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ABSTRACT

Supersymmetric models have traditionally been assumed to be perturbative up to high

scales due to the requirement of calculable unification. In this note I review the recently

proposed ‘Fat Higgs’ model which relaxes the requirement of perturbativity. In this

framework, an NMSSM-like trilinear coupling becomes strong at some intermediate

scale. The NMSSM Higgses are meson composites of an asymptotically-free gauge

theory. This allows us to raise the mass of the Higgs, thus alleviating the MSSM of

its fine tuning problem. Despite the strong coupling at an intermediate scale, the UV

completion allows us to maintain gauge coupling unification.

1. Motivation - The Little Hierarchy Problem(s)

The post-LEP era has forced models of electroweak symmetry breaking (EWSB) to confront

data. For example, in models with a low cutoff one is expected to write all of the operators

allowed by symmetries, suppressed by the appropriate power of the cutoff, Λ, in the spirit of

EFT. Assuming these operators have coefficients of O(1), one can place a lower bound on the

cutoff from EW measurements Λ ∼> 10TeV [1]. However, since it is natural to tie the EW to the

dynamical Λ, one then needs to explain the little hierarchy between them. This is the ‘Little

Hierarchy Problem’ or ‘LEP Paradox’.

In supersymmetric models, where physics is weakly coupled at a TeV, one naively does not

run into this problem because there is no low cutoff at which we must introduce all of the

operators allowed by symmetry. However, a little hierarchy problem emerges once the MSSM

is required to fulfill the LEP bound for the mass of the Higgs, mh > 115 GeV. In the MSSM

the Higgs’ quartic coupling is determined by SUSY and is given by the D-term potential. This

places an upper-bound of mZ on the tree level Higgs mass. One can raise this value by radiative

corrections from top-stop loops, but this requires the stop to be quite heavy, mt̃ > 500 GeV.

However, top-stop loops are also responsible for EWSB in the MSSM, thus the stop mass is

involved in setting the EW scale. The need to address the little hierarchy between mt̃ and the

EW scale is the ‘Supersymmetric Little Hierarchy problem’ a. Within the MSSM it may only

be solved by fine tuning other parameters in the Higgs potential.

The tree level bound on the Higgs mass may be raised by going beyond the MSSM. In the

NMSSM an additional singlet is added along with a superpotential

W = λNHuHd −
k

3
N3, (1)

which gives an additional quartic coupling to the Higgs, λ2|HuHd|
2. This contributes to raise

the Higgs mass to m2
h ∼ λ2v2 + O(m2

Z) which can easily be above 115 GeV.

aFor a more detailed discussion see e.g. [2].

http://arXiv.org/abs/hep-ph/0410366v1


However, we cannot raise the mass arbitrarily by increasing λ. The reason is that the effective

λ(µ) grows in the UV and eventually hits a Landau pole at a scale Λ. Above this scale we lose

control of the theory and even the relevant degrees of freedom are unknown. Encountering this

scale below the GUT scale would be a disaster for unification. Demanding that the Landau

pole be above MGUT has yielded an upper-bound on λ(v) and thus on the Higgs mass. In the

NMSSM this gives mh < 150 GeV.

However, in principle, nothing can prevent us from giving up unification and bringing Λ

down to increase the mass of the Higgs. This model is now is an EFT below a cutoff which

we imagine as some dynamical scale of compositeness. As we have seen, this model solves

the supersymmetric version of the little hierarchy problem. Since we are now dealing with a

low-cutoff model we may wonder if the “regular” little hierarchy problem was re-introduced i.e.

explaining the little hierarchy between the cutoff and the EW scale. However this problem is

trivially solved since the little hierarchy is stabilized by supersymmetry.

It is interesting to draw an analogy between the models of Little Higgs [3] and the strongly

coupled version of the NMSSM peresented above. Both models are EFTs with a low cutoff

suplemented by additional symmetries that protect the Higgs mass. In the former the symmetry

is a global symmetry that is collectively broken and in the later it is supersymmetry. The

main advantage of the supersymmetric model is that due to exact results in strongly coupled

supersymmetric gauge theories, it is much easier to UV complete.

2. UV Completion – The Fat Higgs

In [2] we UV completed a cousin theory of the NMSSM given by the superpotential

W = λN(HuHd − v2
0). (2)

This superpotential is similar to the NMSSM in that it raises the tree level Higgs mass above the

LEP bound for a sufficiently large λ(v) but then requires a UV completion above the Landau

pole of λ.

