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APPLIED WELFARE ANALYSTS WITH QUALTTATIVE RESPONSE MODELS

By W. Michael Hanemannl
1, TIntroduction

A major accomplishment of econometric research in recent years has been the develop-
ment of statistical models suitable for the analysis of discrete depemdent variables.
This has enabled economists to study behavioral relationships involving purely quali-
tatative variables which are not amenable to conventional regression techniques.
These developments are reviewed and summarized by McFadden [13] and Amemiya [2].
Using the latter’'s terminology, the multi-response qualitative response (MROR) model
involves a dependent variable taking N distinct values, y=1, 2, ..., or N, vhich is
related to a row vector of independent variables, W¥, and a column vector of unknown
parameters, B*, by some function of the general form2

(1.1) ?Tj_E Pr{y = j} = ﬁ;r(w*, B*) i=1, ..., N.

Moreover, in most applications this relation can be cast into the form

(1.2} Wj = Hj(wiﬁl, ceey WNBN) 3 =1, ..., N.
Specific examples of (1.2) are the polychotomous probit model, [1], [51, [10],
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where n is a multivariate normal density with zero mean and covariance matrix I,

and the GEV model, [121,

e I g . -1 .
(1.4 my o= ew383Gj(ew181,...,ekNBN)G(ewi”l,,..,ewNBN) j=1,...,N,

where G is a positive, linear hemogeﬁeous funcrion, and Gj denotes the partial
derivative with respect to the jth argument. A special case of the latter is the

independent logit model, [11], where G(t

1 ...,tﬁ):th and

WA, N WA
(1.5) 7, =ed3 (zet -l i=1,...,N.
J 1
The statistical models (1.3)~(1.5) have been applied to a wide variety of

economic topics. Aitchison and Bennett {E] and McFadden [11] have nrovided a



theoretical derivation of these models which applies whenever the events whose
probabilities are given by (1.2) represent the outcome of a decision by a maximiz-

ing agent. Suppose an agent is choosing among N courses of action and ﬂj =

Pr{jth act chosenl}. Assume that the payoff or utility associated with the jth

i,, is a random variable with mean Wjﬁj. Equivalently, Gj = Wij + Ej

where Ej is a randem variable with zero mean., The agent chooses that act which

has the highest uvtility. This yields a MROR model of the form {(1.2):

(1.6) M= Pr{szj~%§jA3¥%ﬁiwhei, all il = Hj(wlgl’ e WB

Wy §=1, ..,N,

N

Let n(j} = (nh,..., njul,j’ nj+l,j’ ""nﬁj) where nij = Ei—'gj' It follows
from {1.6) that:

I { = - y - ] ] = P
(1.7) ﬁj(‘HBl""'WNBN) F(j)(wjaj ngz"“""jgj WNPN) j .1, » N,

where F(j) ig an (N-1) dimensional joint c.d.f. associated with the random vector
ﬂ(j). As Daly and Zachary | §] have pointed out, the converse is also ftrue:
any MRQR model (1.2) in which the probability functions Hj(-) can be cast in the
form of an (N-1) dimensional joint e¢.d.f. as in (1.7) can be derived from a
utility maximization choice model like (1.6). For this reason a MRQR model
satisfying (1.7) is said to be a random utility maximization (RUM) model.

This link between statistical models for discrete dependent variables and
the economic cencept of utility maximization is potentially very valuable
because it raises the possibility of applying the apparatus of welfare theory
to empirical models of purely qualitative choices. Suppose the statistical
model satisfies (1.7) and some subset of the variables in Wj represent attri-
butes of the jth discrete choice. Can one derive from the fitted model an estimate
of the effect on the agent's welfare of a change in these attributes analogous to
the compensating and equivalent variation measures of conventional utility

theory? 1In the literature on transportation mode choice this issue has been

considered for some RUM models by Domencich and McFadden [ 7], Williams [161,



Dﬁly and Zachary [6] and Ben Akiva and Lerman {31, but it has received
relatively little attention in other branches of applied economics.

More recently Small and Rosen [13] - henceforth SR — have investigated welfare
measures in the context of what I will call a budget-constrained RUM model,
By imposing three fairly strong conditions on the consumer’'s preferences they
derive a closed-form expression for the compensating varjation which can readily
be calculated from the fitted MRQR model. I will show that one of these conditions
implies another, and excludes the third. The key condition is a no income effects
assumption which implies that the discrete choice probabilities (1.6) are indepen-
dent of the consumer's income. I will show hﬁw to perform welfare evaluations when
this stringent assumption is relaxed. In general the procedure requires the use
of numerical techniques to solve an implicit equation for the compensating or
equivalent variations, but I show that in some common logit and probit models
approximate closed-form solutions can readily be obtained., =

SR start with a budget-constrained deterministic utility maximizarion model

to a random utility setting, taking the expectation of certain relationships
derived from the deterministic case. However, their deterministic utility model
involves both qualitative and quantitative choices, while the MRQR model for which
they develop the welfare formula involves a purely qualitative choice. This tends
to obscure the comparison of the two models. I.compare deterministic and random
utility versions of a purely gualitative budget-constrained choice and show that
there are both similarities and differences.3 For example, in the deterministic
case 1f a good is selected by the consumer and the price of that good falls, the
compensating variation is equal to the change in the cost of buying the good. One
might expect the random utility analog to be that if the price of a good falls the
compensating variation is equal to the change in its cost times the probability of
selecting it. I show that this does not hold as an exact result in any of the budget-
constrained RUM models, but it is true within an order of magnitude in some of them.
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Finally, it turns out that the budgetmconsﬁrained RUM formalation imposes
some restrictions on the regressors and their coefficients in (1.6) which are
violated by many of the RUM models that have appeared in the empirical literature,
Accordingly, T show how the welfare methodology can be extended to cover
these models, and I develop some approximate closed-form solutions for the

resulting welfare equations.

