
UC Irvine
UC Irvine Previously Published Works

Title
Aligned Image Sets Under Channel Uncertainty: Settling Conjectures on the Collapse of 
Degrees of Freedom Under Finite Precision CSIT

Permalink
https://escholarship.org/uc/item/7972d4sk

Journal
IEEE Transactions on Information Theory, 62(10)

ISSN
0018-9448

Authors
Davoodi, Arash Gholami
Jafar, Syed Ali

Publication Date
2016-10-01

DOI
10.1109/tit.2016.2586918

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7972d4sk
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Aligned Image Sets under Channel Uncertainty: Settling a

Conjecture by Lapidoth, Shamai and Wigger on the Collapse of

Degrees of Freedom under Finite Precision CSIT

Arash Gholami Davoodi and Syed A. Jafar

Center for Pervasive Communications and Computing (CPCC)

University of California Irvine, Irvine, CA 92697

Email: {gholamid, syed}@uci.edu

Abstract

A conjecture made by Lapidoth, Shamai and Wigger at Allerton 2005 (also an open problem
presented at ITA 2006) states that the degrees of freedom (DoF) of a two user broadcast channel,
where the transmitter is equipped with 2 antennas and each user is equipped with 1 antenna,
must collapse under finite precision channel state information at the transmitter (CSIT). That
this conjecture, which predates interference alignment, has remained unresolved, is emblematic
of a pervasive lack of understanding of the degrees of freedom of wireless networks—including
interference and X networks—under channel uncertainty at the transmitter(s). In this work
we prove that the conjecture is true in all non-degenerate settings (e.g., where the probability
density function of unknown channel coefficients exists and is bounded). The DoF collapse even
when perfect channel knowledge for one user is available to the transmitter. This also settles a
related recent conjecture by Tandon et al. The key to our proof is a bound on the number of
codewords that can cast the same image (within noise distortion) at the undesired receiver whose
channel is subject to finite precision CSIT, while remaining resolvable at the desired receiver
whose channel is precisely known by the transmitter. We are also able to generalize the result
along two directions. First, if the peak of the probability density function is allowed to scale as
O((
√
P )α), representing the concentration of probability density (improving CSIT) due to, e.g.,

quantized feedback at rate α
2 log(P ), then the DoF are bounded above by 1 + α, which is also

achievable under quantized feedback. Second, we generalize the result to the K user broadcast
channel with K antennas at the transmitter and a single antenna at each receiver. Here also the
DoF collapse under non-degenerate channel uncertainty. The result directly implies a collapse of
DoF to unity under non-degenerate channel uncertainty for the general K-user interference and
M ×N user X networks as well, for which the best known outer bounds under non-degenerate
channel uncertainty (except for essentially degraded settings) prior to this work were K

2 and
MN

M+N−1 (same as with perfect CSIT).
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1 Introduction

Interference alignment studies [1] have spurred much interest in the degrees of freedom (DoF) of
wireless communication networks. While much progress has been made under the assumption of
perfect channel knowledge, the degrees of freedom under channel uncertainty at the transmitters
have remained mostly a mystery. A prime example is the, heretofore unresolved, conjecture by
Lapidoth, Shamai and Wigger from the Allerton conference in 2005 [2], also featured at the “Open
Problems Session” at the Inaugural Information Theory and its Applications (ITA) workshop in
2006 [3], which claims that the DoF collapse under finite precision channel state information at the
transmitter (CSIT). Specifically, Lapidoth et al. conjecture that the DoF of a 2 user multiple input
single output (MISO) broadcast channel (BC) with 2 antennas at the transmitter and 1 antenna
at each of the receivers, must collapse to unity (same as single user) if the probability distribution
of the channel realizations, from the transmitter’s perspective, is sufficiently well behaved that
the differential entropy rate is bounded away from −∞. The condition excludes not only settings
where some or all channel coefficients are perfectly known, but also scenarios where some channel
coefficients are functions of others, even if their values remain unknown. The best DoF outer bound
under such channel uncertainty, also obtained by Lapidoth et al., is 4

3 . Deepening the mystery is
the body of evidence on both sides of the conjecture. On the one hand, supporting evidence in
favor of the collapse of DoF is available if the channel is essentially degraded, i.e., the users’ channel
vector directions are statistically indistinguishable from the transmitters’ perspective [4, 5]. On the
other hand, the idea of blind interference alignment introduced by Jafar in [6] shows that the 2
user MISO BC achieves 4

3 DoF (which is also an outer bound, thus optimal), even without knowl-
edge of channel realizations at the transmitter, provided that one user experiences time-selective
fading and the other user experiences frequency-selective fading. Since the time-selective channel is
assumed constant across frequency and the frequency-selective channel is assumed constant across
time, it makes some channel coefficients functions of others (they are equal if they belong to the
same coherence time/bandwidth interval), so that the model does not contradict the conjecture of
Lapidoth et al. Thus, quite remarkably, this conjecture of Lapidoth, Shamai and Wigger, which
predates interference alignment in wireless networks, has remained unresolved for nearly a decade.

Following in the footsteps of Lapidoth et al., subsequent works have made similar, sometimes
even stronger conjectures, as well as partial attempts at proofs. For instance, the collapse of DoF
of the MISO BC was also conjectured by Weingarten, Shamai and Kramer in [7] under the finite
state compound setting. However, this conjecture turned out to be too strong and was shown to
be false by Gou, Jafar and Wang in [8], and by Maddah-Ali in [9], who showed that, once again, 4

3
DoF are achievable (and optimal) for almost all realizations of the finite state compound MISO BC,
regardless of how large (but finite) the number of states might be. Since the differential entropy of
the channel process is not defined (approaches −∞) for the finite state compound setting, this result
also does not contradict the conjecture of Lapidoth et al. A related refinement of the conjecture,
informally noted on several occasions (including by Shlomo Shamai at the ITA 2006 presentation)
and mentioned most recently (although in the context of i.i.d. fading channels) by Tandon, Jafar,
Shamai and Poor in [10] — is that the DoF should collapse even in the “PN” setting, where perfect
(P) CSIT is available for one of the two users, while no (N) CSIT is available for the other user.
A valiant attempt at proving this conjecture is made in [11], but it turns out to be unsuccessful
because it relies critically on an incorrect use of the extremal inequality of [12] under channel
uncertainty.1 Thus the “PN” conjecture has also thus far remained unresolved.

1Similar problems arise in [13, 14]. A simple counter example is the MISO BC with finitely many channel states,
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That these conjectures remain unresolved, is emblematic of a broader lack of understanding of
the DoF of wireless networks under non-degenerate forms of channel uncertainty. For instance, by
extension, under non-degenerate channel uncertainty we also do not know the DoF of the vector
broadcast channel with more than 2 users, or the DoF of interference networks, X networks, cellular,
multi hop, or two-way relay networks, with or without multiple antennas, or any of a variety of
settings with partial uncertainty, such as mixed [15, 16] or alternating [10] channel uncertainty.
Thus, the resolution of these conjectures is likely to have a broad impact on our understanding of
the “robustness” of the DoF of wireless networks. This is the motivation for our work in this paper.

1.1 Overview of Contribution

The main contribution of this work is to prove the conjecture of Lapidoth, Shamai and Wigger,
thereby closing the ITA 2006 open problem, as well as the “PN” conjecture of Tandon et al., for all
non-degenerate forms of finite precision CSIT, which includes all settings where density functions
of the unknown channel realizations exist and are bounded. For all such settings, we show that
the DoF collapse to unity as conjectured. Remarkably, this is the first result to show the total
collapse of DoF under channel uncertainty without making assumptions of degradedness, or the
(essentially) statistical equivalence of users.

Our approach is based on bounding the expected number of codewords that are resolvable
at their desired receiver whose images align (within bounded noise distortion) at the undesired
receiver under finite precision CSIT. We show that this quantity is ≈ O((log(P ))n) where n is the
length of codewords, and P is the power constraint which defines the DoF limit as P → ∞. This
is negligible relative to the total number of resolvable codewords, which is ≈ O(Pnd/2) when the
desired information is sent at rate d

2 log(P ), i.e., with DoF d > 0 (normalization by 1
2 log(P ) is

because we deal with real channels). The difference between the entropy contributed by any set
of codewords at their desired receiver (desired DoF) and the entropy contributed by the same set
of codewords at the undesired receiver (DoF consumed by interference) tends to zero in the DoF
sense. Under non-degenerate channel uncertainty, it is not possible to utilize the DoF at the desired
receiver without sacrificing the same number of DoF at the undesired receiver due to interference.
Therefore, the DoF are bounded above by unity, the same as with a single user.

We also generalize this result in two directions. First, we extend it to include CSIT that
improves as P → ∞, e.g., through quantized feedback at rate α

2 log(P ), so that the probability
density function of unknown channel coefficients concentrates around the correct realizations. This
refinement of CSIT is captured by the growth in the peak value of the probability density function.
We show that if the peak of the probability density function of unknown channel coefficients grows
no faster than O(P

α
2 ), representing e.g., improving channel quantization from feedback at rate

α
2 log(P ), then the total DoF are bounded above by 1 + α. Furthermore, with quantized feedback
of rate α

2 log(P ) this DoF bound is achievable.
Finally, we go beyond 2 users and generalize the result to the K user MISO broadcast channel

where the transmitter has K antennas and there are K users with a single antenna each. Here
also, we prove that the DoF collapse to unity under non-degenerate channel uncertainty. Since the
outer bound for this MISO BC is also an outer bound for MISO BC’s with fewer than K antennas
at the transmitter or fewer than K users, for K user interference networks, for M ×N X channels
where K ≥ max(M,N), our result establishes the collapse of DoF to unity for all such networks

where the same arguments as used in these works would imply a collapse of DoF to 1, whereas this setting is known
to have 4

3
DoF as shown in [8, 9].
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under non-degenerate channel uncertainty. Remarkably, the best known outer bounds for K user
interference and M × N user X networks under non-degenerate channel uncertainty (except for
essentially degraded settings) prior to this work were K

2 and MN
M+N−1 (same as with perfect CSIT).

Thus, at least for DoF, this work represents a pessimistic leap of the same magnitude as the ones
made in the optimistic direction in [21, 22].

