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This thesis considers several questions in financial economics. A common theme is the

estimation of conditional tail risk and portfolio formation of large institutional investors, specifically

pension funds.

Chapter 1 introduces a model-free methodology to assess the impact of disaster risk on the

market return. Using S&P500 returns and the risk-neutral quantile function derived from option

prices, I employ quantile regression to estimate local differences between the conditional physical

and risk-neutral distributions. The results indicate substantial disparities primarily in the left-tail,
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reflecting the influence of disaster risk on the equity premium. These differences vary over time

and persist beyond crisis periods. On average, the bottom 5% of ex-ante returns contribute to 17%

of the equity premium, shedding light on the Peso problem. I also find that disaster risk increases

the stochastic discount factor’s volatility. Using a lower bound observed from option prices on the

left-tail difference between the physical and risk-neutral quantile functions, I obtain similar results,

reinforcing the robustness of my findings.

Chapter 2 explores the relation between the size of a defined benefit pension plan and its

choice of active vs. passive management, internal vs. external management, and public vs. private

markets. We find positive scale economies in pension plan investments; large plans have stronger

bargaining power over their external managers in negotiating fees as well as having access to higher

(pre-fee)-performing funds, relative to small plans. Using matching estimators, we find that internal

management is associated with significantly lower costs than external management, reinforcing the

enhanced bargaining power of large pension plans that have fixed-cost advantages in setting up

internal management.

In chapter 3, we analyze how financial institutions can hedge their balance sheets against

interest rate risk when they have long-term assets and liabilities. Using the perspective of functional

and numerical analysis, we propose a model-free bond portfolio selection method that generalizes

classical immunization and accommodates arbitrary liability structure, portfolio constraints, and

perturbations in interest rates. We prove the generic existence of an immunizing portfolio that

maximizes the worst-case equity with a tight error estimate and provide a solution algorithm.

Numerical evaluations using empirical and simulated yield curves from a no-arbitrage term structure

model support the feasibility and accuracy of our approach relative to existing methods.
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Chapter 1

A Tale of Two Tails: A Model-free Approach
to Estimating Disaster Risk Premia and Test-
ing Asset Pricing Models

1.1 Introduction

Disaster risk has emerged as a pervasive and influential concept in asset pricing, offering a

prominent explanation of the equity premium puzzle, as well as other asset pricing puzzles.1 Little

is known, however, about the quantitative properties of disaster risk and evidence for it is often

inferred indirectly, such as from the historically high equity premium. Nevertheless, a high equity

premium does not necessarily arise due to disaster risk, and the literature has yet to reach an

unambiguous conclusion regarding its ability to explain asset pricing puzzles (see, e.g., Julliard and

Ghosh (2012)). Ross (2015) refers to disaster risk as dark matter and summarizes the concept as

follows: “It is unseen and not directly observable but it exerts a force that can change over time

and that can profoundly influence markets”.

In this paper, I propose a model-free methodology to measure and track disaster risk in

S&P500 returns through time. My results unequivocally show that disaster risk is pervasive and is

a primary determinant of the equity premium. In establishing these results, I confront two critical

challenges that have hindered inference so far about disaster risk. Firstly, to estimate disaster risk

in a model-free manner, the literature often estimates the stochastic discount factor (SDF), defined

as the ratio of risk-neutral to physical density. Disaster risk is then thought of as the tendency

1See, for example, Rietz (1988), Barro (2006, 2009), Drechsler and Yaron (2011), Gabaix (2012), Wachter (2013),
Constantinides and Ghosh (2017), Isoré and Szczerbowicz (2017), Farhi and Gourio (2018), Seo and Wachter (2019)
and Schreindorfer (2020).
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of the SDF to take large values in the left-tail of the return distribution. However, this approach

faces scrutiny due to the potential for erratic results when estimating the density ratio in the tails,

thereby complicating robust inference. Secondly, it is crucial to account for changing conditioning

information. Typically, estimation of the physical density involves pooling historical returns, while

the risk-neutral density relies on forward-looking option prices. This disparity in information sets

can lead to inconsistent estimates of conditional disaster risk.

To address these challenges, I consider an approach that avoids the need for density es-

timation. Starting from the absence of arbitrage opportunities, a risk-neutral distribution exists

that can be identified from option prices without assuming any model (Breeden and Litzenberger,

1978). However, the conditional physical distribution, which describes the actual evolution of the

market return, remains unobserved. To proceed, I use quantile regression (QR) to estimate

Qt,τ (Rm,t→N )︸ ︷︷ ︸
Unobserved

= β0(τ) + β1(τ) Q̃t,τ (Rm,t→N )︸ ︷︷ ︸
Observed

τ ∈ (0, 1), (1.1.1)

where Qt,τ and Q̃t,τ represent the physical and risk-neutral τ -quantiles, respectively, of the market

return Rm,t→N , from period t to t+N . The parameters in (1.1.1) can be estimated using quantile

regression, with the observed time series of returns, {Rm,t→N}Tt=1, as the dependent variable and

{Q̃t,τ}Tt=1 as the regressor. Importantly, both Rm,t→N and Q̃t,τ are conditioned on the same infor-

mation set.

In general, quantile regression estimates the best linear approximation to the physical quan-

tile function, from whichRm,t→N is drawn. But because the risk-neutral quantile function is a highly

non-linear transformation of state variables, the estimation accommodates non-linear dependence

between the physical quantile function and the state variables it depends on. Hence, any devia-

tion from the risk-neutral benchmark, [β0(τ), β1(τ)] = [0, 1], signifies a local difference between the

physical and risk-neutral measures at the τ -quantile. Since the equity premium is determined by

these differences, it is natural to define disaster risk premia as the difference between Qt,τ and Q̃t,τ

in the left-tail, i.e. for values of τ close to zero.
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Based on the QR estimates, two key findings emerge: (i) the risk-neutral benchmark can-

not be rejected in the right-tail (τ ≥ 0.7) but it is rejected in the left-tail (τ ≤ 0.3); and (ii) the

in-sample and out-of-sample explanatory power of the risk-neutral quantile is significantly higher

in the right-tail compared to the left-tail. Both findings suggest that disaster risk is the main driver

of the equity premium.

Building on these results, I estimate the conditional Lorenz curve and Gini coefficient as-

sociated with the equity premium. These statistics summarize how much the conditional equity

premium is driven by the lowest returns (disaster), akin to its interpretation of wealth inequality

in labor economics. I find that the Lorenz curve is always concave, and the Gini coefficients are

far above zero in every time period, thus showing that disaster risk is a pervasive feature of the

data. On average, I find that ex-ante returns below the 5th percentile contribute to 17% of the

total equity premium.

While this result demonstrates that disaster risk is an important driver of expected returns,

it also adds nuance to the degree of disaster risk necessary to explain the equity premium. In

particular, previous papers attribute about 90% of the equity premium to returns below the 5th

percentile (Barro, 2009; Backus, Chernov, and Martin, 2011; Beason and Schreindorfer, 2022). The

results differ since I account for conditioning information embedded in the risk-neutral quantile

function, whereas unconditional estimates of disaster risk tend to overestimate this risk, since the

physical distribution acquires fatter tails when averaging out state variables.

Comparing the physical and risk-neutral quantile functions over time also sheds light on

the role of risk aversion and forward-looking beliefs in jointly determining disaster risk premia.

Particularly during crises, the value of an insurance contract that hedges against disaster risk in-

creases, resulting in a downward movement in the left-tail of the risk-neutral quantile function.

Simultaneously, investors often revise their beliefs about the likelihood of another disaster, fre-

quently assigning a higher probability to such an event. This effect drives down the left-tail of the

physical quantile function, creating an ambiguous overall impact on disaster risk premia. However,

the quantile regression estimates indicate that the risk-neutral quantile function decreases propor-

3



tionally more, highlighting the greater influence of risk aversion in determining disaster risk premia.

Given that the equity premium is primarily driven by disaster risk premia, the discussion

above implies that the left-tail of the risk-neutral quantile function can predict the equity premium.

An OLS regression of the equity premium against the 5% risk-neutral quantile shows preliminary

evidence of forecasting ability, especially out-of-sample. In line with theoretical expectations, a

decline in the 5% risk-neutral quantile is associated with a substantial increase in the equity pre-

mium. Notably, during the 2008 financial crisis and the 2020 Covid-19 crisis, monthly estimates of

the equity premium reached peaks of around 5%.

Besides the equity premium puzzle, the QR estimates shed light on the role of first-order

stochastic dominance and the pricing kernel puzzle. Specifically, I find that Q̃t,τ < Qt,τ holds

across most of the distribution, except in the far right-tail, where Q̃t,τ > Qt,τ frequently occurs.

This violation of stochastic dominance raises questions in asset pricing models using the expected

utility framework, as it suggests that a representative investor exhibits negative risk aversion. Fur-

thermore, I show that a violation of stochastic dominance implies that the pricing kernel is not

monotonic, thereby confirming the pricing kernel puzzle while accounting for conditioning informa-

tion, and without the need to estimate a density ratio.

To further understand the influence of disaster risk on the pricing kernel, I introduce a

distribution bound on the SDF volatility that is closely related to the Hansen and Jagannathan

(1991) bound. The distribution bound summarizes the risk-return trade-off of an asset paying out

one dollar when the market return falls below a certain threshold. I show that disaster risk makes

the risk-return trade off highly favorable by going short in an asset paying one dollar in case of

a disaster. The price of such an asset is high because investors are willing to pay a significant

premium to insure against disaster risk, but the risk is limited since the actual probability of a

disaster is comparatively low. The Sharpe ratio associated to this investment therefore dominates

the Sharpe ratio of a direct investment in the market portfolio. Specifically, in the data, the Sharpe

ratio on selling an asset that pays out one dollar if the return falls below the 5th percentile is 30% in

monthly units, while the Sharpe ratio of investing in the market portfolio is only 13%. I also show
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that models which do not embed a source of disaster risk, such as conditional lognormal models,

cannot rationalize this finding.

I conclude by proposing a model-free lower bound on disaster risk premia to assess the

robustness of my earlier findings. This lower bound is observed from option prices and is inspired

by recent bounds on the equity premium (Martin, 2017; Chabi-Yo and Loudis, 2020). Using quan-

tile regression, I show that the lower bound explains a substantial proportion of the fluctuation

in disaster risk premia over time. Moreover, the lower bound relaxes the assumption of a time-

homogeneous relation between the physical and risk-neutral quantile functions. Empirically, the

lower bound closely aligns with the disaster risk estimates derived from quantile regression, further

strengthening the robustness of my earlier findings.

1.1.1 Related Literature

My approach, which uses quantile regression to estimate local dispersions between the phys-

ical and risk-neutral distribution, is related to a larger body of literature that estimates the pricing

kernel from returns and option data (Aı̈t-Sahalia and Lo, 2000; Jackwerth, 2000; Rosenberg and

Engle, 2002; Beare and Schmidt, 2016; Linn, Shive, and Shumway, 2018; Cuesdeanu and Jackw-

erth, 2018). However, estimating the pricing kernel from returns and options can be challenging,

especially in the tails of the distribution, where the ratio of densities that defines the pricing kernel

can become unstable. In addition, using historical returns to estimate the physical density can lead

to inconsistent results (Linn, Shive, and Shumway, 2018). Beason and Schreindorfer (2022) apply

a similar methodology to decompose the unconditional equity premium.

In contrast, QR can be used to draw inference on the pricing kernel indirectly, by lever-

aging the observed realized return and risk-neutral distribution, which avoids the estimation of a

density ratio. Furthermore, QR can account for changes in the shape and scale of the underlying

SDF over time due to changing conditional information, while the approach of Cuesdeanu and

Jackwerth (2018) renders an estimate of the SDF that only allows the normalizing constant to be

time-varying, since the shape and scale are time invariant (see Section 1.4.1).
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I use the QR estimates to shed light on disaster risk, by analyzing the Lorenz curve associ-

ated to the equity premium. Effectively, quantiles decompose the equity premium state-by-state,

which is conceptually different from prior literature such as Schneider (2019) and Chabi-Yo and

Loudis (2023), whose decompositions rely on averages across the return distribution. This state-

by-state decomposition allows one to diagnose more precisely which part of the return distribution

contributes to the equity premium. Unlike Schneider (2019), I also incorporate time series data,

which enhances estimation of the physical measure. Chabi-Yo and Loudis (2023) is more closely

aligned with my methodology since they decompose the market return into three distinct compo-

nents. However, the estimation of the physical measure differs significantly, as I rely on quantile

regression rather than non-linear weighted least squares. Notably, quantile regression proves to be

more robust, especially in the tails. Beason and Schreindorfer (2022) also employ a state-by-state

decomposition but provide unconditional estimates, potentially leading to an overestimation of dis-

aster risk. Specifically, my methodology shows that the worst 5% of returns contribute only 17%

to the equity premium, while Beason and Schreindorfer (2022) report an estimate of 91.5%.

My approach to infer conditional disaster risk is also related to the high-frequency litera-

ture. Bollerslev and Todorov (2011) and Bollerslev, Todorov, and Xu (2015) use semimartingale

theory to dissect which part of the equity premium is coming from downside/upside risk. This

approach is very general but limited to short horizons. Furthermore, it separates the contribution

from diffusion and jump risk, while the QR approach can also be used for any part of the return

distribution. The QR approach does not require the specification of underlying state variables

driving the economy, as these variables are implicitly embedded within the risk-neutral quantile

function. A similar rationale has been applied by Andersen, Bondarenko, Todorov, and Tauchen

(2015) in a high-frequency context, leveraging derivative prices to gain insights into qualitative

features of latent state variables.

Complementary to the QR estimates, I derive a nonparametric bound on the SDF volatil-

ity closely related to the bound of Hansen and Jagannathan (1991). They argue that the SDF is

necessarily volatile and use this observation to screen asset pricing models. Several papers have
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built on this insight using higher-order moment bounds (Snow, 1991; Almeida and Garcia, 2012;

Liu, 2021) and entropy bounds (Stutzer, 1995; Bansal and Lehmann, 1997; Alvarez and Jermann,

2005b; Backus, Chernov, and Zin, 2014). These bounds all provide a measure of how much the

risk-neutral distribution differs from the physical distribution. Unlike the distribution bound, all

of these measures are global in that they rely on averages over the entire state space. The distri-

bution bound in this paper is a function rather than a single statistic and can be considered an

intermediate approach between a single bound and a complete estimate of the SDF.

The last part of this paper is also related to the growing literature on using options to

estimate forward-looking equity premia (Martin, 2017; Martin and Wagner, 2019; Chabi-Yo and

Loudis, 2020). However, unlike those papers that focus on the conditional expectation of excess re-

turns, this paper uses option data to bound conditional return quantiles. Since the obtained bound

does not require any parameter estimation and provides information on the entire distribution,

it complements the recovery literature (Ross, 2015; Schneider and Trojani, 2019). Furthermore,

the observed time variation in the approximation for the left-tail quantile, as documented in this

paper, aligns with the concept of time-varying disaster risk proposed in various models by Gabaix

(2012), Wachter (2013), Constantinides and Ghosh (2017), Isoré and Szczerbowicz (2017), Farhi

and Gourio (2018) and Seo and Wachter (2019).

The rest of this paper is organized as follows. Section 1.2 presents the main empirical results

from the quantile regressions and its consequences for the equity premium and SDF are discussed

in Section 1.3. Section 1.4 provides further evidence on the robustness of QR to estimate disaster

risk relative to extant approaches. Section 1.5 introduces the distribution bound, discusses its

use in asset pricing models, and presents estimates of the distribution bound from empirical data.

Building on the results of Sections 1.2 and 1.3, Section 1.6 establishes a model-free lower bound on

disaster risk premia. Finally, Section 1.7 concludes.

1.2 Empirical Estimates of Quantile Difference

This section documents empirical estimates of the conditional difference between the phys-

ical and risk-neutral quantile functions. I first discuss the notation and then consider an example
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to clarify the idea and motivate the methodology.

1.2.1 Notation

Let Rm,t→N denote the market return from period t to t+N , where N typically represents

30-, 60-, or 90-days. The risk-free rate over the same period is denoted by Rf,t→N , which is assumed

to be known at time t. In the absence of arbitrage, there exists a positive random variable Mt→N

such that, conditional on the investor’s information at time t,

Et [Mt→NRm,t→N ] = 1. (1.2.1)

The random variable Mt→N is referred to as the stochastic discount factor (SDF) and the ex-

pectation in (1.2.1) is calculated under the physical probability measure Pt, which is the actual

distribution of the market return, i.e. Rm,t→N ∼ Pt. The SDF can potentially depend on many

state variables, but these are suppressed from the notation for brevity. It is convenient to restate

(1.2.1) in terms of risk-neutral probabilities:

Ẽt (Rm,t→N ) = 1/Et [Mt→N ] = Rf,t→N ,

where the expectation is calculated under the risk-neutral measure P̃t induced by Mt→N . Finally,

Ft(x) := Pt(Rm,t→N ≤ x) denotes the physical CDF of the market return conditional on the

investor’s information available at time t, ft(·) denotes the conditional probability density function

(PDF) and Qt,τ denotes the conditional τ -quantile. As before, a tilde superscript refers to the

risk-neutral measure, so that

F̃t(Q̃t,τ ) = P̃t

(
Rm,t→N ≤ Q̃t,τ

)
= τ, ∀τ ∈ (0, 1).

The physical and risk-neutral quantiles depend on the underlying random variable Rm,t→N (i.e.,

Q̃t,τ := Q̃t,τ (Rm,t→N )), but I typically omit this dependence as the underlying random variable

always refers to the market return.

To clarify my approach of using quantiles to analyze disaster risk, I consider the following
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asset pricing model that will be used several times in the paper.

Example 1.2.1 (Disaster risk). Consider the disaster risk model analyzed in Backus, Chernov,

and Martin (2011). The SDF process is given by

logMt→N = log β − γ logGt→N ,

where β is a time discount factor, γ is the coefficient of relative risk aversion, and Gt→N = Ct+N/Ct

is consumption growth in period t+N . Consumption growth follows a two-component structure:

logGt→N = z1,t+N + z2,t+N , z1,t+N ∼ N (µ, σ2),

and z2,t+N is a Poisson mixture of normals to capture jumps representing rare shocks to consumption

growth that are large in magnitude. The number of jumps, j, take on nonnegative integer values

with probability e−ωωj/j!, and conditional on j, the jump term is normal: z2,t+N |j ∼ N (jθ, jδ2).

Backus, Chernov, and Martin (2011) show that the risk-neutral distribution of consumption growth

in a representative agent model is again a normal mixture with parameters:

µ̃ = µ− γσ2, ω̃ = ωe−γθ+(γδ)2 , θ̃ = θ − γδ2. (1.2.2)

In this setup, risk aversion amplifies the jump frequency (ω̃ > ω if θ < 0) as well as the jump size

(θ̃ < θ). If the model is calibrated such that θ ≪ 0, then z2,t+N can be interpreted as a disaster

shock if a jump takes place (j ≥ 1).

Figures 1.1a and 1.1b illustrate the impact of jumps on the physical and risk-neutral quantile

functions. Specifically, in the absence of jumps, the market return follows a lognormal distribution

and Figure 1.1a shows that the difference between the physical and risk-neutral quantile functions

is approximately equal in both tails. However, when jumps are introduced, this difference is almost

entirely concentrated in the left-tail. This result is driven by the impact of jumps on the risk-neutral

distribution, and the requirement that θ < 0 is crucial to drive a wedge between the physical and

risk-neutral measures in the left-tail (see (1.2.2)). The question is whether these distinct shape

restrictions on the physical and risk-neutral distribution are supported by the data.
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Figure 1.1. Effect of jumps on physical and risk-neutral quantile functions. The left panel
displays the physical and risk-neutral quantile functions without jumps (ω = 0), while the right panel illustrates the
quantile functions with jumps (ω = 1.4). In both cases, the mean of the disaster shock (θ) is set to −0.0074. The
market return is defined as a levered claim on the consumption asset. The trapezoids represent the difference in
quantile functions at the 10th and 90th percentiles.

1.2.2 Methodology and Econometric Model

Building on the discussion in Example 1.2.1, it is of interest to estimate the quantile dif-

ference between the physical and risk-neutral measures. The disaster risk model predicts that

these differences are significant in the left-tail while negligible in the right-tail. This is because

investors’ marginal utility of wealth in states associated with a disaster is very high. Consequently,

the following excess return,

Ẽt [1 (Rm,t→N ≤ x)]︸ ︷︷ ︸
price

−Et [1 (Rm,t→N ≤ x)]︸ ︷︷ ︸
expected payoff

= F̃t(x)− Ft(x),

can be rather high for thresholds x in the left-tail. The price is high because investors are willing

to pay for insurance against disaster risk, even though the actual probability of a disaster can be

significantly lower. This effect drives a wedge between the physical and risk-neutral CDFs in the

left-tail. For analytical and estimation convenience, it proves more fruitful to consider the inverse

of the CDFs (i.e., the quantile functions). Therefore, I consider Qt,τ − Q̃t,τ , and refer to these

differences in the left-tail as disaster risk premia.
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While the conditional risk-neutral distribution and its quantile function can be inferred

from option prices without specific modeling assumptions (Breeden and Litzenberger, 1978), the

same cannot be said for the physical distribution, unless strong assumptions are made about the

martingale component of the SDF (Ross, 2015; Borovička, Hansen, and Scheinkman, 2016). The

information available about the conditional physical distribution is limited to a single realization of

the market return, as Rm,t→N follows Pt conditional on time t. Consequently, the primary challenge

in measuring disaster risk premia lies in the unobservable nature of Qt,τ , which has made model-free

inference challenging thus far.

Risk-Neutral Quantile Regression

In order to overcome this difficulty, I assume the following model for the physical quantile

function

Qt,τ (Rm,t→N )︸ ︷︷ ︸
Unobserved

= β0(τ) + β1(τ) Q̃t,τ (Rm,t→N )︸ ︷︷ ︸
Observed

, ∀τ ∈ (0, 1). (1.2.3)

If the world is risk-neutral, [β0(τ), β1(τ)] = [0, 1] for all τ . Departures from risk-neutrality at a

specific percentile τ are reflected by point estimates of [β0(τ), β1(τ)] that are far from the [0, 1]

benchmark. Given a sample of T observations {Rm,t→N , Q̃t,τ}Tt=1, the unknown parameters in

(1.2.3) can be estimated by quantile regression (Koenker and Bassett, 1978):

[β̂0(τ), β̂1(τ)] = argmin
(β0,β1)∈R2

T∑
t=1

ρτ (Rm,t→N − β0 − β1Q̃t,τ ), (1.2.4)

where ρτ (·) is the check function from quantile regression

ρτ (x) =


τx, if x ≥ 0

(τ − 1)x if x < 0.

Even if the world is not risk-neutral, the model in (1.2.3) can still be correctly specified,

as is the case for conditional lognormal models (see Section 1.4.1). When the model is misspec-
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ified, the estimation in (1.2.4) remains meaningful as QR finds the best linear approximation to

the conditional quantile function (Angrist, Chernozhukov, and Fernández-Val, 2006).2 Since the

risk-neutral quantile itself is a highly non-linear transformation of state variables, the model can

accommodate non-linear dependence between the physical quantile function and state variables

driving the economy. The benefit of using the risk-neutral quantile function as a regressor is that

it does not require the econometrician to take a stand on the state variables driving the physical

distribution. Furthermore, both Rm,t→N and Q̃t,τ are conditioned on the same information set,

thus avoiding the mismatched information critique of Linn, Shive, and Shumway (2018).

In addition, theory often suggests tantalizing links between the tails of the physical and

risk-neutral distribution. Table 1.1 presents correlations between Qt,τ and Q̃t,τ for both left and

right tails in different asset pricing models. In most models, these correlations are nearly one, indi-

cating a strong positive relation that can be modeled by (1.2.3). Only for τ = 0.3, the correlation

is notably lower at 41% in the Campbell and Cochrane (1999) model and -67% in the Drechsler

and Yaron (2011) model.

In Appendix A.2.1, I consider non-linear specifications as alternatives to the linear model

in (1.2.3). Broadly speaking, I find that the linear model outperforms all non-linear models when

predicting the physical quantile function out-of-sample. Based on this evidence, and the close linear

approximation suggested by asset pricing models, I use the linear specification throughout most of

the paper.

Remark 1. An alternative to QR is nonparametric estimation of the SDF as proposed by Aı̈t-

Sahalia and Lo (2000), Jackwerth (2000) and Rosenberg and Engle (2002). This method can

infer the quantile difference from the estimated SDF but relies on pooled historical returns, which

can be problematic for forward-looking distribution estimation (Linn, Shive, and Shumway, 2018).

More recently, Linn, Shive, and Shumway (2018) and Cuesdeanu and Jackwerth (2018) proposed

an estimator of the SDF that accounts for forward-looking information. However, this method

2This result is analogous to OLS, which finds the best linear approximation to the conditional expectation function,
even if the model is misspecified.
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Table 1.1. Tail correlations (in %) of physical and risk-neutral
quantile function in asset pricing models

Percentile 0.05 0.1 0.2 0.3 0.7 0.8 0.9 0.95

Lognormal

Campbell and Cochrane (1999) 96.94 94.49 83.61 40.88 86.51 94.25 97.27 98.26
Bansal and Yaron (2004) 99.97 99.97 99.98 99.98 99.99 99.99 99.99 100.00
Disaster
Drechsler and Yaron (2011) 99.90 99.44 94.67 -67.16 96.88 98.75 99.45 99.67
Wachter (2013) 95.40 99.63 99.57 98.98 99.71 99.88 99.94 99.97
Constantinides and Ghosh (2017) 99.86 99.72 99.21 97.58 85.96 94.68 97.32 97.90

Note: This table reports the correlation between Qt,τ and Q̃t,τ in conditional lognormal models and models that
embed a source of conditional disaster risk. The correlations at various percentiles are obtained by simulating 106

draws of the ergodic distribution of states in each model.

presents challenges such as non-convex optimization, the objective function might be undefined

due to the small number of existing risk-neutral moments (see Figure A.8), ambiguity in basis

function selection, and the inability to account for shape changes in the SDF leading to incorrect

conditional inference. QR, on the other hand, avoids these issues, as shown in more detail in Section

1.4.1.

Measures of Fit

Based on the quantile regression (1.2.4), I consider two measures of fit to evaluate how

well the risk-neutral quantile locally approximates the physical distribution. The first in-sample

measure, R1(τ), is defined as3

R1(τ) := 1−
minb0,b1

∑T
t=1 ρτ (Rm,t→N − b0 − b1Q̃t,τ )

minb0
∑T

t=1 ρτ (Rm,t→N − b0)
. (1.2.5)

This measure of fit was proposed by Koenker and Machado (1999) and is a clean substitute for the

OLS R2. I also consider an out-of-sample measure of fit

R1
oos(τ) := 1−

∑T
t=w ρτ (Rm,t→N − Q̃t,τ )∑T
t=w ρτ (Rm,t→N −Qt,τ )

, (1.2.6)

where Qt,τ is the historical rolling quantile of the market return from time t−w+ 1 to t, and w is

the rolling window length. Notice that (1.2.6) is a genuine out-of-sample metric since no parameter

3It is well known that b0 in the denominator of (1.2.5) equals the in-sample τ -quantile.
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estimation is used. In the equity premium literature, Campbell and Thompson (2008) stress the

importance of out-of-sample predictability; (1.2.6) is analogous to their out-of-sample R2.

1.2.3 Data and Estimation

To estimate the quantile regression in (1.2.4), I require data on the market return and the

risk-neutral distribution over time. I use overlapping returns on the S&P500 index from WRDS

over the period 2003–2021 to represent the market return. I calculate the market return over a

horizon of 30-, 60-, and 90-days. Second, over the same horizon, I use put and call option prices on

the S&P500 on each day t from OptionMetrics to estimate the risk-neutral quantile function based

on the Breeden and Litzenberger (1978) formula:

F̃t

(
K

St

)
= Rf,t→N

∂

∂K
Putt(K), (1.2.7)

where Putt(K) denotes the time t price of a European put option on the S&P500 index with stock

price St, strike price K and expiration date t+N . This formula is model-free and only requires a

no-arbitrage assumption. Due to the lack of a continuum of option prices, interpolation of different

maturity options and missing data for option prices far in– and out-of-the money, it is a nontrivial

exercise to obtain accurate estimates of F̃t (and hence Q̃t,τ ) from (1.2.7). A detailed description

of my approach that overcomes these issues is described in Appendix A.3.2, which is based on

Filipović, Mayerhofer, and Schneider (2013).4 Finally, I obtain the risk-free rate from Kenneth

French’s website.5

Table 1.2 shows the QR estimates of (1.2.4). The point estimates are close to the [0, 1]

benchmark in the right-tail (τ ≥ 0.7), but not in the left-tail (τ ≤ 0.3).6 Additionally, the joint

restriction that [β0(τ), β1(τ)] = [0, 1] is rejected for all τ ≤ 0.2, at all horizons. In contrast, the

null hypothesis is never rejected for τ ≥ 0.8. The fact that the risk-neutral distribution provides

a good approximation of the physical distribution in the right-tail is confirmed by the measures of

4This approach uses a kernel density and adds several correction terms to approximate the risk-neutral density. I
follow Barletta and Santucci de Magistris (2018) and use a principal components step to avoid overfitting in the tails.

5See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html#Research
6Because the risk-neutral quantile function is estimated, there is a concern for attenuation bias due to measurement

error. Unreported simulations show that this bias is very small in a setting that mimics the empirical application.
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fit, R1(τ) and R1
oos(τ), which are also shown in Table 1.2. Specifically, both in- and out-of-sample,

the risk-neutral quantile fits the physical distribution much better in the right-tail.

Remark 2. The standard errors for the quantile regression in Table 1.2 are obtained by the smooth

extended tapered block bootstrap (SETBB) of Gregory, Lahiri, and Nordman (2018), which is ro-

bust to heteroscedasticity and weak dependence.7 This robustness is important in the estimation,

since I use overlapping returns which creates time dependence in the error term, akin to the over-

lapping observation problem in OLS (Hansen and Hodrick, 1980). SETBB also renders an estimate

of the covariance matrix between β̂0(τ) and β̂1(τ), which can be used to test joint restrictions on

the coefficients.8

1.3 Equity Premium Puzzle and SDF Implications

Building on the estimates in Table 1.2, this section shows that the conditional equity pre-

mium is driven by disaster risk, and that disaster risk is a pervasive feature of the data, which

poses a new challenge to asset pricing models. I further comment on two implications of Table 1.2

that relate to properties of the SDF that have previously received attention in the literature.

1.3.1 Equity Premium Puzzle

The results in Table 1.2 show that the physical distribution is close to risk-neutral in the

right-tail, but not in the left-tail. Investors in the market portfolio thus get compensated for bearing

downside risk, but not upside risk. This result has important repercussions for explanations of the

7It may seem counterintuitive that the standard errors decrease in the tails, which are generally harder to estimate.
However, since the regressor Q̃t,τ changes with τ , there is an opposing effect that can cause the standard errors to
decrease in the tails. This happens if Q̃t,τ is more variable in the tails, akin to the intuition in OLS that more
variability in the regressor decreases the standard error. In the data, Q̃t,τ is much more variable in the tails.

8I use the QregBB function from the eponymous R-package, available on the author’s Github page: https://rdrr.
io/github/gregorkb/QregBB/man/QregBB.html. The only user required input for this method is the block length in
the bootstrap procedure.
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equity premium puzzle. To see this, consider the following decomposition of the equity premium9

Et [Rm,t→N ]−Rf,t→N =

∫ 1

0

(
Qt,τ − Q̃t,τ

)
dτ

=

∫
¯
τ

0

(
Qt,τ − Q̃t,τ

)
dτ︸ ︷︷ ︸

disaster risk

+

∫ 1

¯
τ

(
Qt,τ − Q̃t,τ

)
dτ, (1.3.1)

where
¯
τ is a percentile close to zero. The first term on the right-hand side aggregates the local

difference between the risk-neutral and physical quantiles in the left-tail, which I define as the

contribution of disaster risk. The results in Table 1.2 show that these differences are the primary

determinant for the equity premium, as in the right-tail we have Qt,τ ≈ Q̃t,τ . The latter finding

is consistent with the modeling assumption in (time-varying) disaster risk models that shocks to

the market return are negative conditional on a disaster occurring (see, e.g., the condition θ < 0 in

Example 1.2.1). Hence, an asset pricing model seeking to explain the (conditional) equity premium

of the market return must embed a source of disaster risk.

To illustrate the pervasiveness of disaster risk in the data, I consider the Lorenz curve

associated with the conditional equity premium

Lt(x) :=

∫ x
0

(
Qt,τ − Q̃t,τ

)
dτ

Et [Rm,t→N ]−Rf,t→N

(1.3.1)
=

∫ x
0

(
Qt,τ − Q̃t,τ

)
dτ∫ 1

0

(
Qt,τ − Q̃t,τ

)
dτ

, 0 ≤ x ≤ 1.

The Lorenz curve summarizes the proportion of the equity premium contributed by the bottom

x% of returns, akin to its interpretation in labor economics to summarize wealth inequality. Since

Qt,τ is unobserved, I use instead the inferred value, Q̂t,τ = β̂0(τ) + β̂1(τ)Q̃t,τ , with the estimated

parameters coming from the QR estimates in (1.2.4).

Figure 1.2a shows the average Lorenz curve in the data, together with the Lorenz curve

implied by various asset pricing models.10 In the data, the Lorenz curve is quite concave, thus

showing that the majority of the equity premium is contributed by the left-tail. At the same

time, my estimation adds nuance to the degree of disaster risk influencing the equity premium.

9See Appendix A.1.1 for a derivation.
10I thank Beason and Schreindorfer (2022) for making the code to simulate from these models publicly available.
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Specifically, while the disaster risk models of Barro (2009) and Backus, Chernov, and Martin

(2011) attribute approximately 90% of the equity premium to the lowest 5% of returns, empirical

estimates suggest this proportion is only around 17%. These findings also deviate substantially

from the nonparametric estimates of Beason and Schreindorfer (2022), who report that 91.5% of

the equity premium is driven by the bottom 5% of returns. Our results differ because I account

for conditioning information, while Beason and Schreindorfer (2022) employ an unconditional ap-

proach. Using unconditional averages can inflate the tails of the physical distribution (Chabi-Yo,

Garcia, and Renault, 2008), leading to an overestimation of disaster risk.

On the other hand, the models of Campbell and Cochrane (1999) and Bansal and Yaron

(2004) are even more misspecified since the Lorenz curve in these models is slightly convex, thus

attributing more than 50% of the equity premium to upside returns. The model of Schreindorfer

(2020) matches the Lorenz curve best, even though it also overestimates the contribution of disaster

risk to the equity premium.

I also consider the Gini coefficient derived from the Lorenz curve

Gt = 2

∫ 1

0
Lt(τ) dτ − 1.

By construction, the Gini coefficient is between -1 and 1, and a value closer to 1 indicates that

a bigger proportion of the equity premium is coming from the left-tail. In contrast, a value of 0

suggests that the equity premium is evenly distributed across the return distribution, while neg-

ative values imply that the right-tails contribute more to the equity premium than the left-tails.

Figure 1.2b shows the time series of conditional Gini coefficients for the various return horizons.

For 30-day returns, the Gini coefficient mostly hovers between 0.33 and 0.68. At longer horizons,

the Gini coefficients exhibit less variability and typically range between 0.47 to 0.6. These coeffi-

cients are also countercyclical, peaking during periods associated with economic downturns, such as

the 2008 financial crisis and the Covid-19 crisis. Overall, the Gini coefficients consistently exhibit

strong positive values, highlighting the pervasiveness of conditional disaster risk in the data, which

extends beyond crisis periods.
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Figure 1.2. Lorenz curve and Gini coefficient of the conditional equity premium.
This figure presents the Lorenz curve and Gini coefficient associated with the conditional equity premium in both
empirical data and asset pricing models. Panel (a) displays the time-averaged Lorenz curve estimated from 30-
day returns (Empirical) alongside Lorenz curves implied by the unconditional asset pricing models of Barro (2009)
(B09), Backus, Chernov, and Martin (2011) (BCM11), and Schreindorfer (2020) (S20), as well as the average Lorenz
curve from conditional asset pricing models by Campbell and Cochrane (1999) (CC99) and Bansal and Yaron (2004)
(BY04). Panel (b) depicts the estimated Gini coefficient over time for different return horizons and is smoothed using
a 30-day rolling window. Panel (c) shows the ergodic distribution of Gini coefficients estimated from 30-day returns
(Empirical) and those implied by the conditional asset pricing models of CC99, BY04, Drechsler and Yaron (2011)
(DY11), Wachter (2013) (W13), and Constantinides and Ghosh (2017) (CG17). Model parameters are calibrated on
a monthly frequency, and the ergodic distribution is derived from 10,000 state draws.

Finally, I analyze the ergodic distribution of Gini coefficients in time-varying asset pric-

ing models and compare it to the distribution implied by the data.11 Figure 1.2c displays these

11In the model, I obtain the distribution of Gini coefficients from the state distribution. In the data, I rely on the
time series average. If the data are generated by the model and the system is ergodic, Birkhoff’s theorem implies
that the state and time averages are equal almost everywhere.
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distributions and shows that many asset pricing models have difficulty in matching the empiri-

cal distribution. The conditional lognormal models of Campbell and Cochrane (1999) and Bansal

and Yaron (2004) imply negative Gini coefficients, with minimal variation among different states,

contrary to what the data indicate. The models of Drechsler and Yaron (2011), Wachter (2013),

Constantinides and Ghosh (2017) all incorporate a source of disaster risk, but they also have diffi-

culty to match the empirics. In particular, the models of Drechsler and Yaron (2011) and Wachter

(2013) embed too little disaster risk, while the model of Constantinides and Ghosh (2017) overes-

timates the impact of disaster risk.

1.3.2 Driver of Disaster Risk Premia: Insurance or Beliefs?

Disaster risk premia have two components: an insurance effect and a forward-looking beliefs

effect (under rational expectations). To see this, consider again the short position in a derivative

security that pays one dollar if the market return is below a threshold, denoted by x, in the left-tail.

The excess return on such an investment can be interpreted as

Ẽt [1 (Rm,t→N ≤ x)]︸ ︷︷ ︸
price of insurance

−Et [1 (Rm,t→N ≤ x)]︸ ︷︷ ︸
forward looking belief

= F̃t(x)− Ft(x).

During a crisis, the price of this insurance security tends to rise. This effect can occur

in the disaster risk model (Example 1.2.1), if risk aversion increases when a disaster hits, leading

to an increase in F̃t(x) and a subsequent decrease in Q̃t,τ . Simultaneously, investors may believe

that the actual probability of a disaster increases during a crisis. This belief drives up Ft(x) and,

consequently, pushes down Qt,τ .

Building on this discussion, it is not immediately clear what the net effect is on disaster risk

premia (Qt,τ − Q̃t,τ ), as both Qt,τ and Q̃t,τ tend to decrease during periods of heightened market

uncertainty. Figure 1.3a illustrates this effect for 30-day returns and τ = 0.05. Notably, during

the global financial crisis and Covid-19 crisis, both the physical and risk-neutral quantile functions

exhibit significant drops.

To shed light on the net effect on disaster risk premia during crises, Figure 1.3b displays the
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evolution of disaster risk premia over time. The most significant change occurs during the peak of

the global financial crisis and the Covid-19 crisis. In these turbulent periods, disaster risk premia

consistently rise, suggesting that the insurance effect is more substantial than the forward-looking

beliefs effect.12 Because of these large increases, disaster risk is a more important driver of the

equity premium, which clarifies the countercyclical Gini coefficients in Figure 1.2b.

The downward fluctuations in the risk-neutral quantile function can be particularly pro-

nounced, plummeting to as low as 63% during crisis periods. In contrast, the physical quantile

function only drops to 78%, suggesting that a monthly loss of 22% or more had a 5% probability.

To put this in perspective, this probability is 14 times higher than the estimate obtained from

historical monthly S&P500 returns (from 1926 to 2021). This calculation shows that historical

estimates can diverge significantly from forward-looking beliefs. Furthermore, the time fluctua-

tions in the physical quantile function lend empirical support to the notion of time-varying disaster

risk, as proposed in various models such as Gabaix (2012), Wachter (2013), Constantinides and

Ghosh (2017), Isoré and Szczerbowicz (2017), Farhi and Gourio (2018) and Seo and Wachter (2019).
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Figure 1.3. Disaster risk premia for 30-day returns at the 5th percentile. Panel (a) shows
the physical and risk-neutral quantile functions over time at τ = 0.05. The physical quantile function is estimated
from the quantile regression in (1.2.4). Panel (b) shows the associated disaster risk premium, Qt,τ − Q̃t,τ . Both
panels are smoothed using a 30-day moving window. The two shaded bars denote the Great Recession period (Dec
2007 – June 2009) and Covid-19 crisis (Feb 2020 – April 2020).

12I find similar results for 60- and 90-day returns.
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1.3.3 Predicting the Equity Premium

The previous results establish that, in times of heightened market uncertainty, the eq-

uity premium is driven more by disaster risk. This observation suggests a strong link between

Et [Rm,t→N ]− Rf,t→N and the tail of the risk-neutral distribution, which motivates the predictive

regression

Rm,t→N −Rf,t→N = β0 + β1Q̃t,τ + εt→T , (1.3.2)

where Q̃t,τ is evaluated at τ = 0.05.

Table 1.3 shows the results at several return horizons. In all cases, the coefficient is nega-

tive, consistent with previous findings that the equity premium increases under market uncertainty.

Following Welch and Goyal (2008), the table also reports the out-of-sample R2, denoted by R2
oos,

which compares the predictions of (1.3.2) to a rolling average of excess returns. Precisely, I esti-

mate (1.3.2) using the sub-sample covering 2003–2012, and fix the estimated parameters to predict

excess returns over the out-of-sample period 2013–2021. Encouragingly, R2
oos is always positive and

statistically significant according to the Diebold and Mariano (1995) test, thus suggesting that the

left-tail of the risk-neutral quantile function outperforms the historical mean benchmark. These

values are also substantially higher compared to the R2
oos reported by Welch and Goyal (2008) using

various valuation ratios, or Martin (2017) using SVIX.13

Figure 1.4 shows the estimated equity premium over time for 30- and 60-day returns. The

panels are annualized to make them comparable. Both panels display considerable variation in the

equity premium over time and large values during the global financial crisis and Covid-19 crisis.

In these periods, Figure 1.4a suggests that the annualized equity premium peaks at 58%, which is

substantial relative to more conventional estimates based on dividend-price ratios. On the other

hand, the estimates around the 2008 financial crisis are in line with Martin (2017, Figure IV).

13The latter is not directly comparable however, since SVIX does not require parameter estimation.
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Figure 1.4. Estimated equity premium. This figure shows the estimated equity premium based on
(1.3.2) for 30-day returns (Panel 1.4a) and 60-day returns (Panel 1.4b). In both cases, the equity premium is converted
to annual units. The two shaded bars signify the Great Recession period (Dec 2007 – June 2009) and Covid-19 crisis
(Feb 2020 – April 2020).

1.3.4 Pricing Kernel Monotonicity and Stochastic Dominance

Besides the equity premium puzzle, the QR estimates in Table 1.2 also provide insights into

other asset pricing anomalies, such as pricing kernel monotonicity. Pricing kernel monotonicity

refers to the property that Mt→N (Rm,t→N ) := E [Mt→N |Rm,t→N ] is a decreasing function of the

market return. Asset pricing models that link the SDF to the marginal rate of substitution imply

that the pricing kernel is indeed a decreasing function. Empirically, there is suggestive evidence

that the pricing kernel is not monotonic, which is puzzling as it contradicts that a representative in-

vestor is risk-averse (see Aı̈t-Sahalia and Lo (1998), Jackwerth (2000), Rosenberg and Engle (2002),

Bakshi, Madan, and Panayotov (2010), Beare and Schmidt (2016) and Cuesdeanu and Jackwerth

(2018)). However, a formal statistical test that can detect violations of monotonicity is challenging

as one needs uniform confidence bands for the estimated SDF, which requires tools from empirical

process theory (see, e.g., Beare and Schmidt (2016)).

I consider a different approach based on stochastic dominance. Proposition A.1.1 in the

Appendix shows that pricing kernel monotonicity implies that the physical distribution is first-

order stochastic dominant (FOSD) over the risk-neutral distribution, i.e., Ft(x) ≤ F̃t(x) for all x.

The latter condition can be rephrased as Ft(Q̃t,τ ) ≤ τ for all τ ∈ (0, 1). A violation of stochastic

22



dominance, and hence pricing kernel monotonicity, is thus implied if there is statistical evidence

that Ft(Q̃t,τ ) > τ for a single τ . To investigate this possibility, let14

Hitt→N = 1

(
Rm,t→N < Q̃t,τ

)
− τ,

Hit =
1

T

T∑
t=1

Hitt→N . (1.3.3)

Hence, Hit provides an estimate of E(Ft(Q̃t,τ ) − τ) which ought to be negative for all τ under

FOSD.15 The “Hit” column in Table 1.2 reports the value of (1.3.3), which is positive for τ = 0.95

at the 30- and 60-day horizon. However, these estimates are not significant at the conventional

levels and a violation of FOSD cannot be concluded.

Since Ft(x) ≤ F̃t(x) if and only if Qt,τ > Q̃t,τ , it follows that violations of stochastic

dominance can also be identified directly from the quantile function. Based on the QR estimates

(1.2.4), consider the predicted quantile function Q̂t,τ = β̂0(τ) + β̂1(τ)Q̃t,τ . The last column in

Table 1.2 displays the time series average of instances where Q̂t,τ > Q̃t,τ . Broadly speaking, for all

horizons, violations of stochastic dominance are infrequent, except far in the right-tail. At τ = 0.95,

stochastic dominance is frequently violated, consistent with a non-monotonic pricing kernel.16 In

representative agent models, this result is puzzling as it contradicts the assumption of decreasing

marginal utility of wealth (see Proposition A.1.2 in the Appendix).

1.3.5 Belief Recovery

A recent literature asks to what extent Arrow prices can be used to learn about the under-

lying probability distribution of the data, or the subjective probabilities used by investors. Since

Arrow prices are confounded by risk aversion, it is impossible to identify the underlying probabil-

ities from Arrow prices alone, unless one imposes additional restrictions (Ross, 2015; Borovička,

Hansen, and Scheinkman, 2016; Bakshi, Chabi-Yo, and Gao, 2018; Qin, Linetsky, and Nie, 2018;

Jackwerth and Menner, 2020). For example, Ross (2015) uses the Perron-Frobenius theorem to

14The Hitt→N function was first introduced by Engle and Manganelli (2004) in a different context.
15Hit also yields another measure of the difference between Ft and F̃t. Consistent with the quantile regression

estimates, the Hit statistic shows that Ft and F̃t are similar in the right-tail, but different in the left-tail.
16The most significant violations occur during two major financial crises: the 2008 financial crisis and the 2020

Covid-19 crisis.
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recover investors’ beliefs, which agrees with the underlying physical measure under rational expec-

tations.

