
UCSF
UC San Francisco Previously Published Works

Title
Stochastic innovation as a mechanism by which catalysts might self-assemble into 
chemical reaction networks.

Permalink
https://escholarship.org/uc/item/798365td

Journal
Proceedings of the National Academy of Sciences of the United States of America, 
104(24)

ISSN
0027-8424

Authors
Bradford, Justin A
Dill, Ken A

Publication Date
2007-06-12

DOI
10.1073/pnas.0703522104
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/798365td
https://escholarship.org
http://www.cdlib.org/


reaction networks
Stochastic innovation as a mechanism by which catalysts might self-assemble into chemical

Justin A. Bradford, and Ken A. Dill 

doi:10.1073/pnas.0703522104 
 published online Jun 4, 2007; PNAS

 This information is current as of June 2007.

 Supplementary Material
 www.pnas.org/cgi/content/full/0703522104/DC1

Supplementary material can be found at: 

 www.pnas.org#otherarticles
This article has been cited by other articles: 

 E-mail Alerts
. click hereat the top right corner of the article or

Receive free email alerts when new articles cite this article - sign up in the box

 Rights & Permissions
 www.pnas.org/misc/rightperm.shtml

To reproduce this article in part (figures, tables) or in entirety, see: 

 Reprints
 www.pnas.org/misc/reprints.shtml

To order reprints, see: 

 Notes:

http://www.pnas.org/cgi/content/full/0703522104/DC1
http://www.pnas.org#otherarticles
http://www.pnas.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=pnas;0703522104v1&return_type=article&return_url=http%3A%2F%2Fwww.pnas.org%2Fcgi%2Freprint%2F0703522104v1.pdf
http://www.pnas.org/misc/rightperm.shtml
http://www.pnas.org/misc/reprints.shtml


Stochastic innovation as a mechanism by which
catalysts might self-assemble into chemical
reaction networks
Justin A. Bradford† and Ken A. Dill‡§

†Graduate Group in Biophysics and ‡Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143

Communicated by Christian de Duve, Christian de Duve Institute of Cellular Pathology, Brussels, Belgium, April 16, 2007 (received for review June 29, 2006)

We develop a computer model for how two different chemical
catalysts in solution, A and B, could be driven to form AB com-
plexes, based on the concentration gradients of a substrate or
product that they share in common. If A’s product is B’s substrate,
B will be attracted to A, mediated by a common resource that is not
otherwise plentiful in the environment. By this simple physico-
chemical mechanism, chemical reactions could spontaneously as-
sociate to become chained together in solution. According to the
model, such catalyst self-association processes may resemble other
processes of ‘‘stochastic innovation,’’ such as Darwinian evolution
in biology, that involve a search among options, a selection among
those options, and then a lock-in of that selection. Like Darwinian
processes, this simple chemical process exhibits cooperation, com-
petition, innovation, and a preference for consistency. This model
may be useful for understanding organizational processes in pre-
biotic chemistry and for developing new kinds of self-organization
in chemically reacting systems.

chemical evolution � self-organization � abiogenesis � catalytic chains

There are several examples of what might be called ‘‘stochastic
innovation,’’ whereby a biological, physical, or sociological

system: (i) searches among viable options, then (ii) selects one
or more of those options that is ‘‘best’’ by some metric, then (iii)
locks in that selection for the future. In biology, the best-known
example is Darwinian evolution (1), where variation is the term
that describes the search step, and natural selection is the term
that describes steps (i) and (ii). Stochastic innovation occurs in
learning and memory and neural development, where the cor-
related firings of neurons can lead to changes in synaptic strength
(2–5), and to the development of the vascular system, where new
blood vessels grow toward oxygen-deprived cells (6, 7).

Stochastic innovation appears in other arenas, too. Human
beings, businesses, and social organizations evolve through
decision-making: they search among the options available to
them, make self-serving choices, then remember and act on
those decisions in the future. Social insects, like ants, search
randomly for food, then lock in the discovery with chemical
trails for the rest of the colony (8, 9). Computer models of
artificial life and artificial societies show that stochastic inno-
vation can meet apparent goals that were not programmed into
them at earlier times (10, 11). The power of stochastic
innovation is that it can lead to complex behaviors or organi-
zational structures that are responsive to changes in the
environment, even though such processes are unguided, un-
planned, and stochastic.

