
UC Irvine
ICS Technical Reports

Title
Register allocation issues in embedded code generation

Permalink
https://escholarship.org/uc/item/7976z7w0

Author
Kolson, David J.

Publication Date
1998-06-12

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7976z7w0
https://escholarship.org
http://www.cdlib.org/

Register Allocation Issues in Embedded Code
Generation

David J. Kolson

Technical Report UCI-ICS 98-24
Department of Information and Computer Science
University of California, Irvine, CA 92697-3425

June 12, 1998

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

II

e

H
UNIVERSITY OF CALIFORNIA

H Irvine

I

^ Register Allocation Issues in Embedded Code
_ Generation

I

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Information and Computer Science
by

David J. Kolson

1998

Committee in charge:
Professor Alexandru Nicolau, Chair

Professor Nikil Dutt

Professor Rajesh Gupta

©1998
DAVID JAMES KOLSON

ALL RIGHTS RESERVED

I

H

I

I

I

I

I

I

I

The dissertation of David J. Kolson is approved,
and is acceptable in quality and form for

publication on microfilm:

Mm
Committee Chair

University of California, Irvine

1998

11

Dedication

To my family and friends
who supported me through a long education,

and believed in me, even when I did not,
my deepest and most sincere gratitude.

Ill

Contents

List of Illustrations vii

List of Tables ix

Acknowledgement x

Curriculum Vitae xi

Abstract xiii

Chapter 1 Introduction 1
1.1 Code Generation and the Role of Register Allocation 3

1.1.1 Optimizing Compilers 4
1.1.2 Parallelizing Compilers 7
1.1.3 Embedded Compilers 8

1.2 Motivation for Embedded Compiler Complexity 10
1.3 Scope of Thesis . 11

Chapter 2 Related Work 13

13

14

16

16

16

18

20

20

2.1 Register Allocation and Assignment
2.1.1 Graph Coloring
2.1.2 Interval Graphs
2.1.3 Optimal Register Allocation
2.1.4 Register Allocation and Program Transformation

2.2 Memory-Related Transformations
2.3 Memory Access Models
2.4 Memory Structure Synthesis

Chapter 3 Phases of Compilation 22
3.1 A Parallelizing Compiler 22
3.2 Program Model 23
3.3 Scheduling 23

IV

Chapter 4 Eliminating Redundant Memory Accesses 28
4.1 Introductory Example 30
4.2 Detecting Redundancy 31

4.2.1 Symbolic Expressions 32
4.2.2 Memory Disambiguation 35

4.3 Eliminating Redundancy 36
4.3.1 Removing Invariants 38
4.3.2 Load-After-Load Optimization 40
4.3.3 Load-After-Store Optimization 41
4.3.4 A Note on Move Instructions 42

4.3.5 An Example 44
4.4 Effects of Redundancy Elimination on Register Allocation 45

4.4.1 Examining the Effects of Optimization 45
4.4.2 An Enhanced Redundant Elimination Algorithm 49

Chapter 5 Integrating Program Transformations 54
5.1 Introductory Example 55
5.2 Overview of Incremental Tree Height Reduction . 56

5.2.1 Previous Work 56
5.2.2 Definitions 58
5.2.3 An Incremental THR Algorithm 58

5.3 Integrating Transformations 60
5.3.1 The Meta-Transformation 60
5.3.2 Heuristic META-Transformation 62
5.3.3 An Example 67

5.4 Effects of META-Transformation on Register Allocation 69
5.4.1 Examining the Effects of Optimization 69
5.4.2 An Enhanced META-Transformation 75

Chapter 6 Generalizing Copy Elimination 77
6.1 Introductory Example 79
6.2 Eliminating Copy Instructions 81

6.2.1 Definitions 83
6.2.2 An Algorithm for Copy Elimination 83
6.2.3 Determining Minimal Number of Unrollings 90
6.2.4 Heuristic Copy Elimination 91
6.2.5 An Example 92

6.3 Effects of Copy Elimination on Register Allocation 95
6.3.1 Examining the Effects of Optimization 96
6.3.2 An Enhanced Copy Elimination Algorithm 99

B

1

I

H

I

1

I

Chapter 7 Allocating Registers to Loops 101
7.1 Optimal Allocation in Basic Blocks 102
7.2 Extending the Basic Block Algorithm to Loops 106

7.2.1 Terminology 107
7.2.2 An Algorithm for Loop Register Allocation 107
7.2.3 Heuristic Pruning 108

7.3 Convergence and Optimality of the Loop Algorithm 110
7.3.1 Convergence 112
7.3.2 Optimality 112

7.4 Extending the Loop Algorithm to Distributed Memories 114
7.4.1 Adding Register Classes to the Model 114
7.4.2 Extension to Special-Purpose Registers 116
7.4.3 Extension to Multiple Register Files 118

7.5 Comparing Loop Register Allocation with Other Approaches 120
7.5.1 Comparison with Graph Coloring 120
7.5.2 Comparison with Cyclic Interval Graphs 122
7.5.3 Comparison with the Basic Block Strategy 125

Chapter 8 Experimentation 129
8.1 Measuring Improvement 130
8.2 Experimental Set-up 131
8.3 Eliminating Redundancy 133

8.3.1 Observed Results 134

8.3.2 Analysis 139
8.4 Integrating Program Transformations 140

8.4.1 Observed Results 141

8.4.2 Analysis 143
8.5 Copy Elimination 143

8.5.1 Observed Results 143
8.5.2 Analysis 145

8.6 Combining Techniques 147
8.6.1 Observed Results 148
8.6.2 Analysis 149

8.7 Allocating Registers to Loops 149
8.7.1 Experimentation with a Consolidated Model 149
8.7.2 Experimentation with Distributed Register Files 159

8.8 Summary of Results 165

Chapter 9 Conclusions 166

VI

Illustrations

1.1 Typical embedded system architecture 2
1.2 Phases of an optimizing compiler 6
1.3 Phases of a parallelizing compiler 9
1.4 Available register organization 10

3.1 Code Generation process 23
3.2 Datapath for microcode macro example 25

4.1 Removing redundant memory traffic 29
4.2 An algorithm to build symbolic expressions 33
4.3 Symbolic expression example 34
4.4 An algorithm for redundant elimination 37
4.5 An algorithm for loop invariant removal 38
4.6 An algorithm for the load-after-load optimization 40
4.7 An algorithm for the load-after-store optimization 43
4.8 Redundancy elimination example 44
4.9 Invariant load removal 47

4.10 Invariant store removal 48

4.11 Invariant load and store removal 48

4.12 Multiple effects of invariant removal 49
4.13 An algorithm for the load-after-store heuristic 50
4.14 An algorithm for the loop invariant removal heuristic 52

5.1 Example image convolution code 55
5.2 Schedules for tree height reduced graphs 57
5.3 Main procedure for incremental THR algorithm 59
5.4 Methods of approach 61
5.5 An algorithm for determining removal candidates 65
5.6 Algorithm for propagating redundancy information 66
5.7 The Meta-Transformation 68

5.8 Application of META-Transformation on low-pass filter 70
5.9 Pseudo code for an incremental scheduler 71

5.10 Traditional scheduling approach 72
5.11 META-Transformation approach 73

6.1 Introducing copy instructions into the code 79

Vll

I

B

H

H

H

B

I

I

1

1

6.2 Loop code with copy instructions 80
6.3 Unrolling loop code to eliminate copies 82
6.4 An algorithm for copy elimination 84
6.5 An algorithm for computing register mappings 87
6.6 An algorithm for removing copies and updating register usages. . . 89
6.7 Loop template for example 92
6.8 Unrolling loop code to eliminate copies 93
6.9 Example code and register mappings during copy elimination. ... 98
6.10 Example code and register mappings with annotations ICQ

7.1 An optimal register assignment algorithm for basic blocks 104
7.2 Building an assignment tree 105
7.3 A loop register assignment algorithm 109
7.4 Building a configuration graph from the assignment trees Ill
7.5 An algorithm to derive register classes 115
7.6 Extending BB-Opt to special-purpose registers 117
7.7 Extending BB-Opt to multiple register files 119
7.8 Example for graph coloring comparison 121
7.9 Solution for graph coloring comparison 123
7.10 Example for cyclic interval graph coloring comparison 124
7.11 A loop basic block allocated with BB-Opt 127
7.12 A Loop-Opt allocated loop basic block with cost nine 128

8.1 Architecture model for experimentation 132
8.2 Average performance improvement with unlimited functional units. 138
8.3 Average performance improvement with functional unit constraints. 138
8.4 A simplified view of the TMX320C44 161

Vlll

Tables

6.1 Register mappings for the code of Figure 6.2 88

8.1 A description of the redundancy elimination benchmark suite. . . . 133
8.2 Statistics for the redundancy elimination benchmark suite 134
8.3 Results of experimentation with redundant elimination 135
8.4 Results of experimentation with redundant elimination (con't). . . . 136
8.5 A description of the META-Transformation benchmark set 140
8.6 Results of experimentation with META-Transformation 142
8.7 A description of the copy elimination benchmark suite 144
8.8 Results of experimentation with copy elimination 144
8.9 Results of experimentation with heuristic copy elimination 146
8.10 A description of the benchmark suite for all transformations 147
8.11 Remaining number of copy instructions after parallelization 147
8.12 Results of experimentation with all transformations 148
8.13 A description of the benchmark suite for register allocation 150
8.14 Spill costs for the two methods of matching register maps 152
8.15 Results of loop register allocation algorithm 154
8.16 Results of heuristic width restriction only 156
8.17 Results of heuristic depth of two 157
8.18 Results of heuristic depth of three 158
8.19 Comparison of results between GCC and heuristic Loop-Opt 160
8.20 Execution times of the various methods 162
8.21 Basic block optimal vs. Loop optimal for the TMX320C44 163
8.22 Comparison of loop assignments for the TMX320C44 163
8.23 Comparison of loop code sizes for the TMX320C44 164
8.24 Comparison of running times for the TMX320C44 165

IX

I

I

8

H

fl

B

I

I

I

I

1

1

1

1

1

1

I

1

I

Acknowledgement

In looking back over the past years of graduate study, a number of people have
played an influential role on my development as a person and researcher. Here I
wish to express my thanks, but these words alone cannot express the gratitude,
nor the admiration that I hold for them.

I would like to thank my advisor. Professor Alexandru Nicolau, who spent
countless hours with me in enlightening and thought-provoking discussion. His
insight and direction provided the focus and inlpetus for me to conduct
high-quality research. His input and constructive criticism on written works and
presentations greatly improved my communication skills.

I would like to thank Professor Nikil Dutt who has served as a co-advisor over

the past years. He provided a different point-of-view that greatly improved the
content of many manuscripts and research goals. His input and critique were also
instrumental in the development of my presentation and communication skills.

I would like to thank Professor Rajesh Gupta for serving on my doctoral
committee and providing valuable comments on earlier revisions of this
manuscript.

I would like to thank Professor Daniel Gajski for serving on my doctoral
candidacy committee and providing input over the years on my research.

I would like to thank Professor Tatsuya Suda for encouraging me to pursue a
graduate career.

And, especially, I would like to thank my Mother and Father, my sister Kristin,
my high-school friends, Albert, David, Ed and Steve, my lab colleagues.
Dr. Joseph Hummel and Dr. Steven Novack, and the countless friends who were
always there for me and whose support and encouragement helped me through
the darkest times.

X

Curriculum Vitae

1990 B.S. in Information and Computer Science, University of
California, Irvine, Magna Cum Laude, Phi Beta Kappa

1990-1992 Teaching Assistant, Department of Information and Com
puter Science, University of California, Irvine

1993 M.S. in Information and Computer Science, University of
California, Irvine

1990-1998 Graduate Student Researcher, Computer Systems Design
(CSD) Group, UCTVLIW Compiler project. Department
of Information and Computer Science, University of Cali
fornia, Irvine

1998 Ph.D. in Information and Computer Science, University of
California, Irvine

Dissertation; Register Allocation Issues in Embedded Code
Generation

XI
I

I

n

H

n

H

I

I

I

I

Publications

Kolson, D. J., Nicolau, A. and Dutt, N., Elimination of Redundant
Memory Traffic in High-Level Synthesis, Transactions on
Computer-Aided Design of Integrated Circuits and Systems
(T-CAD), November, 1996.

Kolson, D. J., Nicolau, A., Dutt, N. and Kennedy, K., Optimal Register
Assignment to Loops for Embedded Code Generation, Transactions
on Design Automation of Electronic Systems (TODAES), April,
1996.

Kolson, D. J., Nicolau, A., Dutt, N. and Kennedy, K., A Method for
Register Allocation to Loops in Multiple Register File
Architectures, IEEE 10th International Parallel Processing
Symposium (IPPS), April, 1996.

Kolson, D. J., Nicolau, A., Dutt, N. and Kennedy, K., Optimal Register
Assignment to Loops for Embedded Code Generation, IEEE 8th
International Symposium on System Synthesis (ISSS), September,
1995.

Kolson, D. J., Nicolau, A. and Dutt, N., Integrating Program
Transformations in the Memory-Based Synthesis of Image and
Video Algorithms, IEEE International Conference on
Computer-Aided Design (ICCAD), November, 1994.

Kolson, D. J., Nicolau, A. and Dutt, N., Minimization of Memory
Traffic in High-Level Synthesis, ACM/IEEE 30th Design
Automation Conference (DAC), June, 1994.

Kolson, D. J., Nicolau, A. and Dutt, N., Ultra Fine-Grain
Template-Driven Synthesis, IEEE 7th International Conference on
VLSI Design, January, 1994.

Xll

Abstract of the Dissertation

Register Allocation Issues in Embedded Code Generation
by

David J. Kolson

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 1998

Professor Alexandra Nicolau, Chair

In conventional compilation, register allocation—the mapping of program

variables to the registers of the target architecture—plays an important role in

the performance of application code. In particular, for load/store architectures,

good register allocation is exceedingly important as all operands to instructions,

in this type of architecture, must be contained within the register set.

Typical processors selected as the core unit or core processor for an embedded

system closely resemble the load/store or RISC-type of architecture, and, thus,

conventional register allocation techniques are applicable in the generation of

code for an embedded processor. However, architectural features of the core

processor, features designed to reduce core size/cost and/or are specific to the

target application area for improved performance—such as disjoint register files

and/or requirements that operands to particular instructions reside in specialized

registers—complicate the register allocation process. This, coupled with the

time-sensitive nature of typical embedded applications necessitates high-quality

register allocation.

This thesis demonstrates that beyond the specific task of register allocation,

there are subtle issues related to register allocation that must be addressed in

order to generate high quality code for an embedded application. Issues

Xlll

I

I

H

H

I

I

H

I

I

I

I

investigated relate to promotion of data items from secondary memory to

primary memory, global guiding of transformation interaction, integrating

register allocation and instruction scheduling and optimal allocation to loops.

This thesis presents a technique which eliminates redundancies found in array

accessing over iterations of a loop. Essentially this technique allocates a register

to an array data item that is used frequently over a loop or within a window of

iterations of a loop, thus promoting it from the secondary memory to the

primary memory.

Transformation interaction within a parallelizing compiler has been studied

relatively little, however, it remains an important issue in generating high quality

code. This thesis presents a paradigm for integrating transformations so that

transformations are applied based upon global knowledge instead of local

knowledge, leading to better resource/register allocation and the development of

better scheduling/allocation heuristics.

One strategy which integrates register allocation and instruction scheduling

performs register allocation "on-the-fly" by a technique called renaming. This

has the disadvantage of adding many copy instructions to the code which

adversely affects performance and this thesis presents a post-scheduling technique

to unroll loop code and re-allocate registers to eliminate these copy instructions.

Finally, the issue of optimal register allocation to loops is addressed. Register

allocation has been extensively studied with proposed solutions being heuristic in

nature. However, for embedded applications which contain time-critical loops

and/or loop kernels, an optimal allocation is necessary. This thesis presents a

technique for optimal allocation of registers to loop code.

XIV

Chapter 1

Introduction

One of the goals in the field of Design Automation is the synthesis of a
hardware solution from a problem specification. Typically, the problem is

formulated as a behavioral specification in which the desired actions of the

hardware are detailed from an algorithmic standpoint. Various high-level

languages, such as VHDL and HardwareC, exist for expressing behaviors.

Through the process of High-Level Synthesis a behavior is translated into a

hardware solution in some format suitable for implementation [22, 35, 81].

Because it can be too costly and time consuming to completely re-synthesize

hardware when slight behavioral changes are made, the sub-area of

Hardware/Software Co-Design seeks to partition a given behavior into hardware
and software components. The hope is that, for a given application domain,
common characteristics or time-critical aspects of the applications can be

extracted and implemented in hardware while the software component

implements the various differences in the applications and allows for future

refinement.

This type of architecture is depicted in Figure 1.1. This architecture integrates a

programmable component, one or more specialized hardware components, a ROM
(to store the sequence of instructions executed by the programmable component)
and a memory (for storage, as necessary), has been termed an embedded system.
Depending upon the required complexity of the system, various solutions exist for

the programmable component of an embedded system. Solutions ranging from:

I

I

I

I

Embedded

Processor

Programmable Control

Program Code

ROM

RAM

Program Data

ASIC

Application-Specific
Hardware

Figure 1.1: Typical embedded system architecture.

• micro-processors

• processor cores (a "stripped down" version of a given processor in which a

subset of the processor's instruction set is implemented and/or the datapath

bit-width is reduced).

• digital signal processors (DSPs) (processors with explicit instructions for

supporting digital signal processing)

are all available. Typically, these processor's architecture's closely resemble the

load/store or RISC-type of architecture where operands to instructions must be

contained within the register set for execution of that instruction. Transfers of

values between memory and the register set are explicitly performed by load and

store instructions as necessary.

The process of "synthesizing" the instruction sequence corresponding to the

software partition of the behavior (that which is to be executed by the embedded

processor) is referred to as code generation and is closely related to the

conventional task of compilation. One integral phase in the compilation process

is that of register allocation—the mapping of program variables to the available

registers of the target architecture.

Although good register allocation is exceedingly important as, in a

load/store-type of architecture all operands to instructions must be in registers,
this thesis demonstrates that there are subtle issues related to register allocation

that must be addressed in order to generate high-quality code for a given

application.

1.1 Code Generation and the Role of Register

Allocation

Generating code for the type of system discussed previously involves the

translation of application code written in a high-level language into the native

instruction set (the machine language) of the programmable component.

I

I

I

I

However, because the target programmable architecture is flexible in its ability to

contain some or all of the available application-specific datapaths, traditional

compiler techniques must be refined to maximally utilize that provided flexibility

and achieve high code performance.

Previously, little investigation has been made into standard compilation

techniques which focus on the implications of a partitioned registers set, as the

traditional viewpoint is one of a consolidated register file with equal (all registers

in the register set may be accessed at any time) and uniform (any register can be

used as any operand of an instruction) access to the contained registers.

In contrast, an embedded processor may have the available registers partitioned

into multiple memories and/or scattered singly throughout the architecture with

some registers having restricted or specialized uses. The placement of data values

then becomes an issue as certain instructions may require data in specific

registers. Further, this may be complicated by data necessary in one register or

register set for one instruction and then necessary in a different register or

register set for some later instruction.

Below, the process of code generation is briefly reviewed in optimizing compilers,

parallelizing compilers and embedded compilers and the role played by register

allocation is noted.

1.1.1 Optimizing Compilers

Classically, an optimizing compiler is divided into two main modules: the

front-end and the back-end and is pictured in Figure 1.2. Traditionally, the

front-end handles the language-specific details of the compiler; it parses the input

(source) language (lexical analysis), determines if any syntax errors are present

(syntax analysis), determines if variables, expressions, function calls, etc., are

used correctly (semantic analysis), and finally, translates the input code into an

intermediate form (intermediate code generation). The back-end, on the other

hand, handles the machine-dependent aspects of the compiler; it performs

optimization^ on the intermediate code (code optimization) and then generates

instructions native to the target machine from the intermediate representation

(code generation).

The influential view proposed by Backus [4] in the context of allocating index

registers and Cocke [26] in the development of the PL.8 compiler, is to separate

the tasks of code optimization and register allocation as this allows code

optimization to proceed in a relatively simple manner and removes the

complications arising from dealing with limited resources (registers). Also,

optimizations could then be formulated and implemented in a general manner

without the instruction set and register usages found in a particular architecture

influencing development.

Thus, the tasks of instruction selection and register allocation are performed

within the code generation phase. Instruction selection generates native

instructions for the target machine from the internal intermediate representation.

Register allocation performs mapping of the variables and temporaries to the

registers of the target machine. When more live values than registers are present,

spill code, explicit transfers of values between memory and the register set is

necessary. Traditionally, the goal of the register allocator is to minimize the

amount of spill code generated.

Typically, the target machine of an optimizing compiler is sequential in nature.

That is, there is single flow-of-control and only one instruction may be issued per

machine cycle. The register allocation produced by an optimizing compiler for a

sequential architecture often exhibits heavy register re-use as during the

instruction selection task, the instructions mapped to the various operators in the

expression trees seek to evaluate the expressions generating as few temporaries as

possible. This high re-use is a result of mapping those temporaries, whose

lifetimes are short, to the available registers. This serves to reduce the amount of

spill code produced for a sequential architecture.

^Although not all code optimizations are necessarily specific to the particular architecture,

typically all optimizations are grouped together into one rnodule as optimizations which are

machine-specific create opportunities for other optimizations to apply.

I

"S
o

&

'O
a

s

Source Code

1

Lexical

Analysis

1

Syntax
Analysis

1

Semantic

Analysis

1

Intermediate

Code

1

Code

Optimization

1

Code

Generation

Target Code

• Instruction Selection
• Register Allocation

Figure 1.2: Phases of an optimizing compiler.

1.1.2 Parallelizing Compilers

To increase the throughput of a sequential processor, two methods have been

investigated and implemented: pipelining and parallelism. Pipelining divides a

functional unit into a series of sub-units, while parallelism increases the number

of functional units present in the architecture. In order to exploit the peak

performance of architectures with functional pipelining and/or parallelism, a

compiler must expose and exploit the parallelism inherent in an application as

instructions independent of one another are necessary for issue bandwidth.

Exposing and exploiting parallelism are the responsibilities of the code scheduler.

In a parallelizing compiler, optimizations and transformations are typically

applied during scheduling so that their effects on the code are exploited. In fact,

many transformations are designed to increase the available parallelism.

However, in order to schedule code, to map instructions in the native instruction

set to the functional resources of the target architecture, the phase of instruction

selection is required prior to scheduling. This also implies that a register

allocation phase is necessary prior to instruction scheduling as knowledge of the

location ofinstruction operands and the resources (functional as well as register)
required by an instruction is essential.

However, high register re-use leads to many false (anti-) dependencies that can
potentially limit the extracted parallelism. As depicted in Figure 1.3, two

strategies proposed by various researchers [13, 28, 38, 64] for overcoming this

limiting factor are:

• Post-allocation - "Pre-allocate" registers then perform scheduling with a

"loose" number of register (more than is present in the architecture) and
then apply final register allocation.

• Integrated scheduling and register allocation - Perform code motion

re-allocating registers "on-the-fly" as necessary to increase the exposed

parallelism.

The first strategy has the advantage of simplicity, but has the disadvantage that
spill code decisions and effects made after the scheduling process potentially

I

I

I

I

I

I

degrades the code's performance and possibly requires another scheduling phase.

The second strategy has the advantage that spill decisions are factored into the

code and spill instructions can be scheduled effectively, but these approaches

tend to be more complex in terms of implementation and run-time.

Architectures targeted by a parallel compiler include VLIW, superscalar and

heavily pipelined processors which may include mechanisms for multiple

instruction issue and multi-way branching.

1.1.3 Embedded Compilers

An embedded compiler encompasses the same features as a parallelizing

compiler, as, parallelism in the architecture must necessarily be exploited for high

performance, but also has other requirements due to the characteristics of the

application domain and target architecture. Characteristics such as:

• timing constraints (time-critical code segments)

• code size

• application-specific datapaths

• available registers and their usages

all serve to place constraints on a compiler and thus affect the quality of the code

generated.

Embedded applications are often time-critical, so timing constraints must be

factored into the scheduling process, as well as the timing and interaction (if any)
of the embedded processor with other system components.

The amount of code that is generated is also an issue as the code must be

embeddable within the system. That is, the application code partitioned to the

programmable component resides in ROM. Since ROM size directly affects the

size of the embedded system, constraints are typically placed on ROM size, thus

limiting the amount of memory available for application code.

"Post-Scheduling"

Code

Scheduling &
Optimization

Final

Register
Allocation

Target Code

Source Code

Front-End

Code

Conversion

^ N,

• Instruction Selection
• Register Pre-Allocation

"Integrated"

Code

Scheduling &
Optimization &
Reg. Allocation

Target Code

Figure 1.3: Phases of a parallelizing compiler.

Consolidated

Registers

\l \l V V^7

Multiple

_E i
Filel File 2

Figure 1.4: Available register organization.

Also, non-conventional (non-uniform) datapaths place stricter requirements on

instruction selection and scheduling as some forms of computations may not be

supported and alternative forms must be considered.

Lastly, the fewer number of available registers in the architecture and the

presence of partitioned register sets increases the complexity of register

allocation. Thus, effective register allocation plays a critical role in the

generation of high-quality and high-performance code. Improving a register

allocator to accomodate partitioned register sets and augmenting the heuristics

which guide code optimizationand transformation to make better use of registers

allows this goal to be fulfilled.

1.2 Motivation for Embedded Compiler

Complexity

Traditionally, one demand placed on a compiler is that of fast translation of

source code to target code. Many compilers offer "switches," parameters to the

compiler, that allow the user to specify the "level" of optimization, with higher
levels requiring more compile time. Thus, most optimizations that are

10

implemented with heuristics, utilize more complex heuristics as the level of

optimization increases.

One reason for heuristic implementation of the optimizations is, for most

application areas, absolutely "perfect" code is not necessary, highly optimized

code is sufficient. However, for embedded systems, the best code possible is

usually highly desirable as the application code is compiled once, but is resident

and executed for the lifetime of the product being developed. Further, many

embedded systems contain fewer numbers of registers than that found in

traditional processors, so more complex program optimization is plausible.

Also, there is a lack of research, both in conventional compilation and embedded

code generation focusing on the effects of optimizations on register allocation as

well as developing heuristics for optimization which have the underlying goal of

improving register allocation.

1.3 Scope of Thesis

This thesis demonstrates that beyond the specific task of register allocation, there

are subtle issues related to register allocation that must be addressed in order to

generate high quality code for an embedded application. This thesis investigates;

• A technique which eliminates redundancies found in array accessing over

iterations of a loop is presented in Chapter 4. This technique allocates a

register to an array data item that is used frequently over a loop or within a

window of iterations of a loop, thus promoting it from the secondary

memory to the primary memory, thereby reducing the amount of memory

traffic and, thus, the memory bandwidth requirements.

• Transformation interaction within a parallelizing compiler has been studied

relatively little; however, it remains an important issue in generating high

quality code. Chapter 5 presents a paradigm for integrating transformations

so that transformations are applied based upon global knowledge (e.g.,

across basic blocks) instead of local knowledge (e.g., within basic blocks) ,

11

I

i

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

leading to better resource/register allocation and the development of better

scheduling/allocation heuristics.

• One strategy which integrates register allocation and instruction scheduling

performs register allocation "on-the-fly" by a technique called renaming.

This approach has the disadvantage of adding overhead to the code in the

form of many copy instructions which adversely affects performance.

Chapter 6 presents a post-scheduling technique to unroll loop code and

re-allocate registers to instructions so that copy instructions may be

removed from the code.

• Register allocation has been extensively studied with proposed solutions

largely being heuristic in nature. However, for embedded applications which

contain time-critical loops and/or loop kernels, an optimal allocation is

necessary. Chapter 7 presents a technique for optimal allocation of registers

to loop code.

Chapter 8 presents the results of experimentation with these techniques and

Chapter 9 presents some final remarks.

12

Chapter 2

Related Work

2.1 Register Allocation and Assignment

I

I

I

I

I

I

^Register allocation has been the subject of much research in the past, both in |
the areas of conventional compiler design and design synthesis. In conventional

compiler design, the term register allocation refers to the task of determining ||
which program constants and variables should be contained within a register
while the term register assignment refers to the task of determining within which |
register a value should reside. Conventionally, in design synthesis, the term

register allocation refers to the task of determining the number of registers that •
are necessary to store values across machine states, while the term register

assignment refers to assigning variables to the available registers. In the sub-area •
of Hardware/Software Co-Design, the term register assignment refers to the same ®
mapping problem as compilation, but, as the target architecture may be h
specialized for a given application domain, the available registers may be I
partitioned into multiple files with some registers having restricted or specialized _
usages. I

This chapter provides a survey of register allocation and assignment techniques •
as well as other memory-related program transformations. ®

I

I
The general problem in conventional compilation of register allocation is to ^
assign the variables and temporary values of a program to the registers of the |

13
I

I

fl

n

I

n

I

I

I

target architecture, usually with uniform access to all available registers which

are consolidated into one file. When more values exist than registers, some values

will have to reside in main memory and spill code—loads and stores from main

memory to the available registers—is generated when those values are referenced.

The goal of a register allocator is to minimize the amount of spill code that is

generated. This task is inherently NP-Hard [2, 36] and, as such, heuristic

algorithms have been commonly utilized to determine some "sub-optimal, but

good" solution.

2.1.1 Graph Coloring

One of the most popular heuristic approaches to allocating variables to registers

is graph coloring [16, 23, 24]. In this strategy, the live ranges of program

variables are examined. When two variable's lifetimes overlap they are said to

interfere. An interference graph is then constructed wherein the nodes represent

the variables and the edges joining nodes represent the interference of the two

particular nodes being joined. The task is then to "color" the graph nodes with

the same number of colors as registers. If no coloring of the graph is found, some

variable is heuristically selected and spilled; all references to that variable then

refer to that memory location. Once the original code has been updated with the

spill code, a new graph is then constructed to reflect the new interferences and

this process repeats until some colorable graph is found.

As the key to good register allocation in this scheme is the selection of a

particular variable to spill, heuristics for selection have received attention [17]
along with methods of coloring the graph [14]. Freiburghouse [34] suggests

prioritizing coloring based upon the number of uses of a variable. Proebsting and
Fischer [73] propose allocating registers to variables based upon the probabilities
that a variable is "profitably" held in a register.

Bernstein et. al. [10] propose a strategy for reducing the amount of spill code

generated by selecting between multiple heuristics to color the interference graph.
Their results show that a best-of-three strategy results in less code and adds a

14

nominal amount of overhead to the graph coloring phase. Also, the authors

propose a technique called cleaning to reduce the amount of spills generated for a

particular variable. Rather than generating spill code each time that a spill

candidate is referenced, the lifetime of the spill candidate is examined to

determine if intervening stores and loads can be eliminated.

Chow and Hennessy [25] propose a method to split variable lifetimes when the

interference graph is not colorable. After the lifetimes are split, a new

interference graph results with the degree of some nodes (corresponding to those

split variables) reduced and further coloring can become possible.

Leuh, Gross and Adl-Tabatabai [54] develop a global register allocation strategy

similar to [25] which incorporates live range splitting and spilling. However, this

strategy differs as execution probabilities are given primary importance when

spill decisions are considered.

For large programs with many variables, the interference graph can become quite

complex, necessitating large amounts of storage. Gupta et. al. [41, 42] propose a

method to reduce the space requirements of a graph coloring register allocator by

partitioning the program code, separately constructing and coloring the

interference graphs for each partition and combining the colorings for a final

program solution. Their results show significant improvements in space savings

without sacrificing the quality of a graph coloring strategy.