2. Budget-Constrained Choices

2.1. Deterministic Utility Models

The deterministic utility qualitative choice model is defined as follows. An
individual consumer has a twice-differentiable, quasi-concave, increasing utilitcy

function u defined over the commodities Xys cnes X

and z, where z is taken as the
numeraire., In addition, the consumer's utility depends on some other variables,
Aps = ovs Gy which he takes as exogenous; these are, for example, quality attributes
-of  the non=numeraire goods.&' The consumer chooses (%, 2z) so ag to maximize

(2.1) u o= u(xl, ey Xos Gy cevs Qs z)

subject to a bu§g§§.§0ﬁ§tyai§t..

(2.2) pjxj oz =y

and two other constraints which induce an element of discreteness into his choice.
First, for some logical or institutional reason, the xj's are mutually exclusive
in consumption

(2.3 xin = 0 all i # j.

Secondly, the xj’s can be purchased only din fixed quantities

(2.4) X, =X, or 0O o= 1, ..., N.
i 3 N »

An example would be where the xj's are different brands of an indivisible durable
good, and the consumer needs only one of these goods. Since the quantities of

the xj*s are limited by (2.4), their selection is a qualitative choice. Moreover,
although the numeraire is inherently a divisible good, once one of the xj's has

been sclected the quantity of z is fixed because of the budget constraint (2.2).5



fhus, the model (2.1)-(2.4) represents a purely qualitative utility maximizing
choice.

The reason for studying this model is that it provides an exact deterministic
analog of the budget—constrained RUM to be introduced below. T will consider
here the demand functions, duality relations, and welfare measures for changes in
p or ¢ associated with (2.1)-(2.4), in order to contrast them with the correspond-
ing concepts in the RUM model. Since a deterministic utility model similar to
(2.1)—(2.4).has already been studied by Miler [14, pp. 131-36] and Small and
Rosen [15, pp. 127-28], 1 simply sketch the main results, referring the reader
to these sources for further details.

It is convenient, but not essential, to make the additional assumption about
the utility function in {2.1) that
(2.5) Xj = 0 »VBU/BQj = 0 i=1,...,N,
i.e.y the attributes of a good do not matter unless that good is actually consumed.
Now, suppose that the consumer has selected good j. His utility conditional on

this decision will be denoted uj. It follows from (2.2)-(2.5) that

(2.6) a0, e 00K 0h e O gy e G T RE E VGG, ¥R ) 3 N,

where Vj is increasing in (y - pjij). I will refer to Vis eees vy as condit%onal
indirect utility functions. They play a central role.in the analysis of the solu-
tion té the maximization problem (2.1)-(2.4). The consumer's decision can be
represented by a set of binary functions 61, ..o,ﬁN, vhere Gj = 1 if x53>0 and

§, 20 if xj==0. These discrete choice indices are related teo the conditional

indirect utility functions by

1if v . (q,, y=-p.%X,) > v.(q,, y-p,X,) all i

(2.7) 6-(1}’ qs ¥) = { 3 33 o B
J 0 otherwise,

Accordingly, the unconditional ordinary demand functions associated with (2.1)-

(2.4) can be expressed as xj(p,q, vy = ﬁj(p,<h y)ij. Substitution of these

demand functions into the utility function (2.1) yields the unconditicnal

indirect utility function



(2.8) vip, 4, y) = maval(ql, y"‘plii)’ ceesy VN(QN, y - pNﬁN)}.
SR show that this satisfies Roy's Identity, Xj = —(viapj)/(av/ay).

The unconditional indirect utilicy function measures the utility achieved
by the maximizing consumer when confronted with given prices, attributes and
income, Accordingly, it can be employed to construct monetary measures of the
welfare effects of a change in these variables. Suppose, for example, that the
prices and attributes change from (pg, qg) to (pl, qz), while the consumer's
income stays constant at y. By analogy with the standard welfare theory of
price changes, the compensating and equivalent variations for this change,-

cv and ev, are defined by

°,

(2.9) v, ., y+ev) = v, g
(2.10)  v(p', q',y) = v, °, vy - ev).

Dual to the utility maximization problem is an expenditure minimization
problem~“~minimize Epjxj + z subject to (2.1), (2.3) and (2.4). Suﬁpose that
the consumer has selected good j. His expenditure conditional on this decision

will be dencted-ej; Tt -follows from {2.3)~(2.5) that

2.11 e, =g {qg,, vy +p.%, Te.(p., 9., u i =1, ..., N,
( ) 3 gB(qj, ) Py, J(p3 a4 ) 3

where gj is the inverse of vj, i.e., gj(qj, v (qj’ £)} £ z. The unconditional

3
compensated demand functions associated with this expenditure minimization problem
can be written xj(p, g, u) = Sj(p, q, u)ﬁj, where

1 if ej(pj, G;» u} < e lpyy g, v),  alld

(2.12)  8.(p, qyw) = { J

0 otherwise.
The unconditional expenditure function obtained by substituting unconditional
conpensated demand functions into the original minimand is
(2.13)  e(p, q, v) = minfe,(p;, q;, W eees e (P G u)} .
SR point out that the expenditure function satisfies Shepherd's Lemma,

Xj(Ps g, u) = 38/3pj, and the duality relationship e(p, g, v(p, q, ¥)}) = y.

