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EXTENDED GENOME REPORT Open Access

High-quality draft genome sequence of
Flavobacterium suncheonense GH29-5T

(DSM 17707T) isolated from greenhouse
soil in South Korea, and emended
description of Flavobacterium suncheonense
GH29-5T

Nisreen Tashkandy1*, Sari Sabban1, Mohammad Fakieh1, Jan P. Meier-Kolthoff2, Sixing Huang2, Brian J. Tindall2,
Manfred Rohde3, Mohammed N. Baeshen1,4, Nabih A. Baeshen1,4, Alla Lapidus5, Alex Copeland6, Manoj Pillay7,
T. B. K. Reddy6, Marcel Huntemann6, Amrita Pati6, Natalia Ivanova6, Victor Markowitz7, Tanja Woyke6,
Markus Göker2, Hans-Peter Klenk8, Nikos C. Kyrpides1,6 and Richard L. Hahnke2

Abstract

Flavobacterium suncheonense is a member of the family Flavobacteriaceae in the phylum Bacteroidetes. Strain
GH29-5T (DSM 17707T) was isolated from greenhouse soil in Suncheon, South Korea. F. suncheonense GH29-5T is
part of the Genomic Encyclopedia of Bacteria and Archaea project. The 2,880,663 bp long draft genome consists of
54 scaffolds with 2739 protein-coding genes and 82 RNA genes. The genome of strain GH29-5T has 117 genes
encoding peptidases but a small number of genes encoding carbohydrate active enzymes (51 CAZymes). Metallo
and serine peptidases were found most frequently. Among CAZymes, eight glycoside hydrolase families, nine
glycosyl transferase families, two carbohydrate binding module families and four carbohydrate esterase families
were identified. Suprisingly, polysaccharides utilization loci (PULs) were not found in strain GH29-5T. Based on the
coherent physiological and genomic characteristics we suggest that F. suncheonense GH29-5T feeds rather on
proteins than saccharides and lipids.

Keywords: Aerobic, Gliding motility, Greenhouse soil, Flavobacteriaceae, Bacteroidetes, GEBA, KMG-1, Tree of Life,
GGDC, Carbohydrate active enzyme, Polysaccharide utilization loci

Introduction
Flavobacteria/Cytophagia have been frequently observed
in aquatic and soil habitats [1–3] and play a major role in
polysaccharide decomposition [2, 4, 5]. Type strains of the
genus Flavobacterium have been isolated from many
different habitats such as fresh water, sea ice and soil, and
some Flavobacterium strains are pathogenic to humans
and animals [2, 6]. Strain GH29-5T (= DSM 17707T = CIP

109901T = KACC 11423T) is the type strain of Flavobac-
terium suncheonense [2, 7], which belongs to Flavobacter-
iaceae [8]. F. suncheonense GH29-5T was isolated from
greenhouse soil in Korea [10]. Flavobacterium johnsoniae
UW101T, a well studied model organism, was as well
isolated from soil [11, 12] and harbors a considerable
number of CAZymes and PULs [13]. Thus, an investiga-
tion of the genome of strain GH29-5T will give further
insights into the variety of CAZymes and the polysacchar-
ide decomposition potential of this microrganism.
Here we present the set of carbohydrate active en-

zymes, polysaccharide utilization loci and peptidases of
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F. suncheonense GH29-5T, together with a set of pheno-
typic features and the description and annotation of the
high-quality draft genome sequence from a culture of
DSM 17707T.

