'd2£ 3D ?Q,K';‘}gﬂl '
] B =T QK'J

=

X exp[i(@o -.QE;'J)t - :k'.(l_c0 - _K_)-_JE] *e.c. (119)
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Ias(nn-jﬁf) absorbs all the constant coefficients and the remaining
>

Q and. K dependence of the iﬁtegrand. The superscripts s denote

the species of the noise source. Qx-j is determined by DB(Q,K) =0,
_ ; 2
and z%"denotes the sum over the various branches of the dispersion

relation DB(Q,E) = 0. We take only the roots for which Re Qn-j > 0,

since #g add the complexvconjugate on the right side of Eq. (119).
In calculéting the Green's functions for Gns(zgt), there are additional
pbies of the integrand due to terms appearing in the denominator like
02 - chsz, for example. Since for these poles Im Q = Im(iKcS) =0,
they do not lead to instability; however, théy remind us of the
 presence of the low frequency normal modes that can also be initiated
by longitudinal noise, i;e., ion acoustic waves.

Iniperforming'the remaining k-integration in Eq. (119), the
Cy contour can be deformed as long as the zeroes Kq of DB(QaE) =0
r;main on their respective sides of the contours C_ in the complex

' 100 ... .
Kxu and Kz—planes. Since QKt will lead to a rapid phase variation

exp(-i Re_QKt) ‘and perhaps to an exponential growth exp(Im QKt),

the dominant contribution to the integral in the complex K—spéce will
arise from the saddle or stationary phase points described by
BQK/QE ='o. Provided that BDB(Q,E)/BQIQK # 0, the saddle point
lcthition is equivalent to the simultaneoﬁ; conditions DB(Q,E) =0
and BDB(Q,E)/QE = 0. This corresponds to two r§ots of the dispersion
relation pinching together. _

If the pinching roots come from opposite sides of the CK

contours, then no further contour deformations can be performed at

the pinch point. The CQ contour can be depressed elsewhere in the

complex Q-plane but -CK is trapped at Ep‘ by causality requirements
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between the pinching roots Ko = %, If Im Qn >0 .at the
pinch point, then the instability grows in time everywhere in space

(absolute instabilityloo) with asymptotic Green's functions:
Gas(;c_,t) o«

8 - ’ - - . _ .
L0k xt) exp[tluy - 00 = Uk, - x)x]

: Z +c. c.
jJDBTQ,f__)ﬁS? Q_,x
Pp-p
and similarly
8 v \
I (Q ,k 3x,t) exp(-iQ t + ik_-x)
Gns(ixt) « L 2P ' P = c.Cc. ,

oD (2, )/30
B ey

whefe Qp and Ep are the pinch-point frequéhcy and wgvenumbe; with
largest positive Im Qp. The functions IaS and InS incorpofate
the different frequehcy- and wavenumber-dependent factors remaining

in polynomial form in the numerators and denominators of the respective
Green's functions' integrands. The&lalso inciudé the dependence on

| Qp, E?’ X, and t, as the result of the saddle-point integration:

fdz_k;' exp[-1g": k'k't + 1k'.x ]

where Q" = az’sz/ag::_ag:_lQ .
P’=p

To analyze the nature of the absolute instébility of stimulated
Brillouin scattering in all regimes of pump strength, the pinch
conditions can be directly applied to Eq. (101) or (105). The pinch

conditions become
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DB(Q,K,cos 8) = 0 (120a)
aDB(Q,K,cos 8)/3k = O (120b)
—«1 sin 6 aDg(R,k,c08 6)/3 cos 8= O . (120¢)
, - . 2 2 2y _ |
Equation (120c) gives 2k sin 8(x cg” - 2°) = 0, which has non-

trivial solutions for 6 =0,m and k # 0. The other solutions to

Eq. (112¢c), Q = #xc_, merely describe free ion acoustic oscillations

s’
and are inconsistent with Eq. (120&). The 6 =.0 solution correspbnds
to Brillouin backscatter. Setting cos 6 = 1 reduces Eqs. (120a)

and (120b) to a one dimensional description.

The asymptotic behavior for modes ﬁhefe 8 # 0 is constructed
froﬁ the simultaneous solution of Egs. (120a) end (120b) as funétions
of Q@ and x and with fixed parameter cos 6. These modes can grow
in time as well. However, as they do not represent simultaneous |
selntianYOf the entire set of Eqs. (120), these modes will have weaker
~growth rates; i.e., their growth rates have not been maximized with
respect to scattering angle 6. This is corroborated by Eqé. (104)
and (107) which show that the growth rates of Brillouin weak and
strong coupling are maximized for exact backscatter, 6 = O.

The pinch-point solutions for complex & describg the temporal
growth, if Im Q > 0, and oscillation, if Re @ # 0, of the low
frequency density perturbation. The scattered electfomagnetic wave
has shifted complex frequency Wy -S}*. A finite imaginary part of «
will produce a spatial growth or attenuation of the amplitudes of the
density perturbation and the scéttered électromagnétic wave: 1in fact,

both grow in space in the direction of the backscatter.
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To explicitly determine the pinch—point frequencies and wave=-

numbers for Brillouin, Eq. (105) is substituted into Eqs. (120a)

and (120b) with cos 8 = 1. We then solve numerically. Since the
ratio [(mi/wo)z(koro)2/2]1/3/(k0cs/w0) determipes tbe distinction
between the weak and strong cbupling regimes of the Brillouin disper-
sion relation, we set kocs/w0 = 0;01 for convenience and vary

P= [(wi/wo)g(kbro)z/Z]]'/3 as a free parameter. Figure 30 shows a
plot of Re Q/uy &and Im Q/w, v (gi/wo)z(kord)2/2, while Fig. 31
plots Re «k/2k., Im K/Zko, end Re Q/Re xcg vs_(wi/wo)?(koro)z/Z._
By slowly incieasing the pump strength from P3 << (kocs/wo)3 ='10f6
to P3 >> (kocs/'wo)3 = 10-6, the continuous fransition fromvweak to

strcng:coupling should be exhibited,if it exists. Before comnent ing
on the results, we digress to solve Egs. (120§) and (120b) élgébraically
for weak coupling. B

Wé can write Eq. (101) as

DB(Q,K,QQS 8) = {Q + 02(K - 2Kk0cos 6)/2w0]($'22 - ch'

+ 12 2v /8u) = 0 . (121)

If we make an expansion § = KoCs * Sw and «x = Ky * 8k, where
K0/2k0 = gos 0 - cs/vg is the wavenumber for exact frequency and
' wavenumber matching,'and assune that éppropriate for weak coupling

IGK/KOI, [aw/KOcS| << 1, then from Eq. (121) we find that

Dy(8uw,8x,c08 6) « [Gw + czag(xo - kycos 9)/wb](8w - Skey)

+ wizxoz”o = 0 . (122)

(16K c wo) -1
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To obtain the pinch point deseribing the absolute instability
of weak coupling Brillouin, we set 6 = 0 in accordance with Eq.

(IZOC)Vto obtain Kg = 2k0(1 - cs/vg) and

Dy(8u,6k) = [&n + 8x(xy - Ky )cz/(uo](tSw - e bc) + y02 (123)
where Y 2 2w (x.r )2(16K A )'l and w_ = 2k.c Then Eq. (120b)
' Yo 7 %1% %0%0 0’ - Ya = <% 1
becomes '
oD (8w, 6k )/36k = [(K -k )02/w }(Gw - ¢ _8x)
B ? 0 0 4] s
- cs[Gw + c2(|<O - ko)ék/wo] . (124)

If we define ¢, = 02(K0 - ko)/mo, the magnitude of the group velocity
of the backscaftered electromagnetic wave, then the simultaneous

solutions of Eqs. (123) and (124), determining the pinch point, are

6ms

tinO(clcs)i/(cl.+vcs) = tiZYo(cs/cl)i - (125a)
and.

§Ks

‘Ks - Kl)/2 z tiya/(clcs)i , (125b)

= - = 103
where Ky = Gws/cl and Ky = Gws/cs. “  The ratio kocs/nb has

been assumed small throughout. The generalization of these resglts
to include dissipation is found in the literatdre.ll’lo3

The weak coupling pinch-point solutions Eqs. (125) are plottéd
for purposes of reference in Figs. 30 and 31 as dashed lines. The
lgzgz'limit of pump strength in these figures corresponds to
(wi/mo)z(koro)z/Z = (kocs/wo)3 = 10-6, which,vaccording'to the normal
mode analysis, is the upper limit of the weak coupling regime. One

observes that the weak coupling analytic formulae describe Brillouin
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absolute instability to an excellent approximation over a broad range
of pump strengths (wi/wo)z(kbro)zlz > (kocs/mo)3 well into the strong
coupling regime of normal modes. The weak coupling formulae represent
valid pinchfpoint solutions for the general Brillouin dispersion
relation, Eq. (101) or (105)’:pr.ovided [8w /ke | << 1. The condition
(u&/bo)z(kOro)z/z << (kocs/'wo)3 applies to.thevlinear dispersion
| relation describing the normal mode spectrum, i.e., the complex
frequency _QK as a function of real k. vIn terms of a condition on
the pump strength sz/cz, the weak coupling pinch point formulae

require that
(/e wy /20, ) << 1,

while the weak coupling linear normal mode dispersion relation

demands that
(v /c)(wi/ch )(v feg) << 1,

where numerlcal factors of order unity and dependence on K/2k have
been dropped. Comparison of the two conditions demonstrates that
the weak coupling formulae describe absolute Brillouln instability for
pump-wave amplitudes» (ﬁo/c) allowed to be 1arger by
v /e = cZkO/mOcs %han those for Which the linear dispersion relation
of Brilloﬁin QK becomes strongly modified.
In Figsj 30 and 31, only for pump etrengths

(wi/wb)z(k /2) 1072 do the pinch-p01nt solutions diverge from
the weak coupling formulae. In this regime of pump strengths finite

= D_/D, corrections to the Brillouin dispersion relation become

necessary. We recall from Eq. (109) that replacement of (?ro/c)2
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by (Go/c)z[l +8/Q - 6)], in the Brillouin dispersion relation where
6 1s to be evaluated for complex Q and X, provides an implied
recursion relation for including the effects of the A, éideband in
Brillouin. In Fig. 32 |§| evaluated at the pinch-point frequency
and wavenumber is plotted as a function of (mi/go)z(k02r02/2). We
conclude ffom Figs. 30, 31, and 32 that the abéolﬁte instability of
Brillouih is adequately»described by the weak coupling formulae for all
pﬁmp strengths, except for those so intense as to drive both A,
and A_ ‘sidebands to comparable amplitude and therefore necessitate
solufion_for the general filamentation and Brillouin pinch-point
frequehcies and wavenumbers using Eq. (96).
| A final but necessary demonstration of the Brillouin pinch-
point behavior for large and small pump strengths is furnished in .
Figs. 33 and 34. Level contours of !DB(Q,K,B = 0) in the coﬁplex K
‘plane>for,parameter . Q are plotted using Eq. (105). Re @ is held
c&nstant at its pinch-point value for given pump strength, and Im Q
1s varied from slightly below the pinch point,~through it, and then
above. Roots‘of the dispersion relatidn appear as a nesting of con-
centric contours. Figure.34 shows the coalescing and retreat of
.pinching‘féots for weak coupling _(wiz/woz)(kozrbz/z) = 1077 <«

(kocs/mo)3 = 10-6.v The identical topological behavior occurs in
| 2, 2y 2. 2,0\ _ =2 ' 3 _ 46
Fig. 34 for (wi /wo )(ko Ty /2) = 10 %> (kocs/mo) 10 .

5. Plasma and Laser Parameters for Brillouin Strong Coupling

‘and Filamentation

For existing laser-plasma experiments, e.g., laser-pellet
experiments using neodymium glass lasers and laser heated 6-pinch

experiments using CO2 gas lasers, we consider what pump intensities
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are necessary to induce strong coupling and filémentaticn. Table I
exhibits parameters typical of these experiments. P0 is the laser
porervintenSity in watts/cmz. For strong coupling we use Eq. (107)

to obtain

Q (k= 230) x (-w12k°25bz/2wb)1/3 =

)

-gas

0.3 x 1083(p%/1010 w/en?)t/3 sec! 'coz

(-3

0.5 x 1014(P0/1018 \‘I/c:mz)-l/3 sec™t Nd-glass

Using Table I and comparing QE(E = 230) to © =2k, we
determine the effective power densities for the occurrence of strong

‘coupling Brillouin séattering in a homogeneous’piasma. ‘For

QK > w, Wwe find that PO 2 1013 W/cm2 for CO, and 1017 W/cm?

K 2
for Nd. ‘

In the lmit (ke/20)) > (e /c), and |cos 8] << 1,
filamentation occurs for (Go/c),> Kle 'oorreéponding to

10'® W/en® for  Nd). In the

0 > 22 2 x (10*° w/er® for co,,
absence of dissipation, the thresholds for the growth of long wave-
length filaments therefore can be quite low. Of course the size |
of the laser beam and the plasma térget determine limits on the
wavelengths. The lifetimes of the laser pulse and the plasma target
"set'furthér limitations on how stréng the fiiamentation growth rates

must be to be significant.



Table I. 'Laseréplasma Experimental Parameters

' ;3 ‘ -1 -1, -1 . ~ 2,2

_ no(cm ) we(sec ) wi(sec ) _mo(sec ) kole Y /c
00,-gas 107 3x102 5 x0T 2x10% 01-0.3 %12 x 10* wyen?
Nd-glass 10%° 6x10%  1x102 . 2x10”  0.1-0.3  P°1.2 x 10 W/en?

-Zz'[-
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APPENDIX I: LINEAR SUSCEPTIBILITIES

To derive the limiting forms for the linear susceptibilities

we consider the Vlasov equation as a model kinetic equation:

/m_)3 ¢3Af (xﬁr; t)

g 8’ x"'vs 0 (a.1)

atfs(x,v;(t) + vaxfs(x,v; t) - (e

where fs(x,v; t) is the normalized distribution function. Then use

of ng = nd~ dvfs(x,v; t), the Poisson equstion '-82¢/8x2 = 4T §:nses,
v : s
- and the definitions of the Fourier transformed linear susceptibilities

2

xs(m,k) = -4mk” esﬁs/$ in terms of the Fourier amplitudes ﬁs and ¢

yields

xlwk) = o [ av einsty - w) (.2)
where w2 = sme2/m,  £1(v) = af Ov)/av, u = wfk, and £0
‘ s ~ 0 s’ s T s ’ - ? s
1s the velocity-dependent, time and space-independent} unperturbed
distribution function.
There are two cases of particular interest when evaluating
Eq. (A.2). For |Im(w/k)| << |Re(w/k)| we utilize the Landau

prescription in evaluating the Hilbert transform:

lim —2— = P[l/(v - u)] T 1ns(v - u) (A.3)

Im wot’ ~ ¢ ' -
where P( ) indicates the principal value of the implied integral.
For the case that |Im(w/k)| 2 |Re w/c| and |Im(w/k)| > O, there
is no difficulfy in evaluating Eq.(A.2) directly; there is no
singularity on or near the contour of integration.

If we consider Maxwellian velocity distribution functions for

2)-1/2

the separate'species fso(v) = (ervS exp(-v2/2v32) where

Ve = ('I‘S/ms.)l/2 is the species thermal velocity, then asymptotic
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forms for the susceptibilities can be straightforwardly derived.
Numerical tables have also been ccmpiled.lo“ If we define.

- ‘ - E . o - . 104
n:zv/ '\/E v, and § = m/'\fg kv,, then the Fried-Conte function
Zs(w/k) can be defined as follows:

L | | i / 1

/2 Vg n? f dn exp( -n?)/(n - E)j

o)
(A.4)
z(£)/ V2 v, .

In evaluating the susceptibilities, the following identity is useful:

n? f dn(-2n) exp(-nz)/(n - §) = dz/dg = zé(&).. The suscepti-
bilities take the form *s(w,k) = -w82 Z'(m/k)/k2 where

2 (w/k) = 42 (w/k)/d(w/k).
| For the case that m/kvs = '\[; £ 1is nearb* real,then using
Eqs. (A.2), (A.3), and (A.4) one obtains
Im zé = n‘* exp(-gz), Im 2! = ~on? £ exp(eez) (A.58)

and asymptotically

26(1 - 2/382 + ...,

1im Re zs = A
£+0 :
(A.5b)
1im Re z_ = -5-1(14-&'2/24- eed)
Eaw  F
and
1imRe.zé = -2+4§2+ oo,
£+0
v (A.5¢)
_ 2 -2 :
lim Re 2! = & (1 + 38 °/2+ --+) .