1t follows that the welfare measures c¢v and ev can be expressed in terms of e{s) as



(2.14)  ov = e(p', q', u®) - e(p®, q°%, u®)

H

(2.15) ev = e(p', q', u') -~ e(p®, q°%, u'),
vhere ut = v(pt, qt, vy, t = 0, 1, Maler uses (2.14) to examine the special case
1

of a change in a single price-—i.e., q’ = ¢' and pg = pg, j > 2. Suppose also

that xl(pu, q’, v) =% Maler shows that, if pi <pg and even, under some

1
circumstances, if pi>-pi, then cv = (p; - pi)il—w~i.e., the welfare gain is
measured by the change in the cost of buying the good.6

In their discussion of welfare measurement SR invoke three special agsumptions
about the structure of consumer preferences. They apply these assumptions both to

a utility model of the form (2.1)-(2.3) and alsc to the purely qualitative choice

model {2.1)-(2.4) with which I am concerned here., The assumptions are: {A) The

conditional marginal utility of income, 9v,/dv, is approximately independent of
: 3

Rj and qji (B) The discrete goods are sufficiently unimportant that income effects

from quality changes are negligible; d.e., the unconditional compensated demand

function xj(p, g, u) is adequately approximated by the unconditional ordinary

demand function xj(p, q, v); (€ ijfaqj-*o as p, * o, ‘
T T LTI d
It can be seen from (2.6) that, for the purely gqualitative choice model,
Assumption A implies that the conditional indirect utility functions may be
approximated by
{2.16a) ~.(q., - p.%.) = h.{q.) +Y.y -Y.D.%, i =1, ..., N
3(q3 Yy =Py J) J(qJ) VoY =Y 4P4%s j ’ ;

where Yj is a positive constant. This in turn implies th: . the direct utility

function (2.1) may be approximated by
.

(2.16b) u(x, q, z) = hix, q) + ﬁﬂj*sz
1
for some function h(*) where, Gj 1 if xj>-0 and Gj Z 0 otherwise.
It can also be shown? that Assumption B implies that the conditional indirect
utility functions have the same form as in {(2.16a) with the added restriction that

Yj =y all j, i.e.,



2.17a) v.{q, ~-p.%.) = h, (g.) + - LR, t=1, ..., N,
( ) 54940 ¥ py 3) J(qJ) YY T YRR, 3

and the divect utility function (2.1} has the form
(2.17b) u(x, q, z) = hix, q) + yz.
It follows that Assumption B entails Assumption A. Both assumptions imply that
ij/aqj is independent of pj. Hence, if either holds, Assumption C cannot be
satisfied.

I now turn to the random utility analog of the qualitative choice model

(2.1)-(2.4).

2.2, Random Utility Models

A random utility wmodel arises when one assumes that, although a consumer's
utility function is deterministic for him, it contains some components which are
unobservable to the econometric investigator and are treated by the investigator
as random variables, Thisvcombines two notions which have a long history in
economics — the idea of a variation in tastes among individuals in a population,
and the idea of unobserved variables in econometric models. These components of
“the utilivy furction will be denoted by the random vector €, and the utility
function will be written @ = u(x, q, z, €). 1In the present context it would be
natural to postulate that

(2.1")  ux, q, z, €) = ulx, q, z) + Eijii

where gj is 1 1if xj:>0, and 0 otherwise. I will assume that the non-stochastic
component uf{+) satisfies (2.5). For the individual consumer EI, ...,EN is a set
of fixed constants (or functions), but for the investigator it is a set of random
variables with some joint c.d.f. Fe(el,..., aN) which induces a distribution on 4.
In the budget-constrained random utility qualitative choice model the consumer
is assumed to maximize (2.1') subject to the constraints (2.2)-(2.4). This yields
a set of ordinary demand functions and an indirect utility function which parallel

those developed in the previous section, except that they involve a random compo-

nent from the point of view of the econometric investigator.



Suppose that the consumer has selected good j. Conditional on this decision

his utility is Gj where, from (2.1')-(2.5),

2,61 i, = v, {q., y-p.%.) + E. =1, ..., N
( ) 5 3(qJ Y =Py 5 3 s s

with the non-stochastic component being identical to v, (.) in (2.6). The

ordinary demand functions are Xj = xj(p, q, v, £) = 6j(p, 4, Y, E)ij, where

- Vif v (q,, y-p.X)+E, >v (q,, y-p, X, )+ &, all i
(2.7 8, =8.(p qy v, B) = { 33 39T tioHd

0 otherwvise

is a Bernoulli random variable with mean E{gj] = given by

2,18 . . .
( ) .Tij Pr{vj(qj, ympjxj}-t-ej > vi(qi’ ¥ pixi)+ei, all 1}

= F(j.)["j(qy y*pja‘cj) ~vy(a;, ¥-p,%), --.,vj{qj.Y-—'pj?cj)w vl ¥ - py¥0]

where F(j) is the joint c.d.f. of the (N-1) differences ﬁij:zgi‘*g" The expected
quantity demanded is E{§}}E§Xj(p,(h y)==ﬁj§j. Assuming that vj can be cast in

the form vj = Wij, (2.18) constitutes a random utility model as defined in (1.7).
"1 refer to it as a budget-constrained RUM because of the restrictions on the
regressors Wj and coefficients Bj implied By t2;63).
Substituting the ordinary demand functions into the utility function (2.1%)
yields the unconditional indirect utility function
(2.8"y v =v(p,q,7, &) zmax{vl(ql,y-mplil)-%ﬁl, ...,VN(qN,yw—pgiN)4-EN}.