Organism information
Classification and features
The sequence of the single 16S rRNA gene copy in the
genome is identical with the previously published 16S
rRNA gene sequence (DQ222428). Figure 1 shows the
phylogenetic neighborhood of F. suncheonense GH29-5T

inferred from a tree of 16S rRNA gene sequence, as
previously described [14]. The next related type species
are F. cauense R2A-7T (EU521691), F. enshiense DK69T

(JN790956), F. limnosediminis JC2902T (JQ928688) and
F. saliperosum S13T (DQ021903) with less than 95.9 %
16S rRNA gene identity. The 16S rRNA gene sequence
of strain GH29-5T has an identity of only 93.9 % with F.
aquatile DSM 1132T (AM230485).
The 16S rRNA gene sequence of F. suncheonense

GH29-5T was compared with the Greengenes database
[15]. Considering the best 100 hits, 99 sequences
belonged to Flavobacterium and one sequence to Cyto-
phaga sp. (X85210). Among the most frequent keywords
within the labels of environmental samples were 40.4 %
marine habitats (such as marine sediment, deep sea, sea-
water, whale fall, diatom/phytoplankton bloom, Sargasso
Sea, sponge, sea urchin, bacterioplankton), 12.3 % soil
habitats (such as rhizosphere, grassland, compost),
11.6 % freshwater habitats (such as lake, riverine sedi-
ment, groundwater), 8.9 % cold environments (such as
Antarctic/Artic seawater, lake ice or sediment), but also
2.7 % wastewater habitats. Interestingly, environmental
16S rRNA gene sequences with 99 % sequence identity
with F. suncheonense GH29-5T were clones from wet-
land of France (KC432449) [16] and an enrichment cul-
ture of heterotrophic soil bacteria from the Netherlands
(JQ855723), and with 98 % sequence identity to a soil
isolate from Taiwan (DQ239767).
As described for Flavobacterium [17], F. suncheonense

GH29-5T stains are Gram-negative (Table 1). The colonies
are convex, round and yellow, but flexirubin-type pigments
are absent and gliding motility was not observed [10]. The
strain is positive for the catalase and oxidase tests [10], as
are most members of the genus Flavobacterium [6]. Cells
divide by binary fission, possess appandages and occur ei-
ther as single rod shaped cells, with 0.3 μm in width and
1.5–2.5 μm in length, or as filaments (Fig. 2).
F. suncheonense GH29-5T grows between 15 °C and

37 °C, pH 6 and 8 and in media with up to 1 % NaCl
[10], with optimal growth at pH 7.0 and without NaCl
[7]. Strain GH29-5T decomposes gelatin and casein, but
not starch, carboxymethyl cellulose, agar, alginate, pec-
tin, chitin, aesculin and DNA [10]. Strain GH29-5T

produces H2S and neither reduces nitrate nor produces
indole or ferments glucose [10]. Moreover, strain GH29-
5T does not utilize arabinose, mannose, N-acetyl-D-glu-
cosamine, maltose, gluconate, caprate, adipate, malate,
citrate and phenylacetate [19]. Strain GH29-5T possesses
alkaline phosphatase, esterase C4, esterase lipase C8, leu-
cine arylamidase, valine arylamidase, acid phosphatase,
naphthol-AS-BI-phosphohydrolase and N-acetyl-β-gluco-
saminidase, but has no lipase C14, cystine arylamidase,
trypsin, α-chymotrypsin, α-galactosidase, β-galactosidase,
β-glucuronidase, α-glucosidase, β-glucosidase, α-mannosi-
dase, α-fucosidase and urease activity [10].

Chemotaxonomic data
The major cellular fatty acids are iso-C15:0 (29.9 %), iso-
C17:0 3-OH (17.7 %), iso-C15:1 G (12.0 %) and iso-C15:0 3-
OH (11.1 %) and MK-6 is the sole quinone [10], as com-
mon in Flavobacterium [6]. Besides phosphatidylethanol-
amine, several unidentified lipids, aminolipids and amino-
phospholipids were observed in strain GH29-5T [7]. The
DNA G+C content was reported to be 39.0 mol % [10].

Genome sequencing information
Genome project history
This strain was selected for sequencing on the basis of its
phylogenetic position [20, 21], and is part of Genomic
Encyclopedia of Type Strains, Phase I: the one thousand
microbial genomes (KMG) project [22], a follow-up of the
Genomic Encyclopedia of Bacteria and Archaea (GEBA)
pilot project [23], which aims at sequencing key reference
microbial genomes and generating a large genomic basis
for the discovery of genes encoding novel enzymes [24].
KMG-I is the part of the “Genomic Encyclopedia of Bac-
teria and Archaea: sequencing a myriad of type strains ini-
tiative” [25] and a Genomic Standards Consortium project
[26]. The genome project is deposited in the Genomes
OnLine Database [27] and the permanent draft genome
sequence is deposited in GenBank. Sequencing, finishing
and annotation were performed by the DOE-JGI using
state-of-the-art sequencing technology [28]. A summary
of the project information is shown in Table 2.