Complementary to this insight, the QR estimates in Table 1.2 show that the right-tail of

the physical distribution can approximately be recovered from the right-tail of the risk-neutral

distribution, which aligns with the investor’s belief under rational expectations. In contrast, the

left-tail of the physical distribution cannot be recovered even though the risk-neutral quantile serves

as a conservative lower bound. In Section 1.6, I propose a more stringent lower bound to recover

the left-tail of the physical distribution as well from option data.

1.4 QR and Robust Estimation of Disaster Risk

Section 1.3.1 demonstrated that the conditional lognormal assumption is inconsistent with

the observed disaster risk premia in the market. At the same time, Figure 1.2a showed that

disaster risk models tend to overestimate the magnitude of disaster risk in the data. These con-

clusions heavily rely on the accuracy of QR in providing estimates of the physical quantile function.

In this section, I compare QR to nonparametric SDF methods for estimating disaster risk.

Foreshadowing the results, I show that QR is more robust and argue that the SDF approach tends

to overestimate disaster risk. These results help explain the current disagreement about the extent

of disaster risk in the data, and provide further support for QR to estimate this risk.

1.4.1 QR in the Conditional Lognormal Model

To convey the intuition, it is convenient to work with a discretized version of the Black and

Scholes (1973b) model. There is a riskless asset that offers a certain return, Rf,t→N ≡ Rf = erfN ,

and a risky asset with return

Rm,t→N = exp([µt −
1

2
σ2
t ]N + σt

√
NZt+N ), (1.4.1)
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where µt represents the conditional mean return, σt is the conditional volatility, and Zt+N is a

random shock that follows a standard normal distribution. In this setup, Mt→N := exp(−[rf +

ξ2t /2]N − ξt
√
NZt+N ) is a valid SDF with conditional Sharpe ratio

ξt =
µt − rf

σt
. (1.4.2)

Hence, under risk-neutral measure, the conditional distribution of Rm,t→N is given by

log R̃m,t→N ∼ N
(
(rf − 1

2
σ2
t )N, σ2

tN

)
. (1.4.3)

Notice that σt is implicitly observed from the risk-neutral distribution, but µt is unobserved with

mean µ := E [µt] and variance σ2
µ := Var(µt) < ∞. The following result characterizes the limiting

behavior of the QR estimates (1.2.4) in the lognormal model when the variance of the equity

premium is small. A convenient way to model this is by means of a drifting sequence σT
µ → 0 as

T → ∞, which captures the intuition that the volatility of the equity premium is much smaller

than the return volatility.

Proposition 1.4.1 (QR in Lognormal Model). In the lognormal model described above with return

observations {Rm,t→N}Tt=1 and risk-neutral quantile functions {Q̃t,τ}Tt=1, the following hold.

(i) Suppose that conditional on time t, µt follows a normal distribution µt ∼ N (µ, σ2
µ), indepen-

dent of σt. Let Qt,τ (σt, σµ) denote the physical quantile function of Rm,t→N conditional on σt

only. Then, for all τ ∈ I := a closed subset of [ε, 1 − ε] for 0 < ε < 1, the physical quantile

function satisfies

Qt,τ (σt, σµ) = exp

[
(µ− 1

2
σ2
t )N +

(√
σ2
µN

2 + σ2
tN
)
Φ−1(τ)

]
= Q̃t,τe

(µ−rf )N (1 +O (σµN)) ,

where Φ−1(τ) denotes the quantile function of the standard normal distribution.

(ii) Consider a drifting sequence for σµ, denoted by σT
µ → 0 as T → ∞. Then, under Assumption
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A.1.4 in the Appendix, the estimated parameters in the quantile regression

[
β̂0(σ

T
µ ; τ), β̂1(σ

T
µ ; τ)

]
= argmin

(β0,β1)∈R2

T∑
t=1

ρτ (Rm,t→N − β0 − β1Q̃t,τ ),

satisfy [
β̂0(σ

T
µ ; τ), β̂1(σ

T
µ ; τ)

]
=
[
0, e(µ−rf )N

]
+ op(1). (1.4.4)

Furthermore, the quantile forecast based on the QR estimates satisfies

β̂0(σ
T
µ ; τ) + β̂1(σ

T
µ ; τ)Q̃t,τ = Qt,τ + op(1). (1.4.5)

Proof. See Appendix A.1.3. ■

Proposition 1.4.1((i)) shows that the risk-neutral quantile function is a good predictor of

Qt,τ (σt;σµ) when σµ is small, and the difference between the two functions is governed by the

unconditional equity premium e(µ−rf )N . In this case, Proposition 1.4.1((ii)) suggests that the QR

estimates are almost constant across τ and close to [0, e(µ−rf )N ]. This result obtains without assum-

ing that µt follows a normal distribution. The wedge between Qt,τ (σt;σµ) and Q̃t,τ not explained

by the equity premium can be attributed to uncertainty about µt, which increases the variance of

the physical distribution. The assumption that σµ is small relative to σt accords with empirical

findings of Martin (2017, Table I), who finds that 2.4% ≤ σµ ≤ 4.6%, whereas σt hovers around

20%. Unreported simulations show that the approximation in (1.4.4) obtains closely when the

model is calibrated to match these stylized facts. As a result, the physical quantile forecast based

on the QR estimates in (1.4.5) is also highly accurate.

1.4.2 QR versus Nonparametric SDF Estimation

Because of the availability of closed-form expressions in the lognormal model, it is instruc-

tive to compare the QR approach to alternative methods for estimating the physical distribution.

Since the SDF represents the Radon–Nikodym derivative of the risk-neutral and physical measures,

it is possible to obtain the physical quantile function from the estimated SDF. There is a substan-

tial literature on how to estimate the SDF in a forward-looking manner (see Remark 1). For this
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comparison, I consider the state-of-the-art SDF estimator proposed by Cuesdeanu and Jackwerth

(2018) (CJ).

After some algebra, the SDF in the Black-Scholes model can be expressed as a function of

the market return:

Mt→N = exp

(
−N

2

[
µt + rf +

r2f − µ2
t

σ2
t

])
(Rm,t→N )−ξt/σt , (1.4.6)

where ξt is the conditional Sharpe ratio (1.4.2). CJ project the unobserved SDF in (1.4.6) on the

market return and estimate an SDF of the form

M̂t→N = Ctg(Rm,t→N ),

where Ct is a time-varying constant, and g(·) is an unknown function that can be estimated by

choosing a sieve basis. Since g(·) is time-homogeneous, it is evident that changes in the shape of

the true SDF in (1.4.6) are not captured by the estimated SDF. Specifically, in times when the

Sharpe ratio is high, the physical and risk-neutral measures exhibit more distinct differences, as the

true SDF becomes steeper. Because the estimated SDF does not account for these shape changes,

it leads to a severe underestimation of the physical quantile function in the left-tail. Proposition

1.4.1 demonstrates that the QR approach does not suffer from this limitation.

To illustrate this discussion, I simulate returns from the lognormal model and estimate the

physical quantile function at the 5th percentile using QR and the SDF estimate of CJ. Since the

conditional (physical) quantile function is known analytically in the lognormal model, I evaluate

the forecast accuracy using the quantile error ratio, Q̂t,τ/Qt,τ , where Q̂t,τ is the predicted physical

quantile based on QR or the SDF estimate. Panel 1.5a displays the empirical density of error

ratios obtained by simulating 1,000 returns. In line with Proposition 1.4.1((ii)), the error ratio

corresponding to QR is symmetric and closely centered around one. In contrast, when the physical

quantile is inferred from the estimated SDF, the error density is biased and exhibits fat tails since

the estimated SDF cannot change shape. Consequently, in periods of high disaster risk premia, the
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CJ method severely underestimates Qt,τ .

Panel 1.5b presents the histogram of error ratios conditioned on the 30 largest values of

Qt,τ − Q̃t,τ , clearly illustrating the downward bias in the SDF method. On average, the predicted

physical quantile is 7% lower than its actual value when disaster risk premia are high. The QR

approach is less affected by this bias because it can capture changes in the shape of the SDF. The

computational benefits of QR are also notable, as the computation of the physical quantile forecast

takes less than a second. On the other hand, the SDF method requires more than 20 minutes to

complete the same task.17

The bottom panels of Figure 1.5 further illustrate the difference between QR and CJ using

the 30-day return data from Section 1.2.3, particularly during the 2008 financial crisis and the

Covid-19 crisis. At the height of both crises, both methods predict increases in disaster risk premia

as Q̂t,τ − Q̃t,τ rises significantly. As mentioned earlier, the SDF approach implies that disaster

risk premia increase less relative to the QR approach, as the shape of the SDF remains constant

over time. However, it is worth noting that while the QR approach performs well when returns

are conditional lognormal, Appendix A.2.2 demonstrates that the quantile forecasts based on QR

contradict (1.4.5), casting further doubt on the validity of the conditional lognormal assumption in

the data.

1.5 Disaster Risk and SDF Volatility

Section 1.3.1 demonstrated that the physical and risk-neutral distributions locally differ

most in the left-tail. In this section, I show that these local differences imply that the SDF must

be highly volatile; an observation that is closely related to the Hansen and Jagannathan (1991)

bound. Furthermore, I use this insight to argue that the left-tail of the physical distribution cannot

be too predictable, which clarifies the low explanatory power in Table 1.2.

17Moreover, the optimization problem required to implement the sieve estimation did not converge, as the maximum
number of iterations were exceeded. This problem occurs due to the large number of parameters to estimate, and
because the optimization problem is not convex (see Remark 1).
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Figure 1.5. Disaster risk premia at the 5th percentile. Panel (a) shows the quantile error ratio,

Q̂t,τ/Qt,τ , in a conditional Black and Scholes (1973b) model for τ = 0.05, where Q̂t,τ is the predicted physical quantile
based on QR or the SDF estimate of CJ. Volatility is generated according to an AR(1)-model with mean value 0.2,
standard deviation 0.03 and a persistency of 0.9. The mean of the physical distribution follows µt ∼ N (0.07, 0.022),
the risk-free rate equals rf = 0.01, the time horizon is one-year, and the number of observations is 1,000. Panel (b)

shows the histogram of error ratios conditioned the 30 events for which Qt,τ − Q̃t,τ is maximal. The bottom panels
illustrate the difference between the predicted physical quantile obtained from QR, and the predicted quantile coming
from the SDF estimate of CJ, during the global financial crisis and the Covid-19 crisis. Both estimates are based on
30-day returns, using the data from Section 1.2.3. The bottom panels are smoothed using a 30-day rolling window.

1.5.1 A Bound on the SDF Volatility

For ease of notation, I define ϕt(τ) := Ft(Q̃t,τ ), which can be interpreted as the ordinal

dominance curve of the measures Pt and P̃t (Hsieh and Turnbull, 1996). Furthermore, let

ℵ+
t := {Mt→N : Mt→N ≥ 0 and Et [Mt→NRm,t→N ] = 1},
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which is the space of all nonnegative conditional SDFs. The volatility bound on the SDF can now

be stated as follows.

Proposition 1.5.1 (Distribution bound). Assume no-arbitrage, then for any Mt→N ∈ ℵ+
t , we have

σt(Mt→N )

Et [Mt→N ]
≥ |τ − ϕt(τ)|√

ϕt(τ)(1− ϕt(τ))
∀τ ∈ (0, 1). (1.5.1)

If a risk-free asset exists, then Et [Mt→N ] = 1/Rf,t→N and (1.5.1) simplifies to

σt(Mt→N ) ≥ 1

Rf,t→N

|τ − ϕt(τ)|√
ϕt(τ)(1− ϕt(τ))

∀τ ∈ (0, 1).

The bound can be further rewritten in terms of the conditional CDFs only

σt(Mt→N ) =
1

Rf,t→N

∣∣∣F̃t(x)− Ft(x)
∣∣∣

Ft(x)(1− Ft(x))
∀x ∈ (0,∞). (1.5.2)

Proof. See Appendix A.1.4. ■

If Pt = P̃t, agents are risk-neutral and the dominance curve evaluates to ϕt(τ) = τ . In

that case the distribution bound degenerates to zero. Proposition 1.5.1 makes precise the sense

in which any local difference between the physical and risk-neutral distribution leads to a volatile

SDF. Compare this to the classical Hansen and Jagannathan (1991) (HJ) bound:

σt(Mt→N ) ≥ 1

Rf,t→N

|Et [Rm,t→N ]−Rf,t→N |
σt(Rm,t→N )

. (1.5.3)

The lower bound in (1.5.3) shows that any excess return leads to a volatile SDF. Essentially, (1.5.3)

uses three sources of information: (i) the mean of the physical distribution (ii) the mean of the

risk-neutral distribution (iii) the variance of the physical distribution. The lower bound in (1.5.3)

is also a global measure of distance between Pt and P̃t, since the mean and volatility are averages

across the whole distribution.

In contrast, the bound in (1.5.2) compares the physical and risk-neutral distribution at every

point x, which is a local measure of distance between Pt and P̃t. To clarify this local interpretation,
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consider the following decomposition of the (scaled) equity premium

Et [Rm,t→N ]−Rf,t→N

Rf,t→N
= −COVt[Rm,t→N ,Mt→N ]

=

∫ ∞

0
COVt[1 (Rm,t→N ≤ x) ,Mt→N ] dx, (1.5.4)

where the first equation follows since the SDF prices the market return (1.2.1), and the second

equation is a consequence of Hoeffding’s identity (see Lemma A.1.5.). Equation (1.5.4) shows

that COVt[1 (Rm,t→N ≤ x) ,Mt→N ] locally measures the dependence between the SDF and mar-

ket return. In other words, it quantifies how the SDF’s variability relates to the market return’s

variability at different quantiles.

To explain the equity premium and disaster risk premia, the SDF must exhibit sufficient

variability. Since the distribution bound can be derived from applying the Cauchy-Schwarz inequal-

ity to COVt[1 (Rm,t→N ≤ x) ,Mt→N ], it is expected to yield sharper bounds on the SDF volatility

than the HJ bound if, for example, there is high tail dependence between the SDF and market

return such as in the disaster risk model.18

1.5.2 Quantile Predictability in the Left-Tail

The bound presented in Proposition 1.5.1 sheds light on the seemingly “low” explanatory

power observed in the left-tail quantile regressions in Table 1.2. For tractability, it is more con-

venient to show this for CDFs instead of quantile functions, but the intuition remains the same.

Specifically, suppose one could predict Ft(x) at some x in the left-tail, then this prediction can be

exploited by going short in an asset that pays 1 (Rm,t→N ≤ x). The profit and risk associated to

18See McNeil, Frey, and Embrechts (2015, Chapter 7.2.4) for a formal definition of tail dependence.
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this investment are, respectively

1

Rf,t→N

(
Ẽt [1 (Rm,t→N ≤ x)]− Et [1 (Rm,t→N ≤ x)]

)
=

1

Rf,t→N

(
F̃t(x)− Ft(x)

)
, (1.5.5)

σt(1 (Rm,t→N ≤ x)) =
√

Ft(x)(1− Ft(x)).

Although such binary state payoffs do not exist in reality, they can be replicated closely

by a portfolio of put options. In consequence, high predictability of Ft(x) in the left-tail would

render too good a Sharpe ratio; a near-arbitrage opportunity. Following the reasoning in Ross

(2005, Chapter 5), a crude upper bound on the SDF volatility imposes limitations on the degree

of predictability in the left-tail by the distribution bound in Proposition 1.5.1. This argument

breaks down in the right-tail since (1.5.5) is roughly zero, and high predictability would not imply

counterfactually high SDF volatility.

1.5.3 Distribution Bound in Asset Pricing Models

The estimated Gini coefficients in Section 1.3.1 demonstrate that conditional disaster risk

is a pervasive feature of the data. This section complements those findings using the unconditional

version of the distribution bound in Proposition 1.5.1:

σ(M)

E [M ]
≥ τ − ϕ(τ)√

ϕ(τ)(1− ϕ(τ))
, (1.5.6)

where σ(M) represents the unconditional SDF volatility, and ϕ(τ) = F (Q̃τ ). In this context, F (·)

denotes the unconditional physical CDF, and Q̃τ is the unconditional risk-neutral quantile function

of the market return. The main benefit of using unconditional distributions is that they can be

estimated without running the risk-neutral quantile regressions. Moreover, the bound in (1.5.6)

only requires the estimation of distribution functions, whereas existing approaches typically use un-

conditional density functions to estimate disaster risk (see, e.g. Beason and Schreindorfer (2022)).

The subsequent examples demonstrate that the HJ bound is always stronger than the

distribution bound in models that do not embed a source of disaster risk. In contrast, models that
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incorporate disaster risk can generate distribution bounds that exceed the HJ bound in the left-tail.

Since I use unconditional distributions, the time subscripts will be omitted from the notation.

Example 1.5.1 (CAPM). The Capital Asset Pricing Model (CAPM) specifies the SDF as

M = α− βRm,

where Rm denotes the return on the market portfolio. In this case M /∈ ℵ+, since the SDF can

become negative. However, this probability is very small over short time horizons or we can think

of M as an approximation to M∗ := max(0,M) ∈ ℵ+. Since the HJ bound is derived by applying

the Cauchy-Schwarz inequality to COV(Rm,M), the inequality binds if M is a linear combination

of Rm. Hence, under CAPM, the HJ bound is (weakly) stronger than the distribution bound

regardless of the distribution of Rm.

Example 1.5.2 (Joint normality). Suppose that M and Rm are jointly normally distributed and

denote the mean and variance of Rm by µR and σ2
R respectively. The normality assumption violates

no-arbitrage since M can be negative, but could be defended as an approximation over short time

horizons when the variance is small (see Example 1.5.3). In Appendix A.1.5, I prove that

∣∣∣COV
(
1

(
Rm ≤ Q̃τ

)
,M
)∣∣∣ = fR(Q̃τ ) |COV(Rm,M)| , (1.5.7)

where fR(·) is the marginal density of Rm.19 This identity gives an explicit expression for the

weighting factor in Hoeffding’s identity (1.5.4). In Appendix A.1.5, I also derive an explicit expres-

sion for the relative efficiency between the distribution and HJ bound, defined by

HJ bound

distribution bound
=

√
ϕ(τ)(1− ϕ(τ))

σRfR(Q̃τ )
. (1.5.8)

To see that the HJ bound is always stronger than the distribution bound, minimize (1.5.8) with

respect to τ . Appendix A.1.6 shows that the minimizer τ∗ satisfies Q̃τ∗ = µR. For this choice,

19Notice that this is the marginal density under physical measure P.
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ϕ(τ∗) = P(Rm ≤ Q̃τ∗) = 1/2 and fR(Q̃τ∗) = 1/
√

2πσ2
R. Therefore, (1.5.8) can be bounded by

√
ϕ(τ)(1− ϕ(τ))

σRf(Q̃τ )
≥

√
2π

2
≈ 1.25.

Hence, the HJ bound is always stronger in a model where the SDF and market return are jointly

normal.

Example 1.5.3 (Joint lognormality). Let ZR and ZM be standard normal random variables with

correlation ρ and consider the specification

Rm = e(µR−σ2
R
2

)N+σR

√
NZR

M = e−(rf+
σ2
M
2

)N+σM

√
NZM ,

where N governs the time scale in annual units. Simple algebra shows that the no-arbitrage condi-

tion, E [MRm] = 1, is satisfied when µR−rf = −ρσRσM . It is difficult to find an analytical solution

for the relative efficiency between the HJ and distribution bound in this case, but linearization leads

to a closed form expression which is quite accurate in simulations. The details are described in

Appendix A.1.7, where I show that

min
τ∈(0,1)

HJ bound

distribution bound
≈ 1

2

√
2πσ2

RN

exp(σ2
RN)− 1

. (1.5.9)

This expression is independent of µR. An application of l’Hôspital’s rule reveals that the relative

efficiency converges to
√
2π/2 if N → 0+.20 The ratio in (1.5.9) is less than 1 if σR ≥ 0.92 and

N = 1. Since the annualized market return volatility is about 16%, the HJ bound is stronger than

the distribution bound under any reasonable parameterization if the SDF and market return are

lognormal.

Example 1.2.1 (Continued). The disaster risk model discussed in Section 1.2.1 is calibrated ac-

cording to the results in Backus, Chernov, and Martin (2011, Table II). The market return in this

model is considered as a levered claim on consumption growth, i.e. an asset that pays dividends

20This is the same relative efficiency in Example 1.5.2, which is unsurprising as the linearization becomes exact in
the limit as N → 0+.
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proportional to Gλ
t→N . Here λ governs the variability of the claim to equity. I convert the model

implied volatility bounds to monthly units, to facilitate the comparison with the empirical bounds

obtained in Section 1.5.5.

The distribution bound, HJ bound and SDF volatility are depicted in Panels 1.6a (without

jumps) and 1.6b (with jumps). Consistent with Example 1.5.3, the distribution bound in the

model without jumps never exceeds the HJ bound because both the market return and SDF follow

lognormal distributions. The distribution bound with jumps has a sharp peak at τ = 0.037, after

which it steadily decreases. Interestingly, there is a range of τ values for which the distribution

bound is stronger than the HJ bound.21 This result can be understood from the physical and

risk-neutral quantile functions in Figure 1.1b. The risk-neutral quantile function displays a heavy

left-tail, owing to the implied disaster risk embedded in the SDF. Consequently, it is extremely

profitable to sell digital put options which pay out in case of a disaster. These put options must

have high Sharpe ratios as their prices are high (insurance against disaster risk), but the actual

probability of a disaster event occurring is low enough that the risk associated with selling such

insurance is limited.

(a) Without jumps (b) With jumps

Figure 1.6. HJ and distribution bound in disaster risk model without and with jumps.
Panels (a) and (b) show the HJ and distribution bound for the disaster risk model (Example 1.2.1) without and with
jumps, respectively. The bounds and true SDF volatility are reported in monthly units. Parameters are calibrated
according to Backus, Chernov, and Martin (2011, Table II).

21In Appendix A.1.8, I show that the distribution bound can also exceed the HJ bound when returns follow the
Pareto distribution.
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1.5.4 Data and Empirical Estimation of the Distribution Bound

To further illustrate the presence of disaster risk in the data, I estimate the distribution

bound (1.5.1) empirically, using the same 30-day S&P500 returns as discussed in Section 1.2.3. How-

ever, in this case, I use non-overlapping returns that cover the period 1996–2021.22 These returns

are sampled at the middle of each month, resulting in a total of 312 observations. Over this period,

the Sharpe ratio is 13%, and the HJ bound therefore implies that the monthly SDF is quite volatile.

The distribution bound consists of three unknowns that need to be estimated: (i) the

physical distribution (F ); (ii) the risk-neutral quantile function (Q̃τ ), and; (iii) the risk-free rate

(Rf ). To estimate the unconditional risk-free rate, denoted by R̂f , I rely on the historical average of

monthly interest rates. Next, to obtain an estimate of the physical distribution, I employ a kernel

(CDF) estimator, given by:

F̂ (x) :=
1

T

T∑
t=1

Φ

(
x−Rm,t→N

h

)
, (1.5.10)

where Φ(·) is the Epanechnikov kernel and h is the bandwidth determined by cross-validation. This

choice of estimator ensures that the distribution bound is a smooth function of τ , which reduces

the impact of outliers relative to the discontinuous empirical CDF.

Finally, I apply the procedure outlined in Section 1.2.3 to estimate F̃t (the conditional risk-

neutral CDF). Subsequently, I average the conditional distributions to estimate the unconditional

CDF: ̂̃
F (x) :=

1

T

T∑
t=1

F̃t(x).

Under appropriate assumptions about the distribution of returns,
̂̃
F converges to F̃ as T → ∞. An

estimate of the unconditional risk-neutral quantile function can then be obtained from

̂̃
Q(τ) := inf

{
x ∈ R : τ ≤ ̂̃

F (x)

}
. (1.5.11)

Finally, based on the physical CDF (1.5.10) and risk-neutral quantile function (1.5.11), I estimate

22I use non-overlapping returns in this section to facilitate testing and to make the results comparable to other
nonparametric bounds, which are typically estimated based on non-overlapping returns (see e.g. Liu (2021)).
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the distribution bound by

θ̂(τ) :=

∣∣∣τ − ϕ̂(τ)
∣∣∣√

ϕ̂(τ)(1− ϕ̂(τ))R̂f

, τ ∈ [ε, 1− ε] ⊆ (0, 1), (1.5.12)

where ϕ̂(τ) := F̂ (
̂̃
Q(τ)) is the estimated ordinal dominance curve and ε is a small positive number.

1.5.5 Unconditional Evidence of Disaster Risk

Figure 1.7a illustrates the estimated physical and risk-neutral measures, which differ most

in the left-tail. The distribution bound shows that this difference leads to a volatile SDF, which is

shown in Figure 1.7b. The lower bound on the SDF volatility implied by the distribution bound

is much stronger than the HJ bound in the left-tail. This finding aligns with empirical evidence

documenting that high Sharpe ratios can be attained by selling out-of-the money put options (see

Broadie, Chernov, and Johannes (2009) and the references therein). The supremum of the distribu-

tion bound occurs around the 5th percentile, implying that the monthly SDF volatility must exceed

31%. This value is more than twice the level indicated by the sample HJ bound. Moreover, the

shape of the distribution bound is quite similar to the distribution bound implied by the disaster

risk model in Figure 1.6b.23

The graphical evidence suggests that the distribution bound renders a stronger bound on

the SDF volatility than the HJ bound. To test this hypothesis more formally, I fix a priori the

probability level at 0.037 (τ = 0.037), which renders the sharpest bound on the SDF volatility in

the disaster risk model (Example 1.2.1). At this probability level, the distribution bound is 26% in

the data, which is roughly double the level implied by the HJ bound.

To see whether this difference is statistically significant, I consider the following test statistic

T := θ̂(0.037)−

∣∣∣R̄m − R̂f

∣∣∣
σ̂R̂f

. (1.5.13)

23The non-monotonicity in the right-tail of the distribution bound occurs because F̃ (x) > F (x), for x large enough.
That is, the physical distribution does not first-order stochastically dominates the risk-neutral distribution. This
result is consistent with the positive Hit estimates in Table 1.2.
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(a) (b)

Figure 1.7. Physical/risk-neutral CDF and distribution bound for monthly S&P500
returns. Panel (a) shows the unconditional phyisical and risk-neutral CDF for monthly S&P500 returns, over the
period 1996-2021. Panel (b) shows the distribution bound as function of τ , together with the HJ bound.

The first term on the right denotes the estimated distribution bound (1.5.12) evaluated at the

3.7th percentile, using the entire time series of returns {Rm,t→N}. The second term denotes the

estimated HJ bound, using R̄m and σ̂ as the respective sample mean and standard deviation of

{Rm,t→N}. A value of T > 0 indicates that the distribution bound is stronger than the HJ bound.

To test this restriction, consider the null and alternative hypothesis:

H0 : T ≤ 0 (1.5.14)

H1 : T > 0.

Since the distribution of (1.5.13) is difficult to characterize, I use stationary bootstrap to ap-

proximate the p-value under the null hypothesis. The stationary bootstrap is used to generate time

indices from which we recreate (with replacement) bootstrapped returns {R⋆
m,t→N} (Politis and

Romano, 1994). The same bootstrapped time indices are used to re-estimate the physical CDF and

risk-neutral quantile function. I repeat the bootstrap exercise 100,000 times and for each bootstrap

sample, I calculate the test statistic T ⋆. Finally, the empirical p-value is obtained as the frac-

tion of times T ⋆ ≤ 0. The last column in Table 1.4 shows that the p-value is 7.5%, which provides

preliminary evidence that the distribution bound significantly exceeds the HJ bound in the left-tail.
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Remark 3. When the HJ bound is stronger than the distribution bound, many of the bootstrap

samples may not include disaster shocks. Over the entire sample period, there are only two instances

where returns were less than -20%: in September 2008 and February 2020. When considering

bootstrap samples that include both of these months, the p-value is only 3.6%. In contrast, the p-

value increases to 22% for bootstrap samples that exclude these months. These findings underscore

the sensitivity of the test to the presence of disaster shocks. Overall, the results suggest that,

unconditionally, the SDF needs to be highly volatile to be consistent with local differences between

the physical and risk-neutral measure in the left-tail.

1.6 A Model-Free Lower Bound on Disaster Risk Premia

The previous findings indicate that the risk-neutral quantile function is not a good approx-

imation of the physical quantile function in the left-tail. In this section, I derive a lower bound

on disaster risk premia observed from option prices. This lower bound does not require parameter

estimation and relaxes the assumption of a time-homogeneous linear relation between the physical

and risk-neutral quantiles in (1.2.3).

1.6.1 Approximating the Quantile Difference

To analyze the difference between Qt,τ and Q̃t,τ , I use some elementary tools from functional

analysis. The quantile function can be regarded as a map φ between normed spaces, taking as input

a distribution function and returning the quantile function: φ(Ft) = F−1
t = Qt,τ . Expanding φ

around the observed risk-neutral CDF yields

Qt,τ − Q̃t,τ = φ(Ft)− φ(F̃t) = φ′
F̃t
(Ft − F̃t) + o

(∥∥∥Ft − F̃t

∥∥∥) , (1.6.1)
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where ∥·∥ is a norm on a suitable linear space24 and φ′
F̃t
(Ft − F̃t) is the Gâteaux derivative of φ at

F̃t in the direction of Ft:

φ′
F̃t
(Ft − F̃t) := lim

λ↓0

φ
[
(1− λ)F̃t + λFt

]
λ

=
∂

∂λ
φ
(
(1− λ)F̃t + λF

) ∣∣∣∣
λ=0

. (1.6.2)

Heuristically, the Gâteaux derivative can be thought of as measuring the change in the

quantile function when the risk-neutral distribution is moved in the direction of the physical dis-

tribution. Appendix A.1.9 shows that the Gâteaux derivative is given by

φ′
F̃t
(Ft − F̃t) =

τ − Ft(Q̃t,τ )

f̃t(Q̃t,τ )
=

τ − ϕt(τ)

f̃t(Q̃t,τ )
, (1.6.3)

where ϕt(τ) = Ft(Q̃t,τ ) denotes the conditional ordinal dominance curve. I proceed under the work-

ing hypothesis that the remainder term in (1.6.1) is “small” in the sup-norm, ∥g∥∞ = supx |g(x)|.

Assumption 1.6.1. The remainder term in (1.6.1) can be neglected.

Remark 4. The assumption implies that the first order approximation in (1.6.1) is accurate. The

condition that ||Ft − F̃t||∞ is small can be understood as excluding near-arbitrage opportunities,

since the distribution bound in Proposition 1.5.1 shows that substantial pointwise differences be-

tween Ft(·) and F̃t(·) lead to a very volatile SDF.

I combine (1.6.1) and (1.6.3) in conjunction with Assumption 1.6.1 to obtain the approxi-

mation

Qt,τ − Q̃t,τ ≈ τ − Ft(Q̃t,τ )

f̃t(Q̃t,τ )︸ ︷︷ ︸
risk-adjustment

. (1.6.4)

The second term on the right can be thought of as a risk-adjustment term to capture the unob-

served wedge between Qt,τ and Q̃t,τ . The approximation in (1.6.4) contains the terms Q̃t,τ and

f̃t(Q̃t,τ ), which are directly observed at time t using the Breeden and Litzenberger (1978) formula

24Formally, the space can be defined as {∆ : ∆ = c(F − G), F,G ∈ D, c ∈ R} and D is the space of distribution
functions (Serfling, 2009). See van der Vaart (2000, Section 20.1) and Serfling (2009, p. 217) for further details about
the approximation.
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in (1.2.7). However, Ft(·) is unknown and hence (1.6.4) cannot be used directly to approximate Qt,τ .

1.6.2 A Lower Bound on Disaster Risk Premia

To make further progress, I show that the numerator term, τ − Ft(Q̃t,τ ), can be lower

bounded with option data under economically motivated constraints. This bound, combined with

the approximation in (1.6.4), will then imply a lower bound on disaster risk premia.

I start from the observation that the SDF in representative agent models can be expressed

as a function of the market return (Chabi-Yo and Loudis, 2020):

Et [Mt→N ]

Mt→N
=

u′(Wtx0)
u′(Wtx)

Ẽt

[
u′(Wtx0)
u′(Wtx)

] with x = Rm,t→N and x0 = Rf,t→N , (1.6.5)

where Wt is the agent’s wealth at time t and u(x) represents the agent’s utility function. Define

ζ(x) :=
u′(WtRf,t→N )

u′(Wtx)
and θk =

1

k!

(
∂kζ(x)

∂xk

)
x=Rf,t→N

. (1.6.6)

Notice that ζ(·) is simply the inverse of the intertemporal marginal rate of substitution (IMRS) and

θk are the coefficients of its Taylor expansion around Rf,t→N . I make the following assumptions

about the market return and the IMRS of the representative agent.

Assumption 1.6.2. In the representative agent model, it holds that (i) Ẽt

[
R3

m,t→N

]
< ∞; and

(ii) ζ(4)(x) ≤ 0.

Assumption 1.6.2(i) allows for fat tails in the risk-neutral distribution as long as the third

moment exists. This assumption relaxes the implicit assumption made by Chabi-Yo and Loudis

(2020) that infinitely many moments exist. Figure A.8 in the Appendix illustrates that the risk-

neutral distribution frequently exhibits a finite number of moments, some of which may not exceed

4, particularly in turbulent market conditions. Chabi-Yo and Loudis (2020) present sufficient con-

ditions for 1.6.2(ii) to hold, which relate to the sign of the fifth derivative of the utility function

of the representative agent. Specifically, for common utility functions such as CRRA or HARA
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utility, parameter restrictions are needed to ensure that 1.6.2(ii) holds.25

I need one additional assumption to bound disaster risk premia. To state this assumption

and the resulting lower bound, I use the following notation for high-order risk-neutral moments

and truncated high-order risk-neutral moments, respectively.

M̃(n)
t→N := Ẽt [(Rm,t→N −Rf,t→N )n]

M̃(n)
t→N [k0] := Ẽt [1 (Rm,t→N ≤ k0) (Rm,t→N −Rf,t→N )n] . (1.6.7)

Assumption 1.6.3. In the representative agent model, the following holds:

(i) (−1)k−1θk ≥ 1
Rk

f,t→N

for k = 1, 2, 3

(ii) M̃(3)
t→N ≤ 0.

Chabi-Yo and Loudis (2020, Table 6) provide empirical evidence that 1.6.3((i)) holds with

equality when estimating the conditional equity premium. Assumption 1.6.3((ii)) is a very mild re-

striction on risk-neutral skewness, which is almost always negative at every date and time horizon.

This empirical fact is well known.26

The following two propositions show how option data can be employed to establish bounds

on the difference between the physical and risk-neutral measures in the left-tail.

Proposition 1.6.4 (Lower Bound on CDF). Suppose Assumptions 1.6.2 and 1.6.3 hold, and as-

sume that the risk-neutral density exists. Then,

τ − Ft

(
Q̃t,τ

)
≥

∑3
k=1

(−1)k−1

Rk
f,t→N

(
τM̃(k)

t→N − M̃(k)
t→N [Q̃t,τ ]

)
1 +

∑3
k=1

(−1)k−1

Rk
f,t→N

M̃(k)
t→N

=: CLBt,τ , (1.6.8)

25For example, for CRRA utility, the risk aversion coefficient cannot be too large. See Appendix A.4 for a detailed
discussion.

26Chabi-Yo and Loudis (2020) argue that all odd risk-neutral moments should be negative, since they expose the
investor to unfavorable market conditions.
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for all τ ≤ τ ′, where τ ′ is defined implicitly by

Q̃t,τ ′ = min

(
Rf,t→N −

√
ṼARt(Rm,t→N ), Q̃t,τ∗

)
,

and Q̃t,τ∗ is defined in Theorem A.1.12.

Proof. See Appendix A.1.10. ■

Proposition 1.6.5 (Lower Bound on Disaster Risk Premia). Consider the same assumptions in

Proposition 1.6.4 and assume additionally that Assumption 1.6.1 holds. Then, for all τ ≤ τ ′

Qt,τ − Q̃t,τ ≥

risk-adjustment︷ ︸︸ ︷
CLBt,τ

f̃t(Q̃t,τ )
=: LBt,τ . (1.6.9)

Proof. By Assumption 1.6.1, the approximation in (1.6.4) holds, which in combination with Propo-

sition 1.6.4 renders

Qt,τ − Q̃t,τ

(1.6.4)
≈ τ − Ft(Q̃t,τ )

f̃t(Q̃t,τ )

(1.6.8)

≥ 1

f̃t(Q̃t,τ )


∑3

k=1
(−1)k+1

Rk
f,t→N

(
τM̃(k)

t→N − M̃(k)
t→N [Q̃t,τ ]

)
1 +

∑3
k=1

(−1)k+1

Rk
f,t→N

M̃(k)
t→N

 . ■

Proposition 1.6.4 provides a bound on the physical CDF that requires no parameter estima-

tion and relies solely on time t information. This result complements recent work on belief recovery.

Ross (2015) demonstrated CDF recovery under the assumption of transition independence, but sub-

sequent research has questioned this assumption (Borovička, Hansen, and Scheinkman, 2016; Qin,

Linetsky, and Nie, 2018; Jackwerth and Menner, 2020). In contrast, Proposition 1.6.4 establishes

a lower bound on the left-tail of the physical distribution using a different set of mild economic

constraints. Additionally, Section 1.2.3 showed that the right-tail of Ft can be approximately recov-

ered from the risk-neutral distribution due to the minimal need for risk-adjustment. These findings

suggest the potential for approximate recovery of Ft using option prices.

I will test this hypothesis using the lower bound on disaster risk premia in Proposition
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1.6.5. Specifically, a tight lower bound in (1.6.9) would enable direct inference on both the physical

distribution (Qt,τ ) and disaster risk premia (Qt,τ − Q̃t,τ ). While Section 1.2.2 proposed the quan-

tile model (1.2.3) to estimate Qt,τ , it can be criticized for having time-homogeneous coefficients.

Proposition 1.6.5 relaxes that assumption. Furthermore, the lower bound in (1.6.9) is not prone to

the historical sample bias critique of Welch and Goyal (2008). Alternatively, one can estimate a

disaster risk model to infer Qt,τ , but this approach is also susceptible to misspecification concerns

and faces challenges in estimation due to the scarcity of disaster events in the data (Julliard and

Ghosh, 2012; Martin, 2013).

1.6.3 Calculating the Lower Bound

Before assessing how tight the lower bound is in Proposition 1.6.5, I outline the procedure

to calculate it, which depends on CLBt,τ and f̃t(Q̃t,τ ). Both functions can be derived from Q̃t,τ ,

which is estimated using the same data and procedure of Section 1.2.3. To see that f̃t(Q̃t,τ ) can

be derived from Q̃t,τ , notice that d
dτ Q̃t(τ) = 1/f̃t(Q̃t,τ ). The latter term can thus be approximated

by27

1

f̃t(Q̃t,τ )
≈ Q̃t(τ + h)− Q̃t(τ − h)

2h
,

where h is the bandwidth of the τ -grid. Second, to calculate CLBt,τ in (1.6.8), I use Q̃t,τ , as well

as the formula for high-order risk-neutral moments in Appendix A.1.11.

Given the evidence in Table 1.2 that Qt,τ > Q̃t,τ in the left-tail, Proposition 1.6.5 has

nontrivial content in the data if LBt,τ ≥ 0. Appendix Table A.2 contains summary statistics of

LBt,τ , which show that the lower bound is always positive, right-skewed, more pronounced in the

right-tail and economically meaningful in magnitude, with outliers that can spike up to 29%.

1.6.4 Tightness of the Lower Bound: In-sample Evidence

To test whether the lower bound in Proposition 1.6.5 is tight, I form excess quantile re-

turns: Rm,t→N − Q̃t,τ . Since Q̃t,τ is observed at time t, it follows that Qt,τ (Rm,t→N − Q̃t,τ ) =

27I slightly abuse notation to emphasize that the derivative is taken w.r.t. τ , so that Q̃t(τ + h) denotes Q̃t,τ+h.
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Qt,τ (Rm,t→N )− Q̃t,τ . Subsequently, I use QR to estimate the model

Qt,τ (Rm,t→N )− Q̃t,τ (Rm,t→N ) = β0(τ) + β1(τ)LBt,τ ,

[β̂0(τ), β̂1(τ)] = argmin
(β0,β1)∈R2

T∑
t=1

ρτ (Rm,t→N − Q̃t,τ − β0 − β1LBt,τ ). (1.6.10)

Regression (1.6.10) is a quantile analogue of the mean excess return regressions of Welch and Goyal

(2008). Under the null hypothesis that the lower bound is tight, it holds that

H0 : [β0(τ), β1(τ)] = [0, 1]. (1.6.11)

Less restrictive, one can test whether β0(τ) = 0 and β1(τ) > 0, which implies that the statistical

“factor” LBt,τ explains the conditional quantile wedge.28

Table 1.5 presents the results of regression (1.6.10). The null hypothesis of a tight lower

bound in (1.6.11) is not rejected for τ = 0.2, but it is rejected for τ ∈ {0.05, 0.1} across all horizons.

When the null hypothesis is rejected, the β1(τ)-coefficient exceeds 1, consistent with the theory that

LBt,τ represents a lower bound on disaster risk premia. In all cases, the lower bound is economically

meaningful, since β1(τ) is significantly different from 0, while β0(τ) = 0 can never be rejected. The

explanatory power of the regression in Table 1.5 is modest, as shown by the R1(τ) measure-of-fit:

R1(τ) = 1−
minb0,b1

∑
ρτ (Rm,t→N − b0 − b1LBt,τ )

minb0
∑

ρτ (Rm,t→N − b0)
. (1.6.12)

But, following the reasoning of Section 1.5.2, the predictive power in the left-tail cannot be too big,

for otherwise near-arbitrage opportunities exist.

I also directly test the predictive power of the lower bound in estimating the physical

28For example, if we start with a quantile factor model Qt,τ = Q̃t,τ + β(τ)LBt,τ , the model has one testable

implication for the data: the intercept in a quantile regression of Rm,t→N − Q̃t,τ on LBt,τ should be zero. Quantile
factor models have recently been proposed by Chen, Dolado, and Gonzalo (2021).

45



quantile function. To this end, I use the following model-free quantile forecast:

Q̂t,τ := Q̃t,τ + LBt,τ . (1.6.13)

To evaluate the accuracy of this forecast, I use QR to estimate the model

Qt,τ = β0(τ) + β1(τ)Q̂t,τ . (1.6.14)

An accurate forecast would imply the joint restriction

H0 : β0(τ) = 0, β1(τ) = 1. (1.6.15)

Table 1.6 summarizes the estimates of (1.6.14) for several percentiles. The results compare

favorably to the risk-neutral estimates in Table 1.2. First, the point estimates are closer to the

[0, 1] benchmark. Second, the Wald test on the joint restriction in (1.6.15) is never rejected except

for τ = 0.05 at the 60-day horizon. Third, the in-sample explanatory power is higher. The same

conclusion applies when comparing the predictive results to the expanding quantile regression from

Table A.1 in the Appendix. Collectively, these findings suggest that Q̂t,τ can be considered as a

good lower bound on the physical quantile function in the left-tail.

1.6.5 Tightness of the Lower Bound: Out-of-sample Evidence

Given that the in-sample results from Table 1.6 suggest that Q̂t,τ is a good lower bound

for Qt,τ , it is natural to assess its out-of-sample performance by using Q̂t,τ to directly predict Qt,τ ,

which does not require any parameter estimation.

To assess the out-of-sample performance, I use the R1
oos(τ) measure of fit defined in (1.2.6)

with Q̂t,τ instead of Q̃t,τ . Table 1.6 shows that Q̂t,τ improves upon the historical rolling quantile

out-of-sample in all cases. In particular, this outperformance is most pronounced at the 5th per-

centile, which is expected since option data are known to provide useful information about extreme

downfalls in the stock market (Bates, 2008; Bollerslev and Todorov, 2011). In Appendix A.6.2, I
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run a battery of robustness tests which show that, out-of-sample, LBt,τ better predicts the condi-

tional quantile function than other benchmarks such as the risk-neutral quantile or the VIX index.

The latter result is particularly encouraging since the VIX predictor uses in-sample information.

1.6.6 Robustness of the QR Estimates

The in- and out-of-sample results support LBt,τ as a robust lower bound for disaster risk

premia. It is instructive to compare this lower bound to the disaster risk premia reported in Figure

1.3b, which are inferred from the quantile regression in (1.2.4). Consistent with the theory, the

estimated disaster risk premium at τ = 0.05 exceeds the lower bound in 99% of cases for 30-day

returns and 99.9% for 60-day returns. When violations of the lower bound occur, the differences

are typically small.

Figures 1.8a and 1.8b show the lower bound for 30- and 60-day returns, respectively, along-

side the disaster risk premium estimated from the quantile regression (1.2.4). In both cases, there is

a substantial correlation between the lower bound and the disaster risk premium obtained from the

QR estimates. Especially during the global financial crisis and the Covid-19 crisis, both methods

predict significant increases in the disaster risk premium. Outside these crisis periods, the lower

bound is more conservative. Overall, the model-free lower bound corroborates the robustness of

the estimated disaster risk premium in Figure 1.3b.

1.7 Conclusion

I use return and option data on the S&P500 in combination with quantile regression to

estimate local differences between the conditional risk-neutral and physical quantile functions. Em-

pirically, these differences are substantial in the left-tail, whereas in the right-tail, they are barely

discernible. Therefore, the lion’s share of the equity premium is driven by downside returns, which

is model-free evidence for disaster risk.

By tracking these quantile differences over time, the results also demonstrate that disaster

risk is time-varying, pervasive, and a driving force behind much of the equity premium, even outside
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Figure 1.8. Lower bound on disaster risk premium at 5th percentile. Panel (a) shows the
lower bound on the disaster risk premium for 30-day returns, at τ = 0.05. QR denotes the estimated disaster risk
premium from the quantile regression (1.2.4). The right panel shows a similar graph for 60-day returns. Both figures
are smoothed using a 30-day rolling window. The two shaded bars signify the Great Recession period (Dec 2007 –
June 2009) and Covid-19 crisis (Feb 2020 – April 2020).

crisis periods. Additionally, my findings show that disaster risk is more nuanced than previous lit-

erature suggests. Much of the disagreement can be attributed to the incorporation of conditioning

information. While prior research primarily focused on unconditional estimation, my approach ac-

counts for conditioning information embedded in the risk-neutral quantile function, which is crucial

to obtain accurate estimates of disaster risk.

To build on this finding, I show that disaster risk makes the SDF highly volatile. In par-

ticular, option strategies involving a short position in an asset that pays one dollar in case of a

disaster exhibit substantially higher Sharpe ratios compared to a direct investment in the market

portfolio. The data reveal that such investment strategies yield a monthly Sharpe ratio of 30%,

more than doubling the Sharpe ratio of the market return.