Recall that V is the utility attained by the individual marximizing consumer when

confronted with the choice set (p, q, ¥). This is a known number for the congsumer,

but for the econometric investigator it is a random variable with a c.d.f. FV(W)E
Pr{vjiw}‘derivable from the assumed distribution FE by Fv(w)==F€(w-—vl, ...,w-wvﬂ).
Accordingly, it might be natural for the investigator to focus on the mean of this
distribution E{v(p, g, v, g)}EV(p,(b y) in evaluating the welfare effects of a
change in the choice set. Formulas for V() are provided in Table T for the GEV

8
model (1.4), the independent logit model (1.5), and two probit models (1.3).



Suppose that the available prices and attributes change from {(p®, q°) to
(p*, q'). T propose to measure the effect of this change on the consumer's
welfare by the quantities CV or EV defined by
(2.9 V@', ¢t vy +ev) = V6, ¢°, ¥
(2.10") V', ¢', ¥) = VGR°, ¢°, ¥y - EV).

CV is the amount of money that one would have to give the consumer after the

change in order to render him as well off as he was hefore it; EV is the amount

that one would have to take from him before the change in order to render him as
well off as he would be after it. In both cases, because the consumer's preferences
are partially unchservable, the welfare comparison is based on the investigator's
expectation of his utility.

Az in the deterministie utility case, the RUM (2.1')~(2.4) has a dual problem,
to minimize ijxj + z subject to (2.17), (2.3), and (2.4). Suppose that the
consumer has selected good j.  Conditional on this decision his expenditure, Ej,
is now a random variable from the point of View of the econometric investigator
SRR T b M ML - B A R

d ]

where gj(o, *} is the same function as in (2.11). WNote that, whereas the random

element Ej enters linearly inte the conditional indirect utility function (2.6")

in general it enters non-linearly into the conditional expenditure function (2.11").
Associated with the expenditure minimization is a set of unconditional compen-

sated demand functions §j = xj(p, a, ﬁ, £) = Sj(g, q, u, §>§j’ where Sj(p, g, u, £)

is defined as in (2.12) but using Ej in place of ej. Substituting these demand

functions into the minimand yields the unconditional expenditure function

(2.13'") @& = e(p, q, u, E)=¢min{g1(q1,11—%1)~+plil, ...,gﬁ(qN,ls—EN)-¥pN§N] )

For the investigator e is a random variable with a c.d.f. Fe(w)==1-Pr{g1{q1,

u-—El}:>w-p1§1,..., gN(qN, u-—E§)3>w-—p§§§}. The mean of this distributiﬁn

will be denoted Ef{e(p, q, u, £)} Z E{p, q, u). It can be shown that, whereas

e(p, q, vi{p, q, ¥, £), £))¥=y, this duality relationship does not generally

apply to the means of these random variables

10



(2.19)  E(p, q, V(p, ¢, ¥)) # ¥.
This is because of the nonlinearity mentioned above combined with the linearity of
the expectation operator.

Accordingly, if one were to employ the expected value éf the expenditure func-
tion to formulate welfare measures analogous to (2.15) and (2.16),
(2.147) o' = E(p', q', ¥ - EG°, ¢°, V)
(2.15"y EV' = E(p*, ', V') - B(P®, q°, VD)
where Vt = V(pt, qt, y), t = 0, 1, these quantities would not generally coincide
with those based on the expected value of the indirect utility function, i.e.,
CV # CV' and EV # EV'., Since in most practical situations the data on an individ-
ual's qualitative responses pertain to the primal problem (2.1')~(2.4) rather than
the dual expenditure minimization problem, it would be natural to concentrate on
the CV and EV welfare measures. I will follow this course in the examples
presented below.

The moral of this analysis is.that, when one switches from a deterministic
utility framework to the random utility setting and works with the means of.
the resulting random demand and utility functions, several of the standard rela-
tionships fail to carry over. This point is not adequately stressed by SR, partly
because they tend to focus on the special case of no income effects in which these

difficulties disappear.

2.3 The Case of No Income Effects

In the random utility context Assumption B, that the ordinary demand functions
xj(p, q, ¥, £) coincide with the compensated demand functions xj(p, q, u, €£),
implies both that the non-stochastic component of the utility function (2.1') has
the form given in (2.17) and that the moments of the joint distribution F€ are
independent of (p, q, y). Thus (2.6") and (2.11"') become

2.20 v.(q. -p. X )+E, = h,{(g.) + - XK, + £, io= 1, ..., N
( )} J(q3, Ll FE 3 3(qj) Yy YPJ j b i ,

=1, ..., N

[

2.21 (g, u-E)+p,X,= p.¥, + - &, - h,(q,
( ) g}(qJ u 83) Py¥y= Py¥, [ (u J 3(q3))/\r]

11




Substituting (2.20) into (2.8') and taking the expectation vields

7 = - o = e T ~
(2.22)  V(p,q,¥y) Yy+E{maX[h1(c;1) YP Ry +E, eey ho(a)) {?NXN**EN]}