Growth conditions and genomic DNA preparation
A culture of GH29-5T (DSM 17707) was grown aerobic-
ally in DSMZ medium 830 (R2A Medium) [29] at 28 °C.
Genomic DNA was isolated using a Jetflex Genomic
DNA Purification Kit (GENOMED 600100) following
the standard protocol provided by the manufacturer.
DNA is available from the DSMZ through the DNA
Bank Network [30].

Genome sequencing and assembly
The draft genome of strain GH29-5T was generated using
the Illumina technology [31]. An Illumina Std. shotgun
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Fig. 1 (See legend on next page.)
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library was constructed and sequenced using the Illumina
HiSeq 2000 platform which generated 9,392,462 reads
totaling 1408.9 Mbp (Table 3). All general aspects of li-
brary construction and sequencing performed at the
DOE-JGI can be found at [32]. All raw sequence data were
passed through DUK, a filtering program developed at
DOE-JGI, which removes known Illumina sequencing and
library preparation artifacts (Mingkun L, Copeland A,

Han J: DUK. unpublished 2011). The following steps were
performed for assembly: (1) filtered reads were assembled
using Velvet [33], (2) 1–3 Kbp simulated paired-end reads
were created from Velvet contigs using wgsim [34], (3)
Sequence reads were assembled with simulated read pairs
using Allpaths–LG [35]. Parameters for assembly steps
were: 1) Velvet (“velveth 63 -shortPaired” and “velvetg
-very_clean yes -exportFiltered yes -min_contig_lgth 500

(See figure on previous page.)
Fig. 1 Phylogenetic tree of the genus Flavobacterium and its most closely related genus Capnocytophaga. Modified from Hahnke et al. [68]. In
short: the tree was inferred from 1254 aligned characters of the 16S rRNA gene sequence under the maximum likelihood (ML) criterion. The
branches are scaled in terms of the expected number of substitutions per site. Numbers adjacent to the branches are support values from 1000
ML bootstrap replicates (left) and from 1000 maximum-parsimony bootstrap replicates (right) if larger than 60 %

Table 1 Classification and general features of F. suncheonense GH29-5T in accordance with the MIGS recommendations [59],
as developed by [60], List of Prokaryotic names with Standing in Nomenclature [61] and the Names for Life database [62]

MIGS ID Property Term Evidence code

Current classification Domain: Bacteria TAS [12]

Phylum: Bacteroidetes TAS [63, 64]

Class: ‘Flavobacteriia’ TAS [65, 66]

Order: Flavobacteriales TAS [9, 67]

Family: Flavobacteriaceae TAS [8, 9]

Genus: Flavobacterium TAS [6, 68]

Species: Flavobacterium suncheonense TAS [10]

Type strain: GH29-5T TAS [10]

Gram-stain Negative TAS [10]

Cell shape rod-shaped TAS [10]

Motility Nonmotile TAS [10]

Sporulation non-spore forming NAS

Temperature range mesophilic (15–37 °C) TAS [10]

Optimum temperature 16–24 °C TAS [10]

pH range; Optimum 6–8, TAS [10]

Carbon source Carbohydrates, peptides TAS [10]

Energy source chemoheterotroph TAS [10]

MIGS-6 Habitat greenhouse soil TAS [10]

MIGS- Salinity 0–1 % NaCl, 0 % NaCl TAS [10]

MIGS-22 Oxygen requirement aerobe TAS [10]

MIGS-15 Biotic relationship free-living TAS [10]

MIGS-14 Pathogenicity unknown TAS [69]

Biosafety level 1 TAS [69]