Callahan, Carr and Kennedy [18] extend the graph coloring technique to handle

arrays by scalar replacement which replaces repeated references to an array

location by references to a (newly created) scalar variable.

Liem, May and Paulin [55] extend the left-edge register allocation scheme to

allocate registers for architectures with registers which are specialized or have

restricted uses. The proposed extension incorporates register classes into the

model to specify a subset of the architecture's registers which are available for a

given instruction.

15

D

I

n

H

I

I

I

2.1.2 Interval Graphs

Another paradigm for the register allocation problem is that of modeling the

interferences of variable lifetimes by interval graphs. The interference graphs of

basic blocks belong to the class of graphs known as interval graphs and can be

optimally colored in polynomial time [37]. However, by definition, interval graphs

are not applicable to a global context for allocating registers over conditional

branches and loops. Some work [43] has been done, however, to extend the

interval graph approach to loops, but in order to reduce complexity, arbitrarily

breaks the lifetimes of cyclic variables at loop boundaries. A consequence of this

is that, since register usages must match at the top and bottom of the loop,

register-to-register move instructions (which consume functional unit resources)
are necessary to correctly map values contained within the registers while

load/store operations are necessary to load values necessary at loop top that are

not contained within the registers and to store live values that

2.1.3 Optimal Register Allocation

Many researchers have felt that for particularly critical code segments, such as

the innermost loops of time-sensitive applications, an optimal allocation is

necessary. Horwitz et. al. [45] present a method for obtaining an optimal register

allocation to index registers which minimizes the number of loads and stores due

to added spill code. Further work either improves upon the efiiciency of the

Horwitz algorithm [60] or extends the basic algorithm to deal with simple loops
[48], but in doing so loses optimality and degrades performance. More recent

research has extended the basic idea in Horwitz's algorithm to include register

allocation for general purpose registers [46].

2.1.4 Register Allocation and Program Transformation

Research on integrating transformations has addressed the issue at both the

fine-grain (register-transfer) and coarse-grain (source-code) levels. In fine-grain

16

compilation, the thrust is to integrate register allocation with instruction

scheduling while in coarse-grain compilation, the thrust is to study the effects of

ordering of coarse-level loop re-structuring transformations.

Fine-grain

Bradlee, Eggers and Henry [13] study the problem of integrating instruction

scheduling and register allocation. Three strategies are examined: 1) register
allocation proceeding scheduling; 2) register allocation after scheduling; and 3) an
integrated approach which does pre-scheduling and global register allocation

before final scheduling. Their results indicate that, for the i860 target

architecture, the integrated approach generally produces better results than

register allocation proceeding scheduling, while there were no significant

differences between the schedules produced by the integrated approach and

register allocation following scheduling.

Goodman and Hsu [38] investigate the integration of code scheduling and register
allocation in the context of pipelined processors. Their scheduling algorithm
alternates between two sub-algorithms; one which is devoted to filling pipeline
latencies and avoiding pipeline interlocking and stalls, and another which

re-organizes the code to reduce register pressure—the ratio of the number of

allocated register to the total number of registers. Scheduling first starts with
code re-organization to reducing register pressure, and, when the register
pressure has been reduced to a threshold level, code motion to fill pipeline slots is

done until the register pressure becomes too high when the process repeats. From
analyzing performance results, the authors note that if a processor is heavily
pipelined, with a possible interlock being very expensive, spills might be more
profitable (i.e., reducing register pressure is less critical).

In [64] resource trade-offs are made dynamically ("on-the-fly") during scheduling
to better utilize free resources which, in some cases, results in the modification of

the code. For example, the computation X = 2*X can be performed by shift

{X = SHL{X)), addition [X = X + X) or by multiplication (X = 2*X)
depending upon which functional resources are currently free at that point in the
schedule. This work, however, does not address the interaction of transformations

17

I

I

during scheduling or the effects that a transformation has on the resultant code.

Proposed techniques [67] typically make allocation decisions based on the

parallelism automatically detected.

Rau et. al. [77] investigate register allocation heuristics for the strategy of

register allocation following scheduling, specifically for DO loops that have been

software pipelined via modulo scheduling. The issue in deriving a suitable

heuristic for a register allocator centers around the expanded lifetimes created by

modulo scheduling as well as lifetimes which have now become loop-carried. Two

architectural types are considered: those with explicit support for modulo

scheduling (i.e., a rotating register file) and those without (i.e., uniform, random

access to all registers). Their results indicate that schedules for architectures

which support modulo scheduling require more registers but have a reduced code

size compared to those for other architectures.

Berson et. al. [11] integrate classic compiler optimizations such as constant

propagation, loop invariant code motion, dead code elimination, etc., into the

instruction scheduling process, as application of these techniques prior to

scheduling can adversely affect the quality of the code produced. Their heuristics

for application of the techniques to the code during scheduling focus on measures

determine that the technique will be beneficial.

Coarse-grain

In [83] a tool for studying the ordering of coarse-grain transformations is

discussed. However, this approach does not allow for assessing and making

trade-offs between transformations.

2.2 Memory-Related Transformations

Callahan, Cocke and Kennedy [19] present a technique which improves the

balance of a loop—the ratio of memory words accessed to the number of

operations performed. Their algorithm restructures the loop at the input level

based upon estimated functional unit pipeline hazards and interlocking

18

mechanisms, but deals only with single-dimension arrays and single

flow-of-control within a loop body.

Callahan, Kennedy and Porterfield [20] investigate the idea of software

prefetching—a technique to explicitly fetch data into a cache. Although the goal
of the technique is to improve performance, memory traffic can actually increase

in situations where a prefetched item is bumped from the cache before its use.

Davidson and Jinturkar [29] reduce memory traffic in the context of instruction

set processors without a cache by combining (or "coalescing") multiplememory

accesses into a single memory access. Their technique combines small bit-length
accesses of adjacent data into one larger bit-length access. Two limitations to

this strategy are: 1) architectural support (a wide bus) is necessary to be able to
combine small bit-length adjacent accesses into a single larger access; and, 2)
combining multiple memory accesses scattered throughout the program can
adversely affect scheduling due to the new dependencies created.

Pochmiiller, Glesner and Longsen [68] discuss the notion of background memory
management—the allocation of memory modules to arrays at the behavioral

level. The authors note that background memory management is an important
subtask in High Level Synthesis as it is necessary to remove unnecessary

(redundant) array references due to the hardware that they generate.

Data blocking [53, 69] is another technique aimed at improving cache

effectiveness. This approach partitions a large data-space that is not containable

within a cache into smaller data blocks which are containable within a cache and

then the program is restructured to improve data reuse within those blocks.

Work in scheduler transformations includes fast prototyping of architectures [75],
the shortening critical path lengths in pipelined datapath synthesis [59],
minimizing path explosion in path/trace-based systems [65], redundant operator

creation to reduce execution time [58], level compression ofexpressions [80] and
incremental tree height reduction [62].

19

2.3 Memory Access Models

Duesterwald, Gupta and Soffa [30] extend traditional dataflow analysis for scalar

variables to include subscripted (array) variables through the use of iteration

distance values. These values denote the number of iterations between the

production of an array value and its final use and is utilized in analyzing

dependencies between memory operations.

Verhaegh et. al. at Philips [82] utilize a stream concept to model periodicity in

array references. Dependencies between streams are revealed by stream graphs

which incorporate start times and periodic information of array references into

iteration vectors. This information is then used to assess memory requirements.

Franssen et. al. at IMEC [33] use a complex polyhedral dependency graph to

model multi-dimensional array references. A polyhedral dependency graph is a

dataflow graph which contains sets of points defined by the ranges of variables

used in an array's indexing expression. This graph then represents the

dependencies between memory operations.

2.4 Memory Structure Synthesis

Another formulation of the memory allocation problem is to determine the

number of registers necessary to preserve values produced in one control step and
used in subsequent control steps. Kurdahi and Parker [52] present an algorithm

which accomplishes this by analyzing variable lifetimes in the dataflow graph.

Some work [39, 66, 79] has been done to improve register usage for loops which
breaks a variable's lifetime at the loop boundary, creating two "coupled"

variables which the assignment process tries to assign to the same register.

Register sharing—the use of one register by multiple variables when the lifetimes

of those variables do not overlap—is employed to reduce the necessary number of

registers.

Goossens [39] uses a heuristic to fill the gaps between coupled variables and then

20

applies the left-edge algorithm. Stok [79] iteratively tries to improve an initial

allocation produced by the left-edge algorithm by "permuting" variables in

registers at loop end to match the variable assignment at loop beginning. Park,

Kim and Liu [66] extend the left-edge algorithm to deal with behaviors having

conditional and looping constructs.

A natural extension to this formulation is the grouping of those allocated

registers into memory modules. Two issues arise in doing so: 1) the exact

grouping of variables so as to minimize the number of modules used; and, 2) the

interconnections now necessary to connect modules to functional units.

Balakrisnan et. al. [6] provide a solution which places primary importance on

variable grouping. Ahmad and Chen [1] extend Balakrishnan's approach to take

into account the commutative property of operations, thus allowing the

connection of a memory module to either input of a functional unit. Kim and

Liu [49] note that the first issue heavily infiuences the second, and, thus, in their

approach, they place primary importance on interconnection cost rather than

variable grouping.

Ramachandran, Gajski and Chaiyakul [76] present an algorithm to allocate

storage for array variables. Their algorithm performs array-variable clustering

which allows more than one array to be allocated to the same memory module

subject to user performance and cost criteria.

21

Chapter 3

Phases of Compilation

In this chapter, the phases of the parallelizing compiler used for the development
of the techniques studied in this thesis are outlined and the underlying execution

model is presented.

3.1 A Parallelizing Compiler

As illustrated in Figure 3.1, in the parallelizing compiler developed at UCI [70],

the compilation process of application code written in "C" starts with a

sequential version of that code produced by a version of the GNU "C" Compiler.

This version has been modified to output code in a three-address instruction

format for a load/store-type architecture model. This code is then input into the

parallelizing compiler. After initial analysis of the code is performed, the bulk of

the compiler's implementation performs code parallelization. It is during the loop

pipelining phase, when iterations of a loop are overlapped to reveal a pattern in

execution, that the transformations and optimizations implemented in the

compiler are applied to the code. After loop pipelining, the code is maximally

parallelized (subject only to data dependencies). Resource constraints are input

and a scheduling phase applies resource constraints to the code. Once the code

has been resource constrained, final code is generated.

22

Application Source GNU "C" Sequential Parallelizing
Written in "C" Compiler Code Compiler

Final Code

Figure 3.1: Code Generation process.

3.2 Program Model

The compiler's internal representation of the input code is in the form of a

control/data-flow graph. In this graph, nodes correspond to machine cycles and

all instructions contained within a respective node are performed (issued) in

parallel, while edges between nodes correspond to flow-of-control and determine

the next set of instructions to be issued. Thus, nodes with multiple successor

nodes must contain conditional branching instructions, the correct successor is

chosen at run-time subject to the values of the condition codes being tested.

For all instructions contained within a node, the following three-phase execution

model is used:

Phase 1: All instruction operands are read from registers.

Phase 2: All instructions are executed.

Phase 3: All results are written to the appropriate registers.

With this model, performing the instructions R1 = R2 and R2 = R1 in parallel

will correctly swap two values as the operands will be read before the results are

written.

3.3 Scheduling

Although the program model presented above is effective for scheduling uni-cycle

instructions, modeling pipelining with this model is more complex. Especially in

cases where hardware conflicts or pipeline hazards between different functional

23

I

I

I

I

I

units occur. For example, consider a bus that is shared by two functional units,

but used by those units in different stages of execution. If the first unit uses the

bus in its second pipeline stage and the second unit uses it in its third pipeline

stage, no conflicts occur if instructions are issued to both units in the same cycle.

However, if an instruction is issued to the second unit in the current cycle and an

instruction is issued to the first unit in the next, a conflict will occur.

Further, in some architectures with specialized hardware, each of the phases

described above may not be atomic, but may encompass several lower level

operations. This leads to a disparity between the relative performance of the

generated code and the performance attained when the code is executed by the

hardware.

These sorts of "lower-level" details are lost or are difficult to track at the

fine-grain level as they are not made explicit to the scheduler. To remedy this,

the sematics of an "atomic unit" are modified to allow these lower-level details to

be made explicit. This lower-level of granularity has been termed the ultra

fine-grain level and the extension of this compiler to the ultra fine-grain level is

termed Ultra Fine-Grain Percolation Scheduling (UFG-PS).

The lower-level or ultra fine-grain level characteristics of the architecture are

detailed to the compiler via a set of microcode macros. The compiler uses these

macros to translate fine-grain instructions into ultra fine-grain instructions as

these macros detail explicitly the data transfers associated with each of the

fine-grain instructions. For instance, if the target architecture has the

floating-point multiply-accumulate unit as shown in Figure 3.2 with a three-cycle

latency multiplier and a two-cycle latency adder (for a total latency of five cycles

for the fine-grain level multiply-accumulate instruction), the following macro

details this:

24

Floating-Point

Registers

RF #1

Accumulator

Registers

RF #2

Multiplier

MulOut

Adder

AccOut

Figure 3.2: Datapath, for microcode macro example.

25

I

I

I

I

I

I

I

I

I

Fmac @fl, @f2, @f3 :: fl=fl -f * fS)

• Fmulstl (RFread #1, @f2), (RFread #1, @f3)

perform P' stage of f2*f3

• Fmulst2 fmulstllatch, fmulst21atch 2"'̂ stage of multiply

• FmulstS fmulst21atch, MulOut 3'"'̂ stage of multiply

• Faddstl (RFread #2, @fl), MulOut P* stage offl + multiply^result

• Faddst2 faddst21atch, (RFwrite AccOut, #2, @fl)

2'̂ ^ stage of add, writeback into fl
END

The first instruction details the first stage of the multiplicationwhen the reading

of the operands from the floating-point register set are input into the multiplier

unit. The next two instructions show the transfer of the calculation through the

intermediate (internal) latches and the final writing of the multiplier output into

the latch labelled "MulOut" in Figure 3.2. The next instruction, the first of the

addition sequence, inputs the operands to the adder from the accumulator

register set and the output of the multiplier. Finally, the last instruction

performs the second stage of the addition and the writeback of the result into the

accumulator register file.

During the initial analysis phase, the fine-grain instructions are converted into

their equivalent microcode sequences, deriving an ultra fine-grain level graph

which is then subject to transformations and parallelization techniques

implemented within the compiler.

Thus, in this representation, lower-level conflicts can be efficiently handled and

avoided and, as this allows a closer modelling of the underlying target

architecture, better quality schedules can be generated. Also, the notion of a

dependency is extended from data dependencies to include architecture

dependencies. Pipeline conflicts between various functional units can then be

26

detailed as dependencies between the respective UFG instructions. During
scheduling, the compiler honors these dependencies, thereby generating code
without those conflicts.

27

Chapter 4

Eliminating Redundant

Memory Accesses

'fypically, embedded systems which run applications that contain arrays
employ a secondary store (e.g., a memory system) as a primary store (e.g.,

register storage) sufficiently large enough to completely contain all arrays would

be impractical. References to arrays in the application code are accomplished by

load and store instructions to the appropriate memories. Thus, array references

in the application code translate into memory traffic, which can affect both the

performance and memory bandwidth requirements of the resulting system.

In order to improve the performance and/or reduce the bandwidth requirements

of an application, this chapter presents a technique to remove memory accessing

instructions when those accesses are to locations that have been previously

referenced. That is, this techniques eliminates memory instructions which

redundantly load/store values from/to memory by first exposing any redundancy

found in array (memory) accesses. Next, registers are selectively allocated to

those values and the redundant memory accessing instructions are eliminated

from the code. Future array references then become references to a register.

This transformation has many significant benefits. By eliminating redundant

load instructions occurring on the critical dependency path through the code, the

performance of the resulting schedule can increase dramatically as the length of

the critical path can be shortened, thus generating more compact schedules and

28

for i = 1 to TV

for j = 2 to N
a[i] := a\i] + |(6[i][i - 1] + b\i]\j - 2])
&W[i] := fcn{b\i][j])

end

end

before optimization

for i = 1 to TV

i2 := 6[z'][l]; t3 := ^^[O]
for j = 2 to N

n :=tl + |(t2 + t3)
^W[i] := fcn{b\i][j])
t2:=i3; tS := b[i][j]

end

a[i\ := t\
end

after optimization

Figure 4.1: Removing redundant memory traffic.

reducing code size. In cases where array accesses are present in loops, elimination

reduces the generated bandwidth over loop execution as well as the number of

instructions that are executed as all of the instructions that are involved in an

address calculation for a memory-accessing instruction are removed. Also, due to

the transformation's local nature, it integrates easily into other parallelizing

transformations [21, 65]. Finally, utilizing the transformation provides potential
for savings in hardware due to the decrease in memory bandwidth requirements

and/or the exploration of more cost-effective implementations.

29

I

I

I

4.1 Introductory Example

As an introductory example, consider the code in Figure 4.1. Before optimization,

the inner loop requires four load and two store instructions per iteration:

load a[i\
load store a[«]
load b[i]\j —1] store 6[i][i]
load b[i] [_7 —2]

However, the value computed in the current j iteration with b[i] [j] is the value

that will be used by b[i] [j —1] in the next iteration and b[i] [j —2] in the

subsequent iteration. At the end of the current iteration that value is stored to

memory (necessary to preserve program semantics), and then re-loaded next

iteration. The subsequent loads of that value may be circumvented by keeping

the values in local storage—then only 6[i][i] is necessarily loaded each iteration

while previous values are available and passed to future iterations via local

(register) storage.

Also, with respect to the inner loop, the address calculation of a[i] is invariant.

Further, a[i] is being used only as temporary storage (it is continually

overwritten), and, unless a[i] represents a memory-mapped input/output

location, the load and store each iteration are unnecessary—the value loaded and

stored can be kept in local memory.

Thus, as depicted in the Figure 4.1 after optimization code, only the load and

store of b[i] [j] are necessary each iteration, resulting in the elimination of three

load instructions and one store instruction per iteration^.

^Note that the assignment to t3 is not an actual memory fetching instruction—the value

stored to 6[j][i] is copied to t3.

30

4.2 Detecting Redundancy

The strategy employed in this technique for optimizing memory access is to

eliminate redundancy in memory interaction as it is found during scheduling.
Such redundancies can be found within loop iterations, possibly over multiple
paths, when compacting code. Also, redundancy is exhibited across loop
iterations during loop pipelining [65, 71] when multiple iterations of the loop are
overlapped (subject to data dependencies and resource constraints) to find a
repeating pattern in loop execution. As each iteration is integrated and

overlapped with the current loop schedule, memory instructions from the new

iteration are exposed to the memory instructions from previous iterations. With

the aid of memory disambiguation—the ability to discern whether two memory
instructions refer to the same location—the recurrence patterns in array
accessing become apparent from loop iteration to iteration as the new memory
instructions move into cycles with loads and stores from previous iterations.

However, as many array mappings are possible—multiple arrays to the same
module, separate modules for each array, splitting a (large) array among several
(smaller) memories or any combination thereof—it is necessary with this
approach to have a preliminaryallocation and binding of array variables to

storage (secondary memory). This information is then given to the compiler
along with the system resource constraints (e.g., number of memory ports on
secondary memories, size and number (if partitioned) ofprimary memories,
number and type of functional units, functional and memory instruction
latencies, etc.). This is in contrast to [7, 57], for instance, which both perform
memory transformations before allocation.

The method used to support memory disambiguation is to derive symbolic
expressions which formulate the address calculation without the program
variables. The symbolic expressions are then used by the memory disambiguator
to determine dependencies between memory instructions.

First, the method of deriving symbolic expressions for memory instructions is

outlined and then memory disambiguation is briefly discussed.

31

I

I

I

I

4.2.1 Symbolic Expressions

Each memory instruction contains an indexing function which is composed of the

variables used in indexing each dimension of an array access, as well as either a

destination for load instructions or a value for store instructions. The semantics

of a load instruction are that issuing a load reserves the destination (local register

storage) at issuance time (i.e., destination is unavailable during the load's

latency) while the register storing the value argument of a store instruction is

assumed free after the issuance of the store.

For the purpose of dependency analysis on memory instructions (memory

disambiguation), every memory instruction contains a symbolic expression which

is a string of symbols that formulates the memory address calculation without

the source level variables [50]. The purpose of the symbolic expression is to be

able to efficiently compare memory instructions for dependency analysis. In this

approach, the variables used in the memory address calculation are "normalized"

to a unique symbol for each loop thereby re-formulating the expression in as

reduced a form as possible.

The build-symbolic-exprs algorithm in Figure 4.2 creates symbolic expressions for

each memory instruction in the program by taking the induction variable (iv)

definitions that define the current instruction's indexing function and deriving an

expression for each. Next, the base of the memory structure is added to each

expression. An instruction is then annotated with its expression, combining

multiple expressions into a disjunctiveform "((exprl) or ... or (esprAf))."

The function derive-expr constructs the expression "(Loopid * Const)" if iv is

self-referencing (e.g., i —i + const) where Loopid is the identifier of the loop

over which iv inducts and Const is a constant derived from the constant in the iv

instruction multiplied by a data size and possibly other variables and constants.

If iv is defined in terms of another iv (e.g. i = j + 1, where j is an iv) then

recursive calls are made on all definitions of that other iv. In this case, marking

of iv's is necessary to detect cyclic dependencies which are handled by a

technique called variable folding. Essentially variable folding determines an initial

32

1: Procedure build-symbolic-exprs(j>vog!:a.m)
2: begin
3: foreach menuap in program
4: /* Set defs to all var defs */
5: foreach multiple def in defs
6: /* Select subset of iv_defs - one def for each var. */
7: sym_expr = f
8: foreach variable in the indexing fens
9: new_expr = dent;e_ea;pr(variable)

10: /* Add the expressions sym_expr and new_expr. */
11: end

12: /* Add the base offset to sym_expr. */
13: if (/* memjop's sym_expr is (j> */)
14: /* Set memjop's sym_expr to sym_expr. */
15: else

16: /* Combine sym_expr with memmp's sym_expr with "or" */
17: end

18: end

19: end

20: end buildsymbolic^exprs

1: function derive^exprifexm)
2: begin
3: Case (term):
4: CONSTANT: return "term * A.D. * D.S"

5: VARIABLE: return "(term * AD * DS)"
6: IND_VARIABLE:

7: if (/* term is self-referencing */) then
8: return "(term * AD * DS * Ind_Const)"
9: else if (/* term is marked */)

10: /* do variable folding */
11: else

12: /* mark term */
13: /* recursively derive term that defines this term */
14: end if

15: end

16: end derive-txpr

Figure 4.2: An algorithm to build symbolic expressions.

33

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

400 k

IStore

i J

for k = 1 to 100

j = 0
for i = 1 to 100

b = A[k][i+j]
j = j + 2
A[k][3i+1] = value

end

end

(baseA - 8 + (((8 * LO) + (4 * LO)) + (400 * LI)))

baseA

((baseA + 12) + ((12 * LO) + (400 * LI)))

Figure 4.3: Symbolic expression example.

34

value of a variable on input to the loop or resulting from the first iteration (i.e.,

loop-carried values are not considered) from the reverse-flow of the graph. The

result can be either a constant or another variable (which is recursively folded,

until the beginning of the loop is reached).

Figure 4.3 shows example code and its CDFG annotated with symbolic

expressions. The load from A builds the expression "((8 * LO) -f (4 * LO))"

which is the addition of 2 (the const for iv j) times 4 (the element size) and 1

(the const for iv i) times 4. The second loop over k adds the expression "(400 *
LI)." Finally the base address of A is added. For the store instruction, the

expression "(12 * LO)" is created which is 1 times 4 (the element size) times 3
(the constant in the behavior). Due to the -f-l in the index expression, the

constant 4 is added to the base address of A.

4.2.2 Memory Disambiguation

Memory disambiguation is the ability to determine if two memory access

instructions are aliases for the same location [3, 9]. In the context of redundant

load elimination, the interest is in static memory disambiguation, or the ability

to disambiguate memory references during scheduling. In the general case,

memory indexing functions can be arbitrarily complex due to explicit and

implicit induction variables and loop index increments. Therefore, a simplistic

pattern matching approach (one which bases equivalency of memory instructions

by source level text) to matching loads and stores over loop iterations cannot

provide the power that memory aliasing analysis does. For instance, in the

following behavior if arrays a and b are aliases:

for i = 1 to N

a[i] := \a[i —1] + \b[i —2]
Coef[i\ := h\i] + 1

end

pattern matching will fail to find the redundancy.

35

In this compiler, memory disambiguation is based on the well-known greatest

common divisor, or GCD test [8]. Performing memory disambiguation on two

instructions, opl and op2, involves determining if the difference equation:

(opl's symbolic expression) - (op2's symbolic expression) = 0 has any integer

solution. If a solution does exist, then the two instructions refer to the same

memory location. If a solution cannot be found, then the conservative estimate

that the two memory instructions may not be parallelized is used.

The importance of memory disambiguation to programs which index a secondary

store can be seen in the ability to move load instructions beyond store

instructions during parallelization. Consider an arbitrary data-flow graph where

the critical path begins with a load and ends with a store. If the ability to

discern whether the load and store access the same location is not present, a

conservative approach must be taken. This would disallow the motion of the load

instruction beyond the store instruction because of the possibility that they refer

to the same location and in doing so, realizes no overlapping of loop iterations.

Thus, the parallelism is unnecessarily limited.

Other methods for performing memory dependence testing exist including the

Omega test [74], PIP [31] and inexact methods such as Fuzzy Array Analysis [27].

4.3 Eliminating Redundancy

This technique is employed during scheduling rather thaji as a pre-pass or

post-pass scheduling phase; a pre-pass phase may not remove all the

redundancies since other optimizations can create opportunities for redundancy

removal that may not have otherwise existed, while a post-pass phase cannot

derive as compact a schedule since instructions eliminated on the critical path

allow for further refinement.

Figure 4.4 shows the main algorithm for removing unnecessary memory

instructions. This function is invoked in this Percolation-based scheduler [71] by

the move-op transform (or any suitable local code motion routine in other

36

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

function redundant-elimination[oTp, from_step)
begin

if (INVARIANT(op)) then
status = remot;e_mt;_mem_op(op, from_step)
/* if op was removed, return REMOVED */

foreach memory operation, mem_op, in to
if {disambiguate(op, mem_op) == EQUAL) then

switch op-mem_op
case load-load:

return doJoadJoad^opt(op, memmp)
case load-store:

status = tryJoad-store-opt[op, memjop)
/* if op was removed, return REMOVED */

case store-store:

/* If op's arg and memjop's arg have */
/* the same reaching defs, delete op, */
/* and update necessary information. */
return REMOVED

case store-load:

return ANTI-DEPENDENCE

end

end if

end

end redundant^elimination

Figure 4.4: An algorithm for redundant elimination.

systems) when moving a memory instruction from one cycle into a previous cycle
that contains other memory instructions.

The function redundant-elimination checks to see if the memory instruction is
invariant. If so, then the function remove-inv-mem-op tries to remove it. If it is

not invariant or could not be removed, then op is checked against each memory

instruction in the previous cycle for possible optimization. If two instructions

refer to the same location then the appropriate action is taken depending upon
their types. The load-after-load and load-after-store cases will be discussed

shortly. In the case of a store-after-store, the first store instruction is dead [3]
and can be removed if it stores the same argument as the second instruction and

37

I

I
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

function remot;e_mw_mem_op(op, from_step)
begin

/* Conditions necessary for hoisting: */
1. from_step must dominate all exit nodes. */
2. Only one definition exists. */

/* 3. No other defs reach users. */
/* 4. If other invariant memory operations */

load/store to the same location, all */
must be "hoistable." */

/* 5. (stores) Defs of argument are same at loop exits. */
if (/* conditions met */) then

/* Move op to pre-loop steps if it's a load */
/* or to all post-loop steps if it's a store. */
return REMOVED

end if

return NO_OPT

end remove-inv-mem-op

/*
/*

/*
/*

Figure 4.5: An algorithm for loop invariant removal.

the argument has the same reaching definitions^. In this case, op is simply

removed rather than removing mem^op and moving op into its place. For the

store-after-load, nothing is done as this is a false (anti-) dependency on a

memory location that should be preserved to retain code correctness. Status

refiecting the outcome of the optimization is returned, allowing instructions to

continue to move if no redundancy was discovered.

4.3.1 Removing Invariants

Removing invariant memory instructions is slightly different from general loop

invariant removal. Traditional loop invariant removal moves an invariant into a

pre-loop cycle. For load instructions this is correct; for store instructions it is

not. Conceptually, invariant loads are "inputs" to the loop, while invariant stores

^Care must be taken if the store address is memory-mapped I/O, it may not necessarily be
safely removed.

38

are "outputs." Therefore, loads must be placed into pre-loop cycles and stores

must be placed into loop exit cycles.

To illustrate this, consider the following example:

for z = 1 to iV

for j = 1 to N
b[j] := a[i - 1] + b[j]

end

end

In the j loop, the load of a[i —1] is invariant. Prior to this loop the value of

a[i —1\ can be loaded into a temporary variable and then the temporary is

referenced within the j loop, thereby considerably reducing the amount of

generated memory traffic.

A more complex code example illustrating both invariant loads and stores is:

for z = 1 to TV

for j = 1 to N
a[i] := a[z] -F b\j]

end

end

In this example, the memory location a[z] is used from iteration to iteration as a

temporary accumulator. To maintain correct semantics, both memory

instructions—load and store—must be removed. If only the load instruction is

replaced with a temporary then incorrect values are stored; if only the store

instruction is replaced with a temporary then incorrect values are loaded. The

solution to this situation (or, in general, when a loop contains scattered invariant

loads and stores to the same location) is to remove the invariant if and only if all

other invariants to the same location can be removed (i.e., hoisted out of the

loop).

An algorithm to perform invariant removal appears in Figure 4.5. The conditions

necessary for loop invariant removal (adapted from [3]) are: 1) the cycle that op

39

I

I

I

I

1

2

3

4

5

6

7

8

9

10

11

function doJoadJoad-opt{op, memjap)
begin

/* set field to the nodes at the latency of memjap */
foreach node in field

if (/* node is reachable by op */) then
/* Create move from memmp's arg to the */
/* arg of op. Add this move to node. */

end if

/* Delete op and update necessary information. */
Return REMOVED

end doJoadJoad-opt

Figure 4.6; An algorithm for the load-after-load optimization.

is in must dominate all loop exits (i.e., op must be executed every iteration), 2)

only one definition of the variable (for loads) or memory location (for stores)

occurs in the loop and 3) no other definition of the variable or memory location

reaches their users. Additionally, store instructions require that the definition of

its argument be the same at the loop exits so that correctness is preserved. If

these conditions are met, then the instruction caii be hoisted out of the loop. If

condition 2 fails and the instruction is a load, it still might be possible to hoist

the instruction if a register can be allocated to the loaded value for the duration

of the loop.

4.3.2 Load-After-Load Optimization

The load-after-load optimization is applied in situations where a load instruction

accesses a memory value that has been previously loaded and no intervening

modification has occurred to that location's value (i.e., there is no intermittent

store). In Figure 4.6 the load-after-load optimization is detailed. The method

employed with this optimization is to insert copy instructions (more on this in

subsection 4.3.4) which will transfer the value without re-loading it (i.e., transfer

the value from the destination of the first load to the destination of the second

load thereby obviating the second load).