Finally, I suggest a model-free lower bound on disaster risk premia observed from option

prices. This lower bound serves as a good predictor of the quantile wedge, exhibiting spikes during

crises and significant fluctuations over time. Furthermore, the lower bound closely aligns with

estimates of disaster risk premia based on quantile regression, thereby reinforcing the robustness
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of my findings.
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Table 1.2. Risk-neutral quantile regression

Horizon τ β̂0(τ) β̂1(τ) Wald test
(p-value)

R1(τ)[%] R1
oos(τ)[%] Hit[%] Q̂t,τ > Q̃t,τ [%]

30 days* 0.05 0.43
(0.208)

0.56
(0.223)

0.00 6.28 6.11 -2.67
(0.676)

99.88

0.1 0.45
(0.201)

0.54
(0.209)

0.01 3.45 1.01 -3.56
(1.089)

98.52

0.2 0.69
(0.284)

0.30
(0.290)

0.02 0.55 0.89 -3.73
(1.719)

90.98

0.3 1.02
(0.357)

-0.02
(0.360)

0.00 0.00 2.49 -5.51
(2.147)

99.58

0.4 1.17
(0.237)

-0.16
(0.237)

0.00 0.03 1.75 -7.32
(2.357)

97.25

0.6 -0.45
(0.216)

1.44
(0.213)

0.00 4.62 4.19 -8.05
(2.468)

99.93

0.7 -0.18
(0.162)

1.18
(0.159)

0.03 7.79 7.47 -5.84
(2.220)

99.95

0.8 -0.09
(0.141)

1.09
(0.137)

0.19 12.44 12.50 -3.24
(1.886)

99.95

0.9 0.03
(0.113)

0.97
(0.108)

0.96 20.41 21.88 -0.04
(1.235)

55.85

*(Obs. 4333) 0.95 0.12
(0.120)

0.89
(0.114)

0.57 27.07 31.31 0.27
(0.863)

22.41

60 days** 0.05 0.45
(0.303)

0.54
(0.343)

0.00 3.12 13.14 -3.33
(0.875)

100.00

0.1 0.58
(0.263)

0.41
(0.283)

0.00 1.79 3.50 -5.57
(1.320)

100.00

0.2 0.78
(0.336)

0.21
(0.345)

0.01 0.38 -0.03 -6.60
(2.351)

99.95

0.3 0.93
(0.434)

0.07
(0.438)

0.00 0.01 -0.12 -7.81
(3.012)

99.47

0.4 0.36
(0.325)

0.65
(0.323)

0.02 0.25 2.34 -8.48
(3.439)

99.79

0.6 -0.65
(0.342)

1.64
(0.333)

0.02 5.57 4.60 -7.68
(3.465)

99.77

0.7 -0.31
(0.266)

1.30
(0.256)

0.05 8.41 7.65 -7.34
(3.260)

99.91

0.8 -0.08
(0.183)

1.08
(0.174)

0.07 12.70 12.23 -5.53
(2.683)

100.00

0.9 0.04
(0.147)

0.96
(0.138)

0.58 21.66 22.79 -1.94
(1.707)

92.86

**(Obs. 4312) 0.95 0.04
(0.135)

0.96
(0.126)

0.90 31.07 34.19 0.43
(1.046)

13.73

90 days*** 0.05 0.60
(0.405)

0.37
(0.478)

0.01 2.90 15.63 -2.95
(1.102)

100.00

0.1 0.59
(0.321)

0.40
(0.356)

0.00 3.46 3.84 -6.36
(1.495)

100.00

0.2 0.57
(0.516)

0.43
(0.534)

0.03 0.83 1.93 -7.53
(2.896)

100.00

0.3 0.62
(0.637)

0.39
(0.643)

0.04 0.17 -0.52 -8.42
(3.668)

99.84

0.4 0.42
(0.468)

0.60
(0.463)

0.02 0.22 -1.76 -9.52
(4.199)

99.77

0.6 -0.84
(0.426)

1.82
(0.413)

0.01 6.37 3.81 -11.60
(4.542)

99.98

0.7 -0.46
(0.307)

1.45
(0.293)

0.02 10.45 8.87 -9.43
(4.056)

100.00

0.8 -0.23
(0.204)

1.23
(0.192)

0.10 15.47 16.54 -6.66
(3.189)

100.00

0.9 -0.02
(0.170)

1.02
(0.157)

0.79 23.18 27.92 -1.12
(1.971)

100.00

***(Obs. 4291) 0.95 0.08
(0.153)

0.93
(0.139)

0.86 32.14 39.88 -0.06
(1.366)

52.37

Note: This table reports the QR estimates of (1.2.4) over the sample period 2003–2021 at different horizons, using
overlapping returns. Standard errors are shown in parentheses and based on SETBB with a block length equal to the
prediction horizon. Wald test denotes the p-value of the joint restriction [β0(τ), β1(τ)] = [0, 1]. R1(τ) denotes the goodness
of fit measure (1.2.5). R1

oos(τ) is the out-of-sample goodness of fit (1.2.6), using a rolling window of size 10 times the
prediction horizon. Hit refers to the sample expectation defined in (1.3.3) and standard errors are reported in parentheses,
which are obtained by stationary bootstrap based on 10,000 bootstrap samples. The last column indicates the time series
average of the event that Q̂t,τ > Q̃t,τ , where Q̂t,τ = β̂0(τ) + β̂1(τ)Q̃t,τ .
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Table 1.3. OLS estimates of conditional equity premium

Full sample Sub-sample

Horizon β̂0 β̂1 R2[%] Obs R2[%] R2
oos[%] p-value DM

30 days 0.13
(0.089)

-0.14
(0.096)

1.79 4333 10.44 1.82 0.00

60 days 0.17
(0.120)

-0.18
(0.137)

2.74 4312 18.16 3.30 0.00

90 days 0.20
(0.150)

-0.22
(0.178)

3.58 4291 26.67 4.20 0.00

Period 2003–2021 2013–2021

Note: This table reports the OLS estimates of (1.3.2) for 30-, 60- and 90-day returns.
Standard errors are shown in parentheses and calculated using stationary bootstrap,
with an average block length equal to the return horizon. R2

oos denotes the out-of-
sample R2 using the historical rolling mean of excess returns. The window length is
equal to 5 years. p-value DM denotes the p-value of the Diebold and Mariano (1995)
test that the risk-neutral quantile exhibits equal out-of-sample forecasting accuracy
as the rolling mean. The “Period” row indicates the specific time periods used for
estimation.

Table 1.4. Sample bounds and bootstrap result

Sample size HJ bound distribution bound p-value
312 0.133 0.260 0.075

Note: This table reports the HJ and distribution bound for monthly S&P500 returns over the period 1996–2021.
The distribution bound is evaluated at τ = 0.0374. The final column denotes the p-value of the null hypothesis in
(1.5.14). The p-value is obtained from 100,000 bootstrap samples and counts the fraction of times that T ⋆ ≤ 0.
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Table 1.5. Quantile regression with lower bound

Horizon τ β̂0(τ) β̂1(τ) Wald test
(p-value)

R1(τ)[%] Obs

30 days 0.05 -0.01
(0.005)

4.43
(0.349)

0.00 6.03 4333

0.1 -0.01
(0.006)

2.17
(0.450)

0.03 3.18

0.2 -0.01
(0.006)

1.33
(0.400)

0.02 0.41

60 days 0.05 -0.01
(0.013)

5.53
(0.571)

0.00 3.60 4312

0.1 -0.02
(0.011)

3.25
(0.540)

0.00 2.23

0.2 -0.02
(0.009)

1.50
(0.398)

0.27 0.48

90 days 0.05 -0.02
(0.032)

6.37
(1.113)

0.00 4.91 4291

0.1 -0.02
(0.018)

3.05
(0.528)

0.00 4.43

0.2 -0.02
(0.019)

1.36
(0.626)

0.69 1.46

Note: This table reports the QR estimates of (1.6.10) over the sample pe-
riod 2003-2021 at different horizons, using overlapping returns. Standard
errors are shown in parentheses and calculated using SETBB with a block
length equal to the prediction horizon. Wald test denotes the p-value of
the joint restriction [β0(τ), β1(τ)] = [0, 1]. R1(τ) denotes the goodness-of-
fit measure (1.6.12).
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Table 1.6. Quantile regression with model-free quantile fore-
cast

Horizon τ β̂0(τ) β̂1(τ) Wald test
(p-value)

R1(τ)[%] R1
oos(τ)[%] Obs

30 days 0.05 0.29
(0.249)

0.70
(0.265)

0.06 6.28 9.94 4333

0.1 0.28
(0.250)

0.72
(0.260)

0.18 3.57 4.02

0.2 0.57
(0.381)

0.43
(0.388)

0.29 0.58 2.53

60 days 0.05 0.30
(0.382)

0.71
(0.426)

0.02 3.40 17.81 4312

0.1 0.38
(0.352)

0.61
(0.373)

0.13 2.35 9.22

0.2 0.44
(0.487)

0.56
(0.498)

0.21 0.57 4.28

90 days 0.05 0.36
(0.520)

0.64
(0.602)

0.05 4.26 21.98 4291

0.1 0.31
(0.482)

0.70
(0.521)

0.06 4.19 13.22

0.2 0.23
(0.696)

0.78
(0.710)

0.48 0.70 5.99

Note: This table reports the QR estimates of (1.6.14) over the sample period 2003-2021.
Standard errors are shown in parentheses and calculated using the SETBB, with block
length equal to the prediction horizon. Wald test gives the p-value of the Wald test on the
joint restriction: β̂0(τ) = 0, β̂1(τ) = 1. R1(τ) denotes the in-sample goodness-of fit criterion
(1.2.5). R1

oos(τ) is the out-of-sample goodness-of fit, using a rolling window size equal to 10
times the return horizon.
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Chapter 2

Scale Economies, Bargaining Power, and In-
vestment Performance: Evidence from Pen-
sion Plans

2.1 Introduction

During recent decades, the professional asset management industry has undergone signifi-

cant structural changes. The competitive landscape, influenced by both passive and active man-

agers, has led to a substantial reduction in fees. Advancements in technology and increased avail-

ability of information have also played a role in this fee reduction (Blake, Rossi, Timmermann,

Tonks, and Wermers, 2013). Furthermore, both active and passive managers have refined their

investment offerings, focusing on specialization in their investment strategies. Simultaneously, ma-

jor institutional investors like pension plans and endowments have expanded their allocations to

alternative asset classes, including hedge funds, private debt, private equity, and real assets.

Defined-benefit (DB) pensions continue to play a significant role in the global financial

market, with the total assets under management (AUM) of DB pensions experiencing substantial

growth. Notably, state and local government DB plans in the U.S. have seen their AUM increase

from $1.4 trillion in 1995 to $5.1 trillion in 2020, while private-sector DB plans in the U.S. have

grown from $1.5 trillion to $3.4 trillion over the same period (Investment Company Institute, 2021,

p. 177). Moreover, the DB landscape now includes several very large pension plans, such as

CalSTRS, one of the world’s largest pension funds, with total assets exceeding $314.8 billion as of

May 31, 2022.1

The confluence of the above-noted shifts in the asset management industry with the in-

1See https://www.calstrs.com/investment-portfolio
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creased bulk of the largest DB plans brings several new issues to light, such as a potential increase

in the bargaining power of DB plans in their interactions with their external money managers.

Simply put, the negotiating power of very large DB plans, of late, may bring substantial changes

in the balance of power between large DB plans and their investment managers.

To explore these issues, our study conducts a granular analysis of the DB industry, with an

emphasis on the interaction of DB plan size with fees, asset allocation, and investment performance.

For example, one economically important trend is that large DB plans are increasingly managing

assets “in-house,” to cut fees while potentially maintaining a reasonable level of performance (Beath,

Flynn, Jethalal, and Reid, 2022).2 A key issue that we explore is whether such in-house management

brings greater bargaining power to plans when they negotiate fees and shop for the best investment

managers for external management services—and, whether such bargaining power mainly resides

with the largest pension plans due to the fixed costs of establishing and maintaining internal

management.

Our study brings a contrast to past research on funds with small-scale investors. In re-

tail mutual fund markets, individual investors are usually considered as “atomistic” agents who

have no individual (or collective) bargaining power. The seminal paper of Berk and Green (2004)

(henceforth, BG) presents a model based on this assumption as well as the usual assumption that

“alpha” generation by fund managers exhibits diseconomies of scale. Predictions from their model

include that (1) skilled investment managers collect all of the rents from their alpha-generating

efforts, (2) flows from atomistic investors occur at each period (in reaction to updated informa-

tion about manager skills)—either into or out of each fund until management fees equal expected

pre-fee alphas, and (3) all investors, being atomistic, obtain the exact same zero expected alpha,

net-of-fees.

In the pension plan market that we examine, we propose that the only key assumption

from the BG model that can be accepted without further investigation is the presence of pre-fee

scale diseconomies in fund-level alpha generation. While retail markets may leave all bargaining

power in the hands of asset managers, the situation is different for the largest pension plans. Given

2As an important example, CalSTRS recently stated that in-house management and co-management with external
managers has been instrumental to their cost savings (see link). However, remains unclear whether the choice of in-
house management—or, the threat thereof—leads to greater negotiating power with external managers to obtain
better pre-fee performance and/or lower fees.
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their substantial scale, these plans have the potential to negotiate favorable terms with external

managers, including lower fees and access to well-performing managers. As a result, the economics

of the largest plans may diverge from the BG model’s zero expected alpha (net of fees) assumption,

primarily due to their enhanced bargaining power. Accordingly, we explore the relationship between

DB plan size, bargaining power, and the ability of large plans to capture value from external

managers, whether through lower fees or higher pre-fee alpha generation by these managers.3

We also investigate the impact of scale in pension plans on asset allocation trends. For

example, it is unclear whether the bargaining power of large plans results in a greater use of

external active managers (presumably at lower fee levels) or a greater tendency to internally manage

assets (either actively or passively). As another example, as large plans move assets to internal

management, it is important to assess whether any potential reduction in their internal active

management skills, compared to external managers, outweighs the cost savings gained through

internal passive management for different asset classes.4 Thus, our paper provides a unique view

into scale economies of plans and the associated bargaining power at the level of plan asset classes.5

The modeling framework proposed by Gârleanu and Pedersen (2018) (GP; henceforth), has

parallels to the empirical setting of our analysis. In their model, investors incur a fixed search

cost to identify skilled external asset managers who, in turn, incur a fixed cost from acquiring

information about asset returns that enables them to outperform passive investments. Investment

management fees in the GP model are determined through Nash bargaining, leaving a natural

mechanism through which plan size (as a proxy for bargaining power) matters for fees as well as for

net-of-fee returns when some investors are not atomistic in size. Further, information acquisition

costs can be expected to be higher in the less transparent private asset markets than in public

asset markets. This is consistent with an equilibrium in which investment management costs are

3Of course, for internal management to pose a “threat” to external managers, there must be a large mass of plans
that stand ready to manage internally—and, a finite mass of smaller plans, such that external managers do not retain
all bargaining power, unlike the infinitely deep supply of capital assumed in BG. In this vein, we note that, while
some large plans may choose not to spend the fixed costs of setting up internal management, the mere threat to do
so gives them negotiating power with external managers.

4That is, an important issue is whether internally managing a greater share of a plan’s assets in a particular asset
class leads to a different mix of active vs. passive management in that asset class, as well as other asset classes held
by the plan. The role of pension plan scale in internalizing active vs. passive management can be expected to depend
on the relative fixed costs of creating and maintaining an internal management organization for each, within a given
asset class.

5For example, large pension plans may be more capable of actively managing private asset classes, where they
might directly exert their size to obtain more favorable investments.
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relatively high in private asset markets, and the largest plans benefit disproportionately from their

higher ability to engage with skilled managers, either due to their enhanced ability to overcome

fixed search costs and/or to negotiate lower investment management fees once they identify skilled

managers.

Two major trends drive our inquiry into scale-related performance in the pension fund

industry. First, pensions have increasingly moved toward passive management of their public

market exposures in both equities and (to a lesser extent) fixed-income investments. Second,

pensions have increasingly turned to private equity funds or to direct investments in real assets

as a source of diversification and higher long-term returns. These developments can be partially

attributed to the shrinking number of publicly traded stocks that are available in the U.S., which is

particularly relevant to large pension plans. In the face of these trends, as we will show, many large

plans have assigned a greater role to internal asset management. Both of these trends are consistent

with a shrinking level of fixed costs in setting up an internal asset management organization across

all asset classes, but especially so in public market securities.

Our inquiry exploits a unique database to explore several dimensions of the pension plan

sector, including both cross-sectional and time-series aspects. Our data is sourced from CEM,

a Toronto-based private consulting company that collects information from a diverse range of

pension plans. Each year, CEM gathers data on these plans’ asset allocations as percentages

within major asset classes (e.g., public equities, fixed income, hedge funds, private equity, public

debt, private debt, and real assets), asset subclasses (e.g., small-cap U.S. equities or infrastructure

investments), and, within each subclass, their choice between active and passive management and

between internal and external management. The CEM database uniquely includes data on AUM,

gross returns, and investment costs for each subclass/active-passive combination. Additionally, the

CEM staff routinely apply a battery of checks to obtain the most precise data possible.6 We believe

that the CEM data allows a closer look at the above questions than has been possible with prior

studies.

With this CEM database, we find that large pension plans tend to invest a greater share

of their plan assets in less-liquid sectors of the market, as well as sectors of the market where

6From our discussions with CEM, it is apparent that CEM researchers maintain frequent contact with their
“subscribers” in cases where data looks suspect in order to maintain the data integrity.
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scale-related bargaining power can be expected to be especially important in achieving net-of-fee

alphas, such as private equity investments (see also Dyck and Pomorski (2016)). Further, large

plans tend to use internal management to a greater degree, particularly in public asset classes

where the fixed-cost of establishing and maintaining internal investment management is lower.

Further, we identify two major shifts in the asset allocation of U.S. pension plans. First,

the share of (publicly-traded) stocks and fixed income assets has declined from nearly 90% in

the early 1990s to 70% at the end of our sample (2019), while allocations to non-traditional asset

classes such as private equity, hedge funds, and real assets increase significantly over time.7 Second,

within traditional asset classes such as equity and bonds, we see large shifts toward more specialized

mandates. For instance, there has been a transition from broad or all U.S. equities to funds focusing

on large, medium, and small market capitalization segments in the equity space. Similarly, we

observe a move from general U.S. bond allocations towards more specialized strategies targeting

high-yield and credit objectives in the fixed-income sector. By far the biggest shift is toward

international and global assets, which become more prominent over time, particularly in stock

allocations.

These shifts in asset allocation are consistent with a decrease in the fixed costs of managing

investments, and this decrease varies widely across asset classes and sub-asset classes (as well as

within an asset class or sub-asset class, between active and passive management).8 When we

examine the tendency of pension plans to manage assets internally, we find that plan size is of

key importance. Larger plans are significantly more likely to manage assets internally in all asset

classes except for hedge funds and multi-assets.

Upon further examination, we observe that the size of a pension plan negatively correlates

with its tendency to employ active management, particularly for public securities, such as equities.

Larger pensions increasingly harness the substantial economies of scale offered by passive manage-

ment in public securities. This shift towards passive management is more pronounced over time,

7Hedge fund holdings, on average across plans, increase from 1% in 2003 to 6% in 2019. Private equity holdings
also increase to 9% in 2019 from 4% in 2000; allocations to real assets increase to 10% in 2019 from 4% in the early
1990s.

8The shift from public, broad asset classes to private or more-specialized public asset classes is consistent with
Blake, Rossi, Timmermann, Tonks, and Wermers (2013), who find that investment managers have moved to more
specialized sub-asset-classes in seeking to provide value to pension sponsors. This is consistent with the increased
competition in broad public asset classes that might be expected from a larger amount of aggregate investment money
chasing a diminishing number of public securities.
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given the rapid decrease in fixed costs associated with passive management. This trend aligns with

the diminishing capacity of larger plans to extract alpha from public securities markets, especially

equities, as mentioned above. For the share of equities and fixed income that are managed ex-

ternally, large plans are more likely to manage equities passively while preferring to manage fixed

income investments actively, relative to smaller plans. Among internally managed assets, we find no

significant association between plan size and choice of active vs. passive management—suggesting,

perhaps, that diseconomies-of-scale in active management offset incremental cost reductions as the

size of internal management grows.

Subsequently, we examine investment costs for our sample of pension plans by investment

management mandate. Here, we find that the median cost of internally and passively managing

stocks is 1-3 bps per year throughout the sample period, while internally and actively managed

stocks bear a median cost that fluctuates between 5 and 11 bps per year. The median cost for

externally and passively managed stocks hovers between 4 and 8 bps per year, while the median

cost of external active management is noticeably higher—between 32 and 48 bps per year. For fixed

income holdings, we observe similar patterns. Moreover, we find that external passive management

costs have been decreasing over time for stocks and fixed income, converging toward the lower level

of internal passive management costs. In contrast, we find no evidence of a convergence in the

costs between internal and external active management for these asset classes or, indeed, for the

private asset classes—consistent with a change in the composition of external actively managed

mandates—i.e., a move toward more specialized strategies.

We find strong evidence of significant economies of scale in investment management costs,

and document that these follow a power law as a function of the amount of assets invested by a

plan. The associated concave relation between investment management costs and plan holdings

are particularly strong for public asset classes. Conversely, for the more labor-intensive private

asset classes we find that it is more difficult to reduce average costs as plan size increases. We also

find evidence of bigger economies of scale in fees for passively managed than for actively managed

investments.

Plans’ choice of management style (internal versus external and active versus passive) is

likely to be endogenous in the sense that it depends on plan size and asset class characteristics.

To account for such confounding effects (and, notably, control for plan size) and get a more direct
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estimate of the impact on plans’ costs and return performance, we use a difference-in-differences

approach that matches plans switching management style (e.g., from external to internal manage-

ment) with similar plans that retain the same management style. We find strong evidence that

plans’ management costs unequivocally decrease when they switch from external to internal or from

active to passive management, whereas costs increase when switching from internal to external or

from passive to active management.

Our results for plan performance are as follows. First, for public asset classes, we find a

modest association between plan size and net return performance, with the largest decile of plans

(sorted by AUM) outperforming the smallest decile by about 20 bps per year. Next, we find that

plan size matters more for alternative asset classes, where the top decile of plans outperforms

the smallest decile of plans by about 200 bps per year.9 Using our matching approach, we find

significant evidence that plans’ gross and (particularly) net return performance, controlling for

plan size, improves among alternative asset classes following a switch from external to internal

management, whereas return performance instead deteriorates following the reverse switch from

internal to external management. For stocks and fixed income accounts, return performance (both

gross and net of costs) improves for both transitions, i.e., from external to internal and from

internal to external management. We attribute this to mean reversion in returns since poor prior-

year returns is likely to cause a switch in management style. Finally, we find an insignificant effect

on return performance for plans switching between active and passive management, consistent

with managers setting costs so that the marginal plan is indifferent between active and passive

management.

Our paper builds on prior research that finds a positive relation between total plan size

and performance. Specifically, Dyck and Pomorski (2011) document that larger plans allocate

more to asset classes where their scale is more likely to provide bargaining power with respect

to the fees charged by external asset managers, specifically, private equity and real estate. Our

analysis generalizes these findings in several ways. First, our empirical analysis focuses on the

endogenous choice of plans between internal and external management of their assets, as well as

their endogenous choice between active and passive management. Our empirical model allows for

9These numbers are based on policy-adjusted returns. We explain in detail how these are constructed in Section
2.6.

60



separately measuring the probability of a plan to employ internal (or active) management, followed

by a measurement of the impact of scale on the level of internal (or active) management—conditional

on choosing such mandates. Second, we present results from a matching estimator that allows us

to estimate the effect on costs and return performance of plans’ choice of internal versus external

or active versus passive management, after controlling for plan size and other confounders. Third,

we exploit the sub-asset class granularity of our data, and document a power-law relation between

size and investment management costs (within a sub-asset class) which more precisely indicates

economies of scale in all asset classes, as well as at the plan level, and not just the scale economies

in private equity and real estate documented by Dyck and Pomorski (2011). Fourth, we show that

economies of scale in costs differ significantly across passive and active mandates, while they are

similar for internally and externally managed accounts. Fifth, compared to Dyck and Pomorski

(2011), our dataset extends the time series by ten years, enabling us to investigate the time trends

in management choices. These trends are critically influenced by the growing scale of DB plans

relative to the markets in which they invest, as well as time-series changes in the fixed-costs required

to set up internal management.

The remainder of the paper proceeds as follows. Section 2.2 introduces the main features

of our data from CEM with additional details provided in Appendix B.1. Section 2.3 develops a

set of hypotheses that we set out to test empirically in the subsequent analysis. Section 2.4 covers

the determinants of internal versus external and active versus passive investment management

decisions. Section 2.5 provides a detailed analysis of the cost data, and Section 2.6 analyzes gross

and net-of-cost return performance and how it relates to plan characteristics. Finally, Section 2.7

analyses how cost and return performance relates to investment management mandates (or ”styles”)

and Section 2.8 concludes.

2.2 Data and Summary Statistics

We obtain our data from CEM Benchmarking, a Toronto-based company that uses detailed

annual surveys to collect data on public and private pension sponsors domiciled both in the U.S.

and in a number of other developed-market countries. A key advantage of this dataset is its highly

detailed fee/cost data, separated by sub-asset class, as well as by active vs. passive mandates and

by internal vs. external management within each sub-asset class. In total, the CEM Benchmarking
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database covers 613 U.S. and 524 non-U.S. plans (CEM “PlanIDs”) that participated in the survey

at some point during our 29-year sample period from 1991 to 2019.10

CEM plan surveys in the U.S. and the U.K. are primarily collected from defined benefit

(henceforth, DB) pension plans and other similar capital investment pools. Apart from these

regions, the type of plans for which the survey is collected is country-specific, such as industry-based

DB pools in the Netherlands, buffer funds in Sweden, insurance-backed retirement funds in Finland,

or defined contribution plans in Australia. Even though reporting to CEM is voluntary, previous

research has found no evidence of self-reporting bias related to performance (Bauer, Cremers, and

Frehen, 2010).11 The self-reported data are checked by CEM for internal (same year) consistency,

year-over-year consistency, and outlier reporting. CEM data is biased toward larger plans, yet plans

contained in the database are broadly distributed across size (total plan AUM). The aggregate

AUM covered by CEM in 2019 is $9.04 trillion, with U.S. plans accounting for $3.81 trillion, and

non-U.S. plans holding the remaining $5.23 trillion (using 2019 exchange rates). Some plans only

report results for a few years—in some cases only for a single year. However, while roughly 500

plans report to CEM for three or fewer years, 317 plans report to CEM for at least 10 years.

This fact, coupled with the large cross-section of plans surveyed by CEM each year (at least since

1999), allows us to analyze a representative sample of worldwide pension plans.12 Further details

on the CEM database, and the mechanism used to collect data from plans, are contained in the

Appendix.13

The CEM survey collects data on four categories of variables, separately for passively vs.

actively managed, and, in turn, for internally vs. externally managed assets within each of six major

asset classes (and their corresponding sub-asset classes), namely: stocks, fixed income, hedge funds

10The CEM dataset has been used in the past by French (2008), who shows that pension plans shift from active to
passive management over time, and Andonov, Kok, and Eichholtz (2013), who document scale-economies for pension
plan costs in real estate investments. Broeders, van Oord, and Rijsbergen (2016) looked at scale benefits for Dutch
pension plans, using different proprietary data.

11From discussions with CEM, the primary reason for funds to leave the survey is turnover in direct contacts with
clients, i.e., the personnel of a particular pension plan changes. High-fee plans, predominantly small plans, are less
likely to participate in the survey which can be very labor intensive to complete.

12Details are provided in Appendix Table B.1. That said, our sample is especially reflective of North American
plans. In our empirical results, we point out when differences exist between the early years of our sample and later
years—which contain a higher proportion (relative to early years) of plans domiciled outside of North America.

13For comparison, according to the Investment Company Institute (2021), in 2019, there were $54.9 trillion of
total net assets invested in worldwide regulated open-end funds, with the U.S. accounting for $25.9 trillion, or nearly
half, of these investments. The Center for Retirement Research at Boston College (CRR) estimates that U.S. public
pension plans held $4.1 trillion of assets in 2019. See https://publicplansdata.org/.
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and multi-asset class (jointly), private equity, private debt, and real assets. Included for each of

four potential mandate choices within each asset class (e.g., internal active) is the dollar value of

assets (using exchange rates for foreign plans), internal management costs or external management

fees (AUM-based as well as performance-related), and asset returns, measured both gross and net

of fees.14 A full list of variables is contained in Appendix B.2.2—B.4.

2.2.1 Asset Allocation

Figure 2.1 shows the proportion of investments allocated to each of the six major asset

classes for U.S. (top panel) and non-U.S. (bottom panel) DB plans. For U.S. plans, the average

plan allocation to public equities (stocks) varies between 50 and 60% from the beginning of our

sample (1991) until the Global Financial Crisis (2007-2008), after which it drops below 50% of

portfolio holdings. These plans increasingly allocate to alternative asset classes by the end of our

sample (2019)—from less than 8% in 1991 to almost 28% in 2019. Non-U.S. plans show a similar

pattern of asset allocation over time, albeit with lower levels of stock investments.

Even larger shifts have taken place during our sample period in the sub-asset classes that

comprise the six main asset classes. Figure 2.2a shows that the allocation of U.S. plans to broad-

based U.S. stock strategies (U.S. Broad/All) is 86% at the beginning of our sample, dropping

to 18% by 2019. In turn, these U.S. plans allocated more to international stock strategies, such

as ACWI ex U.S., EAFE, emerging markets, and global (12% in 1991 versus 58% in 2019), and

allocated more to specialized market capitalization strategies such as small, medium and large cap

stocks. Trends in fixed-income investments show a similar movement from broad-based to more

specialized mandates. Allocations between alternative sub-asset classes exhibit a trend toward

greater allocations to hedge funds (Figure 2.2c), LBOs (Figure 2.2d), private credit (Figure 2.2e),

and natural resources and infrastructure (Figure 2.2f).

Subsequently, we present results for small and large pension plans, defined as plans below

the 30th and above the 70th percentile in total plan AUM each year, in Figure 2.3. This figure

includes bar charts for the asset allocation by management mandate within asset classes for the

year 2019, with similar results in 1999 and 2009. The three asset classes, stocks, fixed income, and

real assets, encompass all four management mandates: internal passive (IP), external passive (EP),

14For each asset class, data is subdivided into several sub-asset classes such as U.S. large cap stocks or emerging
market stocks, as shown in, for example, Appendix Table B.4.
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internal active (IA), and external active (EA). Passive mandates are not available for the remaining

alternative asset classes: private debt, private equity, and hedge funds. Large plans exhibit a higher

fraction of internally managed assets, both for active and passive mandates, particularly in publicly-

traded fixed income and stocks. These asset classes are associated with the lowest fixed and variable

internal management costs, making them more conducive for setting up internal asset management.

Table 2.1 reports small and large plans’ choice of investment management mandate in the

form of the share of plans’ AUM within individual sub-asset classes allocated to each of the four

management mandates (IP, EP, IA, and EA). Large plans make far greater use of internal active

management than small plans. This holds both in public asset classes and even more so among

the four private asset classes. Differences can be very large, e.g., with 58% of large plans’ assets in

global equity being managed internally and actively, versus only 1% for small plans. Small plans

also make far greater use of external active investment management than large plans.

2.2.2 Investment Management Cost

We now turn to the time series evolution in investment management cost. We measure the

aggregate investment management cost in an asset or sub-asset class as the sum of AUM-based fees

and performance-related fees, and report it as a percentage of AUM allocated by a particular DB

plan to that asset or sub-asset class during a particular year. Further, we scale the median value of

this cost by the “grand average” cost averaged across asset classes, plans and years in our data.15

This generates a new measure of cost, scaled cost, which is expressed as a percentage of the average

cost. While this scaling does not show the cost level in bps/year, it allows us to interpret time

trends in management cost as well as compare costs across different asset classes and management

mandates.16

First, consider investment management costs for stock holdings (Figures 2.4a and 2.4c). For

passively managed accounts (Figure 2.4a), median costs increase over time from 5% to 8% of average

costs when internally managed, yet decline from 18% to 9% when externally managed. Hence, by the

end of our sample, the cost of internal and external passive management converge, suggesting that

passive management has increasingly become a “commoditized” investment management service.

15We use this transformation to preserve confidentiality of cost levels, as requested by CEM.
16For example, a scaled cost of 100% implies that the median costs are equal to the average costs in our sample

while a value of 50% implies a median cost of half the average cost. Appendix Table B.10 reports scaled costs by
asset class and country-of-domicile for plans for selected years.
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Active equity management costs are far higher, at 22% of average costs for internally managed

accounts, and rising from 81% to 110% of average costs for externally managed accounts. In this

case, we do not find any evidence of convergence. Part of the reason for this non-convergence appears

to be that plans choose to internalize the active management of the least specialized, lower-cost

sub-asset classes (e.g., broad cap U.S. stocks) and conversely externalize the high-cost segments

(e.g., emerging market stocks and small cap stocks) which require more specialized knowledge to

manage actively. Moreover, as we show subsequently, external fund managers generate positive

net-of-fee return performance— especially for the largest pension plans in our sample, serving to

reduce pressures on their investment managers to reduce active management fees. We find very

similar results for fixed income allocations (Figures 2.4b and 2.4d).

In summary, passively managed assets have become largely commoditized, resulting in lower

costs, especially for large plans that have transitioned to internal management. Smaller plans,

although still reliant on external passive management, benefit from lower fees due to economies

of scale in this domain. External active management fees have, in general, remained durably

higher than internal active management costs, due to an increasing specialization of external active

managers and the alpha benefits such specialization brings to pension plans.

2.3 Empirical Hypotheses

Our paper examines investment management costs and return performance as a function

of pension plan scale and plans’ choice of investment management style (internal vs. external and

active vs. passive). Our primary focus is on understanding how economies of scale affect investment

costs, specifically the fixed costs associated with different allocations, such as those to active or

passive management, as well as internal or external management.17

That is, a key theme of our paper is the role of fixed costs in investment management and

its impact on economies of scale for pension plans. We highlight the bargaining power that large

plans gain because of their ability to manage investments internally, potentially avoiding the higher

costs associated with external managers. In this section, we formulate testable hypotheses drawing

from theories of asset management, considering scale economies, uncertainty in active management

17Fixed costs include the costs of setting up a management “shop”, such as the costs of office space, datasets, and
human capital, both for internal and external management—but, also, the search costs of plans in locating skilled
active external managers.
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skills, the cost of information acquisition, and heterogeneity in investors’ abilities to identify skilled

managers

2.3.1 Theories of Asset Management

Berk and Green (2004)

A useful starting point for our inquiry is the seminal paper of Berk and Green (2004) (BG).

In mutual fund markets, BG propose an equilibrium model that starts with the assumption of

homogeneous diseconomies of scale among funds in their investments in financial markets. Given

the implied absence of any differential bargaining power of (atomistic) mutual fund investors in

their model, mutual funds, in equilibrium, grow to a size at which their diseconomies result in zero

expected net-of-fee alphas.18

In our setting that includes some very large pension plans as well as a finite set of small plans,

we can expect important deviations from this idealized BG “no-frictions equilibrium” outcome.

Specifically, the differential bargaining power of individual plans cannot be dismissed, and brings

many interesting features to the competitive market for investment managers who cater to such

plans.19 That is, the industrial organization of the market for delegated investment management

in the pension fund industry is far more complex than that modeled by BG for the mutual fund

industry, with outcomes depending on issues such as the relative bargaining power of plans and

managers.20

For example, the median plan in the CEM database (based on U.S. equity dollar allocations),

in 2019, contains U.S. equity investments totalling $1.01 billion, while the 10th and 90th percentile

plans oversee $107.0 million and $9.25 billion, respectively. While U.S.-domiciled equity mutual

funds exhibit a similar dispersion in size, most investors in mutual funds have a relatively small

18That is, open-end mutual fund managers allow their funds to grow to a size that leaves zero expected alphas,
net-of-fees, to rational atomistic investors in their funds—but that maximizes fund manager fee income. So, in BG’s
implied setting of a limited number of truly skilled asset managers, all of the expected rents (ex-ante alphas) accrue to
investment managers, since the infinite pool of investors (supply of capital) competes away any net-of-fee performance
through their inflows to funds rationally inferred to be overseen by skilled managers.

19BG allow for a limited role for the fixed costs of active investment managers, i.e., in modeling the decision of
such managers to continue operations or to shut down. In our setting, the fixed-costs of investment management,
both active and passive, as well as internal vs. external management, are central to the ongoing choices made by
pension plans. This distinction implies that there exist scale economies at the plan level which affect both investment
costs and allocations to external vs. internal management, abstracting from the choice of investment managers to
discontinue their operations.

20Prior papers on pension plan choice of investment managers (and their dismissal) do not focus on the role of plan
scale in such manager choice and negotiated fees (see, e.g., Blake, Rossi, Timmermann, Tonks, and Wermers (2013),
Rossi, Blake, Timmermann, Tonks, and Wermers (2018) and Beath, Flynn, Jethalal, and Reid (2022)).
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investment and can be considered “atomistic”—that is, they have an insufficient ownership fraction

to incentivize or to empower them to negotiate fees with their fund managers.21

Thus, while net-of-fee scale diseconomies may be relatively homogeneous among mutual

fund investors, mostly due to their limited (collective) negotiating power, such diseconomies can

be expected to be much more diverse among pension plans. Small plans might be expected to hold

little power to negotiate with their investment managers due to their high fixed costs of search and

internal management (per unit of AUM), and, accordingly, may face qualitatively similar net-of-fee

diseconomies of scale as investors in mutual funds; in contrast, large plans might use their bulk

to reduce diseconomies, or to potentially reverse them and to realize positive scale economies in

investment management fees.

Gârleanu and Pedersen (2018)

Addressing some of these limitations of the BG model, Gârleanu and Pedersen (2018),

henceforth GP, develop a general equilibrium model for assets and asset management in the presence

of fixed costs that pose a friction for all investors (in our setting, for DB plans). The GP model

introduces delegated investment management with uninformed and informed managers, where the

latter receive a signal that is correlated with returns on a risky asset, as in Grossman and Stiglitz

(1980). Importantly, the true manager type (informed vs. uninformed) is unobserved by investors,

and a fixed search cost must be paid to help identify skilled investment managers.22

Our pension plan setting shares similarities with GP’s deviation from the BG model. Most

importantly, we observe wide heterogeneity in asset allocations among pension plans, impacting

their capacity and motivation to cover fixed costs associated with external manager search or

internal management setup. Large plans with billions of dollars to invest and many experienced

professionals can better handle the fixed costs of internal management and are expected to be more

21Among U.S.-domiciled domestic equity mutual funds, the median fund manages $514 million, while funds at the
10th and 90th percentiles, respectively, manage $38.7 million and $6.8 billion, respectively, at the end of December
2019. For comparison, the median amount invested in mutual funds by U.S. households was $200,000 in 2021
(Investment Company Institute, 2021). We recognize that fiduciaries of large defined contribution (DC) plans—some
of which hold greater than $1 billion in AUM—might hold some bargaining power with their investment managers
(see, for example, Sialm, Starks, and Zhang (2015)). However, large DC plans hold levels of AUM that tend to pale
in comparison with that of large DB plans.

22Investors have the option of either investing their money directly (passively) and, thus, foregoing the search cost,
or searching for an informed manager who will charge a fixed investment fee for actively managing investor assets.
The size of this fee is modeled through Nash bargaining between the manager and investor. This feature of the GP
model suggests that investors’ bargaining power should matter to their choice of investment mandate as well as to
investment alphas and fees.
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capable of identifying skilled managers.23 Conversely, small plans will neither have the incentive to

undertake costly search, nor to establish internal management, leading to distinct choices between

external and internal management. Thus, the choice between external and internal management will

be indicative of the fixed costs of internal vs. external management, especially among large pension

plans. Small plans can be expected to choose the “corner solution” of no internal management.

The model of Gârleanu and Pedersen (2018) can also be used to compare outcomes in

private asset markets, such as real estate and private equity, which display high search and infor-

mation costs, versus more transparent and lower information-cost asset markets for publicly traded

securities, such as stocks and bonds. Specifically, in asset markets with lower search costs for lo-

cating skilled active managers, as well as lower information acquisition costs for such managers,

the increased competition among active managers both reduces the average active “alpha” (before

fees), and applies pressure on active managers to reduce fees. In the face of these shrinking fees,

we can expect to see more specialization in active management, as we have described in Section

2.2.2. With these developments, it naturally follows that passive management gains market share

among less-specialized investment strategies relative to active management, when search costs are

low and information acquisition is less costly.

Conversely, search costs tend to be much higher in the market for managing private assets,

as well as less efficient public-market assets, and only investors with the capacity for undertaking

a sophisticated search process (i.e., low search costs relative to AUM) might hire active managers

in these markets. Information acquisition costs (paid by active investment managers) also tend

to be higher in these markets, and prices are less efficient due to the higher cost of entry and

the resulting weaker competition among informed managers. To cover their higher information

acquisition fixed costs, investment managers also charge higher fees in private asset markets. In

equilibrium, we would expect larger pension plans to be more willing to engage with skilled managers

in private markets, in part because of their enhanced ability to locate skilled managers as well as

the negotiating power that large plans possess. That is, the market for private investments can be

expected to be less important for small pension plans, as they are unable to bargain for positive

23To be sure, large plans are more likely to have access to the most skilled managers due to the greater fee income
that they potentially bring, which can compound the advantages that their greater manager search capabilities bring.
In this paper, we focus on the bargaining power possessed by large plans due to their enhanced ability to “internalize”
investment management.
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expected risk-adjusted returns.

In turn, informed managers in private asset markets will tend to earn higher fees due to the

high fixed-costs of search and internalization by pension plans. Similarly, to compensate investors

for the higher cost of searching for managers of private asset classes, we expect to find higher

abnormal returns, net of fees in private markets—among those large plans that have bargaining

power.

2.3.2 Plan Size and Choice of Investment Management Style

Based on the discussion of the key factors determining pension plans’ choice of investment

management mandate, asset allocation decisions, and investment performance as well as costs, we

now articulate a set of hypotheses that discipline our subsequent empirical analysis. Our first

hypothesis involves plan size and the corresponding choice of investment management mandate

(internal vs. external management, and active vs. passive management).

We believe that large plans have much stronger incentives for internal investment manage-

ment due to the fixed costs of asset management in all asset classes.24 Consequently, large plans

are expected to allocate a higher proportion of assets internally within asset classes where their

investments are larger, and the cost advantage of internal management over external management

is more pronounced.

A second dimension is the choice of active vs. passive management. In the Gârleanu and

Pedersen (2018) model, small investors with high manager search costs typically choose passive

investment due to the significant fixed cost of searching for skilled managers. Conversely, large

investors, with a more favorable cost-benefit profile due to their higher search capacity and assets,

are inclined to seek out active managers. This leads to the expectation that small plans would

allocate more of their assets passively, while large plans would favor active management. This

tendency might be more pronounced in private asset classes, whereas the situation in public asset

markets may differ. The combined effect of a smaller scope for generating abnormal returns and

larger diseconomies of scale in the highly competitive stock and bond markets may incentivize large

plans to make greater use of internal active rather than external active management in order to

24We recognize that fixed costs are likely smaller in some asset classes and strategies than others in our discussion
to follow. For example, fixed costs in managing U.S. equities, passively, is likely to be lower than other asset
classes/strategies.
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reduce investment management costs.

As plans grow in size, they tend to explore alternative asset classes as they exhaust oppor-

tunities in the crowded public equity and fixed income markets. Plan size also plays a role in the

available choices within each asset class. Larger plans can leverage their size to negotiate more

favorable terms, including lower fees in alternative asset classes that might be less accessible to

smaller plans. Consequently, we anticipate a positive relation between plan size and allocations to

private asset classes, while expecting a negative association between plan size and investments in

public stocks and bonds. We summarize these relations between investment choices and plan size

in the following hypothesis:

Hypothesis I (Plan size and investment management). Large pension plans, relative to other

plans:

(i) manage a bigger fraction of their assets internally, measured across all asset classes.

(ii) have a higher probability of switching from external active management to internal active

management in public asset classes.

(iii) allocate a larger fraction of their portfolios to private asset classes and, correspondingly, a

smaller fraction of their portfolios to public assets (stocks, bonds).

2.3.3 Economies of Scale in Investment Management Costs

Economies of scale matter in investment management because many costs, such as legal,

data, and computing expenses, are either fixed or do not increase proportionally with assets under

management. This suggests an inverse relation between a plan’s holdings in a specific asset class

and the average costs of managing it, meaning that larger plans typically experience lower costs and

fees per dollar invested compared to smaller plans. Still, larger plans may also face higher costs due

to the need for additional personnel and increased transaction expenses when dealing with larger

investment amounts. Investment management costs can also vary depending on the labor-intensity

of different investments, influenced by factors such as asset class liquidity and transparency.

To better understand scale economies in investment management costs, we examine the

power law framework developed by Gabaix (2009, 2016), positing that dollar management costs,
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Cost$, follow a power law as a function of AUM:25

Cost$ ∝ AUMβ. (2.3.1)

Power law coefficients β < 1 are consistent with economies of scale in investment management

costs, and the smaller is β, the bigger the cost economies of scale. Conversely, β > 1 suggests

diseconomies of scale since increasing AUM by a certain factor leads to disproportionately higher

management costs.

We use the posited relation in (2.3.1) to formulate a set of hypotheses on economies of scale

in investment management. Our most basic hypothesis is that costs grow less than proportionately

with assets under management, i.e., β < 1. Our next cost hypothesis is that investment management

costs vary systematically across public and private asset classes. Specifically, we would expect

greater cost economies of scale for public asset classes such as stocks and fixed income (βpublic) that

are traded in transparent and liquid markets than for private asset classes (βprivate) which typically

involve more labor-intensive (less computerized) processes that are harder to scale up.

Scale economies in costs are also likely to be linked to management mandate, so we analyze

the cost-size relation at the asset class level for the four different mandates, namely, Internal

Passive (IP), Internal Active (IA), External Passive (EP), and External Active (EA).26 Passive

investment management has largely become commoditized in a way that facilitates scaling more

easily than the labor intensive active investment management process. Moreover, besides lower

per-dollar human-capital costs, large passive management funds can implement trading strategies

that enhance their returns, such as securities lending and favorable per-dollar trading terms with

prime brokers, relative to smaller passive funds. Hence, our third cost hypothesis is that passive

investment management lends itself more easily to scaling than active management, in part because

it is associated with lower market impact.

For both internal and external management to coexist within a specific asset class, and

to align with the empirical observation that not all plans exclusively manage their assets either

25Two variables X and Y are said to be related via a power law if Y = cXβ , where c is an arbitrary constant.
Gabaix (2009, 2016) suggests that power laws are ubiquitous among economic variables such as firm or city size,
income, and wealth. While these power laws typically hold primarily in the tails of the distribution, we find the
assumption plausible across the entire distribution (see Figure 2.5).

26For private assets, we focus on active management mandates only, since the vast majority of such assets are
actively managed.
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internally or externally, we propose our fourth cost-scale hypothesis. This hypothesis tests whether

economies of scale for both management mandates (internal vs. external) are equal, i.e., that there is

an equilibrium where pension plans optimally decide whether to use internal or external investment

management for a given asset class. Additionally, this equilibrium assumes that identical scaling

technologies are applied in both internal and external asset management.