MIGS-4 Geographic location Suncheon City, South Korea TAS [10]

MIGS-5 Sample collection 2005 TAS [10]

MIGS- Latitude 34.954 TAS [10]

MIGS-4.2 Longitude 127.483 TAS [10]

MIGS-4.4 Altitude not reported TAS [10]

Evidence codes are from the Gene Ontology project [18]
Evidence codes - IDA inferred from direct assay (first time in publication); TAS traceable author statement (i.e., a direct report exists in the literature); NAS
non-traceable author statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or
anecdotal evidence)
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-scaffolding no -cov_cutoff 10”), (2) wgsim (“wgsim -e 0–1
100–2 100 -r 0 -R 0 -X 0”) (3) Allpaths–LG (“PrepareAll-
pathsInputs: PHRED_64 = 1 PLOIDY = 1 FRAG_COVER-
AGE = 125 JUMP_COVERAGE = 25 LONG_JUMP_COV
= 50” and “RunAllpathsLG THREADS = 8 RUN = std
shredpairs TARGETS = standard VAPI_WARN_ONLY =
True OVERWRITE = True”). The final draft assembly
contained 57 contigs in 54 scaffolds. The total size of the
genome is 2.9 Mbp and the final assembly is based on
331.3 Mbp of data, which provides a 114.2x average cover-
age of the genome.

Genome annotation
Genes were identified using Prodigal [36] as part of the
DOE-JGI genome annotation pipeline [37], followed by
manual curation using the DOE-JGI GenePRIMP pipeline
[38]. The predicted CDSs were translated and used to search
the National Center for Biotechnology Information non-

redundant database, UniProt, TIGR-Fam, Pfam, PRIAM,
KEGG, COG, and InterPro database. These data sources
were combined to assert a product description for each pre-
dicted protein. Additional gene prediction analysis and func-
tional annotation was performed within the IMG-ER
platform [39].

Genome properties
The assembly of the draft genome sequence consists of 54
scaffolds amounting to 2,880,663 bp. The G +C content is
40.5 % (Table 3) which is 1.5 % higher than previously re-
ported by Kim et al. [10] and thus shows a difference that
surpasses the maximal range among strains belonging to
the same species [40]. Of the 2821 genes predicted, 2739
were protein-coding genes, and 82 RNAs. The majority of
the protein-coding genes (69.2 %) were assigned a putative
function while the remaining ones were annotated as hypo-
thetical proteins. The distribution of genes into COG func-
tional categories is presented in Table 4.

Fig. 2 Scanning-electron micrograph of F. suncheonense GH29-5T (DSM 17707T) showing appendages 50–80 nm in diameter and 0.5–8 μm in
length (arrows)

Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality Level 2: High-Quality Draft