40

The algorithm is invoked with the initial load, memjop, and the redundant load,
op and commences by gathering all of the nodes in the graph where the latency

of memjop expires. Then, for each of those nodes, if that node is on a path in
common with op, a copy instruction from the destination of memjop to the

destination of op is inserted into that node. Finally, op is deleted from the graph
and any necessary local information is updated.

4.3.3 Load-After-Store Optimization

The load-after-store optimization is used to remove a load instruction which

accesses a value that a store instruction previously wrote to the memory. Again,
the method employed is to insert a copy instruction into the schedule to transfer

the value. Due to limited resources it is possible that this optimization cannot be
applied in some cases. Consider the partial code fragment;

Cycle 1: a[i] := b b := a

Cycle 2: c := a[i]

To eliminate the load c := a[i], and replace it with the copy instruction c := &in
cycle 2 would violate code semantics because it introduces a read-wrong
conflict it would incorrectly read the value a rather than the value written to

memory. The copy instruction must be placed in cycle 1 to guarantee correct
results. However, in this code fragment:

Cycle 1: a[i] := b c := 7

Cycle 2: c := a[i] d := /(c)

placing a copy instruction in cycle 1 will violate code semantics because it

introduces a write-live conflict—it would incorrectly overwrite the value 7; the
copy must be inserted into cycle 2. Notice that in both cases, the transformation

is still possible; analysis is required to determine which cycle is applicable.

This optimization might not be feasible in the following situation:

Cycle 1: a[i] := b b:= a c := 7

Cycle 2: c := a[i] d := /(c)

41

Semantics are violated by placing c:=b into either cycle. However, if a free

register exists, then the optimization can be done:

Cycle 1: a[i] := b b := a c ;= 7 e := b

Cycle 2: c := e d := /(c)

Therefore, the precise case when the load-after-store optimization fails to remove

a redundant load is composed of three conditions:

1. A copy in this cycle results in a read-wrong.

2. A copy in the previous cycle results in a write-live.

3. No free register exists in the previous cycle.

In practice, this situation occurs very infrequently.

The load-after-store optimization algorithm is found in Figure 4.7. This

algorithm determines within which cycle to place a copy instruction. Initially, the

cycle that op is in is tried. If a read-wrong conflict occurs, the previous cycle is

tried. If a write-live conflict arises, a free register is necessary to transfer the

value. In this case, two copy instructions are added to the schedule. If a free

register is not available, no optimization is done. If no conflicts occur (or they

can be alleviated by switching cycles) then a copy instruction is inserted. Finally,

the load instruction is deleted and necessary information updated.

4.3.4 A Note on Move Instructions

The copy instructions inserted into the schedule by this transformation, may or

may not be found in the final schedule depending upon the context in which the

copies appear. If the primary memory is consolidated, then the semantics of a

copy keep the value within the same memory, but in a different register. As it is

not necessary to actually perform a copy in this case, traditional copy

propagation [3] and copy elimination [63] techniques (which will be discussed

further in Chapter 6), implemented in this compiler, can delete copy instructions

from the schedule.

42

1: function tryJoad-store-opt{op, from_step, menuop, to_step)
2: begin
3: node = from_step
4: if (/* there is a read-wrong conflict */) then
5: node = to_step
6: end if

7: if (/* there is a write-live conflict */) then
8: if (/* free cell exists*/) then
9: /* Create move of mem_op's arg to free cell. */

10: /* Add move op to to_step. */
11: /* Create move of free cell to op's arg. */
12: /* Add move op to from_step */
13: else

14: return NO_OPT

15: else

16: /* Create move of mem_op's arg to op's arg. */
17: /* Add move op to node */
18: end if

19: /* Delete op and update necessary information. */
20: return REMOVED

21: end tryJoad-store^opt

Figure 4.7: An algorithm for the load-after-store optimization.

43

Iteration I

Code fragment:

j = 0
for i = 1 to 100

b = A[i+j]
j = j + 2
A[3i+1] = value

end

Iteration I+l Iteration I Iteration I+l

\ It
u •

LD A[i+j] v^ue j

\5
ST A[3i+1]

U, .
LD A[n-l+j] ^

ST A[3Ci+I)+l]

LD A[i+j] j

ST A[3i+I] ^ b value fr

ST A[3(i+1)+1]

(a) (b)

Figure 4.8: Redundancy elimination example.

However, the primary memory may be partitioned into multiple memories. If this

is the case, then care in applying removal techniques is necessary. The copy

instructions may be deleted if the source and destination registers are contained

within the same memory module, otherwise the copy instructions are necessary

to transfer values from one memory module to another.

4.3.5 An Example

Figure 4.8 illustrates the application of this transformation to an example code

fragment. For simplicity, all of the instructions constituting the address

calculations for the memory instructions have been grouped into one node which

has been darkened in the illustration. In practice, the memory instructions will

have symbolic expressions; however, the memory instructions are shown

44

annotated by the source-level counterpart for illustration.

During loop pipelining when a future iteration is overlapped with the current

loop schedule, the schedule in Figure 4.8(a) results. When percolating the load

instruction from iteration / -|-1 into the previous cycle, redundant-elimination is

invoked as the previous cycle contains another memory instruction. The

disambiguator discovers that the symbolic expressions for the load and store

instructions are the same, so the load-after-store optimization is applied and the

schedule in Figure 4.8(b) results.

4.4 Effects of Redundancy Elimination on

Register Allocation

In the previous two sections, techniques for discovering and eliminating

redundancy are discussed. As presented, the elimination techniques are applied

whenever possible during scheduling, the premise being that, by removing

memory instructions, less memory traffic will result, thereby reducing memory

bandwidth requirements and possibly increasing performance. However, in some

cases, removing memory instructions can have a negative effect on register

allocation, causing memory traffic due to spill code.

In this section, the effects of redundancy elimination on register allocation are

examined. In cases where negative effects are observed, heuristic guidelines are

outlined and a modified elimination algorithm is presented.

4.4.1 Examining the Effects of Optimization

From the previous section, there are three cases when memory instructions are

removed—by the load-after-load, load-after-store and store-after-store

optimizations—and one where memory instructions are hoisted out of the

loop—by loop invariant removal. As the store-after-store elimination

optimization does not affect register usage, it will not be further discussed; this

45

section will focus on the load-after-load and load-after-store optimizations and

loop invariant removal.

Load-After-Load Optimization

Recall that in the load-after-^load optimization copy instructions are introduced

into the code. These instructions are necessary to transfer the value loaded into a

register by some load instruction into the destination register of another load

instruction as the two destinations are not guaranteed to be the same. However,

due to the machine model, the register count remains exactly the same and is not

affected by load-after-load optimization.

Theorem 1: The load-after-load optimization does not increase the number of

registers used.

Proof: Let Opt denote a load instruction which defines variable a and is

scheduled in cycle t and Opt+i denote a redundant load which defines variable b

and is scheduled in cycle t -1-1. Let load instructions have latency 1. Before the

transformation, a is available for computation in cycle t + I and b is available in

cycle t + I + 1. Concerning only a and 6, the register counts in each cycle are:

cycle t, one and cycle t + 1 to t + I + 1, two. After the optimization is applied, a

copy instruction b := a appears in cycle t + I when a is available. Now the

register counts are: cycle t to t + I —1, one and cycle t + I to t + I + 1, two.

Therefore the total register count in each cycle has not increased. In fact, in the

period t-f-l tot-|-/—1 the register usage has decreased leaving a free register

which other transformations can possibly exploit.•

Load-After-Store Optimization

As discussed previously, there are cases where the load-after-store optimization

may require an additional register to correctly transfer a value written to

memory by a store instruction to the destination register of a load instruction.

Here is the example code again (the additional register "e" is necessary to

transfer the stored value 6 to c):

Before:

Cycle 1: a[i] := b b a c := 7

46

c

for i = 1 to N

for j = 1 to M

b[i][j] = a[i] + 10 - b[i][j];

for i = 1 to N

tmp = a[i]

for j = 1 to M

b[i][j] = tmp + 10 - b[i]|j]

end

end end

end

before optimization after optimization lifetime of tmp

Invariant Load

Figure 4.9: Invariant load removal.

Cycle 2: c := a[i\ d := /(c)

After:

Cycle 1: a[i\ := b

Cycle 2: c := e

h := a c :=: 7

d •= /(c)

b

In this case, this optimization could only be performed if a free register exists

over cycles one and two (i.e., the free register's lifetime can extend from the store

to the load). In general, if the latency of a load instruction is I and the store

instruction is in cycle t, then the newly allocated register will extend from t to

t + l, a. total of / + 1 cycles. Thus, the register pressure increases over those cycles.

Loop Invariant Removal

In the invariant case, there are three cases, with respect to a memory location,

where memory instructions are hoisted from a loop, if it is a load, a store or

both. Figures 4.9-4.11 contains examples of each case along with the optimized

versions and the lifetimes of the resulting allocations. In order for a performance

increase to be realized (i.e., the latency of memory instructions removed from the

loop), in each case of Figures 4.9-4.11, tmp (and tmp2) must represent a

register^. However, this implies that a register has been allocated globally over

the loop (or loops) from which the memory instruction was hoisted. This will

^Arguably tmp may be a specific memory location (e.g., frame relative) where the value may
be kept, which would, at the very least, not reduce the amount of memory trafHc but would

eliminate the instructions associated with the address calculation.

47

H

»

I

n

n

i

n

I

n

e

n

n

I

fl

n

n

n

g

g

I

I

r •N

for i = 1 to N for i = 1 to N

for j = 1 to M for j = 1 to M

a[i] = b[i][j] - 10 tmp = b[i][i] - 10

end end

end a[i] - tmp

end

before optimization after optimization lifetime of tmp

Invariant Store
J

Figure 4.10: Invariant store removal.

for i = 1 to N for i = 1 to N
tmp tmp2

for j = 1 to M tmp = a[i-i]

a[i] = a[i-l] + b[i][j] for j = 1 to M

tmp2 = tmp + b[i][j]

end

end
end

a[i] = tmp2

end

before optimization after optimization lifetimes

Invariant Load and Invariant Store

Figure 4.11: Invariant load and store removal.

48

for i = 1 to N for i = 1 to N

for j = 1 to M

II

t

b[i]|j] = a[i] + 10 - b[i]0]

for k = 1 to R

for j = 1 to M

b[i]|j] = tmp + 10 - b[i][j]

for k = 1 to R

end

end

end

end

end

end

before optimization after optimization lifetime of tmp
extends over k loop

k

Figure 4.12: Multiple effects of invariant removal.

increase the register pressure within the loop as fewer registers are available and

may result in more spill code than if hoisting had not been performed.

Also, Figure 4.12 depicts a case where invariant removal further complicates

register allocation. Before optimization, the invariant code (the reference to a[z])
does not affect the performance of the innermost k loop. However, after the

memory instruction is hoisted out of the middle j loop and a register is allocated

to that value, the k loop is affected as the live range of the newly allocated

register now extends over the k loop, reducing the number of registers available

for allocation within the k loop.

4.4.2 An Enhanced Redundant Elimination Algorithm

There are two cases when the register pressure is affected by eliminating

redundant memory accesses: by the load-after-store optimization and by loop

invariant removal. In this section, heuristic modifications are discussed and

modified elimination algorithms are proposed.

Load-After-Store Optimization

For the load-after-store optimization, one enhancement is to disallow the

49

n

n

I

n

n

H

H

I

H

I

I

I

I

n

I

g

g

g

I

1

2

3

4

5

6

7

8

9

10

function load-storeJieuristic{\.oa.^ returns boolean
begin

if (/* number of free registers < 2 */)
Return FALSE

DepJnstrs = /* collect instructions dependent upon load */
can_move = TRUE

foreach instruction I in DepJnstrs
can_move h= instv-could-move (I)

Return can_move

end load^storeJieuristic

Figure 4.13: An algorithm for the load-after-store heuristic.

optimization in the case when a free register is necessary, if this will cause all of

the registers to be allocated, thus avoiding resource barriers. Resource barriers

occur in incremental parallelizing compilers when all available resources of a

given type have been allocated in a particular cycle t. This limits the motion of

instructions in cycle t -\-l into cycle t, which require the allocated resources, as

well as the application of some transformations in t and t -(-1, even though

motion of instructions in t -t-1 could continue through cycle t to cycle t —1.

Thus, the allocation of all resources of a given type at some point in. the code can

form a barrier to further parallelization and by not allowing all registers to be

allocated, this situation can be avoided as far as registers are concerned.

Also, another enhancement is to examine the instructions which are dependent

upon the load instruction which is to be removed, to determine if performing the

optimization will allow the motion of those instructions to progress. Recall that

the lifetime of the newly allocated register will span I -|- 1 time cycles. If the

dependent instructions can be moved into earlier cycles, then the lifetime of the

newly allocated register is shortened. Depending upon the latency of loads (the

value of /), various metrics can be used (e.g.. Will the lifetime of the new register

shorten to ^—1? 1—21 |? etc.) to determine transformation application.

Figure 4.13 contains an algorithm to perform the heuristic decision of whether to

perform the load-after-store optimization or not. First, if there would be no more

50

free registers if the current free register is allocated (i.e., there are not two or

more free registers), then the heuristic inhibits the optimization by returning
false. If there are free registers, then all of the instructions dependent upon the

load are collected to determine if they can move into earlier cycles by

instr-couldjmove. If the instructions can move, then true is returned, otherwise

false. To use this heuristic, line #8 of the load-after-store algorithm in Figure 4.7
must be modified to:

8: if (/* a free cell exists */ && load-storeJieuristic{[oa.d))

I

I

I

I

H

I
Loop Invariant Removal

For loop invariant removal, there are two cases to consider: the effects of loop
invariant removal 1) from an innermost loop (as depicted in Figures 4.9-4.11) and |
2) from an outer loop (as depicted in Figure 4.12).

For the first case, several possible heuristics exist: jQ
1. The number of uses of the invariant value.

2. The number of invariants within the loop.

3. The number of instructions associated with the address calculation of an

invariant instruction.

I

n
The first heuristic trades-off the allocation of aregister to the number of uses of jQ
the invariant value within the loop. If the number of uses is above some

threshold value (which can be determined apriori according to the |
characteristics of the applications), then the optimization is performed, thus
avoiding high memory traffic when an invariant is heavily accessed. The second 11

heuristic seeks to reduce the code size within the loop in the case that there are

several loop invariants. Associated with each invariant is a series of address

calculation instructions. When many invariants exist, many instructions (those
involved with the address calculations) will be removed from the loop as well, n
once loop invariant removal is performed. Similarly, the last heuristic seeks to 11
eliminate the instructions associated with address calculation when that number

is large, which occurs with multi-dimensional array accesses. In this case, both ||

51

I

I

I

I

I

I

I

I

I

I

1

2

3

4

5

6

7

8

9

10

11

12

13

function loopJnvariant-heuristic{mvcLna,Tit) returns boolean
begin

usage_cnt = get-num-uses (invariant)
if (usage_cnt <] usage-threshold)

Return FALSE

numinvars = get-numJnvars (loop)
if (numinvars < num_threshold)

Return FALSE

Instrs = get^definitions (invariant)
if (numinvars < num_threshold)

Return FALSE

Return TRUE

end loop-invariantJieuristic

Figure 4.14: An algorithm for the loop invariant removal heuristic.

the number of instructions as well as the latency of that calculation removed

from the loop can improve performance.

For the second case, invariant removal from an outer loop, the same heuristics

that have been outlined above are applicable. However, the loop invariant

removal optimization should be inhibited from outer loops until all contained

inner loops have been scheduled. This will keep the loop invariant removal

optimization from allocating registers, which may be useful to the optimization of

the inner loops, until it is known that those registers are not necessary.

Figure 4.14 contains an algorithm to perform the loop invariant removal heuristic

decision of whether to apply the optimization or not. This algorithm is broken

into three tests, one for each of the heuristics outlined above. Depending upon

which heuristic is selected, true/false values are returned to indicate: 1) if the
invariant is heavily used; 2) there are a large number of invariants in the code; or

3) there are a large number of address computation instructions. Also, all
heuristics may be selected and used causing invariants to be removed only when

an invariant is heavily used, has several instructions involved in the address

calculation and the number of invariants in the loop is high. Of course, the

respective thresholds may be lowered when all heuristics are used together. Line

52

I

T^tll of the loop invariant removal algorithm in Figure 4.5 changes to:

11: if (/* conditions met *j && loop-invariantJieuristic (invariant)) H

H

n

D

D

n

n

I

I

I

I

I

to use this heuristic.

53

Chapter 5

Integrating Program

Transfermations

In Chapter 4, atechnique is presented to eliminate redundant memory accesses.
This technique is especially suited to memory-intensive application areas such as

image and video algorithms where, during the manipulation of images, temporary

working storage for the new (output) image as well as the old (input) image is

required. Accessing the images is done explicitly in the application code by array

references and translates into many load/store instructions in the final embedded

code. In some cases, "windows" of data (a neighborhood of values) from the

input are necessary to compute single values in the output. This suggests a large

unbalanced expression tree with the neighborhood as leaves and the single output

value as the root—an expression tree particularly suited to optimization by

redundant elimination and tree height reduction.

In the process of implementation and integration of the redundant elimination

algorithm into the UCI VLIW parallelizing compiler, it was observed that the

optimization of typical image application codes was less than satisfactory. The

cause: the "interference" of redundant elimination and tree height reduction.

Although both optimizations share the common goal of reducing the critical path

length and do not compete in terms of the resource utilization that they

optimize, the expression trees were not being compacted as much as possible due

to the local nature of the optimizations.

54

In this chapter, a methodology for integrating program transformations is

proposed. Transformations are integrated through the use of a

"meta-transformation" which globally guides the application of transformations

so as to make better decisions concerning the utilization of resources and to allow

trade-olfs between transformations rather than allowing transformations to

optimize based on local factors as opportunities arise.

For J = 1 to N

For I = 1 to M

B(ij) =(A(i-l,j.l) + /* A *1
A(i,j-1) + /* B */
A(i+l,j-l) + /* C */
A(i-l,j) + /* D */
A(i,j) + /* E */
A(i+l,j) + /* F */
A(i-l,j+l)+ /* G */
A(i,j+1)+ /* H */

A(i+l,j+l))/9 /* I */

N

•M

A B C

D E F

G H I

Figure 5.1: Example image convolution code.

5.1 Introductory Example

As an illustration, consider the (simple) image convolution code in Figure 5.1

which assigns a new value to an image based upon the average of values from an

old image. As the algorithm progresses, a window "sweeps" across the image
from left-to-right. From iteration-to-iteration of the inner loop, the window shifts

one position to the right so that, for instance, "B" from the current iteration

becomes "A" in the next iteration. Thus, due to this redundancy in array

accessing, only three new values are loaded each iteration ("C," "F" and "I").

In Figure 5.2(a), a dataflow graph for the inner loop appears and in (b) and (c)
two distinct versions of that graph appear, scheduled with the resource

constraints of one pipelined two-cycle latency adder and one non-pipelined

55

I

I

I

I

0

fl

H

n

»

H

n

n

1

I

I

I

I

I

I

memory port with two-cycle latency^. Both versions consist of eight instructions

and the height of the tree (i.e., the length of the critical dependency chain) in (b)

is four, while in (c) it is five. Although the tree in (c) has greater height, the

performance of the resulting schedule is faster than in (b). In (b) instructions add

redundant^ and non-redundant memory values (C and D, for instance) whereas
in (c) instructions add memory values with the same redundancy types (E and D,
for instance) resulting in different schedule lengths given the available resources.

5.2 Overview of Incremental Tree Height

Reduction

The tree height reduction (THR) transformation reduces the height of an

expression tree by balancing sub-trees of computation. In [62], an incremental

algorithm for THR is presented. This algorithm is invoked by the Percolation

scheduling moue_op transformation (or other suitable local compaction routines)

when an instruction cannot move into earlier time steps due to data-dependency.

THR analyzes the chains of instructions that the current instruction is dependent

upon to determine if re-structuring (i.e., balancing) that chain of instructions

results in the earlier execution of the current instruction.

5.2.1 Previous Work

Tree height reduction was first studied [5, 61] as a method for reducing critical

dependency chains to increase parallelism and was later extended in [15]. Various

synthesis systems [47, 80] include support for THR, but do not specifically factor

resource availability into the process, or do so in an exhaustive manner [58]. In

contrast, an incremental reduction technique is presented in [62] which globally

^For clarity, no restriction on the number of registers (i.e., temporaries) is imposed and the
division of the sum by nine is omitted.

^Throughout this chapter, theterm redundant refers to computation onmemory values loaded
and/or stored redundantly in loop execution.

56

'

For i = 1 to M A B

For j = 1 to N

B[i]D] = (A[i-1][j-1] /*A*/
+ A[i-1]Ij] /*B7
+ A[i-1][j+1] /*C7 Vf E
+ A[i][j-1] /*D7 \J
+ A[i][j] /* E *
+ A[i][j+1] /*F*! V? G
+ A[i+1]G-1] /*G7 \J
+ A[i+1]G] /* H7 ^ P
+ A[i+1][j+1])/9; r

(a)

1 T1 = A + B Load C 1 T1 = A + B Load C

2T2 = G + H A = B 2T2 = D + E A = B

3 T3 = C + D Load F B = C. G = H 3 T3 = G + H Load F B = C, D = E

4 D = E 4T4 = T1+T2 G = H

5 T4 = E + F Load 1 5 T6 = C + F Load I E = F

6 T5 = T1 + T3 E = F 6 T5 = T3 + T4

7 T6 = T2 + T4 H = I 7 H = I

8 8 77 = 75 + T6

9 T7 = T5 + T6 9

10 10 T8 = T7 + 1

11 T8 = T7 + 1 11

12

ABCDEFGHI ABDEGHCFI

\y 1/ W W / \J/ \-/ \J \J /T1 M T3 W TdM 120 / 71 ^ T2 0' 730 760 /
750^ 760 /

750^^/ /
•n0^ / /NyV T8^t/

(t/
78

(b) (c)

Figure 5.2: Schedules for tree height reduced graphs.

57

I

I (i.e., over multiple expressions in the program) exploits unused resources by-

factoring resource availability into the THR conditions.

5.2.2 Definitions

These terms are used in the exposition of the THR algorithm:

Operation: Each instruction is composed of an operator (the instruction's type)

and one or more use variables to which the operator is applied resulting in the

definition of a single variable, which may or may not be one of those referenced

by this instruction. In the instruction: a := b+ c, addition is the operator, the

used variables are b and c and the defined variable is a.

Early_op and late_op: Denote the relation between the instructions which

define the variables used by the current instruction in terms of the "time" when

those arguments are available for computation. In the following:

cycle (i) a
cycle (i+1) Sf
cycle (i+2) h

= 6 + c d •.= e + /
= a + 7

= g * d

the instruction d := e + f is the early^op and := a + 7 is the late^op of

instruction h := g * d. In the case where instructions which define use variables

are scheduled in the same cycle, the choice is arbitrary.

Brother: Two instructions are said to be "brothers" if the variables that each

define are used as arguments to some other instruction. In the example above,
instructions g a + 7 and d := e + f are brothers.

5.2.3 An Incremental THR Algorithm

In [62] the algorithm presented continually applies THR along a selected path as
long as resources and opportunities for transformation exist. Here a variant of

that algorithm is presented which only applies THR to a chain of instructions

58

1

2

3

4

5

6

7

8

9

10

11

12

13

I

^ I
function perform-THR{oip, from_step)
begin

/* get early_op and late_op */ H
if (/* conditions satisfied */) then

switch:

case /* associativity */ :
Associativity_Analysis(op)

case /* distributivity */ :
Distributivity_Analysis(op)

end switch

perform-THR{/* new sub-expression */)
endif

end perform-THR

Figure 5.3: Main procedure for incremental THR algorithm.

(i.e., one particular expression) if THR application causes the current instruction

to be executed in an earlier time step, continuing down (i.e., towards leaf

instructions) the expression if THR was applied to further compact newly created

sub-expressions. Figure 5.3 contains an incremental THR algorithm.

This incremental THR algorithm first finds early^op and late^op of the current

instruction and early^op of the current instruction's late^op (which we will call

late^early^op). These instructions are then examined under the following rules to

determine if application of THR is beneficial:

1. The current instruction's early_op must be available two cycles^ earlier than
the current cycle.

2. If the current instruction is an ADD or SUB, then the instruction it is
dependent upon must also be ADD or SUB. If the current instruction is a I
MUL, then the dependent instruction may be any one of ADD or SUB or MUL.

3. There exist free resources for the (to be) newly created instructions in the
relevent nodes.

If the conditions for THR are satisfied then the appropriate routine is invoked

depending upon the relationship between the current instruction and late-op. For

^This is presented assuming one cycle instructions. The extension to multi-cycle instructions
is straight-forward.

59

II

n

D

n

H

B

I

B

B

B

I

I

I

I

I

I

I

the add/add, add/sub, sub/add, sub/sub, and MUL/mul combinations the

associative arithmetic property is applicable. For MUL/add and MUL/sub the

distributive law is used. The respective analysis routines create new instructions

according to the respective mathematical properties, thereby re-structuring the

code into a more compact form. Finally, recursive calls are made to further

compact the newly created sub-expression.

5.3 Integrating Transformations

As noted earlier, tree height reduction (THR) and redundant memory-access

elimination (RE) share the common goal of reducing the critical path length and

do not compete in terms of the resource utilization that they optimize. However,

if the THR transformation does not exploit redundancy information, then the

schedule produced may not be as compact as possible. Likewise, if the RE

transformation does not exploit the knowledge that THR has "paired" two

redundant memory instructions, then, in the presence of scarce resources,

registers may not be allocated to redundant values properly so as to allow the

best compaction possible with those resources. In general, an approach is

necessary which guides the application of transformations so that trade-offs may

be assessed and made between various transformations as possibilities arise.

5.3.1 The META-Transformation

In the traditional approach, a suite of program transformations is available to the

scheduler and these transformations are applied whenever opportunity arises.

Typically, there are two heuristic decisions that are implemented within a

transformation: when to apply the transformation (e.g., what conditions are

necessary) and how the transformation is performed (e.g., implementation details

of a transformation). In Figure 5.4(a), this approach is depicted with the

heuristic decisions noted in the figure using "w" and "h" symbols, respectively.

In cases when multiple transformations are ready (i.e., may be applied), one is

60

Oracle

Heuristics

9'}'}
• • •

Transformation

W Xform A

|w| Xform rfh}^

|w| Xform Z Ihl"^

Transformations

(a)

Xform A

Xform Y \

Xform Z |h

Transformations

(b)

Xform A \h

Xform Z riyXform Z Ihf

Transformations

(c)

Figure 5.4: Methods of approach.

61

Program X

var I: Integer

begin

l:= 10;

Program

Program X

var 1: Integer

begin

I:e 10;

Program

Program X

var I:integer

Iwgin

1:^ 10;

Program

I

I

n

H

I

D

n

n

n

H

H

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

chosen, applied and then those transformations which become ready as a result

and allow for further refinement are added to the "pool" of transformations that

can be applied. Conventionally, an ordering of those transformations is used

which is determined a priori by some investigation into "common" situations

[3, 8, 83] (e.g., transformation X is always applied before transformation Y, etc.).

Thus, in this approach, transformations are applied without consideration to

their effects on the current application code and the applicability of other

tranformations on the resultant code.

In order to improve the quality of the schedules generated, consolidatation of all

of the "when" decisions for each transformation into one entity is proposed. As

depicted in Figure 5.4(b), with perfect information, this decision entity becomes

an oracle. During scheduling, the oracle is queried to determine which

transformation should be applied at any given time thereby obtaining an optimal

solution.

However, practically, a heuristic decision maker is necessary for this task. In

Figure 5.4(c), the oracle is replaced with the META-Transformation and a set of

heuristics. The META-Transformation is queried by the scheduler during

optimization to determine if a ready transformation should be applied or not.

This approach differs from the traditional approach as, dependent on the

heuristics, transformation X may be applied before transformation Y, but under

different conditions, transformation Y may be applied before transformation X

when both transformations can be applied to the current code. Using this
approach, the global effects of all transformations are localized into one region

and their combined effects can be studied and trade-offs assessed, possibly

resulting in the refinement of the heuristics as more interactions are discovered.

5.3.2 Heuristic META-Transformation

The heuristic that is selected for integrating THR and RE is based upon the

observations that: 1) instructions which become paired as a result of THR can

move farthest if their operands are redundant loads or intermediate computations

62

on those values; and 2) preferential allocation of registers should be given to

redundant values so that variable lifetimes are shortest. Thus, the heuristic is a

greedy scheme that only allows THR to progress when the operands of a new

THR instruction are either all redundant or all non-redundant sub-trees and

allows RE to eliminate redundant memory instructions once they become part of

a redundant sub-tree.

In order to determine redundancy a memory analysis phase is conducted prior to

scheduling and is composed of two parts: determining memory instruction

candidates for removal and the propagation of the redundant value information.

Algorithms for both phases are given and then the heuristic

META-Transformation is presented.

Determining Candidates

Determining candidates is done through comparison of the symbolicexpressions

for each pair of memory instructions that access the same array. Since an

instruction's symbolic expression encodes the referenced address for the current

iteration, subtracting one expression from that of another memory instruction

will reveal the difference in addresses between the two instructions under

consideration. If the value resulting from normalization of this difference by the _

appropriate element-size is an integer (if not, then it is not possible that the two ||
instructions exhibit redundancy), this normalized value denotes the distance in

terms of loop iterations. For example, in the behavior (numbered from left to |||
right):

for 2 = 1 to A'

A[i\ = A[i-1] + A[i-2] + A[i-3] + B[i\
end

I

I

I

fl

B

»

H

B

B

B

B

I

the symbolic expressions for memory instructions one (^[z]) and two {A[i —1]) |
differ by the element sizeof four. When normalized by that size, a distance of

one results. Thus, instruction one stores avalue in the current iteration that |
instruction two loads in the next iteration, exposing instruction two as a

redundant load over loop execution and acandidate for removal. |||

63
B

B

I

I

I

I

I

I

If the distance between two instructions is large, either the instructions refer to

disjoint arrays (e.g., A[i] and B[i]) or they reference array locations that are

separated by a number of iterations which makes redundancy removal during

loop pipelining^ not practical (e.g., A[i] and A[i+50j). In the later case, the

criteria for candidacy can be restricted to the case where the distance between

two instructions is less than some threshold value®.

Figure 5.5 contains an algorithm to determine memory instructions which are

candidates for removal and is essentially built on top of the techniques presented

in Chapter 4. The symbolic expression of each memory instruction in the

program is compared with all other memory instructions' symbolic expressions

that reference the same array to determine the distance between two references.

When this distance is normalized by the array element size, the number of

iterations over which redundancy spans is known. If this distance is less then the

selected threshold, the instruction is tagged as redundant.

Because of the order in which instructions are compared, the distance value can

be either negative or positive. A negative value corresponds to the situation

where the first instruction will use a value in the future that the second

instruction currently loads or stores. Therefore, for a negative distance, the first

instruction is redundant. A positive distance value denotes the case where the

first instruction currently loads or stores a value that will be used in the future

by the second instruction. In this case the second instruction is the redundant

instruction.

Although it is not necessary to determine the actual iteration distances between

all memory instructions (it is sufficient to know only that an instruction is

redundant—that the iteration distance is an integer), this information can be
useful when assessing trade-offs between candidates for removal. For instance, if

redundancy spans more than five iterations, then it might be likely that the

^Most loop pipelining algorithms converge v?ith a new loop schedule within a small (i.e., four
or five) number of iterations. Therefore, determining redundancy which spans more than that
number of iterations is most likely not useful.