1.2 Notation

We use the Landau O(·), o(·), and Θ(·) notations as follows. For functions f(x), g(x) from

R to R, f(x) = O(g(x)) denotes that lim supx→∞
|f(x)|
|g(x)| < ∞. f(x) = o(g(x)) denotes that

lim supx→∞
|f(x)|
|g(x)| = 0. f(x) = Θ(g(x)) denotes that there exists a positive finite constant, M ,

such that 1
M g(x) ≤ f(x) ≤ Mg(x), ∀x. We use P(·) to denote the probability function Prob(·).

We define bxc as the largest integer that is smaller than or equal to x when x > 0, the smallest
integer that is larger than or equal to x when x < 0, and x itself when x is an integer. The index
set {1, 2, · · · , n} is represented compactly as [1 : n] or simply [n] when it would cause no confu-
sion. Arbitrary subsets of [n] may be denoted as [s] ⊂ [n]. The difference of sets [n]/[s] represents
the set of elements that are in [n] but not in [s]. X [s] represents {X(t) : t ∈ [s]}. For example,
X [n] = {X(1), X(2), · · · , X(n)}. With some abuse of notation we use {X} to denote the set of
values that can be taken by the random variable X. The cardinality of a set A is denoted as |A|.

2 The 2 User MISO BC with Perfect CSIT for One User

To prove the collapse of DoF in the strongest sense possible, let us first enhance the 2 user MISO
BC by allowing perfect CSIT for user 1. Consider the vector broadcast channel with 2 users where
the transmitter is equipped with 2 antennas, each user is equipped with 1 receive antenna, and there
are 2 independent messages W1,W2 that originate at the transmitter and are desired by users 1 and
2, respectively. The transmission takes place over n channel uses. The channel state information
at the transmitter (CSIT) is denoted as T , and includes perfect channel state information for the
channel vector of user but not for the channel vector of user 2. In the terminology of Tandon et al.
[10], this is the PN setting, although not restricted to any statistical equivalence assumptions.

The best outer bound for the DoF of the PN setting based on known results so far is 3
2 , which

is obtained from the finite state compound model by Weingarten, Shamai and Kramer in [7] and
is applicable to finite precision CSIT as well. While Weingarten et al. conjectured that their
outer bound was loose even in the finite state compound setting, predicting a collapse of DoF,
this conjecture was shown to be false by Gou, Jafar and Wang in [8], who showed that 3

2 DoF are
achievable under the finite state compound model, through the DoF tuple (d1, d2) = (1, 0.5). The
key to achievability is to split user 1’s 1 DoF into two parts that carry 0.5 DoF each. These parts
align at user 2, consuming half the available signal space of user 2, while remaining resolvable at
user 1. User 2’s signal, carrying 0.5 DoF, is then sent in the null space of user 1’s channel, and is
resolvable from the 0.5 dimensional interference-free space at user 2. Note that zero forcing at user
1 is possible because perfect CSIT for user 1 is assumed to be available.

The 3
2 DoF outer bound is also applicable in the blind interference alignment setting (BIA)

introduced by Jafar in [6], where user 1 experiences time or frequency selective fading but user 2
experiences a relatively flat fading channel. Here also the outer bound is shown to be achievable
through the tuple (d1, d2) = (1, 0.5). The key is to send two symbols for user 1, one from each
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antenna, repeated over two channel realizations where the channel of user 1 changes but the channel
of user 2 remains the same. Thus, user 1 sees two linear combinations of the two symbols from
which both symbols can be resolved, whereas user 2 only sees the same linear combination over
both channel uses. Thus the interference occupies only 0.5 DoF at user 2. The remaining 0.5 DoF
at user 2 is utilized by sending his desired signal, carrying 0.5 DoF, into the null space of user 1.

The finite state compound setting and the blind interference alignment setting reveal some of
the challenges of proving the collapse of DoF for the PN setting. Any attempt at proving a collapse
of DoF must carefully exclude such scenarios from the channel model. With this cautionary note,
we are now ready to introduce the channel model for our problem.

2.1 General Channel Model

The channel is described as follows:[
Ỹ1(t)

Ỹ2(t)

]
=

[
G̃11(t) G̃12(t)

G̃21(t) G̃22(t)

]
︸ ︷︷ ︸

G̃(t)

[
X̃1(t)

X̃2(t)

]
+

[
Z̃1(t)

Z̃2(t)

]
(1)

where all symbols are real. At time t ∈ N, Ỹk(t) is the symbol received by user k, Z̃k(t) ∼ N (0, 1)
is the real additive white Gaussian noise (AWGN), X̃k(t) is the symbol sent from transmit antenna
k, and G̃kj(t) is the channel fading coefficient between the jth transmit antenna and user k. The
channel coefficients are not restricted to i.i.d. realizations, i.e., they may be correlated across space
and time but are assumed to be drawn from a continuous distribution such that their joint density
exists. The transmitter is subject to the power constraint:

1

n

n∑
t=1

[(X̃1(t))2 + (X̃2(t))2] ≤ P̃ = O(P ), (2)

To avoid degenerate situations we will assume that the range of values of each of the elements
G̃ij is bounded away from zero and infinity, as is the determinant of the overall channel matrix —
i.e., |G̃ij(t)|, det(G̃(t)) are all Θ(1). Stated explicitly, there exists positive finite constant M , such
that

1

M
≤ |G̃ij(t)|, det(G̃(t)) ≤M (3)

Note that this is not a major restriction because by choosing the bounding constants large
enough, the omitted neighborhoods can be reduced to a probability measure less than ε for arbi-
trarily small ε, and thus has only a vanishing impact on the DoF.

2.2 Canonical Form

Without loss of generality, for the purpose of deriving a DoF outer bound the channel model is
reduced to the following form, which is preferable due to the consolidation of channel parameters
(See Appendix B for justification). This is the canonical form that we will use throughout the
paper.

The canonical form of the channel model, shown in Fig. 1 has the same outputs Y1(t), Y2(t) ∈ R,
but the inputs are X1(t), X2(t) ∈ R, so that:[

Y1(t)
Y2(t)

]
=

[
1 0

G(t) 1

] [
X1(t)
X2(t)

]
+

[
Z1(t)
Z2(t)

]
(4)
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X1(t) !

X2(t) !

G(t)

1

1

! Y1(t) = X1(t) + Z1(t)

! Y2(t) = G(t)X1(t) + X2(t) + Z2(t)

Figure 1: Canonical form of the 2 user MISO BC with perfect CSIT for user 1.

The channel coefficient G(t) is also bounded away from zero and infinity, i.e., there exists finite
positive M , such that |G(t)| ∈

(
1
M ,M

)
. The new power constraint is expressed as

1

n

n∑
t=1

[(X1(t))2 + (X2(t))2] ≤ P, (5)

where P = Θ(P̃ ). Further, for notational convenience let us define the set of admissible inputs.

X [n] , {(X [n]
1 , X

[n]
2 ) :

1

n

n∑
t=1

[(X1(t))2 + (X2(t))2] ≤ P} (6)

2.3 Messages, Rates, Capacity, DoF

The messages W1,W2 are jointly encoded at the transmitter for transmission over n channel uses
at rates R1, R2, respectively, into a 2nR1+nR2 × n codebook matrix over the input alphabet. The
codebook is denoted by C(n, [R1, R2], P ). For given power constraint parameter P , the rate vector
[R1, R2] is said to be achievable if there exists a sequence of codebooks C(n, [R1, R2], P ), indexed
by n, such that the probability that all messages are correctly decoded by their desired receivers
approaches 1 as n approaches infinity. The closure of achievable rate vectors is the capacity region
C(P ). The DoF tuple (d1, d2) is said to be achievable if there exist (R1(P ), R2(P )) ∈ C(P ) such
that

d1 = lim
P→∞

R1(P )
1
2 log(P )

d2 = lim
P→∞

R2(P )
1
2 log(P )

The closure of all achievable DoF tuples (d1, d2) is called the DoF region, D. The sum-DoF value
is defined as

DΣ = max
(d1,d2)∈D

(d1 + d2)

2.4 Non-degenerate Channel Uncertainty

Beyond the assumptions that are already stated, the non-degenerate channel uncertainty model
is defined by the additional assumption that the joint probability density function of the channel
coefficients, G[n], conditioned on the available CSIT, T , which we denote as fG[n]|T (g[n]), exists and
is bounded. Specifically, the conditions that we require are the following.
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2.4.1 Peak of Density Function is Bounded for Fixed P

For a given P , there exists a finite constant fmax, 1 ≤ fmax < ∞, such that the probability that
a subset of channel coefficients takes values in any measurable set is no more than the (fmax)|[s]|

times the Lebesgue measure of that set, where |[s]| is the dimension of the space containing the set,
i.e., the set is drawn from R|[s]|.

P(G[s] ∈ G[s]
o ) ≤ f |[s]|max(P )

∫
G[s]

0

dG[s], ∀[s] ⊂ [n],∀G[s]
o ⊂ G[s] (7)

The condition implies that a zero measure space cannot carry a non-zero probability. So it precludes
scenarios where e.g., the channel is perfectly known or when one channel coefficient is a function of
the rest. In all such cases, a zero measure space carries a non-zero probability, thus precluding the
existence of a bounded constant fmax(P ) as defined above. This restriction essentially accomplishes
the same goal as the restriction by Lapidoth et al. [2] that the differential entropy should be greater
than −∞.

Note that if all joint and conditional density functions are bounded then (7) is immediately
satisfied, and fmax may be chosen to be the peak value of all joint and conditional density functions.

fmax = max

(
1, max

[s]:[s]⊂[n]
sup
G[s]

(
fG[s]|T ,G[n]/[s](g[s])

) 1
|[s]|

)
(8)

Further, while we do not restrict channel realizations to be independent, suppose, just as
an illustrative example, that we consider such a setting, which is of some interest. Then the
joint/conditional density is the |[s]|-fold product of the marginal density functions,

fG[s]|T ,G[n]/[s](g[s]) =
∏
t∈[s]

fG(t)|T (g(t)) (9)

and one can simply choose:

fmax = max

(
1, max
t∈[1:n]

sup
g(t)∈G(t)

fG(t)|T (g(t))

)
(10)

Thus, a simple way to interpret our condition is that we require that the densities exist and are
bounded.