2yy +T(p, q)

where T(+) can be calculated using the formulas in Table 1. Applying the welfare
formulas (2.9") and (2.10'), one finds that
(2.23) oV = EV = [T(p?, ¢°) ~ T(p', a)1/y-
Moreover, if one substitutes (2.21) into (2.13') and evaluates E(p, ¢, u), it
turns out that (2.19) becomes an identity and CV' and EV' calculated from (2.14')
and (2.15') satisfy CV' = EV' = CV = EV. Thus, under the assumption of no income
effects there is but a single welfare measure. |

SR [15, equation (5.5)] present a welfare formula which can be shown to be
equivalent to (2.23). They derive it in a somevhat different manner, and they
claim to require Assumptions A, B, agd C. However, as demonstrated abqve, only
Assumption B is required: it already implies Assumption A, and it precludes
Assumpticn C, which plavs no rolé in the derivation of (2.23).11 One. consequence
of this assumption should be noted. The income variable drops out of the utility
differences which, from (2.20), take the form vj vy hj(qj) - hi(qi) -
Y(pjij - piii). Since it is the utility differences which enter into the formula
for the discrete choice probabilities (2.18), it follows that these choice
probabilities are independent of income. The marginal utility of income, ¥y, can
still be estimated because it is also the coefficient of the price variables, but

income itself cannot appear as an explicit variable in a qualitative response model

under the no income effects assumption.

2.4 Fconometric Applications

In the light of the above discussion, the following procedure is suggested

for performing welfare evaluations with qualitative response models of discrete
consumer choice. Formulate a budget-constrained RUM model (2.1')-(2.4) in which

the conditional indirect utility functions (2.6') can be cast in the regression

12



férm Gj==W5Bj~&§j and specify either an extreme value or normal distribution for
SEIRREE g Fit the resulting logit or probit model to obtain estimates of the
coefficients in vj(') and the parameters of the distribution FE. For any given
change from (p®, q%) to (p', q') calculate CV or EV by evaluating V{(p, q, y) from
the formulas in Table T and applying (2.9') or (2.10'). Alternatively, if the
utility model satisfies the no income effects condition, evaluate T(p, q) and
apply (2.23).

In the no income effects case (2.23) provides a closed~-form expression for CV.

For example, with the independent logit model one obtains

- i v v}
(2.23a) CV = EV = ;{Rn(Ze 3y - fn(Ze 3)]
while with the binary independent probit model where I is diagonal, independent of

(p, 9, v}, and normalized so that €, = 1, one obtains

(2.23b) CV = EV = Efm”@(zx") £V 4 (8%~ B10(AT) - 2 - (A

where v§ = vj(qg, y-—p;), t=0, 1, and_&t = VE'“VE' ‘In the presence of incone
effects, however, V{(p, ¢, y) is generally nonlinear in y and therefore one must
eﬁpldy'numerical techniques such as Newton's method in order to solve (2;9') or
(2.10") for CV or EV. Nevertheless, in some cases approximations are available

which yield closed-form solutions. Consider, for example, the RUM models asso-

. - s A . 1
ciated with the conditional indirect utility functions

It

2.24 u, = h.{(q.) + Y.vy-Y.p. + €, i =1, ..., N
( ) u, 3(qj) Y5y 73P3 5 3 R s

]

2,25 a, = h. (q.) + v. & -p.) + €, j =1, ..., N.
( ) u, J(qJ} Yj n(y pj) 3 j s R

The model (2.24) is the RUM analog of (2.16a) and satisfies Assumption A but not

B, while (2.25) satisfies neither A nor B.13
I first assume that FE is the standard extreme value distribution, so that

(2.24) and (2.25) generate independent logit models. In both cases V(po, qa, v)

o
= Kn(EevJ) + 0.57722, where v; is the non-stochastic component on the RHS of

(2.24) and (2.25) evaluated at (pg, qg, y). TIn the case of (2.24)
S fal . - 1 LRI,
V(ph ¥, y+CV) - 0,57722 = en(@ePT (99 T GO FCN —Yipay L g me¥ia iy,

13



where v; is evaluated at (p;, qg, v).  Applying (2.9'), CV satisfies

1.,
(2.26)  1e¥3eYiCV < eV

0
1.
Rather than employing numerical methods to solve (2.26) one can use the approxi-
mation e- ¥ 1 + z to obtain
1. b
L(1 + YjCV)evJ % Te'd
or
W@ vl
(2.27) V= (Zed - Ie 3)/2Yie 3.
The quantity EV can be approximated similarly.l4 For the model (2.25)
. (ql \ e ool s
v(pt, q L, y4+CV) - 0.57722 = En[zed (43 FVAn(r+CV-p5)y o 1o hi(a9d (o 4 oy mp;)Ya} .

Using the approximation (a-%z}Y:: al + Yéale with a = y—-p; and z = (V one obtains

4]

(ol e tal . -
‘Eehf’(qj)(yﬂLCVmp;)“(J ZehJ(QJ)E(y"pE)YJ +YjCV(y“p§)Y3 1]

i

Eev§{1—¥YjCV(y~wp§)—l}.
Thus,lS
(2.28) ¢V = (ze";3 - ze"ﬁ)/zyj(ywpg)“le"% )

Simiiar'appré%im;tioné can bé éppiiéé.£o the GEV model based on the c.d.f.
given in Table I. As an example T will consider what Amemiva {g] calls the
standard GEV model. Suppose that the N indices can be naturally partitioned into

S <N groups so that each group consists of similar alternatives. Then, the

function G{-) in Table I takes the form

. 8 :