MIGS-28 Libraries used Illumina Std shotgun library

MIGS 29 Sequencing platforms Illumina, Illumina HiSeq 2000,
Illumina HiSeq 2500

MIGS 31.2 Fold coverage 115.3x

MIGS 30 Assemblers Velvet v. 1.1.04; ALLPATHS
v. r41043

MIGS 32 Gene calling method Prodigal, GenePRIMP, IMG-ER

Locus Tag G498

Genbank ID AUCZ00000000

GenBank Date of
Release

12-DEC-2013

GOLD ID Gp0013510

BIOPROJECT PRJNA185581

MIGS 13 Source Material
Identifier

DSM 17707

Project relevance Tree of Life, GEBA-KMG

Table 3 Genome statistics

Attribute Value % of Total

Genome size (bp) 2,880,663 100.0

DNA coding (bp) 2,622,751 91.1

DNA G + C (bp) 1,165,575 40.5

DNA scaffolds 54

Total genes 2821 100.0

Protein coding genes 2739 97.1

RNA genes 82 2.9

Pseudo genes 0 0.0

Genes in internal clusters 125 4.43

Genes with function prediction 1916 67.92

Genes assigned to COGs 1439 51.01

Genes with Pfam domains 2020 71.61

Genes with signal peptides 348 12.34

Genes with transmembrane helices 631 22.37

CRISPR repeats 0
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Insights from the genome sequence
Comparative genomics
We conducted a comparative genomics analysis of F.
suncheonense (AUCZ00000000) with a selection of closely
related (according to 16S rRNA gene sequence similar-
ities) Flavobacterium type strains, i.e., F. enshiense
(AVCS00000000), F. cauense (AVBI00000000), F. salipero-
sum (AVFO00000000) and F. columnare (CP003222) and
the type species F. aquatile (JRHH00000000). The gen-
ome sizes of the five type strains were 3.1 Mbp on average
with the biggest difference of 0.5 Mbp between the ge-
nomes of F. suncheonense and F. saliperosum, on the one
hand, and F. enshiense, on the other hand. Genome sizes
were 3.1 Mbp (F. cauense), 3.2 Mbp (F. columnare), 3.4
Mbp (F. enshiense), 2.9 Mbp (F. suncheonense) and 2.9
Mbp (F. saliperosum). However, since these genomes have
not yet been sequenced completely, their sizes might
slightly change in the future.
An estimate of the overall similarity between F. sunch-

eonense and the five reference strains was conducted
using the Genome-to-Genome Distance Calculator
(GGDC 2.0) [41, 42]. It reports model-based DDH esti-
mates (digital DDH or dDDH) along with their confi-
dence intervals [42], which allow for genome-basted
species delineation and genome-based subspecies delin-
eation. The recommended distance formula 2 is robust
against the use of incomplete genome sequences and is
thus especially suited for this dataset.
The result of this comparison is shown in Table 5 and

yields dDDH of below 22 % throughout, which confirms
the expected status of distinct species. Furthermore, the
G +C content was calculated from the genome sequences
of the above strains and their pairwise differences were
assessed with respect to F. suncheonense. Differences were
2.4 % (F. cauense), 2.8 % (F. enshiense), 1 % (F. salipero-
sum), 9.1 % (F. columnare) and 8.3 % (F. aquatile). These
differences confirm the status of distinct species, because,
if computed from genome sequences, these differences
can only vary up to 1% within species [40].

Table 4 Number of genes associated with the general COG
functional categories

Code Value % age Description

J 178 11.5 Translation, ribosomal structure and biogenesis

A – – RNA processing and modification

K 83 5.3 Transcription

L 76 4.9 Replication, recombination and repair

B 1 0.1 Chromatin structure and dynamics

D 24 1.5 Cell cycle control, cell division, chromosome
partitioning

Y – – Nuclear structure

V 44 2.8 Defense mechanisms

T 53 3.4 Signal transduction mechanisms

M 165 10.6 Cell wall/membrane/envelope biogenesis

N 10 0.6 Cell motility

Z – – Cytoskeleton

W – – Extracellular structures

U 15 1.0 Intracellular trafficking, and secretion

O 93 6.0 Posttranslational modification, protein turnover,
chaperones

C 84 5.4 Energy production and conversion

G 51 3.1 Carbohydrate transport and metabolism

E 109 7.1 Amino acid transport and metabolism

F 62 4.0 Nucleotide transport and metabolism

H 99 6.4 Coenzyme transport and metabolism

I 77 5.0 Lipid transport and metabolism

P 74 4.8 Inorganic ion transport and metabolism

Q 29 1.9 Secondary metabolites biosynthesis, transport
and catabolism

R 131 8.4 General function prediction only

S 83 5.3 Function unknown

– 1382 49.0 Not in COGs

Table 5 Pairwise comparison using the GGDC (Genome-to-Genome Distance Calculator) of F. suncheonense with a selection of
currently available Flavobacterium genomes, F. enshiense (AVCS00000000), F. cauense (AVBI00000000), F. saliperosum (AVFO00000000)
and F. columnare (CP003222), plus the type species F. aquatile (JRHH00000000)

F. suncheonenseversus % dDDH % C.I. dDDH HSP length/total
length [%]

Identities HSP/
length [%]

Identities/total
length [%]