2.4.2 Peak of Density Function is Allowed to Scale with P

As a function of P , we allow fmax(P ) to scale as O((
√
P )α) for some α ∈ [0, 1].

fmax(P ) = O(P
α
2 ) (11)

The case studied by Lapidoth et al. in [2], where the density does not depend on P , is represented
here by setting α = 0. The positive values of α allow us to address settings where the CSIT
improves with P , e.g., due to quantized channel feedback of rate α

2 log(P ), so that the weight of
the distribution is increasingly concentrated around the true channel realizations. Note that the
maximum value of α is unity, because a feedback rate of 1

2 log(P ), implying 1 real DoF worth
of feedback, is sufficient to approach perfect CSIT performance over channels that take only real
values.

Since the receivers have full channel state information, T is globally known. For compact
notation, we will suppress the conditioning, writing fG[n](g[n]) directly instead.
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2.5 K User Extension

Extending beyond the 2 user case, the canonical channel model in the K user setting is described
as follows.

X1(t) !

X2(t) !

! Y1(t) = X1(t) + Z1(t)

X3(t) !

G21(t)

G31(t)

G32(t)

1

1

1 ! Y3(t) = G31(t)X1(t) + G32(t)X2(t) + X3(t) + Z3(t)

! Y2(t) = G21(t)X1(t) + X2(t) + Z2(t)

Figure 2: Canonical form of the 3 user MISO BC with Graded Channel Uncertainty.

Y1(t) = X1(t) + Z1(t) (12)

Y2(t) = G21(t)X1(t) +X2(t) + Z2(t) (13)

...

YK(t) = GK1(t)X1(t) +GK2(t)X2(t) + · · ·+GK(K−1)(t)XK−1(t) +XK(t) + ZK(t) (14)

where the inputs, Xk(t) ∈ R, are subject to the power constraint

1

n

n∑
t=1

(
(X1(t))2 + (X2(t))2 + · · ·+ (XK(t))2

)
≤ P (15)

The Gij(t) terms are known to the transmitter only up to finite precision and are assumed to
be bounded away from 0 and infinity. Further, the density of the kth users’ unknown channel

coefficients, k > 1, is bounded by fmax,k(P ) = O
(
P
αk
2

)
.

3 Results

We state the main result in its most general form, for K users. The 2 user case, corresponds to
setting α2 , α.

Theorem 1 For the K user MISO BC with non-degenerate channel uncertainty, the sum-GDoF
are bounded above as

DΣ ≤ 1 + α2 + α3 + · · ·+ αK (16)

Settling the Conjecture by Lapidoth et al. in [2]

The 2 user setting studied by Lapidoth et al., where the joint pdf is fixed, i.e., it does not depend
on P , is captured here when α = 0 (equivalently, α2 = 0). When α = 0, the sum-GDoF are
bounded above by unity, thus settling the conjecture of Lapidoth et al. for all non-degenerate
channel uncertainty models.

8



Settling the “PN” Conjecture

Since we allow perfect CSIT for one user, and one may assume (as a special case of our result) that
the channels are i.i.d., the collapse of DoF for α = 0, also proves the conjecture of Tandon et al.
for the 2 user setting.

Interference and X networks

Consider any one-hop wireless network where all receivers are equipped with a single antenna each.
This includes all interference and X networks. Allowing the transmitters to cooperate produces
a MISO BC setting. Since cooperation cannot hurt, the outer bound for the MISO BC under
non-degenerate channel uncertainty applies to interference and X networks as well. In all cases,
the DoF collapse to unity.

Limited rate feedback (α > 0)

Consider the 2 user setting, with α = α2 > 0. This case is interesting because it has direct
implications to the achievable DoF under limited rate quantized channel state feedback for the
channel vector of user 2. If the feedback link has α DoF, i.e., the feedback rate scales as α

2 log(P )

bits per channel use, then this corresponds to ∼ P α
2 channel quantization levels, so that the size of

a quantization interval scales as 1
(
√
P )α

and the channel density restricted to a quantization interval,

i.e., fG[n](g[n]|T ) scales as P
α
2 . Theorem 1 tells us that in this case the GDoF are bounded above as

DΣ ≤ 1+α. It is also easy to see that under such quantized feedback, the DoF tuple (d1, d2) = (1, α)
is achievable, simply by best-effort zero-forcing at the transmitter and treating residual interference
as noise at the receiver 2. Thus, DΣ = 1 +α is the optimal sum-DoF value if the quantized channel
state feedback is limited to rate α

2 log(P ). This generalizes the result of Caire, Jindal and Shamai
from [17] who showed2 that in order to achieve the same DoF as with perfect CSIT, i.e., DΣ = 2,
the quantized feedback rate should scale as 1

2 log(P ), i.e., carry one full degree of freedom (α = 1).
The bound for the K user extension is similarly tight as well.

4 Aligned Image Sets under Channel Uncertainty

We begin this section with a disclaimer, that this section is included mainly to share an intuitive
understanding of the proof. The proof itself will be presented in Section 5. To facilitate an intuitive
discussion, no attempt is made to be mathematically precise or rigorous here. The main idea we
want to illustrate intuitively is a geometrical notion of aligned images of codewords—loosely related
to Korner and Marton’s work on the images of a set in [18] but under a much more specialized
setting—which is the key to our proof. As the proof in Section 5 will show, the problem boils down
to the difference of two terms when only information to user 1 is being transmitted,

DΣ ≤ 1 + lim sup
P→∞

lim sup
n→∞

1
n
2 log(P )

(
h(Y

[n]
1 |G[n])− h(Y

[n]
2 |G[n])

)
(17)

The first term, h(Y
[n]

1 |G[n]), we wish to maximize because it represents the rate of desired infor-

mation being sent to user 1. The second, h(Y
[n]

2 |G[n]) = h(G[n]X
[n]
1 + X

[n]
2 + Z

[n]
2 |G[n]) we wish

2While the result in [17] is for the complex setting, the statement here is specialized to the real setting.
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to minimize, because it represents the interference seen by user 2, due to the information being

sent to user 1. If G[n] was perfectly available to the transmitter, then X
[n]
2 could be chosen to

cancel G[n]X
[n]
1 thus eliminating interference entirely at user 2. With only statistical knowledge of

G[n], zero forcing is not possible. Indeed, the purpose of X
[n]
2 is mainly to align interference into

as small a space as possible. However, instead of consolidating interference in the sense of vector
space dimensions, as is typically the case in DoF studies involving interference alignment, here the

goal is for X
[n]
2 to minimize the size of the image, as seen by user 2, of the codewords that carry

information for user 1. This is the new perspective that is the key to the proof.

4.1 Toy Setting to Introduce Aligned Image Sets

For illustrative purposes, let us start with a rather extreme over-simplification, by considering the
case with n = 1, ignoring noise, and using the log of the cardinality of the codewords as a surrogate
for the entropy. With this simplification, the quantity that we are interested in is the difference:

log |{X1}| − log |{GX1 +X2}| (18)

averaged over G. By |{A}| is meant the cardinality of the set of values taken by the variable A.
The codebook is the set of (X1, X2) values. Note that |{X1}|, the number of distinct values of

X1, is the number of distinct “codewords” as seen by user 1, who (once noise is ignored) only sees
Y1 = X1, so that his “rate” is log |{X1}|. Given the set of X1 values, we would like to associate each
X1 value with a corresponding X2 value, such that the number of distinct values of Y2 = GX1 +X2

is minimized. In other words, we wish to minimize the image of the set of codewords as seen by
user 2, by choosing X2 to be a suitable function of X1.

X1 �!

X
2
�!

•
•

•
•

•

•
•

•
•

•

••
•

•

S⌫(G)

⌫

S⌫(G
0) S�(G0)

�

•
S�(G)

�

Figure 3: Two codewords, ν and γ, and their equivalence classes, Sν and Sγ , containing all code-
words that have the same image at user 2 as ν and γ, respectively. The partitioning into equivalence
classes depends on the channel realization. The figure shows the distinct equivalence classes for
two channel realizations, G and G′.

Consider two codewords (X1, X2) = (x1, x2) and (X1, X2) = (x′1, x
′
2). If x1 6= x′1 then these

codewords are distinct from user 1’s perspective, and thus capable of carrying information to user

10



1 via the transmitter’s choice to transmit one or the other. Suppose the channel is G. Then for
these two codewords to “align” where they cause interference, they must have the same image as
seen by user 2. This gives us the condition for aligned images that is central to this work.

Gx1 + x2 = Gx′1 + x′2 (19)

⇒ G = −
(
x′2 − x2

x′1 − x1

)
(20)

In other words, G must be the negative of the slope of the line connecting the codeword (x1, x2) to
the codeword (x′1, x

′
2) in the X1, X2 plane. For a given channel realization G, all codewords that

align with (x1, x2) (i.e., whose images align with the image of (x1, x2)) as seen by user 2, must lie
on the same line that passes through (x1, x2) and has slope −G. Conversely, all codewords that
lie on this line have images that align with the image of (x1, x2) at user 2. For any codeword that
does not lie on this line, there is a parallel line with the same slope, −G, that represents the set
of codewords whose images align with the image of that codeword. Thus, these lines of the same
slope, −G, partition the set of codewords into equivalence classes, such that codewords that lie on
the same line have the same image at user 2. Also note that a different channel realization, G′,
gives rise to a different equivalent class partition, corresponding to lines with slope −G′. This is
illustrated in Fig. 3. Since the X2 values are functions of X1 values, in the figure we label the
codewords only on the X1 axis. The codeword ν belongs to the equivalence class Sν(G) under the
channel realization G and to the equivalence class Sν(G′) under the channel realization G′. Also,
note that two codewords that belong to the same equivalence class under one channel realization,
cannot belong to the same equivalence class under any other channel realization. For instance,
codewords λ and ν belong to the same equivalence class Sν(G) under channel realization G, but
they belong to different equivalence classes, Sν(G′) and Sγ(G′), under a different channel realization
G′.