Evo . S

-3
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For w/kv = ﬁ E compl.ex then the results (A.5b) and
(A.5¢c) describe the complex asymptotic forms of ﬁhe Fried-Conte
functions if ‘one drops the designa‘gion "Re" on the left sides of
the equations. Weekly damped electron plasma oscillations correspond
o w = w, >>w and lw/k] >> v . Then the ion susceptibility is
negligible, and the electron susceptibility 1s given by
.Xe £ -uoez/(m2 - Bkzvez) + i(n/2 )é(me/kve % '.exp'( -w2/2k2ve2). For ion
modes in the limit that w; >> |w| and v  >> (w/k) > v,, then to
lowest drder of approximation the suséeptibilities. are giveh by

n2, 2 S 2,2
Xezl/k Ae and Xi.. -mi/w.
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APPENDIX 2: ELECTROMAGNETIC CODE

POOGRAM EML(INFUTCUTPUT,TAPE2=IN2UT,TAPE3,TAPES]
C CME=NIMTNSICNAL ELECTRAMAGNETIZ PLASMA STMULATION CODE.

C RELATIVISTIC. SLECTRCNS, HNCHN-RZLATIVISTIC 12NS.
T 0 WRITTEN BY A, BRUCE LAMNGOON, LIVEFVSCE, 1972, T
C BEAUTIFIED BY R, CCHEM, M, MOSTOLY, AMD O. NICHCLSUN BERKELEY . MARCH,1973
- ¢ )

COMMON/CFIELO/NG,L 4 AEL ,CX, CGSHL, JYM(257),R2(2571), ?HOO(ZST!.
o RHOU257),FHI(257),EX(257), JYP(ZS?) EYL(257).CVF(7S7I-EY(257)

l*kl‘nl‘(hG-MCAT)/(NI*QHI*NG)

e . REERL Ly JYVM, JYP
c ‘ . . e e o
: COMMIN/1/XLZ0CE0) y¥X(2002),VY(2000)
- TCOMMON/CNTRLZIT, CT .TIME,[EX'XJYgICYL.lEYQ,
o PLOTS (NTH ITHL, LEY, 10,
- T W IRHO TRHOS 4 1PHI , IXVX, TVXVY
COMMON/SAVE/ H{8y301),5H(301),KAY(E] ¢NKAYSTTHNToNFyNL
—_ “LOGICAL PLOTS,IFT T T
COMMOM/THERMAL /7 [TPERM
COMMON/UNTTS/ZENMTIC 2T ,ANM2C214RMIC2T ,RM2C 21 4M2C 2EY -
COMMON/ BDRY/MCAT, TCOLL o EYRMEYLP, EYRC, EYRNGEYLCHEYLN
- COMMIN /PLMP/ WPPPR,NPMPL,EPMPR,EOMPL
REAL LP,VR(2),i11C2,M202
- TINTEGER TITLE(S) T T T ! T T T e e
c .
- o COM“ON/Z/EAE(3JllyEYF( 3L, EYLE( 201 ,EYRE(301),XS1(301), T
s KE2(301),FIX(362),PLY(302),P2X(3021,P2Y(302) ¢NNLINN2
- T REAL KELl, KE2, MM1, NM2 I
FEAL M1, M2, KE, KO ‘ -
TTTTUUTTTTTUNAMELIST JIN/Z KL eN2,NT NG, MGDE,VIO0,V20,X11,X2Y, TO T T T T e e
o WLIW2,HC14CMY,GM2,K1),0T,PLOTS, [2H3, IRHOS,IPHI,
-0 _—“o | !xvxrIVX‘JYIXE:'V'«‘:Y'A- l' AUYDA-.\L!I'.\“,OSC»lLu'JrHLGtou'
o oTEMPL,TEMP2 ,1iPUPRKPNPL EPMPR,,CFVNPL oMOAT, I|nE<dyNF,NL
TTTC OEFAULT INPUT PARAMETERS. )
DATA Hl,h’?_.HCl.QNl,CNZIL.,1.'0.1-1.'-1./ . '
TTTT T CATA VIO, Y200 XKLL 9 X221 gMCNE KO/ 04 904 92%0,.0 Gl,1,./ T T T T e m e
CATA NG,NLyN2,NT»DT/32,128,128;400,01/ '
““ DATA PLCTSsIRHC»1RHCSy [PHIT , IXY X, IVAVY /2 TRUE, »4%0,0,40,20,20/
DATA IFX.!EY.IEZ-IJY'XEYL,IEYP.IFlevﬁoooTRUE /7 .
CATA SCALE SCAL2+HW/0,LF+50,0.17+50,047 .
CATA TEMPL,TEMP2/3,,0./
TTTTTTTTTTODATA WPMPK,hPNPL'~P'Dh,EPPPL,PCbT/4$O 0.3/ T oo T T
CATA ITHERM,WE,NL/20+64,24/
-7 . NATA NKAYS,KA Y/81?'31 25969 T98,5/ : -
DATA IT, TIPF.ITH,['HL,MoH/0.0.,0,0'3001
CATA TITLE/9%0/ - - o
READ(2,IN)
T T RRITE(3, I N) T e T T TS T T e T e -
; CALL HISTRY ,
ST 1CCLL=0 o )
[TTH=} :
EYRC=EYRN=EYLC=CYLN=EYFM=EYLM=0, -
ERMAX=0,C
— _l- ~~ ENMAXR=0.0 S S e e e
EAMAXL=0,0
T ELCSS=0. ) - )
: TWCPI=8.%*ATAN(14) -
ST " CGSHL=L=TWCPI/KO e
C MOAT INTRODUCED
e xaL /NG . e e e e e e e e e e e e
T1=WC1*0T/2.
NP=N1+N2
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M1=Q1/CM1
hME=N]1®M]
IF{N2.EQ.C)0Q2=0.0

IF(N2.NELO) QZ'HZ‘NZ‘(NG—MOAT)/(VZ'QWZ‘NCl

P2=C2/CN2
T2=0, -
[F(M2,G5T.0e) T2=M1%#T1/M2
NM2=N2#M2 :
C NlCZ‘V‘.SllOOQl 06 ELECTRCN VALTYS,
M2C2Zv=M2/P )%, JO41EQS -
T €7 - SCALING IN UNITS DF REST MASS ENERGY NDEMSITY oo mmmmmmre o ’ T

MLC2=M1*(CX/CT)* 2

P2C2=M2% (DX/CTI* %2

RM1C2I=1./(M1C2)

PNMIC2I=1a/7(N12M1C2)

IF(N2.,NE.O) RM2C2I=1,/(M2C2)

TUTTTTTTTLRA{N2GLNEL Q) RANM2C2T=1,7IM2%M2C2) .

C‘t#t#*a#tct#ttttttt_tttt
C DENSTITY AMD VELCCITY LCADING ) o T T

¢ MOAT INTRCDUCED
T’ C MOAT MUST SE AN INTEGER GREATER THAN 2 T
: DFOAT =MCAT*0X _
e E—— lp L_DVCAT TTTom e ARtk T STTeTmTmT s TS s T s e e e bt
N1l=N1+1

¢ QUIET START FCOR OENSITY
C SCALF IS IN UNITS QOF LP=====CCNVERT TU ABSQLUTE UNITS OF LENGTH
C DENSITY PRCFILE
C SCALE MUST EXCEED o5 g
ST USCALE=SCALESLP /DX T T T e T ’ T
SCAL2=05%{(DX/SCAL2)2%2/LP%%2 .
BB= SCALE
XMIN=FLUAT(MOAT} /2.0
- TXMAX=NG-FLCATINGAT)/2.,0
CALL DENSE(EB:SCALZQHH, o N1y N2, XMIN, XMAX) .
—ets == B810 [214N1 : A U P O LU U,
vVY{I)=0Q.
Tvx{Iy=vio
10 CGNTINUE ]
o CALL CREATCR{VX,VY,V10,1,N1, TEMPL,36HLONGTITUDINAL VELOCITY DIST
«RIBUTICN 1,341 TRAMSVERSE VCLUC!TY D'STRIEUTILN l,
CoTmTmm e CALL SVEAR(X 1 Nl) - e TTTT ST e e e T T o e
‘ IF(NL1.GT.NP)GC TO 17
BTt Do 11 I=N1Le NP \
VY(1)=0.0
e 11 vxX(1}=v20 . o i o
CALL CREATORIVX,VY V204N11NP, VFMPZ’36HL0”GITUD!NAL VELUCITY Dl

W m=m IS TRIRUT ICN 2,34HTRANSVERSE VELOCITY DISTRIBUTION 2)
~ CALL SYMEARIX4N1LleNP) , .

e 17 CONTINUE : . e R -

NGLl=NG+1
s " DO 12 J=1,0NG1 - N T - -
) 12 EYL(J)=EYRISI=ITYM(I)=IYP(I)=RHOC(J)=0.0 .
TTTTUCTTTTTTUTHIS WILL ZERC RADIATICN. FIELDS AT T=Qp ~ 7T TITUTTTITUTITITTIS S s s e
o C DC NOT NEED CURRENT AT T==DT/2 NOW.
e " CALL SETRHO(1sN1,Q1) o T s T e e

CALL SETRHC{NL1,AP,Q2) :
¢ AT THIS POINT THE NEY DENSITY 1S ©XACTLY ZFRO. 1F YOU WANT TO

c TWIDOLE THE DENSITY, YOU MLST D3 IT AFTEP THIS PIINT. sssssesssns

4—~—-——~—00 13 I=1,N1 . e e Soeemete sm e e s e e e e e e

X(1)= X(l)+X11’CGS(THOPI*MOOE*X(I)/hG)
13  CONTINUE
C* % % & % £ % & % % % ¥ & & & % % % & & & ¢ =&

"



ST © GN=FLOAT{MG)

WETTTUT T CALL FCFRVILL NI,O-nGN,X 10H POSITION HTITLE) ™

o ENCCODE(90,8,TITLE) TTT

PTTTTTSTT CALL FOFV(L N ,-VM,VM, VY, lOHY-VELOCITVo'ITLE)

-128-

VCALL FlELDS(ExE(l!.FYLE(1).Ev95(1),EYFil).BZEI
CALL SETVILI NMLoQL ML, 0TsT1,PLIXCL),PLY(L))
CALL SETVI(NLL«NP,Q2,M2,0T,T2,P2X(1),P2Y(1))

C

WRITE(4,949)
949  FORMAT(4X,% TIME#,5X¢* EXE*,13X,* EVLE®,12X,%EYRE*,13X,* EYE®,
elbaXy# KE#,% JCOLL®TyOX ™ EYLM{L)=,TXy® EYPMINGL)®/}
C BEGIN TIME STEP LCOF,
100 CONTINUE . : ’
CALL ACCEL{14N1;QL,M1,0T, lePlX(!cHOZ).P!Y(ITH#Z).KE!(ITTH ) oKEy
TTTTTTOTAITY T
CALL ACCEL(N11,NP,Q2,M2,0T7, TZ'PZX(!TH»Z)'PZY(ITH#Z)pKEZ(ITTH )v
oKELIT) .
KE=KE/NML
- WRITE(4,950) TIME, EXE(ITH&I) EYLE(ITH+1) JEYRE(ITH+1) ,EYECITH+1),KE
oo TCOLLEYLM,EYRM
TTTTTT950 FCRMAT(F8.245F1Ae8, [5.2‘16,8)
c ACCUMULATES RADIATED ENERGY LOSS
o ELOSS=EY(NGL)*EZ(MCL)-EY(1)*BZ(1)+ELCSS
TOTAL=EXE(ITHE+1)+EYE(ITH+L } +KE+BZE
TOTAL=TOTAL+ELCSS*DX*RNMIC2T/CGSHL
WRITE(4,951) TCTAL
951 FORMAT {* TGTAL ENERGY{FIELC+KINETIC+LOSS)" NORMALIZED TO NMC2 *;°
«El6.8)
VL =VU 0.
CALL PLCTXV(l NL,VL,vu.L. SHELECTRNMS, 1)
VL=VU=Q,.0 v oo
CALL PLOTXV(1,N1,VL,VU,L, 9HELECTRCNS,2)

B TTTVYMU=0,
CALL PLTVXY({1,Nl,VMy, 9HELECTRCNS)
vL=VU=0. ' ST
CALL PLCTxV(All.NP,VL.vu.L. 4HICNS, 1)
TVL=VH=0,0 ’
CALL PLCTXVUINLL,NP,VL,VIly Ly  4HIGNS,2)
NPU=0. e ATAHTSY
CALL PLTYXY(N11l,NP,vMy, 4HICNS)
TTT 7T T IRt [TWEQWNT ) GC TO 101 '
IF( ITHSEQoNTH ) CALL HISTRY

- T 1T=IT+

C PARTICLE DEMSITY AND VELNCITY OISTRIBUTION PLCTS

e e e = e o

ST IF(UIT/STHERMI*ITHERM.NELIT) GO TO 99

ITTH=ITTH+L - e
ENCCDE(9C,500,TITLE) TINME : N

500 FORMAT(*ELECTRCN DOENSITY (NO, OF PTCLS. VS. X/DX) AT TIME=3$,
oFlOol') )

TTIT=TINME+.5¢DT

8 FORMAT (*ELECTRCN  VELOCITY OISTRIBUTICM (NO. OF PTCLS. VS, V/C)
o AT TINE=%*,F10,4) ’
VR(1)=VRi{2)=0.
TTUTT T CALL RANGEY(VX,VR,N1)
VM=A4AX1{ABS{VR(1)),ABS{VR{2))}
" CALL FCFV{1,N1l,-VM,Vi4, VX, LOHX-VELOCITY,TITLE)
VR{1)=VR{2)}=0,
CALL RANGEY(VY,VYR,AY)
VM=AMAX1(ABS(VR(1)),ABS(VR(2)))

99 CONTINUE
TIME=IT*DT
ITH=IT-1THL



.

GO 19 160

e
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CALL MCVE(l,N1,CQ1)
CALL MCVE(NLL1,NP,0Q2)

CALL FIELOSU EXE(ITHOL) JEYLECITHOL) ,EYRELITH+1 ) ,EYE(ITH»1),82E}

C ENO CF RUN.

1ol

CONTINUE

CALL HISTRY

CALL EXIT

END :

SUBRKOUTINE SMEAR(X,IL, U}

C THIS SUBROUTINE RANLOMIZES A VECTO° ARRAY B8Y RANDOM PAIR EXCHANGE

TXX=X{I)

DIMENSIGN X(1)
NUM=TU-TL+Y

00 70 I=IL,IU
I1=NUMSRANF (0D +1L

X(1)1=X(I1)

CXUIIr=xXX _ .

10

100

U150
- 2540

400

T COMMON/CFICLD/MGUyAEL 4 OXy CGSHL

" AINT=0,.5

CONTINUE
RETUARN
END

SUBROUTINE DENSE(SCAL:yC HWp Xy N1y M2, XMIN, XMAX)

DIMENSICN X{1)
INTEGER TITLE(S)

COMMON/BURY/NMCAT» 1COLL , SYRMEYLM,FYRC,EYFNLEYLC,EYLN

JYM(25T) ,8ZL257),RHO0(257),

RHOC(257) +PHI(25T) EX(257)4IYP(25T)4EYL(25T),ZYR(257),5Y(257)
TFDENSIX)= (N Z(XMAX=AMIN))Z( Lo+ {X-0,S5XMAX+0,5%XMINY/SCALE

“CE(N=aSEXMAX S, SEXMIN J %22 ) ¢ANGRM
ANCRM=1e/ {1a={ RMAX-XHINI**22C/22,}
DATA TI1TLE/9%0/

N=NN=NlL
J=1

NSTEPS=1000600
DELTA={XMAX=XMIN}/NSTEPS . )

CCNTINUE

00 100 I=1,NSTEPS
AINT=AINT + FCENS(
IF(AINT.GTFLOAT{JIIIX(J)=XMIN + DELTA*I
IFCAIMT.GToFLCAT () ) =g+
IF(J.6T.NN) GC TC 250
CONTINUE

DO 150 [=J,NN

X(I=X{1-1) + 10,0* OELTA

DELTA®I) * DELTA

CONTINUE B TTm T
I1F{N2,EQ.,0) GC TC 350
IF{NN.GT.NL) GO T 350 T
AINT=FLOAT(NL1)+0,.5

J=Nl+1 _ e e e e e

N=N2

AhN=N1+N2 =~ "77°
IFINLI.EQ.N2) GC TO 60
63 Ta 50

DO 65 I=J,yNN
X{IY=X(I~-N1)

CONT INUE

GN=FLOAT(NG) ~~
ENCONDE(90,400,TITLE) : .