Our interest here is in whether stochastic innovation might
also be achievable in chemistry and biochemistry. Can chemical
and biochemical reactions be chained together in complex and
innovative ways, driven only by simple physicochemical search
and selection processes? If so, it may be useful, not only as a tool
in chemistry and biochemistry, but also for giving insights into
the processes of chemical organization that may have occurred
during prebiotic evolution.

Here, we propose a simple model. Our goal is not to explain
some existing body of data, because we know of none that
pertains. Rather, our goal here is to propose a type of organizing
principle that has not been explored before, as far as we know,
but that is based on well established physicochemical principles
and that can be tested by experiments. Our initial motivation for
this work was to understand some puzzles of prebiotic chemistry,
where, it could be argued, the field is just as limited by a lack of
specific testable models at the moment as it is by a lack of
experiments.

Model of Agents and Resources. We focus here on catalysts, such
as enzymes or simple surfaces. We call a catalyst an ‘‘agent.’’ An
agent converts a substrate to a product; we label agents alpha-
betically (see Fig. 1). We call a substrate or product a ‘‘resource’’;
we label resources numerically. We assume that agents are
Michaelis–Menten catalysts; i.e., they bind to their substrate
before converting the substrate to a product. In our model,
resources may be supplied by the external environment. Such
environmental resources may vary with time in a random or
controlled way by external forces, but, for simplicity, we assume
they are uniformly distributed in space.

Fig. 1 shows an example. Agent A converts a substrate 1 to a
product 2. Agent B converts substrate 2 to product 3. Key
components of our model are the common resources, which are
substrates or products that serve in common among different
types of agents. For example, in Fig. 1, resource 2 is a common
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Fig. 1. Agents (lettered circles) and resources (numbered squares). (a) Agent
of type A converts substrate 1 to product 2. (b) Agent of type B converts
substrate 2 to product 3. (c) When agents A and B are complexed together, two
reactions are chained together, converting substrate 1s to product 3s.
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resource because it is both a product of A and a reactant for B.
Figs. 1 and 3 also show that if agents A and B come together by
some process, then the AB complex is a ‘‘machine’’ that converts
1s to 3s, mediated by the intermediary resource 2s.

Agent B (Fig. 1) may take up a substrate molecule 2 from
either of two sources: either the 2 was produced as the output
from a nearby A agent, or the 2 was supplied externally from the
environment, if 2s are available from external sources. Because
we assume that Bs are Michaelis–Menten catalysts, a B will bind
to its substrate, a 2 in this case. Bs will concentrate around 2s
simply because Bs flow down their chemical potential gradients,
in the same way that solutes in chromatographic mobile phases
will seek out and bind to stationary-phase surfaces for which they
have affinity.

Principles of Attraction and Shielding. There are two possibilities
for each B agent (Fig. 2): attraction or shielding.

1. Attraction. As attract Bs through the following indirect
mechanism: As produce 2s; 2s are localized near the As; those
2s attract Bs, concentrating the Bs around the As, thus leading
to more AB complexation than would have occurred without
the intermediary 2s (see Fig. 2a). This enhancement happens
when: (i) A agents are present, (ii) 1s (the substrates for As)
are plentiful, and (iii) 2s are depleted in the environment (i.e.,
available only at small or zero concentrations). AB compl-
exation introduces into the system an ‘‘innovation,’’ i.e., an
ability to produce 3s from 1s, an ability that does not simply
and directly result from the presence of A or B alone (see Fig.
1c). Significant chaining together of agents is an emergent
property of our system. In short, AB complexes are driven to
form through mutual indirect attraction, mediated by 2s, the
common resource, but this attraction occurs only when 2s are
depleted from the environment.

2. Shielding. In contrast, when environmental 2s are plentiful
and available in all directions, Bs will not selectively migrate
toward As (see Fig. 2b). We call this ‘‘shielding.’’ (A more
biological example of shielding is chemotaxis. A bacterium
will swim toward a point source of food, except if food is
uniformly distributed everywhere in space; then the bacte-
rium would not migrate preferentially toward any one single
point source. Chemotaxis, of course, is a complex process, but
it illustrates how a favored direction of motion can result from
simple physicochemical forces that change when environmen-
tal resources vary.) In the present model, attraction and
shielding are simple consequences of concentration gradients.