Recall that our goal is to minimize the number of distinct images seen by user 2, (averaged)
across all channel realizations. It is not preferable to have too few codewords aligned into the
same image, because it would create too many distinct images across all codewords. However,
remarkably, it is also not preferable to have too many codewords aligned into the same image for
any given channel realization, because for every other channel realization, each of these codewords
must have a different image. Thus,

No. of distinct images ≥ No. of codewords per image (21)

A rough calculation (assuming uniformity for this intuitive argument so averages can be ignored)
will shed light on the best case scenario.

No. of codewords = No. of distinct images × No. of codewords per image (22)

≤ No. of distinct images × No. of distinct images (23)

⇒ No. of distinct images ≥
√

No. of codewords (24)

Mathematically,

|{GX1 +X2}| ≥
√
|{X1}| (25)

and therefore we have the bound

log(|{X1}|)− log(|{GX1 +X2}|) ≤ log(|{X1}|)−
1

2
log(|{X1}|) =

1

2
log(|{X1}|) (26)

11



Now, realizing that log(|{X1}|) can at most be user 1’s single interference free capacity, i.e., that it
corresponds to at most rate 1

2 log(P ), and substituting back into (17) the intuitive argument leads
us to DΣ ≤ 3

2 . This is indeed the DoF outer bound for the finite state compound channel setting,
and is, quite surprisingly achievable, as shown by Gou, Jafar, Wang in [8] and Maddah-Ali in [9]
when the number of possible channel realizations, |G|, is finite and fixed, even as the cardinality of
codebooks approaches infinity as P →∞.

4.2 Sketch of Proof

Unfortunately, the utility of the over-simplified noise free setting with n = 1 starts wearing thin
as we go beyond this point. While the picture of aligned image sets illustrated here will continue
to be meaningful, the remaining nuances of the proof are not easily conveyed in this toy setting.
Staying with the intuitive character of this section, let us conclude with an outline which will be
useful to navigate the structure of the proof that appears in the subsequent section.

From the perspective of DoF studies, the presence of noise essentially imposes a resolution
threshold, e.g., δ, such that the codewords with images that differ by less than δ, are unresolvable.
As the first step of the proof, this effect is captured by discretizing the input and output alphabet
and eliminating noise, as is done in a variety of deterministic channel models that have been used for
DoF studies [19, 20], so that instead of differential entropies we now need to deal only with entropies

H(Ȳ
[n]

1 |G[n]) and H(Ȳ
[n]

2 |G[n]). Here X̄1, X̄2 represent the discretized inputs, Ȳ1, Ȳ2 the discretized
outputs, and Ȳ1 = X̄1. Next step is to note that we are only interested in the maximum value

of the difference H(Ȳ
[n]

1 |G[n]) −H(Ȳ
[n]

2 |G[n]). It then follows that without loss of generality, X̄
[n]
2

can be made a function of X̄
[n]
1 , and therefore Ȳ

[n]
2 becomes a function of Ȳ

[n]
1 , G[n]. This implies

that H(Ȳ
[n]

1 |G[n]) = H(Ȳ
[n]

1 , Ȳ
[n]

2 |Gn) = H(Ȳ
[n]

2 |G[n]) + H(Ȳ
[n]

1 |Ȳ
[n]

2 , G[n]). Thus, the difference of

entropies is equal to H(Ȳ
[n]

1 |Ȳ
[n]

2 , G[n]) = H(X̄
[n]
1 |Ȳ

[n]
2 , G[n]). Now, conditioned on Ȳ

[n]
2 , G[n], the

set of feasible values of X̄
[n]
1 is precisely an aligned image set S(G[n]), i.e., all these X̄

[n]
1 produce

the same value of Ȳ
[n]

2 for the given channel realization G[n]. Since entropy is maximized by a

uniform distribution, H(X̄
[n]
1 |Ȳ

[n]
2 , G[n]) ≤ EGn

[
log
(
|S(G[n])|

)]
≤ log

(
E|S(G[n])|

)
, where the last

step followed from Jensen’s inequality. Thus, the difference of entropies is bounded by the log of
the expected cardinality of the aligned image sets. The most critical step of the proof then is to
bound the expected cardinality of aligned image sets. This is done by bounding the probability

that two given X̄
[n]
1 are in the same aligned image set, i.e., the probability of the set of channels

for which the two produce the same image Ȳ
[n]

2 . Recall that for two codewords to belong to the
same aligned set in the absence of noise, the channel realization over each channel use must be the
slope of the vector connecting the corresponding codeword vectors. The blurring of δ around the
two codewords also blurs the slope of the line connecting them, but by no more than ±δ/∆, where
∆ is the distance (difference in magnitudes) between the two codeword symbols over that channel
use. Thus, the probability that the given two codewords that are resolvable at user 1 cast the same
image at user 2 is bounded above by ≈ fmax

2δ
∆ . The power constraint of P implies that there are at

most ≈
√
P/δ resolvable codeword symbols per channel use. Summing over all possible resolvable

codeword symbols, gives us ≈ fmax
∑

∆∈[0:
√
P/δ]

2δ
∆ = fmax log(P ) + o(log(P )), per channel use, so

that the average cardinality of an aligned image set, E|S(G[n]|, turns out to be bounded above
by ≈ (fmax log(P ))n, and log(E|S(G[n]|) is bounded above by ≈ n log(fmax) + n log(log(P )). Since
fmax = O(P

α
2 ), normalizing by n

2 log(P ) and sending first n and then P to infinity sends this term

12



to α. Thus, combining with (17) produces the sum-DoF outer bound value 1 + α, giving us the
result of Theorem 1. Note that in the DoF limit, δ = Θ(1), and it will be useful to think of it as 1
for simplicity, so that the inputs and outputs are restricted to integer values. With this sketch as
the preamble, we now proceed to the actual proof.

5 Proof of Theorem 1 for K = 2 Users

For ease of exposition, the proof is divided into several key steps. The first step is the discretization
of the channel to capture the effect of noise, leading to a deterministic channel model, whose DoF
will be an outer bound to the DoF of the canonical channel model, which in turn is an outer bound
on the DoF of the general channel model.

1. Deterministic Channel Model
The deterministic channel model has inputs X̄1(t), X̄2(t) ∈ Z and outputs Ȳ1(t), Ȳ2(t) ∈ Z,
defined as

Ȳ1(t) = X̄1(t) (27)

Ȳ2(t) = bG(t)X̄1(t)c+ X̄2(t) (28)

with the power constraint

X̄1(t), X̄2(t) ∈ {0, 1, · · · , d
√
P e}, ∀t ∈ N (29)

and the set of inputs that satisfy the power constraints defined as

X̄ [n] = {(X̄ [n]
1 , X̄

[n]
2 ) ∈ Z[n] × Z[n] : X̄1(t), X̄2(t) ∈ {0, 1, · · · , d

√
P e}, ∀t ∈ [1 : n]} (30)

The assumptions on the unknown channel coefficients sequence G[n] are the same as before.

Lemma 1 The DoF of the canonical channel model are bounded above by the DoF of the
deterministic channel model.

The proof of Lemma 1 appears in Appendix A and follows along the lines of similar proofs
by Bresler and Tse in [20].

2. Difference of Entropies Representing Desired Signal and Interference Dimensions
Starting from Fano’s inequality, we proceed as follows.

nR1 ≤ I(W1; Ȳ
[n]

1 |W2, G
[n]) + o(n) (31)

= H(Ȳ
[n]

1 |W2, G
[n]) + o(n) (32)

nR2 ≤ I(W2; Ȳ
[n]

2 |G[n]) + o(n) (33)

= H(bG[n]X̄
[n]
1 c+ X̄

[n]
2 |G[n])−H(Ȳ

[n]
2 |W2, G

[n]) + o(n) (34)

≤ n

2
log(P )−H(Ȳ

[n]
2 |W2, G

[n]) + n o(log(P )) + o(n) (35)

⇒ n(R1 +R2) ≤ n

2
log(P ) + [H(Ȳ

[n]
1 |W2, G

[n])−H(Ȳ
[n]

2 |W2, G
[n])] + n o(log(P )) + o(n) (36)

⇒ DΣ ≤ 1 + lim sup
P→∞

lim sup
n→∞

[H(Ȳ
[n]

1 |W2, G
[n])−H(Ȳ

[n]
2 |W2, G

[n])]
n
2 log(P )

(37)
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≤ 1 + lim sup
P→∞

lim sup
n→∞

max
w2∈[1:2nR2 ]

[H(Ȳ
[n]

1 |W2 = w2, G
[n])−H(Ȳ

[n]
2 |W2 = w2, G

[n])]
n
2 log(P )

= 1 + D̄∆ (38)

so that what remains is to bound the difference of entropy terms:

D̄∆ , lim sup
P→∞

lim sup
n→∞

max
P(X̄

[n]
1 ,X̄

[n]
2 )

(X̄
[n]
1 ,X̄

[n]
2 )∈X̄ [n]

H(X̄
[n]
1 |G[n])−H(bG[n]X̄

[n]
1 c+ X̄

[n]
2 |G[n])

n
2 log(P )

(39)

Note that in (35) we bounded H(bG[n]X̄
[n]
1 c+ X̄

[n]
2 |G[n]) as follows.

H(bG[n]X̄
[n]
1 c+ X̄

[n]
2 |G[n]) ≤

n∑
t=1

H(bG(t)X̄1(t)c+ X̄2(t)|G(t)) (40)

≤
n∑
t=1

E log
(

(|G(t)|+ 1)(d
√
P e+ 1)

)
(41)

=
n

2
log(P ) + n o(log(P )) (42)

where (41) follows from the observation that for a given G(t) value, bG[n]X̄
[n]
1 c + X̄

[n]
2 can

take at most (1 +G(t))(1 + d
√
P e) values (all integers) and the entropy of a variable that can

take finitely many values is at most the log of the number of values.