FORMAT (*DENSITY PROFILE (NOe. JF PTCLS. VS.
CALL FCFV(L¢NL¢OesGNsXy1OH POSITICON ,TITLE)

X1

AT T=0%)



- 200 VX{I+3)=VY ()

I

T T WY(T+))

RETURN
ENOD
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. " SUBPUOUTINE CRS ATCQ(V! VY VA IL e TYU, TEMP,TITLE L, TITLEZ)
c WE USE THE VX ARRAY A4S & LUMMY APRAY FOR TOTAL P AMD TOTAL V

"C 7T NSTEPS
OI¥EMSICN  VX(1),vY(1)
INTEGER TITLEL(4),TITLE2(4)
INTEGER TITLE{(9),XLLR

FULIIZEXP(~SO%T(10+0D28)562)/T 80P *822(

GlJI)=EXP(=.54002#%}33/T)eCP*u2%C
IF{IL.GELJULGRJTEMPLEQ.0.) RETUPN
T=TEMP
NFCUR={IU-IL+1)/4
AFCUR=NFOUR*4
ANL=NFCUR+1
N=Tu=-IL+1
“PI=2ATAN(L.)*4,
NSTEPS = 200

c VELGCITIES ARE IN UMITS OF C AND MCMENTA IN MC

FMAX=6 L0 #SGRT (T44,0#T#%2)
DP=PMAX/ (N¥NSTEPS)
CP2zDP *%2
T IF(T.67,0,002)
IF(T.LE.0.002)
J=1
1=1
AINT=0,0
50 CONTINUE
T T T IR (T 6T60,002)
IF(T.LE.0.002)
T T4s4rl+lL-4
IFCAINT.GTo ) VX(I4)=Js0P
IF(AINT.GT. 1) I=]+1

C=e25¢N/(T+T*T)

AINT=AINT+I*F(J) ™
AINT=AINT+J%G(J)

C=,253N3EXP(1.0/T)/(T+T%T)

1F(4%] sGT.NFCUF ,CR,J*DP.GT, PNAX)G? ‘19 100

— e s s

Td=Jel

GO 10O 50
100 CCNTINUE
[FL4a*x]1,GToN) GC T3 170
14=4%1+1L-4

BC 150 K=14,1IU

150 vxX{K)=0,0

170 CONTINUE

- DO 180 I=IL,1yY ' o
180 VX{I)=vX{1)/SQRT (1, O*VX(I)*‘Z)

T ~ KFL=NFOUR-4.

CO 200 J=1,NFL+%

I=J-1+1L
THETA=RAMNF(J)2PI%,5
T PX=VX(1)
VX{I)=PX*COS(THETA)
VY{L)=PX2SINI(TFETA)
VX{T+1)==VX(])}

==yv¥({)
VX{I+2)=-VY (1)
VY ({1+2)=vx(1)
VY(1+3)==vX(T1)

IF{NFOUR, ECo N) GO TO 202
TILNF=IL+NFCUR :
CC 201 J=ILiNF,1U

201 vX(Jl=vY(J)=0.0

202 CONTINUE

1S THE AVEZACE NUMRER GF INTEGRATION STEPS PER PLATICLE

TP PP S
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VYMAX=PMAX/SCRT{1.04PMpX 602
VXMAX=(VOEVYMAX) /(Lo #VOSVYMAR)

GM=SORT{1,=-v02*Vv0]} ,

00 300 [=1L,Iu

VY(T)=GMaVY (1) /7 (1.4VI*uX(])) Coor T T

VX(T)= (VX(T)4VO) /(1. eVOSVXET))

CONTINUE

ALAB=10HX-VELCCITY

ENCOIDE (90,8 TITLE) TITLEL,XLAD

FORMAT (4A10,%(hJe CF PTCLS. V3. #,A10,%/C} AT TIME = Q#)

CALL FCFVIIL,IL,=-VXMAX,VAMAX,VX,XLAR,TITLEY ~—~  ~ = 777 oo
XLAB=LOHY=VELOCITY . _

ENCODE (90,8, TITLE) TITLE2,XLAS . B T

CALL FCRV(IL,IL,=VYMAX,VYMAX,VY XLAB,TITLE)

RETURN _

END ' :

C 777 SUBRQUTINE FOFVIIL,IU,VXMTIN,VXMAX VYV, XLAS,TITLE)
C DBUNCHES PTCLS. INTO BINS OF WIDTH (VXMAX~VXMIN)/NBINS )

‘C. AND PLCTS NOo OF PTCLS. VS. PCSITICN CF BIN CENTER,

——— e

. PPLT 0021
e e . e o e e e e e e e e PPLT0039
THIS SUBROUTINE, GIVEN A SET QF N X—-Y COORDINATES, WILL PLOT THEM PPLTO040
T CN A 51 8Y 101 XY GRID-—e——w—c—w—aTHE X ANY Y ARZAYS ARE UNAFFECTED
BY THIS ROUTINE AND QUT OF RANGE POINTS ARE IGNURED
- ’ PPLT 0090
PPLTON100
1 = ——————— INTEGER TITLE(S) XLAB ~TToTT T TTTTrTT T T TR T e o
PPLTOLL10

OIMENSION B8IN(101),vXBIN(101)
DIMENSICN -VVI(1)

INTEGER TITLE(9),X(B o - e e

'NRINS=100 )
BINMAX=0.0 - o

" D3 100 J=1,NBINS

8IN(J) =0, C e

TVXBINGJI) = VXMIA#(VXMAX-VXMIN)*(FLOAT(J) =0,5)/FLOAT{NBINS)

TOBRIN(III=BIN(III L.

IFIBIN(II) LGTL.BINMAXIBILMAX=BINIJS)
CONTINUE

CALL PPLT{VXBIN, BIN'VXMIN-VXNAXyOa'BIHPAX.NBINSoXLAByTlTLE) .

"RETURN T T

END
SUBROUTINE PPLT(X.Y.XH]N.X“AX.YM!N YMAX.NUHoXLAB TITLE)

DIMENSION X(1), Y(1), XGRIC(L1), YGR[D(lllo GRID(1011}

DIMENSICN BLA(37)
DATA (BLA{I},I=1,37)/1H ,lP*ylHZ 1H3,1H4,1H5,1H6,1HT,1HB,1H9,

"% 1HALLIHB, LHC, 1Dy LFE) LHF, LFGy LEH, LHTy 1HJy LHKy LHL y LHM, LHN, LHO, LHP,

‘ !HQ;IHPylHSleTylHU-lHV,lHWlexylPYvlchlWS/
TINTEGER BLA,GRID
WRITE(3,10) TITLE

- 10 FORMAT(1H1,2X,5A109 S :
20 YL = (XMAX = XMIN) / 10. : ‘ PPLTO280
- ©T2 = (YMAX - YAIN) / 10, ' IR c ' PPLTO290
XGRID(1) = XMIA . : PPLTO300
e YCRID(L) = YMAX SR _ SR T S R 0
©C 25 I' = 2, 11 ’ . . PPLT0320
o o PPLTO330

- 25 YGRIOU(I) = YGRIC{I — 1) - T2

XGRID(I) = XGRID(I - 1) + T1
PPLTO340D

CCMTINUE .
DO 200 T=IL,IU U — — - e i e
XXX=NBINS*(VV{I)=VXMINI/{VXPAX=- VX“IN)
C ygExxxal e S no
IF(JJeGTLNBINSLCF o JJaLT.1)G0 TO 200 ‘ .



50

46
56

.51

59
60

.85
&6
T %9
70
71
73

TG ——— -

75

oo 85
N .-.......u... _,.90

se e

-PLOT ENERGIES ETC.

T T T T T o PLOTS o NTH, ITHL, LEY,

mal

=132

IF(YMAX.EC.O) YJAX 1.0€-08

IF{ ABS(YGRID(11) /Y%AX).LT.I.O‘-IO)
t =1 ‘

M= 1

DO 65 K = 1, 10

YGRID(11)=0.0

€0 S0 1 = L, 101 .
GRID(I)=1

AaM v

Q = (YMAX ® (515 = A) + YMIN * {4 = 1.))/ 50.

00 53 IL = 1, NUM _

1F (ABS(Q - Y(IL)) = (YMAX — YMIN) / 100.) 41, S3, 53
“IXP = 100 % (X(IL) - XAIN) / (XMAX = XMIN) + 1.5
IF(IXP.GELLl +AND. IXP.LE:101) GRIC(IXPI=GRID(IXP)+1
CONTINUE

£o 54 Jl=1,101
J2=MINOIGRID(J1),37)
GRIC(JL)=8LA(J2)

WRITE (3,75) YCRID(L), (GRIDI(1),
N=M34+
M = N ¢+
o0 60 J
00 55 1
CRID(I)=1

CA=d

Q = (YMAX % (51,

1 =1, 101)

Ny M
i, 101

[ O

- A) & YMIN * {A - 1.))/ 50.

D0 ST IL = 1, NuM

IF (ABS(Q = Y(IL)) = (YMAX = YMIN) 7 100.) 46, 57, 57
IXP = 100, & {(X(IL)} = XMIN) '/ (XPAX -~ XMIN) + 1.5
IF(IXP.GEal 4AND. IXPoLELL101) GRIN(IXPI=GRID({XPI+1 "™
CONTINUE : :
o0 57 J1=1,101
J2=MINO(GRIC(JL),3T)
GRIDIJILI=RLALJI2)
WRITE {3,78) GRID
AP R e ——
L=1L+1

O 65 I = 1,
GRID(I)=1
DO 72 IL = 1, AUM

IF {(ABS{YMIN - Y{IL)) - (YMAX =
IXP = 100, # (X{IL) = XMIN) / (XMAX = XMIN} + 1,5~
IF(IXP.GE.1 ANDe IXP,LE.101} GRIG(IXP)I=GRID(IXP)I+1
CONTINUE :

€O 73 J1=1,101
J2=MINO(GRIDIILY,3T)
GRIC(JL)I=8LA(JI2)
WRITE (3,75) YGRID(11),(GRICII),
FORMAT (10X,  €S.2y 1X, 101Al)
FORMAT (20X, L1OlA1l) T
WRITE (3,85) (XGRIC{I}, I = 1, 11)
FORMAT (16X, 11{ £9.2, 1X))
WRITE(3,90) XLAB
FORMAT (/60X,210)
RETURN

101

1 =71,7101V

" ENOD

SURRQUTINE HISTRY

VS, TIME,

COMMON/CNTRL/IT,CT,TIME, XEX1‘JYvXEYL IEYR!
17, . e e e

¢ IRHO, IRHOS y [PHI , IXVYX,IVXVY

CCMMON/SAVE/ &(8, 301)1Fd(301) KAY{B)yNKAYS,, [TH,NT,NF,NL

" LOGICAL PLCTS,I1FT

PPLT0650

YIIN) / 100.) 69, T2, T2

PPLTO%10
PPLT 0420

C PPLYO0%33

PPLTO440

PPLTO470
PPLT 048D
PPLT 3490

PPLTOS500

PPLTNS20

PPLTO0540

“POLTU550

PPLT 0560

__PPLTOSTO

PPLTO600
PPLTOG10
PPLT 0620

PPLT0630

PPLTO06T0
PPLTOS80
PPLTO6S0

PPLTOTLO
PPLTOT20
PPLTO730

PPLTO750

PPLYOT780
PPLTO310

PPLT0830

PPLTO340
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CCPMONITHERHAL/ITHERM

CGMMONIZIFXE(301)'EYE(301)pEYLE(ZO').’VQC(QOI)oKEI(301)o
o KE2(301), PlX(JOZ).PIY(302).P2X(302).P?Y(302)pN4l,hMZ
REAL KELl, XE2, NML, ANM2
DIMENSION TIM(301),TIMTH(1GO)
IF{ IT.EQ.Q ) €O TO 10
TL=ITHL*0T

PTH=IT-[THL+]

CoO 1 I=1,MTH
TIM(I)=(I-1)*CT+TL

"PLCT FIELD ENERGIES, : i

CALL PLTHST(Z2HFISLD ENERGY FXE(MMC2),EXE, TIM,MTH, TL,TIME,1,0)
CALL PLTHSTU(23HFIELD =NERGY EYLT(MME2) oEYLEyTIM MTH,TL,TIME, 1,0)
"CALL PLTHST(23FFICLD ENERGY EYRE(MNMC2) ¢EYREy TIMyMTH TL,TIME,1,0)

TTUUTTTTTUTCALL PLTHSTU22EFIELO ENSRGY EYE(N"CZ),EYE.TIM,MTH.TL.TINE.I.O)

c

C PLOT AVERAGE CRIFT MIMENTUM PER PYCL (M UNITS GF MC I€ PLOT GAMMA#V/C
C PLOT IS LABELED TL TO TIME WHEREAS MNMENTUM VALUES

C AR

E ACTUALLY KNOWN FRCM TL-0T/2 T TIME-DT/2,
PLXL=PLX(MTH)

T PLYL=PLY(MTH) ~

IFIRM2.NELD0.0) P2XL= PZX(WTH)'

" IF(NM2 JNE.040) P2YL=P2Y(MTH)

CALL PLTHST(Z7HAVERAGt PTCLL XMCW‘NTUM(MC).P!X,T[M MTH, TL, TINE

090 0) .
CALL PFTHST(27PAVEQACE ?TCLI YMQPCNTU“(Vr)'plYtTIMvMTH TL'TIHE

T T Te 90,00

IF(NM2.NE. 0.0) :
oCALL PLTHSTI27HAYELSAGE PTCL2 XMOMENTUM(MC) 4P2X ,TIM 4MTH,TL,TIME

«20,0])
IF{NM2,NEL0L0) . - . . . L
+CALL PLTHST(Z7FAV=RAG— PTCLZ Y”CMENTUM(HC),pzy,TlM'MTH'TL'r[ME o

T T 004 0)

¢

500

499

] IFIIT NELNTIGO TO 700

C
700

C LA

T T T NPTH=IT/ITHERM ¢+

PLOT ES MODE ENEFGIES

00 499 K=1,MKAYS

00 500 [=1,MTH

BH(T}=H(K,1)

CCNTINUE : -
KAY1=KAY(K)-1 ’ TTmrTT Tt
CALL PLTHST(20FES MODE ENFRGY(NWCZ)oHH.TIM MTH,TL,) TIME,1,KAYL)
CONTINUE

PLAT THERMAL ENEFG[ES._

CO 20C [=1,NPTh
TIMTH{I) =([=1)#[THERM®DT
CONTINUE : ,
CALL PLTHST{21HTFERMAL ENERGY(EV.) L,KEL,TIMTH,NPTH,0e,TIME,1,0)
IF (NM24NE, 04 0) ‘ .

oCALL PLTHST{21HTHERMAL ENERGY(EY,) 2,KE2,TIMTH,NPTH,0.,TIME,1,0)
CONTINUE -

ITHLETT

ST VALUES NOW ARE FIRST VALUES FOR NEXT TIME INTERVAL.
PIX(1)=P1XL :

CPLIY(L)=PLYL T
1F (NM2.NE,0,0)P2X{1)=P2XL
IF(NM2.NE.0.0)P2Y(1)=P2YL
PAX(2)=PLIX(MTH+1)




33

~134-

PLYE2)splY(MTH+L)Y _ °

TF(NM2 ME L0, 01P2X(2)=P2X(4TH*1)
IFINMZ JNEoD U IPZY(2)=P2Y(MTHL)
OC 33 K=1,MKAYS -
HIK, 1) =H(K,MTH)

EXE(LI=EXEAMTH)

CTEYLE{L)=EYLE(MTH)
- EYRE(L)=EYRE(MTH)

C SOLVES FOR PHI ANC £X, COMPUTES FLELD ENFRGY, ETC.
o COMMON/CFIELD/NG L 9 AEL o OX, CGSHL, . JYM(2ST),B2(257),RHO0(257),
o RHOI(257) 4PHI(Z57),EX(257),JYP(257),EYLI25T7),EVYR(25T),EVI257)

C FI

TLI=1.0/L

EYE(L)=EYE(MTR)
DO 2 [=24,MTH
PIX{I+l)=PLY(I+1)= PZX(I¢1)=PZY(I+1) Oe 0
€0 22 K=1,NKAYS
H{K,1)=0.
EXE(IY=EYLE{]I)=EYRE(I}=EYE(I)}=0.
RETURN.
T=0 JUST ZERQ ARRAYS, T
MTH=NTH+1
00 11 I=1,MTH

KEL(D)=KE2(I)=PIX{I+1)=PIY{I+1)=P2X{T1+1)}=P2Y(1+L)=0,

EXE(T)=EYLE(T1=EYRE(I)=EYE(1}=0,
FLIX(1)=P1Y{1)=P2X(1)=P2Y(1)=0,

" RETURN e
END

SUBRNOUTINE FIELDS(EXE,EYLE,EYRE,EYE,RZF)

COMMION/BORY /MCAT L TCCLL ySYRVMZEYLNM)EYRCLEYRNLEYLCHEYLN .