^Picking this value is not an issue. Our experience has shown that a value offive is enough
to expose a sufficient amount of redundancy which can be exploited during loop pipelining

64

1; Procedure memory-analysisi^program)
2: begin
3: foreach node in program
4: if (/* node contains memory operations */) then
5: foreach memmp in node
6: /* Add memjop to opJist */
7: /* Convert memmp's sym. expr. into disjunctive form. */
8: end

9: endif

10: end

11:

12: while (opJist ^ (j)) do
13: /* remove curr_op from opJist */
14: foreach memjop in opJist
15: if (/* ml and m2 access the same array */) then
16: foreach exl in mi's symbolic expressions
17: foreach ex2 in m2's symbolic expressions
18: set expr to exl - ex2
19: set distance to expr/data element size
20: if (/* distance is integer and distance < threshold */) then
21: if (distance < 0) then
22: /* tag ml as a candidate for removal */
23: else

24: /* tag m2 as a candidate for removal */
25: endif

26: endif

27: end

28: end

29: endif

30: end

31: end

32: end memory-analysis

Figure 5.5: An algorithm for determining removal candidates.

65

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Procedure propagatejredundancyJ,nfo{program)
begin

changes = false
while (changes) do

foreach node in program
foreach op in node

def-ops = /* ops which define vars that op reads */
tmp_tags = /* union of red. tags for def_ops */
changes = changes or tmp_tags / op's tags
/* tag op with tmp-tags */

end

end

end

end propagatejredundancyJnfo

Figure 5.6: Algorithm for propagating redundancy information.

register allocated for that value can be more profitably utilized elsewhere if that

value is not accessed often.

Propagating Redundant Memory Value Information

Once the candidates have been identified, that redundancy information is

propagated up (or down!) the expression tree. Figure 5.6 contains an algorithm

that marks all instructions in the program with information about redundancy in

their sub-trees and is patterned after standard flow analysis routines.

Initially, each instruction is tagged with its candidacy status if it is a memory

instruction, otherwise it is tagged with null (denoted as ^). Then the algorithm

iterates until no further changes occur to the tagging status. For each instruction

in the program, the instructions which define the variables used by the current

instruction are found and their tagging information is unioned to derive the local

redundancy information on that sub-expression.

As an example, consider the following code segment:

cycle (k): b = A[i\ c = A[i —1]
cycle (k-f-l): d = cA 7
cycle (k-f2): e = d + b

66

The instruction which defines c is redundant and tagged with {r} while the
instruction which defines bis non-redundant and tagged with {n}. Operation
d = c+ 7 is tagged with {r} since the instructions (only one, in this case) that
define the variables used are tagged with {r}. Finally, instruction e = d + bis

tagged with {n,r} denoted as {both^, which is the union of the tag information
for the instructions defining those variables used.

Heuristic META-Transformation

The META-Transformation appears in Figure 5.7. Because the goal is to pair
values with the same redundancy tags, the THR transformation is given the
"go ahead" when the tags match. In this case the sub-trees are recursively
descended to tag redundant memory instructions as "ready" for elimination. If
the redundancy tags mismatch, the redundant sub-trees are rotated. This has the

effect of moving computation on redundant values towards the leaves and

non-redundant computation towards the root allowing the schedule to better

tolerate the latency of memory instructions which will not be removed.

The RE transformation is inhibited from removing redundant memory
instructions until they become part of redundant sub-trees (i.e., tagged as
"ready"). This has the effect of minimizing the live ranges of redundant memory
values stored in the register file.

5.3.3 An Example

As an example of the workings of the META-transformation, the simple low-pass
filter from section 5.1 (from which an excerpt appears) is used with the same
constraints of one two-cycle pipelined adder and one five-cycle pipelined memory
port. The initial schedule is depicted in Figure 5.8(a).

During the memory analysis phase, instructions A, B, D, and E are tagged as
redundant and instructions C and F as non-redundant. This information is

propagated up the expression tree.

67

1: function META-Transformation(a:/orm, its arguments)
2: begin
3: case xform is:
4: Tree-height reduction:
5: if (/* paired args redundancy tags match */) then
6: /* recursively descend tree tagging redundant */
7: /* memory operations "ready" */
8: Return Go_Ahead

9: else

10: /* "rotate-down" any redundant subtrees */
11: Return Inhibit

12: Redundant Memory Elimination:
13: if (/* memory op is tagged "ready" */) then
14: Return Go_Ahead

15: else

16: Return Inhibit

17: end case

18: end META-Transformation

Figure 5.7: The META-Transformation

68

The META-transformation tags A and B as "ready" when it assesses the

possibility of applying THR to the instruction T1 = AB. Once they are

tagged ready, those load instructions are removed. And, after instructions are

compacted, the schedule in Figure 5.8(b) results.

The THR algorithm is inhibited by the META-Transformation from application

on the instructions which define T2 and T3 in (b) as this would result in the

pairing of redundant and non-redundant memory instructions D and C,

respectively. However, THR is applied to the instructions which define T3 and

T4 as the operands {D and E) for the new instruction would have the same

redundancy type. Once D and E become paired, they are marked "ready" and

those loads are eliminated. After compaction the schedule of Figure 5.8(c) results.

Next, THR is applied to the instruction T4 = T2 + T3. At this point, subtrees at

T2 and Td are "rotated-down" so that both operands (Tl and Td) of a new

instruction will have same redundancy types. After compaction, the schedule in

Figure 5.8(d) results, thus producing the sub-tree rooted at T7 in Figure 5.2(b).

5.4 Effects of META-Transformation on

Register Allocation

In this section, the introductory example is used to illustrate the effects of code

transformation on register allocation. As the code is scheduled, both with the

META-Transformation and the traditional approach, the resulting code is

examined in terms of the lifetimes of the values.

5.4.1 Examining the Effects of Optimization

In Figure 5.9, pseudo-code for an incremental code motion routine in a scheduler

appears. In the traditional approach, the ordering of transformation application

is "hard-coded" while, in contrast, with the META-Transformation, they may be

69

1 Load A 1 A = B, B = C Load C

2 Load B 2 Tl = A + B Load D

3 Load C 3 Load E

4 Load D 4 Load F

5 Load E 5

6 Load F 6 T2 = Tl + C

7 T1 = A + B 7

8 8 T3 = T2 + D

9 T2 = T1 + C 9

10 10 T4 = T3 + E

11 T3 = T2 + D 11

. 12 12 T5 = T4 + F

13 T4 = T3 + E 13

14

15 T5 = T4 + F

16

(a) (b)

1 A = B, B = C, D = E, E = F Load C 1

>

11

CO

CO

11

p

D = E, E = F Load C

2 T1 = A + B Load F 2 Tl = A + B Load F

3 T3 = D + E 3 T3 = D + E

4 4 T2 = Tl + T3

5 5

6 T2 = Ti + C 6 T4 = T2 + C

7 7

8 T4 = T2 + T3 8 T5 = T4 + F

9 9

10 T5 = T4 + F

11

(c) (d)

Figure 5.8: Application of Meta-Transformation on low-pass filter.

70

For all instructions, I, in cycle
Movelnstr(I)

I

I

I

I

I

I
Traditional

if (THR_applied(I)) I
return THR;

else if (RME_applied(I))
return RME;

else ...

end

META-Transformation

if (META-Xform(THR, I) == go_ahead)
THR(I) I

else if (META-Xform(RME, I) == go_ahead)
RME(I)

else ...

end

I

I

I

I

I
Figure 5.9: Pseudo code for an incremental scheduler. |||

B

fl

1

1
71

1

-t-EtF

Figure 5.10: Traditional scheduling approach.

72

^©

\\ ©

\©

©

\\ w

\©

©

(a)

E,I)

1© QP2 I
)

V±) vS)

\\)

©

(c)

(e)

(b)

(d)

B

tC

E-r-F

i

Figure 5.11: Meta-Transformation approach.

73

I

I accomplished in any order®.

This routine is used to examine the effects of register lifetimes when scheduling

the example code with the resources of two memory ports and two adders and all

instructions are uni-cycle.

In Figure 5.10, a partial tree for the introductory example to this chapter

appears. In (a) two iterations of the graph appear which have been scheduled

with the given resource constraints. As the traditional scheduler passes through

the code in (a) there are three instructions in cycle four which may be optimized,

an add and two redundant memory instructions. Because the decision for THR is

made first, THR is applied to form the subtree which adds Ci and Di. This forms

the tree and schedule found in (b). As the scheduler continues, THR is again

applied to form the subtree which adds Ei and Fi, deriving the schedule found in

(c). The graph for iteration two is likewise re-structured. After re-structuring,
the redundant loads of iteration two are removed, leaving the schedule of (d).

Also depicted in (d) are the lifetimes of the values which were redundantly

loaded: Bi extends five cycles, Ci extends four cycles, E\ extends four cycles and

El extends five cycles. Note that this long extension of the lifetimes (particularly

Bi) is due to the re-structuring of the first iteration graph before the redundant

loads were removed. The instruction which added A2 and B2 is blocked (due to a
resource barrier) serving to extend those lifetimes over many cycles.

In Figure 5.11, the partial tree for the introductory example again appears.

Initially, the loads of A2, B2, D2 and E2 are tagged as redundant. As the

META-Transformation passes through the code in (a) it discovers opportunities
for THR and RME in cycle four. The THR optimization is not applied as it does

not pair subtrees with the same redundancy tags. The loads of A2 and B2 are

removed as they are both redundant and have become "paired" by the add

instruction in cycle five. After the add instruction moves up to cycle three the

graph in (b) results.

®Although it appears ordering is fixed, the META-Transformation mechanism actually applies
transformations in differing orders based upon global decisions as previously discussed.

74

As the META-Transformation continues, THR is enabled to pair the loads of Ei

and Di and E2 and D2 which derives the graph of (c). Because the redundant

loads D2 and E2 are now paired and are part of a redundant subtree, they are

removed resulting in the graph of (d). As scheduling continues on the graph of

(d), the operation which adds the redundant values D2 and E2 is "rotated down"

and the schedule in (e) results.

Also depicted in (e) are the lifetimes of the redundantly loaded values: Bi

extends three cycles, Ci extends two cycles. Ex extends two cycles and Fi

extends four cycles. This is an improvement over the lifetimelengths produced

by the traditional approach and serves to reduce register pressure as lifetimes are

now shorter and less contention for those resources results.

5.4.2 An Enhanced META-Transformation

The presented version of the META-Transformation is able to utilize resources

more effectively than the traditional approach. This is due to the global decisions

that the heuristics provide, rather than relying solely on local factors. Although

the presented heuristics achieve the goal of reducing value lifetimes to reduce

register demands, it is possible that the scheme may be slightly improved.

In the previous example, when redundant loads became "paired" they were

removed. Potentially, there may be multiple memory instructions that become

paired before any are removed. When there are scarce resources, only two

registers available, for instance, and there are many memory instructions that

can be paired and then removed, the heuristic must be refined so that loads from

the same pairings are removed before other loads. In the previous case, this

would be pairing A2, B2 and D2, E2 and then removing A2 and D2, for instance.

Clearly the benefit of load removal is lessened in this case as the compaction of

the code is not fully realized.

A simple solution to this problem is to generate unique keys for memory
operations and tag those instructions with them so that when considering
optimizing memory operations a particular key is selected and then both

75

I

I associated memory instructions are removed before memory instructions with a

different key are removed. This will keep the above case, where there were four

memory instructions ready for removal, but only two available registers, from

hindering the compaction process.

76

Chapter 6

Generalizing

Copy Elimination

C^oupling register allocation with instruction scheduling or instruction
parallelization is a challenging task. Traditionally, register allocation is

accomplished as a separate phase during compilation with the most pervasive

paradigm being graph coloring. Because of its complexity, it is impractical to

apply a register allocator, such as the graph allocator, to the code repeatedly

during parallelization. As discussed in Chapter 2, strategies for performing

register allocation in a parallelizing compiler include pre-scheduling allocation,

post-scheduling allocation and integrated scheduling and register allocation.

Post-scheduling allocation strategies suffer from introduced spill code degrading

the schedule while the integrated approaches require substantially more

compilation time.

In the UCI VLIW parallelizing compiler project [70], the strategy adopted is to

start with heavily optimized sequential code which has been register allocated.

Because the sequential code has been heavily optimized, registers are re-used as

much as possible. This presents a problem during parallelization as it introduces

many "anti"-dependencies. To remedy this, registers are re-allocated "on-the-fly"

during scheduling by a technique called register or variable renaming [28]. This

technique allocates a currently free register to the destination of an

anti-dependent instruction to remove the dependency and then inserts a copy

instruction (a register-to-register move instruction) into the code to copy the

77

I

I value in the newly allocated register to the original destination register.

Although the largest source of copy instructions in this compiler arises from

renaming, other sources of copy generation exist. Aggressive optimization and

parallelization techniques, including "classic" optimizations such as common

sub-expression elimination [3] and induction variable elimination [3] as well as

more sophisticated techniques such as variable lifetime splitting [25] and

redundant load elimination [12, 51] (see Chapter 4), add copy instructions to the

code in order to control compiler complexity as global search-and-replace of

register names or variables, each time that an optimization is performed, is too

costly.

Even though the introduced copy instructions perform no significant computation

(they preserve program correctness), they require the use of a functional unit^ or

specialized bussing structure to accomplish the data transfer. Thus, as copy

instructions are essentially overhead instructions, their presence in a schedule

represents a negative impact to performance. While aggressive program

optimization and parallelization techniques improve the performance of

application code, their improvement potential is possibly limited by the presence

of those copy instructions that remain after optimization. Removing these copy

instructions becomes crucial to achieving improved performance and/or

eliminating specialized hardware for supporting those data transfers.

In this chapter, a generalized technique for copy removal is presented. This

technique removes copies that keep values live over loop iterations by unrolling

the loop code and re-allocating registers to instructions. As a result, copies which

preserve values within an iteration—"traditional" copies—are also removed.

Thus, this technique subsumes conventional copy propagation techniques while

providing a method for removing more advanced forms of copy instruction chains

in the generation of high-performance code.

^Practically, a copy R1 = R2 would be performed by executing some instruction such as
= i22 -f 0 or i?l = R2 « 0.

78

R0 = R1+R2

Mem[Bi] = R6

RO = R3 + R4

R5 = RO + 10

R7 = Mem[Bi]

RO = R1 + R2

Mem[Bi] = R6
R8 = R3 + R4

R7 = R6

R0 = R8
R5 = RO + 10

Figure 6.1: Introducing copy instructions into the code.

6.1 Introductory Example

As an introductory example, consider the code in Figure 6.1(a) which will serve

to demonstrate how parallelization inserts copy instructions into code. In this

example, the value written into RO in node M is used by the instruction

i?5 = RO + 10 in the next node^. During parallelization, the instruction

RO = R3 + Ri from node N may not be moved into (i.e., executed in parallel

with the instructions of) node M as it redefines RO and would cause incorrect

values to be computed by the instruction i?5 = i?0 + 10 in node N. If a free

register exists (RS in this example), then the destination register of instruction

RO = R3 + Ri is renamed and the new instruction, R8 —R3 + i24, is moved into

node M. To maintain correctness, a copy instruction RO = R8 is necessary in

node N to correctly move the value from R8 into RO, thereby compacting the

^Note that the value read by the instruction i25 = i?0+ 10 is that produced by the instruction
J?0 = 721 + R2 in node M rather than the instruction 720 = 723 + 724 in node N as, due to the

machine model, all operands are read before any results are written.

79

I

I

4: Mem[C] = R-
5:R4 = R6-R4

R6 = R0
R0 = R2

6: R7 = R7 + 1

Loop Entrance

Mem[A]
Mem[B]

Loop Exit

Figure 6.2: Loop code with copy instructions,

code of (a) to that of (b).

Also, in node M, a value is stored^ to the memory location Bi. In node N^ this

value is loaded from the memory by the load instruction R1 = Mem[Bi\. Rather

than re-loading the value from memory, the value stored to memory by

instruction Mem[Bi] = R6 can be directly copied. Thus, the load is removed,

resulting in the earlier availability of the value (i.e., the latency of the load is

removed), and the copy instruction R1 = R6 is added to node M.

In the previous example, simple copy propagation may be used to eliminate the

copies as the code is straight-line. However, during software pipelining when

multiple iterations of a loop are overlapped and optimizations are performed, the

uses of copied values can span across iteration boundaries. Thus, conventional

copy propagation techniques [3] are not powerful enough to remove many of the

^For simplicity, loads and stores are shown here symbolically. Typically, the address is cal
culated into a register and analysis [12, 51] is required to determine equivalency in memory

references. (See Chapter 4.)

80

copies introduced during loop parallelization.

As an example, in Figure 6.2, several optimizations were applied during the

parallelization of a loop. As a result, several copy instructions are found in this

code''. Conventional copy propagation cannot remove any of these copy
instructions as those copies serve to keep values live over multiple iterations of

the loop. For instance, the copy RQ = R1 in node M cannot be removed as it

preserves a value loaded by R1 = Mem[A] from the previous iteration (the
previous execution of node M) and propagating R1 in place of R6 into the

following node (into the instruction Ri = RQ - Ri) would result in the use of an
incorrect value (the newly loaded value from instruction #2 would be incorrectly
used rather than the previously loaded value). Thus, conventional copy
propagation is not adequate to remove these copies.

6.2 Eliminating Copy Instructions

Copies generated during parallelization do not produce new values but, rather,
preserve already computed values for future uses. In other words, multiple values
produced in various iterations by an instruction are simultaneously live and

transferred from definition to last use by chains of copy instructions. Copies
related to a specific copy chain cannot be removed without affecting the
'queueing' of values for use. As depicted in the code of Figure 6.3, which has
been compacted into one node, by unrolling the loop body sufficiently, the
definition of a value and its last use become explicit thereby eliminating the need
for the copy chain and, thus, enabling copy elimination®. In this example, the
solution loop spans three iterations of the original loop.

In this section, an algorithm for copy instruction removal is presented. This

^Note that four ALUs and two memory units are necessary to execute this parallel code, while,
if copies were removed, only two ALUs and two memory units are necessary.

Once again, recall that, due to the machine model, all operands are read before any results
are written. Therefore, in the first node, for instance, the value "X" used by A = X + B is that
generated by the previous execution of that node.

81

I

I

I

I

I

i

I

I

I

I

I

I

I

I

I

I

I

I

I

Original Code

Z = Mem[Bi]
Y = Z

X = Y
A = X + B

Unrolled Code

Z = Mem[Bi]

Z = Mem[Bi]

X = Y

Z=Mem[Bi]

A = X + B

Copies Eliminated

Mem[Bi]

Z = Mem[Bi]

A = Z + B

Z =]

A = Z + B

Figure 6.3: Unrolling loop code to eliminate copies.

82

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
The first step of the algorithm is to compute the register mappings for each node

I in the graph. The register mapping for a node represents the contents of the

I
83

I

technique focuses on parallelized loops and is based upon incremental loop

unrolling and re-allocation of registers to values. First, some terms are defined

and then the algorithm is presented.

6.2.1 Definitions

• A register mapping is a set of tuples of the form {register, op.age)^ where

register denotes the register name, op denotes the unique instruction

identifier that produced the value and age corresponds to the number of

times that a value has been copied (i.e., the length of the chain thus far).

The op.age field will be collectively referred to as a tag. A register mapping

may have multiple tuples for a given register due to multiple paths through

the loop.

• A loop is a set of nodes in the program graph that form a cycle such that

there is a path from each node in the loop to any other node in the loop.

• A header oi a loop is the loop entry point, the node that corresponds to the

top of a loop.

• A hackedge is an edge connecting two nodes in a loop such that the

destination node has a depth first search (DFS) number less than the source

node; a loop may have multiple backedges.

• An unrolling L' of loop L along some backedge is an exact code duplication

of the loop body L.

6.2.2 An Algorithm for Copy Elimination

Figure 6.4 contains an algorithm which performs copy elimination on a loop. As

input, this algorithm takes a loop body or loop graph where each node contains

instructions which are executed in parallel and produces a new loop without copy

instructions which may span multiple iterations of the original (input) loop.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Procedure copy^elimination(L : loop)
begin

/* compute initial register maps for L */
/* split nodes having multiple defs, recalc register maps */
/* make loop template */
/* add the header of L to the headersJist */
/* add all backedges found in L to backedgesJist */
scan^and-reallocate {header-of(L))]
while (not empty backedgesJist) {

/* unroll along backedge bfrom backedgesJist */
/* add new iteration headers and backedges to respective lists */
scan-and-veallocate {header)^
/* match backedges to header nodes */

}
end copy-elimination

Figure 6.4: An algorithm for copy elimination.

registers immediately preceding the execution of that node and are derived similar

to program data-flow analysis. (An algorithm for this is presented shortly.)

In the next step, the derived register mappings are scanned and any node which
has multipleannotations for a register mapping is split® as multiple definitions

for a register are present. For example, for the code segment,

if (condition) then
RO = Rl

else

Rt) = R2

endif

i23 = i?0 3

the node containing the instruction i?3 = i?0 -|- 3 will have two predecessors, one
for the true path and one for the false path which each uniquely define RO. Since

the copies will be later eliminated, if the paths are not split then it is necessary to

allocate the same register to the destination registers of both instructions which

define R1 and R2 so that the instruction RS = RO 3 will compute correct

®Multiple mappings are due to multiple paths or conditionals in the loop. |

84
I

I

I

results. However, this restriction considerably complicates the (straight-forward)

allocation process and the proposed solution is to split the node which contains

the instruction R3 = RO -|- 3 so that each path contains a unique copy of that

instruction different allocations (to RO in this case) are possible on each path. If

any nodes are split by this step, the register mappings are recalculated.

At this point, a loop template, or copy of the loop with its register mappings, is

made and used for future reference. During copy elimination, the source registers

of each instruction are looked up in this template to determine the tags for the

values they use in the original loop. As values may be re-allocated to registers

during copy elimination, it may become necessary to update or to change the

source operands of some instructions. For instance, suppose the following is the

register mapping for a node in the loop template:

{RO, 10.1) {Rl, 9.0) (i?2, 7.0) (i?3, 10.0)

and the current instruction from that respective node in the current unrolling is

R2 = RO —R3 with a current register mapping of:

{RO, 9.0) {Rl, 10.0) {R2, 7.0) {R3, 10.1)

In the original loop, this instruction uses values 10.1 for the first argument and

10.0 for the second. During copy elimination when considering the instruction

R2 = RO —R3, these values (10.1 and 10.0) are looked up in the current register

mapping to find the registers which contain them. If the registers currently

containing those values are different from the source operands, the source

operands are updated as appropriate, as is the case here where the first argument

must be changed to R2 and the second argument becomes Rl, thus,

R2 = R3 —Rl is the instruction for the copy eliminated code.

Once the register mappings are calculated and the loop template is made, the

header of the loop is added to a headersJist and all of the backedges of that loop

are added to the backedgesJist. The headersJist is used to keep track of all

loop entry points to determine, after unrolling and copy elimination, if a

85

backedge may be directed to any previous header that has an identical register
mapping. The backedgesJist is the list of loop iterative points along which an

iteration of the loop is to be unrolled.

While there are backedges to unroll along, the algorithm iterates over the

following steps: unroll the loop along that backedge; add the new header and

backedges to the respective lists; scan^and^reaUocate{) (discussed further) and,
finally, once copy elimination has been performed on the current unrolling, the
backedges of this loop iteration are checked against all headers in the

headersJist. Those backedges with register mappings that match the register
mappings of an iteration header are directed to the respective matching header
while those with no match are added to the backedgesJist. The algorithm

terminates once there are no more backedges left.

Computing Register Mappings

Figure 6.5 contains an algorithm for computing the register mappings of a loop.
The algorithm first initializes all register maps to (j) and then iterates until no

changes occur to any node's register map. The algorithm scans the nodes of the

loop in the forward-flow direction adding nodes to the consideration list, I. For
each node, the computed "output" register map is the input register map with
the additional mappings that occur as a result of executing this node. Thus, the
output map reflects the values contained in registers after execution of that node.

To derive the new mappings of a node, each instruction in the node is considered.

If the instruction is a copy, then a new entry is added to the output mapping
annotated with the destination register of the copy and the lookup in the loop
template of the source register to determine what value the source register
contains (i.e., what is the tag being copied).

If the instruction is not a copy, then it defines a new value. An entry is added to
the register mapping annotated with the destination register of the instruction

and a tag of instruction identifier and 0 (zero signifies the birth of a value).
Because copies serve to keep values live over multiple iterations, any annotation
in the mapping currently being derived with the same instruction identifier will

have its age field incremented. This signifies that the value has become "older"

86

1: Procedure compute-register-maps (L : loop)
2: /* initialize all register maps to (j) */
3: changes = true
4: while (changes) {
5: changes = false
6: add loop header to I
7: while (not empty I) {
8: remove node, N, from I
9: Rmaps = reg_map_of(iV)

10: new_maps = copy(Rmaps)
11: Foreach operation, op, in TV {
12: if {op is a copy)
13: (value.age) = lookup srcl_reg_of(op) in Rmaps
14: Add (dest_reg_of(op), value.age) to new_maps
15: else

16: Foreach map in new_maps with same id_of(op)
17: increment age
18: Delete all maps from new_maps with dest_reg_of(op)
19: Add (dest-reg_of(op), opJd_of(op).0) to new_maps
20: endif

21: }
22: For all successors, S, of N {
23: if (new_maps != reg_map_of(5'))
24: changes = true
25: reg_map_of(S') = copy(new_maps)
26: endif

27: Add S to I

28: }
29: }
30: }
31: end compute-register-maps

Figure 6.5: An algorithm for computing register mappings.

87

Iteration of Algorithm

Initially i2nd yd no changes
(RO, 3.1) (RO, 3.1) (RO, 3.1)

Maps (Rl, 2.0) (Rl, 2.0) (Rl, 2.0) (Rl, 2.0)
At (j) (R2, 3.0) (R2, 3.0) (R2, 3.0) (R2, 3.0)
Point P (R4, 1.0) (R4, 1.0) (R4, 1.0) (R4, 1.0)

(R6, 2.1) (R6, 2.1)
(RO, 3.0) (RO, 3.0) (RO, 3.0) (RO, 3.0)

Maps (Rl, 2.0) (Rl, 2.0) (Rl, 2.0)
At (t> (R4, 5.0) (R4, 5.0) (R4, 5.0) (R4, 5.0)
Point Q (R6, 3.1) (R6, 3.1) (R6, 3.1)

(R7, 6.0) (R7, 6.0) (R7, 6.0) (R7, 6.0)

Table 6.1: Register mappings for the code of Figure 6.2.

by the generation of a new value in the current instruction. Also, as the current

instruction generates a value into its destination register, all maps in the output

mapping with that destination register are deleted as those values become killed

by the generation of a new value.

As an example of deriving the register mappings of a loop, the register mappings
for the second introductory example in Table 6.1 are derived. Initially, the

register mappings at points P and Q are set to empty. Using the previous

mapping (that at point Q), the register mapping for point P is calculated. For

each instruction in node M, the source registers are looked up in the starting
mapping. For the copy operation, there is no value for R1 yet, so no annotation

is added for that instruction. However, three instructions define new values and

annotations are added for Rl, R2 and i24. Using the new map derived for point

P, the mapping for point Q is derived.

Scan-and-Reallocate

Figure 6.6 contains an algorithm for scanning a loop. This algorithm is similar to

the algorithm for computing register mappings as it is necessary when

re-allocating registers to instructions to keep track of the values in the registers.

Initially, the register maps are initialized to (f) and the entry register mapping to
the loop is the register mapping found at the end of the previous iteration, or that

88

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Procedure Scaji_andJR,eallocate(L : loop)
/* initialize all register maps to <j) */
reg_map_of(header) = /* output map of backedge */
add loop header to I ^
while (not empty I) {

remove node, N, from I
Rmaps = reg_map_of(iV)
new_maps = copy(Rmaps)
Foreach operation, op, in N

if {op is a copy)
Remove op

else

Update_Args(op)
if (dest_reg_of(op) G Rmap and live)

dest_reg_of(op) = get free register
Delete all maps from new_maps with dest_reg_of(op)
Add (dest_reg_of(op), (opJd_of(op), 0)) to new_maps

endif

For all successors, 5, of iV {
reg_map_of(S') = copy(new_maps)
Add S to I

}
}

end scan-andjreallocate

Figure 6.6: An algorithm for removing copies and updating register usages.

89

found along the backedge unrolled upon. The loop is scanned in the forward-flow

direction, and for each node in the loop all of its contained instructions are

examined. If the instruction is a copy, it is removed from the node. If not, the

arguments to the instruction are updated. This entails looking up the source

arguments of the current instruction in the loop template to determine the values

that the operand references. Then, those values are looked up in the current

register mapping to obtain the register that currently contains the appropriate

value(s). If this register and the particular source operand differ, the source

operand is updated to use that correct register. Next, it might be necessary to

re-allocate a register to the destination of this instruction if the register used by

the instruction currently contains avalue that is live beyond this point (i.e., that |||
register was reallocated at some previous point when it was free). Finally, values

killed by this instruction are removedfrom the current mapping and annotations

are made for the new value generated by this instruction in the current mapping. I

6.2.3 Determining Minimal Number of Unrollings
I

I
Because the elimination algorithm unrolls the loop to make the definitions of a

value and the uses of that value explicit, thereby facilitating copy removal, a I
I 1 ill • • f/-wr t.natural question that arises is: "How many iterations of the original loop must

the solution loop span in order to remove all copies?" Recall from Figure 6.3 that

the copies serve to preserve or to queue values from three iterations in the past.

That is, the definition of a value is three iterations ahead of its last use. Thus,

three iterations of unrolling are sufficient in order to eliminate the intervening

copies.

In general, to remove a copy chain, the number of iterations is equal to the

number of transfers of the value from definition to last use through copy

instructions. This number is exactly the maximal age of a copy tag. Therefore,

prior to applying the scanjandjrealloc{) procedure to the loop, the loop template

can be analyzed to determine the maximal age values as the necessary number of

iterations.

90

I

I

I

I

I

I

I

I

I

I When multiple copy chains are present in the code, calculating the number of

necessary iterations is slightly more complex. Consider two copy chains, one with

maximal age two and the other, three. Every two iterations the first copy chain is

eliminated, but three iterations of the loop are required for removal of the second

copy chain. Thus, only after six iterations in this case, will both chains be

"synchronized" so that both chains can be eliminated. In general, the necessary

number of iterations becomes the least common denominator over all of the

maximal age values. Again, this number can be directly calculated from the loop

template prior to the application of copy elimination to determine how

worthwhile application of copy elimination to the code is.

6.2.4 Heuristic Copy Elimination

Possibly the most noticeable feature of the copy elimination algorithm is that the

final loop solution spans multiple iterations of the original loop in order to make

value definitions and uses explicit. In some cases, it may not be desirable to

unroll the loop for the necessary number of iterations. In this case, the algorithm

may be parameterized with the maximal number of iterations to unroll. However,

when this threshold value is reached, it is not guaranteed that the backedges for

that unrolling depth will match any of the previous iteration headers.

For each backedge that remains after the threshold value has been reached, the

number of mismatches (i.e., differences in the tags associated with a register in

the backedge map and the respective tag in the header map) is calculated. As

this is the number of differences, it is also the number of copy instructions

necessary to be able to direct the backedge to the header under consideration.

The backedge is then directed to the header (via a copy node) with which there

are the fewest number of mismatches. A copy node—a node containing only copy

instructions—is inserted along this path to re-arrange the values in the registers

so that program correctness is preserved.