Hypothesis II (Economies of scale in investment management costs). In the context of the power

law relation in (2.3.1), the following holds:

(i) Pension plans’ investment management costs display significant economies of scale and exhibit

a concave relation to AUM: β < 1.

(ii) Economies of scale in the cost of investment management are greater for publicly traded assets

than for private asset classes: βpublic < βprivate.

(iii) For each asset class, and for both internally and externally managed accounts, passive invest-

ment management offers better economies of scale than active management: βIP ≤ βIA and

βEP ≤ βEA.

(iv) For each asset class and management mandate (active or passive), the economies of scale

cost parameter is identical for internally and externally managed assets: βIP = βEP, and

βIA = βEA.

2.3.4 Plan Size and Return Performance

Our final set of hypotheses is concerned with how return performance, both gross and net

of fees, varies across plan size, investment mandate, and asset class. Plan size can have both a

positive and a negative impact on investment performance. In particular, large plans have more

resources to search for skilled managers and monitor their return performance on a continual basis,

allowing them to better reduce the challenge of plan scale in generating higher gross returns (before

fees). Conversely, AUM can have a negative effect on gross returns as managers with more money

to invest run out of ideas. Importantly, though, this mechanism is most relevant for externally

managed assets.

Plan size will further impact investment performance net of fees positively if there are size-

able economies of scale in the cost of investment management. That is, the existence of significant
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fixed costs in asset management gives large plans a distinct advantage, especially in active man-

agement and in private asset classes. Large plans can also be assumed to possess more bargaining

power which they can use to negotiate more favorable terms with external managers. Moreover,

because large plans are more likely to have internal asset management capabilities, they can use

this as a credible “threat” or reservation point in negotiations with external managers.

Asset classes matter to this relation because of the large differences in acquiring information

and managing investments in public and private asset classes and even within these broad categories.

Information costs are generally much higher for private assets such as real estate, private equity,

and venture capital. Competition among managers of private assets is also not as fierce as that for

public asset classes such as stocks and fixed income which offer passive investment products that

help bound how high investment management fees can go.

Hypothesis III (Plan size and return performance).

(i) The largest plans earn positive investment returns both before and after fees, i.e., gross and

net return performance is an increasing function of plan size.

(ii) Net-of-fee returns are particularly strongly positively related to plan size for private asset

classes.

We next set out to test these hypotheses more formally, beginning with plans’ choice of

investment management styles (Section 2.4), moving on to investment management costs (Section

2.5), and finishing with return performance (Section 2.6).

2.4 Investment Management Mandates

This section examines the impact of plan, manager, and asset characteristics, including

plan size (AUM), investment management costs, and plan domicile, on the choice of investment

management mandate. Specifically, it assesses whether plans opt for internal or external asset

management, and whether they favor active or passive investment management. Our analysis

performs a set of regressions that use as dependent variable the proportion of investments in asset

class A, in a given year, t, that is managed by plan i in a certain strategy, denoted ωiAt and defined

in more detail below. For example, ωiAt can denote the proportion of investments in asset class
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A that are managed internally. We regress this proportion on a set of covariates, xiAt, as well as

asset-class and time fixed effects, cA and λAt:

ωiAt = cA + λAt + β′
AxiAt + ϵiAt. (2.4.1)

In practice, internal management involves substantial fixed-cost investments, including hir-

ing compliance staff and traders, IT system setup, database subscriptions, and hiring skilled invest-

ment analysts. Many plans, especially smaller ones, allocate zero assets to internal management due

to these fixed costs. Similarly, it is uncommon for plans or external managers to manage alternative

asset classes passively. The panel regression in (2.4.1) does not account for the presence of many

“zeros” in the data. It focuses on estimating plan choices between management mandates (internal

vs. external or passive vs. active) at the intensive margin. However, this approach may introduce

model misspecification because variables like plan size and management costs likely influence both

the extent to which a plan manages assets internally and whether it chooses internal management

for any of its assets.

To deal with the large number of zeros and to obtain an estimate that accounts for plans’

choice along both the intensive and extensive margins, we use the Cragg (1971) estimator. This

estimator consists of two equations, namely (i) a selection equation that estimates the probability

that a plan’s allocation choice lies on the boundary (e.g., zero internal management); and (ii) an

outcome equation that estimates the effect of a variable on the proportion of assets managed

internally for plans with at least some internal management in that asset class. More formally, the

regression model we estimate takes the form:

ωiAt = siAth
∗
iAt,

siAt = 1
[
γ′xs,iAt + εiAt > 0

]
, (2.4.2a)

h∗iAt = exp
(
λAt + β′xo,iAt + eiAt

)
, (2.4.2b)

where siAt is a selection indicator that depends on xs,iAt (covariates influencing selection) and h∗iAt

denotes the choice or outcome variable that depends on xo,iAt. If the selection indicator equals
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zero, the dependent variable ωiAt will also take a value of zero and, hence, lie on the boundary.27

Assuming that the error terms εiAt and eiAt in (2.4.2a) and (2.4.2b) are independent nor-

mal random variables with marginal distributions εiAt ∼ N(0, 1) and eiAt|xo,iAt ∼ N(0, σ2), the

conditional expectation of ωiAt given the variables xs,iAt, xo,iAt simplifies to

E (ωiAt|xs,iAt, xo,iAt) = Φ
(
γ′xs,iAt

)
exp

(
λAt + β′xo,iAt +

σ2

2

)
, (2.4.3)

where Φ(·) is the CDF of the standard normal distribution.

To gauge the effect of changing a single variable, x, on the expected value of ωiAt, we

examine the average partial effect (APE) of x:

APEx(xs,iAt, xo,iAt; γ, β) =
∂E (ω|xs, xo)

∂x

∣∣∣∣
xs=xs,iAt,xo=xo,iAt

. (2.4.4)

Since the expectation in (2.4.3) depends on both the selection and outcome equations, the APE in

(2.4.4) accounts for both the intensive and extensive margin effects of changing x and so depends

on both γ and β. Letting γ̂ and β̂ denote the maximum likelihood estimates, we can compute the

sample APE as

ÂPEx =
1

NT

N∑
i=1

T∑
t=1

APEx(xs,iAt, xo,iAt; γ̂, β̂). (2.4.5)

Intuitively, ÂPEx captures the average effect of changing x while holding all other variables con-

stant.

2.4.1 Internal versus External Management

To examine the determinants of plans’ decision on managing investments in a given asset

class internally or externally, we estimate models for the proportion of plan i’s allocation to asset

class A that is internally managed in year t, ωinternal
iAt := AUMinternal

iAt /AUMiAt, where AUMinternal
iAt

and AUMiAt refer to the internally managed and total AUM of plan i in asset class A of year t.

We consider the following variables. First, to capture plan size, we include log(AUMit−1),

the logarithm of the total dollar value of plan i’s assets under management (AUM) in year t− 1.28

27This model is more flexible than a standard Tobin (1958) model, since the variables determining selection (ex-
tensive margin) can be different from the variables driving the outcome (intensive margin) equation. Moreover, since
γ and β are decoupled, the effect of a variable on the selection and outcome equations can also be different.

28Plan AUM is typically measured at the end of the year.
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Second, we include the lagged spread in the cost of external versus internal management in asset

class A measured in basis points (CostSpreadE−I
iAt−1). Third, we include a dummy that takes a value

of one for non-U.S. plans and is zero otherwise (nonUSi) and a dummy that takes a value of one

for private plans and is zero otherwise (Privatei). Finally, we include asset class fixed effects, cA,

and year fixed effects, λAt, leading to the model:

ωinternal
iAt = cA + λAt + β1,A log(AUM)it−1

+ β2,ACostSpread
E−I
iAt−1 + β3,APrivatei + β4,AnonUSi + ϵiAt. (2.4.6)

Table 2.2 reports our regression results. To retain a parsimonious specification for the

Cragg estimator, we include only the log-size and cost spread between external and internal in the

selection equation (2.4.2a) whereas in the outcome equation (2.4.2b) we further include time fixed

effects and the dummies for whether a plan is private or public and domiciled inside or outside

the U.S. Our estimates of average partial effects are shown in columns to the right of the panel

estimates in the table.

Across all asset classes, our estimates show that larger plans employ internal management

to a significantly greater extent than smaller plans, consistent with Hypothesis I((i)). For instance,

our panel estimates in Panel A of Table 2.2 indicate that a 10% increase in plan size is associated

with roughly a one percent increase in the proportion of the plan’s stock portfolio that is managed

internally (0.83% and 1.14% for the panel and Cragg estimates, respectively). A 10% increase in

plan size is associated with a comparable but slightly bigger increase in the proportion of the plan’s

fixed income portfolio that is internally managed (1.10% and 1.77%).

For alternative asset classes we continue to see a significant association between plan size

and the proportion of those asset classes that is managed internally, but the effects are generally

not as strong as for stocks or fixed income, with the exception of private debt.

Our Cragg estimates on log-size are notably larger than the corresponding panel estimates

for both stocks and fixed income. This finding can be attributed to the fact that plan size increases

both the proportion of assets managed internally for plans already using internal investment man-

agement and the likelihood of plans transitioning from no internal management to some internal
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management. This highlights the importance of explicitly accounting for selection effects.

Panel B in Table 2.2 verifies this point by reporting estimates from the Cragg selection

regression. The table quantifies the effect of lagged AUM and the cost spread on the probability

that plans manage at least some of their investments in a given class internally. The first row of

estimates shows that plan AUM in a given asset class is a highly significant determinant of the

probability that a plan manages some of its assets internally within the asset class. All coefficient

estimates on log-size are positive, so larger plans are significantly more likely to manage some of

their assets internally, regardless of asset class. In contrast, the external-minus-internal cost spread

appears to be a far less important determinant of plans’ decision on whether to employ internal

asset management and this variable is only statistically significant for one asset class (Hedge funds

and multi assets).

The lower panel in Table 2.2 illustrates the importance of these estimates by reporting

the probability that a plan manages some of its assets internally as we vary the plan size from

the 10th through the 50th and 90th percentiles of the 2019 AUM distribution. We keep the cost

spread at its average value in these calculations, although this is not important given that the cost

spread does not have a big effect on the results. For stock holdings, we find that small plans (in

the 10th percentile of the AUM distribution) have a 13% chance of managing some of their stock

portfolio internally. This rises to 34% for medium-sized plans and to nearly 66% for plans in the

90th percentile of the size distribution. Hence, large plans are five times more likely to manage

some of their stock holdings internally than small plans. Similarly, large plans are almost three

times more likely to manage some of their fixed income holdings internally than small plans (72%

versus 29%).

Small plans rarely manage private assets internally, except for real assets (12.82%). Specifi-

cally, the Cragg probability estimates vary from 0.50% to 9% for plans located at the 10th percentile

of the size distribution. These probability estimates rise notably to between one-tenth (10.59% for

hedge funds) to one-half (52.56% for private debt) for the largest plans, i.e., those in the 90th

percentile of the size distribution.

These estimates are all consistent with Hypothesis I((i)). Moreover, our estimates are also

consistent with relatively modest fixed costs of setting up internal management shops in stocks and

bonds, as compared to doing so for alternative asset classes (such as private equity) that require
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more specialized skills and knowledge, as well as more costly connections to external sources of

information. Consequently, it is rare for small plans to manage their alternative assets internally.

To summarize, our findings suggest that plans’ decision to overcome the hurdle of managing

at least some of their investments in a given asset class internally is mainly determined by plan

size, whereas the cost spread (external versus internal) is not as important (of course, interpreted

with caution due to the endogeneity of internal management as a function of costs). Conversely,

for plans that have decided to manage some of their assets internally, the cost spread is important

for how large a proportion of their assets they manage internally.29

We now turn to the estimation of average partial effects. Equation (2.4.3) shows that the

average partial effect is a nonlinear function of the covariates. The effect of changing plan size or the

cost spread therefore depends on the initial value from which the variable is changed. Specifically,

consider the APE when a specific covariate, xiAt, takes on the value ξ:

ÂPEx(ξ) =
1

NT

N∑
i=1

T∑
t=1

APEx(x̃s,iAt, x̃o,iAt; γ̂, β̂), (2.4.7)

where x̃o,iAt = [xo,iAt\xiAt, ξ] is the vector of variables in the outcome equation with xiAt = ξ and

x̃s,iAt is defined similarly. For example, (2.4.7) can used to calculate the APE when log(AUM)it−1

is set at its 10th percentile. To examine if nonlinearities are economically important, we evaluate

partial effects at the 10th and 90th percentiles and test if the difference between the two estimates

is statistically significant.

Results from this analysis applied to the size and cost spread variables are presented in

Panel A of Table 2.3. For the size variable, the APE is larger by an order of magnitude for the

largest plans (90th percentile) than for the smaller ones (10th percentile). For example, going from

a plan with a small stock portfolio (10th percentile) to a plan with a large stock portfolio (90th

percentile), our estimates suggest that the two plans will increase the proportion of their internally

managed stocks by 0.38% and 3.19%, respectively. Moreover, these differences are statistically

29For stocks, as the cost spread increases by 100 bps, the allocation to internal management is predicted to increase
by 12.2% (15.3%) based on the Cragg (panel) estimates. For fixed income this effect is bigger at 30.3% (23.8%). The
estimated coefficients on the cost spread have the wrong sign and fail to be significant for private equity and private
debt. Conversely, the effect is positive for hedge funds and real assets, but insignificant. However, the choice of
internal management is endogenous to cost differences, and the composition of externally managed assets can change
when internal management is employed, thus making a clean interpretation of the cost spread coefficient difficult.
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significant for the public asset classes, and positive for all private asset classes. Hence, big plans

are disproportionately more likely to move public assets from external to internal management as

they grow larger.

For the cost spread, plans that pay the highest costs (90th percentile) for management

of their fixed income assets are significantly more likely to move assets from external to internal

management than the plans that pay the lowest costs (10th percentile). This makes good sense

since the low-cost group has a weaker incentive to switch from external to internal management as

they already pay relatively low costs. For the other asset classes, the APE of the cost differential

fails to be significant.

2.4.2 Active versus Passive Management

We next use our framework to examine the determinants of plans’ decisions to use active

or passive management in different asset classes. Let ωactive
iAt := AUMactive

iAt /AUMiAt be the fraction

of investments in asset class A that is actively managed by plan i in year t. We use this as our

dependent variable in a set of panel regressions

ωactive
iAt = cA + λAt + β1,A log(AUM)it−1

+ β2,ACostSpread
A−P
iAt−1 + β3,APrivatei + β4,ANonUSi + ϵiAt, (2.4.8)

with all variables previously defined, except CostSpreadA−P
iAt−1, which denotes the basis point spread

between the cost of active and passive management for plan i in asset class A at time t−1. Because

the vast majority of plans do not use passive management in alternative asset classes, we only have

sufficient data to report estimates for stocks, fixed income and real assets.

Table 2.4 reports estimates from the panel regressions in (2.4.8) as well as for the Cragg

estimator using the same format as in the previous subsection. For stock portfolios, we find that

larger plans manage a significantly higher proportion of their stock holdings passively, as both the

panel and Cragg estimates of the coefficients on log-size are negative and statistically significant.

For every 10% increase in plan size, the proportion of stock holdings managed passively increases

by about 0.4%. Also, a higher spread in the cost of managing stocks actively rather than passively

is associated with a large and highly significant negative effect on the proportion of stock holdings
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managed actively. Specifically, the Cragg estimate suggests that raising this cost spread by 100

bps is associated with a 33% increase in the proportion of plans’ stock holdings that are passively

managed. Private plans also manage significantly more of their stock portfolios actively than public

plans do.

For fixed income holdings, we find some evidence that larger plans manage a slightly higher

proportion of their assets actively, as the Cragg APE estimate of log-size is significantly positive.

However, the effect is small and the panel estimate is insignificant. The Cragg APE estimate on

the cost spread is highly significant and negative, suggesting that higher active management costs,

measured relative to passive management costs, lead plans to significantly increase the proportion

of their passively managed fixed income holdings.30

Plans can mitigate the higher costs of active investment by transitioning from external

active management to internal active management, which is typically more cost-effective. This

strategy is likely to be particularly appealing for the largest plans with the greatest capacity for

overcoming the fixed costs of setting up internal management. To explore if this holds in our data,

we examine the proportion of plans’ actively managed stock and bond portfolios that are managed

internally in the right panel of Table 2.4.

For both stock and fixed income holdings, we find that the estimated coefficient on log-size

is positive and highly significant. Hence, an increase in plan AUM is associated with a significantly

higher allocation to that part of plans’ actively managed portfolios that is managed internally,

consistent with Hypothesis I((ii)). A higher spread in the costs of active versus passive management

also leads to plans internalizing more of their actively managed stock and fixed income portfolios.

Table 2.4 also reports estimates on dummies for whether a plan is private or public and

whether a plan resides in the U.S. or outside the U.S.. Our Cragg estimates show that private

plans tend to allocate approximately 4.8% more of their stock holdings to active management than

their public peers while we find no significant difference between U.S. and non-U.S. plans. For

fixed income holdings, we find that non-U.S. plans manage 9.8% less of their fixed income holdings

actively than U.S. plans.

While many plans mix different management mandates at the asset class level (e.g., external

30For real assets, we find a negative relation between plan size (AUM) and the proportion of actively managed
assets, but the estimated effect is small and insignificant. This finding reflects that very few plans in our dataset
manage real assets passively and, for those that do, predominantly in one sub-asset class, namely REITs.
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active and external passive management of their stock portfolio), they mostly choose a single

management mandate at the sub-asset class level. In other words, it is common to find asset

managers that employ internal passive management for their U.S. Large cap portfolio and external

active management for their emerging market stock portfolios, but it is rare to see managers that

simultaneously employ different management mandates for their U.S. large cap portfolio. In those

cases where plans mix multiple management mandates for a particular sub-asset class, this tends

to be done exclusively by the largest plans.

Finally, we consider again the APE estimates evaluated at different percentiles of the size

and cost spread distribution. Our estimates are presented in Panel B of Table 2.3. Most of the

differences in APE estimates are statistically insignificant. Plans paying the highest costs for active

equity management (90th percentile) are more likely to move their stock holdings from active

to passive management than are plans paying the lowest costs (10th percentile)—a point that is

driven by externally managed holdings. Interestingly, the rightmost column in the table shows

that, for fixed income investments, the largest plans (90th percentile) are considerably more likely

than smaller plans (10th percentile) to switch from external active management to internal active

management as they grow larger.

2.4.3 Asset Allocation Decisions

To examine if plans’ asset allocation decisions are consistent with Hypothesis I((iii)), we

conduct a set of panel regressions that use as dependent variable the weight of asset class A for

plan i in year t, ωiAt = AUMiAt/AUMit, which we model by:

ωiAt = cA + λAt + β1,A log(AUMit−1) + β2,ACostiAt−1

+ β3,APrivatei + β4,AnonUSi + β5,ALiabilityRetireeit + ϵiAt. (2.4.9)

The list of regressors is similar to that adopted earlier with two exceptions. First, our cost variable

(CostiAt−1) is now the lagged per-dollar cost for plan i in asset class A measured as a fraction of

AUM and denoted in bps. Second, we also control for liability-related effects on asset allocation

decisions by including LiabilityRetireeit, the fraction of a plan’s total liabilities owed to retirees.
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We do so because plans are likely to consider their liability structure when deciding how much

to allocate to asset classes with different risk characteristics. For example, more mature plans

may allocate a larger fraction of their portfolio to fixed income. Because only a subset of plans

report data on liabilities, including this as a covariate results in a substantial decline in sample size.

We therefore report in Table 2.5 results both with (Panel B) and without (Panel A) this variable

included.

We find evidence largely consistent with our empirical prediction as larger plans allocate sig-

nificantly less of their portfolios to stocks, fixed income, hedge funds, and private debt. Conversely,

they allocate a significantly greater share of their investments toward private equity and real assets.

These findings hold regardless of whether we estimate our panel regressions on the larger sample

(top panel), or on the smaller sample that controls for plan liabilities (bottom panel).31

Investment management costs are also an important driver of plans’ asset allocation deci-

sions. We obtain negative and highly significant estimates on the cost variable for five of the six

asset classes with the sixth (private debt) being insignificant. Coefficient estimates vary greatly

across asset classes; by far the highest estimate is obtained for fixed income (-20.10) and stocks

(-7.11) with smaller estimates for hedge funds and multi assets (-1.65) and, in particular, real assets

(-0.44) and private equity (-0.11). In contrast, the estimates of the LiabilityRetiree variable in the

bottom panel of Table 2.5 are statistically insignificant across all asset class specifications, except

for stock investments.

2.5 Investment Management Costs

Our above results indicate that plan size plays an important role in determining the choice

of investment management mandate. In concert with these choices, plan size is likely to be a key de-

terminant of investment management fees/costs, as larger plans benefit from internal management

scale economies and possess greater bargaining power to negotiate external management fees. This

section explores the role of plan size in determining investment management costs across different

asset classes and investment management mandates. Our focus is on how larger plans can use the

threat of internal management to establish bargaining power with external managers, particularly

in asset classes with relatively low fixed costs of setting up such management.

31Our estimates are consistent with the findings reported in Dyck and Pomorski (2011).
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Taking logs in the power law equation in (2.3.1), we obtain a linear relation between the

log-cost and log-AUM whose slope measures the economies of scale coefficient, β. To see if this is

a suitable characterization of the cost-size relation in our data, Figure 2.5 provides log-log plots of

AUM versus costs for stocks and fixed income portfolios across the four investment management

mandates. These plots suggest that the power law provides a good approximation to the cost-size

relation. The slope is notably flatter for passively managed portfolios than for active ones consistent

with larger economies of scale (lower β) for passive than for active management of both stock and

fixed income accounts.

Generalizing the power law relation in (2.3.1) to allow for additional determinants of costs,

we examine the following model32

Cost$iats = (AUMiats)
βAs exp (cAs + λAts + γ1,AsPrivatei + γ2,AsnonUSi) exp(εiats) , (2.5.1)

where Cost$iats (AUMiats) is the dollar cost (AUM) of plan i in sub-asset class a at time t for

mandate s, cAs is a constant that varies across asset classes A and mandate s, λAts is a time fixed

effect for asset class A and mandate s, Privatei is a dummy equal to one if plan i is private and

nonUSi is a dummy equal to one if plan i is domiciled outside the U.S. Taking logs in (2.5.1), we

obtain the following panel model which allows us to estimate the power law coefficient, βAs:
33

log(Cost$iats) = cAs + λAts + βAs log(AUMiats) + γ1,AsPrivatei + γ2,AsnonUSi + εiats. (2.5.2)

We estimate this model at the sub-asset class level to leverage the granularity of the data provided

by CEM, significantly increasing the sample size compared to simply using less-granular asset class

level data. Notice, also, that we impose homogeneity in the power-law coefficient within each asset

32Bikker (2017) uses different cost functions to show that average costs are decreasing in size and that investment
costs are U -shaped. Related to this, Alserda, Bikker, and Lecq (2018) find large economies of scale for administrative
costs, and diseconomies of scale for investment costs.

33We include time fixed effects but not plan fixed effects in (2.5.2). Because AUM varies a lot across plans and
is highly persistent, including plan fixed effects would make it difficult to estimate the size-cost relationship. For
example, a high-profile pension plan with hundreds of billions of dollars in AUM is likely to face very different
investment costs compared to a much smaller plan with a few hundred million dollars in AUM and plan fixed effects
are likely to capture this.
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class (across its sub-asset classes) so that information from all sub-asset classes is used to estimate

the economies of scale parameter for the associated asset class.

The top panel in Table 2.6 shows estimates of (2.5.2) obtained for the different management

mandates at the asset class level. First, consider the two public asset classes, stocks and fixed

income, for which we have sufficient data to consider all four management mandates. Across both

asset classes and for all four management mandates, our estimates of β are less than unity and,

consistent with Hypothesis II((i)), we reject the null hypothesis of no economies of scale, β1,As = 1.

Turning to the importance of investment mandate for scale economies, our estimates of

βAs are around 0.75 for passively managed stocks and fixed income assets but closer to 0.90 for

actively managed accounts in these asset classes. This suggests that economies of scale are much

higher for passively managed than for actively managed public assets. This result seems intuitive,

since it is much easier to scale-up an index investment than an active strategy (consistent with the

conjecture of Berk and Green (2004)). Our finding that passive management lends itself better

to scaling than active management is also consistent with Hypothesis II((iii)) and seems highly

plausible.34 Our estimates of the power law coefficients are very similar within active or within

passive management, regardless of whether assets are managed internally or externally. The choice

of passive versus active management is thus more important to economies of scale than is the

decision for whether to manage assets internally or externally.

Turning to the four alternative asset classes, passive management is uncommon, so we

only report estimates for internal active and external active mandates.35 Table 2.6 shows that

the estimates of β are generally higher than those obtained for stocks and fixed income, averaging

0.95 and ranging from 0.91 to 1.01. This finding is consistent with Hypothesis II((ii)), suggesting

somewhat lower scale advantages in unit investment costs for alternative asset classes, compared

with publicly traded assets.36

34Passive investment management relies heavily on computer algorithms that are easy to scale up. Passive portfolios
may venture into more sub-asset classes as they grow in size in order to limit any adverse market impact, but this
is unlikely to raise costs by much. Conversely, active investment management is more labor intensive, and more
adversely affected by the market impact of trading and, thus, more difficult to scale up.

35For hedge funds and multi assets, there are only 140 observations of internal active management, so we do not
report IA estimates for this case.

36This finding is consistent with the far more labor-intensive process of managing specialized asset classes such as
private equity. For these asset classes, there is generally no reliable public price that aggregates market information
in the same way as for stocks and fixed income, making scaling more difficult and passive management infeasible.
The main exception is REITS within the real asset class, but again we do not have a sufficient number of data points
on this sub-asset class to conduct a meaningful analysis.
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We next consider, in columns two and three of Table 2.6, investment management cost

differences between private vs. public and U.S. vs. non-U.S. plans, respectively. There is evidence

that private plans incur higher costs than public plans in the internal and external management of

stocks and fixed income assets. We find very little evidence of notable differences in private and

public plans’ costs of passively managing stocks or fixed-income, as well as managing alternative

assets, either internally or externally. Non-U.S. plans pay significantly higher costs, on average,

than U.S. plans for both internal and external passive management of stocks and fixed income

assets, but pay lower fees for management of these asset classes in external active accounts. Among

the alternative asset classes, non-U.S. plans pay significantly higher fees for internal active man-

agement of private debt and real assets but they incur significantly lower costs for external active

management of private debt as compared to their U.S. peers.

To formally test Hypothesis II that there are statistically significant differences in scale

economies between internal/external and passive/active management, respectively, we estimate a

model that pools observations across the four management mandates s:

log(Cost$iats) = cAs + λAts + β1,AsDummys + β2,As log(AUMiats)

+ β3,AsDummys × log(AUMiats) + β4,AsPrivatei

+ β5,AsnonUSi + εiats, (2.5.3)

where each of the dummy variables Dummys equals one if s ∈ {IA, EA, EP}. The fourth investment

management mandate (IP) is treated as the benchmark so all effects are measured relative to this

case. For example, for internally managed assets Dummys = 1 if s = IA and zero otherwise so this

dummy allows us to estimate the differential impact of internal active management on cost relative

to the benchmark of internal passive management. We can test the null hypothesis of no scale

differences between internal passive and internal active management by examining the significance

of β3,As.

We present the results of these tests in the bottom three rows of Table 2.6. For stocks

and fixed income, we cannot reject the null hypothesis of equal returns to scale for internal and

external passive management, in line with Hypothesis II((iv)). Moreover, we cannot reject the
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null hypothesis that cost economies of scale are identical across internal and and external active

mandates for three of five asset classes, the two exceptions being fixed income and real assets.

For fixed income assets, internal active management is associated with significantly higher scale

economies than external active management (βIA = 0.84 versus βEA = 0.94), while for real assets

internal active management has weaker scale economies than external asset management (βIA =

1.01 versus βEA = 0.92). Hence the empirical evidence is mixed in relation to Hypothesis II((iv)).

Finally, in the bottom row we report p-values for a one-sided test of equal economies of scale

in passive and active management for stock and fixed income portfolios against the alternative that

cost economies are bigger for passively managed than for actively managed accounts. Consistent

with Hypothesis II((iii)) we reject the null hypothesis for both stocks and fixed income, which

indicates that larger plans, in particular, can achieve significant cost economies by switching from

active to passive management.

In summary, our results demonstrate that scale economies in asset management costs vary

along two important margins: (i) management mandate (IP, EP, IA, EA); and (ii) asset class. To

help quantify the economic importance of variation in costs along these margins, the right panel

of Table 2.6 reports management costs for small, medium, and large plans, represented by the

10th, 50th, and 90th percentiles of the (2019) AUM distribution for a given mandate and asset class

combination. These columns summarize the economic effect on costs of the full set of coefficient

estimates from our analysis.

Several important points emerge. First, internal passive management leads to substantial

cost savings for both stocks and fixed income investments, with external passive management being

roughly twice as costly as internal passive management. Second, internal active management costs

are lower than external active management costs by an order of magnitude both for publicly traded

assets (stocks and fixed income) and also for private asset classes, especially private equity.

Third, there are particularly strong economies of scale across stocks and fixed income ac-

counts, as demonstrated by the significantly lower per-dollar unit cost of plans in the 90th percentile,

compared with plans in the 10th percentile of the size distribution. Economies of scale are gener-

ally far smaller for actively managed private asset classes, regardless of whether these are managed

internally or externally.

We also estimate (2.5.2) separately for each sub-asset class, using only those sub-asset classes
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that contain a sufficiently large number of observations to allow us to obtain accurate estimates.

In Appendix Table B.9, we find that the cost economy of scale estimates are in line with those

obtained for the broader asset classes. Economies of scale are notably larger (i.e., β estimates are

lower) for passive management of EAFE and U.S. broad stock mandates, as well as for inflation-

indexed bonds. In turn, scale economies are much lower for diversified private equity, real estate,

and REIT accounts.

2.6 Investment Performance and Plan Size

Next, we examine how plan characteristics, such as plan size, affects investment perfor-

mance. As we have seen, plan size is a key determinant of costs. In this section, we explore

whether plan size also influences the ability of plans to identify the best-performing asset managers

and their bargaining power for net return performance after costs – a crucial question for plan

beneficiaries.

A unique feature of our data is that it contains “policy returns” for each plan/sub-asset

class/mandate (e.g., an internal active mandate) combination. Policy returns are negotiated targets

between fund managers and plan sponsors, and can be used as a simple form of risk-adjustment.37

Specifically, let riat be the return of plan i in sub-asset class a during year t, while rPiat is the

associated policy return for the same plan, sub-asset class, and time period. The policy-adjusted

return, r̃iat, is then
38

r̃iat = riat − rPiat. (2.6.1)

2.6.1 Return Regressions

We examine the relation between plan characteristics and investment performance through a

set of panel regressions that use policy-adjusted returns as the dependent variable. These regressions

are estimated separately for each of our asset classes using plan-year sub-asset class returns as the

unit of observation, and thus take the form:

37This simple, but powerful method for risk-adjusting is especially important for our sample, where many plans
are represented for only one or a few years. In subsection 2.6.2, we explore robustness of our results to using a more
conventional risk-adjustment approach based on plans’ exposure to a set of common risk factors.

38Appendix B.4 reports summary statistics for raw returns and policy-adjusted returns.

87



r̃iat = ca + λAt + β1,A log(AUMiat−1)

+ β2,APrivatei + β3,AnonUSi + β′
4,Axiat + ϵiat, (2.6.2)

where r̃iat denotes the policy-adjusted gross or net return on plan i’s holdings in sub-asset class

a ∈ A in year t, ca denotes a sub-asset class fixed effect, and λAt is an asset-class time fixed effect.39

Although we use returns at the sub-asset class level, we impose that the coefficient estimates, βA,

are the same within a particular asset class, A. xiat contains a set of control variables that include

ωExternal
iat (the share of external management), ωActive

iat (the share of active management), and a

dummy equal to one if plan i pays a performance fee at time t in sub-asset class a (Performiat). To

not confound the impact of plan size with the choice of external and active management on returns,

we include the latter as controls. Then, in Section 2.7, we use a matching approach to rigorously

estimate the effect of external and active management on returns.

Panel A in Table 2.7 presents our estimates from regression (2.6.2), applied separately

to gross returns (top) and net returns (bottom). This allows us to examine whether differences

in investment performance are explained by differences across plans in costs and fees, as well as

differences in pre-fee alphas.

First, consider the relation between plan size and return performance for the two public

asset classes. Large plans generate significantly higher policy-adjusted gross returns for stocks

than small plans, and this effect is more pronounced for net returns, consistent with Hypothesis

III. Specifically, going from a plan ranked in the 10th percentile to a plan ranked in the 90th

percentile of the AUM of 2019 plan stock holdings increases the expected policy-adjusted gross and

net returns by 26 and 41 bps/year, respectively (see top of Panel B). This is consistent with larger

plans exploiting their ability to identify skilled managers and their bargaining power to retain some

of the alpha, as implied by Hypothesis III((i)).

The size-return relation is stronger among alternative asset classes, particularly for private

equity investments. Moreover, the coefficients on size are bigger for net returns than for gross

returns, consistent with large plans not only earning higher gross returns in these asset classes than

39λAt can help absorb omitted risk factors provided that plan exposures to such factors are relatively homogeneous.
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smaller plans, but also paying lower management costs. Differences in the net return performance

of large and small plans are economically large. Specifically, going from a plan in the 10th percentile

of the 2019 AUM asset class distribution to a plan in the 90th percentile is associated with increases

in mean net policy-adjusted returns of 109 bps/year (hedge funds and multi asset), 419 bps (private

equity), 79 bps (private debt), and 122 bps (real assets).40 As a robustness check, we also compute

the increase in policy-adjusted gross and net return based on portfolio sorts. In particular, we form

equally-weighted portfolio returns based on the bottom 30th and upper 70th size percentile within

each year.41 We then calculate the time series average return for portfolios sorted on size. The

bottom rows of panel B in Table 2.7 show that the size effect is broadly similar to the estimates

based on the panel regression, particularly after accounting for the fact that the portfolios do not

go as far out in the tail of the plan size distribution as the panel estimates.

Because we have fewer data points on the alternative asset classes, we also explore a spec-

ification that pools return data across all plans, alternative asset classes and years and imposes

homogeneous slope coefficients:

r̃iat = ca + λt + β1 log(AUMiat−1) + β2Privatei + β3nonUSi + β′
4xiat + ϵiat. (2.6.3)

By assuming that the coefficients are the same across alternative asset classes, this speci-

fication uses far more data points which can increase the precision of our estimates. Results are

shown in the “Alt” column of Table 2.7. We find a significantly positive relation between plans’

log-AUM and policy-adjusted gross and net returns. Again, the coefficient on size is larger for net

returns than for gross returns, consistent with some of the higher net returns earned by the largest

plans stemming from their ability to better exploit economies of scale and reduce costs consistent

with Hypotheses III((i))-((ii)).

Given the significantly positive association between policy-adjusted net returns and log-size

observed for five out of six asset classes, we would also expect to find a positive and significant

40For gross returns the magnitude is somewhat smaller, as we find increases of 26 bps (stocks), 2 bps (fixed income),
71 bps (hedge funds and multi assets), 303 bps (private equity), 75 bps (private debt), and 76 bps (real assets) per
year.

41We use the 30th and 70th percentile instead of the 10th and 90th percentile to increase the number of observations
within a year.
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association between log-AUM and plans’ total portfolio performance (i.e., the overall performance

of a pension plan). We explore if this relation holds by estimating the following panel model for

plan-level total portfolio returns:

r̃it = λt + β1 log(AUMit−1) + β2Privatei + β3nonUSi + β′
4xit + ϵit, (2.6.4)

where r̃it is the policy-adjusted return on plan i’s total assets in year t, gross or net of costs.

The “Total portfolio” column in Table 2.7 shows that larger plans obtain modestly higher policy-

adjusted gross and net returns. For example, moving from the 10th to the 90th percentile plan as

ranked by total AUM is associated with an increase in policy-adjusted net total-portfolio returns

of 23 bps per annum.

2.6.2 Risk-adjusted Return Performance

Policy returns constitute a natural benchmark against which to measure individual plans’

return performance. However, it is more common to measure investment performance by adjusting

for plans’ exposure to a small set of risk factors. Such an approach is not feasible here, however,

because most plans have short return records in the CEM database.

As an alternative to conducting plan-level risk adjustments, for each asset class, we form

equal-weighted portfolios that comprise up to 29 years of annual plan-level returns. We refer to

this equal-weighted aggregate return for asset class A in year t as r̄At and use it to estimate the

following risk-adjustment regression:

r̄At − rft = αA + β′
AFAt + ϵAt, (2.6.5)

where rft is the risk-free rate and FAt refers to the risk factors used for asset class A. We consider

both the Fama and French (1993) three-factor model and the seven-factor model of Fung and Hsieh

(2001) which includes the market excess return, a bond trend, currency trend, commodity trend,

size spread, bond market and credit spread. The risk factor regressions provide a very good fit for

stocks, fixed income, and hedge funds and a somewhat poorer fit for plans’ returns in the three

remaining alternative asset classes. Appendix B.4.4 provides further details.
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Repeating the earlier analysis from Table 2.7 on the plan-year risk-adjusted returns, we

find results that are broadly in line with those obtained for the policy-adjusted returns. The last

four columns in Table 2.7 shows results for stocks, fixed income, alternative assets and the total

portfolio. We find that the largest plans continue to produce significantly higher risk-adjusted

returns on the alternative asset classes both on a gross and net of cost basis. Using risk-adjusted

returns also leads to higher coefficient estimates on the size variable for fixed income and total

portfolio returns.

2.7 Investment Management Style, Costs, and Return Perfor-
mance

As we have described throughout this paper, pension plans must decide whether to manage

their investments within a given sub-asset class internally or externally, as well as actively or

passively. This decision reflects a variety of plan characteristics, particularly plan size (AUM) and

sub-asset class, with some sub-asset classes lending themselves more easily to passive and internal

management than others. In this section, we analyze how such decisions affect plan performance

in the form of management costs and benchmark-adjusted returns. In doing so, we recognize that

the estimation of the effect of plans’ decisions on management styles and the resulting expected

performance is endogenous. For example, a large plan might use its resources to identify a genuinely

skilled external active manager, and bargain for lower fees rather than switching to lower-cost

internal active management or even passive management. Plans may also switch management style

because of external shocks affecting all plans within a given sub-asset class.

2.7.1 A Matching Estimator

We believe that a “gold standard” for estimation of the effect of plans’ management style

decisions on plan performance comes from the literature on treatment effects and matching esti-

mators. The idea is to compare the performance in a given asset class of two otherwise similar

plans where one plan switches from, say, external to internal management, while the other plan

continues to manage its assets externally. Key to this type of matching estimator is, first, to obtain

an accurate match, and, second, that there are a sufficient number of cases (switches) to allow

us to accurately estimate any performance differences between the two types of plans. Provided
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that these conditions hold, the advantage of the resulting estimator is that, under a set of well-

understood conditions, it controls for differences in any confounding factors that can vary across

plans and asset classes.

Specifically, to account for the endogeneity of plans’ asset management decisions and the

presence of confounding factors, we adopt the difference-in-differences estimator recently proposed

by Imai, Kim, and Wang (2021). The chief advantage of this estimator is that it can handle

unbalanced panels such as ours and datasets with a small time-series dimension. It also allows

units to switch treatment status over time. All of these are features we observe in the CEM data.

We use the effect of management style on plan cost as our lead example, but our analysis is

parallel for policy-adjusted returns. First consider the effect of internal management on the cost (in

bps) of plan i in sub-asset class a at time t, Costiat. Using the potential outcomes framework of Im-

bens and Rubin (2015), define the average effect of switching from external to internal management

on management costs

∆Cex→in := E
(
Costiat(Internaliat = 1, Internaliat−1 = 0)

− Costiat(Internaliat = 0, Internaliat−1 = 0)|Internaliat = 1, Internaliat−1 = 0

)
, (2.7.1)

where Costiat(Internaliat = 1, Internaliat−1 = 0) is the potential cost outcome of a plan switching

from external management at time t−1 to internal management at time t, whereas Costiat(Internaliat =

0, Internaliat−1 = 0) denotes the potential cost for the same plan not switching management style.42

To account for unobserved confounding variables such as bargaining power, we rely on the

following parallel trend assumption

E (Costiat(Internaliat = 0, Internaliat−1 = 0)− Costiat−1|Internaliat = 1, Internaliat−1 = 0, xiat)

=E (Costiat(Internaliat = 0, Internaliat−1 = 0)− Costiat−1|Internaliat = 0, Internaliat−1 = 0, xiat) .

(2.7.2)

In our analysis, xiat contains the following time-varying (potentially confounding) controls:

42In the language of the treatment effect literature, Equation (2.7.1) represents the average treatment effect on the
treated.
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• AUMiat: total AUM allocated by plan i to sub-asset class a at time t

• Activeiat: an indicator for whether plan i manages sub-asset class a actively at time t

• Privatei: an indicator for whether plan i is private

• nonUSi: an indicator for whether plan i is domiciled in the U.S.

• sub-asset class a at time t.

The parallel trend assumption (2.7.2) stipulates that the change in management cost is equal be-

tween the treatment group (plans switching from external to internal management) and the control

group (plans continuing with external management) in the absence of treatment (Internaliat = 0),

once we condition on xiat. These observed variables allow us to control for differences in costs in-

duced by plan size (captured by AUMiat), active vs. passive management (captured by Activeiat),

public vs. private plans (captured by Privatei), U.S. vs. non-U.S. plans (captured by nonUSi), and

sub-asset class heterogeneity. We include the latter as a control to impose that plans can only be

matched within the same sub-asset class because of the large heterogeneity in costs (and potential

confounding variables) across different sub-asset classes.43 Intuitively, our matching approach can

therefore be thought of as providing an estimate of the “pure” effect on cost of choosing internal

management as opposed to external management after controlling for plan size, differences across

sub-asset class, and other plan characteristics.

We also consider estimating the reverse effect of a switch from internal to external manage-

ment:

∆Cin→ex := E
(
Costiat(Externaliat = 1,Externaliat−1 = 0)

− Costiat(Externaliat = 0,Externaliat−1 = 0)|Externaliat = 1,Externaliat−1 = 0

)
,

43Note that the parallel trend assumption rules out potentially time-varying omitted confounding variables that
affect both management costs and the choice of external management. Once the set of potentially confounding
variables is specified, treatment and control units are matched based on their propensity score, which is a measure
of how similar the plans are along the variables contained in xiat. Finally, an estimate of the effect of internal
management on cost is obtained by forming an average between treatment and control units in the matched set. See
Imai, Kim, and Wang (2021, Equation 18). We use the PanelMatch package in R developed by these authors to carry
out the estimation.
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where Costiat(Externaliat = 1,Externaliat−1 = 0) is the potential cost outcome of a plan switching

from internal management at time t−1 to external management at time t, whereas Costiat(Externaliat =

0,Externaliat−1 = 0) denotes the cost for the same plan that sticks with internal management.

2.7.2 Cost Estimates

We begin our analysis by applying the matching estimator to the cost data. Results from

the matching estimator are shown in Panel A of Table 2.8. We find that switching from external

to internal management (top row) is associated with substantial cost savings, especially in private

asset classes. For stocks and fixed income, a change from external to internal management leads to

a decrease in cost of 3 bps/year and 5 bps/year, respectively, while, in private markets, cost savings

are 320 bps/year (private equity), 26 bps/year (private debt), and 47 bps/year (real assets).44

Aggregating across all alternative asset classes, we obtain an estimate of 56 bps/year in cost savings.

When pooling all asset classes (“All”) we obtain a cost savings estimate a little over 4 bps/year.

This estimate is closer to the savings for the public asset classes, reflecting their importance in

plans’ portfolios.

In the data, there are also a number of plans that switch from internal to external man-

agement. We analyze the effect on cost of this reverse switch using the same methodology. Panel

A of Table 2.8 shows that costs significantly increase when plans switch from internal to external

management. Management costs increase by 7 bps/year for stocks, 5 bps/year for fixed income,

and by 24–96 bps/year in the alternative asset classes. Across the alternative asset classes, a switch

from internal to external asset management is associated with a 54 bps/year increase in costs –

essentially mirroring the cost savings estimate (55 bps/year) for the reverse external-to-internal

switch. Interestingly, the total portfolio-level increase in costs associated with a switch from inter-

nal to external management is somewhat higher than the cost savings associated with the reverse

switch (18 bps versus 4 bps).

In summary, our matching estimates indicate that switching from external to internal asset

management leads to modest cost savings for public asset classes, but very large cost savings for

private asset classes, while the reverse shift from internal to external asset management leads to

modestly higher costs for stocks and bonds and significantly higher management costs for alternative

44We omit hedge funds and and multi-assets since our sample contains too few plans in these asset classes that
switch between external and internal management.
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assets. We note that the smaller cost savings for public asset classes are multiplied by the large

allocations of DB plans to them.

We next consider the effect on costs of switching between active and passive management.

We limit our analysis to the three asset classes (stocks, fixed income, and real assets) for which we

have a sufficiently large number of transitions to facilitate accurate estimation. Our estimates are

shown in the three rightmost columns of Table 2.8.45 We find that switching from active to passive

management reduces costs by around 9 bps/year for stocks and real assets and by 2 bps/year for

fixed income, consistent with the low overall level of fees for this asset class. All estimates are

statistically significant.

Conversely, a switch from passive to active management leads to a significant increase in

costs. As before, the estimated effect is most pronounced for stocks (15 bps/year) and real assets

(16 bps/year), and smaller for fixed income (5 bps/year).

2.7.3 Return Performance

To analyze the effect of internal versus external and active versus passive management on

return performance, we adopt our matching methodology to policy-adjusted returns. In this case,

we use as conditioning variables the previous year’s AUM in sub-asset class a (AUMiat−1), as well

as the current sub-asset class for matching to ensure that treated and control observations have

similar covariate values.46

Panel B of Table 2.8 shows that a switch from external to internal management leads to a

significant increase in gross and net return performance for all asset classes, except private debt,

where the estimate is insignificant due to a very small number of transitions. In all cases, the effect

is larger for net returns due to the associated decrease in cost. For stocks and fixed income, a switch

from external to internal management is accompanied by an increase in net policy-adjusted returns

of 108 bps/year and 47 bps/year, respectively. For two of the three private asset classes, the effect

is more pronounced, with increases in policy-adjusted net returns of 255 bps/year (private equity)

and 194 bps/year (real assets). For alternative asset classes as a whole, switching from external to

internal asset management is associated with an increase in net returns of 198 bps/year. Similarly,

45We use the same set of potentially confounding variables xiat as for the internal/external estimates, except we
replace Activeiat with Externaliat to control for heterogeneity in costs associated with external management.

46I.e., we impose that treatment and control units are only matched within the same sub-asset class, as in Section
2.7.1.
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when pooling all asset classes, the estimated effect on net portfolio-level returns from switching

from external to internal management is 93 bps/year. We note that these yearly increases in return

performance, for plans that move from external to internal management, are consistent with the

need for such plans to justify the fixed costs of setting up internal management.