COMMNN /PUMP/ WwFMPR,WPMPL, EPMPR, EPMPL
TREAL Ly JYP, JYP

COMFAN/SLAVE/ H(3,201),EHI301),KAYI8),,KAYS I TH,,NT,NF,NL

CAOMMIN/CNTRLY/ ITvVDT ¢ TIME,TEX, [JY,IEYL,IEYP,
o?LOTSvNTHoXTHLvIEYoIElv

LCGICAL PLOTS, IFT

INTEGER TITLE(S) XLAB

DIMENSION EYRK (2571 ,EYLK{25714XJ(101},GIVENT2)
T REAL RHOK{l), FHIKE1)y SCRACH(L) T T
ECUIVALENCE (RFC,RRCK), (PHI,OHIK), (EX,SCRACH)

REAL KOX2, KSQ(123), LT, 5(128)
CATA TITLE/9*0Q/

RST TIMZ STEP DUTIES.

A COVMGN/UNITS/A\“ICAI.RNMZCZI.RMICZ!'RMZCZI’MZCZEV"

DATA NG2/0/
1J=1TH+1
IF{ NG2.NE.O ) GO 10 2
NG2=NG/2
AGL=NG+1
rOX=0,5%DX

HOXI=0.5/70X
TEM=o25¥CGSHL*CT

C SET uyP RATIO PHIK/RHOK.

Pl=4,C¢ATAN(1.C)
00 1 K=14NG2

KDX2=(PI/NG)*K
S(K)=1,0
KSQUK) =+CGSHL/ ((2.0%SINIKDX2)/DX)%#2)%5(K) **2
IF{NF.LE.O) GO TC 2
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ITEML=0
HOT=0, 5*0T
NF2aNF/2
MPTS=NL
T T T NPTS = MIHO(NPTS.IO[)'
€O 77 J=14NPTS
77 x$(IVI=FLOAT(J)~1 ’ v . .
. XLAR=10H MCDE NC. R o
I XRIGHT=NPTS - ' ’ i [
2 CONTINUE

—c-
C TRANSFNRM CHARGE CENSITY.
c APERODIC BOUNDARY CCNDITIONS
FHCU1)=RHC(NG1) =0,
o CALL FLCTF(RHC,14HCHARGE DENbITY IRHN)
00 10 J=1,4NG
TTTTTTTTUUURHCK U ) =REC LI AFCX - )
10 SCRACH{J)=0.
T CALL CPFT (RHCOXsSCRACH,NGy1y1) - o T
CALL RPFT2(RHCK,SCRACH NGy L) : ,
T RHOK(1)=0. ' T e I

C. — e

e CALCULATE PHIK ANC FIELO tNEPGYo ‘
o PHIK(])= o.. - T T R .

c COMPUTE THE ENERGY IN A PLRTICULAQ FOURIER MODE

TTTTTTTDO 15 KN=1,NKAYS T
K=KAY{KN) ,

T U TR(KAY (KMYLEQL1) HIKN,1)20,0

IF{KAY(KN).ECA2Ll) GO T9 15
T IR(KAYIKNY LEQL.NG2+1) GO TO 13

KK=NG+2-~K [ ’ o o

T T FK=KSQ UK=LV ¥ RHECK(K) T
FKK=KSQ({K=-1)*RHCK (KK}
T T BUKN,TJ)=(RHOK(K)*FK + RHGK (KK ) *FKK ) /L *RNMIC2T 7

GO 10 15
T 13 HIKNGTJ)=L5%KSQUIK-1)®RHOK (K) ®#%2 /L 2#RNM1C21 DR

15 CONTINUE _ e

————

C .

ST DO 20 K=2,NG2
. KK=NG+2-K

T PHEKAK ) =KSQUK=1) #*RHOK(K )

PHIK{XK) =KSC{K=1)%RHGK (XK} o

BT T T T T ESES=E SESHRHOK (K Y ¥PHIK{K ) +RHOK (KK ) #PHTK(KK) — ° - -

RHCK (K )=S{K=1)*RHIK(K ) o o o

T 20 RHCK(KX)=S{K-1)*RHCK{KX)
PHIK(NG2+1)=KSG(AG2}&*RHOKING2+1) ~
S - " EXE=l2. o#ESES+Fch(ar?oly*pHXK(Vozoll)/(z.O*L)*RN“lCZI
. RHOK (NG2+1)=S(NG2) #*RHOK(NG2+1)
——
C INVERSF TRANSFOFM PHI. :
e DO 30 Ko1iNG ot R e
RHO(K ) =RHCK(K)*LI .
ST 30 PHIUK)=PHIK(K)#LT R
CALL RPFTI2(PHIFHOING,L)
AT CALL CPFT  (PHT+FHCINGs1y-1)
c PERIODIC EIGENFUNCTIONS
RHC(1) =RHO{NGL) =C,
PHIING1)=PHI(]1)
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€ - IMPGSE anuunnnv COND{TICN CF ZEPO ES FIELD AT J=1 AND JshGl
. DELPHI=HDXI3(PHI (NGI-2HI(2)) ,
£0 31 J=1,ANG1
3 PHK(J)=PHI(J)oCELPFI*(J-l'
CALL PLOTF(RHG,1EHSHOOTHEN DENSITY, [PHOS)
CALL PLOTF{(PHI,LBHELECTRIT PITENTIAL,IPH])
¢ . . .
C CEMTERED DIFFEREANCE ACROSS 2 CELLS.,
00 101 J=2,NG
100 EX{J)={ PHIE(I=1)=PHTI{JI+1) J*HDXI
c BOUNDARY CONDITICNS EX(1)=EX{NGL)}=0
EX{L)I=EX(NGL)=0. '

CALL PLOTF(EX,11HEX , +IEXD)
c -
C -MAXWELL EQUATICN SOLVER FOR RACIATION FIELDS
CALL PLOTF(JYP,LLIHJYP 2 1JY)
TTTCTTTTTT OINPUT EXTERNAL RACTATICN FIELDS MERE S comETmTmr T T T Tt

EYLINGL)=EPMPLASIN(TIMEXIPMPL)
EYR(L) =EPMPRESIN(TIMESWFMPR)
c ADD HALF CF CURRENT, FORMED FROM.X(T) AND VvY(T#DT/2), .
o " 0C S0 J=1,NGl . ' ' o
EYLUJ)=EYL(JI=TENMEJYN(J)
T50 EYR(JI=EYR(J)=-TENME JYN(J)
C - LET C=DX/DT. THEN EYL IS JUST MOVED ONE CELL 70 LEFT
"C 77 AND EYR ONE CELL TC RIGHT, ;
DO 51 J=1,NG
TTEYLJ)SEYL(J+L)
CJd=hGl-yg
51 EYR(JJI+1)=EYR{JI)
C AGAIN INPUT EXTEFNAL RANDTATICM FIELDS
- T EYR(L)  =EPMPRASIN((TIME+OT)#WPMAR) = 77 s ' Vo
EYL(NGL)=EPMPLESIN(( TIHZ+DT ) #HPMPL)
C 777 ADD CTHER HALF CF CURRENT, FORMED FROM X(T+DT: AND VY (T+0T/2),
) 00 52 J=1,NG1
- T EYLIJ)=EYLLJ)=TENEJYP () T T T T T T T T T T T e T e e e e e
52 EYR{JI=EYR(J)=TEMXIYP(J)
T CALL PLOTF(EYL,lE6HLEFT-GOING FISLD,TEYLY ©
CALL PLOTF(EYR,1THRIGHT-GOING FIZLD,EYR)
__,..C*,. * & - & x - * = . = s = * * * £ % * * *« &

C CALCULATE PUMP TRAhSMI)SION
T T OEYRC=EYRC T
EYLO=EYLC
EYRC=EYRN
EYLC=EYLN
T EYRN=ABS(EYR(NG1))
EYLN=ABS(EYL(1))
T T T T JF(EVRCeGEJEYRCAAND EYRCLGELEYRN) EYRM=EYRC ~
' IF(EYLCGELEYLCLAND.EYLC.GE.EYLN) EYLM=EYLC
T C e k& % & & % ¢ kX ¥ & ¥ % § & x & ® % ¢ B & &£ & -
00 60 J=1,NG1
EY{J)=EYR(JI+EYL(J)

, 60 BZ{J)=EVR(JI-EYL(J) : N
TTTTTTUTOCALL PLOTFUEY,LIHEY T TTTLTEYY ) - P
CALL PLOTF(BZ,11+81 _.182)

c-
C CALCULATE RADIATICN FIELD ENERGIES.
EYLES=EYRES=EYES=0. o

BZFS=0. H .
TTTI e emTI e P) J=2,M6 0 T T T T e e - - T T
: EYLES=EYLES+EYL (J)#%2
EYRES=EYRES+EYR(J)+32 oo o rEmme e e
BZES=BZES+BL(J)##2 '
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70 EYES =EVES. +Ey (J)ee?
EYLES=EYLES+N,SeIEYLIL)®@2+EYL (N1 )de2)

EYSESEYRES+D.58(EYT(1)924EYF(LG1)0e2)
EYFS=EYES+045%{FY(1)ow24EYNGL)®02)
B LEFT ANC RIGHT CCIta FI2LD EhE?GI‘S.
EYLE=EYLES*DX/CGSHL=2,41C 21
EYRE= EY?tS‘DXlCGSHL‘QNMlCZI
€ . - EY ENERGY,
' EYE=FYESACX/(2.2CGSHL ) $ANMIC 21

FOURTEP ANALYZE EYR(X=L) AND EYL{X=0) OVER NF VALUES OF TIME (0 TO
NF-1, NF TO 2NF-1, FTC.). SUM OVER FREQ. MCDES GIVES ENERGY DENSITY

CIN UNITS CF NMLC2/L) AVERAGED QVZR AN IMTERVAL NF=0T
IF(NFJLE.D) GC TO 83

AN

ITEM=1T-ITEML+] e

T T EYRK( ITEMI=EYRINGLYSHOT O T
EYLKUITEMI=EYL (1) %H0T
IF{ITENMLLT.NF) GC TO 80 .
CALL CPFT(EYRK EYLK, NF,1,1)
CALL RPET2(EYRK,EYLK,NF,1) ' R T
EYRK{1)=EYLK(1)=0.0

- T CO 15 M=2,NF2

MM=NFe2-M
A EYRK(MI={EYRK(M) %2 2¢EYRX(MM) 822)%(2, 0/CGSHL )AL SRNM1C 21/ (NF5DT) +%2

‘ T5 EYLK(M)= (EYLK(M)‘“?*FYLK(MN)#t?)*(g.O/CGSHL)*L‘FNMlC?l/(NF*DT)“Z
o - EYRKUNF2+ 1) =EYRK (MF2+1 ) 2222 (1, 0/CGSHLYRLAFNMLIC 2T/ (NFXDT %22

EVLE(NF2#1)=EYLKINF2+1)#424(1,0/COSHLY SLEPNMLC 2T/ INF*DT)0s2

TTTTTTTTRC 79 M=1L,NPTS
EYRK{M)=ALOGLO(EYRK(M)+1,0E=20) ,

- 19 EYLK({M)=ALGGLO(EYLK{M)+1.,0E=-20) C oo ST
CALL RAA"hY(tYPK,GiV&H.NPTS)
YBCT=GIVEN(L)~- o n e

GIVEM(2)= A-AAl(GIVEN(Z).YBCT) e _; e

TTTTTTTTIDC T6 M=1,MPTS

76 EYPKIM)=AMAXL(EYRK(M),GIVEN(2])) o e

TEML=ITEML*DT
ENCODE(50,78,TITLE) TEML.TIME
" 78 FORMAT(*RIGHT-GOING FIELD MNCDE ENERGY DENSITY(NWICZ/L), X=Ly FFT
) e OVER T=%,F10s4,% TO *,F10s4)
TTTTTTTT catL CPLT(KJyEYRKpl.'YQIGHT GIVEN(2}, CIVEN(I!'NPTS,XLAB TITLE)

CALL FANGEY(EYLK,GIVEN, NPTS)

BTt YBDT=GIVEN(1)-5.

GIVEN({2)=aMAX1(GIVEN(2),YBOT) . ) o . ’ o i

e T DG 97 H=1,NPTS
97 EYLK(M)-NMAXI(CYLK(“).GIVEN(Z))
WTTTTT ST TITLEC L= 10HLEFT ~GGIN _ ; T e

1

. TITLE(6)=10HX=Cy FFT O
T CALL PPLT{XJ4EYLKyls yXRIGHT,GIVEN(2) GIVEV(I),N?TS.XL&B TITLE)
ITEML=1IT+]
ST 80 CONTINUE " ' oo oo
c . :
"TTTTCT ELECTRIC FIELC .HAS NOT BEEN RENCRMALIZED YET.
. i AEL=1,. .
G = ‘”“'-RFTURN . Lo N

END
oo SUBROUTINE ACCEL(IL.IU.Q. 4y OTy TTyPXyPY o THERMT ,KE, IT)
c onamc¢s VELOCITY CNE TIME STEP, COMPUTES MCM:NTUM AND KINETIC ENERGY

STTTUTTTTT REAL KE, M T
COMMON/CFIELD/NG Ly AEL 4 DX, CGSHL, JYM(257), 82(257)'RH00(257)'
o RHO(257),PHI(257),5 X(257),JYP(237)'EYL(257).EYRIZS7)'EY(?571

_ REAL L, JYVMyJYF,MC2, NRKE'NJNREL

-BIZE=BZESHCX/(2.%(GSHL) #RNMLIC2] e



T GAMMAL=SQRT{GAMMAZ)

et

€T T LINEAR,. MCMENTUM CCMSERVING, INCLUDING  ALL MAGNETIC FIELDS, ~ 7
(o .

PTTTTTTTUT NRKE SNRKE £0, SEM % GV2/GAMMA2

P CAMMA(T)=SQRT(1,+GV2) 7 77"

CoNMNN/L/X (2CN0) , VXL 20003 ,VY(2000)
COMMINIRELZGAMMA L 2CL0)
COCMMIN/TrERMAL /I THEFRM

COMMOEZUNT TS/R1.MIC2T sANM2C 21 ,EMIC2T,RM2C2T ,H2C2€CY

~138-

TTT T REAL O AX(1), Av(1).TZ(1;..Hanxxtzs7).?Hrnwx2«?s7).vxosc(257!.

sV2SXL25T) 4 N(25T),VYOSCI(257)
EQUIVALEZNCE (AX,EX), (AT,EY), (TZ,8L),
EQUIVALENCE (VXOSCeJYM)y (VYOSCeJYP),
- REAL M2C2EVY .

c
T T T T IF(IL oGT L IUYRETURN
" NGL=NG+1
CC 100 J=1,NGl
THERMX1(J)=N{J)= VXDSC(J)=VYOSC(J)=0oO
100 CCNTINUE
C RENCRMZLIZE ACCELERATION IF HEED BE.
TTUTT T AE=(Q/M)®(CTHDT/DX )/ 2, T
IF( AELEQ.AEL ) €GO TO 2
TEM=AE/AEL
Cr 1 J=1,NGL
CAXEI)=AX(IIETEM
AY(JIY=AY(J)I2TEM

(THSRMX 1, THEFMX2,V2SX,PHI)
IN,RHO)

1 T2UI)=TZ(I)=TER.
AEL=AE

2 CONTINUE

L IF(ILa£EQ.1) KE=0,

T IF(ABS(Q/M).LT.0.1) GO TO 5
¢ ‘

RELATIVISTIC ELECTRCNS.
" RELKE=NPKE=0.0

00 250 I=1IL,iU

J=x{1)

XX=X(1)~-J
T T=TTeTZ(I+1)+XXS( TZI42)-TZ(I+1) )~

AAX=AX{I+L I +XXB{ AX(J#2)=AX(JI+1) )

TUT 7T BAYSAY(JSL)eXXEL AY(JE2)-AY(I+1) )

€ HALF ACCELo TWO-STEP ROT. METHOD WITH QUICK ROT.

GVXX=VX(I)#GAPMA(L)+AAX

GVYY=VY (I }2GAMMA(T ) +AAY
T T GV 226V XXECYXXHCVYYEGYYY

GAMMA2=1,+GV?2

T=TAN(T/GAMMAL)
TS (THTI/ (Lo 4TAT)
RELKE=RELKE+(GANMNAL-1, )M

GVXX=GVXX+THGVYY

T T GVYY=GVYY=SEGVXX
GVX=CVXX+TA*GVYY+AAX
GVY=GVYY+AAY
GV2=GVX*GVX+GVYSCVY

VXLTI)=GVX/CAMMALTL)

oo VY{I)=GVY/GAMMALT)

PTTTTTTTTON(K L) =K L) # 1,

I

PX=PX+GVX
PY=PY+GVY
K=X{1)1+.5

VXASC(K+1)=VXASCIK+1)evX(T)
. " VYOSC{K+#1)aVYCSCIK+1)+VY(I])
- 250 CONT!NUC

SCHEME.,
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KE=AMAXL {RE| xE,NRKE)

. C- DPIFT MOM,/UNIT MasSS$ IN UNITS OF C,

7300

C RELATIVE KE DEFINEDO AS KE{AVG, MOTICN+JIGGLE}-KE({AVG.