3. Functional Dependence X̄
[n]
2 (X̄

[n]
1 )

Next we show that one can assume that X̄
[n]
2 is a function of X̄

[n]
1 . Given the sets of codeword

vectors {X̄ [n]
1 }, {X̄

[n]
2 }, define L as the mapping from X̄

[n]
1 to X̄

[n]
2 , i.e.,

X̄
[n]
2 = L(X̄

[n]
1 ) (43)

In general, because the mapping may be random, L is a random variable. Because condition-
ing cannot increase entropy,

H
(
bG[n]X̄

[n]
1 c+ L(X̄

[n]
1 )
∣∣∣G[n]) ≥ H

(
bG[n]X̄

[n]
1 c+ L(X̄

[n]
1 )
∣∣∣G[n],L) (44)

≥ min
L∈{L}

H
(
bG[n]X̄

[n]
1 c+ L(X̄

[n]
1 )
∣∣∣G[n],L = L) (45)

Let Lo ∈ L be the mapping that minimizes the entropy term. Then, choosing

X̄
[n]
2 (X̄

[n]
1 ) = Lo(X̄

[n]
1 ) (46)

we have

D̄∆ ≤ D̂∆ , lim sup
P→∞

lim sup
n→∞

max
P(X̄

[n]
1 ),X̄

[n]
2 (X̄

[n]
1 )

(X̄
[n]
1 ,X̄

[n]
2 )∈X̄ [n]

H(X̄
[n]
1 |G[n])−H(bG[n]X̄

[n]
1 c+ X̄

[n]
2 (X̄

[n]
1 )|G[n])

n
2 log(P )

(47)

because the choice of the mapping function does not affect the positive entropy term, and it

minimizes the negative entropy term. Henceforth, because X̄
[n]
2 is a function of X̄

[n]
1 , we will

refer to codewords only through X̄
[n]
1 values.
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4. Definition of Aligned Image Sets

The aligned image set containing the codeword ν̄[n] ∈ {X̄ [n]
1 } for channel realization G[n] is

defined as the set of all codewords that cast the same image as ν̄[n] at user 2.

Sν̄[n](G[n]) , {x̄[n]
1 ∈ {X̄

[n]
1 } : bG[n]x̄

[n]
1 c+ X̄

[n]
2 (x̄

[n]
1 ) = bG[n]ν̄[n]c+ X̄

[n]
2 (ν̄[n])} (48)

Since we will need the average (overG[n]) of the cardinality of an aligned image set, E|S ¯ν[n](G
[n])|,

it is worthwhile to point out that the cardinality |S ¯ν[n](G
[n])| as a function of G[n], is a

bounded simple function, and therefore measurable. It is bounded because its values are
restricted to natural numbers not greater than (1 + d

√
P e)2n. To see that it is a sim-

ple function, note that |Sν̄[n](G[n])| is continuous on irrational numbers. Therefore, the set
{G[n] : |Sν̄[n](G[n])| = m}, ∀m ∈ {1, · · · , (1 + d

√
P e)2n} is the union of two measurable sets.

The first is an intersection of an open set and the set of irrational numbers, so it is mea-
surable. The second is a subset of rational numbers which generally has zero measure. So,
{G[n] : |Sν̄[n](G[n])| = m} is a measurable set.

5. Bounding Difference of Entropies, D̂∆, in Terms of Size of Aligned Image Sets

H(X̄
[n]
1 |G[n]) = H(X̄

[n]
1 , S

X̄
[n]
1

(G[n])|G[n]) (49)

= H(S
X̄

[n]
1

(G[n])|G[n]) +H(X̄
[n]
1 |SX̄[n]

1

(G[n]), G[n]) (50)

= H(bG[n]X̄
[n]
1 c+ X̄

[n]
2 (X̄

[n]
1 )|G[n]) +H(X̄

[n]
1 |SX̄[n]

1

(G[n]), G[n]) (51)

≤ H(bG[n]X̄
[n]
1 c+ X̄

[n]
2 (X̄

[n]
1 )|G[n]) + E

[
log(|S

X̄
[n]
1

(G[n])|)
]

(52)

≤ H(bG[n]X̄
[n]
1 c+ X̄

[n]
2 (X̄

[n]
1 )|G[n]) + log

(
E
[
|S
X̄

[n]
1

(G[n])|
])

(53)

where (52) follows because uniform distribution maximizes entropy, and (53) follows from
Jensen’s inequality. Rearranging terms, we note that

D̂∆ ≤ lim sup
P→∞

lim sup
n→∞

max
P (X̄

[n]
1 ),X̄

[n]
2 (X̄

[n]
1 )

(X̄
[n]
1 ,X̄

[n]
2 )∈X̄ [n]

log
(

E
[
|S
X̄

[n]
1

(G[n])|
])

n
2 log(P )

(54)

6. Bounding the Probability of Image Alignment

Given two codewords x̄
[n]
1 and ν̄[n], let us bound the probability that their images align at

user 2. Note that for x̄
[n]
1 ∈ Sν̄[n](G[n]) we must have

bG[n]x̄
[n]
1 c − bG[n]ν̄[n]c = X̄

[n]
2 (ν̄[n])− X̄ [n]

2 (x̄
[n]
1 ) (55)

⇒ G[n](x̄
[n]
1 − ν̄[n]) ∈ X̄

[n]
2 (x̄

[n]
1 )− X̄ [n]

2 (ν̄[n]) + ∆
[n]
(−1,1) (56)

where ∆(−1,1)(t) ∈ (−1, 1), ∀t ∈ [1 : n]. Thus, for all t ∈ [1 : n] such that x̄1(t) 6= ν̄(t), the

value ofG(t) must lie within an interval of length no more than 2
|x̄1(t)−ν̄(t)| . Since the maximum

value of the joint probability density function of {G(t) : such that x̄1(t) 6= ν̄(t), t ∈ [1 : n]} is
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bounded by f
∑n
t=1 1(x̄1(t)6=ν̄(t))

max ≤ f
[n]
max, we can bound the probability that the images of two

codewords align as follows.

P(x̄
[n]
1 ∈ Sν̄[n](G[n])) ≤ fnmax

∏
t:x̄1(t)6=ν̄(t)

2

|x̄1(t)− ν̄(t)| (57)

7. Bounding the Average Size of Aligned Image Sets

E
[∣∣∣Sν̄[n](G[n])

∣∣∣] =
∑

x̄
[n]
1 ∈{X̄

[n]
1 }

P
(
x̄

[n]
1 ∈ Sν̄[n](G[n])

)
(58)

= 1 +
∑

x̄
[n]
1 ∈{X̄

[n]
1 }

x̄
[n]
1 6=ν̄[n]

P
(
x̄

[n]
1 ∈ Sν̄[n](G[n])

)
(59)

≤ 1 + (2fmax)n
∑

x̄
[n]
1 ∈{X̄

[n]
1 }

x̄
[n]
1 6=ν̄[n]

∏
t:x̄1(t)6=ν̄(t)

1

|x̄1(t)− ν̄(t)| (60)

≤ 1 + (2fmax)n
n∏
t=1

1 +

d
√
P e∑

∆x̄=1

2

∆x̄

 (61)

≤ 1 + (2fmax)n
n∏
t=1

(
log(
√
P ) + o(log(P ))

)
(62)

Since this is true for all ν̄[n] ∈ {X̄ [n]
1 }

E
[∣∣∣S

X̄
[n]
1

(G[n])
∣∣∣] ≤ 1 + (2fmax)n

(
log(
√
P ) + o(log(P ))

)n
(63)

8. Combining the Bounds to Complete the Proof
Combining (54) and (63) we have

D̂∆ ≤ lim sup
P→∞

lim sup
n→∞

log
(

1 + (2fmax)n
(

log(
√
P ) + o(log(P ))

)n)
n
2 log(P )

(64)

= lim sup
P→∞

log(fmax)
1
2 log(P )

+ lim sup
P→∞

log(log(P ))
1
2 log(P )

(65)

≤ α (66)

where (66) follows because fmax = O(P
α
2 ). Finally combining (66) with (38) and (47) we

have the desired outer bound

DΣ ≤ 1 + α (67)

�
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6 Proof of Theorem 1 for K Users

The generalization of the proof to the K user setting is, for the most part, straightforward based on
the 2 user case studied earlier. To avoid repetition our presentation will only briefly summarize the
aspects that follow directly and use detailed exposition for only those aspects that require special
attention. We divide the proof into a similar set of steps for ease of reference with the 2 user case.

1. Deterministic Channel Model
As in the 2 user case, the deterministic channel model is described as:

Ȳk =

k−1∑
i=1

bGki(t)X̄i(t)c+ X̄k(t) (68)

where the integer inputs satisfy the following per-symbol power constraint

X̄k(t) ∈ {0, 1, · · · , d
√
P e}, ∀k ∈ [1 : K] (69)

As before, let us define X̄ [n] as the set of codewords that satisfy the power constraint. We
have the following bound.

Lemma 2 The DoF of the canonical model are bounded above by the DoF of the deterministic
model.

We omit the proof of Lemma 2 since it is a straightforward extension of the 2 user proof
which was already presented in much detail.

2. Difference of Entropy Terms
For the kth user we bound the rate as

nRk ≤ I(Wk; Ȳ
[n]
k |Gn,Wk+1,Wk+2, · · · ,WK) + o(n) (70)

≤ H(Ȳ
[n]
k |Gn,Wk+1, · · · ,WK)−H(Ȳ

[n]
k |Gn,Wk,Wk+1, · · · ,WK) + o(n) (71)

where Gn includes all channel realizations. Adding the rate bounds we obtain

n
K∑
k=1

Rk ≤ n

2
log(P ) +

K∑
k=2

(
H(Ȳ

[n]
k−1|Gn,Wk, · · · ,WK)−H(Ȳ

[n]
k |Gn,Wk, · · · ,WK)

)
+n o(log(P )) + o(n) (72)

≤ n

2
log(P ) + +n o(log(P )) + o(n)

+

K∑
k=2

[
max

wi∈{Wi},i∈[k:K]

(
H(Ȳ

[n]
k−1|Gn,Wi = wi,∀i ∈ [k : K])−H(Ȳ

[n]
k |Gn,Wi = wi,∀i ∈ [k : K])

)]
(73)

In DoF terms,

D̄Σ ≤ 1 +
∑

k∈[2:K]

D̄∆,k (74)
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So we need to bound each of the following difference of entropy terms, ∀k ∈ [2 : K]

D̄∆,k , lim sup
P→∞

lim sup
n→∞

max
P(X̄

[n]
1 ,··· ,X̄[n]

K )

(X̄
[n]
1 ,··· ,X̄[n]

K )∈X̄ [n]

H(Ȳ
[n]
k−1|G[n])−H(Ȳ

[n]
k |G[n])

n
2 log(P )

(75)

We will bound these terms one at a time. The remainder of the proof will show that D̄∆,k ≤ αk.