Details of the Model. Here is our model for how stochastic
innovation might arise in a system of chemical catalysts. We
assume that catalyst agents can adsorb to a surface. The prebiotic
origin of life may have involved surfaces, such as minerals or
clays, on which reactions took place (12–14).

Our model involves two compartments. First, there is a surface
lattice where all of the reactions take place. Second, that surface
is in direct contact with a bulk solution just above it, which serves
as a chemical potential ‘‘bath,’’ a source of agents and resources
for the surface. The surface simply provides a mechanism for
trapping the 2s and Bs, slowing their escape from the As,
providing the basis for the AB complexation enhancement.
There are NA molecules of each agent type in the simulation, and
EN (E1, E2, . . . ) represent the concentrations of that resource in
the bulk solution. Fig. 3 shows the steps: (i) 1s attract As from
the bulk onto the surface lattice, (ii) As produce 2s, (iii) which
then attract Bs, (iv) leading to a machine in which As and Bs are
clustered on the surface to produce 3s from 1s. Agents and
resources diffuse rapidly throughout the bath, so they can be
regarded as being in equilibrium within the bath over the time
scale of the processes that happen on the surface. The lattice has
Lx � Ly lattice sites; it just serves to coarse-grain the spatial
localization. Each lattice site is large enough to be occupied by
multiple molecules of different types at the same time.

We believe this is the minimal model that captures how
catalysts might self-associate in solution. During any given time
interval in the simulation, any or all of the following processes
may occur (see Fig. 4).

1. A resource molecule or an agent molecule may drop down
from the bulk and associate with the surface lattice, with rate
coefficient kon. To keep the model simple, all four types of
molecule bind the lattice with the same rate constant.

a

b

Fig. 2. Attraction and shielding. (a) Attraction. Bs are attracted to 2s, which
are produced by As, hence Bs are attracted to As. (b) Shielding. When 2s are
plentiful in the environment, Bs are attracted to them in all directions, hence
have no special net tendency to associate with As.

Fig. 3. Attraction on the lattice. (a) Agent A leaves the bulk and binds to the
surface lattice in a region where resource 1s are concentrated. (b) Agent A
converts 1s to 2s. (c) Agent B leaves the bulk and binds to the surface lattice
where 2s are concentrated, which tends to be near the As that produced them.
(d) Agent B produces 3s. (e and f) Agent B associates with A (e), forming a
complex, which is now (f) a machine that converts 1s to 3s.
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2. Any resource or agent molecule on the surface may detach
from the surface and be released into the bulk, with rate
coefficient koff.

3. Because of the Michaelis–Menten binding property of each
agent, an agent will attach more rapidly to a site where
substrate is concentrated, in proportion to the concentration
of its substrate at that site, with a rate coefficient kcoop.

4. An agent molecule A can convert any 1s to 2s on its lattice site
with a rate coefficient k1–2.

5. An agent molecule B can convert any 2s to 3s on its lattice site
with coefficient k2–3.

6. Agents and resources can diffuse laterally on the surface
lattice with coefficient Dlattice.

7. An agent A and agent B on the same lattice site can associate
with each other, with rate coefficient kform, forming a new
species of agent, the AB complex.

8. An AB complex may dissociate, either in the bulk or on the
surface, with rate coefficient kdecay. Supporting information
(SI) Table 1 and SI Text provide further details and typical
values of the parameters (see SI Table 1), as well as a
pseudocode implementation (see SI Text). (Source code is
available on request.)

Results
Exploring Attraction and Shielding. Our computer simulations show
that if an agent A produces 2s at a rate that is faster than the 2s
diffuse away, and if the A is bound to the surface, then 2s will
be concentrated near the As on the surface. Agents of type B,
which use 2s as substrates, explore space stochastically but will
be attracted to the 2s, on average, thus binding to surface lattice
sites near the most productive As. If there is a mutual affinity of
As for Bs, AB complexes will form on the surface.