The bottom rows of Panel B in Table 2.8 also show the effect of changing from internal to

external management. For the alternative asset classes, we find a decrease in return performance,

both gross and net of fees ranging from -578 bps/year to -60 bps/year for net return performance

in private equity and real assets, respectively. Overall, across all alternative asset classes, we find

a decline in net return performance of 202 bps/year which, again, mirrors the estimate (198 bps)

from the reverse switch.

The deterioration in return performance from a switch toward external management does

not carry over to public asset classes. Instead, we find that a switch from internal to external

management raises average net policy-adjusted returns by 139 bps/year for stocks, and by 26

bps/year for fixed income, although the latter estimate is insignificant.

For the total portfolio, our estimate suggests a small and statistically insignificant improve-

ment of 22 bps/year in net return performance following a switch from internal to external asset

management. This is substantially lower than the improvement of 93 bps/year observed for the

reverse switch (external to internal management).

These results suggest the following. First, for private asset classes, we observe significant

improvements in return performance (both net and gross of costs) associated with a switch from

external to internal management while, conversely, return performance is significantly decreased

following the reverse switch from internal to external management. Hence, return performance in

alternative asset classes has benefited significantly from plans switching from external to internal

asset management. A significant driver of this is cost savings, but we also observe large improve-

ments in gross returns following the adoption of internal management for private equity and real

assets.

Next, for public asset classes, and stocks in particular, a switch in management style (from

external to internal or internal to external) is likely driven by poor prior-year performance. If

such switches are driven by poor return performance in year t− 1, mean-reversion in performance

would dictate that we should expect to see improved performance in year t. Consistent with this
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explanation, we find underperformance of -140 bps/year in the year prior to the switch for plans

that move from internal to external management. For comparison, plans in the control group

have a slight outperformance of 50 bps during this period. This suggests that the parallel trend

assumption in (2.7.2) is violated for plans that switch from internal to external management.47

Moreover, if we extend the set of conditioning variables to include net returns in year t − 1, the

estimate of the effect on net stock returns declines from 139 bps/year to 12 bps/year.

The fact that we do not observe a similar effect for the alternative asset classes may reflect

that the improvement in return performance associated with internal management is much larger

and, also, that asset values are not marked-to-market in the same way as for the public asset classes.

Cost savings from internal asset management are also much larger for the alternative asset classes,

as we have seen.

Last, we apply our matching methodology to estimate the effect of passive and active

management on policy-adjusted returns.48 The three rightmost columns in the top rows of Table

2.8 (Panel B) show that a switch from active to passive management does not significantly increase

gross or net return performance with signs being both negative (stocks) and positive (fixed income,

real assets). A switch from passive to active management (bottom rows) is, however, associated with

a significantly negative policy-adjusted net return of -36 bps/year for stock investments. Policy-

adjusted return estimates for a switch from passive to active management are also negative both

gross and net of costs for fixed income and real assets, but fail to be statistically significant.

Our findings suggest that changes from active to passive or from passive to active manage-

ment are, on the whole, not associated with a significant effect on plans’ gross or net policy-adjusted

return performance. This is consistent with an equilibrium in which competition is so strong among

active managers (in public asset classes in particular) that fees are set so that, for the marginal

plan that decides to switch, a very small change in performance can be expected.49

47We see no similar violation of this assumption for fixed income.
48The set of controls used is identical to those listed in Section 2.7.2.
49Notice that this finding does not contradict our earlier result that large plans tend to get better return per-

formance, particular net of costs. The matching estimates in Table 2.8 control for plan size and are based on the
population of plans that switch between active and passive management. Hence, they characterize the return effect
for the marginal plan that switches management style.
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2.8 Conclusion

This paper explores the relation between pension plan size and allocations to active vs.

passive management, internal vs. external management, and public vs. private market investments.

Consistent with fixed costs being important in setting up internal investment management capa-

bilities, large plans internally manage a significantly greater proportion of assets than their smaller

peers. Similarly, taking advantage of their greater ability to identify internal and external invest-

ment opportunities in the less transparent markets for private assets, large plans also allocate more

of their holdings to asset classes such as private equity and real assets and less to (public) stocks

and fixed income.

Our results indicate a strong role for economic scale in pension plan fees and investment per-

formance: investment management costs follow a power law with cost economies being particularly

strong for passively managed accounts and public asset classes. Hence, large plans pay significantly

lower fees per dollar invested than their smaller peers. While large plans’ better ability to identify

skilled external managers and negotiate lower fees has only translated into modestly higher net-of-

cost return performance in the highly competitive public asset markets (stocks and fixed income),

we find strong evidence that larger plans earn economically large and significant abnormal returns

in the markets for private assets (again, compared to their smaller peers). Private markets are less

transparent and so allow the largest plans to benefit from their comparative advantage in searching

for skilled managers.

The scale disadvantages in investment management costs that we identify for smaller plans

indicate that these plans may perform best when they embrace passive management which is widely

available in public asset markets. For private asset classes, passive management is generally not

an option (other than for special cases such as REITS) and fixed costs are too high to be cov-

ered by small plans which, consequently, rely almost entirely on external active management and

have to accept the higher management fees typically charged for this service. Conversely, large

plans have the ability to manage private assets internally and negotiate lower external investment

management fees. This helps explain why plan size (scale) is particularly important in determin-

ing investment performance in private asset markets and why private asset classes have become

particularly important for large plans in recent years.
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Table 2.1. Small and large plans’ investment allocation by sub-asset class and man-
agement structure in 2019. This table shows the share (in %) of AUM allocated to the four management
mandates: Internal Passive (IP), External Passive (EP), Internal Active (IA), and External Active (EA) for the
given sub-asset classes. The share is calculated as follows: ωats = AUMats

AUMat
, where AUMats =

∑
i AUMiats, and

AUMat =
∑

s

∑
i AUMiats, where i denotes plan i, a indicates the sub-asset class, t denotes the year 2019, and s

denotes one of the four mandates. The shares are calculated separately for small and large plans, defined by the
bottom and top 30th percentile of AUM in 2019 respectively. For small and large plans, rows sum up to 100%.

Small Plans (in %) Large Plans (in %)

Stocks IP EP IA EA IP EP IA EA

ACWI x. US 1.66 27.51 70.82 2.77 31.00 2.77 63.45
EAFE 19.95 1.44 78.62 18.53 14.94 11.99 54.55
Emerging 13.50 86.50 15.02 8.65 13.54 62.79
Global 24.74 1.14 74.12 15.19 6.00 58.51 20.29
Other 25.74 0.62 26.75 46.90
U.S. Broad 14.17 57.90 2.06 25.87 34.06 32.08 8.55 25.31
U.S. Large Cap 51.88 11.45 36.67 32.05 31.53 20.02 16.40
U.S. Mid Cap 34.60 65.40 27.54 6.15 25.06 41.25
U.S. Small Cap 18.50 81.50 19.66 4.87 13.25 62.22

Fixed Income

Bundled LDI 1.61 37.56 60.83 28.22 45.20 2.66 23.92
Cash 54.70 45.30 100.00
Convertibles 100.00 100.00
EAFE 86.88 13.12
Emerging 100.00 7.51 6.21 23.91 62.37
Global 0.60 99.40 8.84 0.63 82.76 7.77
High Yield 5.87 94.13 3.59 23.03 73.37
Inflation Indexed 24.63 48.74 9.87 16.77 40.47 11.61 41.33 6.60
Long Bonds 0.32 21.33 5.46 72.88 18.54 0.58 14.46 66.43
Other 14.44 14.54 71.02 72.48 0.88 7.01 19.63
U.S. 13.18 2.75 84.07 6.27 10.37 46.22 37.14

Hedge & multi ass.

Funded TAA 6.05 93.95 58.27 41.73
Hedge Fund 100.00 100.00
Risk Parity 100.00 28.19 71.81

Private Equity

Div. Private Eq. 0.08 99.92 18.86 81.14
LBO 100.00 0.27 99.73
Other 100.00 26.81 73.19
Venture Capital 100.00 0.70 99.30

Private Credit

Mortgages 1.98 98.02 67.24 32.76
Credit 10.49 89.51 31.45 68.55

Real Assets

Commodities 18.43 81.57 19.70 1.82 58.20 20.28
Infrastructure 100.00 61.39 38.61
Nat. Resource 100.00 46.70 53.30
Other 100.00 28.42 71.58
Real Estate 2.62 97.38 39.67 60.33
REIT 6.60 93.40 2.53 3.59 77.54 16.33
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Table 2.3. Significance test for the difference in APE for size and cost spread. This
table shows the APE (2.4.7) estimated for size (logAUMit−1) and external minus internal cost
spread (Panel A). In Panel B we calculate two different cost spreads. For “Active Overall”, we
define the cost spread to be active minus passive for the given asset class, and for “ Active Int.
vs. Ext”, we define the cost spread as Active external minus active internal. We set log(AUM)it−1

and CostSpreadiAt−1 to their 10th and 90th percentile values in 2019 respectively. Then we test if
the estimated APEs are equal using a χ2-test. We report the difference of the calculated APEs.
Panel A uses the proportion of plans’ holdings within each asset class that is internally managed
as the dependent variable. Panel B uses either the proportion of plans’ holdings within each asset
class that is actively managed (columns 1-3) or the proportion of internally managed assets that
is managed actively as the dependent variable (columns 4-5). The columns show the calculation
for each asset class. All coefficients and standard errors are multiplied by 100. We compute the
standard errors of the computed APEs using the Delta method and standard errors are reported
in parenthesis. Boldface coefficients are significant at the 5% level.

Panel A: Internal vs. External Management

Stocks Fixed
Income

Hedge
multi ass.

Private
Equity

Private
Debt

Real
Asset

log(AUM)
Percentile: 10 3.75

(0.875)
6.47
(1.060)

0.44
(0.241)

0.41
(0.208)

6.57
(1.910)

2.55
(0.499)

Percentile: 90 31.90
(9.860)

43.80
(10.500)

0.69
(0.796)

1.70
(1.090)

20.10
(10.800)

6.22
(2.190)

Difference 28.15 37.33 0.25 1.29 13.53 3.67

Cost Spread
Percentile: 10 9.40

(4.640)
21.50
(5.230)

0.19
(0.281)

-0.09
(0.104)

-0.96
(1.770)

1.35
(0.554)

Percentile: 90 12.20
(7.610)

28.60
(8.740)

0.16
(0.474)

-0.08
(0.081)

-0.92
(1.630)

1.82
(0.986)

Difference 2.8 7.10 -0.04 0.01 0.03 0.47

Obs 7205 7222 1944 4322 1055 5676

Panel B: Active vs. Passive Management

Active Active
Overall Int. vs. Ext.

Stocks Fixed
Income

Real
Asset

Stocks Fixed
Income

log(AUM)
Percentile: 10 -4.60

(0.720)
2.76
(1.630)

-0.07
(0.353)

3.80
(0.114)

5.87
(0.105)

Percentile: 90 -4.16
(1.340)

2.08
(0.624)

0.18
(0.231)

17.30
(0.789)

38.30
(0.993)

Difference 0.44 -0.68 0.25 13.5 32.43

Cost Spread
Percentile: 10 -30.30

(4.470)
-19.40
(5.570)

-0.11
(0.326)

1.26
(3.980)

18.50
(4.380)

Percentile: 90 -39.70
(8.310)

-25.80
(9.740)

-0.11
(0.376)

1.15
(4.510)

24.60
(7.20)

Difference -9.40 -6.4 -0.01 -0.11 6.10

Obs 7206 7210 4395 7012 7090
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Table 2.5. Asset allocation regression. This table reports estimates of the regression
(2.4.9): ωiAt = cA + λAt + β1,A log(AUMit−1) + β2,ACostiAt−1 + β3,APrivatei + β4,AnonUSi +
β5,ALiabilityRetireeit + ϵiAt, where ωiAt denotes plan i’s proportion of assets allocated to asset
class A at time t, cA is the asset class fixed effect, λAt denotes the time fixed effect, log(AUMit−1)
denotes the log of plan i’s total AUM at time t − 1, CostiAt−1 denotes the cost (in bps) of plan i
in asset class A at time t − 1, Privatei denotes a dummy variable equal to one if plan i is not a
public plan, nonUSi is a dummy variable equal to one if the plan is domiciled outside the U.S., and
LiabilityRetireeit denotes the fraction of plan i’s total liabilities owed to retirees in year t. Panel
A excludes LiabilityRetireeit as a regressor. All coefficient estimates and standard errors are mul-
tiplied by 100. The robust standard errors are in parenthesis and clustered by plan. Boldface
coefficients are statistically significant at the 5 percent level.

Panel A Stocks Fixed
Income

Hedge &
multi ass.

Private
Equity

Private
Debt

Real
Assets

log(AUMit−1) -2.08
(0.339)

-0.87
(0.324)

-1.85
(0.271)

0.44
(0.157)

-0.40
(0.168)

0.65
(0.130)

CostiAt−1 -7.11
(3.109)

-20.10
(4.341)

-1.65
(0.430)

-0.11
(0.029)

0.01
(0.012)

-0.44
(0.097)

Privatei -2.90
(0.920)

5.94
(0.858)

-1.73
(0.940)

-0.33
(0.434)

-0.99
(0.589)

-2.03
(0.294)

nonUSi -3.38
(0.930)

2.66
(0.934)

-3.75
(0.939)

-2.09
(0.413)

0.12
(0.656)

1.66
(0.379)

Obs 7206 7219 2611 4413 1073 5677
R2 0.24 0.12 0.15 0.20 0.10 0.31

Panel B

log(AUMit−1) -2.50
(0.423)

-0.65
(0.388)

-1.84
(0.336)

0.60
(0.157)

-0.43
(0.176)

0.72
(0.182)

CostiAt−1 -8.92
(3.558)

-15.49
(4.274)

-1.37
(0.467)

-0.09
(0.027)

0.01
(0.010)

-0.58
(0.123)

Privatei -4.46
(1.088)

8.78
(0.977)

-1.74
(1.061)

-0.42
(0.440)

-0.96
(0.629)

-2.51
(0.370)

nonUSi -2.48
(1.210)

2.57
(1.169)

-4.17
(1.126)

-2.19
(0.408)

-0.03
(0.681)

1.65
(0.493)

LiabilityRetireeit -6.00
(3.026)

2.48
(3.354)

1.64
(2.434)

1.11
(1.184)

1.90
(1.680)

-0.56
(1.028)

Obs 4435 4440 1757 2774 782 3499
R2 0.27 0.16 0.14 0.22 0.11 0.30
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Table 2.6. Economies of scale for cost among different investment mandates. The
regression panel of this table shows estimates of the model (2.5.2): log(Cost$iats) = cAs + λAts + βAs log(AUMiats) +
γ1,AsPrivatei + γ2,AsnonUSi + εiats, where Cost$iats is the cost (in dollars) of plan i in sub-asset class a at time t
for mandate s, cAs is a constant that varies with asset class A and mandate s, λAts is the time fixed effect for asset
class A and mandate s, log(AUMiats) is the log of total AUM of plan i in sub-asset class a at time t for mandate s,
Privatei is a dummy equal to one if plan i is private and nonUSi is a dummy equal to one if plan i is located outside
the U.S. For stocks and fixed income, we estimate the panel separately for the following mandates s: Internal Passive
(IP), Internal Active (IA), External Passive (EP) and External Active (EA). The boldface coefficients on log(AUM)
are significantly different from one at the 5% level and boldface coefficients on the other coefficients are significantly
different from zero. Robust standard errors are reported in parenthesis and are clustered by plan. The size percentile

columns show Ĉost
$

iats/AUMiats in bps, where Ĉost
$

iats is predicted based on the regression panel. We set Privatei
and nonUSi equal to zero and use the 10th, 50th and 90th percentile of AUMiats in 2019 to obtain the fraction of
cost relative to AUM. The bottom panel shows p-values of the null hypotheses that returns to scale are the same for
different mandates, where a boldface p-value indicates a rejection of the null hypothesis.
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Regression Size percentile

log(AUMiats) Privatei nonUSi Obs R2 10% 50% 90%

Stocks

IP 0.76
(0.037)

0.25
(0.157)

0.93
(0.120)

2294 0.70 2.67 1.48 0.85

EP 0.75
(0.015)

-0.01
(0.051)

0.24
(0.055)

11239 0.62 5.39 2.94 1.65

IA 0.89
(0.027)

0.46
(0.167)

0.22
(0.148)

3552 0.70 9.36 7.25 5.62

EA 0.88
(0.007)

0.04
(0.021)

-0.28
(0.023)

25799 0.86 62.66 49.98 39.11

Fixed Income

IP 0.80
(0.047)

-0.09
(0.210)

0.39
(0.175)

1269 0.69 2.94 1.51 1.00

EP 0.79
(0.024)

0.11
(0.071)

0.26
(0.074)

4125 0.63 4.57 2.84 1.92

IA 0.84
(0.021)

0.51
(0.124)

0.25
(0.103)

5293 0.72 4.09 2.77 2.03

EA 0.94
(0.010)

0.00
(0.036)

-0.18
(0.040)

17544 0.76 27.75 23.98 20.92

Hedge & Multi ass.

EA 0.95
(0.018)

0.09
(0.062)

-0.03
(0.064)

4801 0.78 146.87 133.21 120.66

Private Equity

IA 1.01
(0.035)

0.19
(0.215)

0.37
(0.241)

768 0.78 18.00 18.49 19.02

EA 0.93
(0.015)

-0.08
(0.039)

0.02
(0.050)

8480 0.86 382.93 312.52 268.04

Private Debt

IA 0.95
(0.064)

-0.39
(0.274)

0.76
(0.286)

411 0.79 12.25 10.13 8.64

EA 0.94
(0.036)

-0.18
(0.147)

-0.62
(0.139)

1377 0.75 188.03 165.91 146.75

Real Assets

IA 1.01
(0.032)

0.00
(0.138)

0.49
(0.135)

2211 0.74 11.58 11.79 11.98

EA 0.92
(0.011)

-0.06
(0.036)

-0.07
(0.037)

12117 0.79 161.87 136.15 115.65

Hypothesis Testing (p-value)

Null hypothesis Stocks
Fixed

Income

Private

Equity

Private

Debt

Real

Assets

βIP = βEP 0.90 0.46

βIA = βEA 0.19 0.00 0.33 0.79 0.01

βP = βA 0.00 0.00
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Figure 2.1. Asset allocation over time. This figure shows the share of total AUM allocated to
each of the six asset classes within a year. The shares are reported separately for U.S. plans (top
panel) and non-U.S. plans (bottom panel).
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2. Sub-asset class allocation over time for U.S. plans. This figure shows the share
of total AUM allocated to each sub-asset class for a given year and asset class for U.S. plans only.
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Figure 2.3. Asset allocation by management style and plan size. This figure shows the
share of total AUM allocated to the four management styles: Internal Passive (IP), External Passive
(EP), Internal Active (IA) and External Active (EA). The shares are calculated in 2019 for the
asset classes: Stocks, Fixed Income and Real Assets. Within each year, we also distinguish by
small and large plans, which are defined by the bottom 30 and top 70 percentile relative to the
total AUM within an asset class.
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(a) (b)

(c) (d)

Figure 2.4. Median cost by asset management style. The figure shows a time series plot of
the (scaled) median cost across plans by asset management style for the public asset classes. The
four asset management styles considered are: Internal Passive, External Passive, Internal Active,
and External Active management. We only include years that have enough plan observations for
each asset class and style. Median cost are scaled by the average cost across years and plans.
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Figure 2.5. Relation between log Cost and log AUM. This figure shows a scatter plot of
log(AUMiats) versus log(Cost$iats), where AUMiats (resp. Cost$iats) denotes the dollar AUM holdings (resp. dol-
lar cost) of plan i in sub-asset class a at time t for asset management style s. The asset management styles we
consider are: Internal Passive, Internal Active, External Passive, and External Active. In each panel and for a given
style, observations are pooled across plans, sub-asset classes, and years over the sample period 1991–2019.
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(a) Stocks, Internal Passive (b) Stocks, Internal Active

(c) Stocks, External Passive (d) Stocks, External Active

(e) Fixed income, Internal Passive (f) Fixed income, Internal Active

(g) Fixed income, External Passive (h) Fixed income, External Active
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Chapter 3

Robust Asset-Liability Management

3.1 Introduction

Many financial institutions have long-term commitments. For instance, insurance companies

promise annuities or life insurance payments to customers; (defined-benefit) pension plans promise

predetermined pension payments to retirees; or commercial banks may make long-term loans at

fixed interest rates and thus commit to receiving certain future cash flows in exchange of funding

the projects with short-term deposits. In such circumstances, it becomes crucial for financial

institutions to effectively manage their assets and liabilities to hedge against interest rate risk. The

recent gilt market crisis in the UK showcases the importance of liability-driven investing strategies

and the risk associated with interest rate changes, which eventually led to an £65 billion emergency

intervention by the Bank of England.1 Even more recently, Silicon Valley Bank and First Republic

Bank collapsed as a result of increased interest rates and the subsequent decline in value of long-term

bonds and mortgages.2,3

If zero-coupon bonds of all maturities were to exist, any deterministic future cash flow can be

replicated by these bonds (which is called a “dedication” strategy), and the problem becomes trivial,

at least theoretically. However, in practice dedication is infeasible due to market incompleteness:

there are fewer bonds available for trade than the number of payment dates of the liability, or the

long-term liability could have a longer maturity than the government bond with longest maturity.

Thus, in general, one can only hope to hedge against interest rate risk approximately. The question

1https://www.bankofengland.co.uk/speech/2022/november/sarah-breeden-speech-at-isda-aimi-boe-on-nbfi-and-
leverage

2https://www.ft.com/content/f9a3adce-1559-4f66-b172-cd45a9fa09d6
3https://www.economist.com/finance-and-economics/2023/05/03/what-the-first-republic-deal-means-for-

americas-banks
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of fundamental practical importance is how to achieve this goal given the set of bonds available for

trade.

In this article, we propose a new method to construct a hedging portfolio that maximizes

equity (asset minus liability) under the most adversarial interest rate shock. This so-called maxmin

problem originates in the work of Fisher and Weil (1971), who show that a portfolio that matches

value and duration (weighted average time to payment) is maxmin against parallel shocks to the

forward rate. In that and subsequent works, the liability is assumed to be a zero-coupon bond and

no-shortsale constraints are imposed (or implicitly assumed not to bind). These restrictions are

undesirable in practice because most liabilities pay out over time and shortsales are essential when

liabilities have very long maturities (like pensions). Furthermore, there is no systematic analysis of

the existence, uniqueness, and optimality of the solution method as well as explicit or tight error

estimates.

Our approach overcomes these shortcomings using techniques from functional and numeri-

cal analysis. First we argue that the most general formulation of the maxmin problem is intractable

because the objective function is not convex and the space has infinite dimension. To make the

problem manageable, we approximate the objective function using the Gateaux differential with

respect to basis functions that approximate yield curve shifts. This allows us to recast the maxmin

problem as a saddle point (minmax) problem where the inner maximization is a large linear pro-

gramming problem and the outer minimization is a small convex programming problem, which is

computationally tractable. We prove that a robust immunizing portfolio generically exists (Propo-

sition 3.3.1) and its solution achieves the smallest error order and maximizes the worst-case equity

(Theorem 3.3.3). This maxmin result is significantly different from the existing literature because

both the liability structure and bond portfolio constraint are arbitrary and the guaranteed equity

bound is tight. When the majority of forward rate changes are captured by a small number of

principal components such as the level of the overall interest rate, we improve this guaranteed

equity bound by incorporating moment matching (e.g., duration matching) in the portfolio con-

straint (Theorem 3.3.5). We also propose particular basis functions (transformation of Chebyshev

polynomials) that are motivated by approximation theory.

An alternative approach to asset-liability management, referred to as classical immunization

(see, e.g., Redington (1952)), involves matching the interest rate sensitivity of asset and liability.
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A common measure of interest rate sensitivity is duration, and matching the duration of asset and

liability makes equity insensitive to small interest rate changes. Although classical immunization

is intuitive and elegant, by assumption it only allows for small parallel shifts in the yield curve.

Furthermore, when there are multiple bonds, it is not obvious how to construct the portfolio

because there are infinitely many linear combinations that achieve the same duration. Extensions

such as high-order duration matching (which are designed to allow non-infinitesimal or non-parallel

shifts in the yield curve) result in unstable portfolio weights and extreme leverage, leading to poor

performance (Mantilla-Garcia, Martellini, Milhau, and Ramirez-Garrido, 2022). Our approach

contains classical immunization and its extensions as a special case by choosing a monomial basis

and imposing only a value matching constraint. In simulation, we show that our preferred robust

immunization method that combines moment matching and a Chebyshev polynomial basis does

not suffer from extreme leverage and significantly outperforms existing methods.

The simulation exercise uses historical yield curve data to evaluate the change in equity

resulting from instantaneous yield curve shocks. A hedging method’s success is measured by its

ability to minimize these equity changes. Indeed, we find that robust immunization generates ap-

proximation errors that are an order of magnitude smaller than the existing approaches and has

lower downside risk, in line with our maxmin result. This numerical experiment has a static flavor,

since we only consider one-time perturbations. In a separate simulation based on a no-arbitrage

term structure model, we consider the dynamic properties of robust immunization, allowing for

portfolio rebalancing every three months. Over a 10-year period of rebalancing, robust immuniza-

tion achieves an approximation error at least 24% lower in the 1% worst-case scenario compared

to existing methods. Because our approach is model-free, we expect our proposed method to be

useful for practitioners in asset-liability management.4

3.1.1 Related literature

When inputs to a problem such as beliefs, information, or shocks are complicated, it is

common to optimize against the worst case scenario, i.e., solve the maxmin problem (Gilboa and

Schmeidler, 1989; Bergemann and Morris, 2005; Du, 2018; Brooks and Du, 2021). In the context

4This statement is similar to the fact that the Black and Scholes (1973a) option pricing model has been hugely
successful precisely because the model requires only a few assumptions, namely the absence of arbitrage and the stock
price following a geometric Brownian motion, and no assumptions on investor preferences are required.
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of asset-liability management, Redington (1952, p. 290) considers the Taylor expansion of assets

minus liabilities in response to a small change in the (constant) interest rate and anticipates the

importance of convexity to guarantee the portfolio value. Fisher and Weil (1971) formalize this

idea and show that if the liability is a zero-coupon bond and a bond portfolio matches the value

and duration, then the portfolio value can never fall below liabilities under any parallel shift to the

forward rate. Bierwag and Khang (1979) show that when the investor has a fixed budget to invest

in bonds, then classical immunization (duration matching) is maxmin in the sense that it maximizes

the worst possible rate of return under any parallel shift to the forward rate. Fong and Vasicek

(1984) consider any perturbation to the forward curve such that the slope of the forward curve is

bounded by some constant and derive a lower bound on the portfolio return over the investment

horizon that is proportional to it. The constant of proportionality is a measure of interest rate

risk and is called “M -squared”. Minimization of M -squared renders a portfolio that minimizes the

likelihood of a deviation from liabilities. Zheng (2007) considers perturbations to the forward rate

that are Lipschitz continuous, derives the maximum deviation of the bond value, and applies it to

a portfolio choice problem.

Several classical books and papers such as Macaulay (1938), Hicks (1939, pp. 184-188), and

Samuelson (1945) discovered that the average time to payment (“duration”) of a bond captures

the interest rate sensitivity of the bond with respect to parallel shifts in the yield curve. Reding-

ton (1952) suggested matching the duration of the asset and liability (“immunization”) to hedge

against interest rate risk. Chambers, Carleton, and McEnally (1988), Nawalkha and Lacey (1988),

and Prisman and Shores (1988) use polynomials to approximate the yield curve and discuss im-

munization using high-order duration measures. Ho (1992) introduced the concept of “key rate

duration”, which is the bond price sensitivity with respect to local shifts in the yield curve at

certain key rates (e.g., 10-year yield). Litterman and Scheinkman (1991) use principal component

analysis (PCA) to identify common factors that affect bond returns and find that the three factors

called level, slope, and curvature explain a large fraction of the variations in returns. Using these

factors, Willner (1996) defines level, slope, and curvature durations and shows how they can be

used for asset-liability management. See Sydyak (2016) for a review of this literature. In a recent

paper, Onatski and Wang (2021) argue that PCA based on the yield curve is prone to spurious

analysis since bond yields are highly persistent. As a result, Crump and Gospodinov (2022) show
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that PCA tends to favor a much lower dimension of the factor space than the true dimension, which

can lead to large costs in bond portfolio management. We further discuss our contribution relative

to the literature in Section 3.3.3.

3.2 Problem statement

3.2.1 Model setup

Time is continuous and denoted by t ∈ [0, T ], where T > 0 is the planning horizon. There

are finitely many bonds indexed by j = 1, . . . , J , where J ≥ 2. The cumulative payout of bond

j is denoted by the (weakly) increasing function Fj : [0, T ] → R+. For instance, if bond j is a

zero-coupon bond with face value normalized to 1 and maturity tj , then

Fj(t) =


0 if 0 ≤ t < tj ,

1 if tj ≤ t ≤ T .

(3.2.1)

Similarly, if bond j continuously pays out coupons at rate cj and has zero face value, then Fj(t) = cjt

for 0 ≤ t ≤ T .

The fund manager seeks to immunize future cash flows against interest rate risk by forming

a portfolio of bonds j = 1, . . . , J . Let F : [0, T ] → R+ be the cumulative cash flow to be immunized

and y : [0, T ] → R be the yield curve, which the fund manager takes as given. The present

discounted value of cash flows is given by the Riemann-Stieltjes integral

∫ T

0
e−ty(t) dF (t). (3.2.2)

Because the expression ty(t) appears elsewhere, it is convenient to introduce the notation x(t) :=

ty(t). Note that by the definition of the instantaneous forward rate, we have

x(t) =

∫ t

0
f(u) du, (3.2.3)

where f(u) is the instantaneous forward rate at term u. Because x is the integral of forward rates,

we refer to it as the cumulative discount rate. Using x, we can rewrite the present discounted value
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of cash flows (3.2.2) as

P (x) :=

∫ T

0
e−x(t) dF (t), (3.2.4)

which is a functional of x. The price Pj(x) of bond j can be defined analogously. The fund

manager’s problem is to approximate P (x) using a linear combination of bonds {Pj(x)}Jj=1 in a

way such that the approximation is robust against perturbations to the yield curve y (and hence

the cumulative discount rate x).

3.2.2 Problem

We now formulate the fund manager’s problem. Let Z ⊂ RJ and H be the sets of admissible

portfolios and perturbations to the cumulative discount rate, respectively. We consider the following

maxmin problem:

sup
z∈Z

inf
h∈H

 J∑
j=1

zjPj(x+ h)− P (x+ h)

 . (3.2.5)

Here, the objective function
∑J

j=1 zjPj(x+h)−P (x+h) represents the difference between assets and

liabilities, or “equity”. The interpretation of the maxmin problem (3.2.5) is as follows. Given the

portfolio z ∈ Z, nature chooses the most adversarial perturbation h ∈ H to minimize equity. The

fund manager chooses the portfolio z that guarantees the highest equity under the worst possible

perturbation.

3.2.3 Assumptions

The maxmin problem (3.2.5) is not tractable because we have not yet specified the admis-

sible sets Z,H and the objective function is nonlinear (not even convex) in h. We thus impose

several assumptions to make progress.

Assumption 1 (Discrete payouts). The bonds and liability pay out on finitely many dates, whose

union is denoted by {tn}Nn=1 ⊂ (0, T ].

Assumption 1 always holds in practice. Under this assumption, each Fj is a step function

with discontinuities at points contained in {tn}Nn=1, and integrals of the form (3.2.4) reduce to

summations.
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Assumption 2 (Portfolio constraint). The set of admissible portfolios Z ⊂ RJ is nonempty and

closed. Furthermore, all z ∈ Z satisfy value matching:

P (x) =
J∑

j=1

zjPj(x). (3.2.6)

Value matching (3.2.6) is merely a normalization to make the initial equity (assets minus

liabilities) equal to 0. This assumption is common in the immunization literature (see, for example,

Bierwag and Khang (1979)).

We now specify the space of cumulative discount rates and their perturbations. Let Cr[0, T ]

be the vector space of r-times continuously differentiable functions on [0, T ], with the convention

that C0[0, T ] = C[0, T ] denote the space of continuous functions. We let the space of forward rates

be the Banach space of continuous functions C[0, T ] endowed with the supremum norm denoted

by ∥·∥∞.5 Since by definition the cumulative discount rate is the integral of the forward rate, if f

is continuous, then x : [0, T ] → R defined by (3.2.3) is continuously differentiable with x(0) = 0.

We define the space of cumulative discount rates by

X =
{
x ∈ C1[0, T ] : x(0) = 0

}
. (3.2.7)

Lemma C.1.1 in the Appendix shows that X is a Banach space endowed with the norm ∥x∥X =

supt∈[0,T ] |x′(t)|. The set of admissible perturbations is a subset H ⊂ X . The next assumption

allows us to approximate any element x ∈ X .

Assumption 3. There exists a countable basis {hi}∞i=1 of X such that for each 1 ≤ I ≤ N , the

I ×N matrices H = (hi(tn)) and G = (h′i(tn)) have full row rank.

We refer to each hi as a basis function. Assumption 3 says that the basis functions {hi} and

their derivatives {h′i} are linearly independent when evaluated on the payout dates. We impose

this assumption to avoid portfolio indeterminacy. In practice, we can always ensure that H and G

have full row rank by removing certain basis functions if necessary. A typical example satisfying

Assumption 3 is to let hi be a polynomial of degree i with hi(0) = 0 (Lemma C.1.2).

5As we use several different norms in this paper, we use subscripts to distinguish them. An example is the ℓp

norm on RJ for p = 1, 2, which we denote by ∥·∥p.
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3.3 Robust asset-liability management

In this section we solve the maxmin problem (3.2.5) in the limit when the admissible set of

perturbations H shrinks to {0}. In practice, the resulting portfolio solution is expected to provide

a good hedge against the worst-case interest rate shock when the change in interest rates is small.

3.3.1 Robust immunization

As the set of cumulative discount rates X forms an infinite-dimensional vector space, we

employ tools from functional analysis to analyze how prices change in response to perturbations

in the discount rate, denoted by h ∈ X . These perturbations can take various forms, such as a

parallel shift, characterized by a constant function h(t) ≡ c ∈ R, or a linear shift represented by

h(t) = ct. We assess the price change following an arbitrary shift in the cumulative discount rate

by using the Gateaux differential of P (x):6

δP (x;h) := lim
α→0

1

α
(P (x+ αh)− P (x)) = −

∫ T

0
e−x(t)h(t) dF (t). (3.3.1)

Remark. The operator h 7→ δP (x;h) defined by (3.3.1) is a bounded linear operator from X to R

(Lemma C.1.3), which is called the Fréchet derivative and denoted by P ′(x). Thus by definition

P ′(x)h = δP (x;h). In broad terms, P ′(x)h quantifies the first-order impact on price change when

the cumulative discount rate curve is perturbed by h.

Our approach to constructing a maxmin solution is based on assessing the sensitivity of

assets and liabilities to perturbations in specific directions h. Specifically, given the basis functions

{hi}Ii=1 and bonds j = 1, . . . , J , we define the sensitivity matrix A = (aij) ∈ RI×J , where each

element aij represents the sensitivity of bond j (with F = Fj) to a perturbation evaluated at h = hi.

The exact expression for aij is given by

aij := −
P ′
j(x)hi

P (x)
= −δPj(x;hi)

P (x)
=

1

P (x)

∫ T

0
e−x(t)hi(t) dFj(t). (3.3.2)

Division by P (x) is merely a normalization to make aij dimensionless. Similarly, we define the

6Note that we can interchange the order of integration and differentiation using the dominated convergence
theorem.
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sensitivity vector b = (bi) ∈ RI of liabilities by

bi := −P ′(x)hi
P (x)

= −δP (x;hi)

P (x)
=

1

P (x)

∫ T

0
e−x(t)hi(t) dF (t). (3.3.3)

If h ∈ span {hi}Ii=1, so h =
∑I

i=1wihi for some w ∈ RI , then under Assumption 2 we obtain

lim
α→0

1

αP (x)

 J∑
j=1

zjPj(x+ αh)− P (x+ αh)

 = −⟨w,Az − b⟩ ,

where ⟨·, ·⟩ denotes the inner product. Hence, the change in equity following an infinitesimal

perturbation in the discount rate is governed by the assets and liabilities’ Fréchet derivative. If

the portfolio is chosen such that Az = b, i.e., the Fréchet derivatives of assets and liabilities are

matched, then the worst-case equity is insensitive to small perturbations in the yield curve. We will

use this insight to construct the maxmin solution in Theorem 3.3.3. Before doing so, we present

several auxiliary results. In the discussion below, it is convenient to introduce notation for the value

matching constraint, which is always assumed to hold (Assumption 2). Specifically, set h0 ≡ 1 and

define a0j using (3.3.2). Define the 1×J vector a0 := (a0j) and the (I+1)×J matrix and (I+1)×1

vector

A+ :=

a0
A

 and b+ :=

1
b

 . (3.3.4)

In what follows, longer proofs are relegated to Appendix C.2.

Proposition 3.3.1 (Minmax). Suppose Assumptions 1–3 hold, I ≥ J − 1, and A+ in (3.3.4) has

full column rank. Define the I ×N matrix G = (h′i(tn)) and the set

W :=
{
w ∈ RI : G′w ∈ [−1, 1]N

}
. (3.3.5)

Then there exists (z∗, w∗) ∈ Z ×W that achieves the minmax value

VI(Z) := inf
z∈Z

sup
w∈W

⟨w,Az − b⟩ . (3.3.6)

Furthermore, VI(Z) ≥ 0, and z ∈ Z achieves VI(Z) = 0 if and only if A+z = b+.
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The matrix G = (h′i(tn)) can be thought of as the I×N matrix of perturbations to forward

rates. The set W in (3.3.5) thus characterizes the span of perturbations to the forward rate that

are bounded in absolute value by one. Proposition 3.3.1 assumes that A+ in (3.3.4) has full column

rank. If the cumulative payouts of bonds {Fj} and the basis functions {hi} are linearly independent,

the matrix A+ generically has full column rank and therefore a solution (z, w) ∈ Z × W to the

minmax problem (3.3.6) generically exists. Appendix C.3 makes this statement precise.

The solution z to the minmax problem (3.3.6) depends on the basis functions {hi}Ii=1 only

through its span and it is immaterial how we parameterize these functions. Although this result is

obvious, we note it as a proposition.

Proposition 3.3.2 (Basis invariance). Let everything be as in Proposition 3.3.1 and Z∗ be the

set of solutions z∗ ∈ Z to the minmax problem (3.3.6). Then VI(Z) and Z∗ depend on the basis

functions {hi}Ii=1 only through its span.

For any bond portfolio z ∈ Z, define the portfolio share θ = (θj) ∈ RJ by

θj := zjPj(x)/P (x). (3.3.7)

Under Assumption 2, the portfolio share θ satisfies
∑J

j=1 θj = 1. Therefore the ℓ1 norm ∥θ∥1 =∑J
j=1 |θj | satisfies ∥θ∥1 = 1 if and only if θj ≥ 0 for all j, and ∥θ∥1 > 1 is equivalent to θj < 0

for some j. Thus ∥θ∥1 can be interpreted as a measure of leverage, which we refer to as the gross

leverage.

To state our main result, we consider the following set of admissible perturbations to the

cumulative discount rate for any ∆ > 0:

HI(∆) :=
{
h ∈ span {hi}Ii=1 : (∀n)

∣∣h′(tn)∣∣ ≤ ∆
}
. (3.3.8)

Because h is a perturbation to the cumulative discount rate, which is the integral of the forward

rate, choosing h ∈ HI(∆) amounts to allowing the forward rates to change by at most ∆ while

spanned by the first I basis functions. The following theorem is our main theoretical result.

Theorem 3.3.3 (Robust immunization). Let everything be as in Proposition 3.3.1 and HI(∆) be
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as in (3.3.8). Then the guaranteed equity satisfies

lim
∆↓0

1

∆
sup
z∈Z

inf
h∈HI(∆)

 J∑
j=1

zjPj(x+ h)− P (x+ h)

 = −P (x)VI(Z). (3.3.9)

Letting z∗ ∈ Z be the solution to the minmax problem (3.3.6) and θ = (θj) ∈ RJ be the corresponding

portfolio share defined by (3.3.7), then

sup
h∈HI(∆)

∣∣∣∣∣∣P (x+ h)−
J∑

j=1

z∗jPj(x+ h)

∣∣∣∣∣∣ ≤ ∆P (x)

(
VI(Z) +

1

4
∆T 2e∆T (1 + ∥θ∥1)

)
. (3.3.10)

Theorem 3.3.3 has several implications. First, (3.3.9) shows that, to the first order, the

guaranteed equity is exactly −∆P (x)VI(Z) when forward rates (hence yields) are perturbed by at

most ∆ within the span of the basis functions. The minmax value VI(Z) has a natural interpretation

and is the answer to the following question: “if forward rates change by at most one percentage

point, what is the largest percentage point decline in the portfolio value?” The maxmin formula

(3.3.9) provides an exact characterization of the worst-case outcome, and the number VI(Z) can

be solved as the minmax value (3.3.6).

Second, the error estimate (3.3.10) shows that the solution z∗ ∈ Z to the minmax problem

(3.3.6) achieves the lower bound in (3.3.9), to the first order. In this sense z∗ is an optimal

portfolio, which we refer to as the robust immunizing portfolio. Clearly, this immunizing portfolio

is independent of ∆ > 0 as the minmax problem (3.3.6) does not involve ∆. In addition, the

minmax value (3.3.6) satisfies the following comparative statics.

Proposition 3.3.4 (Monotonicity of minmax value). Let everything be as in Proposition 3.3.1. If

I < I ′ and Z ⊂ Z ′, then VI(Z) ≤ VI′(Z) and VI(Z) ≥ VI(Z ′).

The result VI(Z) ≤ VI′(Z) is obvious because the more basis functions we use, the more

freedom nature has to select adversarial perturbations. The result VI(Z) ≥ VI(Z ′) is also obvious

because the larger the set of admissible portfolios is, the more freedom the fund manager has to

select portfolios.
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3.3.2 Robust immunization with principal components

So far we have put no structure on the basis functions {hi}Ii=1 beyond Assumption 3. The

set of admissible perturbations (3.3.8) depends only on span {hi}Ii=1 and the particular order or

parameterization does not matter. However, in practice there could be some factor structure in the

forward rate. For instance, a typical shift to the forward curve might be decomposed into the sum

of a parallel shift and a nonparallel shift of a smaller size. In this section we formalize this idea

and extend Theorem 3.3.3 to a setting where the perturbation in a particular direction (principal

component) could be larger.

For any ∆1,∆2 > 0, consider the following admissible set of perturbations:

HI(∆1,∆2)

=
{
h ∈ span {hi}Ii=1 : (∃α)(∀n)

∣∣αh′1(tn)∣∣ ≤ ∆1,
∣∣h′(tn)− αh′1(tn)

∣∣ ≤ ∆2

}
. (3.3.11)

Choosing h ∈ HI(∆1,∆2) amounts to perturbing the forward rate in the direction spanned by the

first component (h′1) by a magnitude at most ∆1, and then perturbing in an arbitrary direction

spanned by the first I basis functions by a magnitude at most ∆2. Thus setting ∆1 ≫ ∆2 captures

the idea that h1 is the first principal component. In this setting, we can generalize Theorem 3.3.3

as follows.

Theorem 3.3.5 (Robust immunization with principal components). Let everything be as in Propo-

sition 3.3.1 and suppose the set

Z1 :=

z ∈ Z :

J∑
j=1

a1jzj = b1

 (3.3.12)

is nonempty, where a1j and b1 are defined by (3.3.2) and (3.3.3) with i = 1. Let HI(∆1,∆2) be as

in (3.3.11). Then the guaranteed equity satisfies

lim
1

∆2
sup
z∈Z

inf
h∈HI(∆1,∆2)

 J∑
j=1

zjPj(x+ h)− P (x+ h)

 = −P (x)VI(Z1), (3.3.13)

where the limit is taken over ∆1,∆2 → 0, ∆1/∆2 → ∞, and ∆2
1/∆2 → 0. Letting z∗ ∈ Z1 be the
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solution to the minmax problem (3.3.6) with portfolio constraint Z1, we have

sup
h∈HI(∆1,∆2)

∣∣∣∣∣∣P (x+ h)−
J∑

j=1

z∗jPj(x+ h)

∣∣∣∣∣∣ ≤ ∆2P (x)
(
VI(Z1) +O(∆2 +∆2

1/∆2)
)
. (3.3.14)

The value added of Theorem 3.3.5 relative to Theorem 3.3.3 can be explained as follows.

Comparing to (3.3.11) to (3.3.8) and applying the triangle inequality

∣∣h′(t)∣∣ ≤ ∣∣αh′1(t)∣∣+ ∣∣h′(t)− αh′1(t)
∣∣ ,

we obtain HI(∆1,∆2) ⊂ HI(∆1+∆2). Therefore to first-order, the maximum portfolio return loss

can be bounded as

∆2VI(Z1)︸ ︷︷ ︸
Theorem 3.3.5

≤ (∆1 +∆2)VI(Z)︸ ︷︷ ︸
Theorem 3.3.3

.

Thus if ∆1 ≫ ∆2 in typical situations (see Figure 3.2), then imposing the constraint Z1 in (3.3.12)

improves the performance.7

Remark. Theorem 3.3.5 can be further generalized if we allow larger perturbations spanned by

the first few basis functions. For instance, if we use the first two basis functions, we can define

HI(∆1,∆2,∆3) analogously to (3.3.11) by incorporating the constraints |αih
′
i(tn)| ≤ ∆i for i = 1, 2

and |h′(tn)− α1h
′
1(tn)− α2h

′
2(tn)| ≤ ∆3. The portfolio constraint (3.3.12) then becomes

Z2 :=

z ∈ Z :

J∑
j=1

aijzj = bi for i = 1, 2

 , (3.3.15)

and the maxmin formula (3.3.13) involves VI(Z2).

3.3.3 Relation to existing literature

In this section we discuss in some detail how Theorem 3.3.3 is related to the existing

literature. The following corollary shows that when I = J − 1 and there is no portfolio constraint

beyond value matching, the immunizing portfolio can be solved explicitly.

7On the other hand, if ∆1 ∼ ∆2, then imposing the constraint Z1 worsens the performance because VI(Z1) ≥ VI(Z)
by Proposition 3.3.4.
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Corollary 3.3.6 (Robust immunization with I = J − 1). Let everything be as in Proposition 3.3.1

and suppose that the only portfolio constraint is value matching (3.2.6), so the set of admissible

portfolios is

Z0 :=

z ∈ RJ : P (x) =
J∑

j=1

zjPj(x)

 . (3.3.16)

If I = J − 1 and the square matrix A+ in (3.3.4) is invertible, then the unique solution to (3.3.6)

is z∗ = A−1
+ b+, with VI(Z) = 0.