91

Loop Code

:R4 = R4*R6

R6 = R1

: R1 = Mem[A]
: R2 = Mem[B]

4f (R7 < 100)

MemrC]

Loop Template

Exit

Register Mappings

(RO, 3.1) Qo (RO. 3.1)

(Rl, 2.0) (Rl, 2.0)

(R2, 3.0) (R4, 5.0)

(R4, 1.0) (R6. 3.1)

(R6, 2.1) (R7. 6.0)

Figure 6.7: Loop template for example.

6.2.5 An Example

As an example, copy elimination is performed on the loop code of Figure 6.2.
The initial register mappings for this loop were previously computed and are

found in Table 6.1. At this point, a copy of the loop code and the initial register
mappings are made to form the loop template of Figure 6.7.

The copy elimination algorithm applies the scan-andjrealloc{) procedure to the
first iteration of the loop using the register mappings found at the loop entrance
as illustrated in Figure 6.8.

As node Mq is scanned, the first instruction to be considered is Ri = RA —R6.

The procedure updateMrgsQ looks up this instruction in the loop template

(Figure 6.7) and determines that argument one is the value (5.0) and argument
two is the value (3.1). These values, (5.0) and (3.1), are looked up in the current

register mapping (the register mapping found at point I in Figure 6.8) and are
currently found in the registers Ri and 776, respectively. Since these values are

92

Code

Loop Entrance

4: Mein[C] = R4

5:R4 = R1 -R4

6: R7 = R7 + 1

4: Mem[C] = R4

5: R4 = R2 - R4

6: R7 = R7 + 1

Loop Exit

Loop Exit

Register Mappings

(RO, 3.0)
(Rl, 2.0)
(R2, 2.1)
(R4, 5.0)
(R6, 3.1)

(RO, 3.1)
(Rl, 2.1)
(R2, 2.0)
(R4, 1.0)
(R6, 3.0)

(RO, 3.1)
(Rl,2.1)
(R2, 2.0)
(R4, 5.0)
(R6, 3.0)

(RO, 3.0)
(Rl, 2.0)
(R2, 2.1)
(R4, 1.0)
(R6, 3.1)

(RO, 3.0)
(Rl, 2.0)
(R2, 2.1)
(R4, 5.0)
(R6, 3.1)

Figure 6.8: Unrolling loop code to eliminate copies.

93

already referenced in the appropriate registers, no changes to the instruction's

operands are made. Since this is the last use of the value (5.0), contained in

register i24, a new register is not needed for the destination register of the

instruction. Lastly, an entry is made in the current register mapping of

(ii4.(1.0)).

The next instruction is the copy instruction i?6 = R1 and is removed from the

code. The next instruction, R1 = Mem[A], is examined. Since there are no

source operands to update, the destination register is examined and found to

contain a currently live value (i.e., a value that is used beyond this node) in the

register mappings at point I in Figure 6.8. Thus, a call to get.freejregisterQ is

necessary to re-allocate a register to the destination of this instruction. In this

case, the function call returns the register R2 as the value it contains, (2.1)

becomes dead in this node'̂ Thus, as depicted in node Mo of Figure 6.8, the

destination register of instruction R1 = Mem[A] is changed to R2 = Mem[A].

Next, the node No is scanned. The argument to the instruction Mem[C] = RA is

checked in the loop template. From Figure 6.7, this instruction uses RA which

contains the value (1.0) at point P. In the current register mapping, RA contains

this value, so no updating takes place. The next instruction is RA = R6 —RA

and uses the values (2.1) and (1.0), as source values, respectively, in the loop

template. In the current register mapping, those values are contained in R1 and

RA, respectively. As the value (1.0) dies, the destination register of this

instruction does not require updating. The next two instructions, R6 = RO and

770 = R2, are copies and are removed. Finally, the last instruction requires no

updating, leaving the code found in node No of Figure 6.8.

As the register mapping found at point Qo does not match that found at point I,

the loop is unrolled for an iteration and copy elimination is applied to the new

unrolling.

^When the instruction iil = Mem[A] generates a new value, it will cause all other values in
the register mapping with the same identifier to become "older" (i.e., the age value increases).
Thus, the value in Rl, (2.0), will become (2.1) and the value in R2, (2.1), will become (2.2). As
the value (2.2) is never used, the register containing that value is free for re-allocation in this

node.

94

I

Again, as node M\ is scanned, the operands for the instruction i?4 = i?4 —i?6 are

found in the loop template at (5.0) and (3.1), respectively. In the current register

mapping (found at point Qo), these values are in i?4 and ilO, respectively, so the

source operands are updated to reflect this. The value (1.0) dies in this node, so

there is no updating of the destination register. The instruction R1 = Mem[A]

requires no updating as the destination register contains a dead value and can be

re-used. The instruction R2 = Mem[B], however, writes to a register with a live

value, so a new register is needed as the destination. Since the value (3.1) dies,

the register containing this value is re-allocated to the destination of this

instruction, resulting in the code found in node Mi in Figure 6.8.

Next, the node is scanned. The value stored to memory by the instruction

Mem[C] = i24 is in i?4, so no operand updating is done. From the template, the

source operands to the instruction RA —R4: —R6 are (2.1) and (1.0) and

currently contained in R2 and RA, respectively. The source operands are updated

and after the copies R6 = RO and RO = R2 are removed from the code, node Ni

of Figure 6.8 results.

Since the values in the register mappings found at points Qi and I are

equivalent, the backedge at point Qi is directed to point I resulting in the new

loop code of Figure 6.8. The copy elimination algorithm then converges as there

are no more backedges to unroll upon.

6.3 Effects of Copy Elimination on Register

Allocation

Copy elimination is applied to the code in a post-scheduling phase. Therefore, it

is important that the effects of copy elimination do not affect the code in an

adverse manner. For instance, if copy elimination required extra registers that

were not available, then spill code would be necessary which could either affect

the performance of the code or require another scheduling phase for the spill

instructions. In this section, the effects of copy elimination on register allocation

95

are studied.

6.3.1 Examining the Effects of Optimization

Because performing register re-allocation is an integral part of the copy
elimination algorithm, one concern is that more registers are necessary for the
optimized code than the number used prior to copy elimination. This is not the

case as the parallelization techniques are only performed if a free register exists
at the point in the code where optimization is considered. Thus, the number of

registers used within a copy chain is exactly the number necessary for allocation
to the unrolled code as the value lifetimes are now static and explicit and the

number of copy instructions is the minimum number of registers necessary to
keep simultaneous values alive.

Since the loop code is not changed by unrolling (i.e., definitions and last uses of
values are not changed as no code re-organization takes place), a given register
becomes free at the same respective point in the unrolled code as in the original
code. Thus, there are exactly the same number of registers as values whose

lifetimes overlap. When the loop is unrolled and copies eliminated, one register is
used to hold a value from its definition to its last use rather than passing the
value through the copy chain. Since the maximum number of overlapping
lifetimes is no more than the number of registers involved in a copy chain, the
number of registers used in a copy chain is sufficient to preserve values from

explicit generation to last use.

Proof: A value's lifetime cannot be longer than the length of the copy chain—a
value is produced and transfers through the copy chain where it eventually has
its last use. Further, a single copy instruction may only preserve a value for a

maximum ofone iteration as the copy instruction will be executed again next
iteration and receive a new value. Therefore, the value's lifetime may span no
more than k iterations, where k denotes the length of the value's copy chain. If
the loop is unrolled for k iterations® then the first definition of a value and all

®After the feth iteration, the register allocated to the first iteration of the unrolling becomes

96

I

subsequent uses of that value will refer to the same register in the unrolled code.

This leaves k —1 duplications of the defining instruction that will require

registers for the saving of values. However, as there were k registers involved in

the original copy chain, and one has since been re-allocated, the remaining A: —1

registers may be delegated to the remaining k —1 definitions. .".

A more subtle issue is involved with the get-freejregister{) function called by

scan-andjreallocQ, and can affect the number of iterations spanned by the final

loop solution.

The copy elimination algorithm iterates through the unroll and re-allocation

phases until all backedges match previous headers, essentially converging when a

pattern in register usage emerges. As discussed earlier, there is a minimum

number of iterations of unrolling to completely eliminate all copy instructions.

However, if a pattern in register usage is not forthcoming within that number, it

is due to the function get^freejregisterQ. When a free register is requested care

must be taken in choosing which register to (re-)allocate.

Consider Figure 6.9 where node N is the last node of the loop body (i.e., the

edge out of this node is a backedge) and the copy of that node from iteration i

has already undergone register re-allocation. As node Ni+i (the same node, one

iteration later) is scanned, the instructions i?3 = Mem[Bi] and RA = R7 + R8

are reached and found to write into registers which contain live values, so new

registers must be allocated to the destinations of those instructions®. At this

point, both R1 and R2 are free. If is allocated to the first instruction

(instruction #7) and R2 is allocated to the second instruction (instruction #10),
then it will not be possible for the backedge out of node Ni^i to be directed to

the header node Mj+i at point P as the register mappings will not match.

For this to converge, R1 must be allocated to instruction #7 and R2 must be

allocated to instruction #10. In general, when there are n free registers and n

values requiring new destination registers, the number of possible mappings

becomes the number of permutations of the values in those registers or n\.

dead, and hence free for re-allocation.

®In practice, the two instructions are processed separately.

97

Ni

N,.

Code

7: R2 = Mem[Bi]

10: R1 = R7 + R8

iteration header

Qn

7: R3 = Mem[Bi]

10: R4 = R7 + R8

Register Mappings

R1 (10.0)
R2 (7.0)
R3 (4.1)
R4 (5.2)

R1 free

R2 free

R3 (4.1)
R4 (5.2)

Figure 6.9: Example code and register mappings during copy elimination.

98

I

I Although this number can be quite large in principle, in practice, this is rarely

the case as registers are reallocated deterministically (i.e., not randomly) and a

simple heuristic, presented shortly, eases this considerably.

6.3.2 An Enhanced Copy Elimination Algorithm

In order to remedy the (potential) re-allocation problem previously discussed an

improved version of the get_freejregister{) function is presented. A simple, but

effective heuristic that has been implemented is to keep track of the last register

that has been allocated to an instruction. This entails building a table which

pairs the unique instruction identifier and last register allocated and passing the

unique instruction identifier to the get-freejregister{) function, so line #15 of

scanjandjreallocO procedure (Figure 6.6) becomes:

destjreg-of{op) = get^freejregister(id^of[instr))

When a request for a new register is made, the instruction identifier is looked up

in the table and if the register entry found there is currently free, it is returned as

the "prefered" register. If that particular register is not free, then a register is .

selected from the free set and the table is updated.

This heuristic is designed to aid the convergence process. However, in cases

where the final solution has the value for some instruction oscillating between

two registers or between some set of registers, this heuristic's merits lessen. A

simple extension, however, can easily remedy this: rather than tracking the last

register allocated, all registers assigned to that instruction are tracked. In this

scheme, each time that a register is allocated, it is added to the set of allocated

registers for the given instruction. If it has been previously allocated, then a

counter is incremented which indicates the number of times that the particular

register has been allocated to that instruction. When determining a register to

allocated, preferential treatment is given to the register with highest frequency. If

that register is unavailable, the registers in the set are tried in order of frequency.

99

Code

7: R2 = Mem[Bi]

10: R1 = R7 + R8.

iteration header

Register Mappings

R1 (10.0)
R2 (7.0)
R3 (4.1)
R4 (5.2)

Rl free

R2 free

1 R3 (4.1)

I R4 (5.2)

10: R4 = R7 + R8.

Annotations

#4 R3
#5 R4

#7 ??

#10 ??

#4 R3
#5 R3

#7 R3

#10 R3

Figure 6.10: Example code and register mappings with annotations.

Thus, this extension aids convergence in the cases where a value generated by

some instruction is allocated to multiple registers over multiple iterations.

Figure 6.10 shows the previous example annotated with the last register allocated

information. When getjreejreg{) is called at node A^+i, the last register

allocated function consults the table to find which register was last allocated to

instruction #7. Register R2 was the last register allocated and is also found to

be free so it is allocated to instruction #7 in node Ni+i. Note that if Rl and R2

were occupied and i?3 and R4 were free (vice versa of the depicted allocation in

the figure), when the last register allocated table was consulted to find R2 as the

last register, but not currently free, then i?3 would be allocated and the table

entry updated.

100

I

Chapter 7

Allocating

Registers to Loops

The task of register allocation is to assign program variables or intermediate,
"virtual" registers to the real registers of a target architecture. When more

variables than real registers are present, some variables will inevitably be placed

in main memory and require memory accesses when they are needed. Due to the

latency incurred when accessing these "spilled" variables, the quality of the

allocation generated by a register allocation algorithm directly affects the

running time of the resulting code.

Due to the importance of register allocation, optimal solutions have been

extensively studied [24, 45, 46, 48] and advocated as potentially practical for

time-critical innermost loops. Because register allocation is an NP-Hard problem

in the general case [2], attempts at optimal solutions have either simplified the

problem to index registers [45, 48] and/or have used a brute-force exponential

method with heuristics to prune the search space [24, 25, 46].

These approaches yield an effective (if expensive) strategy for straight-line code,

but the only place such extreme techniques may be applied in practice is to

increase performance in innermost loop bodies. Thus, the goal is to minimize the

number of loads and stores, due to spill code, that will be repeatedly executed

within a loop. In order to extend the methods in [45, 46] to handle loops, a

fundamental difficulty that these previous techniques did not address

101

satisfactorily—that of matching the register usages at the beginning and end of a

loop iteration—must be overcome. That is, for loop code to be correct, the

mapping of variables to registers found at the beginning of an iteration as well as

that found at the end of that iteration must be equivalent so that it is correct to

iterate over that loop code. While a previous paper [48] provided a technique for

handling simple loops, optimality (and significant performance) was lost in the
process.

Previously, it was not known whether optimal register allocation for a loop could

be accomplished, regardless of efficiency of the algorithm. The difficulty stems

from the need to match register usages at the top and bottom of a loop body. In

order to ensure optimality for a loop, additional spills might be required at loop

bottom to match usages at top. To optimally minimize these spills, loop

unwinding with different register allocations in each unwound iteration may be

necessary.

This chapter demonstrates the viability of extending the techniques

in [45, 46, 48] to deal with loops by incorporating loop unrolling techniques into
the algorithm. Thus, a distinguishing characteristic of this approach is that the

allocation derived may span multiple iterations of the original loop. Heuristic

modifications to this algorithm are considered that, in practice, seem to perform
as well as their exponential counterpart (as demonstrated in the results of

experimentation in Chapter 8).

7.1 Optimal Allocation in Basic Blocks

Many researchers have felt that for particularly critical code segments, such as

the innermost loops of time-sensitive applications, an optimal allocation is

necessary. Horwitz et al. [45] present a method for obtaining an optimal register

allocation to index registers which minimizes the number of loads and stores due

to added spill code. Further work either improves upon the efficiency of the

Horwitz algorithm [60] or extends the basic algorithm to deal with simple loops

[48], but in doing so loses optimality and degrades performance. More recent

102

I

research has extended the basic idea in Horwitz's algorithm to include register

allocation for general purpose registers [46].

An Optimal Algorithm for Basic Blocks;

As the loop algorithm is based, in part, on the ideas in [45, 46, 48], a variant of a

basic block optimal algorithm is presented here. This algorithm explores every

possible register allocation at each virtual register or variable access in a basic

block, and produces an allocation which contains the minimal memory traffic.

That is, the allocation produced is optimal with respect to the cost^ of memory

loads and stores due to spill code. This algorithm, referred to as BB-Opt, is

found in Figure 7.1.

The algorithm BB-Opt is given a register access pattern which corresponds to the

accessing of the virtual registers or variables ie the input code segment. For

instance, for the sequential code segment: VRl = VR2 + VR3;

VR4 = VR5 - VR6, the register access pattern is VR2, VR3, VRl*, VR5,

VR6, VR4* (reads before writes) where writes are distinguished by a

BB-Opt also takes as input the mapping (or configuration) of virtual registers or

variables to real registers that immediately precedes the code segment. For

instance, if two real registers exist and VRl is mapped to R1 and VR5* is

mapped to R2, the configuration would be: {VRl, VR5*}. This leads to the

following definitions:

Definition 7.1.1 A register access pattern is a sequence of virtual register
reads and writes found in some code segment. A virtual register read is denoted
by the virtual register name and a virtual register write is denoted by the virtual
register name concatenated with

Definition 7.1.2 A register configuration or register mapping is a binding
of virtual to real registers and represents the contents of the real registers at some
point in computation.

BB-Opt then builds an allocation tree where the root is the given initial

configuration. Each successive level in the tree is derived by taking the next

virtual register access from the register access pattern and examining each node

^Cost can be based on any appropriate measure: load/store count, latency, etc.

103

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Function BB-OPT (REGS : Initial register configuration;
VA : Variable access pattern)

Begin
Set curr_states set to REGS

Foreach varible access V in VA do

Foreach config. N in curr^tate set do
If V e N then

Copy N to new_states set
Otherwise

Forall registers R do
N' = copy_state(N)
Replace variable, V, currently in R with V
Cost(N') = Load-Cost(V) + Store-Cost(V') + Cost(N)
Add N' to children of N

Add N' to new-states set

Enddo

Endif

Enddo

Set curr_states set to new_states set

Enddo

Return new-states set

End BB-OPT

Figure 7.1: An optimal register assignment algorithm for basic blocks.

in the previous level to determine if that configuration contains the virtual

register being accessed. If the virtual register is contained in the configuration,
that node is duplicated at the next level and a zero-cost edge connects the two. If
the virtual register is not contained in a node, a virtual register access miss
occurs and spill code becomes necessary. For any configuration causing an access
miss, each virtual register in that configuration is replaced in turn by an access to
the faulting virtual register. An edge joining the two represents the cost, in spill
code, of going from the first mapping to the second. This cost is composed of the
cost of (possibly) storing the replaced register ifit is dirty^ and/or the cost of

^Every virtual register is assumed to have a unique memory location. Dirty refers to the
case where the value in a register is inconsistent with the value stored in the respective memory

104

I

I

I

vrlvrz*

vrlvr2*vr3vr4*vrl

vr2, vr4 live

a) Register Access Pattern

A vrlvr4*

vrlvr3 vr3vr2* vr2*vr3

vrlvr4*

0

vrlvr4* C

vr4*vr3

vr4*vrl

vrlvr3

: vr3vr4*: vr4*vr2* vr2*vr4*

vr4*vrl vr2*vrl

D vrlvr2* A vrlvr4*

b) An Allocation Tree

vr4*vr3

vr2*vr4*

vr3vr4*

vr3vr4*

vr3vrl

vrlvr4*

Figure 7.2: Building an assignment tree.

(possibly) loading the faulting register. Thus, if there are r real registers, a

faulting configuration in the current level will generate r configurations in the

next level, resulting in an optimal, but exponential method. Heuristics can (and

have been) used to prune the search space [45, 46, 48].

Once the last virtual register access is considered, all the leaves of the allocation

tree are examined for the lowest cost node. Tracing the path from the root to

this lowest cost node will yield an allocation of real registers to virtual registers

that results in the minimal cost in terms of memory loads and stores due to spill

code because it has exhaustively generated every possible allocation.

As an example, consider the register access pattern in Figure 7.2(a). In this

example there are two registers which have been initially assigned vrl to Rl and

vr4* to R2. The assignment tree in Figure 7.2(b) is constructed by applying

BB-Opt to the register access pattern with the initial mapping.

The first access to vrl is to a virtual register currently in the configuration,

therefore, no spill code is necessary. However, the next access to vr2* causes an

location.

105

access miss and spill code might become necessary. Two configurations are

generated at the next level, corresponding to assigning vr2* to R1 or to R2. The

left child assigns vr2* to R2, displacing vr4*. Since vr4* does not need to be

stored (its value is dead), there is no spill code generated as vr2* is a write. The

other possibility, assigning vr2* to R2, is represented by the right child and

displaces the variable vrl. Since vrl is consistent with the value in memory, it

does not need to be stored.

This process, examining the next variable access(-es) and checking whether they

are contained within the current configurations, continues for the remainder of

the variable access stream and the full tree in Figure 7.2(b) is generated. In

Figure 7.2(b), there are some nodes which have dashed outlines. These nodes can

be pruned from the tree as there are identical nodes at the same level (which will

generate identical sub-trees). Within a group of identical nodes, only the one

with lowest cost need be kept, breaking ties arbitrarily.

7.2 Extending the Basic Block Algorithm to

Loops

By applying the BB-Opt algorithm to the body of a loop, an optimal assignment
for a single execution of that code is obtained. Since this code is contained

within a looping construct, it is necessary for the register mappings at the

beginning and end of the code segment to match in order to correctly iterate over

that segment. In general, the assignment produced by BB-Opt will not satisfy

this criteria (i.e., the lowest cost configuration at a leaf of the assignment tree

does not necessarily match the root). Thus, this basic algorithm is not adequate

to optimally assign registers to loop code.

To remedy this, simply adding register-to-register move instructions and/or spill

code (loads and/or stores) to enforce a match could be tried. However, since the

cost of this additional spill code can vary greatly from each conceivable mapping

to another, and would vary further by unrolling the loop some number of times.

106

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

BB-Opt's results, which ignore this effect, cannot be optimal. Another

sub-optimal approach is to 'force' a match between loop top and bottom, i.e., to

choose from the exponential tree derived by BB-Opt the least cost leaf node

which is identical to the initial configuration (leaf configurations which match the

root configuration are not necessarily guaranteed to be those with lowest cost).

7.2.1 Terminology

The following terms are used in conjunction with the discussion of the Loop-Opt

algorithm.

Definition 7.2.1 An allocation tree is the tree produced by the application of
BB-Opt to some register configuration and register access pattern. The root of the
tree is the starting (given) register configuration and the leaves of the tree are
register configurations which represent the virtual-to-real register bindings at the
completion of the code segment. The allocation tree may contain many iterations
of the original loop.

Definition 7.2.2 An exit configuration is a particular register configuration
that is a leaf in some allocation tree.

Definition 7.2.3 An allocation path is a path through some allocation tree
from the root to some leaf. This path defines a (unique) virtual-to-real register
binding for the code segment.

Definition 7.2.4 An iteration ancestor of register configuration X is a
register configuration Y which lies on the allocation path from the initial register
configuration to X and the parent of Y and Y belong to iterations i and i -f 1 for
some i, respectively.

7.2.2 An Algorithm for Loop Register Allocation

It is not immediately obvious how many iterations suffice to produce an

assignment which results in the minimal amount of spill code. In fact, this is why

this problem has been an open issue. If the process of unwinding a loop and

applying BB-Opt is continued, the cost may be decreased. By iteratively

unrolling one loop iteration and applying BB-Opt to the resulting code, a new

107

loop body is produced which potentially spans several iterations of the original

loop with the characteristics that: a) the cost of spills per iteration in the loop

body is minimal; and b) the entry and exit configurations of the new loop match.

I

I

I
The algorithm for assigning registers to loop code, referred to as Loop-Opt, is ||
found in Figure 7.3. The general structure of this algorithm is to iteratively

unroll the loop one iteration and then to apply BB-Opt to the new iteration once

for each possible previous iteration exit mapping. Then the algorithm analyzes

each resulting exit mappings of that new iteration to determine if matches

between those nodes and iteration ancestors (i.e., a node in the assignment tree

that lies on the path from the root to this node and also lies on an iteration

boundary). If so, a legal register assignment to the unrolled loop has been found.

If not, then that exit mapping becomes one of the mappings which will be used

as an initial configuration to the next iteration.

Each time that a match is found, this algorithm computes the average cost per

iteration for that assignment (since the assignment may span multiple iterations).
If the loop were fully unrolled, the assignment with the lowest average cost per

iteration would be the optimal assignment for the loop. Since full unrolling of the
loop is not necessarily practical, this algorithm is parameterized with /F, the

number of unrollings of the loop body to perform. The lowest cost mapping

found with this "cut-off" scheme is a local minimum, but is "global" over the

number of iterations unrolled so far [K). Note that this algorithm must always |
get an average cost less than or equal to what BB-Opt would get because the

algorithm deals strictly with the costs calculated by BB-Opt and adds nothing |
more—beyond unrolling.

I

I
The heuristic modifications to the loop algorithm consist of two simplistic

pruning strategies. The first is width restriction where only the mbest jjj
configurations are kept for future expansion once all mappings at a particular
level are generated. That is, for each node in the current level, when an access |

7.2.3 Heuristic Pruning

108

I

I

I

I

I

I

I

I

I

1: Function Loop-Opt (REGS : Initial mapping;
2: VA : Variable access pattern;
3: K : number of iterations)
4: begin
5: set MIN to an empty configuration with oo average cost
6: set i to 0

7: set currestates set to REGS

8: loop
9: set save_state_set to null

10: foreach state S in the curr_state set do

11: new state set = BB-Opt(S, VA)
12: foreach state N in new state set do

13: if N matches an ancestor A then

14: Direct N to A

15: Delete N from new.states set

16: A»eCosi(JV) =
17: if AveCost(MIN) > AveCost{N) then
18: MIN = N

19: endif

20: endif

21: enddo

22: set save.state.set to save.set.state U new.set.state

23: enddo

24: set i to i + 1

25: set current register state set to save.state.set
26: until i = K

27: Return MIN

28: end Loop-Opt

Figure 7.3: A loop register assignment algorithm.

109

miss occurs, all possibilities for spills are considered. Then, of those newly

generated nodes, the m lowest cost nodes are retained for consideration. The

second is depth restriction and refers to the number of levels in the allocation

tree that are generated before pruning (i.e., width restriction is applied).

7.3 Convergence and Optimality of the Loop

Algorithm

Previously it was not known whether optimal register assignment for a loop could

be accomplished, regardless of the efficiency of the algorithm. The difficulty was

due to the fact that in order to ensure optimalityfor the overall loop, matching
of registers at the top and bottom of the loop body may require additional spills.

To optimally minimize these spills, loop unwinding with different register

assignments in each unwound iteration may be needed. Furthermore, it was not

known whether any finite unwinding can be guaranteed to converge and resuft in

an optimal assignment.

To answer these questions, the notion of a configuration graph is introduced. A

node in the configuration graph corresponds to a specific mapping of

virtual-to-real registers found at an iteration boundary and a directed edge in the
configuration graph corresponds to the cost in spill code of using the source node

as the initial mapping to an iteration, applying the loop algorithm and having

the sink node as one of the resultant nodes. Thus, the edge represents the cost of

spill code with the source node as the initial register assignment to and the sink

node resulting from an iteration of the loop.

Figure 7.4 illustrates the method of building a configuration graph. This example

uses the allocation tree from Figure 7.2 and has the leaf nodes labelled. A partial

configuration graph, shown in (b), can be constructed from the assignment tree

in (a). Traversing a path from the root configuration, which has been labelled A,
to each leaf configuration gives a directed edge in the configuration graph from A

to that respective node with a weight equal to the cost of the path. For instance.

110

A vrlvr4*

vrlvrz* vr2*vr4*

vrlvr3 vr3vr2* vr2*vr3

vrlvr4* vr4*vr3 : vr3vr4*: vr4*vr2* vr2*vr4* : vr4*vr3:

0 I// V 2/ V 1/^\
vrlvr4* C vr4*vrl \ c vr4*vrl E vr2*vrl

F

vr3vr4*

0

vr3vr4*

vr3v

vrlvr3 D vrlvr2* A vrlvr4* A vrlvr4*

3 3 3

a) An Ailocation Tree

s2

b) Partial Configuration Graph

Figure 7.4: Building a configuration graph from the assignment trees.

Ill

the path from the root to the first leaf node on the left, labelled A, has a cost of

two. Thus, an edge in the configuration graph from A to A is added with that

edge having weight two. Similarly, other edges are added to the configuration

graph by traversing the various paths. The partial configuration graph in (b)

results. To construct the complete graph requires that the assignment trees for

each possible exit configuration be built.

7.3.1 Convergence

In order to guarantee that this algorithm converges, it must shown that by

unrolling, new exit configurations (i.e., mappings of variables to registers) that

previously did not exist are not generated. Because this algorithm exhaustively

replaces registers each time a variable access miss occurs, all conceivable

mappings are generated. Stated another way, when an unrolling of the loop body

and assignment to that iteration is performed, the costs associated with going

from the initial to the derived exit mappings become known. Thus, the edges in

the configuration graph which connect the initial configuration with all of the

possible exit configurations are generated. If the assignment algorithm is again

applied to each of these nodes (e.g. unroll the loop body for another iteration),

directed edges from each of those exit configurations to one another are obtained.

Convergence of this algorithm, therefore, is equivalent to finding a cycle in the

configuration graph. Thus, this algorithm converges because the number of

variables and the number of registers is finite and, therefore, the number of

permutations of the variables in the registers is finite, although exponential.

7.3.2 Optimality

The question of optimality can also be addressed with the notion of the

configuration graph. An optimal allocation is one in which the memory traffic is

minimized. When the loop body is unrolled, an optimal allocation becomes the

allocation which has minimal memory trafiic or spill cost over the iterations that

are contained within the unrolled loop. Thus, in the optimal allocation, the ratio

112

of the spill cost for the new unrolled loop body to the number of iterations it

contains, is minimized. In the configuration graph this corresponds to the ratio of

the total cost of a cycle to the number of nodes in that cycle.

Definition 7.3.1 The minimal average spill cost for a loop is

min (1 < i < n) .

where Costj is the cost associated with edge j in some cycle of length i.

That is, the optimal allocation is found by examining the average cost of all

possible cycles in the configuration graph and taking the minimum.

Note that this does not simply correspond to the minimal cycle of length one in

the graph. A cycle of length one would imply that some allocation to the loop

body is minimal and its initial configuration naturally (i.e. without spills or

moves) matches its exit configuration. In the worst-case it is possible that the

optimal cycle must make a complete tour of the graph.

While the above can become quite expensive, Loop-Opt can be invoked with

some K significantly lower than the (expected) loop bound. In this case, the

allocation returned by Loop-Opt will be minimal for the given initial

configuration and number of unrollings {K), since the algorithm will explore all

possible allocations with the given initial configuration. In the graph this is

equivalent to finding the minimal average cycle with a bound [K) on the length

of the cycle, and the start node equal to the node in the graph which corresponds

to the initial configuration. If a lower average cost cycle exists, it must be farther

away from the given initial configuration than /<", or it may be reachable within

length K from some other configuration. Hence, the allocation returned must be

minimal for the given parameters. In addition, all the pruning optimizations

proposed in [45, 48] would still apply.

113

7.4 Extending the Loop Algorithm to

Distributed Memories

The algorithm presented earlier for register assignment in loops has the

underlying assumption that access to all available registers is equivalent, as is

found, for instance, in general-purpose processors and some embedded processors.

That is, all registers are consolidated into one register file and any variable

mapped to a register is uniformly available to any operation using that variable.

However, in the case of an architecture where the available registers have been

partitioned into disjoint register files or some of the available registers have

specialized purposes, this assumption must be modified to generate feasible

register assignments. Previously there was the assumption that enough ports on

the register file exist to support the reading and writing of all variables accessed

in a particular step. However, it is possible that restrictions are present on the

number of registers that are concurrently accessible (i.e., the number of

read/write ports on a register file constrains the number of reads/writes to that
register file).

7.4.1 Adding Register Classes to the Model

To extend the algorithms, the notion of register classes is introduced. Register

classes have been used in compilers [3, 78] and in microcode synthesis [32, 55] to

denote functional equivalences between registers. However, combining all

registers having the same (potential) usages into one class is not precise enough

for register assignment to the target architecture class. To see this, consider a

simple case where two register files are composed of "general-purpose" registers,
each register file connected to a different ALU. Clearly, any operation scheduled

on either ALU must have its operands present in the respective register file.