Fig. 5 shows: (i) attraction, the situation in which Bs migrate
to As to form complexes, driven by depletion of the common
resource, 2; (ii) shielding, the situation in which common re-
source 2 is plentiful in the environment, so Bs are not selectively
attracted to As; and (iii) a control simulation showing that when
As produce no common resource 2s, there is essentially no
formation of AB complexes, even though there is some intrinsic
affinity between the As and Bs. In this model, AB complex
formation is a nonequilibrium process; it happens only in the
presence of a gradient of 2s concentrated around the As. The
complex formation process can result from either highly pro-
ductive As or the environmental depletion of 2s from the system.

The rate of complex formation: increases with the productivity
of the agents and decreases with the degree of environmental
shielding. AB complexation is largest when As are productive

(requiring that bulk 1s are plentiful). AB complexation is
reduced by shielding (when environmental 2s are plentiful) (see
SI Fig. 8).

Some Properties of the Model: Cooperation, Competition, Consis-
tency, and Innovation. Our agents cooperate with each other.
When the environment provides no substrate for catalyst B, B
will migrate toward A via its substrates. The model shows a
driving force for innovation: when the common resource is
depleted, the system evolves an ability to create 3s directly from
1s, thus creating two chemical reactions chained together where
there were only two isolated reactions before.

Our model also exhibits competition. Fig. 6 shows a version of
the model in which As convert 1s to 2s and Bs convert 2s to 3s,
as before, but now there is an additional agent, labeled A*. A*
is a superior version of A. A* converts 1s to 2s faster than As
catalyze the same conversion. Fig. 6 b and c show that complex
formation increases with As productivity. For comparison, Fig.
6b just shows independent experiments of a single A interacting
with B: curve [A*B] shows what happens when the A produces
2s rapidly, and curve [AB] shows what happens when the A
produces 2s more slowly. In contrast, Fig. 6c shows A and A*
together in the same solution, competing for Bs. A* outcompetes
A to associate with the Bs. Comparing Fig. 6c with Fig. 6b shows
a nonadditivity because of the competition for the same param-
eters: When A and A* compete in the same solution, the ‘‘rich

Fig. 4. Processes in the lattice model. (a) Molecules exchange between the
bulk solution and bound to a random lattice site. (b) Agents have an additional
binding rate at lattice regions with their input resource. (c) Bound molecules
move about the surface. (d) Agents convert input resources to output re-
sources at their site. (e) Two agents at a site can form an agent complex.

Fig. 5. Numbers of AB complexes formed vs. time. Dark line: under attraction
conditions, no environmental supply of resource 2 (E1 � 104, E2 � 0). Light line:
under shielding conditions, with resource 2 provided by the environment (E1 �
104, E2 � 103). Dashed line: control experiment; no 2s are available because the
environment has none, and As are unproductive because of the absence of 1s
(E1 � 0, E2 � 0). (Time is in units of 1,000 simulation units for this and following
plots.)

a

b c

Fig. 6. Competition. (a) Agent B can associate with either agent A or agent
A*, a superior producer of resource 2. (b) Complex formation increases as the
productivity of As increase. (c) Agent A competes with a superagent A* (for
A*, kx-y � 0.1 and for A, kx-y � 0.001). Competition enhances the difference
between A*B and AB complex formation.

10100 � www.pnas.org�cgi�doi�10.1073�pnas.0703522104 Bradford and Dill

http://www.pnas.org/cgi/content/full/0603522103/DC1
http://www.pnas.org/cgi/content/full/0603522103/DC1
http://www.pnas.org/cgi/content/full/0703522104/DC1
http://www.pnas.org/cgi/content/full/0703522104/DC1
http://www.pnas.org/cgi/content/full/0703522104/DC1
http://www.pnas.org/cgi/content/full/0603522103/DC1


get richer.’’ Within our simple chemical model system, this
competition resembles Darwinian selection, except that our
metric of ‘‘success’’ is AB complex formation, whereas the metric
of success in biological systems is survival.

Our model shows that consistency has value, exhibiting ‘‘tor-
toise and hare’’ behavior. One type of agent, At, the tortoise, is
a slow consistent producer of 2s. The other type of agent, Ah, the
hare, is highly productive, but only in short bursts. Even though
the time-averaged productivity in converting 1s to 2s is identical
here for these two types of agents, the tortoise wins. The tortoises
form complexes with Bs at a faster rate than the hares form
complexes with Bs. Thus, sustained consistency is more effective
for complex formation than high-activity-burst behavior. (See SI
Fig. 9.)