PA=PX/(IU-TL+1)
PY=PY/(IU=1L+1) -
IFCITHERM.LZLC) CO TO 3
IF(CIT/ITHERMDSITHEFMNELIT) GO TO 2
DN 300 J4=1,N6G1

TFIN{JI.LED.) GC T 303 - »
VXCSC (J)=VXASC{I)/NLJI)
VYOSCLJ)=vYOQSCIII/NLI)
COMTINUE

€0 350 I=IL,1u

K=X({!)+.5

GG=1./SQRTHL -VxCSC(Kfll*VXOSC(K*l)-VYCSC(K*I)*VYOSC(K*I))
"C RELATIVISTIC CALCULATICM .

PXTHERM=VX{I ) *GAMMBALIY

T PYTHERM=VY (1 )=CAMMA(])

PXSQ=GG*VXUSCIR#1) +CG2VXOSCIK+L)
PYSQ=GGHVYISLIK®L) #CGVrOSCIK+1)

MOTION)

RELT= SQ{T(lo+PXTHEPH¢PXTHFRM#PYTHCRM*PYTHERH) SQRT([ +PXSQ+PYSQ)

FFLT-.SllOleECé*RELT

TTTCT NCNRELATIVISTICALLY CORRECT

C

€ NONRELATIVISTIC CALCULATICHM

1350

— g

T CGNTINUE
" LINEAR, MCMENTUM CCNSERVING, INCLUOING ALL MAGNETIC FIELDSo

~ VXTHERM=VX{I')-VXCSC(K+1)

VYTHERM=VY ([ )=VYCSC(K+1)

MONREL =0, 5%, 51;0041,Uc*(VXTHcRM*VXTH‘QPfVYTHERNVVYTHERM)

TEMPPsAMAX1{RELT,HNCNREL)
THERMT =THERMT+TEMPP/(TU-TL+1)

THERMA LIK+ 1) =THERMX (K- L) ¢ TEMPP/NIK+LY 77

CONTINUE

‘CALL PLCTF(THEP“xlvlSHREL. TE(EV.) VSe Xy ITHERM}

GO 70 3

MON~RELATIVISTIC [CNS.

T VIXS=V1YS$S=Vv2S=0.

00 251 I=IL.,1IU

T =X

c

o

7 oo s

251

xXX=X(11-J4

TOTSTTTZAI+ L) 4XX&(TZ(J+2)-TZ(J+1})

T=TAN(T)

S=(T+T)/{1.+T*T)
AAX=AX(J+L)+XXx{ AX{J+2)-AX(J+1) )
AAY=AY{J+1)+XX*( AY(J+Z2)-AY(J+1)

yoo o m—— o s e et e e s e e

HALF ACCEL, TWO-STEP PGT. METHOD H!TH(BUN&&AN!;QUICK ROT.ASCHEME.

VXX=VX (1) +AAX
VYY=VY (D) ¢AAY

T V2S=V2SHVXXEVXX VY YRVYY

VXX=VXX4+T2VYY

VYY=VYY=-5*¥VXX
VXLI)=VXX+TE=VYY+AAX

T VYLT)=VYY+AAY

K=X(T1)+.5

N{K+L)=N(K+1)+1, ' R

VXOSCHK+1)=VXNSCAK+1)+VvX (1)

T VYOSC(K+1)=VYCSC(K+1)+VY(T)

V2SX(K+L)=VZSX(K+1)+¥X (LI eVXLI)sUY(TI®VY (L)

VIXS=VLIXS+VX(1])
V1VS=V1YS+\vY(1l)
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IF(ITHERMLLELG) €N TO &
IFCCIT/ITRERA) * I THERM NI IT) GO TO &

THERMT =20,

T pC 400 - J 1 NGl

" 400

4

IFIN(JI.LELO.) GC TC 409

V250sC= (VXOSC(J)‘VX”SC(J)*VYCSC(J)*VYOSC(J))/N(J)
THERMX2(J)=0,5«M2C2EVe{V25X(J)~-V250SC)
THERMT=THERMT+THFRIMX2(J)/(TU=TL #1)
THERMX2(JI=THERMX2(J}/N(J)

CONTINUE

CatLL PLUTF(ThEPMXZ.l3HT!(EV.) VSe X, ITHERM)
CONTINUE

KE=KE+0,52M8Vy2S

C DPIFT MOM./UNIT MASS IN UNITS OF Ce.

C CCNVERTS PARTICLE VELCCI:IES AT T=0 TO COM?UTER NOR“ALXZATION AT

3

PXavVLIXS/{IU-IL+1)

TTPY=VLIYS/tIL-1L+L)

CONTINUE
RETURN

END o
SUBROUTINE SETV(IL,TU,Q,M,0T,TT,PX,PY¥)

¢ T=-DT/2.

CPMPﬂN/CFItLD/hG'LoA‘LpDX CGSHL, JYM(ZS7);BZ(257)

»RHOO (257},

RHO(257) yPHIL25T) s EX{25T),JYP{257),EYLI25T) s EYR(25T),EY(257)

REAL L,y JYM, JYP, M

T CCMMIN/1/X1(20C0),VX({2000),VY(2000)

__ COMMON/REL/GA¥HA(2060) .

IF(IL.GT.IU)RETUPN
T=TT7
OTOX=0T/DX

" ROTATE V THRU ANGLE +0.5%WC#DT, NON-RELATIVISTIC.

IF(T,€Q.00}) GO TC 2

" T=TANLT)

C=1.0/SQRT{1.0+4T*T}
SaCaT
00 1 [=IL,1V

CVXZA=VX(T1)

"CNLY SLECTRONS RELATIVISTIC,

VX{T)=CxvXX=-SeVvY (T)
VY(I}=S%vyxXx+C*VvY(1)
CCNTIMUE

NORMALIZE VX ANC VY,
DO 3 I=IL,IV
VY({I)=vY(1)*DTODX
VX(T)=VvX(T}=DTDX

IFL4BS(Q/M)LTL.0.2) GO TO 4
DG 99 I=Il,IU

V2=vX{ 1) 2vX{T)+vY{L)evY(])
GAMMA(I)=1./SQRT(L.~V2}
CONTINMUE
CONTINUE
ELECTRIC IMPULSE TO GO BACK 1/2 TIME STEP,.

DATA DUML »DUN2,0UM3/0.90491/

CALL ACCELUILsIUy=0o5204Me0T+049PX, PY,OUMI,DUMZoDU”3)
FETURN
END

T SUBROUTIME MOVE(IL,1U,Q)

ADVANCES POSITICN CME TIME STEP AND
ACCUMULATES CHARGE AND CURPENT DEMSITIES.

. COMMON/CNTRL/ZIT LT TIME, IEX TIY IEYL,IEYR,
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e PLOTS NTH, ITHL,IEv,1PZ,
,IQHP'IFIHDSQ‘PHIcXX\I("V‘VY
COMMMN/CFIFLC/NGoL o AEL 9 OX o CGSHL JYME2ST),BZL257Y,RHOO25T},
o FHOU2S5T) o PHICZET12EX (25D 1,3YP(2STIEYLI25T),EYRI25T),EYI257)
T LAGICAL PLOTS \ '
REAL Ly JYM, JiP,JY .
COMMON/L/ X12C0C) ,¥X(20001,VY {2000}
CDNNON/EDRVI*LLT.!CGLLyEYRN.EYLPoLYPCvEY”N,hYLC EYLN
’ IF(TL.GT 4 TUIRETURN
COX=0/0X
T 7T gpT=Q/07 .
c IF 1S FIRST GRCUP NF PARTICLES, THEM
c " CLEAR CUT OLD CHARGE AND CURREMT DENSITIES.
IF{IL.NEL.L) GQ TG 10
NG1=NG+1'
XN=NG
TTTTTTTT D0 41 J=1,NG1
PHO(J)=RHUO(J)
41 JYM(J)=JYP(J)=0, .
10 CONTINUE .

c
€ LINEAR :
T 00 201 I= IL.!U
C LINEAR WEIGHTING USING OLD POSITIONS.
T =X ) : .
XX=X{I1-J
T O JY=Q0TEvY (1)
DJY=XX*JY
TUTTTTTTUIYMAS L) =dYM(S ¢ 1) -DIY R YY
JYM{UI#2)=JYM(S+2)+CJY
TTTOOUTTT X=X e (L) ’ '
Cc APERODIC ANUNCARY CONDTITIONS

IR {XUI e GELls) GO TO 202

ICCLL=TICOLL+)
TUTTTTT XTI Y= X {1 e2# {La=XU )Y T
VX {Iy==vX{I} '

202 COMTUNUE
IF(X(I}eLEL(XN=-14)) GO TN 203
ICCLL=ICOLL+1 )

. o X{1)= X(I)+(XN-1.-X(I))*Z

TUTTTT VXY =-yX (1) . o

203 CCNTINUE
[ LINEAR WEIGHTING USING NEW POSTITIONS.

J=X{1)

I XX=X{1)=J .
DJIY=XX2JY ’

FTTITTTTTTUYP (S 4L ) =JYP{I+ ) -DUYH)Y T

JYP{JI+2)=JYP(J+42) +DJY

CRHO=QDX*XX

RHU{J+1)}=RHO(J+1)~CR+0+Q0X .

RHO(J+2) =RRO(J+2)+DREO T

e e et = e e s 8 e s < s el e i 20 o et e v

. 201 CONTINUE
P b AN O
'C.'
T T END -
SUSROUTINE SETPKC(IL,1U,Q)
€  ACCUMULATES CHARGE DENSITY, POSITIONS NCRMALIZED IM DENSE
COMMON/CF TELD/NG oLy AEL 4 DX s CGSHL » JYM(257),82(257),KH00(257),

T ITTTTT, RHD(257) yPHIL25T}sEX(257),JYP(25T)4FYLI257),EYR(257),EY(25T)
REAL L, JYN, JY¥YP
CCMMON/ZL/X(2C00Q),VX{2000),VY(2000)



c
c 't
c

202

203

~20

30

c ¢

IF IS FIRST GROUP IF DAn?lCLES- THEN CLEAR CUT RHO,

=142~

IF(1L.GTo ILIRETURN
COX=3/ OX
Xh=NG .

IFL IL.HELL ) GO TO 2
DC 1 J=1+NG
. RHO(J)=RHNC(J) =C.0
PHO(NG +1)=RHOO0(NG+1)=0.0
2 CONTINUE

INEAR
DO 201 I=1L,1V
APERCUIC BCUNMARY CONDITICMS
IF(X{1).GE.l.) GU TO 202
X(I)=X(1)#2=x(la-X(1)})
COMTINUE
[FIX(TI) LE.{XN-14)) GO TO 203
XED)=X(I )+ (XN=1.=-X(])}=22 ¢
CONTINUE
J=X(1)
DRHO=QDX*( X(I)=J }
FHO(J+1)=RHO(J+1 )~ DRHDOQDX
1 RHC({J+2)=RHO(J +2)+DFH) T
NG1l=NG+1 .
CCN 300 J=1,NG1
RHCO(J)=RHCO(J) -~ RKO(J)
0 CONTINUE
"KRETURN
END
SUBROUTINE, PLOTF(F,LABEL,INTRVL)
LOY FIELD AT CERYAiIN TIMES.
DIiMEMSION LABEL (2) ,CIVEN(2),XJ1257) .
COMMIN/CFIELD/NG L o AELy DXy CGSHL, JYM(25T7),82(25T)yPHOO (257},
o RHO(257),PHI(25T),EX(257),dYP(25T), EYLI257),EYR(257) ,EY{257)
REAL L, JYVM, JYP L,F{1)
T COMMAN/CNTRL/ZIT,LCT, TKMC'IEXQXJYQICYL'!CYR’-4
«PLOTS MTH,ITHL,1EY,182,
e IRHO, IRHOS, IPHI , IXVX, TVXVY
- LOGICAL FLCTS
TINTEGER TITLE(9) XLAR

DATA XJ( 2)/0/ - - RN, - e T ———— - .- - .- ., .‘ L

CATA TITLE/9%0/

TTIFL INTRVLL.LE.O ) RETURN
IF(L (IT/INTRVL)*INTRVLLNE, IT } RETURN

TTTTTTTTTT IR o NOT. PLOTS ) RETURN

e e e e =

" C

I

c -

T XLAB=10H PGSITICN

T IFL XJ(2).£Q.DX } GO TO 2
- KPTS=NG+1
XLEFT=0,
XRIGHT=L
0O 1 J=1,NPTS
1 XJ3{J4)=(34-1)*CX
2 CONTINUE

CALL RANGEY(F,GIVEN,NPTS)
ENCNDE(904+3,TITLE) LAREL,TIME

3 FORMAT(2A10.* AT TIME=%,Fl0.4}

CALL PPLTIXJ9FyXLEFTyXRIGHT,GIVEN(2),GIVEN(1) NPTS,XLAB,TITLE)
RETURN



ENC
SURRQUTINE PLCTXVIILIU,VL o VU, L+ LADEL ,MARKER])

C PLOT X-VX SPACE AT CERTALN TIMES 1F MARKFR [S 1 OR  PLOT X=-VY SPACE

c

- TTTTT XLAB=10H POSITICN

11 IF(ILoGT.1ICALL SWAP(XsVX,¥Y,IL)

T GIVEN(1)=vU

AT CFRTAIN TIMES [IF MAWKER IS 2.

FEAL Ly JYV, JYP

COMMON/L/X(23CGC) »VX(2009),vY (200N}
COMMON/CONTRL/IT, 0T o TIAE,IEX, LY [EYL,,IEY?,
o PLOTS,,NTH, [ THL, IEY, 182,

e IRHC, IRHOS , (PRI, 1XVX,1VXVY
LOGICAL PLOTS

INTEGER TITLE(S),XLAB .
DIMEMSIONM GIVEN( 2),LABEL(2)

- CATA TITLE/920/

IF(ILLGT. IL)RETURN
IF( IXVX.LE.O ) RETURN

TF( CIT/IXUX)*IXVXGNESIT )} RETURN ~
IF{ NOT.PLGTS ) PETURN

IF(ILeGTal) CALL SWAP(X,VX,VY,IL)
NPTS=fu-1L+1
GIVEN(2)=VL

SET VELOCITY RANGE ETC. IF NEED BE
IF(VL.LT.VYU) GC TO 1 ' )
CALL RANGEY(VX,GIVEN,NPTS)

CONTINUE

XRIGHT =1

TIM=TINZ+0,5¢07T
IF{MARKER.EQ,2)GC TO 10
ENCODE(9C,3, TITLE) TIM,LABEL

3 FORMAT(* VX VS, Xy TIMZ=%,F10.4,5X%,2A10)

CALL PPLT(X,VX,04 s XRIGHT,GIVEN(2),GIVEN(1),NPTS,XLAB, TITLEY

© 60 TO 11
llO CALL RANGEY{(VY GIVEN,NPTS)

ENCODE(90+5, TITLE) TIM,LABEL

5 FORMAT{* VY VS. Xy TINME=%,F1l0.4,5X,2410)

CALL PPLTUX,VY 04y XRIGHFT,GIVEN(2),GIVEN(1) 4NPTS,XLAB,TITLE)

"FETURN e e e o o e e
END

© SUBROUTINE PLTVXY(TL,IU,VMU,LABELY
PLOT VX=-VY PHASS SPACE AT CERTAIN TIMES,
COMMAM/L/X(20CC) VX1 236G3),VY(2000)
COMMON/CNTRL/IT,CT,TIME, 1EX, IJYLIEYL,IEYR,

T T T G PLOTS yNTH, ITHL,IEY,IRZ,

~DATA TIiTLE/9=0/

o IRHC, IRHOS y IPHT » IX VX, [VXVY
LGGICAL PLOTS

INTEGER TITLE(S),XLAB
CIMENSION GIVEM{ 2),LABEL(2).