In this brief note, I will only present the essential components of our model and advertise

some of its features. A more complete model and its analysis is presented in [2]. The UV dy-

namics of our model consists of a new strongly coupled gauge group, SU(2)H . The we introduce

six doublets, T 1...6, under SU(2)H which corresponds to Nf = 3. The SU(2)H is asymptotically

free and thus becomes strong at some scale, ΛH . The T ’s are also carry electroweak charge. The

charge assignments under SU(2)H × SU(2)L × U(1)Y is

(T 1, T 2) ≡ T = (2,2, 0), (T 3, T 4) = (2,1,±
1

2
), (T 5, T 6) = (2,1, 0). (3)

We also write a tree-level superpotential

W = −mT 5T 6 + Wdecouple (4)

where the meaning of Wdecouple will become clear presently. Below the scale ΛH this theory

confines and low energy degrees of freedom are described by the anti-symmetric meson matrix

Mij = TiTj . Let us relabel part of the meson matrix as follows

N = M56,

(

H+
u

H0
u

)

=

(

M13

M23

)

,

(

H0
d

H−

d

)

=

(

M14

M24

)

, (5)
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Figure 1: The renormalization of the couplings in the model presented. When 4πv0 ≪ ΛH the mesons condense
at weak coupling and the theory is calculable.

noting that the mesons labeled as Hu and Hd indeed transform as the Higgs fields of the MSSM,

and N is a singlet, as needed in Eq. (2). The superpotential Wdecouple in Eq. (4) involves

additional new fields that marry all of the other meson fields in Mij . This can be done naturally

by enforcing an additional Z3 symmetry [2]. The theory below ΛH is thus an effective theory of

Hu, Hd and N alone.

This theory generates a dynamical superpotential

Wdyn =
PfM

Λ3
⊃

1

Λ3
NHuHd (6)

Once Hu,d and N are canonically normalized to dimension one fields this will produce the

renormalizable trilinear term in Eq. (2). The mass for the third flavor of Eq. (4) becomes a

linear term for the singlet N . Putting these two contributions together gives a superpotential of

the form of Eq. (2). This superpotential breaks EW symmetry even in the SUSY limit, which

releases the stop from its role in EWSB in the MSSM. The scale v0 at which EWSB occurs in

the SUSY limit may be estimated in NDA as v2
0 = mΛH

(4π)2 .

The dynamics in this model are heuristically summarized in figure 1. At high energy the

theory is a weekly couple gauge theory with the T ’s as the relevant degrees of freedom. As

we run down the theory becomes strong at ΛH at which point we substitute the degrees of

freedom to the meson fields and the coupling λ for the gauge coupling. Below ΛH the coupling λ

renormalizes quickly to weak coupling. If the scale m is somewhat below ΛH , EWSB will occur

at weak coupling. Electroweak observables in this model, such as the oblique parameters S and

T or the Higgs spectrum, are thus calculable.

In [2] the Higgs spectrum was calculated for a range of SUSY breaking parameters. The

lightest Higgs was indeed found to be heavier than conventional MSSM values, easily reaching

350 GeV or higher. A distinct signal for the Higgs spectrum in our models is that the pseudo-

scalar Higgs is always heavier than the charged one whereas in the MSSM the converse is alway

true. The S and T parameters were also calculated and were found to be within the 1σ allowed

region for a wide range of parameters.

EWSB may be communicated to the matter sector by a scalar version of an ETC sector. We

add heavy fundamental Higgses, ϕu,d and ϕ̄u,d, that couple both to the T ’s and to the MSSM

Wf = Mf (ϕuϕ̄u + ϕ̄dϕd) + ϕ̄d(TT 4) + ϕ̄u(TT 3)



+hij
u Qiujϕu + hij

d Qidjϕd + hij
e Liejϕd. (7)

At the scale Mf , the heavy Higgses can be integrated out, leaving a direct coupling between

the MSSM and the right combination of T ’s that becomes the composite Higgs once the theory

confines. The effective Yukawa to the fat Higgses is
hu,d

4π
ΛH

Mf
. If Mf ∼ ΛH this may present a

problem in generating a large top mass.

In order to avoid fine tuning the SUSY breaking scale in this theory must be of order λv0

which is set by supersymmetric scales. This problem is reminiscent of the µ problem of the

MSSM. A more complete model was introduced in [2] in order to relate the SUSY breaking

scale to m, ΛH and also Mf . This was done by adding a fourth flavor of T ’s which results in

near conformal behavior. The new walking dynamics is also beneficial to enhancing the effective

MSSM Yukawa couplings by anomalous dimensions as in walking technicolor. However, in this

case the anomalous dimensions are calculable due to their relation to anomaly free R-charges.

Finally, lets revisit the possibility of unification in this model. Below the scale ΛH the

matter content of our model is simply that of the NMSSM. The running of the 3-2-1 gauge

couplings follow their regular trajectories. At ΛH we must match the low energy theory to the

UV completion. Due to holomorphy, the matching equation between the low and high energy

theories is set by bare parameters [4]. This leads us to believe that the threshold corrections

at ΛH are small. Above ΛH the T ’s must substitute the composite Higgses in the running.

It is amusing that the T ’s contribute to the one-loop beta functions of the MSSM exactly as

two Higgs doublets do, which leaves us on the MSSM trajectory. However, we have also added

the fundamental Higgses ϕu,d, ϕ̄u,d, as well as new fields that take part in the Wdecouple, all of

which contribute as three more pairs of Higgs doublets. This deviation from the MSSM running

may be corrected. For example, adding three pairs of heavy triplets with Y = ±1/3, completes

the “SU(5) multiplets” and brings us back on track. Though this remedy may seem somewhat

contrivedb, we note that the possibility of even talking about unification above a compositeness

scale may be viewed as significant progress.
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