Other Functional Hierarchies. This model indicates how more
complex chains of catalytic activity could be formed. Fig. 7a
shows a linear series of catalytic agents that become chained
together to convert 1s to 2s to 3s to 4s, etc. Fig. 7b shows the time
dynamics of formation, when the environment is simply provid-
ing 1s. It shows that the final endstate machine, a concatenation

of catalysts A, B, C, D, E, F, G, and H, grows monotonically
populated, and that no intermediate smaller machine is ever
substantially populated during the time course of development.
Thus, multiple catalysts can be driven together, potentially into
a variety of topological arrangements, including metabolic
chains, networks, and cycles.

These results bear on an idea that has been called ‘‘irreducible
complexity.’’ It has been argued that complex biological and
prebiotic chemical systems could not have arisen by simple
physicochemical processes, because there would have been no
selective advantage for each of the putative incremental changes
along the way (15). In that view, what good is half an eye? An
organism would not be served by anything less than a full eye, so
intermediate structures would not have imparted enough value
to survive natural selection. In that view, ‘‘irreducible’’ refers to
a system that would fail to function if any one component is
removed, and irreducible complexity refers to the idea that such
systems require design and could not be developed by stochastic
innovation. The counterargument, seen in computer simula-
tions, for example (10), has been that stochastic innovation works
differently: evolution doesn’t ‘‘know’’ the final end-goal in
advance, but finds it through a random search in indirect,
incremental steps.

Fig. 7 shows our model version of an irreducible system (a
chain of reactions that convert 1s ultimately into 9s; it would fail
to do so if any step is removed). This system ultimately converts
1s into 9s through a multistep process in which no step is
dispensable. Yet, this machine arises in our model from simple
physicochemical processes that have not involved any sort of
‘‘design’’ in advance to achieve this particular goal of producing
9s. In the model, this chaining together of chemical reactions is
driven by blind physicochemical forces.

Discussion
Evolutionary ‘‘Gaps.’’ In evolution, there are sometimes evolution-
ary gaps in the fossil record, situations in which lifeforms X and
Y or features X and Y are known but where there is no evidence
of the steps in between. Fig. 7b shows how such gaps arise in our
simple machine. In short, the intermediate states are unstable.
The steps are downhill. One evolutionary step leads to the next,
quickly followed by the next, and so on, without pausing. In the
evolutionary metaphor, half an eye never appears as a stable
state because such a state is quickly driven by even stronger
evolutionary forces to form a complete eye, maybe for a different
purpose than the half-eye. Such two-state transitions are also
common in protein folding, for example, where the denatured
state is followed in time by a partly structured state that is
immediately followed by an even more structured state, etc.,
until the molecule becomes fully folded into the native structure.
At the earliest stages of folding, the protein does not know that
it is headed toward the native state; it is just seeking a situation
that is marginally better than its previous state.

The alternative is to have no evolutionary gap. Fig. 7 c–e shows
how that alternative situation arises in our simple model, for a
different set of parameters. In these cases, intermediate states
are stable and populated during the evolution of the full
molecular machine. The system can stall at intermediate points.
In both situations (stable intermediates or two-state behavior),
this simple model of chemical association resembles behaviors
observed in Darwinian biological systems: Evolutionary gaps
sometimes appear, and sometimes they don’t.

Implications for Prebiotic Chemistry. There have been two general
models for prebiotic evolution: genetics-first (GF) or metabo-
lism-first (MF) (16–18). In GF, some genetic machinery, or
capability for self-reproduction, is presumed to arise at an early
stage; for example, using RNA molecules (19, 20). Biology then
evolves from that point. Once genetic machinery exists, there are