(2.29)  G(t,, i t) = T o 5 /17951~ 0s
1 N 50, i
g=1 jelg
where asf_O and Of_US< 1. Thus
! i} V?/I“US 1"‘08
Vip ,q , v} = En[EaS( I e ) T+ 0.57722,
S 7 Jelg

In the case of (2.24), note that

1
- vi/l~0 sOV/l -1 ~0
{ & exp{vj(q;, y4~CV-—p;)/1 - GS]}1 O {12 e 3/ seV3 / 8} 8

jeig jclg
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1 1
N {Eevj/l"gs 4 oY zy_evj/l”cs}i”%
1&55 J
14 _ 1/, 10
N (Xevj/l Us)l Os CV(EYjer/l OS)(ZeV}/I Ty Us

Substituting this into the formula for V(p', q?, y+ CV) and applying (2.9'), one
obtains

g i _ 1L 1y
(2.30)  evs{sa ( 5 e'3/17Csy1-0s _ La ( % V3o syrta (£ oy 31705y 1 o¥iY1 706y 0y
8% jery § % jeny 57 e, jeig

If one sets as==1 and US==0, this collapses to the formula in (2.27). Similar

manipulations applied to (2.253) yield the approximation

8
(2.31) Cvz [E{xs( £ ev}fl “GS)l°Us ~Tx (T e‘!’}/! —Os)l
8 jelg 8% Jerg

Mcslfiias( T oy.(y -~ pl)—levﬁll ~C£s)€ r eu}/l “”5)"05 )
8 jsls b b )
s . . . . t t t t
In the binary independent probit case with fixed £, V(p , q ,¥) = A d(A)

+ vy + ¢, £=0, 1. With the utility model (2.24)

(2.32)  wipl,ql, v+ O = (81 4 (y) v IEVIET + () =¥ )ON+ vEHy,CU+ 48} + (y, -y )0

i
Using the first-order approximations ¢(a+2z) = ¢(a) + zj(a) and ¢(a + z)
T ¢{a)[! - az] with a = A and z = (yl - yzjcV, (2.32) becomes

2
vip', ¢}, v+ V) = AICV + ALY + vip!, q, ¥v)

where Aizz(y1-yz)2¢(a1), and AZE Cyl-yz)é(ﬁi)-¥y2. Thus CV satisfies (approxi-
matelv) the gquadratic equation AlCV2 + AZCV + A3 = 0, where A335V(p1, ql, )

- V(p®, ¢% ¥). Hence,

et —— 2 -
(2.33) v = ¢ A, + ./A2 4A1A3)f'2A1

where one should remember that sign(CV) = sign(mAB) in selecting the pesitive or

negative root. For the model (2.25) one needs to employ the approximation

Ccv

=1, 2.

foly + €V - p!) = an(y ~ p}) +
3 J . |
y Pj

Hence,

He

(2.38) v, ¢, y+ov) = (A4 Q, - Az)cvw(a‘ + (A - Az)cv)w; + X,V + d(A + Q- Az) CV)

15



where %jEEYj/(Y‘“P;),j =1, 2. Using the same approximations as those applied to
(2.32) one obtains the formula (2.33) vhere A3 is defined as before but AIE (Al
- A2 P(AT) and A, = (3 - 12)@(,5’) + Xy

It would however be difficult to apply such approximations to polychotomous
probit models based on (2.24) or (2.25) because of the complexity of the formula
for V. An additional complication arises in random coefficient versions of the
probit model where Yj itself is normally distributed — see [10] for example -
because then the covariance matrix ¥ depends on y. One would have to allow for
this dependence in evaluating V(p?!, q, y+CV) and solving (2.9'). 1In these cases
numerical solution techniques would certainly be required.

Finally, it is instructive to consider the special case where only one price
changes — i.e., q%=q! and p?==p§, j>2. In the discussion of the deterministic
utility model (2.1)-{(2.4) the following result was mentioned: if the consumer
selects good 1 and its price falls, the compensating variation is measured by
the change in price, cv = (pi-»pi}. One might wonder whether a similar result
carries over to the RUM model (2'1’?f(2‘4?7 |

For the independent logit model with ne income effects, the exact formula
for CV (2.23a) may be approximated by CV:;(Eevg - Eevé)/YEevi. With a zingle
price change

1 0 1

0 1 1 1....9 1
EEVJ - EeVJ = vl _ eVl = eVI(eY(Pi pl)*~l)::ele{P;‘“Dg)-

Thus,

i

ov = &yl - p0) v’ = wlp! - ph)
where ﬁi is the probability of selecting good 1 evaluated at the new price. This
result, that the compensating variation for a price change is approximately equal
to the probability of buyingAthe goed multiplied by the change in price, may be
regarded as an analog of the deterministic utility result. For the logit model
based on (2.24) which yields the CV formula (2.27), applying the approximation

Z . .
e” L 1+ z for a second time one obhtains

16



(2.35%) CV o= eviyl(p; - pf}/ﬁyjevi.
Similarly, for the logit model based on (2.25), (2.28) becomes
vi -1 vi

(2.36) CV = e 1(y1/y) (pi—pi’)/&{j (y—p;’i) e d .
in both cases one can argue that the RHS is likely to be of the same order of magni-
tude as evi(p;-upi)/Zevé = Wi(pi-—pg)‘lﬁ Tt dis more difficult to perform similar
manipulations with the probit models, except for the binary independent probit
model with no income effects which yvields the exact formula (2.23b). When only Py
changes AG=:A1~hy(p1-—pl) and to a first~order approximation (2.23b) becomes
(2.37)  CV = wj(py -p]) + y(pi-p§)2¢(£&‘)
where the first term iz likely to dominate the RHS.