3. Functional Dependence Ȳ
[n]
k (Ȳ

[n]
k−1, G

[n])

For a given channel realization for user k−1, G
[n]
k−1, there are multiple vectors (X̄

[n]
1 , X̄

[n]
2 , · · · , X̄ [n]

k )

that cast the same image in Ȳ
[n]
k−1. Thus, given the channel for user k − 1, the mapping from

Ȳ
[n]
k−1 to one of these vectors (X̄

[n]
1 , X̄

[n]
2 , · · · , X̄ [n]

k ) is random. Let us denote it by L, i.e.,

(X̄
[n]
1 , X̄

[n]
2 , · · · , X̄ [n]

k ) = L(Ȳ
[n]
k−1, G

[n]
k−1) (76)

Now note that

H(Ȳ
[n]
k |Gn) ≥ H(Ȳ

[n]
k |Gn,L) (77)

≥ min
L∈{L}

H(Ȳ
[n]
k |Gn,L = L) (78)

Let a minimizing mapping be Lo. Fix this as the deterministic mapping,

(X̄
[n]
1 , X̄

[n]
2 , · · · , X̄ [n]

k ) = Lo(Ȳ
[n]
k−1, G

[n]
k−1) (79)

This implicitly allows the transmitter to have full knowledge of the channel vector of user k−1.

We note that the choice of mapping does not affect the positive entropy term H(Ȳ
[n]
k−1|G[n])

but it minimizes H(Ȳ
[n]
k |G[n]), so that we can bound D̄∆,k as follows.

D̄∆,k ≤ D̂∆,k , lim sup
P→∞

lim sup
n→∞

max
P(Ȳ

[n]
k−1|G

[n]),Ȳ
[n]
k (Ȳ

[n]
k−1,G

[n])

(X̄
[n]
1 ,··· ,X̄[n]

K )∈X̄ [n]

H(Ȳ
[n]
k−1|G[n])−H(Ȳ

[n]
k |G[n])

n
2 log(P )

(80)

Henceforth, note that Ȳ
[n]
k is a function of Ȳ

[n]
k−1, G

[n].

4. Define Aligned Image Sets

For channel realization G[n], define the aligned image set S
Ȳ

[n]
k−1

(G[n]) as the set of all Ȳ
[n]
k−1

that have the same image in Ȳ
[n]
k , i.e.,

Sν̄[n](G[n]) , {ȳ[n]
k−1 ∈ {Ȳ

[n]
k−1} : Ȳ

[n]
k (ν[n], G[n]) = Ȳ

[n]
k (ȳ

[n]
k−1, G

[n])} (81)

5. Bounding Difference of Entropies in Terms of Size of Aligned Image Sets

H(Ȳ
[n]
k−1|G[n]) = H(Ȳ

[n]
k−1, Ȳ

[n]
k |G[n]) (82)
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= H(Ȳ
[n]
k |G[n]) +H(Ȳ

[n]
k−1|Ȳ

[n]
k , G[n]) (83)

= H(Ȳ
[n]
k |G[n]) +H(S

Ȳ
[n]
k−1

(G[n])|G[n]) (84)

≤ H(Ȳ
[n]
k |G[n]) + E

[
log

∣∣∣∣SȲ [n]
k−1

(G[n])

∣∣∣∣] (85)

≤ H(Ȳ
[n]
k |G[n]) + log E

[∣∣∣∣SȲ [n]
k−1

(G[n])

∣∣∣∣] (86)

where we used Jensen’s inequality in (86). Rearranging terms, we note that

D̂∆,k ≤ lim sup
P→∞

lim sup
n→∞

max
P(Ȳ

[n]
k−1,G

[n]),Ȳ
[n]
k (Ȳ

[n]
k−1,G

[n])

(X̄
[n]
1 ,··· ,X̄[n]

K )∈X̄ [n]

log

(
E

[∣∣∣∣SȲ [n]
k−1

(G[n])

∣∣∣∣])
n
2 log(P )

(87)

6. Bounding the Probability of Image Alignment

Given the channel, G
[n]
k−1, of user k − 1 and two realizations of Ȳ

[n]
k−1, say ȳ[n] and ȳ′

[n]
, which

map to X̄
[n]
j (ȳ[n], G

[n]
k−1) = x̄

[n]
j and X̄

[n]
j (ȳ′

[n]
, G

[n]
k−1) = x̄′

[n]
j , ∀j ∈ [1 : k], let us bound the

probability that they produce the same image Ȳ
[n]
k . For notational compactness let us define

Gkk(t) = 1,∀k ∈ [1 : K],∀t ∈ [1 : n]. Note that for ȳ′
[n] ∈ Sȳ[n](G[n]) we must have, ∀t ∈ [1 : n]∑

j∈[1:k]

bGkj(t)x̄′j(t)c =
∑
j∈[1:k]

bGkj(t)x̄j(t)c (88)

⇒ bGkj∗(t)(t)x̄′j∗(t)(t)c − bGkj∗(t)(t)x̄j∗(t)(t)c =
∑

j∈[k:k],j 6=j∗(t)

(
bGkj(t)x̄j(t)c − bGkj(t)x̄′j(t)c

)
(89)

⇒ Gkj∗(t)(t)
(
x̄′j∗(t)(t)− x̄j∗(t)(t)

)
∈

∑
j∈[1:k],j 6=j∗(t)

(
bGkj(t)x̄j(t)c − bGkj(t)x̄′j(t)c

)
+ ∆(−1,1)

(90)

where ∆(−1,1) ∈ (−1, 1), and we define

j∗(t) , arg max
j∈[1:k−1]

|x̄′j(t)− x̄j(t)| (91)

Thus, for all t ∈ [1 : n] such that x̄′j∗(t)(t) 6= x̄j∗(t)(t), the value of Gkj∗(t)(t) must lie within

an interval of length no more than 2

|x̄′j∗ (t)−x̄j∗ (t)| . Therefore, the probability that the images

due to ȳ[n] and ȳ′
[n]

align at user k, is bounded as follows.

P
(
ȳ′

[n] ∈ Sȳ[n](G[n])
)
≤ fnmax,k

∏
t:x̄′j∗(t)(t)6=x̄j∗(t)(t)

2∣∣x̄′j∗(t)(t)− x̄j∗(t)(t)∣∣ (92)

It will be useful to express the bound in terms of ȳ′(t), ȳ(t). To this end, let us proceed as
follows.

ȳ′(t)− ȳ(t) =
k−1∑
j=1

(
bGk−1,j(t)x̄′j(t)c − bGk−1,j(t)x̄j(t)c

)
(93)
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∈
k−1∑
j=1

(
bGk−1,j(t)

(
x̄′j(t)− x̄j(t)

)
c
)

+ (−K,K) (94)

|ȳ′(t)− ȳ(t)| ≤ |x̄′j∗(t)(t)− x̄j∗(t)(t)|
k−1∑
j=1

|Gk−1,j(t)|+K (95)

⇒ 1

|x̄′j∗(t)(t)− x̄j∗(t)(t)|
≤

∑k−1
j=1 |Gk−1,j(t)|

|ȳ′(t)− ȳ(t)| −K (96)

whenever |ȳ′(t)− ȳ(t)| > K. Therefore,

P
(
ȳ′

[n] ∈ Sȳ[n](G[n])
)
≤ ḡn(fmax,k)

n
∏

t:|ȳ′(t)−ȳ(t)|>K

1

|ȳ′(t)− ȳ(t)| −K (97)

where

ḡn , max

1,
∏

t:x̄′j∗(t)(t)6=x̄j∗(t)(t)

2
k−1∑
j=1

|Gk−1,j(t)|

 (98)

7. Bounding the Average Size of Aligned Image Sets

E
[
S

[n]
ȳ (Gn)

]
=

∑
ȳ′

[n]∈{Ȳ [n]
k−1}

P
(
ȳ′

[n] ∈ Sȳ[n](Gn)
)

(99)

≤ ḡn(fmax,k)
n

n∏
t=1

 ∑
ȳ′(t):|ȳ′(t)−ȳ(t)|≤K

1 +
∑

ȳ′(t):K<|ȳ′(t)−ȳ(t)|≤Qy(t)

1

|ȳ′(t)− ȳ(t)| −K


(100)

≤ ḡn(fmax,k)
n
(

log(
√
P ) + o(log(P ))

)n
(101)

where Qy(t) ≤ d
√
P e∑j∈[1:k−1](|Gk−1,j(t)|+K).

8. Combining the Bounds to Complete the Proof
Combining (101) and (87) we have

D̂∆,k ≤ lim sup
P→∞

lim sup
n→∞

log
(

(ḡfmax,k)
n(log(

√
P ) + o(log(P )))n

)
n
2 log(P )

(102)

≤ αk (103)

Finally, combining (74), (80) and (103) we have the result,

D̄Σ ≤ 1 + α2 + · · ·+ αK (104)
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7 Discussion

Since CSIT is almost never available with infinite precision, the collapse of DoF under finite precision
channel uncertainty is a sobering result that stands in stark contrast against the tremendous DoF
gains shown to be possible with perfect channel knowledge [21, 22]. However, as evident from the
conjecture of Lapidoth, Shamai and Wigger, the pessimistic outcome is not unexpected. In terms
of practical implications, just like the extremely positive DoF results, the extremely negative DoF
results should be taken with a grain of salt. The collapse of DoF under finite precision CSIT is
very much due to the asymptotic nature of the DoF metric, and may not be directly representative
of finite SNR scenarios which are of primary concern in practice. From a technical perspective, the
new outer bound technique offers hope for new insights through the studies of more general forms
of CSIT, such as finite precision versions of delayed [23], mixed [16, 15], topological [24], blind [6]
and alternating [10] CSIT.

Appendix

A Proof of Lemma 1

The proof is in two parts. First we prove that we can limit the inputs and outputs to integer
values without reducing the DoF. Then, we will show that the long-term (per-codeword) power
constraints can be replaced with short-term (per-symbol) power constraints without reducing the
DoF. The proofs follow along the lines of similar proofs by Bresler and Tse in [20], are specialized
to the broadcast setting, and fill in several details that are omitted in[20].