However, if the collective registers are grouped into one register class (called

"general-purpose"), it is possible that the necessary operands have been assigned
in such a way as to honor the register classes, but be invalid for execution, thus.

114

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Procedure Derive-Register-Classes()
Begin

Foreach FU, / in the architecture do
Foreach Input, i of / do

Set RegClass{f, i) to U all regs connected to i
Enddo

Foreach Output, o of / do
Set RegClass(f,o) to U all regs that / may write

Enddo

Foreach operation, op, that / can execute do
Set RegClass{f,opJnput) to U all regs that op may read
Set RegClass{f, opjoutput) to U all regs that op may write

Enddo

Enddo

End Derive-Register-Classes

Figure 7.5: An algorithm to derive register classes.

making that register assignment invalid. The main cause of this problem is not

due to registers being grouped by their equivalency, but, rather, how the

equivalency is established.

In this approach, two types of register classes are defined: connectivity register

classes and operation register classes. The connectivity register class (conn_RC)

defines the equivalency between registers as a function of the architecture's

connectivity, while the operation register class (oper_RC) defines the equivalency

between registers as a function of an operation's semantics. The motivation for

deriving both of these classes is that the connectivity of the architecture defines

which registers may be read from or written into by some functional unit, while

the semantics of a particular operation executing on a particular functional unit

may preclude the use some of the connected registers (a load operation, for

instance, may require that the memory address reside in a specific register, while

the functional unit that executes that load operation may be connected to many

registers which do not serve the same purpose).

Figure 7.5 contains an algorithm to derive the register classes for a given

115

architecture. A connectivity register class is derived for each of the inputs and
outputs of each functional unit in the architecture based upon which registers
may be accessed by that input or output. Operation register classes are derived

by examining which operations a functional unit can execute and selecting all of
the readable (and writable) registers imposed by an operation's semantics. In a

large number of cases, the conn_RC and oper_RC will be equivalent.

7.4.2 Extension to Special-Purpose Registers

The algorithm BB-Opt exhaustively generates variable mappings by placing a
variable in each register either when a read miss occurs (requiring a load of the
variable) or when a variable is written. When access to all registers is uniform,
this strategy is correct. However, when some registers have specialized usages,
this strategy generates some mappings which are invalid as variables have been

assigned to registers which cannot perform the required specialized function.

Thus, it is necessary to restrict the placement of variables into registers so that
variables only reside in registers which can perform the necessary functionality.

With the notion of register classes, the BB-Opt algorithm can be extended to

handle registers which have specialized usages. When a variable causes an access

miss, only those registers which perform the necessary functionality are
considered. These are found by intersecting the operation register class for the

accessing operation and the connectivity register class for the functional unit that

is executing that operation. Recall that register assignment is performed on a

scheduled dataflow graph. Thus, when performing register assignment the
operations (and their types) which access variables, as well as the functional

units that those operations execute on, are known—retrieving this information is
a simple matter.

Figure 7.6 contains an extended version of the BB-Opt algorithm for register
assignment with specialized register usages. The function op_o/ returns the

operation which currently accesses the variable V. From this, the type of
operation and the functional unit that executes the operation are found via calls

116

1: Function OPT-Assign (REGS : Initial register configuration;
2: VA : Variable access pattern)
3: Begin
4: Set curr_states set to REGS

5: Foreach variable access V in VA do

6: Set op_type to OperationType{op-of(V))
7: Set fu to FunctionalUnit{opjof{y))
8: Set RCJntersect to RegisterGlass{opA,ype) fl RegisterClassihi)
9: Foreach config. N in curr_state set do

10; If V G RCJntersect then

11: Copy N to new_states set
12: Otherwise

13: Forall registers R G RCJntersect do
14: N' = copy_state(N)
15: Replace variable, V, currently in R with V
16: Cost(N') = Load-Cost(V) Store-Cost(V') + Cost(N)
17: Add N' to children of N

18: Add N' to new_states set

19: Enddo

20: Endif

21: Enddo

22: Set curr_states set to new-states set

23: Enddo

24: Return new_states set

25: End OPT-Assign

Figure 7.6: Extending BB-Opt to special-purpose registers.

117

to functions OperationType and FunctionalUnit, respectively. Then, the

appropriate operation register class and connectivity register class are found and

intersected. RCJntersect, the intersection of these classes, defines the feasible

registers in which a variable V may reside. If the variable is in one of those

registers, then no spill code is necessary. If not, then all of the registers contained

in RC-intersect are candidates for replacement and spill code is generated.

7.4.3 Extension to Multiple Register Files

To extend the algorithms to assign registers to multiple register files requires that

the notion of a node in the assignment tree be altered. In assigning registers to

an architecture with a consolidated register file, the semantics of a node are that

all registers are uniformly available. For instance, if there are eight registers filled

with the variables a-h, a mapping of variables to registers is represented as

{a,b,c,d,e,f,g,h}, signifying that a is mapped to register one, b is mapped to

register two, etc.

To model multiple register files, the information contained in a node is

augmented to reflect the grouping of registers into a register file. Each node in

the assignment tree is then composed of a number of register sets equal to the

number of register files.

Assigning Variables

Figure 7.7 contains an extended version of the BB-Opt algorithm which assigns

registers to multiple register files. The main modification required when multiple

register files exist is, only the registers in the respective register file are examined

to determine if a variable is resident. If a variable is not contained within the

necessary register file, rather than loading it from memory, a check is first made

to see if the variable is contained within one of the other register files. If so, then

a move operation is used to transfer the value into the necessary register file if the

necessary connections exist as this transfer is likely to have a lower latency than a

load from (slower) memory. Otherwise, the variable is loaded from memory. Once

118

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Function OPT-Assign (REGS : Initial register configuration;
VA : Variable access pattern)

Begin
Set currjstates set to REGS

Foreach variable access V in VA do

Foreach config. N in curr_state set do
If /* V is already in proper RF */ then

/* Copy the current state to the next level */
Else Forall register files, RF, do

If /* V is contained in another RF */ then
/* Generate a move of V to this RF */
/* Check access restrictions */

Endif

Otherwise /* V must be loaded from memory */
/* Generate all possible spills of */
/* variables contained in this RF */
/* Check access restrictions */

Endif

Enddo

Set curr_states set to new-states set

Enddo

Return new-states set

End OPT-Assign

Figure 7.7: Extending BB-Opt to multiple register files.

a spill is considered^, any access restrictions present on the register files, such as

the number of registers which can be simultaneously accessed, are considered. If

the restrictions are satisfied, then the assignment is valid and is maintained for

future assignment, otherwise the mapping represents an assignment which causes

an access conflict to exist and the node is removed from future consideration.

A Note on Optimality

With the addition of register classes and extension to special purpose registers,

the algorithm derives optimal (i.e., spill minimizing) results. However, with

multiple register files and the presented version of this algorithm, it may be

^Different cost can be assigned for spilling to memory, fetching from memory and fetching

from another register file.

119

possible that sub-optimal results are obtained. Previously, when a variable was

assigned to a register, all registers were viewed as candidates for replacement.

Extending this to cases where some registers have special purposes merely

removes some number of registers as candidates (and, thus, serves to restrict the

growth of the assignment tree). However, in the case of multiple register files, the

algorithm may no longer derive an optimal solution. When one variable is

displaced by another in the same register file, that displaced variable may need to

be stored into data memory, requiring a load when it is needed in the future.

However, if a free register exists in some other register file, then it might be

possible to "store" the displaced value there temporarily until its future use.

Further, even if there is no free register in the remote file, it still possible that

some remote variable can be spilled without loss of performance, thus freeing a

register. In general, this effect can have cascading effect and become quite

complex, with a variable "hopping" from register file to register file until its

future use. Extending the algorithms to handle this would be straight-forward,

but impractical.

7.5 Comparing Loop Register Allocation with

Other Approaches

In this section the deficiency of previous approaches in obtaining an allocation of

registers to loops which contains a minimal amount of memory traffic is discussed.

Comparison is made with the approaches previously mentionin Chapter 2: graph
coloring, interval graphs and optimal (brute-force) allocation in basic blocks.

7.5.1 Comparison with Graph Coloring

In the traditional graph coloring approach, once a variable has been assigned to a

register, it is contained within that register for its entire lifetime. Equivalently, if
it is spilled to memory, it is always accessed from memory. This can lead to

situations in which a variable that is currently in a register is not being referenced

120

Loop: A = A + 1

C - Mem[i]
use C
use C

use A

use C

B B -f 1

use A

use B

use A

use C

use C
use B

use C

goto Loop

Loop Code

Region 1

Region 2

Region 3

ABC

Lifetime Chart Interference Graph

Figure 7.8: Example for graph coloring comparison.

and a variable that is in memory is currently accessed heavily. Thus, the

traditional graph coloring approach does not necessarily derive an allocation that

is optimal with respect to the minimization of loads and stores due to spill code.

As an illustration of this, consider the loop code found in Figure 7.8 with two

registers for allocation. In this example, there are three code regions: in Region

1, two variables (A and C) are defined and used; in Region 2, another variable B

is defined, and, at the end of this region, the variable A has its last use; in

Region 3, the variables B and C are used and B has its last use. Also pictured is

the lifetime chart and interference graph for the variables A, B, and C.

In this case, the interference graph is not 2-colorable, so one of the variables A,

B or C must be spilled. Because, in this example, C has a long lifetime and is

heavily accessed in Regions 1 and 3, most coloring heuristics will assign a register

to this variable and will pick one of A or B to spill. However, once either A or B

is selected and spilled, more spill code is generated than is necessary: if A is

spilled, then unnecessary spill code for A is inserted in Region 1 (as the register

allocated to B is not currently used); similarly if B is selected and spilled, more

spill code than necessary is inserted in Region 3 (as the register allocated to A is

not currently used).

Some research [25] has investigated this problem and has proposed a solution

based on splitting variable lifetimes. In this approach, rather that deciding

121

whether to spill A or B, the lifetime of one of those variables will be split. If the

lifetime of A is selected for splitting, then it will be split at the definition of B,

the point where the register pressure becomes too high, forming two lifetimes Al

(the lifetime of A in Region 1) and A2 (the lifetime of A in Region 2). Then, in

the subsequent allocation phase, Al and B can be allocated to a register while

A2 will be referenced from memory. The case for B is analogous.

This strategy will find a solution with less spill code as compared to the

traditional method, but still suffers from allocating a variable for the duration of

a lifetime (whether it be split or not)—C in this example. That is, once a

variable is allocated, it is not subject to further lifetime splitting. For instance,

to minimize memory traffic, the register allocated to C could be used by A2 (or

Bl) in Region 2 as C is not accessed. However, since C has already been

allocated to a register, its lifetime will not be split, and thus, this solution will

not be found by lifetime splitting.

Figure 7.9 contains spill code produced by graph coloring and the loop allocation

technique. In the graph coloring solution there are nine loads and stores that are

executed each iteration, while in the loop solution, there are twelve loads and

stores executed every two iterations (an average of six per iteration), yielding a

significant improvement in performance when the loop executes for many

iterations.

7.5.2 Comparison with Cyclic Interval Graphs

As mentioned previously, the interval graph for basic blocks can be optimally

colored in polynomial time [37]. However, in a global context, this is an NP-Hard

problem [36]. Cyclic interval graphs are an attempt to extend interval graph

coloring to loops. This approach arbitrarily breaks the lifetime of cyclic variables

at loop boundaries and then colors the lifetime intervals. When the intervals for

a given cyclic variable do not have the same color, register-to-register move

instructions and (possibly) load and store instructions are necessary to match the

register usages at the top and bottom of a loop.

122

Graph Coloring:

c
o

"5)
0)
cc

CM
c
o

'5)
0)
tr

CO
c
o

"5)
0)

CC

R1 R2

C Ld A

St A

Ld B

St B

Ld A

Ld B

Ld A

Ld B

Loop Solution:

c
_o
'iP
(0

d>

CM

C
o

'•p
(0

<u

§Ld a
'5)
0)
oc

R1

CM
c
o

*5)
0)

oc

Ld B

CO
c
o

'5)
0)

-OC
St B

§Ld A
O)
0>
oc

CM
c
o

"5)
0)

OC

St A

«Ld d
o

"5)
. a>

OC

Figure 7.9: Solution for graph, coloring comparison.

123

R2

Ld A

St A

LdC

Ld 0

-I.
Ld B

St B

Lifetime Charts

ABC

C1

A1

C2

A2

Cyclic Interval Allocation:

R1: A1, 02
R2: 01, B, A2

c
_o
*3
(0

0>

«M

C
_o
+3
(0
k.

0)

ABC

01

A1

81

02

A2

82

03

A3

Loop Allocation:

R1: A1, 02, 82, A3

R2: 01, 81, A2, 03

Figure 7.10: Example for cyclic interval graph coloring comparison.

124

As an example, consider the lifetime chart in Figure 7.10. In this example there

are two cyclic variables A and C which, when split at the loop boundary, have

two intervals each (labelled with a 1 or 2). Since there are at most two

overlapping lifetimes, two registers are sufficient for allocation. In the allocation

derived by the cyclic interval approach, the variable-to-register mapping at the

loop end is { A2 Rl, C2 R2 }. Because, at loop top, A is expected in R1

and C in R2, move instructions are necessary to swap A and C. However, for a

sequential processor or a parallel processor which cannot realize all the moves in

parallel (i.e., the moves must all be executed concurrently), this requires

temporary storage. If another register is not available, then load and store

instructions as well as move instructions are necessary to properly swap the

values.

Also depicted in Figure 7.10 is the allocation produced by the loop algorithm

presented here for the example. In the loop solution, rather than forcing the

values into registers (which requires spill code) the loop is unrolled for another

iteration and the next iteration is allocated with the variable-to-register mapping

found at the end of the previous iteration. Thus, an allocation is found where the

variable-to-register mappings at the iteration boundaries naturally match (i.e., no

spill code is necessary to enforce the match) and a solution with minimal spill

code—none in this case—is found.

7.5.3 Comparison with the Basic Block Strategy

The algorithm presented earlier finds a register allocation for a basic block with

minimal spill code cost as it exhaustively explores every possible register

allocation at each point in the code. However, this basic algorithm is not

adequate to allocate registers to loop bodies'̂ as the virtual-to-real register

configurations at the end of the loop body must match the initial register

assignments at the top of the next iteration body. The difficulty lies in the loop

body having two preceding basic blocks—the loop entry and "backedge." This

^Forsimplicity ofexposition the loop body does not contain conditionals. Although extensions
exist to handle this, they are beyond the scope of this thesis.

125

considerably complicates matters as it is now necessary, when allocating registers

to a loop body, to have the register configurations at the end of a loop body

match those at the beginning. If the register configurations, resulting from the

optimal basic block algorithm in [45, 46, 48], are not the same at these two

points, the computation performed by the resultant code is not correct unless

register moves and/or spills are generated to enforce a match. However, since the

cost of this additional spill code may vary greatly from configuration to

configuration and would vary further by unrolling the loop some number of

times, BB-Opt's results, which ignore this effect, cannot be optimal (i.e., cannot

produce minimal spill code) for loops.

As an illustration, consider Figure 7.11 with two registers for allocation. In this

example, VRl denotes virtual register one and R1 denotes register one. In (a),

the original code with virtual register assignment is found. In (b) the spill code

generated by applying BB-Opt to (a) appears using {VR3,VR5} as the initial

configuration (the exit configuration from the previous basic block).

Since the values present in the registers at loop body entry are VR3 and VR5, it

becomes necessary to re-load these values at the end of the loop body so that the

loop code remains correct in (b). Notice that the spill cost for the loop body in

(b) is eight (resulting from BB-Opt) for a single sequential execution, and a cost

of three was added in order to make it possible to iterate over this loop body

(i.e., so that the "backedge" values match the loop entry values).

Flow information can be used to further improve the code. The code segment

in (c) has been adjusted accordingly and results in a cost of ten. Note that even

though the register-to-register move does not read or write main memory, it is

still counted as it is a necessary consequence of the generated spill code and

requires functional resources to execute. This is another extension necessary in

adapting the BB-Opt algorithm to the handling of loops. Unfortunately, even

with this optimization, this method does not yield the minimal spill cost per

iteration.

Figure 7.12 illustrates an allocation where the cost per iteration is lower. This

126

VR7 = Memory[100]

VR6 = Memory[1011

VR3 = VR6 • 3.0

VR5 = VR7*2.0

VR2 = Memoiy[VRl+Basell

VR2 = VR3 * VR2

VR4 = Meraory[VRl+Base21

VR4 = VR5 ♦ VR4

VR2 = VR2 + VR4

VR2 = VR6 * VR2

VR2 = VR7 + VR2

Memoiy[VRl+Base3] = VR2

VRI=VRI + 1

a) Original Code

R1=R1*3.0

R2 = R2 ♦ 2.0

LoadVRI.R2

R2 = Memoiy[R2+Basel]

R2 = R1 ♦ R2

Load VRl, RI

R1 = Memory[Rl+Base2]

Store R2, VR2

Load VR5. R2

R1=R2*R1

Load VR2. R2

R2 = R2 + R1

Load VR6, Rl

R2 = R1*R2

UadVR7,Rl

R2 = R1 +R2

Load VRl. RI

Memory[Rl+Base3I = R2
R1=R1 + 1

Store RI, VRl

Load VR3, Rl

Load VR5,R2

b) BB-OPT allocated, cost = 11

R1=RI* 3.0

Load VRl. R2

R2 = Meraory[R2+Basel]

R2 = RI •R2

Load VRl.RI

RI = Memory[RI+Base2]

Store R2, VR2

Load VR5, R2

RI=R2*RI

Load VR2. R2

R2 = R2 + RI

Load VR6. RI

R2 = RI *R2

Load VR7. RI

R2 = R1 + R2

Load VRI.RI

MenK)iy[Rl-i-Base3]= R2
RI=R1 + I

Store Rl, VRl

Move RI,R2

Load VR3,RI

c) Flow optimized, cost = 10

Figure 7.11: A loop basic block allocated with BB-Opt.

lower cost of nine was found as a result of unrolling® the loop one iteration.

When a match in register usages was found between loop top and bottom, flow of

control is directed back to the loop entry. The resultant code is minimal and

correct as the allocation for the body of the second iteration resulted in an exit

configuration that is minimal and matches the entry configuration of the first

iteration as well. Thus correctness is preserved and a lower spill cost per iteration

is found at the expense of a larger object code size. Note that, in general, the

allocation produced may span multiple iterations.

®Wheii using this technique, the intermediate exit tests of the loop can be removed if the

number of unwindings is a multiple of the number of executed iterations. If this is not the case,

the exit test can simply be left. In general, an adjustment to the code speculatively executed

before the exit may be required.

127

LoadVRl,R2

R2 = Memory[R2+Basel]

R2 = R1 * R2

Load VRl, R1

R1 = Memory[RI+Base2]

Store R2, VR2

Load VR5, R2

R1 = R2 * R1

Load VR2, R2

R2 = R2 + R1

LoadVR6,Rl

R2 = R1 * R2

Load VR7, R1

R2 = RI +R2

Load VRl, R1

Memory[Rl+Base3] = R2

R1 = R1 + I

R2 = Memory[Rl+BaseI]

Store Rl, VRl

LoadVR3,Rl

R2 = R1*R2

Load VRl, Rl

Rl = Memoty[Rl+Base2]

Store R2, VR2

Load VR5, R2

Rl = R2 * Rl

Load VR2, R2

R2 = R2 + R1

Load VR6, Rl

R2 = Rr*R2

LoadVR7,Rl

R2 = R1 + R2

Load VRl, Rl

Memory[Rl+Base3] = R2

Rl = R1 + 1

Figure 7.12: A Loop-Opt allocated loop basic block with cost nine.

128

I

I
Chapter 8

Experimentation

In this chapter, experimentation with the techniques discussed in Chapter 4
through Chapter 7 is presented. Experiments were conducted with two separate

software entities: the first being a parallelizing compiler with an underlying

VLIW model in which the techniques for Redundancy Elimination (Chapter 4),

Transformation Integration (Chapter 5) and Copy Elimination (Chapter 6) are
implemented; the second, implemented separately due to complexity issues, is a

register allocator which performs the allocation scheme presented in Chapter 7.

These optimization techniques are applied to benchmark codes to study their

benefits. Code performance is chosen as the metric for studying merit as a

measure which specifically enumerates the improvement in register allocation

(e.g., the decrease in register pressure at various program points) does not
demonstrate the practical (attainable) benefits of the optimizations. Further,

reducing the register pressure reduces the resource demands at the respective

points in the code, allowing a code compactor greater freedom and flexibility in

scheduling. Finally, as the code is ultimately executed in a system, performance

improvement directly reflects the quality of the generated code.

In the first set of experiments with the parallelizing compiler, each technique was

studied in isolation. That is, only one of Redundancy Elimination,

META-Transformation or Copy Elimination was applied to the code with the

benchmark suite selected for experimentation exhibiting characteristics

appropriate for optimization. The results of this experimentation are found in

129

Section 8.3 through Section 8.5. Results for experimentation combining the

techniques, that is, applying all of the presented techniques to the code, are

found in Section 8.6. Results for experimentation with the register allocator on a

suite of benchmarks are presented in Section 8.7. Finally, results are summarized

in Section 8.8.

8.1 Measuring Improvement

For all experiments, the measure of performance is based upon Amdahl's Law

which measures Speed-Up as:

Spa&d Up ^y^^^^tinoptimized
CyclaSoptimized

where cyclesunoptimized is the number of cycles of execution for the unoptimized or

untransformed code and cyclesoptimized is the number of cycles of execution for

the code to which the optimization or transformation has been applied [44]. With

this measure, optimized code which executes twice as fast as unoptimized code

will have a Speed-Up of 2.00, for instance.

Typically, the unoptimized code is a sequential version of the input code while

the optimized code is a parallelized version. However, because the enhancements

discussed in this thesis are applicable during the parallelization process,

"unoptimized" code refers to parallelized code without application of the

particular transformation under consideration (but with all other optimizations

and transformations used to parallelized the code), while "optimized" code refers

to the application of that transformation during parallelization.

In order to assess the benefits of the transformations presented in this thesis, a

modification of the Speed-Up measure is proposed. The value of one is

subtracted from the above measure of Speed-Up to derive the net improvement

and that result is multiplied by 100 to indicate a percentage.

130

I

I

I

I

I

Thus, percentage improvement is measured as:

%Improvement = {Speed Up —1) * 100
I CycleSjijioptimized
. , -1 * 100
\ CycleSopiimized /

(CycleSunoptimized optimized |
cyclesQpiifnized CycleSoptimized)

(CycleSunoptimized CycleSoptimized\
\ cycleSoptimized)

* 100

*100

With this measure, optimized code which executes twice as fast as unoptimized

code will have a percentage improvement of 100%.

Throughout this chapter, the phrase percentage improvement of X over Y refers

to the above method of measure and reflects the net improvement or net gain as

a percentage of X over Y. The above equations then demonstrate percentage

improvement of optimized code over unoptimized code.

8.2 Experimental Set-up

For the purposes of experimentation, an architectural model was selected and is

found in Figure 8.1. As the information for this particular organization is

detailed to the compiler through a set of microcode macros, not "hard-coded"

into the compiler, other organizations—architectures with partitioned register

files and/or specialized registers, for example—are possible. The results

presented in this chapter reflect experimentation with this architecture, but may-

differ from experiment to experiment in the instruction latency assumptions.

In this architecture, all functional units are connected to a single register file and

are able to equally access all contained registers. Values read from the register

file are latched at the inputs to the functional unit while the result computed by

a functional unit is latched at the output before being written into the register

file. Each functional unit can execute only one instruction per cycle, but may be

pipelined for some number of execution cycles (the latency of the type of

131

Port

Addr Data

Memory
Unit

Secondary

Memory

Register File

Port

Addr

I

Data

Memory
Unit

A A
Functional Functional

Unit Unit

Embedded Processor

Figure 8.1: Architecture model for experimentation.

132

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Table 8.1: A description of the redundancy elimination benchmark suite.

Benchmark Abbr. Description

Numeric

General linear

recurrence equations
GLR Solves series of linear recurrences.

Prefix Sums Prefix Calculation of partial sums (scan).
Tri-diagonal Eliminiation Tri-diag Performs tri-diagonal elimination

below the diagonal of a matrix.
Scienti ic

2D-Hydrodynamics
implicit calculation

2D-Hydro Hydrodynamics particle simulation
exerpt.

Successive Over-Relaxation SOR Partial differential equation solver.
Image

Laplace edge enhancement Laplace Laplace method for enhancing all
edges.

Low-pass filter (arb. coeff.) Low-pass1 Accentuates low frequencies
(parameterized for arbitrary
enhancement).

Low-pass filter Low-pass2 Accentuates low frequencies.
North-edge gradient
enhancement

North-edge Enhances northerly direction edges.

Wavelet Transform Wavelet Image compression algorithm.

instruction). Instructions are mapped to functional units based upon their type,

with the exception of memory instructions.

Memory accessing instructions are mapped to specialized memory units.

Depending upon the type of port (read or write) the unit performs the necessary

address computation and provides an address to a load port for load instructions,

later writing the fetched data into the specified register in the register file, or an

address and datum fetched from the specified register for store instructions.

8.3 Eliminating Redundancy

The benchmark suite chosen to study the effects of redundancy elimination is

composed of codes from several application areas. Table 8.1 lists the benchmarks

133

Table 8.2: Statistics for the redundancy elimination benchmark suite.

Benchmark Total # Redundancy Removed

mem ops # % # %

GLR^ 8 2 25% 2 100%
Prefix 3 1 33% 1 100%
Tri-diag 4 1 25% 1 100%

2D-IIydro 12 4 33% 4 100%
SOR 14 3 21% 3 100%

Laplace 9 6 66% 6 100%
Low-pass1 9 6 66% 6 100%
Low-pass2 9 6 66% 6 100%
North-edge 9 6 66% 6 100%
Wavelet 20 14 70% 14 100%

along with a brief description of each. For each benchmark, Table 8.2 contains

the number of memory instructions that are contained within the respective

innermost loops^, the number and percentage of redundant memory instructions

and the number and percentage of redundant memory instructions that were

removed from the code. In all cases, the transformation was able to remove all of

the redundant memory instructions found in the benchmark suite.

The instruction latencies given to the compiler for this experimentation are: two

cycles for ALU instructions, three cycles for multiply instructions, and five cycles

for load/store instructions.

8.3.1 Observed Results

Two experiments were conducted: for each benchmark, two schedules were

generated with the sole difference between them being the application of the

redundancy elimination transformation. In the first experiment, schedules were

generated with the number of memory ports constrained between one and four

and no functional unit constraints to isolate the difference in transformed

schedules without the bias of functional unit constraints. In the second

^The GLR benchmark (marked with *) has two loops at the same nesting level. Throughout
this section, measurements of this benchmark relate to the sum of both loops.

134

I

I

I

I

I

I

Table 8.3: Results of experimentation with redundant elimination.

Number oo Resources 2 Adders, 1 Multiplier
Benchmark of Ports without with % Impr. without with % Imp r.
GLR* 1 25 14 79% 28 17 65%

2 24 12 100% 28 16 75%
3 24 12 100% 28 16 75%
4 24 12 100% 28 16 75%

Prefix 1 8 6 33% 9 6 50%
2 8 5 60% 9 5 80%
3 8 5 60% 9 5 80%
4 8 5 60% 9 5 80%

Tri-diag 1 10 7 43% 10 7 43%
2 9 6 50% 9 6 50%
3 9 5 80% 9 5 80%
4 9 5 80% 9 5 80%

2D-Hydro 1 32 26 23% 38 26 46%
2 28 24 17% 32 25 28%
3 26 24 8% 28 24 17%
4 25 22 14% 26 23 13%

SOR 1 24 22 9% 28 24 17%
2 22 21 5% 26 23 13%
3 21 20 5% 23 21 10%
4 20 20 - 20 19 5%

experiment, schedules were generated with one to four memory ports and the

functional unit constraints of two adders and one multiplier to study the effects

on performance in the presence of realistic functional unit resources. For each

experiment, the number of cycles in the scheduleof the innermost loop is counted.

The results for the numeric and scientific codes are found in Table 8.3 while the

results for the image codes are found in Table 8.4. The results are divided into

two columns, one for the cycle counts of schedules generated with infinite

resources and another for those generated with the resources of two adders and

one multiplier. In each resource column, the results are organized by the

schedules without redundancy removed, schedules with redundancy removed and

then the percentage improvement (% Impr) of the transformed schedules over the

untransformed schedules for the various memory port resources.

135

Ta
bl

e
8.

4:
R

es
ul

ts
of

ex
pe

rim
en

ta
tio

n
w

ith
re

du
nd

an
t

el
im

in
at

io
n

(c
on

't)
.

N
u

m
b

e
r

o
o

R
e
so

u
rc

e
s

2
A

dd
er

s,
1

M
ul

ti
pl

ie
r

B
e
n

c
h

m
a
rk

o
f

P
o

rt
s

w
it

h
o

u
t

w
it

h
%

Im
pr

.
w

it
h

o
u

t
w

it
h

%
Im

pr
.

L
ap

la
ce

1
2

1
1

6
3

1
%

2
9

2
1

3
8

%
2

1
9

1
5

2
7

%
2

8
2

0
4

0
%

3
1

9
1

5
2

7
%

2
6

2
0

3
0

%
4

1
8

1
4

2
9

%
2

4
1

8
3

3
%

L
ow

-p
as

s1
1

2
2

2
0

1
0

%
3

0
2

8
7

%
2

1
8

1
6

1
3

%
2

8
2

6
8

%
3

1
7

1
6

7
%

2
7

2
4

1
6

%
4

1
6

1
6

-

2
5

2
1

1
9

%

L
ow

-p
as

s2
1

1
7

1
5

1
3

%
2

7
2

4
1

7
%

2
1

6
1

4
1

4
%

2
5

2
3

9
%

3
1

4
1

3
8

%
2

4
2

2
9

%
4

1
3

1
2

8
%

2
2

2
2

-

N
or

th
-e

dg
e

1
1

9
1

7
1

2
%

2
5

2
2

1
4

%
2

1
8

1
7

6
%

2
2

2
1

5
%

3
1

8
1

6
1

3
%

2
2

2
0

1
0

%
4

1
7

1
6

6
%

2
1

2
0

5
%

W
a
v

e
le

t
1

1
2

6
1

0
0

%
1

2
6

1
0

0
%

2
8

6
3

3
%

8
6

3
3

%
3

7
6

1
7

%
7

6
1

7
%

4
6

6
-

6
6

-

1
3

6

i I I I I I I I I I I I I I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Results by Benchmark Type

The results of experimentation with the numerical benchmarks are found in

Table 8.3. From Table 8.2, it is noted that these benchmarks have a moderate

degree (21% to 33%) of redundancy and therefore a moderate increase in

performance is expected. The results for these benchmarks are better than

expected—the performance increases observed are between 33% and 100%, with

a majority of them above 50%.

Results for the scientific benchmarks are found in Table 8.3. These benchmarks

have a moderate degree (between 25% and 33%) of redundancy, so moderate

performance increases could be expected. The 2D-Hydro benchmark does

demonstrate a moderate increase (13% to 46%) in performance. However,

observed performance increases for SOR range between 5% and 17%. Although

applying our transformation is worthwhile, the lower performance increase stems

from the large number of memory instructions that remain after redundancy

removal. Since there are a large number of memory instructions which contend for

memory port resources, the schedules still remain bottlenecked by the memory.