F. aquatile 18.7 2.6 4 76 3

F. cauense 21.2 3.0 45 79 36

F. columnare 20.9 2.6 4 79 3

F. enshiense 20.2 2.9 29 78 23

F. saliperosum 21.0 3.0 41 79 33

Digital DDH values (dDDH) and the respective confidence intervals (C.I.) are specified for GGDC's recommended formula 2. The columns “HSP length / total length
[%]”, “identities / HSP length [%]” and “identities / total length [%]” list similarities as calculated from the intergenomic distances, which were also reported by the
GGDC (Formulae 1–3)
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Gliding motility
McBride and Zhu [43] described the diversity of genes
involved in gliding motility among members of phylum
Bacteroidetes. The machinery for gliding motility is com-
posed of adhesin-like proteins, the type IX secretion sys-
tem, and additional proteins [43]. Even though strain
GH29-5T was never observed to glide [10], all necessary
genes for gliding motility were identified in its genome
(Table 6).

Carbohydrate active enzymes and peptidases
Cottrell and Kirchman [44] showed that members of the
Cytophaga-Flavobacteria group preferentially consume
polysaccharides and proteins rather than amino acids.

This phenotypic feature was attributed by Fernández-
Gómez et al. [4] to higher numbers of peptidases and
additionally higher numbers of glycoside hydrolases and
carbohydrate-binding modules in the genomes of Bac-
teroidetes compared to other bacteria. F. suncheonense
GH29-5T was isolated from greenhouse soil, hydrolyzes
casein and gelatin, but did not utilize any of the tested
saccharides [10, 19]. Therefore, we compared the pre-
dicted CDS against the CAZyme [45, 46] and dbCAN
[47] database. The CAZyme annotation (Additional file
1, Table S1) was a combination of RAPSearch2 search
[48, 49] and HMMER scanning [50] as described in
Hahnke et al. [14]. The genome of strain GH29-5T com-
prised a small number of carbohydrate active enzymes
(49) including 36 glycosyl transferases, nine glycoside
hydrolases, four carbohydrate binding modules and six
carbohydrate esterases (Table 7). Furthermore, sulfatases
were suggested as important enzymes for the metabolic
potential of Bacteroidetes to degrade sulfated algae poly-
saccharides such as carrageenan, agarans and fucans.
Only, three sulfatases were identified in the genome of
strain GH29-5T (Additional file 1, Table S2).

Polysaccharide utilization loci
CAZymes of Flavobacteria that are suggested to be in-
volved in polysaccharide decomposition are frequently
observed to be organized in gene clusters. Such
polysaccharides-utilization loci (PULs) consist of a
TonB-dependent receptor, a SusD-like protein and
carbohydrate active enzymes [51, 52]. In strain GH29-5T

five TonB-dependent transporters were identified of
which G498_00119, G498_01595, G498_02575 were as-
sociated to siderophores and G498_00706, G498_00915
were associated with a SusD-like protein. The gene
cluster up-stream of the TonB-dependent transporter
G498_00706 comprised five hypothetical proteins.

Table 6 Gliding motility-related genes in strain GH29-5T compared
to genes in Flavobacterium strains studied by McBride and Zhu [43]

F. suncheonense
GH29-5T

F. rivuli
DSM 21788T

F. johnsoniae
ATCC 17061T

locus tag prefix G498_RS01 F565_ RS01 Fjoh_

Gliding motility – – +

Adhesin-like

remA 00716 – 0808

remB 01803 – 1657

sprB +b – 0979

ATP-binding cassette transporter

gldA 02505 05270 1516

gldF 02374 00760 2722

gldG 02375 00765 2721

Additional proteins

gldBa 00808 13390 1793

gldC 00807 13385 1794

gldDa 01936 18865 1540

gldE 00405 18860 1539

gldHa 02655 10515 0890

gldJa 00438 11845 1557

Peptidoprolyl isomerase (‘Flavobacteriia’, protein folding)

gldI 01009 08180 2369

Type IX secretion system (secretion of RemA/RemB)

gldKa 00758 18605 1853

gldLa 00757 18600 1854

gldMa 00756 18595 1855

gldNa 00755 18590 1856

sprAa 01807 06065 1653

sprEa 02154 19150 1051

sprTa 02545 05475 1466
aessential gliding motility genes after McBride and Zhu [43]
bpartial gene sequences, located at the beginning of AUCZ00000022 and at
the end of AUCZ00000002