A.1 Integer Inputs and Outputs

Given codebooks with real codewords, (X
[n]
1 , X

[n]
2 ) ∈ Rn × Rn for the canonical channel model, we

show that the deterministic channel model with integer inputs bX [n]
1 c, bX

[n]
2 c, and outputs

¯̄Y1(t) , bX1(t)c (105)
¯̄Y2(t) , bG(t)bX1(t)cc+ bX2(t)c (106)

achieves the same DoF. Thus, removing noise and limiting the inputs to integer values, as done in
the deterministic model, does not reduce DoF relative to the original canonical channel model.

Define E
[n]
1 = X

[n]
1 −

⌊
X

[n]
1

⌋
+ Z

[n]
1 . Taking a similar approach to Lemma 5 in [20] we have,

I(W1;Y
[n]

1 |G[n]) = I(W1; ¯̄Y
[n]

1 + E
[n]
1 |G[n]) (107)

≤ I(W1; ¯̄Y
[n]

1 , E
[n]
1 |G[n]) (108)

≤ I(W1; ¯̄Y
[n]

1 |G[n]) + I(W1;E
[n]
1 |G[n], ¯̄Y

[n]
1 ) (109)

≤ I(W1; ¯̄Y
[n]

1 |G[n]) + h(E
[n]
1 |G[n])− h(E

[n]
1 |G[n], ¯̄Y

[n]
1 , X

[n]
1 ) (110)

≤ I(W1; ¯̄Y
[n]

1 |G[n]) + h(E
[n]
1 |G[n])− h(Z

[n]
1 ) (111)

≤ I(W1; ¯̄Y
[n]

1 |G[n]) +
n

2
log(2) (112)

so that the difference between I(W1;Y
[n]

1 |G[n]) and I(W1; ¯̄Y
[n]

1 |G[n]) approaches 0 when normalized
by n

2 log(P ), as first n and then P is sent to infinity.
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Similarly, by defining E
[n]
2 = GnX

[n]
1 −

⌊
Gn
⌊
X

[n]
1

⌋⌋
+X

[n]
2 −

⌊
X

[n]
2

⌋
+ Z

[n]
2 , we have,

I(W2;Y
[n]

2 |G[n]) = I(W2; ¯̄Y
[n]

2 + E
[n]
2 |G[n]) (113)

≤ I(W2; ¯̄Y
[n]

2 |G[n]) + h(E
[n]
2 |G[n])− h(Z

[n]
2 ) (114)

≤ I(W2; ¯̄Y
[n]

2 |G[n]) +
n∑
t=1

EG(t)

[
1

2
log
(
(G(t) + 1)2 + 1

)]
(115)

so that the difference between I(W2;Y
[n]

2 |G[n]) and I(W2; ¯̄Y
[n]

2 |G[n]) approaches 0 when normalized
by n

2 log(P ), as first n and then P is sent to infinity.. Thus, the deterministic channel with inputs

(bX [n]
1 c, bX

[n]
2 c), outputs ( ¯̄Y

[n]
1 , ¯̄Y

[n]
2 ), and per-codeword power constraints,

1

n

n∑
t=1

(
(bX1(t)c)2 + (bX2(t)c)2

)
≤ P (116)

achieves at least the same DoF as the original canonical channel model.

A.2 Per-symbol Power Constraints

Given codewords (bX [n]
1 c, bX

[n]
2 c) for the deterministic channel with outputs ( ¯̄Y

[n]
1 , ¯̄Y

[n]
2 ), such that

the codewords satisfy per-codeword power constraints, define ∀t ∈ [1 : n]

X̄1(t) = bX1(t)c mod d
√
P e (117)

X̄2(t) = bX2(t)c mod d
√
P e (118)

Ȳ1(t) = X̄1(t) (119)

Ȳ2(t) = bG(t)X̄1(t)c+ X̄2(t) (120)

X̂1(t) = bX1(t)c − X̄1(t) (121)

X̂2(t) = bX2(t)c − X̄2(t) (122)

Ŷ1(t) = ¯̄Y1(t)− Ȳ1(t) (123)

Ŷ2(t) = ¯̄Y2(t)− Ȳ2(t) (124)

Since X̄1(t), X̄2(t) ∈ {0, 1, · · · , d
√
P e}, the new codewords (X̄

[n]
1 , X̄

[n]
2 ) satisfy per-symbol power

constraints. Now let us compare the rates achieved on the channel (bX [n]
1 c, bX

[n]
2 c) −→ ( ¯̄Y

[n]
1 , ¯̄Y

[n]
2 )

to the rates achieved on the new channel (X̄
[n]
1 , X̄

[n]
2 ) −→ (Ȳ

[n]
1 , Ȳ

[n]
2 ).

I(W1; ¯̄Y
[n]

1 |G[n]) = I(W1; Ȳ
[n]

1 + Ŷ
[n]

1 |G[n]) (125)

≤ I(W1; Ȳ
[n]

1 , Ŷ
[n]

1 |G[n]) (126)

≤ I(W1; Ȳ
[n]

1 |G[n]) +H(Ŷ
[n]

1 |G[n]) (127)

≤ I(W1; Ȳ
[n]

1 |G[n]) +
n∑
t=1

H(Ŷ1(t)) (128)

≤ I(W1; Ȳ
[n]

1 |G[n]) +

n∑
t=1

H(X̂1(t)) (129)
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Similarly

I(W2; ¯̄Y
[n]

2 |G[n]) = I(W2; Ȳ
[n]

2 + Ŷ
[n]

2 |G[n]) (130)

≤ I(W2; Ȳ
[n]

2 , Ŷ
[n]

2 |G[n]) (131)

≤ I(W2; Ȳ
[n]

2 |G[n]) +H(Ŷ
[n]

2 |G[n]) (132)

≤ I(W2; Ȳ
[n]

2 |G[n]) +
n∑
t=1

H(Ŷ2(t)|G(t)) (133)

= I(W2; Ȳ
[n]

2 |G[n]) +
n∑
t=1

H(bG(t)bX1(t)cc+ bX2(t)c − bG(t)X̄1(t)c − X̄2(t)|G(t))

(134)

= I(W2; Ȳ
[n]

2 |G[n]) +
n∑
t=1

H(bG(t)X̂1(t)c+ X̂2(t) + ∆(t)|G(t)) (135)

≤ I(W2; Ȳ
[n]

2 |G[n]) +
n∑
t=1

H(bG(t)X̂1(t)c|G(t)) +
n∑
t=1

H(X̂2(t)) +
n∑
t=1

H(∆(t))(136)

≤ I(W2; Ȳ
[n]

2 |G[n]) +

n∑
t=1

H(X̂1(t)) +

n∑
t=1

H(X̂2(t)) + n log(3) (137)

where ∆(t) ∈ {−1, 0, 1}. To complete the proof we only need to show that
∑n

t=1H(X̂i(t)) ≤
n o(log(P )), i.e., these terms can contribute no more than 0 in the DoF sense. We will use the fact
that any integer number X can be written as QbXQ c −Q1(x < 0) + (X mod Q) where Q , d

√
P e

is also an integer value.

H(X̂1(t)) = H

(
Q

⌊
1

Q
bX1(t)c

⌋
−QI(bX1(t)c < 0)

)
(138)

= H

(⌊
1

Q
bX1(t)c

⌋
− I(bX1(t)c < 0)

)
(139)

≤ H

(⌊
1

Q
bX1(t)c

⌋)
+H (I(bX1(t)c < 0)) (140)

≤ H

(⌊
1

Q
bX1(t)c

⌋)
+ 1 (141)

Define

p(t) =
E (bX1(t)c)2

nP
(142)

where the expectation is over messages, i.e., the choice of codewords, so that

n∑
t=1

p(t) ≤ 1 (143)

Let ρk , P(bX1(t)c = k), so that

∞∑
k=−∞

k2ρk ≤ p(t)nP (144)
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Next let us bound the probability ρ̃m of bX1(t)c falling within the mth quantization interval.

ρ̃m ,
(m+1)Q−1∑
k=mQ

ρk, ∀m ∈ Z (145)

ρ̃m ≤ 1

min(m2, (m+ 1)2)Q2

(m+1)Q−1∑
k=mQ

k2ρk, ∀m ∈ Z/{0,−1} (146)

≤ np(t)

min(m2, (m+ 1)2)
, ∀m ∈ Z/{0,−1} (147)

ρ̃∗m ,
np(t)

min(m2, (m+ 1)2)
(148)

In the following derivation we will make use of the fact that ρ̃m log
(

1
ρ̃m

)
is an increasing function

of ρ̃m when ρ̃m < 1/e, so for these ρ̃m values one can replace ρ̃m with ρ̃∗m to obtain an outer bound.

Further, we will use the fact that the maximum value of ρ̃m log
(

1
ρ̃m

)
is 1

e ln(2) .

We bound the entropy term in (141) as follows

H

(⌊
1

Q
bX1(t)c

⌋)
=

∞∑
m=−∞

ρ̃m log

(
1

ρ̃m

)
(149)

=
∑

m∈{0,−1,1}

ρ̃m log

(
1

ρ̃m

)
+

∑
m:ρ̃∗m>

1
e

m/∈{0,−1,1}

ρ̃m log

(
1

ρ̃m

)
+

∑
m:ρ̃∗m≤ 1

e
m/∈{0,−1,1}

ρ̃m log

(
1

ρ̃m

)

(150)

=
∑

m∈{0,−1,1}

1

e ln(2)
+

∑
m:ρ̃∗m>

1
e

m/∈{0,−1,1}

1

e ln(2)
+

∑
m:ρ̃∗m≤ 1

e
m/∈{0,−1,1}

ρ̃∗m log

(
1

ρ̃∗m

)
(151)

≤ 3

e ln(2)
+

4
√
np(t)

e ln(2)
+ 2

∞∑
m=2

np(t)

m2
log

(
m2

np(t)

)
(152)

≤ 3 + 4
√
np(t)

e ln(2)
+ 4np(t)

∞∑
m=2

log(m)

m2
+ 2np(t) log

(
1

np(t)

) ∞∑
m=2

1

m2
(153)

≤ 3 + 4
√
np(t)

e ln(2)
+ 6np(t) + 2np(t) log

(
1

np(t)

)
(154)

≤ 3 + 4 max(1, np(t))

e ln(2)
+ 6np(t) +

2

e ln(2)
(155)

where in (153) we used the facts that
∑∞

m=2
log(m)
m2 ≤ 1.5 and

∑∞
m=2

1
m2 ≤ 1. In (155) we used the

property that the maximum value of the function x log
(

1
x

)
is 1

e ln(2) .