Proof. Immediate from the proof of Proposition 3.3.1. ■

Remark 5. The special case of Corollary 3.3.6 with I = J −1 = 1 and h1(t) = t reduces to classical

immunization that matches the bond value and duration. To see this, recall that the duration of

the cash flow F is defined by the weighted average time to payment

D =

∫ T
0 te−ty(t) dF (t)∫ T
0 e−ty(t) dF (t)

.

Using the definition x(t) = ty(t) and (3.3.1), the duration can be rewritten as

D =

∫ T
0 te−x(t) dF (t)∫ T
0 e−x(t) dF (t)

= −P ′(x)h1
P (x)

= b1,

where h1(t) = t and we have used (3.3.3). A similar calculation implies that the duration of the

immunizing portfolio is

−
∑J

j=1 zjP
′
j(x)h1∑J

j=1 zjPj(x)
= −

∑J
j=1 zjP

′
j(x)h1

P (x)
=

J∑
j=1

a1jzj

using value matching (3.2.6) and (3.3.2). Therefore if z = A−1
+ b+, so A+z = b+, the duration is

matched. By the same argument, setting I = J − 1 and hi(t) = ti reduces to high-order duration

matching (I = J − 1 = 2 is convexity matching).

Remark. Proposition 3.3.4 explains why high-order duration matching (I = J − 1, no portfolio

constraint, and hi(t) = ti) does not necessarily have good performance (Mantilla-Garcia, Martellini,

Milhau, and Ramirez-Garrido, 2022). When I = J − 1, as we increase I, both the number of basis

functions I and the set of admissible portfolios Z expand. Because increasing I makes VI(Z) larger
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but expanding Z makes it smaller, the combined effect could go either way.

In addition to the setting in Corollary 3.3.6, if the liability pays out on a single date and

the immunizing portfolio does not involve shortsales, we can obtain the following global result.

Proposition 3.3.7 (Guaranteed funding). Let everything be as in Corollary 3.3.6 and suppose that

the liability pays out on a single date. If z∗ = A−1
+ b+ ≥ 0, then for all h ∈ span {hi}Ii=1 we have

J∑
j=1

z∗jPj(x+ h) ≥ P (x+ h). (3.3.17)

Remark. Our maxmin result (Theorems 3.3.3 and 3.3.5) is quite different from the existing literature

such as Fisher and Weil (1971) and Bierwag and Khang (1979). To the best of our knowledge, in this

literature it is always assumed that the liability pays out on a single date and the portfolio does not

involve shortsales (z ≥ 0) yet this constraint does not bind. Under these assumptions, Proposition

3.3.7 shows that the immunizing portfolio always funds the liability, which generalizes the result of

Fisher and Weil (1971) (who proved (3.3.17) for I = J−1 = 1 and h1(t) = t). However, this result is

quite restrictive because liabilities could be paid out over time and shortsales are essential when the

maturity of the liability is very long (such as pensions). Our maxmin result (3.3.9) accommodates

arbitrary liability structures and portfolio constraints.

3.3.4 Implementation

To implement robust immunization, we need to choose the basis functions {hi}Ii=1. For each

i, it is natural to choose hi such that hi is a polynomial of degree i with hi(0) = 0, for Assumption

3 then holds (Lemma C.1.2). By basis invariance (Proposition 3.3.2), any choice of such a basis

will result in the same immunizing portfolio.

However, we suggest using Chebyshev polynomials because they enjoy good approximation

properties (Trefethen, 2019, Ch. 2–4). To be more specific, let Tn : [−1, 1] → R be the n-degree

Chebyshev polynomial defined by Tn(cos θ) = cosnθ and setting x = cos θ. We map [0, T ] to [−1, 1]

using t 7→ x = 2t/T − 1, and define gi : [0,∞) → R by

gi(t) = Ti−1(2t/T − 1) (3.3.18)
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so that we can allow any (continuous) perturbations to the forward rate for t ∈ [0, T ]. Then our

basis functions for perturbing the cumulative discount rate (the integral of the forward rate) can

be defined by

hi(t) =

∫ t

0
gi(u) du (3.3.19)

for each i. The following lemma provides explicit formulas for the basis functions (3.3.19).

Lemma 3.3.8 (Chebyshev basis for forward rate). Let Tn be the n-degree Chebyshev polynomial

defined by Tn(cos θ) = cosnθ and setting x = cos θ. For each i, the basis function hi in (3.3.19)

can be expressed as

h1(t) = t, (3.3.20a)

h2(t) =
1

4
T
(
(2t/T − 1)2 − 1

)
, (3.3.20b)

and for i ≥ 3,

hi(t) =
1

4
T

(
Ti(2t/T − 1)

i
− Ti−2(2t/T − 1)

i− 2
+

2(−1)i

i(i− 2)

)
. (3.3.20c)

Figure 3.1a shows the graphs of the first few basis functions (3.3.20) for T = 50 years. Figure

3.1b shows the graphs of gi = h′i in (3.3.18), which are the rows of the matrix G in Proposition

3.3.1.

We now describe the algorithm to implement robust immunization in practice. Although the

underlying theory (which heavily relies on functional and numerical analysis) may not be familiar

to practitioners, the implementation only requires little more than basic linear algebra and linear

programming.

Robust Immunization.

(i) Let t = (t1, . . . , tN ) be the 1×N vector of asset/liability payout dates and T = tN be the

planning horizon. Let y = (y1, . . . , yN ) be the 1×N vector of yields, f = (f1, . . . , fN ) be

the 1×N vector of liabilities, and F = (fjn) be the J ×N matrix of bond payouts.
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Figure 3.1. Basis functions of robust immunization.

(ii) Let I ≥ J−1, define the basis functions by (3.3.20), evaluate at each tn, and construct the

I×N matrix of basis functions H = (hi(tn)) and their derivative G = (h′i(tn)) = (gi(tn)).

Define the 1 × N vector of zero-coupon bond prices p = exp(−y ⊙ t), where ⊙ denotes

entry-wise multiplication (Hadamard product).

(iii) Define the I × J matrix A, I × 1 vector b, and 1× J vector a0 by

A := (Hdiag(p)F′)/(pf ′), b := Hdiag(p)f ′/(pf ′), a0 := pF′/(pf ′),

where diag(p) denotes the diagonal matrix with diagonal entries given by p. Define the

(I + 1)× J matrix A+ and (I + 1)× 1 vector b+ by

A+ :=

a0
A

 and b+ :=

1
b

 .

(iv) If I = J − 1 and there are no portfolio constraints, calculate the immunizing portfolio as

z∗ = A−1
+ b+. Otherwise, solve the minmax problem (3.3.6).

Note that the inner maximization in (3.3.6) is a linear programming problem with I variables
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and 2N inequality constraints, which is straightforward to solve numerically even when N is large

(a few hundred in typical applications). The outer minimization is a convex minimization problem

with J variables, which is also straightforward to solve numerically.

3.4 Evaluation: static hedging

In this section we evaluate the performance of robust immunization and other existing

methods using a numerical experiment in a static setting.

3.4.1 Experimental design

Data and yield curve model

We obtain daily U.S. Treasury nominal yield curve data from November 25, 1985 to Septem-

ber 2022 from the Federal Reserve.8 We denote the days by s = 1, . . . , S, where S = 9,201 is the

sample size. These daily yield curves are estimated using the methodology of Gürkaynak, Sack,

and Wright (2007), who assume that the instantaneous forward rate at term t is specified by the

Svensson (1994) model

f(t) = β0 + β1 exp(−t/τ1) + β2(t/τ1) exp(−t/τ1) + β3(t/τ2) exp(−t/τ2), (3.4.1)

where β0, β1, β2, β3 ∈ R and τ1, τ2 > 0 are parameters. The functional form (3.4.1) allows for two

humps in the forward curve that are governed by the parameters τ1 and τ2. Integrating the forward

rate in (3.4.1), we obtain the cumulative discount rate

x(t) = β0t− β1τ1 exp(−t/τ1)− β2(t+ τ1) exp(−t/τ1)− β3(t+ τ2) exp(−t/τ2).

Note that the parameters in (3.4.1) change over time, but we suppress the time subscript s

for notional clarity. Our data set includes the estimated parameters (β0, β1, β2, β3, τ1, τ2) for each

day, with which we can evaluate the forward curve (and hence the yield and cumulative discount

curves) at arbitrary term t ≥ 0.

Remark. The estimated parameters of Gürkaynak, Sack, and Wright (2007) go back all the way

to 1961, but we only use their data beyond 11/25/1985 when bonds with a maturity of 30 years

8https://www.federalreserve.gov/data/nominal-yield-curve.htm
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were introduced in the market. The authors caution against extrapolation of the forward rate

beyond the maximum available bond maturity. Anticipating our empirical application, we need to

obtain forward rates with a maturity up to 50 years. Since extrapolation is still necessary in this

case, we extrapolate the forward rate by a constant beyond the 30-year maturity. This approach is

motivated by no-arbitrage arguments which stipulate that the long term forward rate is constant

(Dybvig, Ingersoll, and Ross, 1996). In Appendix C.5.1, we show how the constant forward rate

assumption affects our estimate of the yield curve.

Approximating forward rate changes by basis functions

Our theory is based on the assumption that changes in the forward rate can be approximated

by the basis functions. To evaluate this assumption, we regress the d-day ahead forward rate changes

on the basis functions gi in (3.3.18) and calculate a goodness-of-fit measure denoted by R2 (see

Appendix C.5.2 for details).

The left panel of Figure 3.2 shows this goodness-of-fit measure R2 for various horizons d.

The goodness-of-fit seems to be independent of d except when I = 1. The first basis function

(constant) explains between 50 and 65% of variations in the forward rate changes, and the first

two basis functions (constant and linear) explain about 80%. This result shows that it can be

important to account for principal components in constructing the robust immunization portfolio,

as in Theorem 3.3.5. The right panel shows the unexplained component 1−R2 as we include more

basis functions. We can see that setting I = 10 captures about 99.9% (1−R2 < 10−3) of variations

in the forward rate changes.

Cash flow and immunization methods

We now turn to the immunization design. We suppose that the future cash flows of the

liability are equal to 1/(12T ) every month for T = 50 years (so the cumulative cash flow is nor-

malized to 1), and the bonds available for trade are zero-coupon bonds with face value 1 and years

to maturity being a subset of {1, 5, 10, 20, 30}. We intentionally choose a long maturity of 50 years

for the cash flows because it is of interest to study how the yield curve at the long end affects the

performance of the immunization methods.

We consider three immunization methods. The first method is high-order duration matching

(HD) explained in Remark 5, which is a special case of robust immunization by setting I = J − 1
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Figure 3.2. Goodness-of-fit of forward rate change approximation.

Note: The left panel shows R2 for each d-day ahead change in the forward rate using the basis functions {gi}Ii=1 in
(3.3.18) as regressors. The right panel shows the combined 1 − R2 as we increase the number of basis functions I.
See Appendix C.5.2 for details.

and hi(t) = ti. By basis invariance (Proposition 3.3.2), we can choose any polynomial basis, so

we use the Chebyshev functions in Lemma 3.3.8 with T = 50. The second method is key rate

duration matching (KRD) proposed by Ho (1992) and explained in Appendix C.5.3. In short, this

method is designed to match the liability and portfolio sensitivity to interest rate changes at pre-

specified maturities. The third method is our proposed robust immunization method (RI) with the

Chebyshev basis for the forward rate in Lemma 3.3.8. Motivated by the right panel of Figure 3.2,

we set the number of basis functions to I = 10. For the portfolio constraint, motivated by Theorem

3.3.5 and the left panel of Figure 3.2, we consider value matching only (Z0 in (3.3.16)), value- and

duration matching (Z1 in (3.3.12)) and value-, duration- and convexity matching. We refer to these

methods as RI(0), RI(1) and RI(2) respectively.9

For each method, we consider immunizing the cash flows with J = 2, 3, 4, 5 bonds. J = 2

corresponds to using the 1- and 30-year zero-coupon bonds, and we add the 5-, 10-, and 20-year

bond for J = 3, 4, 5, respectively. Note that for HD, J = 2 is simply classical immunization with

duration matching; J = 3 is duration and convexity matching. For KRD, we use the longer maturity

bonds to match the key rates and we use the remaining shortest maturity bond to match value.

For example, in case J = 3, we use the 30- and 5-year bond to match the 30- and 5-year key rate

of liabilities and we use the remaining 1-year bond to match the value of liabilities.

9The RI(2) method is defined only when J ≥ 3 because otherwise the portfolio constraint Z2 is generally empty.
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Return error

Suppose that on day s, the fund manager immunizes future cash flows with a bond portfolio

zs = (zsj) constructed by the HD, KRD, and RI methods. Motivated by the error estimate (3.3.10),

we evaluate each method using the absolute return error on day s+ d defined by

1

P (xs)

∣∣∣∣∣∣P (xs+d)−
J∑

j=1

zsjPj(xs+d)

∣∣∣∣∣∣ , (3.4.2)

where xs(t) is the cumulative discount rate on day s for term t and we consider the portfolio holding

period of d = 1, . . . , 100 days.10 The performance measure (3.4.2) can be understood as the return

error if after forming the immunizing portfolio on day s, the yield curve instantaneously shifts to

that of day s+ d. In this sense the return error (3.4.2) is a performance measure of static hedging.

We address dynamic hedging in Section 3.5.

3.4.2 Results

Figure 3.3 shows the return error defined by (3.4.2) averaged over the sample period. The

return error worsens with longer portfolio holding periods (d) for all bond quantities and methods

because of greater yield curve fluctuations. When there are only two bonds (J = 2, Figure 3.3a), by

construction the HD and RI(1) method agree and they achieve the lowest return error. When there

are three bonds (J = 3, Figure 3.3b), by construction the HD and RI(2) methods agree, and they

achieve the lowest return error, with RI(1) close behind. When there are four bonds (J = 4, Figure

3.3c), RI(1) clearly outperforms all other methods. Finally, in case of five bonds (J = 5, Figure

3.3d), RI(1) and RI(2) are the best performing methods with RI(2) being slightly more accurate

over short horizons whereas RI(1) is more accurate over longer holding periods. Overall, the lowest

error is achieved by RI(1) with four bonds. Turning to the existing approaches in the literature,

we see that HD does well only for J ≤ 3, while the performance of KRD is only comparable to robust

immunization in case of using five bonds.

Figure 3.3 presents only average return errors. To evaluate the performance of each method

under adversarial circumstances, Table 3.1 presents the mean, 95- and 99 percentiles of the return

10We also considered the relative pricing error 1
P (xs+d)

∣∣∣P (xs+d)−
∑J

j=1 zsjPj(xs+d)
∣∣∣ but it makes no material

difference because P (xs) and P (xs+d) have the same order of magnitude.
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Figure 3.3. Return error for different holding periods.

Note: The figure presents the return error in portfolio value defined by (3.4.2) over various holding periods, averaged
over the entire sample period. RI(0): robust immunization with a value matching; RI(1): robust immunization
with value and duration matching; RI(2): robust immunization with value, duration, and convexity matching; HD:
high-order duration matching; KRD: key rate duration matching. The panels in the figure show the error for different
number of bonds J used to construct the immunizing portfolio.

error for a portfolio holding period of 30 days. According to this table, the performance of the HD

method is non-monotonic, which performs best when J = 3 but deteriorates when J ≥ 4. The

performance of the KRD method monotonically improves with J , but it is accurate only when J = 5.

In contrast, RI(1) and RI(2) perform well with any number of bonds and their return errors are an

order of magnitude lower compared to HD and KRD when J ≥ 4.

We can summarize the findings in Figure 3.3 and Table 3.1 as follows: (i) Regardless of

the number of bonds, one of the robust immunization (RI) methods achieves the lowest return
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Table 3.1. Return error (%) for 30-day holding period.

Method: RI(0) RI(1) RI(2) HD KRD

Mean
J = 2 0.54 0.52 - 0.52 1.65
J = 3 0.48 0.28 0.28 0.28 1.42
J = 4 0.54 0.12 0.19 1.02 0.85
J = 5 0.44 0.19 0.19 1.9 0.28

95th percentile
J = 2 1.66 1.60 - 1.60 4.3
J = 3 1.32 0.87 0.86 0.86 3.67
J = 4 1.52 0.43 0.58 3.44 2.2
J = 5 1.37 0.64 0.54 6.2 0.91

99th percentile
J = 2 2.38 2.49 - 2.49 6.85
J = 3 2.19 1.84 1.77 1.77 5.99
J = 4 2.53 0.85 1.17 7.62 3.59
J = 5 2.42 1.07 0.91 15.15 1.49

Note: See Figure 3.3 caption. The best performing method is indicated in bold.

error, and generally RI(1) (matching value and duration) or RI(2) (matching value, duration, and

convexity) is the best. (ii) The performance of the HD method is non-monotonic in J , performing

best with J = 3 but poorly with J ≥ 4. (iii) The performance of KRD is poor for J ≤ 4 and good

for J = 5.

We next compare the performance of the best specification for each method. For example,

we set J = 3 for HD and J = 5 for KRD, and we consider RI(1) for robust immunization with J = 4

bonds. Figure 3.4a shows the time series plot of the return error for each immunization method.

We see that RI(1) is dominating the other methods almost uniformly over the entire sample period.

Furthermore, KRD meaningfully outperforms HD only before 1990. Figure 3.4b shows the histogram

of the absolute return errors (3.4.2). We can see that large return errors tend to be less frequent

with RI(1). To see this formally, Figure 3.4c plots the survival probability of return losses (defined

analogously to (3.4.2) but without taking absolute values) above various thresholds. The fact that

RI(1) has lower tail (survival) probability than other methods implies that losses are less likely.

Figure 3.4d plots the value at risk (VaR) of each method. The value at risk is the quantile of

the return distribution and hence the graph plots the size of the return loss corresponding to the
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specified loss probability. RI(1) uniformly has the lowest value at risk. These findings are consistent

with Theorem 3.3.5 because the robust immunization method is designed to maximize the return

error under the most adversarial perturbation to the cumulative discount rate.
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Figure 3.4. Comparison of best specifications

Note: The figures compare the best specification for each method using 4 bonds for RI(1), 3 bonds for HD and 5 bonds
for KRD. Return errors are averaged at every time period over each d-day ahead forecast, where d = 1, . . . , 100. The
time series plot in Figure 3.4a shows the 180-day moving average for visibility.

We also test more formally whether the absolute return errors of RI(1) dominate HD and

KRD. To do so, we use the nonparametric sign test which can be used to test whether the median

absolute return error is the same for both methods. More details about this test are described in

Appendix C.5.4, where we show that the 30-day return error for RI(1) is significantly better than

the best performing HD and KRD method.
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Leverage

To shed light on the observation that the performance in Figure 3.3 is non-monotonic for

HD, Table 3.2 shows the gross leverage (ℓ1 norm) of the portfolio shares ∥θ∥1 =
∑J

j=1 |θj |. The

leverage for HD portfolios is rather pronounced for J = 4, 5 compared to RI, both in median and in

the right tail. Mantilla-Garcia, Martellini, Milhau, and Ramirez-Garrido (2022) show that levered

portfolios can lead to poor out-of-sample hedging, which can explain the poor performance of HD

for J = 4, 5 in Figure 3.3.

Table 3.2. ℓ1 norm of investment shares.

Method: RI(0) RI(1) RI(2) HD KRD

Median
J = 2 1 1 1 1 1
J = 3 1 1 1 1 1
J = 4 1 1 1 5.49 1
J = 5 1 1 1.09 15.55 1

95th percentile
J = 2 1 1 1 1 1
J = 3 1.02 1 1.27 1.27 1
J = 4 1 1 1.18 12.12 1
J = 5 1 1 1.91 30.07 1.01

99th percentile
J = 2 1 1 1 1 1
J = 3 1.05 1 1.31 1.31 1
J = 4 1 1 1.17 13.69 1
J = 5 1 1 2.12 33.6 1.05

Note: This table shows the ℓ1 norm of the investment shares, ∥θ∥1, for robust immunization with a value matching
constraint (RI(0)), robust immunization with a value- and duration matching constraint (RI(1)), robust immunization
with a value-, duration- and convexity matching constraint (RI(2)), high-order duration matching (HD) and key rate
duration matching (KRD).

3.5 Evaluation: dynamic hedging

Although the static hedging experiment in Section 3.4 may be informative, it only addresses

the performance of various immunization methods under a one-shot instantaneous change in the

yield curve. In practice, the fund manager will rebalance the portfolio over time, in which case

the yield curve as well as the bond maturities change. In this section, to evaluate the perfor-

mance of various immunization methods under practical situations, we conduct a dynamic hedging
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experiment using simulated yield curves.

3.5.1 Implementing dynamic hedging

Let {sn}Nn=0 be the portfolio rebalancing dates (with the normalization s0 = 0) and assume

that the coupon payment dates of the liability are contained in this set. For simplicity let sn = n∆

with ∆ > 0 so the dates are evenly spaced, although this is inessential. The liability pays fs ≥ 0

at time s > 0. The fund manager can use J zero-coupon bonds with face value 1 and maturities

{tj}Jj=1 to hedge the liability. We introduce the following notations:

xs(t) = cumulative discount rate for term t at time s,

Ps = present value of liability at time s,

Vs = net asset value (NAV) of fund at time s,

zs = (zsj) = immunizing portfolio at time s,

Cs = cash position at time s,

Rs = gross short rate at time s.

We now describe how to calculate these quantities recursively. At time s, the present value

of the liability (after coupon payment) is

Ps :=
∑

n:sn>s

e−xs(sn−s)fsn .

Note that at time s, the remaining term of the n-th payment is sn − s and we only retain future

payments in the sum. Let s− = s − ∆ denote the previous rebalancing period. The NAV of the

fund consists of the present value of the bond and cash positions carried over from the previous

period minus the current liability payment, which is

Vs := Rs−Cs−︸ ︷︷ ︸
cash

+
J∑

j=1

zs−je
−xs(tj−∆)

︸ ︷︷ ︸
bond

− fs︸︷︷︸
liability

.

Here, note that the cash position earns a (predetermined) gross return Rs− , and the zero-coupon
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bonds have shorter maturities tj −∆ because time has passed. The equity (asset minus liability)

is therefore

Es := Vs − Ps

= Rs−Cs− +

J∑
j=1

zs−je
−(x+h)(tj−∆) − fs −

∑
n:sn>s

e−(x+h)(sn−s)fsn

= Rs−Cs− − fs +
J∑

j=1

zs−je
−(x+h)(tj−∆) −

∑
n:sn−∆−s−>0

e−(x+h)(sn−∆−s−)fsn , (3.5.1)

where x = xs− denotes the cumulative discount rate at s− and h = xs−xs− denotes the perturbation

in the cumulative discount rate. As an illustration, consider the robust immunization method

introduced in Section 3.3. The fund manager’s problem at time s− is to maximize the worst case

equity, where the equity is defined by Es in (3.5.1). Shifting s− to s, the time s objective function

is then

Es+∆(z, x+ h) := RsCs − fs+∆ +
J∑

j=1

zsje
−(x+h)(tj−∆) −

∑
n:sn−∆−s>0

e−(x+h)(sn−∆−s)fsn ,

where x = xs is the current cumulative discount rate. Because fs+∆ is predetermined and Cs is

determined by the budget constraint and hence independent of the perturbation h, the dynamic

hedging problem reduces to the static hedging problem discussed in Section 3.3 except that all

payments need to be treated as if their maturities are reduced by ∆. This modification takes into

account the passage of time and hence the reduction in bond maturities by the next rebalancing

date. For example, if the time to rebalancing is one month, a 1-year zero coupon bond is treated

as if it is an 11-month bond.

Given the current cumulative discount rate xs, it is straightforward to apply various im-

munizing methods to bonds and liability with maturities reduced by ∆. Suppose the new (time

s) immunizing portfolio zs = (zsj) is chosen. Then the cash position is the difference between the

NAV and portfolio value, which is

Cs = Vs −
J∑

j=1

zsje
−xs(tj).
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Note that although we reduce the maturities by ∆ to form the portfolio, we use the actual maturities

to evaluate the portfolio value and define the cash position. Initializing at V0 = P0 (100% funding),

we can implement dynamic hedging by repeating this procedure for s = ∆, 2∆, . . . . We evaluate

the quality of the hedge at time s using the absolute return error

1

Ps−
|Vs − Ps| . (3.5.2)

3.5.2 Experimental design

In Section 3.4, we used the parsimonious Svensson (1994) model fitted to the historical yield

curve data to evaluate the performance of static hedging. Unlike static hedging, where we only

consider changes to the yield curve over short horizons, in dynamic hedging the yield curve changes

over long horizons have a large impact on portfolio performance. This feature makes it problematic

to use historical data for performance evaluation. For instance, suppose that a particular portfolio

selection method over-weights in long-term bonds. Because historical yields have been trending

downwards during the 1985–2022 period, this method may appear to have a good performance.

However, the opposite is true had the yields been trending upwards.

For this reason, in our dynamic hedging experiment, we only use simulated yield curves

generated from a no-arbitrage term structure model. Specifically, we apply the Ang, Bekaert, and

Wei (2008) 3-factor regime switching model. By simulating yields from this (stationary) regime-

switching model, we can evaluate the performance of various immunization methods under a wide

variety of yield curves. A more detailed description of the model, as well as the data used to

estimate the model is provided in Appendix C.4.11

We implement the dynamic hedging approach using the same liability and zero-coupon

bonds from the static problem in Section 3.4.1. We use all 5 bonds for immunization for RI(1)

and KRD. In contrast, we only use 3 bonds for HD since the performance for J > 3 is comparatively

worse relative to the other methods (see Figure 3.3). Since we estimate the yield curve model of

Ang, Bekaert, and Wei (2008) based on quarterly data, we assume that the immunizing portfolio

is rebalanced every quarter. We analyze the performance over a period of 10 years and repeat the

11We chose to estimate the model ourselves instead of using the parameters reported in Ang, Bekaert, and Wei
(2008, Table III) to better reflect the evolution in yields over the last decade.
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simulation 5,000 times.

3.5.3 Results

The results are summarized in Figure 3.5. The left panel shows the histogram of absolute

return errors at the end of the 10-year period across all simulations.12 Overall, it is clear that RI(1)

is the superior method, since it has more mass in the left tail where the absolute return error is

small. Also, the MSE is four times smaller compared to KRD, which comes second best. The worst

performing method is HD, which has a much higher bias than KRD, but smaller variance.

The right panel of Figure 3.5 sheds light on the maxmin property by showing the 99th

percentile of the absolute return error for each method throughout the 10-year period across all

simulations. We see that RI(1) strictly dominates the other methods in the maxmin sense as well,

consistently maintaining an absolute return error below that of the competing methods. Due to

increased uncertainty, the percentiles are naturally increasing over time. Looking at the other two

methods, we find that KRD compares poorly to HD because of outliers in the right tail, especially at

the end of the immunization period.
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Figure 3.5. Distribution of absolute return error

The left panel shows the histogram of absolute return errors calculated at the end of the 10-year immunization period.
The right panel shows the 99th percentile of the absolute return error throughout the 10-year immunization period,
calculated across all 5,000 simulations.

12I.e. the absolute return error in (3.5.2) evaluated at s = 40.
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3.6 Conclusion

This paper uses techniques from functional and numerical analysis to study the classical

portfolio immunization problem. The goal is to construct a portfolio that protects a financial

institution against interest rate risk. We use the concept of a Fréchet derivative to find a portfolio

that hedges against general perturbations to the cumulative discount rate. Subsequently, we present

a maxmin result that proves existence of an immunizing portfolio which maximizes the worst-case

equity loss and we provide a solution algorithm. This maxmin portfolio, which we refer to as

robust immunization, contains duration and convexity matching as a special case. In our empirical

applications, we show that a judicious choice of basis functions for the discount rate leads to a

robust immunization method that outperforms existing approaches in the static and dynamic case.
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Appendix A

Appendix to Chapter 1

A.1 Proofs

This section contains proofs and detailed calculations of results used in the main paper.

A.1.1 Decomposing the Equity Premium

For any atomless integrable random variable X with CDF F (·) and quantile function Q =

F−1, we have

E(X) =

∫
R
x dF (x) =

∫ 1

0
Q(τ) dτ.

The second identity holds by the change of variables formula for the Lebesgue-Stieltjes integral. In

case F has a density, the formula follows from a simple substitution x → Q(τ). Hence,

Et [Rm,t→N ]−Rf,t→N = Et [Rm,t→N ]− Ẽt (Rm,t→N ) =

∫ 1

0

(
Qt,τ − Q̃t,τ

)
dτ.

A.1.2 Stochastic Dominance and Pricing Kernel Monotonicity

In this section I provide more details on the relation between stochastic dominance and pric-

ing kernel monotonicity. To begin with, recall that the physical distribution is first-order stochastic

dominant (FOSD) over the risk-neutral distribution if and only if Ft(x) ≤ F̃t(x), or Q̃t,τ ≤ Qt,τ .

The definition is also equivalent to Ft(Q̃t,τ ) ≤ τ for all τ ∈ (0, 1), which follows from the substitu-

tion x → Q̃t,τ .

To see the connection with pricing kernel monotonicity, recall from Beare and Schmidt

(2016) that pricing kernel monotonicity is equivalent to ϕt(τ) := Ft(Q̃t,τ ) being a convex function for
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all τ .1 Figure A.1 shows two different ordinal dominance curves (ODCs); the blue line corresponds

to a situation where FOSD holds and the pricing kernel is monotonic (hence convex), whereas the

yellow line shows a scenario where FOSD does not hold and convexity automatically fails. The

geometric argument for why non-monotonicity is implied by a failure of FOSD is conveyed by the

figure: if FOSD fails, the yellow line must cross the 45-degree line for some τ ∈ (0, 1), which

automatically implies that the ODC is non-convex since the ODC has to satisfy ϕt(1) = 1, because

the physical and risk-neutral measures are equivalent. The proposition below thus follows.

Proposition A.1.1. If the pricing kernel is a monotonically decreasing function of the market re-

turn, the physical measure first-order stochastically dominates the risk-neutral measure. Conversely,

a violation of FOSD implies a violation of pricing kernel monotonicity.

A violation of FOSD is puzzling from the viewpoint of expected utility maximization. In

this framework, the SDF is given by u′(Rm,t→N )/Et(u
′(Rm,t→N )), where u(·) is a utility function

and the initial endowment is normalized to one for simplicity. The following proposition shows that

a sufficient (but not necessary) condition for FOSD to hold is that u′(·) is non-increasing; a rather

ubiquitous assumption in asset pricing models.

Proposition A.1.2. In the expected utility framework, a sufficient condition for the physical mea-

sure to first-order stochastically dominate the risk-neutral measure is that u′(·) is non-increasing.

Proof. Using the SDF to change from physical to risk-neutral measure, it follows that FOSD is

equivalent to

Ft(x) ≤ F̃t(x)

⇐⇒ Et [1 (Rm,t→N ≤ x)] ≤ Et

[
u′(Rm,t→N )

Et [u′(Rm,t→N )]
1 (Rm,t→N ≤ x)

]
⇐⇒ 0 ≤ COVt(1 (Rm,t→N ≤ x) , u′(Rm,t→N )).

By Lemma A.5.1, the covariance above is nonnegative if u′(·) is non-increasing. ■

1Beare and Schmidt (2016) actually consider the reverse function ϕt(τ) = F̃t(Qt,τ ), so that pricing kernel mono-
tonicity is equivalent to ϕt(·) being concave.
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Figure A.1. Ordinal dominance curve with and without first-order stochastic domi-
nance. This figure shows two different ordinal dominance curves. The blue ODC corresponds to a situation where
the physical measure FOSD the risk-neutral measure, whereas the yellow line shows a situation where FOSD fails.

A.1.3 Proof of Proposition 1.4.1

I separately show ((i)) and ((ii)) of Proposition 1.4.1. To prove these results, I use the

following lemma.

Lemma A.1.3. In the lognormal model, the physical and risk-neutral quantile functions conditional

on µt, σt are given by, respectively

Qt,τ = exp

[
(µt −

1

2
σ2
t )N + σt

√
NΦ−1(τ)

]
(A.1.1)

Q̃t,τ = exp

[
(rf − 1

2
σ2
t )N + σt

√
NΦ−1(τ)

]
, (A.1.2)

where Φ−1(·) denotes the quantile function of the standard normal distribution. If µt ∼ N (µ, σ2
µ)

and independent from σt, the physical quantile function conditional on σt, but not µt, equals

Qt,τ (σt, σµ) = exp

[
(µ− 1

2
σ2
t )N +

(√
σ2
µN

2 + σ2
tN
)
Φ−1(τ)

]
. (A.1.3)

Proof. The quantile function of a random variableX such that logX ∼ N (a, b2), is given by exp(a+
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bΦ−1(τ)). Therefore, the quantile functions conditional on µt, σt in (A.1.1) and (A.1.2) follow

immediately from the conditional lognormal assumption. In (A.1.3), the function is conditioned on

σt, but not µt. Since µt is assumed to be normally distributed and independent from σt, it follows

that

(µt −
1

2
σ2
t )N + σt

√
NZt+N |σt ∼ N

(
(µ− 1

2
σ2
t )N, σ2

µN
2 + σ2

tN

)
.

The expression in (A.1.3) can now be obtained again using the general formula of the lognormal

quantile function. ■

Proof of Proposition 1.4.1((i)). Recall that
√
a2 + b2 ≤

√
a2 + b2 + 2ab = a+ b, provided a, b ≥ 0.

This inequality shows that

exp
[(√

σ2
µN

2 + σ2
tN − σt

√
N
)
Φ−1(τ)

]
≤ exp

[(√
σ2
µN

2 + σ2
tN − σt

√
N
) ∣∣Φ−1(τ)

∣∣]
≤ exp

(
σµN

∣∣Φ−1(τ)
∣∣)

= 1 +O (σµN) ,

uniformly in τ ∈ I and the support of σt. In combination with Lemma A.1.3, it follows that

Qt,τ (σt, σµ) = Q̃t,τe
(µ−rf )N exp

[(√
σ2
µN

2 + σ2
tN − σt

√
N
)
Φ−1(τ)

]
= Q̃t,τe

(µ−rf )N (1 +O (σµN)) . ■

In order to prove Proposition 1.4.1((ii)), I need additional regularity conditions stated in

Assumption A.1.4 below. The following notation for the quantile empirical process will be used:

LT,τ (β, σµ) :=
1

T

T∑
t=1

ρτ (Rm,t→N − β0 − β1Q̃t,τ )

Lτ (β, σµ) := lim
T→∞

1

T

T∑
t=1

E
[
ρτ (Rm,t→N − β0 − β1Q̃t,τ )

]
.

Assumption A.1.4. In the lognormal model, assume additionally that

(i) E [Rm,t→N ] and E
[
Q̃t,τ

]
are finite,
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(ii) Lτ (β, 0) has an identifiably unique minimum β∗ at σµ = 0, i.e., for all ε > 0

inf
∥β−β∗∥>ε

Lτ (β, 0)− Lτ (β
∗, 0) > 0.

(iii) as T → ∞, for any compact set B and sequence bT ↘ 0,

sup
β∈B

∥∥Lτ (β, σ
T
µ )− Lτ (β, 0)

∥∥ = o(1) (Uniform continuity). (A.1.4a)

sup
σµ≤bT

sup
β∈B

∥LT,τ (β, σµ)− Lτ (β, σµ)∥ = op(1) (Uniform LLN). (A.1.4b)

Proof of Proposition 1.4.1((ii)). Consider the population minimization problem of quantile regres-

sion at σµ = 0

[β∗
0(0; τ), β

∗
1(0; τ)] := argmin

(β0,β1)∈R2

Lτ (β, 0). (A.1.5)

Assumptions A.1.4((i),(ii)) ensure that the objective function is well defined and the solution in

(A.1.5) is unique for all τ ∈ I. At σµ = 0, Qt,τ = e(µ−r)N , so that [β∗
0(0; τ), β

∗
1(0; τ)] = [0, e(µ−r)N ].

To ease notation in the following derivation, I write β̂(σT
µ ) := argminβ LT,τ (β, σ

T
µ ) and β∗(0) =

argminβ Lτ (β, 0). It then follows that for every ε > 0 there exists a δ > 0 such that

P
(∥∥∥β̂(σT

µ )− β∗(0)
∥∥∥ > ε

)
≤ P

(
Lτ (β̂(σ

T
µ ), 0)− Lτ (β

∗(0), 0) > δ
)

= P
(
Lτ (β̂(σ

T
µ ), 0)− LT,τ (β̂(σ

T
µ ), σ

T
µ ) + LT,τ (β̂(σ

T
µ ), σ

T
µ )− Lτ (β

∗(0), 0) > δ
)

≤ P
(
Lτ (β̂(σ

T
µ ), 0)− LT,τ (β̂(σ

T
µ ), σ

T
µ ) + LT,τ (β

∗(0), σT
µ )− Lτ (β

∗(0), 0) > δ
)

≤ P

(
2 sup
β∈B

∥∥Lτ (β, 0)− LT,τ (β, σ
T
µ )
∥∥ > δ

)
.

The second line follows from identification and the second to last line from the minimization prop-

erty of β̂(σT
µ ). Therefore, it suffices to show that

sup
β∈B

∥∥Lτ (β, 0)− LT,τ (β, σ
T
µ )
∥∥ = op(1).
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This claim follows from

sup
β∈B

∥∥Lτ (β, 0)− LT,τ (β, σ
T
µ )
∥∥

≤ sup
β∈B

∥∥Lτ (β, 0)− Lτ (β, σ
T
µ )
∥∥+ ∥∥Lτ (β, σ

T
µ )− LT,τ (β, σ

T
µ )
∥∥

≤ sup
β∈B

∥∥Lτ (β, 0)− Lτ (β, σ
T
µ )
∥∥+ sup

σµ≤bT

sup
β∈B

∥Lτ (β, σµ)− LT,τ (β, σµ)∥ .

The first term is o(1) by (A.1.4a) and the second term is op(1) by (A.1.4b), which completes the

proof. The claim in (1.4.5) easily follows from (1.4.4).

■

A.1.4 Proof of Proposition 1.5.1

Proof. Starting from the definition of the risk-neutral quantile function, it follows that

τ = P̃t

[
Rm,t→N ≤ Q̃t,τ

]
= Ẽt

[
1

(
Rm,t→N ≤ Q̃t,τ

)]
=

1

Et [Mt→N ]
Et

[
Mt→N1

(
Rm,t→N ≤ Q̃t,τ

)]
=

1

Et [Mt→N ]

(
COVt

(
Mt→N ,1

(
Rm,t→N ≤ Q̃t,τ

))
+ Et [Mt→N ]Et

[
1

(
Rm,t→N ≤ Q̃t,τ

)])
=

1

Et [Mt→N ]
COVt

(
Mt→N ,1

(
Rm,t→N ≤ Q̃t,τ

))
+ Et

[
1

(
Rm,t→N ≤ Q̃t,τ

)]
︸ ︷︷ ︸

=ϕt(τ)

. (A.1.6)

Rearranging then yields

1

Et [Mt→N ]
COVt

(
Mt→N ,1

(
Rm,t→N ≤ Q̃t,τ

))
= τ − ϕt(τ).

Using Cauchy-Schwarz renders the inequality

1

Et [Mt→N ]
σt(Mt→N )σt

(
1

(
Rm,t→N ≤ Q̃t,τ

))
≥ |τ − ϕt(τ)|

σt(Mt→N )

Et [Mt→N ]
≥ |τ − ϕt(τ)|

σt

(
1

(
Rm,t→N ≤ Q̃t,τ

)) . (A.1.7)
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Finally, since 1
(
Rm,t→N ≤ Q̃t,τ

)
is a Bernoulli random variable, it follows that

σt

(
1

(
Rm,t→N ≤ Q̃t,τ

))
=
√
ϕt(τ)(1− ϕt(τ)). (A.1.8)

Proposition 1.5.1 now follows after substituting (A.1.8) into (A.1.7). The bound formulated in

terms of the CDFs in (1.5.2) follows from the substitution Q̃t,τ → x. ■

A.1.5 Distribution Bound when SDF and Return are Jointly Normal

In this Section I derive (1.5.7) and (1.5.8) , when M and Rm are jointly normal. First

consider (1.5.8). The proof of the distribution bound in Proposition 1.5.1 gives the following

identity

|τ − ϕ(τ)|
Rf

=
∣∣∣COV

(
1

(
Rm ≤ Q̃τ

)
,M
)∣∣∣ .

Standard SDF properties also yield the well known result

|E(Rm)−Rf |
Rf

= |COV (Rm,M)| .

These results, combined with (1.5.7) prove (1.5.8), since

HJ bound

distribution bound
=

|E[Rm]−Rf |
σRRf

|τ−ϕ(τ)|√
ϕ(τ)(1−ϕ(τ))Rf

(1.5.7)
=

√
ϕ(τ)(1− ϕ(τ))

σRfR(Q̃τ )
,

where fR(Q̃τ ) is the marginal density of Rm.

Finally, I make use of the following covariance identities to prove (1.5.7).

Lemma A.1.5 (Hoeffding). For any square integrable random variable X and Z with marginal

CDFs FX , FZ and joint CDF FX,Z , it holds that

COV [1 (Z ≤ z) , X] = −
∫ ∞

−∞
[FX,Z(x, z)− FX(x)FZ(z)] dx (A.1.9)

COV [Z,X] = −
∫ ∞

−∞
COV [1 (Z ≤ z) , X] dz. (A.1.10)
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Proof. See Lehmann (1966). ■

I also need a relation for the bivariate normal distribution. Suppose that X,Z are jointly

normal with correlation ρ, mean µX , µZ and variance σ2
X , σ2

Z , then

∂Φ2(x, z; ρ, µX , µZ , σ
2
X , σ2

Z)

∂ρ
= σXσZϕ2(x, z; ρ, µX , µZ , σ

2
X , σ2

Z), (A.1.11)

where Φ2(·) denotes the bivariate normal CDF and ϕ2(·) denotes the bivariate normal PDF (Sungur,

1990). We can now prove a covariance identity for jointly normal random variables.

Proposition A.1.6. Suppose Rm and M are jointly normal with correlation ρ, then

−COV [1 (Rm ≤ x) ,M ] = COV [Rm,M ]ϕR(x), (A.1.12)

where ϕR(·) is the marginal density of Rm.

Proof. To lighten notation, I suppress the dependence on µR, µM , σ2
R, σ

2
M in the joint CDF and

PDF. We then have

−COV [1 (Rm ≤ x) ,M ] =

∫ ∞

−∞
Φ2(x,m; ρ)− Φ2(x,m; 0) dm

=

∫ ∞

−∞

∫ ρ

0
σRσMϕ2(x,m; y) dy dm

= σRσMρϕR(x)

= COV [Rm,M ]ϕR(x),

where, in the first line, I use (A.1.9) together with FR(r)FM (m) = Φ2(r,m; 0), the second line fol-

lows from (A.1.11) and the third line follows from Fubini’s theorem to swap the order of integration

and
∫∞
−∞ ϕ2(x,m; y) dm = ϕR(x). ■

Remark 6. The second covariance identity in (A.1.10) shows that COV [1 (Rm ≤ x) ,M ] is a mea-

sure of local dependence. In case of joint normality (A.1.12), the weight is given by the marginal

PDF. For other distributions, the weighting factor is more complicated, but sometimes can be given

an explicit form using a local Gaussian representation (see Chernozhukov, Fernández-Val, and Luo

(2018)).
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A.1.6 Minimizer of Distribution Bound with Normal SDF

This section shows that the relative efficiency between the HJ bound and distribution bound

is minimized when Q̃τ = µR. To see this, write x = Q̃τ , and use F (·) to denote the physical CDF

of Rm. I also drop the R subscript for f to avoid notational clutter. Consider

Γ(x) =
F (x)(1− F (x))

f(x)2
.

Minimizing Γ(x) is equivalent to minimizing (1.5.8) and first order conditions imply that the optimal

x∗ satisfies

[f(x∗)− 2F (x∗)f(x∗)]f(x∗)2 − 2f(x∗)f ′(x∗)[F (x∗)(1− F (x∗))] = 0. (A.1.13)

Since f, F are the respective PDF and CDF of the normal random variable Rm, it follows that

f ′(µR) = 0 and F (µR) = 1/2. As a result, (A.1.13) holds when Q̃τ∗ = x∗ = µR.

A.1.7 Distribution Bound when SDF and Return are Log-normal

This section provides a closed form approximation for the relative efficiency between the

HJ bound and distribution bound under joint lognormality. The result depends on Stein’s Lemma

(Casella and Berger, 2002, Lemma 3.6.5):2

Lemma A.1.7 (Stein’s Lemma). If X1, X2 are bivariate normal, g : R → R is differentiable and

E |g′(X1)| < ∞, then

COV (g(X1), X2) = E
[
g′(X1)

]
COV(X1, X2).

To prove the approximation, we approximate M by a first order Taylor expansion, which

gives

M̂ = e−(rf+
σ2
M
2

)N + ZMσM
√
Ne−(rf+

σ2
M
2

)N .

2I use the form of Stein’s Lemma reported in Cochrane (2005, p. 163), which follows from Stein’s lemma as
reported in Casella and Berger (2002).
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Notice that M̂ = M + op(
√
N). Consequently, by Stein’s Lemma

COV(Rm,M) ≈ COV(Rm, M̂) = σM
√
Ne−(rf+

σ2
M
2

)NCOV(Rm, ZM )

= σM
√
Ne−(rf+

σ2
M
2

)NE
[
σR

√
N exp

([
µR −

σ2
R

2

]
N + σR

√
NZR

)]
COV(ZR, ZM )

= σMσRNe−(rf+
σ2
M
2

)NeµRNCOV(ZR, ZM ).

By Proposition A.1.6,

COV(1 (logRm ≤ x) ,M) ≈ COV
(
1 (logRm ≤ x) , M̂

)
= σM

√
Ne−(rf+

σ2
M
2

)NCOV (1 (logRm ≤ x) , ZM )

= σM
√
Ne−(rf+

σ2
M
2

)NCOV
(
1

(
(µR − σ2

R/2)N + σR
√
NZR ≤ x

)
, ZM

)
= −σM

√
Ne−(rf+

σ2
M
2

)Nf (x)COV (ZR, ZM ) .

Here, f is the density of a normal random variable with mean (µR − σ2
R/2)N and variance Nσ2

R.

As a result, ∣∣∣∣E [Rm]− eNrf

τ − ϕ(τ)

∣∣∣∣ ≈ σR
√
NeµRN

f(x)
. (A.1.14)

The same reasoning in Example 1.5.2 implies that the relative efficiency between the HJ and

distribution bound can be approximated by

HJ bound

distribution bound
=

|E[Rm]−Rf |
σ(Rm)Rf

|τ−ϕ(τ)|√
ϕ(τ)(1−ϕ(τ))Rf

(A.1.15)

(A.1.14)
≈

√
P(r ≤ x) · (1− P(r ≤ x))

σ(Rm)
× σR

√
NeµRN

f(x)
, (A.1.16)

where r = logR and x = log Q̃τ . Using the same reasoning as in Example 1.5.2, the expression on

the right hand side of (A.1.15) is minimized by choosing x = log Q̃∗
τ s.t. P(Rm ≤ Q̃∗

τ ) = 1/2. In

that case the relative efficiency equals

√
2πσ2

R

√
NeµRN

2
√
[exp(σ2

RN)− 1] exp(2µRN)
=

1

2

√
2πσ2

RN

exp(σ2
RN)− 1

.
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A.1.8 Distribution Bound with Pareto Distribution

This section derives an explicit expression of the distribution bound when the return and

SDF follow the Pareto distribution.