In all of these cases it must be stressed that the formula éVC:ﬁi(p;~wp§) is only
a very rough approximation and not an exac£ result, ‘Itlmay be useful as a rule of
thumb for quick calculations, but its accuracy remainé to be determined empirically.
The ultimate solution for any welfare evaluaticon is to apply numerical techniques
to the fundamental equations (2.9") and (2.10'), or to employ the approximations

2,27y, (2.28), (2.30), (2.31) or (2.33).

3. Other RUM Models
The budget~constrained RUM wmodel (2.1')-(2,4) implies that the conditional
indirect utility functions have the form ﬁj = vj(q,y-pj)+V€., which imposes a
substantive restriction on the manner in which the price and income variables
enter the formulas for the discrete choice probabilities. The literature contains
many examples of logit or probit models of discrete consumer choices which violate

these restrictions. For example, one finds RUM models based on utility functions

of the form

i

(3.1) i, = h,(q,) - .+ Y.y + E., | = ..., N
i Jq}) ijs Y39 T & B:’lihrj i=h - B

H]

Iy ooy N

('8
L]

(3.2) u, h,{q.) - .+ .+ F
§ qu) Bp3 YYD, j

which are incompatible with the budget constraint (2.2). In these and other

17



RiM models which violate (2.2} one still might wish te evaluate the welfare effects
of a change in the choice set. The appropriate procedure would be to calculate
VEEE{max[El, ...,EN]} using the formulas in Table I and solve the equations

analogous to (2.9') or (2.10') for CV or EV.

As before this generally requires numerical scolution techniques, but in some
cases a closed-form approximation to the solution can be obtained. The models

(3.1) and (3.2) are particular cases of the more general model

3.3 v, =¢,.(q., p.) + Ar.(p. ) + £, i =1, ..., N.
(3.3) 3 wj(qJ pj) J(pJ, qJ)y 3 j ,

. For any standard GEV model based on (3.3), by applying the approximations uszed in
connection with (2.30) one 6btains

f 1 - 1 - 1 - -
(3.4) eveia (£ "3/ TIs) 70 gy (5 Y7105y Os)/ta ( E e’ 105y 3 Y104y 05
5% je1, 8% ger, 5% gey, d jei,

where v; is the non-stochastic component on the RHS of (3.3) evaluated at (P§, q;, v),

t=0,1, and'l;ﬂfkj(p;,q;). Setting as=:1 and US==O vields the formula for the
independent logit model, Similarly, for any binary independent probiﬁ model with
fixed covariance matrix based on (3.3), by applying the approximations used in
connection with (2.31) one cobtains the formula (2.33) where A1§ (li-—l§)2¢(ﬁi),

¢
...Vz,

g

A2 O] =AM +1), Ay EAO@Y) +vy+9(B)) ~8%0(8%) - v3 - 6(4%), and AT =)
t=0,1.

Another example of a RIM model not consistent with (2.1')-(2.4) occurs when
the qualitative responses represent choices among actions with uncertain conse-

quences by a von Neumann“MOrgensﬁern expected utility maximizing individual.

Suppose an individual has wealth y and a utility of wealth function whose non-

stochastic component is denoted by Y(y). The individual must choose among N

actions whose consequences depend on the state of the world s=1, ..., 8.

Associated with act j is a vector of state probabilities pj = (Djl’ ...,qu)

and a vector of monetary consequences zj==(zj1, ”"sz)' Conditional on the

choice of act j the individual's utility is

14

3.5 4. = Ip. +z, Y4+ E, v, +F, if=1,.,.,N,
(3.5) uy Sojsw(y Js) 555 3 i
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ihis generates an MRQR model which may or may not be linear in the unknown
parameters depending on the form of the utilitry function P(y). Given that the
individual has chosen optimally, his utility is v = max{ﬂl, ...,GN}. This is a
random variable for the econometric investigator with a mean E{V} = V(p, z, v).
Suppose the state probabilities and/ox payoffs change from (p°, z%) to (pl, zM).
By analogy with (2.9'), the compensating variation measure of the effect of this
change on the individual's welfare is defined by

(3.6)  V(p!, 2}, y + V) = v(e°, 2°, v).

Again, numerical solution techmiques will generally be required, but sometimes
ong can obtain a closed-form approximation to the solution. TFor example, consider
the model based on (3.5) with ¢(y) =vy2&n y which arises in a study of seat-belt
usage by motorists [9]. In the independent logit case, with S=2, by an argument
similar to that leading to (2.28), one obtains a quadratic in CV with the solution

1 1 1 0
(2.33) where A, 2y?Ixl A} '], Ay =yIaled, ap = (3e¥d - 5e'd), ljfs

jtrji2 k
e=1, 2, and l; = R;14- l;z. Likewise, in the independent probit case one obtains

_ 1 1
= pjsf{y"mjs),

the solution (2.33) with AIEYZ (x’i nxlz)zcb(gl),' A25Y(}X1 -—x*z)ml) +yal,

and A3ZA1®(AI)+VE+$(AI)-A°<I>(A°)-v%-¢([§°), where At=v'1:—v§, t=0, 1, and
l; =Ep§sl(y~¥zgs), j=1, 2. Similar results can be obtained for some other

common specifications of Y (y).