Table 7 Carbohydrate active enzymes (CAZy) in the genome of
strain GH29-5T

CAZy family GH2 GH3 GH20 GH23 GH25 GH73 GH92

Counts 1 1 1 2 1 1 1

CAZy family GHa CBM50 CBMa

Counts 1 3 1

CAZy family GT2 GT4 GT5 GT9 GT19 GT28 GT30

Counts 14 11 1 2 1 1 1

CAZy family GT51 GT56

Counts 4 1

CAZy family CE4 CE11 CE14 CEa AA1 AAa

Counts 2 1 2 1 1 1
agenes attributed to an enzyme class, but not to a family
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Peptidases
The MEROPS annotation was carried out by searching the
sequences against the MEROPS 9.10 database [53] (access
date: 2014.10.16, version: pepunit.lib) as described in
Hahnke et al. [14]. The genome of strain GH29-5T com-
prised 117 identified peptidase genes (or homologues),
mostly serine peptidases (S, 50), metallo peptidases (M, 50)
and cysteine peptidases (C, 14) (Table 8, Additional file 1:
Tables S3 and S4). Hence, the low number of carbohydrate
active enzymes and the high number of peptidases in the
genome of strain GH29-5T reflects its currently known sub-
strate range being proteins rather than saccharides.

Conclusions
The genome of F. suncheonense GH29-5T contains a
relaltively low number of carbohydrate active enzymes
in contrast to genomes of other Flavobacteriaceae such
as Flavobacterium branchiophilum [54], Flavobacterium
rivuli [14], Formosa agariphila [55], Polaribacter [4, 56],
‘Gramella forsetii’ [57] and Zobellia galactanivorans
[17]. This is surpising, since greenhouse soil might be a
rich source of plant litter. McBride et al. [13] described
the genome features of Flavobacterium johnsoniae
UW101T, a bacterium that was as well isolated from soil
[11, 58]. Both the genomes of F. johnsoniae UW101T

and F. suncheonense GH29-5T have an almost equal
number of 31 and 39 peptidases per Mbp, respectively.
The genomes, however, differ remarkably in the number
of CAZymes, with 47 genes per Mbp in the genome of
F. johnsoniae UW101T and only 18 genes per Mbp in
the genome of F. suncheonense GH29-5T. Thus, this
small set of CAZymes contributes only little to a pool of

enzymes, which might be essential for a Flavobacterium
to feed on soil components.
A systematic collection of genome sequences, such

as GEBA [23] and KMG-1 [22], will provide the sci-
entific community with the possibility for a system-
atic discovery of genes encoding for novel enzymes
[24] and support microbial taxonomy. In addition,
genome sequences also provide further taxonomically
useful information such as the G + C content [40],
which, as seen in this report might significantly differ
from the values determined with traditional methods.
Based on the observed large difference in the DNA G+C

content and the additional information on cell morphology
obtained in this study, an emended description of F. sunch-
eonense is proposed.

Emended description of F. suncheonense GH29-5T

Kim et al. 2006 emend. Dong et al. 2013
The description of Flavobacterium suncheonense is as
given by Kim et al. [10] and Dong et al. [7], with the
following modifications: the DNA G + C content is
40.5 mol%, and amendments: possesses appendages of
50–80 nm in diameter and 0.5–8 μm in length.

Additional file

Additional file 1: Table S1. Carbohydrate active enzymes (CAZymes)
in the genome of F. suncheonense GH29-5T. Table S2. Sulfatases in
the genome of F. suncheonense GH29-5T. Table S3. Peptidases or
homologues in the genome of F. suncheonense GH29-5T. Table S4.
Simple peptidases inhibitors in the genome of F. suncheonense
GH29-5T. (DOCX 497 kb)
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