Example A.1.1 (Pareto distribution). Let U ∼ Unif [0, 1] (Uniform distribution on [0,1]) and

consider the following specification:

M = AUα, Rm = BU−β with α, β,A,B > 0. (A.1.17)

A random variable X ∼ Par (C, ζ) follows a Pareto distribution with scale parameter C > 0 and

shape parameter ζ > 0 if the CDF is given by

P(X ≤ x) =


1− (x/C)−ζ x ≥ C

0 x < C.

The assumption (A.1.17) implies that returns follow a Pareto distribution, both under the physical

and risk-neutral measures. This fact allows me to obtain an explicit expression for the distribution

bound. I summarize these properties in the Proposition below.

Proposition A.1.8. Let the SDF and return be given by (A.1.17). Then,

(i) Under P, the distribution of returns is Pareto: Rm ∼ Par
(
B, 1

β

)
.

(ii) Under P̃, the distribution of returns is Pareto: Rm ∼ Par
(
B, α+1

β

)
.

(iii) The Sharpe ratio on the asset return is given by

E [Rm]−Rf

σ(Rm)
=

B
1−β − α+1

A√
B2

1−2β −
(

B
1−β

)2 . (A.1.18)

(iv) The distribution bound is given by

1

Rf

|τ − ϕ(τ)|√
ϕ(τ)(1− ϕ(τ))

=
A

1 + α

∣∣∣τ − 1 + (1− τ)
1

α+1

∣∣∣√
(1− (1− τ)

1
α+1 )(1− τ)

1
α+1

.

156



(v) If β ↗ 1
2 , the HJ bound converges to 0.

Proof. See the end of this section. ■

Proposition A.1.8((iv)) shows that the distribution bound is independent of the Pareto tail

index β. Properties ((iv)) and ((v)) provide some intuition when the distribution bound is stronger

than the HJ bound. Namely, heavier tails of the distribution of Rm (as measured by β) lead to a

lower Sharpe ratio. However, the distribution bound is unaffected by β since it only depends on the

tail index α. Therefore, when β gets close to 1/2, the HJ bound is rather uninformative whereas the

distribution bound may fare better. Moreover, no additional restrictions on the parameter space

are necessary to calculate the distribution bound, while the HJ bound requires β < 1/2.3

Figure A.2 shows two instances of the distribution and HJ bound using different parameter

calibrations. Both calibrations are targeted to match an equity premium of 8% and risk-free rate

of 0%, but in Panel A.2b, the distribution of returns has a fatter tail compared to Panel A.2a. In

both calibrations, the distribution bound has a range of values for which it is stronger than the HJ

bound. In line with Proposition A.1.8, we see that the range is larger in Panel (b), since the HJ

bound is less informative owing to the heavier tails of Rm. However, the distribution bound attains

its maximum in the right-tail since that is the region where the physical and risk-neutral measure

differ most. This result is inconsistent with the empirical results from Table 1.2, which indicate

that the physical and risk-neutral measure are nearly identical in the right-tail.

Proof of Proposition A.1.8. (i) The distribution of returns is Pareto, since

P(Rm ≤ x) = P
(
U−β ≤ x/B

)
= P

(
U ≥ (x/B)

− 1
β

)
= 1−

( x

B

)− 1
β
, x ≥ B.

(ii) Since RfM is the Radon-Nikodym derivative that induces a change of measure from P to P̃,
3The latter restriction is not unreasonable for asset returns, since typical tail index estimates suggest β ∈ [1/4, 1/3]

(Danielsson and de Vries, 2000).
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(a) β = 0.33 (b) β = 0.45

Figure A.2. HJ and distribution bound for heavy tailed returns. Both panels plot the
distribution bound, HJ bound and true SDF volatility for the Pareto model (A.1.17). In Panel (b), the distribution
of returns has a fatter tail compared to Panel (a). Panel (a) uses the parameters [A,α,B, β] = [1.19, 0.19, 0.72, 0.33].
Panel (b) uses the parameters [A,α,B, β] = [1.11, 0.11, 0.59, 0.45]. Both calibrations imply an equity premium of 8%
and (net) risk-free rate of 0%.

it follows that

P̃(Rm ≤ x) = RfE [M1 (Rm ≤ x)]

= Rf

∫ 1

0
Auα1

(
Bu−β ≤ x

)
du

= RfA

∫ 1

0
uα1

(
u ≥

( x

B

)− 1
β

)
du

=
RfA

α+ 1

(
1−

( x

B

)−α+1
β

)
= 1−

( x

B

)−α+1
β

.

The last line follows from (A.1.21) below.

(iii) Routine calculations show that the mean and variance of Rm are given by (provided β < 1/2)

E [Rm] =
B

1− β
σ2(Rm) =

B2

1− 2β
−
(

B

1− β

)2

. (A.1.19)

158



Likewise, the distribution of the SDF follows from

P (M ≤ x) = P (AUα ≤ x) =
( x
A

) 1
α
, 0 ≤ x ≤ A.

In this case, M is said to have a Pareto lower tail. The expectation is given by

E [M ] =
A

α+ 1
.

The constraint E [MRm] = 1 forces

AB

α− β + 1
= 1. (A.1.20)

In addition from E [M ] = 1
Rf

it follows that

A

α+ 1
=

1

Rf
. (A.1.21)

The Sharpe ratio can now be computed from (A.1.19) and (A.1.21).

(iv) It is straightforward to show that the quantiles of a Par (C, ζ) distribution are given by

Qτ = C(1− τ)−1/ζ .

It therefore follows that the risk-neutral quantile function is equal to

Q̃τ = B(1− τ)−
β

α+1 .

As a result

P(Rm ≤ Q̃τ ) = P
(
Rm ≤ B(1− τ)−

β
α+1

)
= 1−

(
B

B(1− τ)
−β
α+1

) 1
β

= 1− (1− τ)
1

α+1 .
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Hence, the distribution bound evaluates to

1

Rf

|τ − ϕ(τ)|√
ϕ(τ)(1− ϕ(τ))

=
A

1 + α

∣∣∣τ − 1 + (1− τ)
1

α+1

∣∣∣√
(1− (1− τ)

1
α+1 )(1− τ)

1
α+1

.

(v) The HJ bound, as given by the Sharpe ratio in (A.1.18), goes to 0 as β ↗ 1/2 since σ(Rm) ↗

∞. ■

A.1.9 Derivation of Gâteaux Derivative

In this Section I derive (1.6.3). For ease of exposition, I drop the time subscripts. For

λ ∈ [0, 1], define F̃λ := (1− λ)F̃ + λF . The following (trivial) identity will prove helpful4

τ = F̃λF̃
−1
λ . (A.1.22)

To further simplify notation, write q(λ) := F̃−1
λ . Then (A.1.22) becomes

τ = (1− λ)F̃ (q(λ)) + λF (q(λ)).

Applying the implicit function theorem, we obtain

q′(λ) = − −F̃ (q(λ)) + F (q(λ))

(1− λ)f̃(q(λ)) + λf(q(λ))
.

Plug in λ = 0 to get

q′(0) = −−F̃ (q(0)) + F (q(0))

f̃(q(0))
. (A.1.23)

Notice that

F̃λ

∣∣
λ=0

= F̃ =⇒ q(λ)
∣∣
λ=0

= q(0) = F̃−1. (A.1.24)

Substitute (A.1.24) into (A.1.23) to obtain

q′(0) = −−F̃ (F̃−1) + F (F̃−1)

f̃(F̃−1)
=

τ − F (F̃−1)

f̃(F̃−1)
. (A.1.25)

4This “equality” may actually only be an inequality for some τ , but this is immaterial to the argument.
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Notice that q′(0) is exactly equal to the Gâteaux derivative from the definition in (1.6.2), since

∂

∂λ
φ
[
(1− λ)F̃ + λF

] ∣∣∣∣
λ=0

=
∂

∂λ
q(λ)

∣∣∣∣
λ=0

= q′(0).

A.1.10 Proof of Proposition 1.6.4

In the proofs that follow, I repeatedly use Taylor’s theorem with integral remainder, which

is stated for completeness.

Lemma A.1.9 (Taylor’s theorem). Let ζ(3)(·) be absolutely continuous on the closed interval be-

tween a and x, then

ζ(x) =
3∑

k=0

ζ(k)(a)

k!
(x− a)k +

∫ x

a

ζ(4)(t)

3!
(x− t)3 dt.

The proof of Proposition 1.6.4 proceeds in several stages, by first proving an infeasible

lower bound on τ − Ft(Q̃t,τ ), which is later refined into a feasible lower bound under additional

assumptions. Before doing so, I collect several results about the SDF in representative agent models.

Lemma A.1.10. Assume a representative agent model with SDF given by (1.6.5), then

τ − Ft(Q̃t,τ ) = −
C̃OVt

[
1

(
Rm,t→N ≤ Q̃t,τ

)
, ζ(Rm,t→N )

]
Ẽt [ζ(Rm,t→N )]

, (A.1.26)

where ζ(·) is defined in (1.6.6).

Proof. Use the reciprocal of the SDF to pass from physical to risk-neutral measure

Ft(Q̃t,τ ) = Et

[
1

(
Rm,t→N ≤ Q̃t,τ

)]
= Ẽt

[
1

(
Rm,t→N ≤ Q̃t,τ

) Et [Mt→N ]

Mt→N

]
= C̃OVt

[
1

(
Rm,t→N ≤ Q̃t,τ

)
,
Et [Mt→N ]

Mt→N

]
+ τ. (A.1.27)

Rearranging the above and using the definition of ζ(·) in (1.6.6), as well as (1.6.5), we obtain

(A.1.26). ■
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Lemma A.1.11. Under Assumption 1.6.2,

Ẽt [ζ(Rm,t→N )] ≤
3∑

k=0

θkM̃
(k)
t→N = 1 +

3∑
k=1

θkM̃
(k)
t→N ,

where ζ(x) is the IMRS defined in (1.6.6).

Proof. In the integral of Lemma A.1.9, substitute s = (t− a)/(x− a) to get

ζ(x) =
3∑

k=0

ζ(k)(a)

k!
(x− a)k + (x− a)4

∫ 1

0

ζ(4)(a+ s(x− a))

3!
(1− s)3 ds

≤
3∑

k=0

ζ(k)(a)

k!
(x− a)k,

since ζ(4)(x) < 0 by Assumption 1.6.2(ii). Using this result with a = Rf,t→N and taking expecta-

tions, we obtain

Ẽt [ζ(Rm,t→N )] ≤
3∑

k=0

θkM̃
(k)
t→N . ■

Under Assumption 1.6.2, the difference between the physical and risk-neutral distribution

in the left-tail can be bounded as follows.

Theorem A.1.12 (Infeasible Lower Bound). Let Assumption 1.6.2 hold and assume that the risk-

neutral CDF is absolutely continuous with respect to Lebesgue measure. Define τ∗ so that G(Q̃t,τ∗) =

Ẽt (G(Rm,t→N )), where

G(Rm,t→N ) :=

∫ Rm,t→N

Rf,t→N

ζ(4)(t)(Rm,t→N − t)3 dt.

Then for all τ ≤ τ∗,

τ − Ft

(
Q̃t,τ

)
≥

∑3
k=1 θk

(
τM̃(k)

t→N − M̃(k)
t→N [Q̃t,τ ]

)
1 +

∑3
k=1 θkM̃

(k)
t→N

, (A.1.28)

where M̃(k)
t→N , M̃(k)

t→N [Q̃t,τ ] are defined in (1.6.7).
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Proof of Theorem A.1.12. By Taylor’s theorem,

− C̃OVt

[
1

(
Rm,t→N ≤ Q̃t,τ

)
, ζ(Rm,t→N )

]
=

3∑
k=1

θk

(
τM̃(k)

t→N − M̃(k)
t→N [Q̃t,τ ]

)
− C̃OVt

[
1

(
Rm,t→N ≤ Q̃t,τ

)
,
1

3!

∫ Rm,t→N

Rf,t→N

ζ(4)(t)(Rm,t→N − t)3 dt

]

≥
3∑

k=1

θk

(
τM̃(k)

t→N − M̃(k)
t→N [Q̃t,τ ]

)
.

(A.1.29)

The last line follows from Lemma A.1.13 below. Hence,

τ − Ft(Q̃t,τ ) = −
C̃OVt

[
1

(
Rm,t→N ≤ Q̃t,τ

)
, ζ(Rm,t→N )

]
Ẽt [ζ(Rm,t→N )]

≥

∑3
k=1 θk

(
τM̃(k)

t→N − M̃(k)
t→N [Q̃t,τ ]

)
1 +

∑3
k=1 θkM̃

(k)
t→N

,

where the first identity follows from Lemma A.1.10 and the inequality follows from (A.1.29) and

Lemma A.1.11. ■

Remark 7. The condition that τ ≤ τ∗ is sufficient but not necessary, as the proof of Theorem

A.1.12 shows. Furthermore, the proof also shows that τ∗ > 0 exists regardless of the utility

function. In practice, however, τ∗ is unknown since G(·) depends on the unknown utility function

of the representative agent. Appendix A.4.5 shows that τ∗ ≈ 0.5 in the data for CRRA utility and

different levels of risk aversion. In light of this result, it seems that τ ∈ {0.05, 0.1, 0.2} is sufficiently

conservative for the lower bound to hold, and I use these values in the empirical application in

Section 1.6.4.

Lemma A.1.13. Suppose that Assumption 1.6.2 holds. In addition, define τ∗ so that G(Q̃t,τ∗) =

Ẽt (G(Rm,t→N )), where

G(Rm,t→N ) :=

∫ Rm,t→N

Rf,t→N

ζ(4)(t)(Rm,t→N − t)3 dt.

Then for all τ ≤ τ∗,

C̃OVt

[
1

(
Rm,t→N ≤ Q̃t,τ

)
,

∫ Rm,t→N

Rf,t→N

ζ(4)(t)(Rm,t→N − t)3 dt

]
≤ 0. (A.1.30)

163



Proof. If ζ(4) ≡ 0, then (A.1.30) trivially holds. Hence, assume that ζ(4) is not identically equal to

zero. First we show that G(Rm,t→N ) is increasing on (0, Rf,t→N ), since by Leibniz’ rule

G′(Rm,t→N ) = −3

∫ Rf,t→N

Rm,t→N

ζ(4)(t)(Rm,t→N − t)2 dt ≥ 0.

The inequality follows since ζ(4)(t) < 0 by Assumption 1.6.2(ii). Temporarily write K = Q̃t,τ to

ease notation and consider

Γ(K) = C̃OVt

[
1 (Rm,t→N ≤ K) ,

∫ Rm,t→N

Rf,t→N

ζ(4)(t)(Rm,t→N − t)3 dt

]
.

By Leibniz’ rule again, we get

Γ′(K) = f̃t(K)
(
G(K)− Ẽt (G(Rm,t→N ))

)
.

Since G(Rf,t→N ) = 0, G(Rm,t→N ) ≤ 0 and G(Rm,t→N ) is increasing on (0, Rf,t→N ), we know that

Γ′(K) ≤ 0 for all K ≤ K∗ < Rf,t→N , where K∗ is defined such that G(K∗) = Ẽt (G(Rm,t→N )). To

complete the proof, define τ∗ so that it satisfies Q̃τ∗ = K∗. ■

Remark 8. The bound in (A.1.28) is infeasible since {θk}3k=1 is unknown.5 However, Chabi-Yo and

Loudis (2020) show that these unknowns relate to the coefficient of relative risk aversion, relative

prudence and relative temperance of the representative agent. Based on this observation and using

results from the expected utility literature (Eeckhoudt and Schlesinger, 2006), the authors propose

an additional restriction on θk that allows me to prove the feasible lower bound in Proposition

1.6.4.

Proof of Proposition 1.6.4. Using Assumption 1.6.3((i)) and 1.6.3((ii)), we get θ2M̃
(2)
t→N ≤ −1/R2

f,t→NM̃(2)
t→N

and θ3M̃
(3)
t→N ≤ 1/R3

f,t→NM̃(3)
t→N , from which it follows that

1 +

3∑
k=1

θkM̃
(k)
t→N ≤ 1− 1

R2
f,t→N

M̃(2)
t→N +

1

R3
f,t→N

M̃(3)
t→N . (A.1.31)

5In Appendix A.5, I use comparative statics for common utility functions to analyze the tail difference between
the physical and risk-neutral distribution.
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Second, recall that for K > 0

F̃t(K)M̃(k)
t→N − M̃(k)

t→N [K] = −C̃OVt

[
1 (Rm,t→N ≤ K) , (Rm,t→N −Rf,t→N )k

]
.

If k = 1, 3, then Chebyshev’s sum inequality A.5.1 implies that

Γ(K) := C̃OVt

[
1 (Rm,t→N ≤ K) , (Rm,t→N −Rf,t→N )k

]
≤ 0.

Hence under Assumption 1.6.3((i)),

θk

(
F̃t(K)M̃(k)

t→N − M̃(k)
t→N [K]

)
≥ 1

Rk
f,t→N

(
F̃t(K)M̃(k)

t→N − M̃(k)
t→N [K]

)
for k = 1, 3. (A.1.32)

If k = 2, we obtain from Leibniz’ rule

Γ′(K) = f̃t(K)
[
(K −Rf,t→N )2 − ṼARt(Rm,t→N )

]
. (A.1.33)

It follows that (A.1.33) is positive if K ≤ Rf,t→N −
√
ṼARt(Rm,t→N ) =: K∗∗. Combining (A.1.32)

and (A.1.33), we get for K ≤ K∗∗

θk

(
F̃t(K)M̃(k)

t→N − M̃(k)
t→N [K]

)
≥ (−1)k+1

Rk
f,t→N

(
F̃t(K)M̃(k)

t→N − M̃(k)
t→N [K]

)
. (A.1.34)

Collecting the results from (A.1.31) and (A.1.34) and using the general upper bound (A.1.28) from

Theorem A.1.12, it follows that

τ − Ft

(
Q̃t,τ

) (A.1.28)

≥

∑3
k=1 θk

(
τM̃(k)

t→N − M̃(k)
t→N [Q̃t,τ ]

)
1 +

∑3
k=1 θkM̃

(k)
t→N

≥

∑3
k=1

(−1)k−1

Rk
f,t→N

(
τM̃(k)

t→N − M̃(k)
t→N [Q̃t,τ ]

)
1 +

∑3
k=1

(−1)k−1

Rk
f,t→N

M̃(k)
t→N

,

for all τ such that Q̃t,τ ≤ min(K∗,K∗∗), where K∗ is defined in Theorem A.1.12. ■

Remark 9. The bound only holds for quantiles far enough in the left-tail. Compared to The-

orem A.1.12, the additional condition needed for the bound to hold is that Q̃t,τ ≤ Rf,t→N −
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√
ṼARt(Rm,t→N ), which covers a wide range of quantiles in the left-tail, since in the data

√
ṼARt(Rm,t→N )

is in the order of 10−3 for 90-day returns, whereas the risk-free rate is typically around 1.6

A.1.11 Formulas for market moments

This Section presents formulas for the (un)truncated risk-neutral moments of the excess

market return. I use a slight abuse of notation and write Q̃(τ) := Q̃τ (Rm,t→N ), to emphasize that

the integrals below are taken with respect to τ .

Proposition A.1.14. Any risk-neutral moment can be computed from the risk-neutral quantile

function, since

Ẽt [(Rm,t→N −Rf,t→N )n] =

∫ 1

0
[Q̃τ (Rm,t→N −Rf,t→N )]n dτ =

∫ 1

0
[Q̃(τ)−Rf,t→N ]n dτ. (A.1.35)

Moreover, any truncated risk-neutral moment can be calculated by

Ẽt [(Rm,t→N −Rf,t→N )n1 (Rm,t→N ≤ k0)] =

∫ F̃t(k0)

0
[Q̃(τ)−Rf,t→N ]n dτ.

Proof. For any random variable X and integer n such that the n-th moment exists, we have

E [Xn] =

∫ 1

0
[QX(τ)]n dτ.

This follows straightforward from the substitution x = Q(τ). Now use that for any constant a ∈ R,

QX−a(τ) = QX(τ)− a to derive (A.1.35). The truncated formula follows similarly. ■

Remark 10. Frequently I use k0 = Q̃τ , in which case the truncated moment formula reduces to

Ẽt

[
(Rm,t→N −Rf,t→N )n1

(
Rm,t→N ≤ Q̃τ

)]
=

∫ τ

0
[Q̃(p)−Rf,t→N ]n dp.

6At the 30- and 60-day horizon, the risk-neutral standard deviation is even smaller.
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A.2 Risk-Neutral Quantile Regression: Robustness and Depar-
ture from Conditional Lognormality

A.2.1 Linear versus Non-linear Model: Out-of-Sample Forecasting Accuracy

This section explores alternative specifications to the linear quantile model presented in

(1.2.3), focusing only on 30-day returns. The findings for longer time horizons are very similar

and omitted for parsimony. Specifically, I consider the addition of higher-order terms to the linear

model, such as:

Qt,τ = β0(τ) + β1(τ)Q̃t,τ + β2(τ)Q̃
2
t,τ . (A.2.1)

To evaluate the performance of the non-linear model in (A.2.1) vs. the linear model in

(1.2.3), I recursively estimate the model parameters based on an expanding window, starting at

January 2, 2003. The first sub-sample ends at August 15, 2012 and I increase the sample size on a

monthly basis. For each sub-sample, I calculate the out-of-sample forecasting accuracy using the

formula:

1

#t

∑
t

ρτ (Rm,t→N − Q̂t,τ ), (A.2.2)

where Q̂t,τ is the predicted physical quantile based on the parameters estimated from the sub-

sample. The summation includes all dates that are at least one month ahead of the end of the

sub-sample period.

Figure A.3 shows the out-of-sample loss at various percentiles. In most cases, the linear

model outperforms the quadratic model, with some exceptions observed at the 95th percentile

during specific periods. These results continue to hold when adding other non-linear terms, such as

cubic, exponential or logarithmic factors. Additionally, I find that the risk-neutral quantile function

exhibits a high correlation with higher-order terms. Consequently, the non-linear model tends to

produce quantile forecasts that closely resemble those generated by the linear model.

A.2.2 Additional Evidence Against the Lognormal Assumption

Table 1.2 already indicates evidence against the lognormal model since the QR estimates

in the left- and right-tail are rather different, in contradiction with (1.4.4). To further assess the
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Figure A.3. Out-of-sample quantile forecasting loss. These figures show the out-of-sample loss
of forecasting the physical quantile function, based on an expanding window. The loss at different percentiles is
calculated by (A.2.2).

implications of the lognormal model, I analyze the accuracy of the physical quantile forecast in

(1.4.5) out-of-sample. Specifically, I use QR based on the first t0 observations to estimate the

model

Qt,τ (Rm,t→N ) = β̂0,t0(τ) + β̂1,t0(τ)Q̃t,τ , (A.2.3)

where the t0-subscript in β·,t0 refers to the fact that the coefficients are estimated using observations

up to time t0. Using an expanding window to estimate β·,t0 , the model produces dynamic quantile

forecasts of the form

Q̂logn
t,τ = β̂0,t(τ) + β̂1,t(τ)Q̃t,τ . (A.2.4)
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In the lognormal case, Proposition 1.4.1((ii)) suggests that Qt,τ (Rm,t→N ) ≈ Q̂logn
t,τ . This approxi-

mation can be tested using the joint restriction

H0 : [β0(τ), β1(τ)] = [0, 1],

in the quantile regression

min
β0,β1∈R

∑
t

ρτ

(
Rm,t→N − β0 − β1Q̂

logn
t,τ

)
.

The results are summarized in Table A.1 and show that the point estimates are quite far from the

[0, 1] benchmark. The Wald test on the joint restriction tends to reject H0 far enough in the tail,

but for τ = 0.2 the null hypothesis is never rejected due to the large standard errors. Additionally,

the R1(τ) statistic shows that the explanatory power is low relative to Table 1.2, even though the

sample sizes are different. Hence, the results are incompatible with (1.4.4) and (1.4.5) and provide

evidence against the conditional lognormal assumption, which is in line with evidence from the

literature (see e.g. Martin (2017, Result 4)).

A.3 Estimating the Risk-Neutral Quantile Function

A.3.1 Data Description

To estimate the risk-neutral quantile function at each time point, I use daily option prices

from OptionMetrics, covering the period from January 1, 1996, to December 31, 2021. These op-

tions include European Put and Call options on the S&P500 index. The option contracts provide

data on the highest closing bid, lowest closing ask price, and the price of the forward contract on the

underlying security. To approximate the unobserved option price, I use the midpoint between the

bid and ask prices. Additionally, I gather daily risk-free rate data from Kenneth French’s website.7

Finally, I obtain stock price data on the closing price of the S&P500 from WRDS.

I implement an additional data cleaning procedure for the option data before estimating

the martingale measure. Firstly, I exclude all observations where the highest closing bid price is

7See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html#Research
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Table A.1. Expanding quantile prediction with risk-neutral
quantile

Horizon τ β̂0(τ) β̂1(τ) Wald test
(p-value)

R1(τ)[%] Obs

30 days 0.05 0.54
(0.185)

0.42
(0.193)

0.00 4.36 3804

0.1 0.59
(0.205)

0.39
(0.212)

0.01 2.39

0.2 0.83
(0.332)

0.15
(0.338)

0.04 0.28

60 days 0.05 0.55
(0.310)

0.39
(0.329)

0.06 1.84 3753

0.1 0.80
(0.339)

0.16
(0.352)

0.03 0.22

0.2 0.87
(0.416)

0.11
(0.425)

0.10 0.25

90 days 0.05 0.78
(0.335)

0.11
(0.358)

0.01 0.88 3702

0.1 0.74
(0.376)

0.21
(0.395)

0.08 1.34

0.2 0.73
(0.481)

0.26
(0.491)

0.31 0.52

Note: This table reports the QR estimates of (A.2.4) using an expanding
window based on an initial 500 observations. The sample period is 2003-
2021. Wald test denotes the p-value of the joint restriction [β0(τ), β1(τ)] =
[0, 1]. Standard errors are reported in parentheses and calculated using the
SETBB with a block length equal to the prediction horizon. R1(τ) denotes
the goodness of fit measure (1.2.5).

zero. Additionally, I remove option prices that violate no-arbitrage bounds. Subsequently, I filter

out option prices with maturities less than 7 days or greater than 500 days. Following this cleaning

process, I retain 23,264,113 option-day observations.

For the quantile regression application, I exclude all observations before 2003. During the

period from 1996 to 2003, there are many days with insufficient option data to estimate Q̃t,τ at the

30-, 60-, and 90-day horizons. I also discard days in the post-2003 period when I cannot estimate

the risk-neutral quantile, although this is a rare occurrence, accounting for approximately 2% of

the total days. Most of these instances are concentrated at the beginning of the sample period.

170



A.3.2 Estimation Procedure

There is a substantial literature on how to extract the martingale measure from option

prices. I use the RND Fitting Tool application on MATLAB, which is developed by Barletta

and Santucci de Magistris (2018).8. The tool is based on the orthogonal polynomial expansion of

Filipović, Mayerhofer, and Schneider (2013). In short, the idea is to approximate the conditional

risk-neutral density function by an expansion of the form

f̃t(x) ≈ ϕ(x)

[
1 +

K∑
k=1

k∑
i=0

ckwi,kx
k

]
,

where ϕ(x) is an arbitrary density and the polynomial term serves to tilt the density function

towards the risk-neutral distribution. Further details about the estimation of the coefficients wi,k

and ck can be found in Filipović, Mayerhofer, and Schneider (2013).

For my purpose, I need to choose the kernel function ϕ(·), the estimation method for ck and

the degree of the expansion K. I follow the recommendation of Barletta and Santucci de Magistris

(2018) and use the double beta distribution for the kernel and principal component analysis to

estimate ck. This is the most robust method for S&P500 options. To avoid overfitting, I use K = 3

if the number of option data is less than 70, K = 6 if the number is less than 100 and K = 8

otherwise. This choice renders a good approximation for most time periods.

I interpolate the estimated risk-neutral densities for a given time horizon. Occasionally,

there are no two interpolation points. In such cases, I drop the observations to avoid negative

density estimates due to extrapolation. Since the RND Fitting Tool is designed for an equal number

of put and call options, I use Put-Call parity to convert in-the-money call prices to put prices and

vice versa. Subsequently, I use Black-Scholes implied volatilities to interpolate the Call-Put option

price curve near the forward price. This transformation ensures that the risk-neutral density does

not have a discontinuity for strike prices that are close to being at-the-money (Figlewski, 2010).

Finally, I integrate the density function and take the inverse to obtain the risk-neutral quantile

8The application can be downloaded from the author’s GITHUB page: https://github.com/abarletta/rndfittool
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function:

Q̃t,τ := inf
{
x ∈ R : τ ≤ F̃t(x)

}
, where F̃t(x) =

∫ x

0
f̃t(y) dy.

A.4 Verifying Assumption 1.6.2(ii) in Representative Agent
Models

The proof of Theorem A.1.12 relies on Assumption 1.6.2(ii). This section derives parameter

restrictions for common utility functions that are needed so that Assumption 1.6.2(ii) is satisfied.

Most of these restrictions resemble those of Chabi-Yo and Loudis (2020). I also illustrate the lower

bound with actual data assuming CRRA utility.

A.4.1 Log utility

In this case u(x) = log x. It follows that ζ(x) = x/Rf,t→N . Clearly ζ(4)(x) = 0 and

Assumption 1.6.2 holds.

A.4.2 CRRA utility

More generally, consider u(x) = x1−γ

1−γ for γ ≥ 0. It follows that ζ(x) = ( x
Rf,t→N

)γ and hence

ζ(4)(x) =
1

Rγ
f,t→N

γ(γ − 1)(γ − 2)(γ − 3)xγ−4.

Part (ii) of Assumption 1.6.2 holds if γ ∈ [0, 1], but also if γ ∈ [2, 3]. Notice that the additional

restrictions in the feasible lower bound in Proposition 1.6.4 cannot be accommodated by this model.

To see this, observe that θ2 ≤ −1/R2
f,t→N implies that γ(γ − 1)/2 ≤ −1/R2

f,t→N , which cannot

hold for any reasonable interest rate. This failure illustrates that a representative agent model with

CRRA utility is misspecified in that it cannot produce a sizable risk-premium on skewness.9

A.4.3 CARA utility

In this case, u(x) = 1 − e−γx and ζ(x) = eγ
∗(x−Rf,t→N ), where γ∗ = Wtγ. Since ζ(4) > 0,

Assumption 1.6.2 does not hold.

9See in particular Chabi-Yo and Loudis (2020, Equation (A.5)), which shows that θ2 is related to the risk-premium
on market skewness.
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A.4.4 HARA utility

The utility function is given by u(x) = 1−γ
γ

(
ax
1−γ + b

)γ
, where a > 0 and ax

1−γ + b > 0.

Successive differentiation renders

ζ(4)(x) =
−γ(γ + 1)(γ + 2)(aWt)

4
(
aWtx
1−γ + b

)−γ−3 (aWtRf,t→N

1−γ + b
)γ−1

(1− γ)3
.

We see that γ ∈ [0, 1) is a sufficient condition for ζ(4)(x) ≤ 0.

A.4.5 Lower Bound in the Data for CRRA utility

Figure A.4 illustrates the infeasible lower bound as well as the quantile approximation for

CRRA utility with different levels of risk aversion. The risk-neutral distribution is obtained from

option data over a 90-day horizon on October 28, 2015. Panels A.4a and A.4c show the infeasible

lower bound from Theorem A.1.12 when risk aversion is 2.2 and 2.9 respectively. Consistent with

the theorem, the infeasible lower bound is below τ −Ft(Q̃t,τ ) in the left-tail, and seems to hold for

a large range of τ ’s, in particular for all τ ≤ 0.5. The right panels show the quantile approximation

(1.6.9) based on the infeasible lower bound. We see that the risk-adjusted quantile approximation

comes much closer to the physical quantile relative to the risk-neutral quantile function.

A.5 Disaster Probability in Representative Agent Models

In this section, I derive results regarding conditional tail probabilities in representative agent

models. I demonstrate how these probabilities can be computed using common utility functions and

analyze their sensitivity to changes in underlying parameters (comparative statics). These results

do not hinge on specific assumptions about the market return distribution and extend existing

findings in the literature, which often rely on log-normality assumptions.

A.5.1 Log Utility

Chabi-Yo and Loudis (2020, Remark 1) show that their bounds on the equity premium equal

the bounds of Martin (2017) when the representative agent has log preferences. Here, I derive the

analogous result for the subjective crash probability of a log investor reported by Martin (2017,
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(a) Infeasible lower bound, γ = 2.2 (b) Quantile function, γ = 2.2

(c) Infeasible lower bound, γ = 2.9 (d) Quantile function, γ = 2.9

Figure A.4. Lower bound with CRRA utility for 90-day returns. This figure shows the lower
bound on τ − Ft(Q̃t,τ ) as well as the quantile approximation Qt,τ ≈ Q̃t,τ + LBt,τ in a representative agent model
with CRRA utility function, u(x) = x1−γ/(1− γ), for γ ∈ {2.2, 2.9}. The left panels show the infeasible lower bound

CLBt,τ , and the true risk-adjustment, τ−Ft(Q̃t,τ ). The right panels show the physical, risk-neutral and risk-adjusted
quantile functions. The risk-adjusted quantile function uses the infeasible lower bound. The risk-neutral distribution
is coming from option data on the S&P500 on October 28, 2015 with a maturity of 90 days.

Result 2). In our notation, Martin (2017) shows that

Pt (Rm,t→N < α) = α

[
Put′t(αSt)−

Putt(αSt)

αSt

]
, (A.5.1)
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where Put′t is the derivative of the put option price curve seen as a function of the strike. Under

log preferences and using (A.1.27), it follows that

Pt(Rm,t→N < Q̃t,τ ) = τ +
1

Rf,t→N
C̃OVt

[
1

(
Rm,t→N ≤ Q̃t,τ

)
, Rm,t→N

]
= τ +

1

Rf,t→N

(
Ẽt

[
1

(
Rm,t→N ≤ Q̃t,τ

)
Rm,t→N

]
− Ẽt(Rm,t→N )Ẽt

(
1

(
Rm,t→N ≤ Q̃t,τ

)))
=

1

Rf,t→N
Ẽt

[
1

(
Rm,t→N ≤ Q̃t,τ

)
Rm,t→N

]
. (A.5.2)

The result now follows upon substituting Q̃τ = α, since Martin (2017) shows that (A.5.2) equals

the right hand side of (A.5.1).

A.5.2 CRRA Utility

I now consider the case in which the representative agent has constant relative risk aversion

(CRRA) utility, u(x) = x1−γ/(1− γ), where γ is the relative risk aversion parameter. First, I show

that the excess market return is non-decreasing in γ regardless of the distribution of the market

return.10 Next, I extend the argument to show that the difference between the physical and risk-

neutral measures increases at every point within their support. The proofs rely on the following

lemma, which is a special case of the FKG inequality (Hsu and Varadhan, 1999, Theorem 1.3).

Lemma A.5.1 (Chebyshev sum inequality). Let X be a random variable and let g, h both be

non-increasing or non-decreasing. Then,

E (g(X)h(X)) ≥ E (g(X))E (h(X)) .

The inequality is reversed if one is non-increasing and the other is non-decreasing.

Proof. Let X1, X2 be iid copies of X and assume that g, h are non-decreasing. It follows that

(g(X1)− g(X2)) (h(X1)− h(X2)) ≥ 0. (A.5.3)

Taking expectations on both sides completes the proof. The same proof goes through if g, h are

non-increasing. If one is non-increasing and the other is non-decreasing, the inequality in (A.5.3)

10Cochrane (2005) derives this result when the distribution is lognormal.
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is reversed. ■

Proposition A.5.2. Assume that a representative investor has CRRA utility, with γ ≥ 0 and

Et

[
Rγ+1

m,t→N logRm,t→N

]
< ∞. Then, Et [Rm,t→N ]−Rf,t→N , is non-decreasing in γ.

Remark 11. I suppress the dependence of the physical expectation on γ in the notation for read-

ability.

Proof. According to Chabi-Yo and Loudis (2020, Equation (53)), we have

Et [Rm,t→N ]−Rf,t→N =
Ẽt

[
Rγ+1

m,t→N

]
Ẽt

[
Rγ

m,t→N

] −Rf,t→N =: g(γ).

It is enough to show that g′(γ) ≥ 0 for γ ≥ 0. Taking first order conditions, we need to show that

Ẽt

[
Rγ+1

m,t→N logRm,t→N

]
Ẽt

[
Rγ

m,t→N

]
≥ Ẽt

[
Rγ+1

m,t→N

]
Ẽt

[
Rγ

m,t→N logRm,t→N

]
. (A.5.4)

Introduce another probability measure P∗, defined by

E∗
t [Z] :=

Ẽt

[
ZRγ

m,t→N

]
Ẽt

[
Rγ

m,t→N

] . (A.5.5)

We can rewrite (A.5.4) into

E∗
t

[
Rγ

m,t→N logRm,t→N

]
≥ E∗

t

[
Rγ

m,t→N

]
E∗
t [logRm,t→N ] . (A.5.6)

Inequality (A.5.6) now follows from Lemma A.5.1. ■

I mimic the steps above to show that the physical distribution differs more from the risk-

neutral distribution at every point in the support, whenever risk aversion is increasing. As before,

the dependence of the physical measure on γ is omitted.

Proposition A.5.3. Assume that a representative investor has CRRA utility, with γ ≥ 0 and

Et

[
Rγ

m,t→N logRm,t→N

]
< ∞, then Ft(x) is non-increasing in γ. In particular, τ − Ft(Q̃t,τ ) is

non-decreasing in γ.
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Proof. I start from the relation

Ft(x) = Ẽt

 Rγ
m,t→N

Ẽt

[
Rγ

m,t→N

]1 (Rm,t→N ≤ x)

 .

From first order conditions, we need to show that

Ẽt

[
log(Rm,t→N )1 (Rm,t→N ≤ x)Rγ

m,t→N

]
Ẽt

[
Rγ

m,t→N

]
≤

Ẽt

[
Rγ

m,t→N1 (Rm,t→N ≤ x)
]
Ẽt

[
log(Rm,t→N )Rγ

m,t→N

]
.

Using the same change of measure as in (A.5.5), we obtain the equivalent statement

E∗
t [log(Rm,t→N )1 (Rm,t→N ≤ x)] ≤ E∗

t [1 (Rm,t→N ≤ x)]E∗
t [logRm,t→N ] .

This inequality holds, since log(y) and 1 (y ≤ x) are respectively increasing and non-increasing in

y, hence the result follows from Lemma A.5.1. Using the substitution x → Q̃t,τ , it follows that

τ − Ft(Q̃t,τ ), is non-decreasing in γ. ■

A.5.3 Exponential utility

Here, I assume that the representative agent has exponential utility, u(x) = 1 − e−γ∗x,

where γ∗ is the absolute risk aversion. According to Chabi-Yo and Loudis (2020, Equation (55)),

the following expression for the equity premium obtains

Et [Rm,t→N ]−Rf,t→N =
Ẽt

[
Rm,t→NeγRm,t→N

]
Ẽt

[
eγRm,t→N

] −Rf,t→N ,

where γ = γ∗Wt is relative risk aversion and Wt represents the agent’s wealth at time t. Since

there is a one-to-one relation between γ and γ∗, it follows from the results in Section A.5.2 that

the equity premium is increasing in γ∗, and so is the distance between the physical and risk-neutral

distribution, as measured by: τ − Ft(Q̃t,τ ).
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A.6 Lower Bound in the Data and Robustness

A.6.1 Lower Bound in the Data

In the empirical application, I calculate the lower bound, LBt,τ = CLBt,τ/f̃t(Q̃t,τ ), for 30-,

60-, and 90-day returns. Summary statistics of LBt,τ are presented in Table A.2. The lower bound

is right-skewed and is most significant at the 5th and 10th percentile. Moreover, over the 30-day

horizon, it can reach as high as 25% and maintains an average of approximately 1% in the far

left-tail.

Table A.2. Summary statistics of lower bound

Horizon τ Mean Median Std. dev. Min Max

30 days 0.05 0.92 0.63 1.07 0.08 24.38
0.1 0.70 0.45 0.87 0.06 12.22
0.2 0.47 0.25 0.74 0.04 10.93

60 days 0.05 1.81 1.31 1.67 0.10 19.23
0.1 1.71 1.19 1.66 0.25 19.89
0.2 1.14 0.69 1.50 0.12 23.57

90 days 0.05 2.65 2.02 2.02 0.02 18.63
0.1 2.86 2.12 2.32 0.04 24.47
0.2 1.97 1.22 2.33 0.26 28.92

Note: This table reports summary statistics of the lower bound, LBt,τ =

CLBt,τ/f̃t(Q̃t,τ ), in (1.6.13) at different time horizons and different quan-
tile levels over the sample period 2003-2021. All statistics are in percent-
age point.

A.6.2 Robustness of the Lower Bound and Risk-neutral Quantile

The lower bound, LBt,τ , tries to capture the difference between the physical and risk-

neutral quantile functions in the left-tail. What are some other measures that are available at

a daily frequency and contain information about the quantile wedge? One candidate is the VIX

index, which is defined as

VIX2
t =

2Rf,t→N

N

[∫ Ft

0

1

K2
Putt(K) dK +

∫ ∞

Ft

1

K2
Callt(K) dK

]
,

where Ft is the forward price on the S&P500, and Putt(K) (resp. Callt(K)) is the put (resp. call)

option price on the S&500 with strike K. Martin (2017) shows that VIX measures risk-neutral
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entropy

VIX2
t =

2

N
L̃t

(
Rm,t→N

Rf,t→N

)
,

where entropy is defined as L̃t(X) := log Ẽt [X]−Ẽt [logX]. Entropy, just like variance, is a measure

of spread in the distribution. However, entropy places more weight on left-tail events than variance,

since entropy places more weight on out-of-the money put options. As such, VIX is a natural can-

didate to explain potential differences between Qt,τ and Q̃t,τ . Second, the Chicago Board Options

Exchange provides daily data on VIX at the 30-day horizon.

Table A.3 shows the result of the quantile regression

Qt,τ (Rm,t→N )− Q̃t,τ (Rm,t→N ) = β0(τ) + β1(τ)LBt,τ + βVIX(τ)VIXt. (A.6.1)

We see that βVIX is marginally significant in the left-tail. In contrast, β1(τ) is even more significant

compared to Table 1.5. Furthermore, the explanatory power of the model that only includes VIX

is lower compared to the model that only includes LBt,τ (see Table 1.5).

Table A.3. Quantile regression using Lower Bound and VIX

β̂0(τ) β̂1(τ) β̂VIX(τ) R1(τ)[%] R1(τ)[%]
(VIX only)

τ = 0.05 -0.20
(1.889)

10.09
(0.319)

-0.30
(0.130)

6.34 5.51

τ = 0.1 -0.35
(1.313)

5.06
(0.302)

-0.22
(0.089)

3.41 2.84

τ = 0.2 -0.28
(0.955)

3.62
(0.256)

-0.25
(0.068)

0.61 0.18

Note: This table reports the QR estimates of (A.6.1) over the 30-day
horizon. The sample period is 2003-2021, standard errors are shown in
parentheses and calculated using SETBB with a block length equal to the
forecast horizon. R1(τ) denotes the goodness-of-fit measure (1.2.5). The
last column denotes the goodness-of-fit in the model that only uses VIX
as covariate. The standard error and point estimate of β0 is multiplied
by 100 for readability.

As a second robustness check, I consider how well the direct quantile forecast, Q̂t,τ = Q̃t,τ +

LBt,τ , compares to the VIX forecast. Since Q̂t,τ does not require any parameter estimation, this

exercise is a measure of out-of-sample performance. However, VIX does not directly measure Qt,τ
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and hence I use an expanding window to obtain the VIX benchmark: Q̂VIX
t,τ := β̂0(τ) + β̂1(τ)VIXt.

Finally, I use the following out-of-sample metric to compare both forecasts

R1
oos(τ) = 1−

T∑
t=500

ρτ (Rm,t→N − Q̂t,τ )/
T∑

t=500

ρτ (Rm,t→N − Q̂VIX
t,τ ).

Notice that R1
oos(τ) > 0, if Q̂t,τ attains a lower error than Q̂VIX

t,τ . This exercise is more ambitious,

since Q̂VIX
t,τ makes use of in-sample information. Nonetheless, Figure A.5 shows that Q̂t,τ outper-

forms the VIX predictor at all percentiles.

Figure A.6 performs a similar exercise in the right-tail, but using Q̃t,τ instead of Q̂t,τ , since

Table 1.2 shows that the risk-neutral quantile is a good approximation to Qt,τ in the right-tail. We

see that Q̃t,τ outperforms Q̂VIX
t,τ at all quantile levels. Hence, the risk-neutral approximation in the

right-tail is more accurate than using the in-sample VIX measure.

A.6.3 Measurement Error Bias in Quantile Regression

In the empirical application, we have to estimate Q̃t,τ , f̃(·) and CLBt,τ from market data.

Therefore, the estimated coefficients in the quantile regression are biased due to measurement error

in the covariate. I present simulation evidence which shows that the bias is small in finite samples.

The setup is as follows. I simulate returns and option prices according to a discretized

version of the Black and Scholes (1973b) model:

Rm,t→N = exp

(
(µt −

1

2
σ2
t )N + σt

√
NZt+N

)
, Zt+N ∼ N (0, 1) (A.6.2)

σt ∼ Unif [0.05, 0.35]

µt ∼ Unif [−0.02, 0.2] .

The return distribution under risk-neutral dynamics is given by

R̃m,t→N = exp

(
(rt −

1

2
σ2
t )N + σt

√
NZt+N

)
(A.6.3)

rt ∼ Unif [0, 0.03] . (A.6.4)
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(a) τ = 0.05 (b) τ = 0.1

(c) τ = 0.2

Figure A.5. Out-of-sample forecast using risk-adjusted quantile with VIX bench-
mark. This figure shows the cumulative out-of sample R1(τ), defined as R1

oos(τ) = 1 −
∑T

t=500 ρτ (Rm,t→N −
Q̂t,τ )/

∑T
t=500 ρτ (Rm,t→N − Q̂VIX

t,τ ), where Q̂t,τ = Q̃t,τ + LBt,τ , Q̂
VIX
t,τ = β̂0(τ) + β̂1(τ) · VIXt, and β̂0(τ), β̂1(τ) are

the regression estimates from a quantile regression of Rm,t→N on VIXt, using data only up to time t. The horizon is
30 days and the QR estimates are dynamically updated using an expanding window over the period 2003–2021. The
initial sample uses 500 observations.