IF(IL .GT.IUIRETURN

IF{IVXVY.LE.O) RETURN

IF( (IT/IVXVY)#IVXVYLNELIT) RETURN
IF(.NOT.PLOTS) RETURN

IFEILLGT, 1) CALL SWAPIX,YX,VY,ILY ~7 777
APTS=1U-IL+1

SET VELGCITY RANGE F1Cey IF NEED BE
IF(VMULNEL.O.) GO TO 1



CALL RANGEY(VX GIVEN,NPTS)
VMU=AMAXL( naS(uvaN(l)i ABSIGIVENIZ2)) )
XPIGHT=GIVEN(1}=VMy

XLEFT=GIVEN{2)=-VMY

CALL RANGEY(VY,GIVEN,NPTS)

VMU=AMAXL{ ABS{GIVEM(11)),ABSIGIVEN(2)))
YTOP=GIVEN{L)=VMU

YBOT=GIVEM{2)=-VMU

1 CONTINUE
TIN=TIME+Q,5%0T
- XLAB=10H vX - - e e

ENCODE(90,23, TITLE) TIM,LA3EL
3 FORMAT(* VY VS, VX, TIME=%,F10,4,5X,2A10}

CALL PPLTUVX VY XLEFT,XRIGHT ,Y3CT,YT3P,NPTS,XLAB, TITLE)
IFLIL.GT.1) CALL ShAP(X,VXpVY.ILI .
RETURN
"END
SUBKRQUTINE SWAP(XX,V1,V2,NN)
DIMENSION XX(13,V1(1),V2(1)
INTEGER NN .
AN=NN=-1 o '
CC 10 I=1,NN
S1=XX(1)
$§2=V1(I])
$3=v2(1)

XXCI)=XX( T +NN)

VR =VL{T+NN)

V2(1)=V2{ I+NN)

XX{T+NN)=51

VI(I+NN)=S2

V2{I+NN) =53

10 CCHTINUE
AN=NN*#1 .
RETURN .

~ END
SUBROUTINE PLTHST(LABEL ,RTC,TIM,MTH, TL,TU.LINLCG MODEM)
PLOT TIME HISTORY, LINFAR CR LCG.
DIMENSICN GIVEN( 2),LnafL(3),REC(MTH).TIM(MTH)
INTEGER TITLE(S),XLAB
CATA TITLE/9%0/
T NPTS=MTH
XLAB=10H TIME
CT " CALL RANGEY(REC,GIVEN,NPTS)
IF{LINLGCG.EQ.D) GO TO 2
" YBOT=1,0E-5*GIVEN(L)
CUM=REC{MTH)
D0 3 [=1,MTH
RECUI)=AMAXL(REC(I),YRQT)
RECATI) =ALOGLO(PEC(]))
3 COMTIMUE ,
" CALL RAMNGEY(REC,GTVEN,NPTS) ’ T
IF(MIDENSNELO) GG TO 5
" ENCODE(90,200,TITLE) LA3EL,TL,TU

200 FOPMAT(* LOGLO OF %,3A10,% TIME=%,F10s4,% T9 %,F10.4)
o GO TQ 6
5 ENCODE (90,300, TITLE) LABEL,MCDEN,TL,TU
300 FORMAT(® LOGLO OF #,3A10,%, MODE NO.*,13,& = TIME=*,F10.4,% T0

iy

e?1Fl044)

"6 CALL PPLT(TIM,REC,TL,TU,GIVEN(2),GIVEN(1),NPTS,XLAB, T[TLE)
REC(MTH) =DUM
GO 70O 102

2 CCNTINUE

&



ST TTTT YMX=AMAXL(YMX,Y(IPY) T

c

Tc

c
T
c
- C

- €
" C AFTER A CCMPLEX PERINDIC FUU?IER TRAMSFORM, WITH A AND B AS THE

C REAL AND IMAGINARY PARTS, RPFT2 SEPARATES TrHE TRANSFGRMS OF A AND B

C 7 AND PACKS THEM, TIMES 2, BACK INTO ARRAYS A ANO B,

c

B

s . "
C TWICE THE REAL PARTS OF THE FIPST HALF OF THE COMPLEX FOURITER

c

OO0 04203540,

IF(MIDEN.NELOY GO TO 7
EHCURE(S0, 100, TITLE) LABEL,TL,TU
100 FIRMALT(3A10,* TIME=«,FlNe4e* TO . *,Fl0.4)
GN T0 8
T ENCNE(G0,400, TITLEY LABEL, NDDEB"L'TU
400 FORMAT(3AL10,%, MONE NOL#¥y[3,9

102 CONTINUE
RFTURN
ENO
"~ SURRCUTINE RANGEY(Y,GIVEMNP)
FEAL Y(11,GIVEN(2)
- YMX=Y{L)
YMN=Y (1}
" INCY=1
CO Y IP=1,NP,INCY

1 YMN=AMINL{YMN,Y(1P))
TIF(YMXGLESYMN)  YMX=YMN+1.
GIVEN(1)=YMX
GIVEN(2)=YMN -

RETURN

TIPFae,FlC0,4,% TN *,F10.4)
8 CALL PPLT(TIM,REC,TL,TU, blV‘h(7).b!V‘N(1)oNPTSqXL»8 TITLE)

- END e e -
SUBROUTINE RPFT2(AByM, INCP)
" REAL A{l), B(1) , oo P
REAL D2TA, PERIODIC, FCURIER TRANSFORM, TWO AT A TIME.

INTERFACE TO COMPLEX - PEQI”DIC FOUREER - TRA&SFOP“ y TC DO PAIRS OF

TRANSFORMS OF REAL SEQUENCESS

RPFT2
RPFT2

CRPET2

RPFT2
RPFT2

TRPFT2

RPFT2

THE TWO SEQUENC:ZS AKE hLE“‘nTS u,INC'Z*XWC...(ﬂ~ 1)eINC OF ARRAYS A,R.RPFT2

CRPFT2

RPFT2
RPET2
PPET2

THUS, THE CONTENTS UF A AND B ARE °=PLAC D 8Y THICE THEIQ TRANSFORMS RPFT2

BY THE CALLS ]
CPFT (A, By N, INC, SXGN)
RPFT2(A, By N, INC)

TTTC UCOEFFICIENTS OF A (COSINE COEF,.) ARE IN A{O), A(l)>s,.;5A(N/2),

¢

c
c

e

i -

C OF THE SINE COEFFICIENTS. THIS MAY BF DOHE thH PARAMETER 3SIGN: CF
C“”THE FOURTER TRANSFORM, CPFT, . '

c
c
C

¢

c

INC=1, TWICE THE IMAGIMARY PARTS [SINE CJEF,) ARE STORED IN
REVERSE UROER, IN A(M~1)y A(N=-2),..A(N/2+1), LIKEWISE FGR B.

IF

RPFT2
RPFT2
RPFT 2
RPFT2
ROFT2
RPFT2
RPFT2
RPET2

"NO PARAMETER #SIGN# IS PROVIDSD FOR THE PURPCSE OF CHANGING THE SIGN RPFT2

TIME REQUIRED IS LESS THAN 1/13 OF THAT FCR CPFTe’

SHIULD BE RE-CODEC IN ASSEMBLY LAMNGUAGE,

:"?C‘“NQITTEN'BY A. BRUCE LANGDCN, LRL LIVERMOPE, MAY 1971, "

TTTTTTTTTTB(1)=3(1 ) +E(L) e

== REAL 1P, IV

INC=INCP
7T NIKC=N&INC
AlL)=ALL)+A(L)

LP=INC
LM=NINC-LP '
IFt LP.GE.LM ) GC TO 2

RPFT2
RPFT2
RPFT 2
RPFT 2
RPFT 2
RPFT2
RPFT2
RPFT2
RPFT2
RPFT2
RPFT2
RPFT2
RPFT2
RPFT2
RPFT2
RPFT2

. RPFT2



HTTTTTTTTTTALLP L) =CA-SB

~146-

i RP=AlLP*L)
RMaL{{Me}])
I1P=2(LP+1)
IM=p(LMe])
A{LPHL)=RMeRP
B(LM+l)=RM-RP
BLLP+L)=1P+IN
A{LMel)=lpP-1IM

LP=LP+INC
LM¥=aNINC-LP ) .
TTTTTTTTT LR LPLLT.LM ) GO TC 1 TTrmmETTm T T e T e
2 IF( LP.GT.NINC ) PETURN

e "SUBROUTINE RPFTI2(A84N,INCPY ~

A(LP+1)=A(LP+LI+A(LPHL) S T I
BILP#+1)=3(LP+1)+B{LP+1)

RETURN

END

REAL A(1), B{1l) - :
C REAL DATA, PERICDIC, FCURIER TRANSFGRM INVERSE, TWO AT A TIME,

c

"7 C INTERFACE TO COMPLEX PERIODIC FOURIER TRANSFORM, TD DO PAIRS OF

C _TRANSFCRAS OF REAL SEQUEMNCES.

c

C UNPACKS THE CCSINE AND SINE COEFFICIENTS CF A AND B AND COMBINES
€C THEM SO THAT A + I 8 IS THE CCMPLEX PERIQODIC FOURTER TRANSFOPM 0OF

C THE OPIGINAL SEQUENTES. RPFTI2 REVERSES THE EFFECT OF RPFTZ, EXCEPT
T7'C T THAT A AND B ARE COUBLED,

C THE CALLS

TTTCTTT ORPETI2(A, 8, Ny INC)

c CPFT (A, 8, M, INC, =SIGN}

T C  INVEAT THE TRANSIUCRM OCNE EARLIE?, EXCEPT THAT THE ARRAYS HAVE BEEN

TTTTTTUTUIFL LP.LTWLM ) GO TO 3

v
!

:

enanon

€ WRITTEN 8Y A. BRUCE LAMGDON, LRL LIVERMOPE, MAY 197Ll.
P 3 . SRR

T T T LMaNING-LP

"3 T T CcA=A(LP+L)

€ MULTIPULIED BY 2%¢N.

€

€ SHOULD BE RE COBEC IN ASSEHBLY LANGUAGE.
e -

INC=INCP.
" NINC=N*INC
LP=INC

IF( LP.GELLM )} RETURN
SB=g(LM+1)

CB=BlLP+1)
SA=A{(LM+1)

A(LM+1)=CA+SB
B{LPr1)}=CB+SA oo T
B(LM+1)=CB-SA
- LP=LP+INC
/ LM=NINC-LP
. RETURN ) .
T END ) i '
SURRNUTINE CPFT{(RF, I, N, INCP, SIGNP)
FCRTRAMN TRANSLITERATICN OF STNGLETON#S 6600 ASSEMSLY.-CONDED FFT,
DIFFERS FRGM SIMGLETOM2S ORIGINAL M THAT THERE IS A SPECIAL LOOP
" FOR AHGLE=PI/2o THIS SHOULD BE FASTER N MACHINES WHASE FLOATING

SEE COMMENTS IN OTHER VEPSICN.
As BRUCE LANGDON, M OIVISION, Lelalay 19716

RPFT2 41
PPFT2 42
QRPFT2 43
RPFT2 &4
RPFT2 45
RPFT2 46
RPFT2 47
RPFT2 48
RPFT2Z2 49
PPFT2 SO
RPFT2 51
RPFT2 S2
RPFT2 33
RPFT2 54
RPFT2 55
RPFT2 56
RPFTI2

RPFTI2

.RPFT12

2
3
4
RPFTI12 5
RPFTIZ2 6
RPFTI2 7
8

9

TRPFTI2

RPETI2

RPFT1210
RPFTI211
RPFTI212
RPET1213

TURPFTI21%

RPFTIZ215
RPFTI216
RPFTI217
RPFTI218
RPFTI219
RPET1220
RPFT1221
RPFT1222
RPFT1223
RPFY 1224
RPFTI225
RPFT1226
RPFT1227
RPFTI228
RPFT1229
RPFTI230
RPFTI231
RPFT1232
RPFT1233
RPFTI234
RPFTI235
RPFT (236
RPFT1237
RPFT1238
RPFYT (239
RPFTI240
CPFTPI22
CPFTP[23
CPFTPI24
CPFTPL25

POINT ARITHMETIC IS MUCH SLOWER THAN INDEXING (NOT TRUE ON CDC 66001,CPFTPI26

CPFTPI2T
CPFTPI28



Bo0CUo4z0

REAL R(L), IC1)

KEAL SINES(15),
SINES{Ll)=1.

T=ATAN{l.)
DC 2 15=2,15

SINES(IS)I=SINI(T).

T=T1/2.
CCNTINUE

IFL N.EQ.1 ) 2ETURN

INC=INCP?

SOGN=ISIGN(L,SIGNP)

SPAM=NINC=N*INC
IT=N/2.
€O 3 1S=1,15

" INTEGER SIGHP, SPAN, RC
19,
DATA SINES(1)/0./

S IF( SINES{l).EC.L.

11

IFl IT.EQ.l ) GO TO 12

1T=17T/2

T=S+{50*C~C0*S)

C=C-(CI*C+50%S)
- eatT .

K1=KJ3+SPAN
RO=R(K0+1)
R1=R(K1l+1)
10=1{KO+1)
Il=1(Kl+1)

) TR{KO+1)=RO+R]
JIKO+1)=10+]1

RG=RO-R1
10=10-11

R(KL+1)=C#R0-5*10
T{K1+1)=S#RO+C*10
" KO=K1+SPAN

IF( KO.LT,NINC ) GC TO 11

K1=K0-NINC
Ca=C

© KO=SPAN-K1
IF{ K1.LT.KO ) GO TO 11

KC=KO+INC
K1=SPAN-KO

IF( X0.,LT.K1 } GO 70 10

CCNTINUE.
SPAN=SPAN/2
KQ=0

"K1=KO0+SPAN ~~

RO=R{KO+1)
R1=R(K1+1)
1C=1(KC+1)

“Tt=1(KLl+1l)

R(KO+1)=RO+R1
T{KO+1})=10+I1
R{K1+1})=PO-R1

T1(KL+1)=10-11

KO=K1+SPAN

IF( KOLLT.NINC } GO TO 13

=SPAN/2
Kl KO+SPAN
FO=R{KO+1)
R1l=R(K1l+1}

»_XF( SPANe ECa INC ) GO T0 29

Yy GO 7O 1

Ci e e ————— e o e - e ——— 1

ol
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 CPETPI29

CPFTOI10
CPFTPIIN
CPFTIPL12
CPFTPI13
CPETPI14
CPFTPILS
CPFTPI LG
CPFTPILT
CPFTPILA
CPFTPILY
CPETPI20
CPFTPI21
CPETPI22
CPFTPI23
CPETPI24
CPFTPI25
CPFTPI26
CPFTPI27
CPFTPI23
CPFTP129
CPFTPI30 -
CPFTPI3L
CPETPI32
CPETPI33
CPETPI 34
CPETPLIS
CPETPI36
CPETPI3T
CPFTPI38
CPFTP139
CPETPI4C
CPFTPL4]
CPETP142
CPFTPI43
CPFTPI44
CPFTP14S
CPFTPL46
CPETP 147
CPETPI43
CPFTPI49
CPFTPISO
CPFTPISL
CPETPIS2
CPFTP153
CPFTPIS4

" CPFTPISS

CPFTPI1S6
CPFTPIST
CPFTPISS
CPFTP159
CPFTP1 6D

‘CPFTPISL

CPETPI62
CPFTPIS]
CPETPL64
CPFTP16S
CPFTPISH
CPETPI67

CPETPI68
CPETP169
CPFTPITO



10=1(KO+1) CPFTPLITL
Ilsl{K1+1) CPFYPLT2
R(KO#1)=RO+R 1 ) CPFTPLT3

1(KO+Ll )=+ CPFETPL 74

T OR(KL4L)2SONS (T I~1D) T T T T s e T T " CPFTPITS
I(K1+1)=SGN*(RC=R1) CPFTPI 76

) KO=K1+SPAN B i CPFTP177
[F( KOLLT.NINC ) GC TO 14 CPFTPL78

- Ki=INC+INC o ) CPFTPIT79
IF{ SPANJEC.KLl ) GC TC 12 : : CPFTP180

T T TTC 0324 #SINES (IS )42 T " TTToTTE Tt " CPFTPIBL
N 1S=1S~1 . CPFTPIS2
S0=S=aSIGN( SINES(IS),SCN ) . T ) CPFTPIB3

. C=1.~CO o ) CPFTPISSG
KO=INC R CPFTPIBS

60 70 11 CPFTPISS

TTom T - T e - T T CPFTPISTY
20 NIaNINC-INC CPFTPI38

' N2=NINC/2 T T T e e e e SCPFTPIBYO
14=J1=RC=0 CPFTP190

- IF( N2.EQ.INC ) RETURN TroTT T TTTm e CPFTPIIL
G2 Tvo 22 - - CPFTP92
21) 7 ly=N1-1y 7 TTTCPFTPIOI

. JI=N1=J1 CPFTPIO4
B T=R(LJ+1) o T T e e s e e CPETPIOS
CRUTS#LI=RIT+1) CPFTPI96

- T R{JI4L)=T oo o R of -1 =5 o - €-) 4
T=I1({J+1) . COFTPIO8
TTTTTTTTTT I LY = 1Y) T T T - T CPFTPIYY
[(JI+l)=T CPFTPLON

— TTUIFL 14.GTeN2 3 GC TC 21 Tt T T T T T T CPFTPiIVL
22 1Jd=1J+INC CPFTP102
T T = J 1 eN2 . T e CPFTPL03
T=R{1J+1) _ CPFTP104