Substituting into (141), summing over all t ∈ [1 : n], and using (143) we have

n∑
t=1

H(X̂1(t)) ≤ n+
5n

e ln(2)
+

4

e ln(2)

n∑
t=1

(1 + np(t)) + 6n
n∑
t=1

p(t) (156)
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≤ n

(
1 +

13

e ln(2)
+ 6

)
(157)

≤ n o(log(P )) (158)

The same arguments show that
∑n

t=1H(X̂2(t)) ≤ n o(log(P )) as well. Thus, we conclude that the
deterministic channel with per-symbol power constraints, achieves at least the same DoF as the
deterministic channel with per-codeword power constraints.

B Channel Model: Reduction to Canonical Form

Define

X1(t) = G̃11(t)X̃1(t) + G̃12(t)X̃2(t) (159)

X2(t) =

(
det(G̃(t))

G̃11(t)

)
X̃2(t) (160)

G(t) =
G̃21(t)

G̃11(t)
(161)

P = (2M2 +M4)P̃ (162)

Note that P = Θ(P̃ ), and G(t) is bounded away from zero and infinity, as 1
M2 < |G(t)| < M2,

∀t ∈ N.

(X1(t))2 + (X2(t))2 ≤

(G̃11(t))2 + (G̃12(t))2 +

(
det(G̃(t))

G̃11(t)

)2
 ((X̃1(t))2 + (X̃2(t))2)(163)

≤ (2M2 +M4)((X̃1(t))2 + (X̃2(t))2) (164)

In addition to the channel vector for user 1, let us allow the CSIT to include the determinant
of the channel matrix. This cannot reduce capacity, so it can only make the outer bound stronger.

G̃11(t), G̃12(t), det(G(t)) ∈ T , ∀t ∈ N (165)

Note that for continuous distributions, G(t) is not a function of T . With the available CSIT,
suppose the transmitter sets:

X̃1(t) =
1

G̃11(t)
X1(t)−

(
G̃12(t)

det(G̃(t))

)
X2(t) (166)

X̃2(t) =

(
G̃11(t)

det(G̃(t))

)
X2(t) (167)

Substituting into (1) we obtain the canonical channel model (4). Noting that the transformation
from X̃1(t), X̃2(t) to X1(t), X2(t) is invertible and that the new power constraint (5) allows all
feasible X̃1(t), X̃2(t), it is evident that the capacity of the channel in its canonical form cannot be
smaller than that of the original channel. Thus, the canonical channel transformation is valid for
our DoF outer bound. �
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Remark: It is not necessary to provide side information of the determinant of the channel
matrix to the transmitter. One could also normalize the desired channel coefficient values to unity
by scaling the received signals at the receivers, which would only scale the noise variance by a
bounded amount that is inconsequential for DoF. We choose to provide the determinant as side
information to the transmitter, because for a pessimistic outer bound that shows the collapse of
DoF, including more CSIT only makes the result stronger. It shows that even this additional CSIT
cannot prevent the collapse of DoF.

Acknowledgments

S. Jafar would like to gratefully acknowledge many insightful discussions over the years with Prof.
Shlomo Shamai regarding the problem studied in this work.

References

[1] S. Jafar, “Interference alignment: A new look at signal dimensions in a communication net-
work,” in Foundations and Trends in Communication and Information Theory, 2011, pp.
1–136.

[2] A. Lapidoth, S. Shamai, and M. Wigger, “On the capacity of fading MIMO broadcast channels
with imperfect transmitter side-information,” in Proceedings of 43rd Annual Allerton Confer-
ence on Communications, Control and Computing, Sep. 28-30, 2005.

[3] ——, “Degrees of freedom in MIMO broadcast with finite precision CSI,” in ITA 2006 Open
Problems Session, Feb. 2006, http://www.jacobsschool.ucsd.edu/news/news releases/release.
sfe?id=517.

[4] C. Huang, S. A. Jafar, S. Shamai, and S. Vishwanath, “On Degrees of Freedom Region of
MIMO Networks without Channel State Information at Transmitters,” IEEE Transactions on
Information Theory, no. 2, pp. 849–857, Feb. 2012.

[5] C. S. Vaze and M. K. Varanasi, “The degree-of-freedom regions of MIMO broadcast, interfer-
ence, and cognitive radio channels with no CSIT,” IEEE Transactions on Information Theory,
vol. 58, no. 8, pp. 5354–5374, 2012.

[6] S. A. Jafar, “Blind Interference Alignment,” IEEE Journal of Selected Topics in Signal Pro-
cessing, vol. 6, no. 3, pp. 216–227, June 2012.

[7] H. Weingarten, S. Shamai, and G. Kramer, “On the compound MIMO broadcast channel,” in
Proceedings of Annual Information Theory and Applications Workshop UCSD, Jan 2007.

[8] T. Gou, S. Jafar, and C. Wang, “On the degrees of freedom of finite state compound wireless
networks,” IEEE Transactions on Information Theory, vol. 57, no. 6, pp. 3268–3308, June
2011.

[9] M. A. Maddah-Ali, “The degrees of freedom of the compound MIMO broadcast
channels with finite states,” CoRR, vol. abs/0909.5006, 2009. [Online]. Available:
http://arxiv.org/abs/0909.5006

26

http://www.jacobsschool.ucsd.edu/news/news_releases/release.sfe?id=517
http://www.jacobsschool.ucsd.edu/news/news_releases/release.sfe?id=517
http://arxiv.org/abs/0909.5006


[10] R. Tandon, S. A. Jafar, S. Shamai, and H. V. Poor, “On the synergistic benefits of alternating
CSIT for the MISO BC,” IEEE Transactions on Information Theory, vol. 59, no. 7, pp.
4106–4128, July 2013.

[11] C. Hao, B. Rassouli, and B. Clerckx, “Degrees-of-freedom region of MISO-OFDMA broadcast
channel with imperfect CSIT,” arXiv:1310.6669, October 2013.

[12] T. Liu and P. Viswanath, “An extremal inequality motivated by multiterminal information-
theoretic problems,” IEEE Transactions on Information Theory, vol. 53, no. 5, pp. 1839 –
1851, May 2007.

[13] B. Rassouli, C. Hao, and B. Clerckx, “DoF analysis of the K-user MISO broadcast channel
with alternating CSIT,” http://arxiv.org/abs/1311.6647, vol. abs/1311.6647, 2013.

[14] C. Hao and B. Clerckx, “MISO broadcast channel with imperfect and (un)matched CSIT in the
frequency domain: DoF region and transmission strategies,” http://arxiv.org/abs/1310.6657,
vol. abs/1310.6657, 2013.

[15] T. Gou and S. A. Jafar, “Optimal use of current and outdated channel state information:
Degrees of freedom of the MISO BC with mixed CSIT,” IEEE Communication Letters,
vol. 16, no. 7, pp. 1084 – 1087, July 2012.

[16] S. Yang, M. Kobayashi, D. Gesbert, and X. Yi, “Degrees of freedom of time correlated MISO
broadcast channels with delayed CSIT,” IEEE Transactions on Information Theory, vol. 59,
no. 1, pp. 315–328, Jan 2013.

[17] G. Caire, N. Jindal, and S. Shamai, “On the required accuracy of transmitter channel state in-
formation in multiple antenna broadcast channels,” in Proceedings of the Asilomar Conference
on Signals, Systems and Computers, 2007.

[18] J. Korner and K. Marton, “Images of a set via two different channels and their role in multiuser
communication,” IEEE Trans. Inform. Theory, vol. 23, pp. 751–761, Nov. 1977.

[19] A. S. Avestimehr, S. Diggavi, and D. Tse, “Wireless network information flow: A deterministic
approach,” IEEE Trans. on Information Theory, vol. 57, pp. 1872–1905, 2011.

[20] G. Bresler and D. Tse, “The two-user Gaussian interference channel: a deterministic view,”
European Transactions in Telecommunications, vol. 19, no. 4, pp. 333–354, June 2008.

[21] V. Cadambe and S. Jafar, “Interference alignment and the degrees of freedom of the K user
interference channel,” IEEE Transactions on Information Theory, vol. 54, no. 8, pp. 3425–
3441, Aug. 2008.

[22] ——, “Interference alignment and the degrees of freedom of wireless X networks,” IEEE Trans.
on Information Theory, no. 9, pp. 3893–3908, Sep 2009.

[23] M. A. Maddah-Ali and D. Tse, “Completely stale transmitter channel state information is still
very useful,” IEEE Transactions on Information Theory, vol. 58, no. 7, pp. 4418–4431, July
2012.

[24] S. A. Jafar, “Topological Interference Management through Index Coding,” IEEE Transactions
on Information Theory, vol. 60, no. 1, pp. 529–568, Jan. 2014.

27


	1 Introduction
	1.1 Overview of Contribution
	1.2 Notation

	2 The 2 User MISO BC with Perfect CSIT for One User
	2.1 General Channel Model
	2.2 Canonical Form
	2.3 Messages, Rates, Capacity, DoF
	2.4 Non-degenerate Channel Uncertainty
	2.4.1 Peak of Density Function is Bounded for Fixed P
	2.4.2 Peak of Density Function is Allowed to Scale with P

	2.5 K User Extension

	3 Results
	4 Aligned Image Sets under Channel Uncertainty
	4.1 Toy Setting to Introduce Aligned Image Sets
	4.2 Sketch of Proof

	5 Proof of Theorem ?? for K=2 Users 
	6 Proof of Theorem ?? for K Users
	7 Discussion
	A Proof of Lemma ??
	A.1 Integer Inputs and Outputs
	A.2 Per-symbol Power Constraints

	B Channel Model: Reduction to Canonical Form