The results for the image benchmarks are found in Table 8.4. These benchmarks

have a high degree (66% to 70%) of redundancy, and therefore we expect our

transformation to make a significant impact on performance. For the Laplace

and Wavelet codes this is indeed the case—we observed 27% to 40% increase in

performance for Laplace and 17% to 100% for Wavelet. For the other

benchmarks, the range of performance increase is lower, ranging between 5% and

19%. With so much redundancy, why are the performance improvements less

than expected? These benchmarks have long chains of computations which

effectively "hide" the latency of the memory instructions. When memory port

resources are scarce, delaying memory instructions has little effect on the critical

path and, hence, little effect on performance. However, when combining our

technique with other transformations that reduce the critical path length (tree

height reduction, for instance) the importance of removing redundant memory

instructions increases as those instructions now affect the critical path and thus

affect performance. (This is discussed further in the next section.)

137

100%-

75%-

50%-

25%-

(U

o £

53%

[5

Numeric

o

S §

Scientific

Cl< q̂
1-1 hJ

M bO
2 *o ^

Cu % S
i ^ io o «
j z ^

Image

Figure 8.2: Average performance improvement with unlimited functional units.

100%-

75%- 73% 73%

53%

2
o

iS

Numeric

36%

26% • I

Iff liggi
A «
S g

Scientific

1 'a a „
S g. I "S .a
.Si 9- j!: gg- I S "E S
^ -3 a ^ ^

Image

Figure 8.3: Average performance improvement with functional unit constraints.

138

I

I

I

I

I

I

Results by Resource Constraints

Figure 8.2 graphically shows the average increase in performance improvement

for the schedules produced with no functional unit constraints. Because the bias

of functional unit constraints has been removed from these measurements,

bandwidth limitations have effectively become the bottleneck to performance.

Clearly the numeric benchmarks benefit the most (54% to 95%), but the

scientific and image benchmarks show considerable performance improvements

too, 5% to 16% and 8% to 38%, respectively.

Figure 8.3 graphically shows the average increase in performance improvement

for the schedules produced with the functional unit constraints of two adders and

one multiplier. Except for the GLR benchmark (which is affected to a greater

extent by the particular resource constraints used), the average performance

improvement between the untransformed and transformed codes increase or stay

the same as compared with the results in Figure 8.2. These results indicate that

redundant elimination plays an important role in the presence of realistic

resource constraints, yielding 64% to 73% performance improvement for the

numerical benchmarks, 12% to 26% for the scientific benchmarks and 9% to 38%

for the image benchmarks.

8.3.2 Analysis

These improvements are largely due to the increased flexibility in scheduling that

redundancy removal offers. When redundant memory instructions are removed

from the code, this flexibility results from less contention for memory port

resources as compared to the untransformed code. Higher instruction mobility,

which also contributes to scheduling flexibility, is exhibited by instructions which

were originally dependent upon (now removed) memory instructions. These

instructions can now be scheduled into time cycles corresponding to the latency

cycles of the removed instruction, possibly utilizing free resources in those cycles.

Finally, critical path length can be reduced when memory instructions on the

critical dependency path in the loop are removed, again providing more flexibility

to the scheduler.

139

Table 8.5: A description of the META-Transformation benchmark set.

Benchmark Abbr. Description

Spatial Filters
Generalized Filter General Applies spatial filter having

arbitrary co-efficients.
Low-pass filter Low-Passl Applies median low-pass

filtering.
Low-pass filter Low-Pass2 Applies low-pass filtering

(all co-efficients powers of two).
High-pass filter High-Passl Applies median High-pass

filtering.
High-pass filter High-Pass2 Applies High-pass filtering

(all co-efficients powers of two).
Edge Enhancement

Laplace Transform Laplacel Applies Laplace method for
edge enhancement.

Laplace Transform Laplace2 Applies Laplace method for
edge enhancement (all
co-efficients powers of two).

North-gradient North-Grad Accentuates northerly (upward)
edges.

Matched-edge Enhancement Match Accentuates matching edges.
Blurring

Blurring Blur Performs blurring of an image.
Image Compression

Wavelet Transform Wavelet Image compression algorithm.
Predictor/Corrector Pred-Corr Image compression algorithm.

All of these factors—rless resource contention, higher instruction mobility and
critical path length reduction—combine to increase scheduler flexibility and

result in the generation of higher quality schedules.

8.4 Integrating Program Transformations

The benchmark suite chosen to study the META-Transformation comes from

image codes as these codes exhibit both accessing of large amounts of data and

long chains of computation, making them particularly suited to redundancy

140

I

elimination and tree height reduction. Table S.5 lists the benchmarks along with

a brief description of each. The spatial filters, edge enhancements and blurring

benchmarks are obtained from [56], while the image compression benchmarks are

obtained from [72].

Latencies given to the compiler are: two cycles for add/subtract instructions,

three cycles for multiply instructions, and two cycles for load/store instructions.

Schedules were generated with the functional resources of two adders and one

multiplier^ and a two-port memory.

8.4.1 Observed Results

Two schedules were produced for each benchmark: The first schedule used the

traditional approach of applying transformations as they become possible; the

second schedule utilized the Meta-Transformation approach with the heuristic

as previously outlined (Section 5.3.2). The goal of this experiment is to

determine the added freedom and flexibility gained by the scheduler and the

ability of the heuristic META-Transformation to produce more compact schedules

and, thus, generate higher performance code.

Table 8.6 presents the observed results on the benchmark suite. The column

labelled "FUs" indicates the functional unit resources used in generating

schedules for the respective benchmark (e.g., 2-l-,l* uses two adders and one

multiplier). The columns labelled "Trad" and "Meta" contain the number of

cycles of execution for the inner loop schedules produced with the traditional

approach and with the META-Transformation, respectively. The last column

contains the percentage performance improvement (% Impr) of the

META-Transformation over the traditional approach.

The percentage improvements over the benchmark suite ranged from 9% to 23%.

This improvement is significant as it is derived solely from the ordering of

transformation application. That is, for both approaches, the same set of program

^In some cases the multiplier was not necessary as some co-efBcients were powers of two and

resulted in shifts in the generated code.

141

Table 8.6: Results of experimentation with META-Transformation.

Benchmark Resources META-Transformation Traditional %Impr.
2 Adders 1 Mult. Approach

General • • 18 20 11%
Low-pass1 • • 11 12 9%
Low-pass2 • 12 14 17%
High-pass1 • • 15 17 13%
nigh-pass2 • 13 16 23%

Laplacel • • 10 12 20%
Laplace2 • 16 19 19%
North-Grad • 15 18 20%
Match • 21 25 19%

Blur • 28 31 11%

Wavelet • • 15 18 20%
Pred-Corr • 9 11 22%

transformations was available to the code scheduler: in one case, transformations

were applied whenever possible, and, in the other, were sometimes inhibited by

the META-Transformation with purpose of improving register usage.

For the spatial filters, an average of 15% improvement was observed, while for

the edge enhancements, an average of 20% improvement was observed. Both of

these types of benchmarks exhibit the "neighborhood of values" characteristic

found in the introductory example to Chapter 5 where a new value is based upon
a window of adjacent array items. Thus, these benchmarks exhibit a high degree

of redundancy as well as long computation chains, offering many opportunities

for the META-Transformation to influence the optimization of the code and

produce significant improvement.

For the blur benchmark, which has a moderate amount of redundancy and

moderate computation chains, an 11% improvement was observed, commensurate

with the opportunity for META-Transformation to improve the code.

Finally, a 21% improvement was observed for the image compression benchmarks

which have a small amount of redundancy, but very long computation chains,

demonstrating that the META-Transformation was able to derive significant

142

I

I

I

I

I

I

improvement when the application code displays lower degrees of redundancy.

8.4.2 Analysis

These results demonstrate that integration of the transformations results in

better performance due to better resource allocation. With the integrated

approach, array values and intermediate values are kept in registers for shorter

amounts of time (versus the traditional approach) as instructions on redundant

values are executed during the latency of those memory instructions that remain.

This allows the registers containing values with short lifetimes to be available

sooner for allocation to other instructions, resulting in greater scheduling freedom

when registers are a critical resource.

8.5 Copy Elimination

The benchmark suite chosen to study the effects of copy elimination is composed

of codes from several application areas. Table 8.7 lists the benchmarks along

with a brief description of each. The latencies used for scheduling are: one cycle

for copy instructions, two cycles for add/subtract instructions, three cycles for

multiply instructions and three cycles for memory accessing instructions. For

functional unit constraints, the architecture contains two add/subtract units, one

multiply and a single port to memory.

8.5.1 Observed Results

Three schedules were generated: the first schedule contained copy instructions,

the second schedule applied the copy elimination algorithm and the third used a

heuristic version of copy elimination with the maximum number of iterations of

unrolling on any path bounded by three.

Table 8.8 provides a comparison of the observed results on the benchmark suite

143

Table 8.7: A description of the copy elimination benc1iTri?)Tl<^iit.p.
Benchmark Abbr. Description

Numeric

Cholesky Conjugate
Gradient

Cholesky Computes (incomplete) Cholesky
conjugate gradient.

Tri-diagonal Eliminiation Tri-diag Performs tri-diagonal elimination
below the diagonal of a matrix.

General linear

recurrence equations
GLR Solves series of linear recurrences.

State Equations State Eqs. Solves state equations.
Partial Differential

Equations Solver
PDS Partial differential equation solver,

exerpt.
Integrator Predictor Integrator Performs integration prediction.
Difference Predictor Difference Performs difference prediction.
Prefix Sums Prefix Calculation of partial sums (scan).
Difference Sums Diff. Sums Calculation of difference sums.

Scientific

2D-Hydrodynamics
implicit calculation

2D-Hydro Hydrodynamics particle simulation
exerpt.

2D-Particle in

Cell

2D-Particle 2D particle in cell simulation.

Table 8.8: Results of experimentatioii with copy elimination.
Benchmark Gode with Copies Copies Eliminated % Impr
Cholesky 13 11 18%
Tri-diag. 16 14 14%
GLR 10 9 11%
State Eqs 23 19 21%
PDS 16 12 34%
Integrator 18 16 13%
Difference 18 15 34%
Prefix 10 8 25%
Difference sum 22 17 29%

2D-Hydro 35 31 13%
2D Particle 24 20 20%

144

for the schedules generated with copy elimination and without copy elimination.

The first two columns contain cycle counts for one iteration of the respective

schedules while the last column contains the percentage improvement of copy

eliminated code over code scheduled with copies.

The performance improvement over the benchmark suite ranged from 11% to

34%. For the scientific benchmarks a 13% performance improvement was

observed for the 2D-Hydro while a 20% performance improvement was observed

for 2D-Particle. The performance improvement for the 2D-Hydro is due to the

particular computation being performed. In this case, several variables are

defined and used throughout the computation. During loop pipelining, many

copies are generated. When those copies are removed several resources (those

that the copy instructions occupied) are free, providing greater scheduling

freedom.

For the numerical benchmarks, an average performance improvement of 21% was

observed. Most of the numerical codes contain recurrences which span few

iterations. During loop pipelining, copy chains are generated with the length of

the copy chain equal to the number of iterations spanned by the recurrences.

When copies are eliminated, some resources become free over those iterations

allowing better code compaction.

Table 8.9 contains the observed results on the benchmark suite for copy

elimination and heuristic copy elimination with an unrolling bound of three

iterations. Noted in the table is the cycle counts for one iteration of the respective

schedules as well as the number of iterations spanned by the unbounded copy

elimination schedules. In some cases, the heuristic version was able to derive the

same performance solution as the unbounded version (3 of 11) and in other cases

derived solutions with results which are close to the unbounded (8 of 11).

8.5.2 Analysis

As noted in Chapter 6, the copy elimination algorithm does not affect the register

requirements of the code—the copy eliminated code uses the same number of

145

Table 8.9: Results of experimentation with heuristic copy elimination.
Benchmark All Copies Heuristic Number of Number of

Eliminated Version Iterations Copies Remaining
Cholesky 11 11 3 0

Tri-diag 14 15 5 2

GLR 9 9 3 0

State Equations 19 20 3 1

PDS 12 13 5 2

Integrator 16 17 3 1

Difference 15 16 3 2

Prefix 8 8 2 0

Difference sum 17 20 3 3

2D-Hydro 23 29 4 5

2D Particle 20 22 4 3

registers as the original code: Without copy elimination, values are passed in the

code from definition to last use through copy chains. In code where copies have

been eliminated, registers have been re-allocated so that the definition and all

uses of a value are made explicit (i.e., they refer to the same register).

The performance improvements resulting from the use of this technique arise

from the freeing of resources that copy instructions require for execution,

allowing the scheduler to better compact the code (perform code motion into the

free resources). In some cases, this compaction may result in reducing the

register requirements as values' lifetime's may actually decrease with respect to

the lifetimes of the code scheduled with copy instructions.

Therefore, code which benefits the most from this technique will be that in which

there is a significant ratio of number of copy instructions to total number of

instructions and the necessary number of iterations to unroll to eliminate those

copies is few. The resulting code will then span a few iterations of the original

code, but will have many free resources to provide significant compaction.

Another consideration in embedded systems is the size of the code that is

generated. Examining the results of Table 8.9 demonstrates that using a heuristic

version of copy elimination provides enough flexibility to gain substantial

146

I

I

I

I

I

I

I

I

I

Table 8.10: A description of the benchmark suite for all transformations.

Benchmark Abbr. Description

Numeric

Prefix Sums Prefix Calculation of partial sums (scan).
Scientific

2D-Hydrodynamics
implicit calculation

2D-Hydro Hydrodynamics particle simulation
exerpt.

Successive Over-Relaxation SOR Partial differential equation solver.
Image

Low-pass filter Low-pass Accentuates low frequencies.
North-edge gradient
enhancement

North-edge Enhances northerly direction edges.

Table 8.11: Remaining number of copy instructions after parallelization.
Benchmark Number of Copy Instructions

Renaming Redundancy Elim.

Prefix 3 1

2D-Hydro 6 4

SOR 5 3

Low-pass 5 6

North-edge 4 6

performance improvement while keeping the code size manageable. For example,

for the Tri-diag benchmark, completely removing all copies results in a schedule

of 14 cycles per iteration and spans 5 iterations. For the heuristic version, which

spans 3 iterations, a schedule of 15 cycles per iteration results. Thus, by

exploring different heuristic unrolling bounds, various performance versus code

size measures can be gained.

8.6 Combining Techniques

In this section, the observed results for experimentation combining the

techniques examined thus far, Redundant Elimination, META-Transformation

and Copy Elimination, are presented. The benchmark suite used for this

147

Table 8.12: Results of experimentation with all transformations.
Benchmark All Transformations No Optimizations % Impr.
Prefix 8 10 25%

2D-Hydro 23 31 35%
SOR 22 27 23%

Low-pass 10 14 40%
North-edge 15 19 27%

experimentation is composed of numerical, scientific and image codes. Table 8.10
lists the benchmarks along with a brief description ofeach. For each benchmark,
Table 8.11 lists the number of copy instructions that remain in the code after

parallelization. These numbers are broken down into two categories: copies
generated by the redundant elimination optimization and copies generated by
renaming. In all cases, the copies were eliminated.

The functional unit resources used for scheduling are two ALUs, one multiplier
and one port to memory. The instruction latencies used are one cycle for ALU
instructions, two cycles for multiply and two cycles for loads/stores.

8.6.1 Observed Results

For each benchmark, two schedules were generated: the first schedule did not
have any of the techniques applied to it while the second had all techniques
applied. From each schedule cycle counts were taken.

Table 8.12 provides a comparison of the observed results between the schedules

generated with the techniques and those generated without the optimizations.
The first two columns present the cycle counts for the respective schedules while
the last column contains the percentage improvement of the transformed

schedules over those without optimization. The performance improvement over
the benchmark suite ranged from 23% to 40%.

148

I

I

I

I

I

I

I

I

I

8.6.2 Analysis

One of the drawbacks with both the Redundancy Elimination and Renaming

techniques is the generation of copy instructions which can serve to reduce the

potential performance enhancement of the optimizations. From Table 8.11, both

techniques generate a significant number of copies. The results presented in this

section demonstrate that these techniques can be utilized to exploit parallelism in

the code, as, once all transformations are integrated into one parallelization

entity, as this experimentation elucidates, the copy instructions (overhead

instructions) can be eliminated. However, eliminating the copy instructions

requires an increase in the code size due to loop unrolling and must be

constrained accordingly.

8.7 Allocating Registers to Loops

This section presents the observed results of experimentation with the register

allocator described in Chapter 7. Two series of experiments were conducted. The

first utilized a single file register model, while the second utilized a partitioned

register file model.

Table 8.13 lists the benchmark suite used for experimentation which consists of

several numerical codes which are compiled into assembly code. To obtain larger

code segments and live ranges, the assembly source is unrolled three times and

then the register access patterns are derived.

8.7.1 Experimentation with a Consolidated Model

Using the register access patterns and a consolidated register file model, several

experiments were conducted with the BB-Opt algorithm, the Loop-Opt

algorithm and heuristic versions and then a comparison of a heuristic version of

Loop-Opt with a graph coloring algorithm was done.

149

Table 8.13: A description of the benchmark suite for register allocation.
Benchmark Abbr. Description

Numeric

Hydrodynamics fragment Hydro Calculates (partial) hydrodynamics
equations.

Cholesky Conjugate
Gradient

Cholesky Computes (incomplete) Cholesky
conjugate gradient.

Inner Product Inner Computes inner product of
two matrices.

Banded Linear

Equations
BLE (Partial) Banded linear,

equations solver.
Tri-diagonal Elimination
(below diagonal)

Tri-diag Performs diagonal elimination on
a matrix (below diagonal).

General Linear

Recurrence Equations
GLR Solves systems of linear recurrences.

State Equations State Eqs Simulates state equations.
ADI Integration ADI Performs ADI Integration.
Integrator Predictor Integ Performs (partial) integrator,

prediction.
Difference Predictor Diff Performs (partial) difference,

prediction.
Prefix sums Prefix Calculation of partial sums (scan).
Difference sums Diff Sums Calculation of partial differences.

150

I

I

I

I

I

I

I

I

I

BB-Opt

Forcing Register Usages. One idea presented in [48] as an extension to

Horwitz's algorithm to deal with simple loops is to "force" the register mappings

to be equal at the loop entry and exit (referred to as the "Force Method"). In

this scheme only one iteration of the loop body is examined. Some set of values is

chosen as members in both the initial (loop top) and final (loop bottom)

mappings and allocation proceeds.

With this strategy, although all the selected values are present in the registers at

loop end, it may still be possible that "spill" code is necessary as the values are

not in the correct registers (e.g., two registers may need to be swapped).

Mismatches can be dealt with by introducing register-to-register copy

instructions at this point^.

Note that, since this technique only examines one iteration, it may not

necessarily find an allocation with minimal spill code over loop execution as the

minimal allocation may span multiple iterations.

Patching Register Usages. Another approach in adapting BB-Opt to loops is

to find the minimal leaf from the allocation tree and introduce spill code to

match it with the initial configuration (referred to as the "Patch Method"). This

method is not guaranteed to produce minimal spill code as the costs of patching

each conceivable exit mapping with each conceivable entry mapping can vary

greatly. Further, even if all possibilities were examined, a solution with a minimal

amount of spill code may still not be found as the minimal solution may span

multiple iterations.

Results of Forcing and Patching Methods. Table 8.14 shows the results for

both of the Force and Patch methods for two and four registers. For each

method, a column labelled "min" indicates whether this method produced less

overall spill code. In some cases, results are unavailable as they were

^Fixing the selected values in registers a priori severely restricts this approach. Consider the

selected values of a, b and c and three free registers. Fixing a, b and c positionally in registers

precludes the solutions {b a c} and {a c b}, for instance, that would normally be found by the

"force" method.

151

Table 8.14: Spill costs for the two methods of matching register maps.
BB-Opt

Benchmark Number of Force Method Patch Method

Registers

2 13,734 13,334
Hydro 4 6,668 5,868

2 4,736 4,670
Cholesky 4 1,934 1,467

2 11,334 10,334
Inner 4 5,334 4,000

2 3,920 3,752
BLE 4 2,296 1,904

2 17,316 17,427
Tri-diag 4 5,772 5,994

2 17,649 17,760
GLR 4 7,326 6,438

2 6,060 5,760
State Eqs 4 - -

ADI

2

4

—

2 5,338 5,202
Integ 4 1,360 1,224

2 6,494 6,732
Diff 4 - -

2 12,987 13,653
Prefix 4 6,660 5,661

2 12,987 13,653
Diff Sums 4 6,660 5,661

computationally infeasible to calculate.

In many cases, it is more cost-effective to introduce spill code at the loop exit

than to force the register mappings to be equal. That is, the Patch method

produced the best results in 14 of 20 cases. These results are largely due to the

upper bound on "Patching" spill code that results with this technique. In the

worst case, all values in registers need to be spilled (stores to memory) and must
be replaced by new values (loads from memory). With two registers, for instance,
the total patch spill code is bounded by four, as potentially two values need to be

stored and two values need to be loaded.

152

I

I

I

I

I

I

I

I

I

Although the Force method out-produced the Patch method in 6 of 20 cases, the

main drawback of this technique lies with the need to keep certain values in

registers. Because values are necessary at loop end (those values that were

selected), keeping them in registers introduces an artificial increase in the register

pressure. This, in turn, results in a uniform (i.e., all solutions in the allocation

tree are affected) increase in spill code.

Loop-Opt

Table 8.15 contains the observed results when Loop-Opt was applied to the

benchmark suite. The column labelled BB-Opt contains the observed results

from Table 8.14 which provided the least spill cost while the Loop-Opt column

contains the observed results for the loop algorithm. The spills per iteration

columns shows the number of spills in a single iteration. Note that these are not

necessarily whole numbers for the BB-Opt column as the spill code was allocated

for a trace of three iterations, so this cost represents an amortized cost. The last

column contains the performance improvement of Loop-Opt over BB-Opt.

These results demonstrate that the savings in spill cost uniformly increases as the

number of available registers increases. When only two registers are present, the

maximal difference between the two methods is bounded by four (in the worst

case both registers have to be spilled and then loaded at the end of the loop). As
the number of registers increases, this bound also increases. Thus, Loop-Opt will

have an increased performance advantage over BB-Opt as the number of registers

increases (especially if the code has high register pressure). However, due to
limited computing resources, some of the longer loops and higher number of

registers were too time, consuming to compute.

Heuristic Loop-Opt

In Table 8.16, the observed results for the heuristic version of Loop-Opt are

found. Because the heuristic bounds the width of the search tree, the first

column, labelled "Width = 1", represents the case where the minimum

configuration is expanded at each step when deriving the allocation tree. This

strategy yields results very similar to those obtained by the BB-Opt algorithm

with Patching. As the width value is increased, closer approximation of the

153

T
ab

le
8.

15
:

R
es

ul
ts

of
lo

op
re

gi
st

er
al

lo
ca

tio
n

al
go

ri
th

m
.

B
B

-O
p

t
L

oo
p-

O
pt

%
Im

pr
.

B
e
n

c
h

m
a
rk

N
u

m
b

e
r

D
y

n
am

ic
S

pi
ll

s
D

y
n

am
ic

S
pi

ll
s

o
f

Sp
ill

p
e
r

S
pi

ll
p

e
r

R
eg

is
te

rs
C

o
st

It
e
r.

C
o

st
It

e
r.

2
13

,3
34

3
3

.3
12

,8
00

3
2

4
%

H
y

d
ro

4
5,

86
8

1
4

.7
4,

80
0

1
2

2
3

%
2

10
,0

00
5

0
9,

00
0

4
5

1
1

%
C

ho
le

sk
y

4
1,

46
7

7
.3

1,
40

0
7

4
%

2
10

,3
34

1
0

.3
9,

00
0

9
1

4
%

In
n

e
r

4
4,

00
0

4
2,

00
1

2
1

0
0

%
2

3,
75

2
2

2
.3

3,
52

8
2

1
6

%
B

L
E

4
1,

90
4

1
1

.3
1,

51
4

9
2

6
%

2
17

,2
64

5
2

17
,2

64
5

2
—

T
ri

-d
ia

g
4

5,
77

2
1

7
.4

5,
31

2
1

6
9

%
2

17
,6

49
5

3
17

,6
49

5
3

_

G
L

R
4

6,
43

8
1

9
.3

5,
66

1
1

7
1

4
%

2
5,

76
0

4
8

5,
76

0
4

8
—

S
ta

te
E

qs
4

-
-

-
-

-

A
D

I

2 4
:

—
—

—
—

2
5,

10
2

5
1

5,
00

0
5

0
2

%
In

te
g

4
1,

22
4

1
2

1,
10

0
1

1
9

%
2

6,
49

4
6

5
6,

20
0

6
2

5
%

D
if

f
4

-
-

-
-

—

2
12

,9
74

1
3

12
,9

74
1

3
—

P
re

fi
x

4
5,

66
1

5
.7

4,
99

1
4

4
3

%
2

12
,9

74
1

3
12

,9
74

1
3

—

D
if

f
S

u
m

s
4

5,
66

1
5

.7
4,

99
1

4
4

3
%

1
5

4

optimal allocation by the heuristic occurs. With very few exceptions, increasing

the width of the allocation tree yields improved results. In the cases where the

results did not continue to improve, the heuristic expanded a node which

generated children that locally appeared to be better choices (i.e. they had lower

costs than their siblings) and served to "knock" other nodes out of the expansion

set. As the width of the tree is expanded, this phenomena diminishes rapidly

because, at each stage in the allocation tree, there are only a few nodes which are

good candidates and as the width of the tree expands, it becomes evident which

of them will eventually lead to the minimum.

Table 8.16 demonstrates some cases with eight registers where no spill code is

necessary. In these cases, the number of available registers has increased beyond

the number of overlapping lifetimes, therefore no spill code is required.

Tables 8.17 and 8.18 show observed results for the algorithm with the depth

heuristic and the width heuristic working in conjunction. In both cases, heuristic

widths of one, two, and five were used. In Table 8.17 a depth of two was used;

while in Table 8.18 a depth of three was used. These results show that the spill

cost per original iteration decreases as the width increases with very few

exceptions, particularly as the depth increases.

Comparison of Heuristic Loop-Opt with Graph Coloring

The register allocation algorithm currently most widely used is based upon the

graph coloring paradigm. The Gnu Standard Distribution C Compiler (GCC)

implements a graph coloring scheme in allocating registers. Also, the code

produced by this compiler is generally accepted to be of high quality [40]. This

compiler is therefore used as a metric of code produced by a graph coloring

algorithm for the benchmarks.

Gcc was configured to produce code for the SPARC architecture and the register

allocation module was modified so that GCC would produce code for four and

eight registers^. For the heuristic version of Loop-Opt a width of two is used.

Table 8.19 summarizes the results of the code produced by GCC as well as the

^Gcc produced an internal compiler error when the register count was set to two.

155

T
able

8.16:
R

esults
ofheuristic

w
idth

restriction
only.

B
e
n

c
h

m
a
rk

W
id

th
=

1
W

id
th

=
5

N
u

m
b

e
r

o
f

R
egisters

C
o

st
Ite

rs
C

ost
/

Ite
r

C
o

st
Ite

rs
C

ost
/

Ite
r

2
13,200

3
3

3
12,800

3
3

2
H

y
d

ro
4

5,600
3

1
4

5,600
3

1
4

8
1,200

3
3

1,200
3

3

2
10,000

3
5

0
9,000

3
4

5
C

holesky
4

1,600
4

8
1,600

4
8

8
0

2
0

0
2

0

2
10,000

3
1

0
9,000

3
9

In
n

e
r

4
2,000

4
2

2,000
4

2

8
0

2
0

0
2

0

2
4,032

3
2

4
3,528

3
2

1

B
L

E
4

1,680
5

1
0

1,680
4

1
0

8
1

6
8

3
1

1
6

8
3

1

2
19,256

3
5

8
17,264

3
5

2
T

ri-diag
4

5,312
4

1
6

5,312
4

1
6

8
0

3
0

0
3

0

2
19,647

3
5

9
17,649

3
5

3
G

L
R

4
5,661

4
1

7
5,661

4
1

7
8

0
2

0
0

2
0

2
5,760

3
4

8
5,760

3
4

8
S

tate
E

qs
4

2,040
4

1
7

2,160
4

1
8

8
3

6
0

4
3

3
6

0
4

3

2
5,624

3
2

9
6

4,788
3

2
5

2
A

D
I

4
2,128

4
1

1
2

2,109
4

1
1

1

8
7

9
8

3
4

2
8

5
5

3
4

5

2
5,100

3
5

1
5,000

3
5

0
In

teg
4

1,300
4

1
3

1,200
4

1
2

8
1

0
0

3
1

1
0

0
3

1

2
6,200

3
6

2
6,200

3
6

2

D
iff

4
2,200

4
2

2
2,100

4
2

1

8
6

0
0

3
6

5
0

0
3

5

2
14,970

3
1

5
12,974

3
1

3
P

re
fix

4
3,992

4
4

3,992
4

4

8
0

2
0

0
2

0

2
14,970

3
1

5
12,974

3
1

3
D

iff
S

u
m

s
4

3,992
4

4
3,992

4
4

8
0

2
0

0
2

0

1
5

6
II

f* I I
T

ab
le

8.
17

:
R

es
ul

ts
of

he
ur

is
ti

c
d

ep
th

of
tw

o.

D
ep

th
=

2
B

e
n

c
h

m
a
rk

N
u

m
b

e
r

o
f

W
id

th
=

1
W

id
th

=
2

R
eg

is
te

rs
C

o
st

It
e
rs

C
os

t
/

It
e
r

C
o

s
t

It
e
rs

C
os

t
/

It
e
r

2
13

,2
00

3
3

3
12

,8
00

3
3

2

H
yd

ro
4

7,
20

0
3

1
8

5,
20

0
3

1
3

8
1,

20
0

2
3

1,
20

0
2

3

2
10

,4
00

3
5

2
9,

20
0

3
4

6

C
ho

le
sk

y
4

1,
60

0
3

8
1,

40
0

3
7

8
0

2
0

0
2

0

2
10

,0
00

3
1

0
9,

00
0

3
9

In
n

e
r

4
2,

00
0

2
2

2,
00

0
2

2

8
0

2
0

0
2

0

2
4,

03
2

3
2

4
3,

52
8

3
2

1

B
L

E
4

1,
68

0
4

1
0

1,
68

0
3

1
0

8
1

6
8

2
1

1
6

8
2

1

2
19

,2
56

3
5

8
17

,2
64

3
5

2

T
ri

-d
ia

g
4

6,
64

0
3

2
0

5,
31

2
3

1
6

8
0

2
0

0
2

0

2
19

,6
47

3
5

9
17

,6
49

3
5

3

G
L

R
4

5,
66

1
4

1
7

5,
66

1
4

1
7

8
0

2
0

0
2

0

2
5,

76
0

3
4

8
5,

76
0

3
4

8

S
ta

te
E

qs
4

2,
04

0
4

1
7

2,
16

0
4

1
8

8
3

6
0

2
3

3
6

0
2

3

2
5,

60
5

3
2

9
5

4,
73

1
3

2
4

9

A
D

I
4

2,
09

0
3

1
1

0
1,

99
5

3
1

0
5

8
8

3
6

3
4

4
8

3
6

3
4

4

2
5,

10
0

3
5

1
5

,1
0

0
3

5
1

In
te

g
4

1,
60

0
3

1
6

1,
20

0
3

1
2

8
1

0
0

2
1

1
0

0
2

1

2
6,

20
0

3
6

2
6,

20
0

3
6

2

D
if

f
.