T RIS )R (JIHL) T T T TCPRTRLIO0S
. REJL+L)=T CPFTOLO6
TRt T T Tl (1Jel) . - e CPFTP107
(13 )=1(J1I+1) CPFTP108

- 1(J1+L)=T ) = T T T o e smmme o CPFTPLO9
IT=N2 . CPETPL10

TTTT3 T T IT=ITZS T T T T T CPEYPLLL
RC=RC~IT CPFTPL12

AT IF({ RC.CE.0 ) GO TO 23 - [ oo " CPFTPL13
_ JI=RC=RC+2%*1T , CPFTPLLG
v 1J=1J+INC o T T s e e e CPFTPL1S
IFCt 1J.LT.J1 ) GO 10 21 CPETPLIS

Q=T TR LIJWLTWN2 ) GO TO 22 T T T TCPFTPLLY
: . CPFTP118
T RETURN ST e = T s s CPFTPLI19
i END CPFTP120
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LIST OF SYMBOLS

F.t = EyiBz

Page where
' defined on
Symbol Description first use
_ Latin Alphabet
a j Complex field quantities 2
ao,a+,a_ Dimensionless vector potentials 19
'EJ Slowly varying or Fourier amplitudes 2,110
A,AO,A+,A_,A£ Vector potentials 13,31
B Magnetic field 9
§0 External magnetic field 25
e Speed of light 12
92 _ Group velocities 34
L ' Sound speed 18
C'< K-space contour 113
C; Bromwich or Laplace contour 113
c.c. Complex conjugate
D{w,k) - Dispersion relation for electromagnetic 19
o waves ' |
D,,D_ Dispersion relat;i.on for electromagnetic 19
sidebands
DB( d_,f) Brillouin dispersion relation 100
Dy>Dy Partial differential operators - 79
e T Electron charge, species éhafge 11,14
E Electric field | >25
fo(v),f(‘v) Petrurbed and unperturbed velpcity 64,1’23 -
distribution functions .
Ft : Electromagnetic field quantities: 25



- Page where

_ o defined on
" Symbol ' 'Description first use
Gas(z_:,t) Green's f@ctim for 'a_(:_g,t) due to 113
o density noise in species s
'Gns( x,t) Green's function for number density due 113
to density noise in species s
h Resonance zone 40
1 Planck's constant modulo 27 5
Ias(w,lf)' Multiplicative factors in Green's function 113
integrand
Ins(m,l_g) Multiplicative factors in Green's function 115
B integrand
in Subseript or superscript denoting input or 37
boundary value
J,3( g,t),f Transverse current and amplitude 16,110
J Longitudinal current 69
Jy; J;,J; Simulation transverse currents 26
Jk Transverse wave action density 80
J‘Q':L ’ij Input action density and spatial derivative 40
k Wavenumber 19
ls:‘j - Wavenumber mode j 2
]_:o ,1_:1 Electromagnetic pump-wave wavenumbers 6
kp(x) WKB wavenumber for electron plasma wave 93
K Kinetic energy density 68
an Kinetic energy density.of resonant particles 70
' in waveframe
L Plasma system length 36
L Plasma density scale length 35
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;Symbol Description
m,m, Electron mass
m, 'Ion mass
n, - Unperturbed number density
ns,ﬁé Number density in species s .and

~ ~its amplitude ’
NJ ‘Number of quanta in mode J
P ANerége momentum density
P Pump parameter >
PO Laser power (watts/cmz)
P( ) Principal value integral
PR Momentum density in resonant particles
T Field position
£ Magnitude of reéponse: r= |$e/$oe|
Ty Equilibrium response magnitude
R Relative action transfer
R Complex response ampiitude, R = $e/$oe
8 Species index
§2,Szin Action flux density, inpqt action
s Action flux density difference:

| _§sso-sl ’ |
sns,éns Number density source term for species
and Fourier-Laplace transform

t Time.
Tq Temperature of species s
uw(x,t) Tranéverse electron fluid velocity
uy Transverse electron fluid'velocity for

mode £

Page where
defined on
“'first use
11
11
16

123,15

67
117
121
123

70
15

66

65
14
34,37

35
109

16
28

31
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‘Symbol . Deseription

v Particle velocity

gg Electromagnefic wave group ﬁelocity

vgz?vg Longitudinal wave group velocity'

vJ 'Charaqteristic wave velocity |

\A Thermal velocity species s

Vo Trapping velocity |

v¢ Phase velocity

v Oscillation velocity

§§ Transverse oscillation velocity for
species s '

;O Maximum electron transverse velocity ih
pump wave field

Vj Mode J group velocity

Wz Wave energy density in mode j

x;x Field or particle poéition coordinate

y Position coordinate

z Position coordinate |

Zg Related plasma dispersion fﬁnction:
Zg = \[E-VSZS

Z8 Plasma dispersion funetion

Derivative of plasma dispersion function

Page where
defined on

first use

9
99
57,88
2
17
49
76
55
11,14

31
13

13

124

124

124
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Page where
defined on
Des?ription first use
Greek Alph§bet
Coupling constant 42,66
Coupling coﬁstant mode J 3
Coupling constant 42
Coupling’constént mode Jj 2
Dissipation or growth rate 82
Electron-ion parametric decay growth rate 56
Linear growth or damping rate 62
Growth rates for Raman, filamentation,

or Brillpuin 45,99,118
Coupling strength:

Mw,k) = x (1 + ¥ )™t 17
Coupling constant: T = =47 Im 8-1(9,5) 40
Mismatch ratio: & = 5_/D+ | 107
Transverse electron current pertﬁrbation 11
Number density perturbation 11
Laplace and Fourier transformed 'GnS 109
Dirac é-funétion 27
Nonlinear dielectric function perturbation 62

- Attenuation length | 88
Nonlinear charge density by species

and amplitude 60
Complex, nonlinear frequency shift 62
Real part of 6w and related function 65
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Page where
| L » defined on
'Symbol . 'Desc?:lgt_ion . first use
s(w,k) '_ Dielectric functiom ' 15
€' Real pa'_rt of € : ' 35
e Imginary part of € I 35
=3 Linear part of ¢ : _' | 62
NL ‘Nonlinear dieiectric function 57
E,€ F:lrsﬁ and second frequency dérivatives of € 33,69 |
n Characteristic, n = (et - z)I‘JOi | 40
n Small quantity 67
0 Relative pﬁase of response w.r.t. driver 65
e | @e of « w.r.t. to l_(o R 98
8 Phase of mode £ | 79
e Heaviside unit-step function 0
K : ilaven@ber for density‘ perturbation ' 6
L o Pinch-point wavenumber ‘ R 115
KyKysKg  Characteristic wavenumbers related to 117,118
| Brillouin | |
K! | Spatial derivative‘ of wavenumber mismatch 46
Ag . Debye length for species s 12
| x . ~ Inverse wavenumber - - B 87
u . Coupling strength: ° = T2 )/ 19
v - - Dissipation rate | 33
Voff- | Effective dissipation rate , 48
Voi _ S Electron-ion collision frequency': ' © 40
“j Dissipation rate for mode J ' S 2
Vg Dissipation rate for electron w_ave'or

ion sound wave h 55
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Polarization angle

=155~
Page where
' , , : : defined on
" Symbol " 'Deseription - first use

g Characteristic, £ = (cf + z)I'JOi 40
3 Dimensionless phase veloecity:

tzw V2 124
p Wave action flux deﬁsity input fatio 37
o(t) Total charge density 60
ps(t),ss Charge density species s and Fourier 60

’ amplitude

pLs,BLB Linear part of species charge density and 60

Fourier amplitude ‘ .
o Characteristic, o = (et - 2)(T J('))l/2 40
T Characteristic, T = (et + z)(ry)/? 40
T Time 50
) Bounce period 49
Texﬁ Duration of experiment (secs.) 50
Ty Characteristic time for ignored effect 50
¢,$ Coulomb potential and Fourier amplitude 15
¢08,$Os Effective, ponderomotive potential and

Fourier amplitude, species s 15
68,33 Total potential and Fourier transform,

specles s 15
xs(m,g) Susceptibility for species s 15
is,xs(m,g) Susceptibility kernel and nonlinear

susceptibility 60,61
'w,i Ponderomotive potential energy and amplitude 32

102
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Page where
defined on

‘: S§ﬁb6i Deécfipﬁiéh. o first use
w | Frequency 5
wy ‘Ion acoustic frequency ' 121
wp Bounce frequency 49
3 Mode frequency 2
Wr s Wy Linear and_nonlinear eigenmode frequencies 62
wp Plasma frequency : : 40
Wy Plasma frequency for species‘ s 12
wO,l Transverse wave freduencies 6
Q Beat frequency - - 6
Qj .Charactéristic frequency in normal mode |
dispersion relation ' 2
. Real part of W 32
Q Pinch-point frequency 115



11.

12.

13.
14.

15.

16.

17.

18.

=157~

REFERENCES

C. V. Raman, Indian J. Phys. 2, 387 (1928).

'C. V. Raman end U. S. Krishan, Nature 121, 501 (1928).

P. A. Wolff, in Proceedings 2nd Ihternational Conference'on Light

Scatterlng in SOlldS (Paris, 1971).

N. Bloembergen and Y. R. Shen, Phys. Rev 141, 29 (1966)f
L. Brillouin, Amn. Phys. (Paris) 17, 88 (1922).

Y. R. Shen and N  Bloembergen; Phys. Rev 137, 1787 (1965).
N. M. Kroll, J. Appl. Phys. 36, 34 (1965). |
I. S. Danilkin, Sov. Phys. Tech. Phys 10, 524 (1965).

S. E. Bodner and J. L. Eddleman Phys Rev. A5, 355 (1972).

D. C. Watson, Ph.D. Thesis, Massachusetts Institute of Technology

.(1975)L

C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids 17,
1211 (1974)

J. Drake, P. Kaw, Y. C. Lee, G. Schmidt, C. S. Liu, and M. N.
Rosenbluth, Phys. Fluids 17, 778 (1974).

P. Kaw, G. Schmidt, and T. Wilcox, Phys. Fluids 16, 1522 (1973).
R. Y. Chiao, E. Garmire, and C. Townes, Phys. Rev. Lett. 13, 479
(1964). |

i; Gorbunov, Zh.'Eksp. Teor. Fiz. 65, 900 (1973) (Sov. Phys.-JETP
38, 490 (1974)).

V. N. Tsytovich, Nonlinear'Effeéts-in Plasma (Plenum Press, New

York, 1970).

R. C. Davidson, Methods in:Nonlinear Plasma Theory (Academic Press,
New York, 1972). o
L. Stenflo, Z. Physik 243, 341 (1971).



19.

20,

21.

22,

23.
24.

25.

26.

27,

28.

29.

31.

32.

33.
34.

35.

=158~

P. K. C. Wang, J. Math. Phys. 14, 911 (1973).

K. Nozakl and T. Taniuti, J. Phys. Soc. Japan 34, 796 (1973).
V. E. Zakharov and S. V. Manckov, Zh. Eksﬁ. Teor. Fiz. Pis. Red.
!f& 413 (1973)_ (Sov. Phys.-JETP Letters 18, 243 (1973)).

D. R. Nicholson, Ph.D. Thesis, University of California, Berkeley

(1975).

M. N. Rosenbluth, Phys. Rev. Lett. 22, 565 (1972).
K. Nishikawa, J. Phys. Soc. Japan 24, 916 (1968) and J. Phys.
Soc. Japan 24, 1152 (1968).

W. H. Louisell, Coupled Mode and Parametric Elecﬁronics (Wiley,

New York, 1960).

J. Dougherty, J. Plasma Phys. 4, 761 (1970).

J. Gélloway and H. Kim, J. Plasma Phys. 6, 53 (1971).

L. Altshul and V. Karpman, Zh. Eksp. Teor. Fiz. 47, 1544 (1964)
(Sov. Phys.-JETP 20, 1043 (1965)).

D. Melrose, Plasma Phys. 14, 1035 (1972).

M. Rabinovich and S. M. Fainshtein, Zh. Eksp. Teor. Fiz. 60,
1696 (1971) (Sov. Phys.-JETP 33, 918 (1971)).

J. Arons and C. E. Max, Phys. Fluids 17, 1983 (1974).

S. A. Akhmanov, A. P. Sukhorukov, and R. V._Khokhlov, Usp. Fiz.
Nauk 93, 19 (1967) (Sov. Phys.-Usp. 10, 609 (1968)).

A. B. Langdon and B. F. Lasinski, Phys. Rev. Lett. 34, 934 (1975).
B. I. Cohen, A. N. Kaufman, and.K. M. Watson,'Physf Rev. Lett.
29, 581 (1972).

K. Mima and K. Nishikawa, in Proceedings of the Fourth Anomalous

‘Absorption Conference, Lawrence Livermore Laboratory, Livermore,

California (1974), p. A.7.



37.

38.

40.
41.
42.
43.
44
45.
26.
47.
48.
49.
50.

51.
52.

53.

0000420

0 9

L

-159-

S. Jorna, Phys. Flulds 17, 765 (1974).

S. Bodner and J. Eddleman, Lawrence Livefmére. Report UCRL-73378
(1971) (unpublished). |

D. W. Forslund, J. M.v Kindel, and E. L. Lindinan, Phys. Rev. Lett.
29, 249 (1972); Phys. Rev. Lett. 30, 739 (1973); and Phys. Fluids

18, 1002 (1975).

W. Menheimer and E. Ott, Phys. Fluids 17, 1413 (1974).

A. V. Gaponov and M. A. Miller, Zh. kksp. Teor. Fiz. 34, 242
(1958) (Sov. Phys.-JETP 7, 168 (1958)) )

L. Landau and E. Lifshitz, Mechanics (Pergamon Press, New York,

1969).
G. Schmidt, Physics of High Temperature Plasmas (Acadmic Press,

New York, 1966 ), sec. 2-9,
B. Cohen, M. Mostrom, D Nicholson, A. Kaufman, C. Max, and

A. B. Langdon, Phys. Fluids 18, 470 (1975).

M. V. Goldman, Ann. Phys. (New York) 38, 95. (1966 ).

E. A.. Jackson, Phys. Rev. 153, 235 (1967).

N. M. Kroll, A. Ron, and N. Rostoker, Phys.. Rev. Letters l3_,
85 (1964).

C. R. James and W, B. Thompson, Can. J. ths 45, 1771 (1967).
C. E. Capjack and C. R. James, Can. J. Phys, 48, 1386 (1970).
G. Weyl, Phys. Fluids 13, 1802 (1970). | 4

B. Sté.nsfield, R. Nodwell, and J. Meyer, Phys. Rev. Lett. 26,
1219 (1971). |

F. ¥. Pérkins and J. Flick, Phys. Flulds 14, 2012 (1971). 7
M. N. Rosenbluth, R. B. White, and C. S. Liu, Phys. Rev. Lett. 31,
1190 (1973). |

M. N. Rosenbluth and C. S. Liu, Phys. Rev. Lett. 29, 701 (1972).



54.
2J.

56.

57.
- 58.
9.
60,
61.

62.
63.
64.

65.

~160~
G. Beaudry and J. Martineau, Phys. Letters 434, 331 (1973).

V. N. Strel'tsov, Zh. Eksp. Teor. Fiz. Pis. Red. 18, 532 (1973)

~(Sov. Phys.-JETP Letters 18, 314 (1973)).

V. Fuchs, C. Neufeld, J. Teichman, and A. G. Engelhardt, Phys.
Rev. Lett. 31, 1110 (1973).

G. Schmidt, Phys. Fluids 16, 1676 (1973).

G. Beaudry, J. Appl. Phys. 45, 3836 (1974).

A. Kaufman and B. Cohen,Phys. Rev. Lett. 30, 1306 (1973).

B. Cohen, Phys. Fluids 17, 496 (1974). |

I. Haber, C. E. Wagner, J. Boris, and J. Dawson, in Proceedings

of the Fourth Conference on Numerical Simulation of Plasmas

(Government Printing Office, Washington, D.C., 1973), p. 126;

R. L. Morse and C. Nielsen, Phys. Fluids 14, 830 (1971); A. B.

Langdon, B. F. Lasinski, and W. L.Kruer, in Proceedings of the

Sixth Conference on Numerical Simulation of Plasmas, Conference
Report 73-0710 (Lawrence Berkeley Laboratofy, Berkeley, California,
1973), p. 56.

A. B. Langdon, Ph.D. Thesis, Princeton University (1969).

D. Fuss and C. K. Birdsall, J. Compt. Phys. 3, 494 (1969).

J. Boris and R. Lee, J. Compt. Phys. 12, 13 (1973); I. Haber,

R. Lee, H. Klein, and J. Boris, in Proceedings of the Sixth

Conference on Numerical Simulation of Plasmas, Conference Report

73-0710 (Lawrence Berkeley Laboratory, Berkeley, Califcrnia, 1973),
p. 46; B. Godfrey, J. Compt. Phys. 15, 504 (1974).
0. Buneman, J. Compt. Phys. 1, 517 (1967); J. Boris, in Proceed-

ings of the Fourth Conference on Numerical Simulation of Plasmas

(Government Printing Office, Washington, D. C., 1973), p. 3.