ab

c

d

e

Fig. 7. Formation of multiagent complexes. (a) Eight agents assemble
sequentially to form a catalytic chain, using only the input resource for agent
A. (b) When there is no environmental shielding, the full chain assembles
rapidly, with no stable intermediates. (c) The presence of environment re-
sources (E5 � 100) shields the step between agents D and E, resulting in
longer-lived minor intermediates. (d) A 10-fold stronger environmental sup-
ply (E5 � 1,000) results in the stable dominance of the A-D intermediate chain
over the complete chain. (e) The presence of environment resources (E3 � 100)
at an earlier stage, between B-C, leads to an initially stronger, but ultimately
minor, intermediate chain.
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many plausible models for the later stages, based on hypercycles
(21, 22), and/or based on the many powerful RNA and protein
evolution experiments that have been performed (23–25). The
challenge in accepting GF as a first step, however, is that it is
complex and requires the joint emergence of catalysis, compart-
mentation, and heritability, all at the same time (26). de Duve
has noted (16) that GF ‘‘is accepted much less for its likelihood
than for the lack of an alternative.’’

In the MF model (14, 16, 27), chemical reactions become
chained together evolutionarily before the appearance of genetic
machinery. Although the requirements for MF are, in theory,
more elementary than for GF, a key question about MF is how
catalysts might become organized on their own, in the absence
of a genetic system (28, 29).

We believe the present model of stochastic innovation based
on attraction and shielding among chemical catalysts provides a
plausible mechanism by which simple metabolic chains and
cycles of reactions could have come together, perhaps at least
long enough for a genetic system to then emerge. Of course, an
important virtue of ultimately having a genetic system is that it
provides much longer term ‘‘memory’’ for the ‘‘lock-in’’ step
(step 3 in the Introduction) than does nongenetic propagation,
where memory is merely provided by a ratio of off-rates to
resource fluctuation times.

A key distinction between stochastic innovation, explored
here, and design-based innovation, in which a complex system is
engineered and constructed by a designer, is that stochastic
innovation involves no implicit ‘‘goals’’ and no guidance toward
a particular purpose. The Darwinian paradigm shows how
increasing complexity and order can arise from processes that do
not involve guidance through intelligence or design. Darwinian
evolution is a process of elimination (‘‘evolution-away-from’’),
rather than a process of design (‘‘evolution-toward’’). Stochastic
innovation achieves evolution-away-from by search, selection,
and lock-in. The present model has the three features of
stochastic innovation.

1. Search. The B agents diffuse randomly through space and find
2s, based on a mutual binding affinity.

2. Selection. The B agents associate with A agents, if the
common resource 2s are not present in the environment,
leading to AB complex formation.

3. Lock-In. If the off-rate for dissociation of AB complexes is
slower than the average frequency of resource depletion
disasters of the common resource in the environment, then
the complexes will be stable beyond the time scale of a single
resource disaster.

Here is a possible experimental test of our model. Two enzymes,
A and B, would be selected, based on having a common resource
(e.g., 2). A’s product is known to be B’s substrate. The As would
be covalently linked to a surface, such as a chromatography
stationary phase. A pair of fluorescent probes would be at-
tached: a donor probe is attached to each A molecule and an
acceptor probe to each B molecule. This would allow for
monitoring the concentration of AB complexes, through fluo-
rescence quenching, for example. Two experiments would be
performed. In one experiment, B molecules in a mobile phase
would flow across the stationary phase in the absence of added
2s, but in the presence of 1s, the substrate for As, and then the
amount of AB complex formation, would be measured. The
other experiment would be identical, except that a high concen-
tration of 2s would also be present in the mobile phase. The
present model suggests that, if the relative on-rates, off-rates,
and diffusion coefficients are roughly as given in SI Table 1, AB
complexes should be more concentrated in the first experiment.

Related Modeling Efforts. The present model differs from others
that have been used to explore chemical self-organization. Some
agent-based models (10, 11, 30) involve computer-based rules
rather than the laws of physical chemistry that are of interest
here. Mass-action models of early evolution have been devel-
oped (31, 32), but they also are not focused on the microscopic
chemical mechanisms. Models of hypercycles (21, 22) pertain to
molecular systems that already have a genetic system, whereas
our interest here is in molecular systems having no genetic
system. Recently, there have been interesting studies of com-
plexity and fragility in biological systems (33, 34), but those
treatments presume some preexisting mechanism of stochastic
innovation.