4
3,

70
0

3
3

7
2,

40
0

3
2

4

8
6

0
0

3
6

5
0

0
3

5

2
13

,9
72

3
1

4
12

,9
74

3
1

3

P
re

fi
x

4
3,

99
2

3
4

3,
99

2
3

4

8
0

2
0

0
2

0

2
13

,9
72

3
1

4
12

,9
74

3
1

3

D
if

f
S

u
m

s
4

3,
99

2
3

4
3,

99
2

3
4

8
0

2
0

0
2

0

1
5

7

T
able

8.18:
R

esults
of

heuristic
depth

of
three.

D
ep

th
=

3
B

e
n

c
h

m
a
rk

N
u

m
b

e
r

o
f

W
id

th
=

1
W

id
th

=
2

R
egisters

C
o

st
Ite

rs
C

ost
/

Ite
r

C
o

st
Ite

rs
C

ost
/

Ite
r

2
13,200

3
3

3
12,800

3
3

2

H
ydro

4
6,000

3
1

5
4,800

3
1

2

8
1,200

2
3

1,200
2

3

2
10,000

3
5

0
9,000

3
4

5
C

holesky
4

2,200
3

1
1

1,600
3

8

8
0

2
0

0
2

0

2
10,000

3
1

0
9,000

3
9

In
n

e
r

4
2,000

2
2

2,000
2

2

8
0

2
0

0
2

0

2
3,528

3
2

1
3,696

3
2

2

B
L

E
4

1,680
4

1
0

1,680
3

1
0

8
1

6
8

2
1

1
6

8
2

1

2
19,256

3
5

8
17,264

3
5

2
T

ri-diag
4

5,312
4

1
6

5
,3

1
2

4
1

6

8
0

2
0

0
2

0

2
18,981

3
5

7
17,649

3
5

3
G

L
R

4
5,994

3
1

8
5,661

3
1

7

8
0

2
0

0
2

0

2
5,760

3
4

8
5,760

3
4

8
S

tate
E

qs
4

2,040
3

1
7

2,040
3

1
7

8
3

6
0

2
3

3
6

0
2

3
2

4
,6

5
5

3
2

4
5

4
,6

3
6

3
2

4
4

A
D

I
4

2
,0

3
3

3
1

0
7

1,957
1

0
3

8
8

1
7

3
4

3
7

6
0

3
4

0
2

5
,0

0
0

3
5

0
5

,0
0

0
3

5
0

In
teg

4
1,300

3
1

3
1,200

3
1

2

8
1

0
0

2
1

1
0

0
2

1

2
6,200

3
6

2
6,200

3
6

2

D
iff

4
2,200

4
2

2
2,100

4
2

1

8
5

0
0

3
5

5
0

0
3

5

2
12,974

3
1

3
12,974

3
1

3
P

re
fix

4
6,986

3
7

3
,9

9
2

3
4

8
0

2
0

0
2

0

2
12,974

3
1

3
12,974

3
1

3
D

iff
S

u
m

s
4

6,986
3

7
3,992

3
4

8
0

2
0

0
2

0

1
5

8

IIII

heuristic algorithm with the last column containing performance improvement of

heuristic Loop-Opt over GCC.

In all cases, the heuristic produced allocations that were superior to GCC.

Furthermore, the heuristic allocations perform better than BB-Opt by an average

of 8% (via comparison of Tables 8.15 and 8.19), while the heuristic run-time is

comparable to production compilers (see Table 8.20). Also, there are a number of

cases with eight registers where the heuristic generated allocations where no spill

code was necessary while GCC did not find such allocations.

8.7.2 Experimentation with Distributed Register Files

The TMX320C44 is used as an example of an architecture with distributed

register files. Figure 8.4 shows a simplified view of the TMX320C44. In this

architecture, there are three register files: Extended Precision Registers which are

40-bits wide and used for floating-point and long integer arithmetic; Auxiliary

Registers which are 32-bits wide and used as address pointers with dedicated

address generation hardware to auto-increment and auto-decrement address

values; and General-Purpose Registers which are 32-bits wide. All register files

are connected to the Regl and Reg2 busses and available to the Multiplier and

ALU. The Multiplier and ALU may both write to the Extended Precision

Registers or one of them may write to either the Auxiliary Registers or the

General Purpose Registers. Additionally, an operand may be supplied to the

Multiplier or ALU by the memory.

Comparison of BB-Opt and Loop-Opt

Table 8.21 contains the observed results for the number of spills per iteration for

BB-Opt and Loop-Opt, as well as the percentage improvement of Loop-Opt over

BB-Opt measured. Similar to the observed results of experimentation with a

consolidated model, there is a general trend for the percentage improvement to

increase as the number of registers increases due to the ability of the loop

algorithm to naturally match the register usages at loop top and bottom. Upon

inspection of the assignments produced it was noted in some cases that the

159

T
able

8.19:
C

om
parison

of
results

betw
een

G
C

C
and

heuristic
L

oop-O
pt.

H
euristic

L
oop-O

pt
%

Im
pr.

G
nu

gcc
D

ep
th

=
1,

W
id

th
=

2
B

e
n

c
h

m
a
rk

N
u

m
b

e
r

D
y

n
am

ic
Spills

D
y

n
am

ic
Spills

o
f

Spill
p

e
r

Spill
p

e
r

R
egisters

C
o

st
Ite

r.
C

o
st

Ite
ra

tio
n

H
y

d
ro

4
7,600

1
9

5,600
1

4
3

6
%

8
4,800

1
2

1,200
3

3
0

0
%

C
holesky

4
4

0
0

0
2

0
1,600

8
1

5
0

%
8

2,600
1

3
0

0
o

o

In
n

e
r

4
8,000

8
2,000

2
3

0
0

%
8

8,000
8

0
0

o
o

B
L

E
4

2
0

1
6

1
2

1,680
1

0
2

0
%

8
1,344

8
1

6
8

1
7

0
0

%
T

ri-diag
4

9,628
2

9
5,312

1
6

8
1

%
8

5,644
1

7
0

0
G

O

G
L

R
4

8,991
2

7
5,661

1
7

5
9

%
8

6,327
1

9
0

0
o

o

S
tate

E
qs

4
4,680

3
9

2,160
1

8
1

1
7

%
8

2,160
1

8
3

6
0

3
5

0
0

%
A

D
I

4
2,907

1
5

3
2,109

1
1

1
3

8
%

8
1

,4
4

4
7

6
8

5
5

4
5

6
9

%
In

teg
4

2,700
2

7
1,200

1
2

1
2

5
%

8
1,600

1
6

1
0

0
1

1
5

0
0

%
D

iff
4

5,700
5

7
2,100

2
1

1
7

1
%

8
2,100

2
1

5
0

0
5

3
2

0
%

P
re

fix
4

6,986
7

3,992
4

7
5

%
8

5,988
6

0
0

o
o

D
ifF

S
u

m
s

4
.6,986

7
3,992

4
7

5
%

8
5,988

6
0

0
o

o

1
6

0

Memory

ADDR ' I :
DATA ' ' h

Ext. Precision

Registers

Gen. Purpose
Registers

Rcgl

Reg2

Meml

Mein2

\t \i \i v

IT ^

Multiplier

I f"

Adder

Auxiliary
Registers

V \i

Shifter/ALU

Figure 8.4: A simplified view of the TMX320C44.

161

Table 8.20: Execution times of the various methods.
CPU Time Average Number

of Spills
per Iteration

Method Ave. Min. Max. 4 Regs. 8 Regs.
Graph Coloring

Gcc 0.06 sees 0.04 sees 0.11 sees 33.8 17.7
BB-Opt 600.0 sees 345.0 sees 2700.0 sees 10.8 —

Loop-Opt 1800.0 sees 480.0 sees 10 hrs. 9.3 —

Heur. Loop-Opt
Dep=l, Wid=l 0.08 sees 0.06 sees 0.34 sees 9.8 4.7
Dep=l, Wid=2 0.13 sees 0.07 sees 0.48 sees 9.7 4.8
Dep=l, Wid=5 0.34 sees 0.11 sees 0.57 sees 9.8 4.5

Dep=2, Wid=:l 0.11 sees 0.08 sees 0.54 sees 11.0 4.8

Dep=2, Wid=2 0.23 sees 0.13 sees 0.65 sees 9.4 4.7
Dep=2, Wid=5 0.39 sees 0.15 sees 0.70 sees 9.3 4.4

Dep=3, Wid=l 0.24 sees 0.16 sees 0.72 sees 11.0 4.7

Dep=3, Wid=2 0.47 sees 0.23 sees 0.89 sees 9.4 4.4

Dep=3, Wid=5 0.93 sees 0.33 sees 1.12 sees 9.3 4.3

assignments produced by the basic block scheme assigned an address variable to

a general purpose register near the end of the iteration. This variable was heavily

used at the top of the loop, so more spill code (spills of other address variables

currently within the Auxiliary Registers) than necessary was generated to

accommodate that variable.

Comparison of Loop-Opt and Heuristic Loop-Opt

Table 8.22 presents the results of the spill code produced by the optimal and
heuristic algorithms. The last column contains the percentage improvement of
Loop-Opt over heuristic Loop-Opt. In a few cases (4 of 14), the heuristic
produced results equal to Loop-Opt. For 58% of the cases (7 of 12) results were
produced that are within 15% of the optimal. For the rest of the cases (5 of 12),
the percentage within optimal is higher, however, the actual difference in spill
code produced is only one instruction.

Code Size of Loop Register Assignments

Because code size directly affects the size of the program ROM in an embedded

system, the number of iterations produced by the loop assignments is noted.

162

Ta)le 8.21: Basic block optimal vs. Loop 0ptimal for t he TMX32(

BB-Opt Loop-Opt % Impr.
Benchmark Number of Spills Spills

Registers per per

Iteration Iteration

2D-Hydro 2 9 7 29%
4 2.7 2 35%

Inner 2 4 3 33%
4 1.7 1 70%

BLE 2 8 7 14%

4 0 0 —

Tri-diag 2 10 8 25%
(below diag.) 4 2.3 2 15%
Tri-diag 2 11 10 10%
(above diag.) 4 3 2 50%
Prefix 2 7 4 75%
(scan) 4 3 2 50%

Kalman 2 5 4 10%
4 1.3 1 30%

Table 8.22: Comparison of loop assignments for the TMX320C'
Heuristic

Number Loop-Opt Loop-Opt % Impr.
Benchmark of Spills Spills

Registers per per

Iteration Iteration

2D-Hydro 2 7 8 14%
4 2 2 0%

Inner 2 3 4 33%
4 1 2 50%

BLE 2 7 8 14%

4 0 1 —

Tri-diag 2 8 8 0%
(below diag.) 4 2 2 0%
Tri-diag 2 10 11 10%
(above diag.) 4 2 3 50%
Prefix 2 4 4 0%
(scan) 4 2 3 50%
Kalman 2 4 5 25%

4 1 2 50%

163

'able 8.23: Comparison of loop code sizes for the TMX320C44
Number # Iterations Equal

Benchmark of Heuristic Spill
Registers Loop-Opt Loop-Opt Code?

2D-Hydro 2 3 3 no

4 2 2 yes

Inner 2 3 4 no

4 3 3 no

BLE 2 4 4 no

4 3 4 no

Tri-diag 2 3 3 yes

(below diag.) 4 2 2 yes

Tri-diag 2 2 2 no

(above diag.) 4 2 2 no

Prefix 2 2 3 yes

(scan) 4 2 2 no

Kalman 2 3 3 no

4 2 2 no

Table 8.23 contains the number of iterations spanned by each of the loop

methods for the given number of registers, as well as indication of whether the

heuristic method produced an equal amount of spill code as the optimal. In the

majority of cases (9 of 12) the heuristic derived assignments which spanned the

same number of iterations as the optimal, and, of those, generated the same

amount of spill code in three cases (33%). In the other cases (3 of 12), the
heuristic assignments spanned one more iteration, producing the same amount of

spill code in one case (33%). The overall range of the number of iterations

spanned by the assignments is between two and four.

Run-time of the Algorithms

The run-time of the algorithms for the TMX320C44 results is noted in Table 8.24.

This table contains the minimum, average and maximum execution times in CPU

seconds of the BB-Opt, Loop-Opt and Heuristic Loop-Opt algorithms executing

on a Sun 4/30 system running Unix. Included in Table 8.24, are the average
number of spills per iteration for each of the register configurations previously

examined with the TMX320C44. Although another heuristic is unavailable for

comparison, the heuristic loop algorithm derives results that are close to the

164

Table 8.24: Comparison of running times for the TMX320C44.
CPU Time Average Number of
(in seconds) Spills per Iteration

Method Ave. Min. Max. 2 Regs.
(6 total)

4 Regs.
(12 total)

BB-Opt 372.0 287.0 429.0 8.2 2.1

Loop-Opt 420.0 347.0 488.0 6.7 1.5

Heur. Loop-Opt 0.07 0.05 0.18 7.2 2.2

optimal, while its run-time is efficient enough to be practical.

8.8 Summary of Results

Traditionally, heuristics for optimizations have been designed based upon

characteristics of the codes from a given application domain. The viewpoint

taken in this thesis is that the register resources are the critical resources and

heuristics for optimizations as well as the optimizations themselves should be

designed with primary importance given to register requirements while honoring

the characteristics of the given application domain.

In this chapter, the observed results for experimentation with the techniques

discussed in this thesis are presented. Although not all techniques equally benefit

all codes, as, for instance, some codes do not exhibit redundancy in data usage,

significant performance improvement is observed when codes exhibit

characteristics appropriate for optimization (amenable to the transformations).

The key to improved performance is the increased flexibility provided to the

scheduler. When the effects of program transformation on register resources are

considered during optimization, this reduces contention for those critical

resources, the registers, in the schedule which, in turn, allows the code compactor

to examine more options in the selection of values for those registers.

165

Chapter 9

Conclusions

Traditionally, techniques developed in the context of aparallelizing compiler for
a parallel, load/store-type architecture have used an underlying model in which

the available registers in the architecture are consolidated into one register file.

In the context of embedded systems, many of those techniques are applicable, as

the embedded processor in the embedded system resembles a load/store-type of

architecture. However, as the available registers in an embedded processor may

be partitioned and/or scattered throughout the architecture and may have

specialized or restricted usages, conventional register allocation strategies must

be modified to produce acceptable performance. Further, as embedded systems

applications are often time-critical and are developed once, but remain in the

system for its lifetime, high-quality, high-performance code is necessary.

This thesis demonstrates that beyond the specific task of register allocation,

there are subtle issues related to register allocation that must be addressed in

order to generate high quality code for an embedded application. The

contributions of this thesis include:

a technique which promotes data items from secondary memory to primary

memory, thereby substantially reducing the amount of generated memory

traffic as observed over the execution of a loop;

a technique which guides the application of program transformations so that

decisions based upon the benefit of the transformation as well as the

necessary resource allocation are madeglobally, rather than locally, resulting

166

in the overall improvement of resource allocation;

• a technique which provides support for the integration of instruction

scheduling and register allocation by eliminating copy instructions which are

the result of "on-the-fly" register (re-)allocation during scheduling;

• a technique which optimally allocates registers over loop bodies, resulting in

a minimal amount of spill code for a loop as well as minimal memory traffic

related to spill code.

These techniques were developed, implemented and integrated into a parallelizing

compiler which was used to conduct experimentation with those techniques on a

variety of benchmarks in various application domains. The results of that

experimentation is presented in this thesis and supports the importance of those

techniques in generating high-performance, high-quality code.

167

Bibliography

[1] I. Ahmad and C. Y. R. Chen. Post-processor for Datapath Synthesis Using
Multiport Memories. Proceedings of the ACM/IEEE International

Conference on Computer-Aided Design, pages 276-279, November 1991. San

Jose, California.

[2] A. H. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of
Computer Algorithms. Addison Wesley. Reading, Massachusetts, 1974.

[3] A. H. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques
and Tools. Addison-Wesley, Reading, Massachusetts, 1986.

[4] J. Backus. The History of Fortran I, II, and III. In Wexelblat, editor.
History of Programming Languages, pages 25-45. AcademicPress, 1981.

[5] J. L. Baer and D. P. Bovet. Compilation of Arithmetic Expressions for
Parallel Computations. Proc. of IFIP Congress, pages 34-46, 1968.

[6] M. Balakrishnan et al. Allocation of Multiport Memories in Data Path

Synthesis. IEEE Transactions on the Computer Aided Design of Integrated
Circuits and Systems, 7(4):536-540, April 1988.

[7] F. Balasa, F. Catthoor, and H. De Man. Dataflow-driven Memory Allocation
for Multi-dimensional Signal Processing Systems. Proceedings of the

ACM/IEEE International Conference on Computer-Aided Design, pages
31-34, November 1994. San Jose, California.

[8] U. Banerjee. Loop Transformations for Restructuring Compilers: The
Foundations. Kluwer Academic Publishers, Norwell, Massachusetts, 1993.

[9] J. P. Banning. An Efficient Way to Find the Side-effects of Procedure Calls

and Aliases of Variables. 6th Annual ACM Symposium on Priciples of
Programming Languages, 1979.

168
I

I

[10] D. Bernstein, M. C. Golumbic, Y. Mansour, R. Y. Pinter, D. Q. Goldin,

H. Krawczyk, and 1. Nahshon. Spill Code Minimization Techniques for

Optimizing Compilers. Proceedings of SIGPLAN Conference on

Programming Languages Design and Implementation^ January 1989.

[11] D. A. Berson, P. Chang, R. Gupta, and M. L. Soffa. Integrating Program

Optimizations and Transformations with the Scheduling of Instruction Level

Parallelism. Proceedings of the International Workshop on Languages and

Compilersfor Parallel Computing, pages 207-221, August 1996. San Jose,

California.

[12] R. Bodik and R. Gupta. Array Data Flow Analysis for Load-Store

Optimizations in Superscalar Architectures. Proceedings of the International

Workshop on Languages and Compilers for Parallel Computing, August

1995.

[13] D. C.. Bradlee, S. J. Eggers, and R. R. Henry. Integrating Register

Allocation and Instruction Scheduling for RISCs. Proceedings of SICPLAN

Architectural Support for Programming Languages and Operating Systems,

26(4), April 1991.

[14] D. Brelaz. New Methods to Color the Vertices of a Graph. Communications

of the ACM, 22(4), April 1979.

[15] R. P. Brent. The Parallel Evaluation of General Arithmetic Expression.

Journal of the ACM, 21(2), 1974.

[16] P. Briggs. Register Coloring via Graph Coloring. PhD thesis. Rice
University, April 1992.

[17] P. Briggs, K. Cooper, K. Kennedy, and L. Torczon. Coloring Heuristics for
Register Allocation. Proceedings of SICPLAN Conference on Programming

Languages Design and Implementation, pages 275-284, June 1989. Portland,

Oregon.

[18] D. Callahan, S. Carr, and K. Kennedy. Improving Register Allocation for

Subscripted Variables. Proceedings of SICPLAN Conference on

Programming Languages Design and Implementation, 25(6):53-65, June

1990. White Plains, New York.

169

[19] D. Callahan, J. Cocke, and K. Kennedy. Estimating Interlock and Improving

Balance for Pipelined Architectures. Proceedings of the International

Conference on Parallel Processing, 1987.

[20] D. Callahan, K. Kennedy, and A. Porterfield. Software Prefetching.

Proceedings of SIGPLAN Architectural Support for Programming Languages

and Operating Systems, 26(4):40-52, April 1991. Santa Clara, California.

[21] R. Camposano. Path-Based Scheduling for Synthesis. IEEE Transactions on

the Computer Aided Design of Integrated Circuits and Systems, 10(1), 1991.

[22] R. Camposano and W. Wolf. High Level VLSI Synthesis. Kluwer Academic

Publishers. Norwell, MA., 1991.

[23] G. Chaitin. Register Allocation and Spilling Via Graph Coloring. Proc. of

SIGPLAN Symp. on Comp. Const., 17(6), June 1982. |
[24] G. Chaitin, M. Auslander, A. Chandra, J. Coocke, M. Hopkins, and

P. Markstein. Register Allocation Via Coloring. Computer Languages, |
6:47-57, January 1981.

[25] F. Chow and J. Hennessy. The Priority-Based Coloring Approach to |
Register Allocation. ACM Transactions on Programming Languages and

Systems, 12(4):501-536, October 1990. jj
[26] J. Cocke and J. T. Schwartz. Programming Languages and Their Compilers:

Preliminary Notes, Second Revision. Courant Institue of Mathematical |
Sciences, New York University, 1970.

[27] J.-F. Collard, D. Barthou, and P. Feautrier. Fuzzy Array Dataflow Analysis. J
5th Symp. on Principles and Practice of Parallel Programming, July 1995.

[28] R. Cytron and J. Ferrante. What's in a name? The value of renaming for

parallelism Detection and storage allocation. Proceedings of the International

Conference on Parallel Processing, August 1987. jjj
[29] J. W. Davidson and S. Jinturkar. Memory Access Coalescing: A Technique

for Eliminating Redundant Memory Accesses. Proceedings of SIGPLAN

Conference on Programming Languages Design and Implementation,

29(6):186-195, June 1994. Orlando, Florida. |

170

I

I

I

I

I

I

I

I

I

I

I

[30] E. Duesterwald, R. Gupta, and M. Soffa. A Practical Data Flow Framework

for Array Reference Analysis and its Use in Optimizations. Proceedings of

SIGPLAN Conference on Programming Languages Design and

Implementation, 28(6):68-77, June 1993. Albuquerque, New Mexico.

[31] P. Feautrier. Dataflow analysis of scalar and array references. International

Journal of Parallel Programming, February 1991.

[32] H. Feuerhahn. Data-Flow Driven Resource Allocation in a Retargetable

Microcode Compiler. International Symposium on Microarchitecture, 1988.

[33] F. Franssen, M. van Swaaij, F. Catthoor, and H. De Man. Modeling

Piece-wise Linear and Data dependent Signal Indexing for Multi-dimensional

Signal Processing. Proceedings of the International Workshop on High-Level

Synthesis, November 1992.

[34] R. A. Freiburghouse. Register Allocation Via Usage Counts.

Communications of the ACM, 17(11), November 1974.

[35] D. Cajski, N. Dutt, A. Wu, and S. Lin. High Level Synthesis: Introduction to

Chip and System Design. Kluwer Academic Publishers. Norwell, MA., 1992.

[36] M. R.. Carey and D. S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. Freeman, 1979.

[37] M. Columbic. Algorithmic Graph Theory and Perfect Graphs. Academic

Press, New York, NY, 1980.

[38] J. R. Goodman and W.-C. Hsu. Code Scheduling and Register Allocation in

Large Basic Blocks. International Conference on Supercomputing, 1988.

[39] C. Coossens. Optimization Techniques for Automated Synthesis of

Application-specific Signal Processing Architectures. PhD thesis, KU Leuven,

1989.

[40] T. Cranlund and R. Kenner. Eliminating Branches using a Superoptimizer

and the GNU C Compiler. Proceedings of SIGPLAN Conference on

Programming Languages Design and Implementation, pages 341-352, July

1992. San Francisco, California.

171

[41] R. Gupta, M. Soffa, and T. Steele. Register Allocation via Clique

Separators. Proceedings of SIGPLAN Conference on Programming

Languages Design and Implementation, 24(7), July 1989.

[42] R. Gupta, M. L. Soffa, and D. Ombres. Efficient Register Allocation via

Coloring Using Clique Separators. ACM Transactions on Programming

Languages and Systems, 16(3), May 1994.

[43] L. J. Hendren, C. R. Cao, E. Altman, and C. Mukerji. A Register Allocation
Framework Based on Heirarchical Cyclic Interval Graphs. International

Conference on Compiler Construction, pages 176-191, April 1992.

Paderborn, Germany.

[44] J. L. Hennessy and D. A. Patterson. Computer Architecture A Quantitative
Approach. Morgan Kaufmann Publishers, Inc. Palo Alto, Ca., 1990.

[45] L. P. Horwitz, R. M. Karp, R. E. Miller, and S. Winograd. Index Register
Allocation. Journal of the ACM, 13(1):43-61, January 1966.

[46] W. Hsu, C. Fischer, and J. Goodman. On the Minimization of Loads/Stores
in Local Register Allocation. IEEE Transactions on Software Engineering,

15(10):1252-1260, October 1989.

[47] Z. Iqbal, M. Potkonjak, S. Dey, and A. Parker. Critical Path Minimization

Using Retiming and Algebraic Speed-Up. Proceedings of the ACM/IEEE
Design Automation Conference, 1993.

[48] K. Kennedy. Index Register Allocation in Straight Line Code and Simple
Loops. In R. Rustin, editor. Design and Optimization of Compilers, pages
51-63. Prentice-Hall, 1972.

[49] T. Kim and C. L. Liu. Utilization of Multiport Memories in Data Path

Synthesis. Proceedings of the ACM/IEEE Design Automation Conference,
pages 298-302, June 1993. Dallas, Texas.

[50] D. J. Kolson, A. Nicolau, and N. Dutt. Minimization of Memory Traffic in
High-Level Synthesis. Proceedings of the ACM/IEEE Design Automation

Conference, pages 149-154, June 1994. San Diego, California.

172

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

[51] D. J. Kolson, A. Nicolau, and N. Dutt. Elimination of Redundant Memory

Traffic in High-Level Synthesis. IEEE Transactions on the Computer Aided

Design of Integrated Circuits and Systems, pages 1354-1364, November 1996.

[52] F. J. Kurdahi and A. C. Parker. REAL: A Program for Register Allocation.

Proceedings of the ACM/IEEE Design Automation Conference, pages

210-215, June 1987. Miami, Florida.

[53] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The Cache Performance and

Optimizations of Blocked Algorithms. Proceedings of SIGPLAN

Architectural Support for Programming Languages and Operating Systems,

26(4):63-74, April 1991. Santa Clara, California.

[54] G. Y. Leuh, A. R. Adl-Tabatabai, and T. Gross. Global Register Allocation

Based on Graph Fusion. Proceedings of the International Workshop on

Languages and Compilers for Parallel Computing, pages 246-265, August

1996. San Jose, California.

[55] C. Liem, T. May, and P. Paulin. Register Assignment through Resource

Classification for ASIP Microcode Generation. Proceedings of the

ACM/IEEE International Conference on Computer-Aided Design, pages

397-402, November 1994. San Jose, California.

[56] J. S. Lim. Two-Dimensional Signal and Image Processing. Prentice Hall

Signal Processing Series, 1990.

[57] P. E. R. Lippens, J. L. van Meerbergen, W. F. J. Verhaegh, and A. van der

Werf. Allocation of Multiport Memories for Hierarchical Data Streams.

Proceedings of the ACM/IEEE International Conference on Computer-Aided

Design, pages 728-735, November 1993. San Jose, California.

[58] D. A. Lobo and B. M. Pangrle. Redundant Operator Creation - An

Optimized Scheduling Technique. 28th DAC, 1991.

[59] D. A. Lobo and B. M. Pangrle. Generating Pipelined Datapaths Using

Reduction Techniques to Shorten Critical Paths. European Design

Automation Conference (Euro-DAC), 1992.

[60] F. Luccio. A Comment on Index Register Allocation. Communications of

the ACM, 10(9):572-574, September 1967.

173

[61] Y. Muraoka. Parallelism Exposure and Exploitation in Programs. PhD

thesis, University of Illinois, Urbana-Champagne, February 1971.

[62] A. Nicolau and R. Potasman. Incremental Tree Height Reduction for

High-Level Synthesis. Proceedings of the ACM/IEEE Design Automation

Conference, 1991.

[63] A. Nicolau, R. Potasman, and H. Wang. Register Allocation, Renaming and
Their Impact on Fine-Grain Parallelism. 4lh Int. Wksp on Lang, and

Comp. for Par. Comp., 1991.

[64] S. Novack and A. Nicolau. Mutation Scheduling: A Unified Approach to

Compiling for Fine-Grain Parallelism. Proc. 7th Int'l Wksp on Lang, and

Comp. for Par. Computing, 1994.

[65] K. O'Brien, M. Rahmouni, and A. Jerraya. DLS: A Scheduling Algorithm
for High-Level Synthesis in VHDL. Proceedings of the European Design

Automation Conference (EDAC), 1993.

[66] C. Park, T. Kim, and C. L. Liu. Register Allocation for Data Flow Graphs
with Conditional Branches and Loops. Proceedings of the European Design

Automation Conference (Euro-DAC), pages 232-237, 1993. Hamburg,
Germany.

[67] S. S. Pinter. Register Allocation with Instruction Scheduling: A New
Approach. Proceedings of SIGPLAN Conference on Programming Languages
Design and Implementation, 1993.

[68] P. Pdchmiiller, M. Glesner, and F. Longsen. High-Level Synthesis

Transformations for Programmable Architectures. Proceedings of the

European Design Automation Conference (Euro-DAC), 1993.

[69] A. Porterfield. Software Methods for Improvement of Cache Performance on
Supercomputer Applications. PhD thesis. Rice University, 1989.

[70] R. Potasman. Percolation-Based Compiling for Evaluation of Parallelism

and Hardware Design Trade-Offs. PhD thesis. University of California,

Irvine, April 1991.

[71] R. Potasman, J. Lis, A. Nicolau, and D. Gajski. Percolation Based Synthesis.
Proceedings of the ACM/IEEE Design Automation Conference, June 1990.

174

I

I

I

I

[72] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.

Numerical Recipes in C: The Art of Scientific Computing. Cambridge

University Press, second edition, 1992.

[73] T. A. Proebsting and C. N. Fischer. Probabilistic Register Allocation.

Proceedings of SIGPLAN Conference on Programming Languages Design

and Implementation, 27(7), July 1992.

[74] W. Pugh and D. Wonnacott. An Exact Method for Analysis of Value-based

Array Data Dependencies. Proceedings of the International Workshop on

Languages and Compilers for Parallel Computing, pages 546-566, August

1993. Portland, Oregon.

[75] J.M. Rabey, C. Chu, P. Hoang, and M. Potkonjak. Fast Protoyping of

Datapath-Intensive Architectures. IEEE Design and Test of Computers,

June 1991.

[76] L. Ramachandran, D. D. Gajski, and V. Chaiyakul. An Algorithm for Array

Variable Clustering. Proceedings of the European Design Automation

Conference (EDAC), pages 262-266, 1994.

[77] B. R. Ran, M. Lee, P. P. Tirumalai, and M. S. Schlansker. Register

Allocation for Software Pipelined Loops. Proceedings of SIGPLAN

Conference on Programming Languages Design and Implementation, 27(6),

June 1992.

[78] R. M. Stallman. Using and Porting Gnu CC. Free Software Foundation,

November 1992.

[79] L. Stok. Architectural Synthesis and Optimization of Digital Systems. PhD

thesis, Eindhoven University of Technology, 1991.

[80] H. Trickey. Flamel: A High-Level Hardware Compiler. IEEE Transactions

on the Computer Aided Design of Integrated Circuits and Systems, 6(2),

March 1991.

[81] J. Vanhoof, K. Van Rompaey, 1. Bolsens, G. Goossens, and H. De Man. High

Level Synthesis for Real Time Digital Signal Processing. Kluwer Academic

Publishers. Norwell, MA., 1993.

175

[82] W. F. J. Verhaegh, P. E. R. Lippens, E. H. L. Aarts, J. H. M. Korst, J. L.
van Meerbergen, and A. van der Werf. Modelling Periodicity by PHIDEO

Streams. Proceedings ofthe International Workshop on High-level Synthesis,
1992.

[83] D. Whitfield and M. L. Soffa. Investigating Properties of Code

Transformations. ICPP, 1993.

176

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