67.

69.
70.
72‘
73.
4.
75.
76.
77.

78.

7.

81.

82.

00 00d20034

-161-

R. Z. Galeev and A. A. Sagdeev, Nonlinear Plasma Theory edited by

T. M. O'Neil and D. L. Book (Benjamin, New York, 1969) p. 19.

, Modern Computing Methods, Nationa.l' Physical Lasboratory

Notes on Api)lied Science No. 16 (Her Majesty's Stationery Office,
Londo‘n,. ‘1961),‘ Ch. 11.

J. H. Malmberg and C. B. Wharton, Phys. Rev. Lett. 19, 775 (1967).
P. Vidmar, J. H. Malmberg, and T. P. Starke, Phys. Rev. Lett. 34,

646 (1975).

‘N. Sato, H. Ikezi, ‘Y. Yamashita, and N. Takahashi, Phys. Rev.

Lett. 20, 837 (1968).

H. Sugal and E. Mirk, Phys. Rev. Lett. 34, 127 (1975).

T. M. 0'Neil, Phys. Fluids 14, 2255 (1965).

G. J. Morales end T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972).

W. Manheimer and R. Flynn, Phys. Fluids 14, 2393 (1971).

R. L. Dewar, Phys. Fluids 15, 712 (1972).

R. S. Johnston, Ph.D. Thesis, Princeton University (1974).

W.L. Kruer, J. M, Dawson, and R. N. Sudan, Phys. Rev. Lett. 23,
838 (1969). | |

M. Mostrom, A. Keufmen, and D. Nicholson, Bull. Am. Phys. Soc. 17,
1065 (1972). » .

M. Mostrom, Ph.D. Thesis, University of California, Berkeley
(1975). | -

J. Harte, Ph.D, Thesis, University of Califorhia, Davis (1975).
B. B. Kadomtsev and V. I. Karpman, Usp. Fiz.»Nauk 103, 193

(1971) (Sov. Phys.-Usp. 14, 40 (1971)).

K. Nishikawa, H. Hojo, K. Mima, and H. Ikezi, Phys. Rev. Lett. 33,

148 (1974).



83.

84 °

85.

86.

87.

8s8.

89.

9.

91.
92.
93.
9%,
95,

9%.

97.
98.

-162-

A. G. Litvak and V. Trakhtengerts, Zh. Ekép. Teor. Fiz. 60,

1702 (1971) (Sov. Phys.-JETP 33, 921 (1971)).

A, G. Litvek, V.Petrukhina, and V. Trakhtengerts, Zh. Eksp. Teor.
Fiz. Pis. Red. 18, 190 (1973) (Sov. Phys.-JETP Letters 18, 111
(1973)).

T. M. O'Neil, J. _H. Winfrey, and J. H. Malmberg, Phys. _Fluids 14,
1204 (1971).

V. Bailey and J. Denavit, Phys. Flulds 12, 451 (1970).

R. Sugihara and T. Kamimura, J. Phys. Soc. Japan 33, 206 (1972).

" A. Lee and G. Pocobelli,Phys. Fluids 15, 2351 (1972) and Phys.

Flulds 16, 1964 (1973).
J. Canosa and J. Gazdag, Phys. Fluids 17, 2030 (1974).

S-T. Tsai, J. Plasma Phys. 11, 213 (1974).

Y. Matsuda, Ph.D. Thesis, Stanford University (1974).

R. Sugihara and T. Taniuti, Suppl.Prog. Theor. Phys. 55, 151
(1974). |

D. L. Book and P. Sprangle, Bull. Amer. Phys. Soc. 19, 882 (1974).
W Kruer and J. Dawson, Phys. Fluids 13, 2747 (1970).

E. Asseo, G. Laval, R. Pellat, R. Welti, and A. Roux, J. Plasma
Phys. 8 341 (1972).

V. I. Karpman and D. R. Shklyar, Zh. Eksp. Teor Fiz. 62 944
(1972) (Sov Phys.-JETP 35, 500 (1972)).

B. Cohen and A.Kaufman, Bull. Amer. Phys. Soc. 17, 1059 (1972).

K. Estabrook and E. Valeo, in Proceedings of the Fifth Annual

~ Anomalous Absorption Conference (University of California,'Los

Angeles, California, 1975), p. F.6; B. F. Lasinski and A. B.

Langdon, in Proceedings of the Fifth Annual Anomalous Absorption




100.

101.

102.

103.

104.

000042034 Pl

..1.63..

Conference (University of Califbrnia, Los Angeles, California,

11975) p. F7.

R. J. Briggs, Electron-Stream Interaction with Plasras (M.I.T.
Press, Cambridge, Mass., 1964), Ch. 2.
A. Bers, "Theory of Absolute and Convective Instabilities" in

G. Aver and F. Cap, International Congress on Waves and Insta-

- bilities in Plasma ( Innsbruck, Austria, April 1973). pp. Bl-B52.

F. Chambers, Ph.D. Thesis, Massachusetts Institute of Technology
(1975). _
C. Oberman and G. Auer, Phys. Fluids 17, 1980 (1974).

B. Fried, G. Schmidt, and R. Gould in Proceedings of the Sixth

Conference on Nuclear Fusion and Plasma Physics (Vienna, 1973)

. P. 477.

B. D. Fried and S. Conte, The Plasma Dispersion Function

(Academic Press, New York, 1961).



Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.
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FIGURE CAPTIONS

(a) Stimulated scattering of a higher frequency transverse wave

- occurs into a lower frequency transverse wave and a laongi-

~tudinel plasma oscillation.

(b) Simultaneous three-wave interactions occur coupled by

a common driven longitudinal density perturbation. The
process is generally described as modﬁlation;

Coordinate system for two dimensional scattering in the x-z
plane with electric field polarizations in the y-direction.

@ 1is defined as the angle between real wavenumbers k and

ko
(a) Three-wave coupling, e.g., Raman or Brillouin scattering.
(b) Forward scattering or four-wave coupling, e.g.,

filamentation.

The one and one-half dimensions (x,vx,vy) of the code are

pictured schematically. Wave propagation and density variation

occur parallel to x. Transverse waves are linearly polarized

in the y-direction. Magnetic fields are parallel to z. The

three-wave interaction is diagrammed.

The equations describing transverse wévés'and particle dynamics
are ihtegrated forward in time using a time-centered, leap-
frog technique. Currents are calculated from charge locations
measured over consecutive time-steps and from velocities at the
half time-steps [Jy = (J;‘+ J;)/Z}.

Beat heating in an inhomogeneous medium. Because of the
resonance condition, there arises a reéonance region h. The

density gradient, described by the scale length
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Fig. 6.
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L = (dlnno/dz).l, is parallel to the propagation direction
of waves.

Beat heating in a finite, inhomogeneous medium:

" (a) the right- and left-going electromagnetic waves before

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

onset of beating;
(v) (x,vx) phase space after a fairly large amplitude
electron plasma wave has been established.

Relative enefgy or action depletion R of the high frequency

‘wave vs dimensionless parameter (scale length x pump strength)

4"koLnlu0|2/°2 for beat heating in an inhomogeneous medium

with input ratio Jlin/Join = 1, The data points for

 4ﬂk0pn|u0l2/c2 = 0.5 represent three parameter choices:

v: 4|u0/c|2 = 0.008 and kL =18.3; O: 4|u0/c|2 0.010

' = . . 2 _
and kL =15.2; and A : 4|ug/e|® = 0.012 and LN

Steady propagation of a stationary pulse-like three-wave inter-

13.7.

action for parameters Vl = V3 = —V2 =1: al(x,t) = 0.1
tanh(0.1£), ‘a2(x,t) = 0.00499 sech(Q.lE), and

aB(x,t) = 0.1 sech(O.lg)- where £ = x - 1.01t.

Perturbed pulse'pfopagation for parametérs Vi = V3 = -Vé =1,
and initial conditions al(x,O) = -0.1 tanh(O.lx);

az(x,O) = 0.0499 sech(0.1x), and aB(x,O) = 0.1 sech(0.1x).
Propagation of superposed right- and left?going solitary
pulse solutlions showing break-up for parameters

Vy = V5=V, =1, and initial conditions: a;(x,0) =
-0.1[tann(0.1€) + tanh(0.1n)], a,(x,0) = 0.00499 sech(0.1£) -

2.01 sech(O.ln), and a3(x,0).= O.l[sech(O.lE) + sech(O.%ﬁ)}

where § = x + X, and n = x - X5 'ixo denote the initial

locations of the left- and right-going pulses respectivexy,



Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

' ve(O) = 0.042¢c, and
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Beat heating in a cold, uniform plesma with initiael condi- -
tions al(x,O) = 8(-x), .az(x,o) = 8(x), and aB(x,O) = 0,

where 06 1is the unit-step function. We have chosen

~parameters Vi = Vé =1, v3 = 0.2, and V3 = vl = v2 =

Beat heating in a warm, uniform plasma, with initial condi-
ticns al(x,O) = o(-x), az(vx,O) = e(g), gnd aB(x,O) = Q.

We have chosen parameters Vi = Vé =5, V3 =1, v3 = 0.2,

: = = t = :
,‘and Vv, TV, S K 0.

(a) Temperature (eV) is plotted as a funciton of time.
There i1s a temporary halt in the heating at around the first
"bounce period" TB after the onset of beat heating.

(b) The relative action transfer is plotted as a function

of time for a simulation exhibiting trapping (corresponding

to Fig. 14).
Phase space (x,vx) and the velocity distribution function

f(vx), for beat heating in a finite homogeneous plasma with

" trapping, for paraméters: Iull =~ 1u0|= 0.03c,

wo = 5,owe.

(a) At wt =6 lon/ngl=0.3, B5/5,=0.25 and

Te/Te(O) = 1.0. The action transfer rate is large, since

the beat wave is still in a linear regime.

(b) At wt =25 |6n/n0| = 0.7, AS/sy = 0.11, and

Te/Te(O) = 3.3. The density disturbance has become large in

~ amplitude. Trapping has significently reduced the action

tfansfer rate.
(c) At w,t = 40; Ién/nol = 0.4, 85/s,=0.1, eand

Te/Te(O) = 4.7. There has been significant plasma heating.
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-Beat heating is no longer resonant but continues in a regime
described as induced Thomson scattering.

Fig. 15. Heating 'vez(tB) - vez(o) is plotted against input laser

intensity ?oOVl (we have chcsen equal intensities
?OO = 910). The period of time over which the heéting is

‘measured is defined as the average "bounce period" Ty
after the onset of beating. The fixed parameters and initial
conditiOns'for these simulations'arg Kc/we = 8.36,
.mo/me = 5.0, and 'KAé(O) = 0.35. |
Eig. 16. Plotted is [AL - GA(r)]r, -for 6A.é -uri, with Ai as
a parameter. Equilibria described by Eq. (64) occur at
intersections with =1, |
(a) Equilibrium ;ccurs only at r, for 4 >O0.

(b) For A, =A A,, where A2 < Al < 0, miltiple

L 1’
equilibria occur for A2 but not for Al'
Fig. 17. (a) Total electric field E and dfiving electric field Ey»
v.in natural units vs «kx; -
(v) Longitudinal'phasevspace; Ky/we Qs KX;
(¢) Electron velocity distribution function f(v) in
arbitrary units vs Kv/me; all at Qet = 300.
Fig. 18. (a) Relative response magnitude r and relative phase 6,
r exp 10 = 3/¢y Vs wéf.
(b) Frequency shift and nonlinear dissipation normalized to
Wy VS met. | |
Fig. 19. Asymptotic'frequency shift normalized to w, vs normalized
wave amplitude |e5(t = °°)I/(mwe2/21<2) = g.sz/we2 for slow

driver switch-on over wet = 50m {0) and for sudden switch-on
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(¢). The solid line indicates the theoretical result of
Nbraleé and O'Neil.
Simulation of resonant response of a Maxwellian electron
plasma (ihermal speed ve) to a ponderomotive plane wave
driving force, of frequency & (chosen to equal me) and

phase velocity v, = Q/k {(chosen to equal BVé), induced

¢
by the v x B coupling of two opposed lasers with oscilla-
tion velqcity amplitudes Uy, and. ul'_(chosen initially
équal to 0.2v¢). Initially the linear normal mode frequency
is 'QL = 1.17me, and the linear Landau damping Yy, is
O.ije. The frequencies of the transverse waves are chosen
to be mo = 5me and w = ouwy - Q= 4@8. For a typical
simulation, we -exhibit at wet = 431, 784:

(a) The driving field EO and the total field E as
functions of x, in natural units;

(b) Longitudinal electron phase épace;

(¢) The velocity distribution, in arbitrary units.

For the seme  simulationasin Fig. 20, we show, as functions
of time: |

(a) The magnitude 0%(t) and ¢,°(t) of the total and
ponderomotive potentials;.

(b) Their respective phases 6 and 0y

¢%(x,t) = ¢%(t) cos(t - kx + 8) and

Fig. 22.

e . e _
% (x,t) = % (t) cos(Qt - xx + eo).
For the same simulation as in Fig. 20, we show, as functions

of time:
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(a) The deduced frequency shift 6Q;
(b) The nonlinear damping-YNL.
Fig. 23. For the same simulation as in Fig. 20, we show, as functions
of time: |
(a) Coupled mode amplitudes [uOI/v¢, |u1|/v¢, and
|8]/ny; | .
| 4 (b) Their respective phases 8gs 8,, and 6 .
Fig. 24. Two lasers in channels L and L-1 initiate the multiple
scattering of photons (mz,gl) by a single plasmon
(Q,gp), leading to the generation of photons in both lower
viand higher frequency channels.
Fig.'25; A schematic sketch of ReLQ/wi ——'and Im Q/wi --= Vs KAe
. for filamentatioﬁ,with E'EO = 0.
Fig. 26; Weak -coupling Brillouin scatteringﬁ Re Q/2kyc . — and
| Im Q/Zkocs -—— V8 K/2k0.
Fig. o7 (a) Strong coupling Brillouih dispersion relation:
Re Q/wb — Vand Inm Q/mb ~-= vs k/2k., for cos 6 = 0.25,
0.50, 0.75, and 1.0, with parameters ky\ = 0.02,

0

¥./c = 0.2, we/mo = 0.2, and mi/me = 25,

0
(b) Combined filamentation and strong coupling Brillouin
 dispersion relations: Re.Q/wo — gnd Im Q/wb -—- VS
k/2k, for cos 8 = 0.0, 0.25, 0.50, 0.75, and 1.0 and
.same parameters.
Eig; 28. Longitudinal phase space (x,vx) fdr Brillouin backscatter:

electrons at

47.5 and

(a) wet

(b) w,t = 90.0;
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-ions at
(c) mét = 47.5 and
| (d) wt = 90.0
Fig. 29, ‘Electrostatic energy density, W/nomec2 vs time, wet,
| for the k= 230' mode. |
Fig. 30. Brillouiﬁ pinch-point frequency, Re Qp/wb —, and growth
rate Im Qp/mo --- vs. dimensionless pump strength

(mi/mo)z(koro)z/z. The pump strengths exceed (kocs/wo)3 =

6, and thus are in the regime of strong coupling normal

10
modes. Results derived using the weak coupling approximation
are shown by -——, —
Fig. 31. Brillouin pinch-point solutions for Re Kp/2k0 —
' - 2 2
Im ;p/ZkO ---, and Re Q/Re KpCg = VS (wi/wo) (koro) /2.
Analytic approximation for weak coupling is shown by
Fig. 32. The ratio of mismatches |[D_/D,| ¥s pump strength
| (wi/wo)z(koro)z/Z, evaluated at the pinch-point frequency
and wavenumber for Brillouin backscatter (6 = Q) and for
- a2
parameters w, << wy and .kocs/wo =10 “.
'Fig. 33. Contours of equal |DB| vs Re K/Zko (abscissa) and
- Im K/Zko (ordinate) for a strong pump, (wi/wo)z(koro)Z/Z =
-7 3_.,.6 a .
10 ,(?Ocs/wo) =10 7, and W {< Wy Re @ is get equal
‘to the pinch-point frequency.
(a) ImQ 1less than the pinch-point growth rate.
(b) Im Q equal to the pinch-point growth rate.

(¢) Im Q greater than the pinch-point growth rate.
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Fig. 34. Contours of equal IDB! vs Re x/2k, (abscissa) and

Im K/Zko (ordinate) for a weak pump, (wi/mo)z(koro)2/2 =

'6, and we_<< Wy Re @ 1s set equal

10-3:(ko°s/‘*’b)3 =10
to fhe pinch-point frequency.

(a) Im Q 1less than the pinch-point growth rate.
(b)) ImQ equal to the pinch-point growth rate.

(¢) ImQ greater than the pinch-point growth rate.
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Energy Research and Development Administration, nor any of
their employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately
owned rights.
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