Because the work of Turing in the early 1950s (35), much
mathematical modeling in chemistry, chemical engineering, and
biology has explored pattern formation (36). Pattern formation
is often modeled by using lattice models such as the present one,
or nonequilibrium coupled spatiotemporal differential equa-
tions, sometimes with added stochastic noise terms. We believe
that our model, too, could be readily cast in the form of such a
coupled set of ‘‘reaction–diffusion’’ equations.

However, the present work differs from those treatments in
certain respects. First, ours addresses not just how molecules can
move and organize in space, but how chemical reactions can
move and organize in space and in so doing become chained
together into more complex reactions. Second, pattern forma-
tion usually involves some particular nonlinear component term
in the model’s mathematics, often arising from saturable or
cooperative binding, for example (37). Our model, too, involves
saturable binding, but the most important nonlinear component
of our model is what might be called ‘‘reflexive catalysis.’’ That
is, at the same time that our agents catalyze reactions among the
resources, our common resources also perform a sort of catalysis
in the process of agent–agent association. In addition, our
resources can be regarded as “ephemeral catalysts,” catalyzing
complex formation only under certain nonequilibrium condi-
tions and losing their catalytic power at equilibrium or when
resources are plentiful.

Conclusion
A well known process in chemistry is the binding and association
of molecules, driven by thermodynamic forces. Here, we con-
sider whether catalyst molecules might be driven to associate
with each other, through typical binding forces, but based on
their molecular functions. Functional driving forces are well-
known in biology, through the principles of evolution, but are not
yet much studied in chemistry. We propose a model for how
different Michaelis–Menten enzymes or catalysts might tend to
associate, driven by the production or depletion of common
resources. The agents do not associate if the common resource
is plentiful. We call this the shielding principle. In this way,
agents organize adaptively, and complexity can form from
simpler systems. In our model, ‘‘function dictates structure,’’ a
reversal of the paradigm in which ‘‘structure dictates function.’’

Our model of stochastic innovation for chemical catalysts has
three components: (i) a method for sampling a space of possi-
bilities (Bs can search for As or not, depending on the presence
of 2s), (ii) selection of a ‘‘favorable’’ outcome (Bs become more
productive of 3s when their substrate 2s are depleted, if they
associate with As), and (iii) a form of memory that locks in this
outcome (the off-rates of Bs from As is slower than the time
constant for fluctuations of 2s in the environment. Our process
resembles other stochastic innovation processes, such as Dar-
winian evolution, in that agents compete, cooperate, value
consistency, and innovate. The model is experimentally testable.
It is a possible model for how metabolic reactions might have
become chained together, at least primitively, before the for-
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mation of a genetic system. And, it might lead to ways to
self-assemble chemical reactions in solution.

Materials and Methods
Fig. 4 shows that B agents can associate with A agents through
two routes: (i) slow random migration on the surface, after Bs
bind to the lattice, or (ii) rapid diffusion in the bulk, then binding
to the lattice. The latter is more targeted, because Bs bind
preferentially (through parameter kcoop) where 2s are located,
potentially near the As. Hence, the intrinsic rate of AB compl-
exation depends on kon, koff, and Dlattice.

Intermediary 2s can affect AB complexation through two
mechanisms. First, AB complexation is promoted if the number
of lattice-bound 1s is high and if As are productive (k1–2 is large).
The number of 1s on the surface depends on 1s in the bulk (E1)
and the adsorption equilibrium constant, kon/koff. The number of
surface As is then determined by kcoop and dependent on the
concentration of lattice-bound 1s. These bound molecules pro-
duce bound 2s at the rate k1–2. However, if catalytic rates are
much slower than koff, resources disappear from the surface

before they can become concentrated enough to attract agents.
Second, AB complexation is slowed by the environmental supply
of 2s (E2), which adsorb to the surface randomly and serve as
decoys that attract Bs to nonproductive sites (where there are
no As).

In order that 2s remain near As long enough to mediate AB
complexation, lateral diffusion on the surface is set to be
relatively slow, so dissociation of an AB complex on the surface
is typically followed by reassociation. In contrast, dissociation of
an AB complex in the bulk solution seldom leads to reassocia-
tion, because diffusion in the bulk is set to be fast. Therefore,
most of the permanent dissociation of AB complexes occurs in
the bulk solution. Also, the catalytic rates used in our simulations
are large or comparable to the lateral diffusion rates.
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