4. Conclusions
The purpose of this paper has been to describe a general procedure for perform-
ing welfare evaluations with MRQR models which are derivable from a RUM model of
consumer choice. The procedure is based on the equations (2.9"), (2.10') and (3.6),

which in general require numerical solution techniques. With current computer

software, however, this should not be a serious obstacle. Moreaver, I have shown

that for many common logit and probit models closed-form approximations to the

solution are readily available. Much attention has been devoted to budget-

constrained RUM models because these have an exact analog in deterministic utility
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theory. This makes it possible to highlight the similarities as well as the
differences between the deterministic and random utility frameworks. However,
the same general approach to welfare evaluations carries over to the other R
models which are found in the literature.

The emphasis throughout the paper has been on the welfare theory of an
individual consumer. An implication is that the welfare measures described above
must be calculated separately for each consumer. The preblems of estimating MRQOR
models from aggregate data and developing welfare inferences on the basis of
aggregate utility functions have not been addressed here although, as McFadden
{E%] shows; the no income effects utility function (2.20} can be employed for
this purpose. My approach presupposes that the MROR model is estimated from
disaggregated micro data and that all individuals in the sample have utility
functions with the same non-stochastic component and the same probability law
governing the random elements. These conditions are met by virtually all of the
empirical MROQR models which have appeared in the literature. Hence, the techniques

of welfare analysis described here should be widely applicablé.

University of California, Berkeley
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FOOTROTES

1. I am grateful to Angus Deaton and two referees for their helpful comments
on an earlier version of this paper.

2. A tilde will be used to denote random variables.

3. The question of mixed qualitative and quantitative choices will not be consid-—
ered here. Welfare measures for a class of these models are presented in [8].

4. For simplicity I will treat gj as a scalar variable, but in empirical applica-
tions it is usually a vector.

5. T assume that y Z_mgx{piﬁi}, so that the non-negativity condition on z is nor
violated.

6. SR [153, fn. 16] note an error in MHler's analysis éf this point.

7. The proof is presented in the earlier version of this paper, which is available
on request.

8. In the case of the bimary probit model the formula for V is exact. In the
case of the trichotomous probit model the formula is approximate and relies
on Clark's [4] approximation, which could also be employed for higher dimen-
gional probit ﬁodels.

9. Further details are provided in the earlier version of this paper, where it
is also shown that Roy's Identity does not apply to Xj(p, 4, v) and V(p, q, ¥),
i.e., Kj # —(EV[Bpj)/(Bvlay). Similarly, E(p, g, u) does not satisfy Shepherd's
Lemma.

10. 1t can also be shown that in this case V and E satisfy Roy's Identity and
Shepherd's Lemma.

11. An analysis of SR's derivation of their welfare measure and a demonstration
of the irrelevance of Assumption C is contained in the earlier version of this
paper.

12. 1 now assume the units of measurement are chosen so that Ej = 1.

13. In (2.25) one can set Yj = ¥ all j while still preserving an income effect.
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14,

16.

EV can be calculated from the formulas presented here by observing from (2.9")
and {2.10") that the EV for a change from (pa, qa) to (pb, qb) is the negative
of the CV for the change from (pb, qb) to (pa, qa).

Using the same approximations one can obtain similar formulas for ¢V for the
utility models Bj = hj(qj) +-eYj(y-pj) + ﬁj and Gj = hj(qj) + (y-—pj)yj + Ej
in the logit case. ‘The latter model is a CES version of the Cobb-Douglas
model (2.25). However, these utility functions generate MRQR models which are
nonlinear in the parameters.

By a similar argument it cam be shown that EV is roughly of the same order of

. 0, 1 _ 0
magnitude as Hl(pl pl).
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TABLE 1

FORMULAS FOR V= E €., ven
UL 50 {max[vl €1 Nt e

1. Generalized Extreme Value

= . —£1 ~EN
FE(El,.e., EN) exp[~-G{e . - e 3]
VoefnGle'l, ..., e"N) + 0,57722
2. TIndependent Logit
—-Es
Fefgl""’ EN) = expl-Le 1}
= fn Te'd + 0.57722
3. Probit
== = 2
Fg(el, cens EN) N(O, L), )X {Uij}
a. Binary Probit, N = 2
""V v "“Vz , lﬁ
V2= -v )@( < )-+v2-¥K ¢(_—7;;—mﬁ, Ky = (o }14'622-20 }
b. Trichotomous Probit, K = 3
V -V \ "V3
V,x (V -v)®( )+V+r<: ¢(____._,)
3 2 3
3 3
= 2 2 2 ;5
Ky (033 + 85 282’3}
Vi T V2
2 .2 2 _ 2
83,35 053 F (075 = 0,3)0( “, )
2.2 2, 2 172 " V2 2
- 2 - -
sz,,n.ar2+o22-|~(v1 +a) ozz)cb( < ) + vyt )K ¢>( < ) Vo

9 and ¢ are, respectively, the standard univariate normal p.d.f. and c.d.f.
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. g - _ ,1 - _ - 1 - -

(2.vv CVx[fa (T eVi/1=0sy1-0s _ Lo ( 3 ¥/l Tsy1 m?fﬁ I ove vi/l Osy( 1 e¥i/1 7T Is
&7 jelg 8 7 jelg S 7 jerg - JET

(2.31) ¢V { /Lo ( I Y5 (y-ph) y71 j:;omx T mu:; s) s |
g 5 s ® jelg J jel

(3.4) v lag( 3 2oV §/1-0sy (g o¥i/L" 95y

s § umH jelg