I calculate the lower bound assuming a return horizon of 90 days. As in the empirical

application, I assume that options with an exact 90-day maturity are not available, but instead we

observe options with maturity 85 and 97 days. I generate a total of 1,000 options every time period

with maturities randomly sampled from 85 and 97 days.11 These numbers are roughly consistent

with the latter part of the empirical sample. The procedure is repeated for a total of 1,000 time

periods. For the entire sample, I compare the estimated and analytical lower bound, which are

11So on average there will 500 options with maturity 85 days and 500 with maturity 97 days.
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(a) τ = 0.7 (b) τ = 0.8

(c) τ = 0.9 (d) τ = 0.95

Figure A.6. Out-of-sample forecast using risk-neutral quantile with VIX bench-
mark. This figure shows the cumulative out-of sample R1(τ), defined as R1

oos(τ) = 1 −
∑T

t=500 ρτ (Rm,t→N −
Q̃t,τ )/

∑T
t=500 ρτ (Rm,t→N − Q̂VIX

t,τ ), where Q̂VIX
t,τ = β̂0(τ)+ β̂1(τ) ·VIXt, and β̂0(τ), β̂1(τ) are the regression estimates

from a quantile regression of Rm,t→N on VIXt, using data only up to time t. The horizon is 30 days and the QR
estimates are dynamically updated using an expanding window over the period 2003–2021. The initial sample uses
500 observations.

given by respectively

LBe
t,τ :=

̂̃
Qt,τ +

ĈLBt,τ˜̂ft(Q̃t,τ )

LBa
t,τ := Q̃t,τ +

CLBt,τ

f̃t(Q̃t,τ )
.

The hats signify that the risk-neutral quantile, PDF and CDF lower bound are estimated from

the available options at time t, using the procedure in Appendix A.3.2. The terms in LBa
t,τ are
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obtained from the known analytical expression of the risk-neutral distribution (recall (A.6.3)). I

then use QR to estimate the models

Qt,τ = β̂0(τ) + β̂1,e(τ)LB
e
t,τ

Qt,τ = β̂0(τ) + β̂1,a(τ)LB
a
t,τ .

I use the ratio β̂1,e/β̂1,a to measure the relative bias in the sample. This experiment is repeated 500

times to get a distribution of the relative bias. Figure A.7 shows boxplots of the bias for several

quantiles. We see that the relative bias is very small and centered around 1. Hence, the error in

measurement problem resulting from estimating the lower bound is limited in this case.

Figure A.7. Bias in QR resulting from measurement error. This boxplot shows the relative
bias in the quantile regression estimate as a result of measurement error.

A.7 Additional Figures
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Figure A.8. Highest existing risk-neutral moment for 30-day returns. This figure shows

p∗t := sup{p : Ẽt

(
Rp

m,t→N

)
< ∞} over time, where Rm,t→N represents the 30-day return. p∗t is cal-

culated from the moment formula of Lee (2004), p∗t =
1

2βR
+ βR

8 + 1
2 , where βR = lim supx→∞

σ2
IV(x)

|x|/N ,

σIV(x) is the implied volatility at log-moneyness x = log(K/(erNS0)), and N = 30/365 is the time
horizon. βR is estimated from the call option with highest available strike price. The figure is
smoothed using a 30-day moving average.
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Appendix B

Appendix to Chapter 2

B.1 CEM data

This appendix discusses details of the CEM data collected from annual surveys sent out to a

large sample of international pension plans. To participate in the survey (and to receive its results),

CEM requires plans to report data on asset returns and costs by sub-asset class. Each of these sub-

asset classes are further split into active/passive and internal/external management styles. CEM

classifies internally managed holdings and returns as internal if the buy/sell decision is made within

the pension fund organization. In addition, plans are asked to report policy returns, benchmarks,

policy weights, and the number of external mandates—all within each sub-asset class—a unique

feature of the CEM database. Other questions in the survey pertain to governance, operations

and support costs as well as information such as the number of active plan members, the type of

investments being offered and the percentage of the plan’s liabilities due to retirees. Only a small

number of variables are constructed by CEM themselves, such as a plan’s asset volatility, which is

computed using CEM’s internal model.

A benefit of the CEM database is that there are no systematic biases in reporting related to

performance. After consultation with CEM, it appears that plans’ decision to report in a specific

year is unrelated to their investment performance.1 This conclusion is also reached in a study by

Bauer, Cremers, and Frehen (2010). However, most of the pension funds that provide data to CEM

are typically larger in size, compared to the average pension plan. Our data show that the average

plan size in the United States in 2019 was approximately $25 billion, and the maximum AUM

1An important incentive for plans to participate in the CEM survey is to compare their performance and fees, as
well as asset allocations, with those of other pension plans.
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recorded was $376 billion, which included 10 sponsors with over $100 billion in AUM. Notably, the

eight largest U.S. sponsors in our data are among the top 10 largest DB plans nationwide.

According to our database, U.S. domiciled DB plans held a total of $3.81 trillion in AUM in

2019, compared to a total AUM of $8.1 trillion in aggregate across all U.S. DB plans (Investment

Company Institute, 2021, p. 177). Of the total AUM, public plans contributed $2.54 trillion, while

private plans contributed $1.27 trillion. Hence, our sample covers approximately 38% of the total

AUM in the U.S. public sector, which amounted to $6.68 trillion in 2019. Moving outside the U.S.,

our coverage of AUM includes $1.61 trillion in Canada, $2.42 trillion in Europe (including the UK),

and $1.2 trillion in the rest of the world.2

B.2 Asset Allocation

B.2.1 Asset Class Frequency and Geographic Coverage

To track pension plans’ asset allocation, CEM groups each plan’s holdings data into six

major asset classes, namely stocks, fixed income, hedge funds and multi-asset, private equity,

private debt, and real assets. These broad asset classes are further divided into sub-asset classes,

as described in Section B.2.2 below.

Panel A in Table B.1 reports the total number of plans in the survey as well as the number

of plans reporting holdings within each asset class for each year.3 The total number of plans

participating in the survey ranges from 123 in 1991 to 448 in 2012 and ends at 308 in 2019 (see

Panel B).

The most frequently held asset classes are, by far, stocks and fixed income, followed by real

assets and private equity, hedge funds, and private debt - the latter being distinctly less common

than the other asset classes. Prior to 2000, it was uncommon for plans to hold private debt or

hedge fund investments, but these asset classes have been increasingly embraced by plans during

the latter years in our sample particularly after 2010, in the case of private debt.

Table B.2 shows the coverage for all countries in our database at two points in time, 2009

and 2019. In 2009, plans domiciled in countries such as Australia, South Korea, Sweden, New

Zealand, France, the UK, and Denmark are included. Plans domiciled in China, Saudi Arabia,

2CEM provides exchange rates for all countries and years, which allows us to convert foreign currency denominated
AUM to U.S. dollar AUM.

3From our discussions with CEM, a plan always reports its holdings and returns for every asset class.

186



Switzerland, Germany, the Emirates or South Africa show up in the survey at some point during

our sample. Still, the Netherlands, Canada, and the U.S. account for more than 70% of total AUM

throughout our sample.

B.2.2 Asset and Sub-asset Classes

The CEM database contains information about cost, returns and allocation at the sub-asset

class level. In this section we provide details about each of these individual sub-asset classes.

Stocks

• U.S. Stocks: U.S. small, mid and large cap stocks. This category also includes U.S. 130/30

type investment strategies.

• Europe: Stock investments in the following countries: Austria, Belgium, Denmark, Finland,

France, Germany, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland

and United Kingdom.

• Asia-Pacific: Stock investments in Australia, Hong Kong, Japan, New Zealand and Singapore.

• EAFE: Mandates invested primarily in Europe, Australasia, and the Far East (EAFE). Coun-

tries in this category include Australia, Austria, Belgium, Denmark, Finland, France, Ger-

many, Hong Kong, Ireland, Israel, Italy, Japan, Luxembourg, Netherlands, New Zealand,

Norway, Portugal, Singapore, Spain, Sweden, Switzerland and the United Kingdom

• Emerging: Emerging markets and any other countries not explicitly listed in the above cate-

gories.

• ACWI x U.S.: MSCI All Country World Index excluding the United States.

• Global: Mandates invested on a global basis.

Fixed Income

• U.S. fixed income: Mainly U.S. Treasury notes or U.S. mortgage backed securities.

• Long Bonds: Dedicated strategies where a manager has a mandate to invest in long bonds.

Typically these bonds are due to mature between 10 and 30 years in the future.
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• High Yield Bonds: Bonds issued by entities that do not meet the criteria for receiving

investment-grade ratings from a major credit rating agency High yield mandates are included

in this category as well.

• Bundled LDI: External mandates which blend fixed income and derivatives to generate returns

aimed at hedging plan liabilities.

• Cash & Equivalents: Cash managed as a separate asset class, including cash underlying

derivative positions.

Hedge Funds & Multi-asset

• Hedge Funds: Funded absolute return strategies, i.e. strategies that are equity market neutral.

• Funded Global TAA: Fully funded long-only segregated asset pool dedicated to tactical asset

allocation.

• Risk parity: Portfolios aiming to distribute the overall portfolio risk evenly across various

asset classes within a diversified portfolio. The portfolio is diversified while meeting return

expectations through the use of leverage.

Private Equity

• Venture Capital.

• LBO and Energy partnerships.

• Other private equity: Unlisted equity investments in turnarounds, start-ups, mezzanine, dis-

tressed financing and energy partnerships.

• Diversified: All private equity investments if the plan does not distinguish between the above

categories.

Private Credit

• Direct lending, non-traded loans, leveraged loans, distressed bank loan/debt products, mez-

zanine and other private debt or private credit arrangements.

• Mortgages: Direct mortgages, not including mortgage-backed securities. Mortgage-backed

securities are treated as fixed income.
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Real Assets

• Commodities: Actual physical investments in commodities (crude oil, sugar, copper etc.),

commodity funds or products that may invest in an index like the S&P GSCI. Derivative

exposures that are fully backed by cash (not just the margin requirement) are also included

in this category.

• REITs: Real estate investment trust (REIT) is a type of entity that possesses and often

manages income-generating real estate properties. These properties can encompass various

forms of commercial real estate, including office buildings, apartment complexes, warehouses,

shopping centers, hotels, and more.

• Real Estate: Direct real estate holdings, segregated real estate holdings, and more. nternal

real estate management refers to in-house staff making decisions to buy or sell individual

properties. Any other approach is considered an external real estate holding. This category

also includes joint ventures.

• Infrastructure: Local distribution networks for utilities like electricity, water, and gas, as

well as specific transportation assets like toll roads, airports, bridges, and tunnels. Internal

infrastructure management indicates that in-house personnel are responsible for deciding

when to acquire or divest these assets.

• Other Real Assets: Investments in real assets other than the classes described above.

B.2.3 Evolution in Asset Allocation

Figure B.1 shows the time-series evolution in total AUM by asset class, aggregated across

all U.S. (left panel) and non-U.S. (right panel) plans in our sample. We note a marked shift towards

greater coverage of plans outside the U.S. during our sample.

U.S. plans’ investments in equities rise steadily from around $252 billion at the beginning

of the sample to $1.5 trillion at the end. This increase reflects the cumulative effect of high equity

returns during our sample along with increased inflows to equity investments for existing plans and

the increased number of plans included in the CEM survey. Fixed income investments rise from

$182 billion in 1991 to more than $1.24 trillion in 2019. The remaining asset classes all start at low
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levels in the early sample but rise steadily, ending at levels that exceed $300 billion in 2019 for real

assets and private equity and just below $250 billion for hedge funds and multi-asset.

For non-U.S. plans, a very different allocation pattern emerges with stocks and fixed income

holdings following almost identical paths, both ending near $1.7 trillion in 2019. Among the

alternative asset classes, real assets are relatively more important for non-U.S. plans than for their

U.S. counterparts, although the ranking at the end of the sample is the same as that for U.S. plans.

Supplementing Figure B.1, Table B.3 reports the time-series evolution in asset allocation for

U.S. and non-U.S. plans during our sample. For U.S. plans (Panel A), stock holdings account for

a little over half (55%) of total asset values in the early sample, peaking at a share of 63% in 1999,

before declining to 40% in 2019. Fixed income holdings account for 35-40% of overall portfolio

values in the 1990s, before falling to a range of 25-30% between 1999 and 2007 and retaining a

fairly steady portfolio weight averaging 32% from 2008 to 2019.

Hedge fund and multi-asset holdings rise from roughly 1% in 2004 to more than 4% in 2009.

In the last five years of the sample, plans hold around 6% of their assets in hedge funds. Allocations

to private equity start out around 2% at the beginning of the sample, rise to 4% in 2000, before

doubling to 8% in 2010 and remaining in the 8-9% range for the rest of our sample. Private debt

holdings account for less than 0.1% of AUM prior to 2003 but rise modestly to end up at 2% in

2019. Finally, real assets hover around 4% during the nineties, rise to around 7% over the next

decade and end up at 10% in the last years in our sample.

For non-U.S. plans (Panel B), we observe similar patterns. At the beginning of the sample,

the vast majority of plan assets is allocated to stocks and fixed income. In contrast to the U.S.

sample, however, fixed income takes up most of the investments (57%), followed by stock holdings

(36%) in the early part of the sample. Over time, alternative asset classes become more prominent,

with hedge fund and multi-asset holdings accounting for 4.8% of total assets at the end of our

sample. Private equity (7.8%) and real assets (16%) in particular also comprise a significant portion

of total assets. At the end of our sample, stock holdings are the major source of non-US plans’

asset allocation (34.7%), closely followed by fixed income (33.9%).

Figure B.2 shows the investment shares of sub-asset classes for non-U.S. plans. For stocks,

we see an increase in the allocation to “Global” and “Emerging Market” equities. This is also

true for “Global” fixed income allocations. In private equity, we see increased portfolio weights on
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limited buyouts venture capital. Since the Global Financial Crisis, we also see an increase in the

allocation to private credit in lieu of mortgages. In the real asset class, allocations to infrastructure

increase whereas there is a divestment from real estate.

In summary, stocks and fixed income account for more than 90% of the total value of

pension plans’ asset holdings in the early nineties. This share has declined to about 70% at the

end of our sample, with real assets, private equity and hedge fund investments accounting for most

of the increased allocation to alternative asset classes. While stocks and bonds thus remain by far

the most important asset classes, alternative assets are clearly gaining significant ground, having

nearly tripled their share of pension plans’ portfolios from roughly 10% to close to 30% during our

nearly 30-year sample.

B.2.4 Asset Management Mandate

In each sub-asset class, the AUM of a sponsor are managed according to their asset manage-

ment mandate (or style). CEM provides information at the sub-asset class level about the following

management mandates:

• Internally managed: the buy-sell decisions for the underlying assets (e.g., individual stocks,

bonds, property) are made within the organization. This also includes wholly-owned sub-

sidiaries.

• Externally managed: the buy-sell decision for the underlying assets are made by third-party

entities, such as money managers.

• Passively managed (or indexed): designed to either replicate broad capital market benchmarks

(e.g., the S&P 500 for U.S. stocks) or dedicated to matching liability requirements.

• Actively managed: assets given to an external manager to manage according to a set of

objectives and constraints.

• Limited partnerships: investments in funds with a predetermined lifespan, where assets are

sold, and invested capital is returned upon reaching the investment horizon.

• Co-investments: minority investments directly made into an operational company in conjunc-

tion with a financial sponsor or another private equity investor, typically in the context of a
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leveraged buyout, recapitalization, or growth capital transaction.

• Fund of Funds: Investments in funds whose holdings consist primarily of other funds.

Empirical Evidence

Table B.4 shows how small (bottom 30th percentile in AUM) and large (top 30th percentile in

AUM) plans allocated sub-asset classes to the four management styles in 2009 and thus complements

Table 2.1 in the main text that shows similar evidence for 2019. External active management is

dominant for small plans, particularly in the private asset classes but also for most sub-asset classes

in stocks and fixed income. For stocks and fixed income, some plans also use external passive

management, particularly for ACWI ex U.S., Other, U.S. Broad stocks, and inflation indexed and

long bonds. In contrast, large plans use internal allocation far more often than the smaller plans.

This holds both among stock and fixed income investments and involves both internal active and

internal passive management. Among the holdings in the private asset classes, internal active

management plays an important role for the private equity “other” assets, mortgages (private

debt), commodities, infrastructure, real estate and REIT investments.

In results not reported here, we find that, across all asset classes, non-U.S. plans manage a

significantly higher portion of their investments internally compared to their U.S. peers. Differences

are particularly large for fixed income, private debt, and real assets in which the proportion of

internally managed assets for non-U.S. plans exceeds that of U.S. plans by more than 20%.

In some cases, plans use multiple investment management styles to allocate their holdings

within a particular sub-asset class. For those plans that do not adopt a single management style

for all of their holdings in a particular sub-asset class, Table B.5 shows the allocation share to the

six possible pair-wise combinations of the four investment management styles. The table covers

only the largest plans because this usage of multiple investment management styles within a single

sub-asset class is extremely uncommon among smaller plans. For stock accounts, combinations of

external active and external passive as well as combinations of external active and internal active

management are the most widespread pairs, but external active combined with internal passive

management is also not uncommon. Among fixed income investments as well as investments in the

private asset classes, combinations of external active and internal active management is the most

common pairing.
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Table B.6 shows statistics on the number of sub-asset classes per plan/year that are internal

and external actively managed. We find that external active management is more common than

internal active management. Additionally, on average, a greater amount of AUM is allocated

to internal active management in comparison to external active management. These trends are

consistent across all asset classes, and lend support to the hypothesis that only big plans have the

expertise and resources to set up internal teams. Furthermore, internal management tends to be

utilized exclusively for a select few specialized sub-asset classes. Figure B.3 shows a bar chart of the

number of sub-asset classes that are actively managed, either internally or externally by a specific

plan. For stocks and fixed income, the number of sub-asset classes that are internally managed is

always lower than the externally managed assets, with the exception of plans that invest in a single

fixed income sub-asset class.

B.2.5 Asset Allocation and Size: Nonparametric Estimates

Our panel regressions in equation (2.4.9) of the main text assume a linear relation between

plans’ asset allocation and their AUM. To avoid invalid inference due to possible model misspecifica-

tion and examine how good an approximation the linear model provides, we adopt a nonparametric

approach that allows for a more flexible specification of the relation between a plan’s weight in asset

class A at time t, ωiAt and plan characteristics, xiAt:

ωiAt = θ(x̃iAt) + ϵiAt, (B.2.1)

where x̃iAt := xiAt−(1/N)
∑

i xiAt denotes the vector of cross-sectionally demeaned plan character-

istics and θ(·) is an unknown function of plan characteristics. We apply cross sectional demeaning

to deal with potential time fixed effects such as trends. To estimate the unknown function θ(·), we

use the pooled kernel estimator

θ̂(x) =
[
ι⊤WH(x)ι

]−1
ι⊤WH(x)ΩA, (B.2.2)

where WH(x) is a weighting matrix with bandwidth H and ΩA stacks plan-level asset allocations

ωiAt in an (n
∑n

i Ti × 1) vector, with n denoting the number of plans and Ti the number of time
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series observations of plan i.4

Figure B.4 shows the nonparametric weight estimates for the individual asset classes as a

function of the lagged value of log AUM. The relation is declining for stocks, fixed income, hedge

funds/multi assets and private debt, whereas we find an increasing relation for private equity and

real assets. All of this is consistent with the linear regression estimates from Table 2.5. Specifically,

stock holdings decline from 53% to 48% as we move from small to large plans. Similarly, fixed

income allocations decline from 37% for the smallest plans to 33% for the largest plans, consistent

with large plans choosing to hold a greater fraction of their investments in alternative asset classes.

The plots in Figure B.4 show only mild deviations from linearity. A particularly critical

form of misspecification from the linear modeling assumption in our panel regressions would be

the presence of a non-monotonic relation between plan size and AUM allocations. To test more

formally whether the relations in Figure B.4 are monotonic, we use the monotonic relation test of

Patton and Timmermann (2010). The monotonic relation is specified to be either positive (“+”)

or negative (“–”) as specified for the different asset classes in Table B.7. Under the null hypothesis,

there is no positive (rep. negative) monotonic relation between plan size and allocation to a given

asset class. Conversely, there is a monotonic relation between lagged plan size and allocation to a

given asset class under the alternative. For example, if we specify a negative (decreasing) relation

under the alternative, small p-values indicate that larger plans allocate a smaller amount of their

investments to a given asset class.

To implement the test, each year (t) we sort plans by AUM, keeping only those plans that

also report holdings the following year (t+1). We then form equal weighted quartile portfolios for

the size-sorted plans going from the smallest to the largest plans. We conduct these tests only for

those asset classes for which we have a sufficient number of observations, leading us to drop private

debt. The results are reported in Table B.7. We find significant evidence of a monotonically

decreasing relation between plan size and allocations to stocks and hedge funds and multi-asset

mandates. Furthermore, the test also provides evidence for a monotonically increasing relation

between plan size and allocations to private equity and real assets. Only for fixed income do we

fail to reject the null of no monotonic relation between plan size and allocation.

4Our analysis uses the product kernel of a standard normal density and picks the bandwidth for each covariate as
h = bσ̂xn

−1/6, where σ̂x is the sample standard deviation of x̃iAt and b is a tuning parameter (we set b = 2).
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B.3 Cost Data

CEM collects detailed cost data at the sub-asset class level. In general, all costs—internal

and external to the pension plan—related to management of plan assets are included in the survey.5

B.3.1 Cost Components

We list the various cost components that a plan reports to CEM below:

Internal investment costs

• Compensation, benefits and direct expenditures associated with the staff overseeing internal

portfolios. If staff is responsible for multiple asset classes, the cost is split according to the

estimated time allocation

• Consulting, research, legal, trading systems and other third party costs.

• General operating expenses, including rent, utilities, IT services, investment accounting, fi-

nancial control, and human resources. These costs are also allocated based on usage.

External investment costs

• Base fees remitted to third-party managers including investment management fees, manager-

of-manager fees, commitment fees and fees netted from returns.

• Performance fees paid to (third-party) managers.

• Costs associated with balanced mandates, proportionally allocated based on actual holdings.

• Compensation, benefits and direct expenses for staff members primarily responsible for se-

lecting, monitoring, and overseeing external managers.

• Third-party investment management fees prior to any deductions for rebates. These rebates

constitute the limited partners’ portion of specific fee income realized by the partner in

connection with the fund, such as fees related to break-ups, monitoring, and funding.

Limited partnership costs

5For our empirical results, we proxy the plan’s cost by average cost relative to AUM in a specific sub-asset class
and year. This measure of cost also includes performance fees.
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• Unreturned Invested Capital: Contributed capital less contributed capital attributable to re-

alized investments less the aggregate amount of write-downs, if any, with respect to unrealized

investments. This is often the amount on which fees are based after the investment period

ends.

• Percentage fee on unreturned invested capital (post investment period): Private equity man-

agement fees are typically paid as a percentage of the committed amount during the invest-

ment period and as a percentage of unreturned invested capital after the investment period

ends.

• Rebate percentage: the limited partners’ share of certain fee income realized by the General

Partner in connection with the fund such as fees for break-up, monitoring and funding.

Other expenses

• Oversight of the fund, including expenses such as staff salaries, direct costs (e.g., travel,

director fees, director’s insurance, etc.), and unallocated overhead related to the supervision

of fund assets.

• Trustee and custodial costs.

• Consulting costs for manager searches, scenario testing, system consulting, and internal or

external costs for performance measurement.

• Legal fees related to the entire fund which includes, among others, fiduciary insurance and

printing.

• Fund of Funds Costs: top-layer management fees levied by the fund-of-funds manager as the

manager base fees. It also includes the expenses incurred in the underlying funds. In cases

where this data is unavailable, CEM applies a standard default.

B.3.2 Variation in Costs by Investment Management Mandate

Investment management mandate is a key determinant of costs, but there is considerable

heterogeneity in how much individual plans pay in fees. We present several figures that illustrate

this heterogeneity. As in the main text, we scale all cost figures by the grand average cost, averaged
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across plans, asset classes and years. Hence, all cost are expressed in percentage units relative to

the average cost in our sample.6

We begin by presenting box plots in Figure B.5, with the median and interquartile range of

2019 plan-level costs for public asset classes and the four management mandates represented in our

sample, scaled (to maintain proprietary data confidentiality required by CEM) by the grand-average

cost, i.e., costs averaged across asset classes, across plans, and over time. For both stocks and fixed

income, the cost ranges are low and narrow for passively managed accounts (IP and EP). Internal

active (IA) management costs are a little higher, on average, than passive management fees and

slightly more dispersed among stock and fixed income accounts. Median costs grow notably bigger,

and cost ranges wider, for external actively (EA) managed accounts, which charge far higher fees

than all other account types. We note (in unreported tests) that this holds across all sub-asset

classes and throughout our sample.

Figure B.6 presents box-and-whisker plots displaying how total costs evolve over time for

the active, passive, internal, and external management styles. Costs are aggregated across asset

classes on a value-weighted basis. The scaled median internal management cost (top left panel)

fluctuates around 14% of average costs with no discernible trend. Internal management costs are

very homogeneous across plans. For example, the 95th percentile of scaled internal management

costs is at most 62% of average costs.

In sharp contrast, scaled median external management costs are trending up starting at

around 100% in 1999 to around 133% of average costs in 2019. Differences in external management

costs across plans are also far higher than what we see for internal management costs with 95%

bands ranging from 22% to nearly 450% of average costs towards the end of our sample.

Median passive management costs have declined modestly from around 18% of average

costs in the early sample to close to 9% of average costs per year at the end. Differences in passive

management costs across plans are also very modest, with the 95% bands ranging from 2% to 22%

of average costs at the end of the sample.

In contrast, median active management costs rise from close to two-thirds of average costs

in the early sample to about 150% of average costs at the end of the sample. The spread in active

6We implement this scaling to preserve confidentiality of the cost levels. However, this transformation of costs
still allows us to compare cost across different asset classes and years.
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investment management costs is also very large, with the 95% confidence band going from close to

zero to nearly 400% of average costs at the end of the sample.

The plots in Figure B.6 show management costs aggregated across different asset classes

whose weights are shifting over time. To isolate the impact of shifts in the weights of individual asset

classes, Figures B.7–B.8 plot investment management costs for individual asset classes segregated

by internally vs. externally managed assets and passively vs. actively managed assets. Hence, these

plots show both the time-series variation and the degree of heterogeneity in management costs by

asset class and management style.

We begin by examining equity investment cost. In most years, plans’ passive, internal

management costs for stocks amount to less than 7% of average costs, whereas internal active costs

are somewhat higher, varying in the range 10-45% of average costs. In both cases, there is no

discernible time-series trend in public market investment management costs. Fees for externally-

managed stock portfolios (right panels in Figure B.7) are notably higher, with a (scaled) median

annual cost that varies between 9% and 22% of average costs for passive management and active

management fees between 56% and 130% of average costs. Overall, we find a far greater degree of

variation in the costs of externally managed stock portfolios than for internally managed ones.

Figure B.8 shows similar plots for fixed income investments. For internal passively managed

fixed income portfolios, median costs fluctuate between 4% and 9% of average costs, with three-

quarters of plans paying less than 11% of average costs in most years and always less than 18%. The

costs for actively managed internal portfolios are similar. The costs of externally managed fixed

income portfolios fluctuate at a higher level, around 11% of average costs for passive portfolios, and

44% for actively managed portfolios. Again, a trend in these fees is notably absent with year-to-year

variation more likely to reflect shifts in the composition of our sample of plans.

Variations at the Sub-asset Class Level

Figure B.9 provides further granularity by plotting median costs for the most important

sub-asset classes in our sample. First consider management costs for U.S. Large and Small cap

stocks. Median passive management costs are declining over time whereas active costs for internal

and external management are steady around 67% of average costs for active large cap and 11% of

average costs for internal management. Median external active management costs for small cap
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portfolios are around 130% of average costs versus 44% for internal active management.

Median costs for passively managed EAFE mandates converge to approximately 11% of

average costs and we see a similar trend for passive management of Broad stocks whose median

cost converges to around 7% of average costs. Median active management costs have maintained

their gap between external and internal management of about 67% of average costs. Median internal

management cost for EAFE is around 44% and 22% of average costs for Broad stocks. External

active management costs for EAFE mandates amount to 110% and 90% of average costs for Broad

stocks.

Median internal passive costs for U.S. fixed income fluctuate between 2% and 4% of average

costs in most years. External passive management costs start considerably higher but trend down-

ward, converging towards internal passive management costs at the end of the sample. Median

internal active management costs are around 11% of average costs versus 44% for external active

management costs.

The last panels in Figure B.9 show that median internal passive management costs for

Canadian fixed income have been fluctuating around 11% of average costs, and external passive

management costs converged to 11% of average costs toward the end of our sample. Median internal

active management costs is around 11% of average costs without any considerable trend; external

active management start above 44% and decrease to approximately 38% of average costs.

Supplementing these figures, Table B.8 shows regressions of costs (in bps) by sub-asset

class on dummies such as external, and active. Across all sub-asset classes, external investment

management is significantly costlier than internal management and active management is costlier

than passive management. External investment management is disproportionately costly in the

private sub-asset classes and for specialized sub-asset classes such as emerging market stocks and

bonds and high yield bonds.

Table B.8 does not control for plan size. To highlight the importance of plan size, Table

B.9 presents regression results of the power law in investment costs at the sub-asset class level, as

discussed in Equation (2.5.2) in the main text. The table shows that economies of scale are higher

(lower β estimates) for passively managed EAFE and U.S. broad stocks, and for inflation-indexed

bonds. For the alternative asset classes we find lower scales of economy for the cost of managing

diversified private equity, real estate, and REITS.
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B.3.3 Management Costs by Country of Domicile

Investment management costs depend not only on investment management style and asset

class but also on country-of-domicile for the investment plan. To illustrate this, Table B.10 presents

plans’ mean cost per asset class by country-of-domicile in 2009 and 2019, again measured relative

to the grand average cost figure. Across countries and at both points in time, management costs

are lowest for fixed income balances, followed by stock portfolios. Private credit and real asset

accounts fall in the middle in most countries with hedge funds and, particularly, private equity

management costs being much higher.7 The table also shows interesting geographical variation

in costs, with surprisingly similar costs of managing stocks and fixed income assets in the U.S.,

Canada, and the Netherlands and relatively low costs of managing public assets in countries such as

Australia and Sweden. The cost of managing private equity and hedge fund assets is quite similar

across domiciles, while conversely we see bigger geographical differences in the cost of managing

real assets, probably due to the very heterogeneous nature of this asset class.

B.4 Returns, Benchmarks and Risk-Adjustments

B.4.1 Benchmarks

The CEM database contains a detailed list of returns, policy weights and return benchmarks,

all available at the sub-asset class level. We state the definition of these variables below.

• Returns: Actual full-year returns for a specific sub-asset class. Returns are categorized as

gross returns and net returns (net of cost).

• Policy weights: Weights that reflect plans’ long-term policy, normal or target asset mix such

as 60% stocks and 40% bonds. Policy weights add to 100% and are provided at year-end

levels.

• Benchmarks: Broad investable capital market indexes (for example, the S&P500 for U.S.

stocks) used to gauge asset class performance. If multiple benchmarks apply for an asset

class, each benchmark is weighted accordingly (e.g., 60% S&P 500 and 40% Russell 3000).

Our data sample contains a total of 15,101 different policy benchmarks, which also includes

7As we show in the paper, these broad cost estimates conceal a lot of variation related to changes in investment
management styles (active versus passive, external versus internal).
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some esoteric benchmarks tailored to specialized investments such as the Dow Jones Brookfield

Global Infrastructure Index or the KOSPI 3-year average return.

• Total policy return: Returns that track the policy mix and/or benchmark changes through

the year.

B.4.2 Asset Class Return Performance

Table B.11 reports summary statistics for gross-of-fee returns grouped by asset class, av-

eraged across all plan-years. Over our sample period, private equity holdings earned the highest

mean return (15.9% per annum), followed by stock holdings (10.8%), real assets (8.4%), and private

debt (7.8%). Hedge funds & multi assets (7.1%) and fixed income (7.0%) earned the lowest average

sample returns. Volatility estimates, reported on the diagonal of Panel B in Table B.11, show

that private equity is by far the most volatile asset class (22.3% per annum), followed by stocks

(16.3%), real assets (11.6%), hedge funds (10.5%) and private debt (9.7%). Fixed income holdings,

unsurprisingly, record the lowest volatility (6.9%).

While expected return performance is clearly an important driver of plans’ asset allocation

decisions, it is by no means the only explanation for the increased importance of alternative asset

classes over our sample. The possibility of reducing portfolio-level return volatility by diversifying

across asset classes has also been a key determinant of these decisions.

To better understand the extent to which pension plans gained from diversification across

asset classes, Panel B in Table B.11 reports the average correlation across our six asset classes.

Stock returns are positively correlated with returns on all other asset classes and have the lowest

correlation with real assets (0.201) and fixed income (0.278) and the highest correlation with hedge

funds and multi assets (0.858). Fixed income returns, on the other hand, are negatively correlated

with returns on both real assets and private equity, though insignificantly so. The correlation

between fixed income returns and returns on hedge funds and multi asset (0.547) or returns on

private debt (0.598) is much stronger.

These correlation estimates are sufficiently low to imply clear diversification benefits from

adding alternative asset classes to the plans’ public asset holdings, with the possible exception of

hedge funds and multi assets whose returns were highly correlated with both stock and fixed income

returns during our sample.
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B.4.3 Risk Adjustment Regressions

An alternative to studying policy-adjusted returns is to correct for plans’ return exposures

to a small set of the most important risk factors. With less than 30 annual return observations per

asset class, we need to choose the risk factors judiciously, in many cases eliminating factors whose

coefficient estimates are insignificant. In particular, we consider the following risk factors for the

individual asset classes:

• Stocks: The Fama and French (1993) three factor model: market excess return (Market),

small minus big (SMB), and high minus low book-to-market ratios (HML).

• Fixed Income: U.S. Aggregate Bond Index, U.S. Corporate Index, U.S. High Yield Index,

Global Diversified Index, U.S. Long Treasury (1–3 years).

• Hedge Funds and multi asset: The seven factor model of Fung and Hsieh (2001) which

includes the market excess return (Market), a bond trend, currency trend, commodity trend,

size spread, bond market and credit spread factor.

• Private Equity, Private debt and Real assets: A subset of the seven factor model that includes

the market excess return, size spread, and bond factor. For these asset classes we also include

lags of each factor to account for staleness in returns.

B.4.4 Construction of risk factors

We next describe the construction of the Fung and Hsieh (2001) risk factors that are used in

Section 2.6.2 of the main text. Three factors are obtained from Hsieh’s website:8 the Bond trend-

following factor, the Currency trend-following factor and the commodity trend-following factor. In

addition, we construct the following factors ourselves (following instructions on Hsieh’s website):

• Equity Market Factor: Constructed using monthly S&P 500 returns.

• Size spread factor: Russel 2000 index monthly return - S&P500 monthly return.

• Bond Market Factor: Monthly changes in the 10-year treasury constant maturity yield (month

end-to-month end).9

8https://faculty.fuqua.duke.edu/∼dah7/HFRFData.htm
9Available at the Federal Reserve Bank of St. Louis: https://fred.stlouisfed.org/series/DGS10
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• Credit Spread Factor: Monthly changes in Moody’s Baa yield less 10-year treasury constant

maturity yield (month end-to-month end).10

All series are annualized from their underlying monthly values. Since the risk factors are

most appropriate for U.S. plans, we only construct portfolios based on U.S. plans.11

B.4.5 Factor regression results

The “portfolio” columns in Table B.12 show estimates from regressing equal-weighted asset-

class returns on the risk factors as in Equation (2.6.5) of the main text.12 For the stock portfolio,

the market excess return factor obtains a highly significant loading of 0.95 which is close to unity,

both in an economic and statistical sense.13 The size factor is also significant but the coefficient is

an order of magnitude smaller than the market factor. The book-to-market factor is insignificant.

Overall, these three factors generate an R2 of 0.95, suggesting that most of the time-series variation

in plans’ (aggregate) stock returns is explained by the market factor. At -0.69%, the average plan

alpha is negative but statistically insignificant.

For the fixed income portfolios, the Bloomberg U.S. Aggregate Bond Index, a credit risk

factor and a term structure variable all generate highly significant and positive estimates. The time-

series R2 (0.97) is even higher for the fixed income portfolio than for the stock portfolio (0.95).

After adjusting for these risk factors, the average fixed income portfolio generates a positive and

statistically significant alpha of 65 bps.

For hedge funds and multi asset mandates, the market, size spread factor and bond market

factors obtain statistically significant coefficients which explain 92% of the time-series variation in

average returns. For the private equity portfolio, the market equity excess return and its lagged

value both obtain significant coefficients as does the concurrent bond market factor. These factors

explain 74% of the variation in returns. Finally, risk factors explain a notably smaller fraction of the

time-series variation for private credit and real assets with R2 values of 0.40 and 0.44, respectively.

For these asset classes, only the equity market return or its lag generate statistically significant

10Available at the Federal Reserve Bank of St. Louis: https://fred.stlouisfed.org/series/DBAA and https://fred.
stlouisfed.org/series/DGS10

11The risk factor regressions for the alternative asset classes that use the Fung and Hsieh (2001) factors have fewer
time series observations since the factor data only go back to 1994.

12These regressions use excess returns net of costs, but the results are nearly identical if instead we use gross excess
returns.

13Betas on the market return significantly higher than unity would be consistent with plans applying leverage.
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coefficients, in both cases with values that are quite small (0.22 and 0.27, respectively). Average

alpha estimates for the alternative asset classes tend to be greater in absolute terms, though only

statistically significant for one of the four alternative asset classes.

The “pooled” columns in Table B.12 show estimates of the factor loadings using pooled panel

regressions on individual plan-year observations. The risk factors retain even stronger statistical

power over individual plans’ returns in the pooled panel regressions. Unsurprisingly, however, the

explanatory power of the risk factors over individual plans’ returns is somewhat lower than for the

aggregate regressions. This is to be expected because of idiosyncratic variation in individual plans’

returns around their benchmarks due to active management.

These results suggest that traditional risk-adjustment methods work particularly well for

the two most liquid asset classes (stocks and fixed income) as well as for hedge funds, but do a

worse job at tracking performance in the most illiquid asset classes in our sample such as private

equity, private debt, and real assets.

B.4.6 Factor exposures in policy-adjusted returns

In Figure B.10, we show box and whisker plots of the policy-adjusted gross returns. These

are roughly centered around zero for all asset classes. Our approach of risk-adjusting returns

by subtracting the plan-specific policy benchmark returns (Figure B.11) can be criticized on the

grounds that some plans could earn abnormal returns by deviating from their policy targets. To

address this concern, we next examine whether significant exposures to systematic risk factors

remain after subtracting policy returns from plan returns.

To obtain meaningful estimates, we require that the plans have ten or more annual return

observations, and we limit our analysis to stocks and fixed income. Moreover, we only include a

single risk factor to reduce the number of parameters estimated for each asset class. Our single-

factor regressions for individual plans’ policy-adjusted returns thus take the form

r̃iAt = αiA + β′
iAFAt + ϵiAt. (B.4.1)

For stocks, we use the market excess return while for fixed income portfolios we use the Bloomberg

U.S. aggregate bond Index excess return as the single risk factor. Table B.13 summarizes the
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results. Across 199 plans with the required number of observations on stock returns, the mean and

median values of βiA are -0.0003 and 0.003, respectively, while the mean and median values of αiA

are both 0.003. Interquartile ranges are quite narrow: -0.001 to 0.0082 (alpha estimates) and -0.023

to 0.0252 (beta estimates).

For fixed income, we find similar results: Across 203 plans with at least 10 annual obser-

vations, the mean and median estimate of αiA is 0.003 and 0.002 (interquartile range of -0.0013 to

0.0064), respectively, while the mean and median estimate of βiA is -0.004 and 0.002 (interquartile

range of -0.0929 to 0.1038).

These results show that the policy-adjustment procedure succeeds in capturing the vast

amount of systematic risk exposures in plans’ returns and that the plans choose market risk expo-

sures that are very close to those laid out in the policy benchmarks for both stock and fixed income

holdings.

B.4.7 Performance in Sub-Asset Classes

To help further pin down the relation between variables such as AUM and investment

performance in different markets, we estimate panel regressions of policy-adjusted net returns on

individual sub-asset classes. We only consider those sub-asset classes for which we have sufficiently

many observations to obtain reasonably precise parameter estimates. Table B.14 presents results

for a set of sub-asset classes chosen on the basis that they have at least 1,000 observations.

Our estimates show that a plan’s log-AUM is significantly positively related to policy-

adjusted net returns for the EAFE, U.S. Large Cap, Global, and Emerging categories but fails to

be significantly related to stock investments such as U.S. small cap or ACWI ex U.S. Moreover,

the economic effect of AUM can be quite large: the increases in average annual returns associated

with moving from a plan in the 10th percentile to a plan in the 90th percentile of holdings in a

given sub-asset class are 50 bps (EAFE), 54 bps (U.S. Large Cap), 67 bps (Global), and 62 bps

(Emerging).

Examining the log-AUM coefficient estimates more closely, we see that they are bigger for

the net return regressions than for gross returns for all sub asset classes with exception of U.S.

Small caps. This suggests that the largest plans’ better performance in these sub-asset classes, as

compared to their smaller peers, is, at least in part, driven by their ability to reduce costs.
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We also find a significant relation between log-AUM and policy-adjusted net returns for

fixed income (Canada, Global, Inflation Indexed), hedge funds, private equity (Diversified private

equity, Other) and real assets (REITs). The coefficients for Hedge funds, Diversified private equity

and Other private equity are very large (0.46, 0.97 and 1.29 respectively), so that moving from a

plan in the tenth percentile to a plan in the 90th percentile of the (2019) size distribution in these

sub-asset classes is associated with increases in mean returns of 192 bps, 403 bps, and 537 bps,

respectively. Once again, the coefficient estimates on log-AUM tend to be notably higher for net

returns than for gross returns, consistent with bigger cost savings for the largest plans also in these

sub-asset classes.

Although many of the estimates on the private plan dummy are quite large and positive, we

only find two instances (U.S. Broad or All stocks and Diversified private equity) for which private

plans appear to produce policy-adjusted net returns whose means are significantly different from

those of public plans.

Tables
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Table B.1. Number of participants per asset class and year (Panel A) and by frequency
of participation (Panel B). Panel A presents the total number of observations (plans) per asset
class and year. Panel B presents the time series frequency of unique plans in the CEM database.

Panel A: Total number of observations by asset class and year

Stocks
Fixed
Income

Hedge
& multi
ass.

Private
Equity

Private
Debt

Real
As-
sets

Total
Public

Total
Private

Total

1991 122 122 17 69 100 33 90 123
1992 163 162 30 85 2 129 31 132 163
1993 216 216 34 112 2 160 55 164 219
1994 265 267 40 137 6 201 76 192 268
1995 294 297 49 139 9 223 96 201 297
1996 292 295 44 134 10 210 91 204 295
1997 271 272 32 130 10 201 95 177 272
1998 285 285 28 140 12 201 99 186 285
1999 304 304 25 144 16 207 113 191 304
2000 284 285 29 148 17 203 111 174 285
2001 293 293 42 154 18 201 116 177 293
2002 273 273 56 145 18 184 107 166 273
2003 277 277 68 149 21 191 107 170 277
2004 285 285 78 158 28 210 107 178 285
2005 297 298 91 157 37 218 115 183 298
2006 289 289 105 161 36 218 109 180 289
2007 354 356 150 213 43 266 121 235 356
2008 334 337 156 209 41 261 113 224 337
2009 334 335 157 215 36 257 113 222 335
2010 346 346 172 226 45 267 118 228 346
2011 373 374 206 252 56 313 113 262 375
2012 446 445 253 304 80 380 202 246 448
2013 443 443 265 308 97 380 199 247 446
2014 420 419 255 294 103 367 204 218 422
2015 359 360 209 267 109 314 146 215 361
2016 343 345 204 256 113 303 143 202 345
2017 347 350 200 260 144 311 152 198 350
2018 331 334 196 249 152 303 145 189 334
2019 305 308 176 236 159 281 134 174 308

Panel B: Total number of plan count by frequency of observation

# of obs 1 2 3 4 5 6 7 8 9 10

Plan Count 240 124 134 65 54 39 45 59 29 31

# of obs 11 12 13 14 15 16 17 18 19 20

Plan Count 21 24 29 21 22 15 16 17 16 17

# of obs 21 22 23 24 25 26 27 28 29

Plan Count 15 7 12 18 14 9 15 12 17
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Table B.2. AUM allocation by asset class in 2009 and 2019. This table shows total
AUM allocated to Stocks, Fixed Income and Other assets in billions of USD for all countries in
the CEM database. Other assets bundles the asset classes: Private Equity, Private Debt and Real
Assets. AUM (%) denotes the share of total AUM per country, which is defined by ShareAt =∑

iAUMiAt/
∑

i

∑
AAUMiAt, where AUMiAt denotes total AUM of plans in country i in asset

class A in year t.

Year 2009 2019
Stocks Fixed Income Other assets AUM(%) Stocks Fixed Income Other assets AUM(%)

U.S. 1132.77 801.62 501.33 57.62 1525.22 1236.51 1032.26 42.17
Canada 254.81 203.64 164.88 14.73 497.31 371.9 767.06 17.82
Australia 32.93 29.6 12.42 1.77 77.01 52.13 40.86 1.89
Belgium 0 0 0 0 0 0 0 0
China 0 0 0 0 101.86 48.7 108.67 2.88
Denmark 4.35 15.67 3.29 0.55 0 0 0 0
Emirates 0 0 0 0 0 0 0 0
Finland 30.68 53.16 21.85 2.5 60.18 55.5 50.08 1.84
France 16.02 14.83 1.49 0.76 0 0 0 0
Germany 0 0 0 0 0 0 0 0
Netherlands 146.67 243.74 132.29 12.35 447.34 615.54 349.73 16.4
New Zealand 4.1 5.5 4.24 0.33 17.99 6.51 7.18 0.35
Other USD 0.08 0.04 0.02 0 44.21 25.85 11.5 0.9
Saudi Arabia 0 0 0 0 12.13 8.77 7.86 0.32
South Africa 0 0 0 0 15.89 4.51 2.48 0.25
South Korea 51.52 199.14 10.81 6.18 228.25 304.15 69.26 6.65
Sweden 37.89 44.48 8.34 2.14 68.65 54.33 34.75 1.75
Switzerland 0 0 0 0 0 0 0 0
UK 29.03 8.1 7.26 1.05 223.84 207.7 177.85 6.77
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Table B.4. Small and large plans’ investment allocation by sub-asset class and man-
agement structure in 2009. This table shows the share (in %) of AUM allocated to the four
management mandates: Internal Passive (IP), External Passive (EP), Internal Active (IA), and Ex-
ternal Active (EA) for the given sub-asset classes. The share is calculated as follows: ωats =

AUMats
AUMat

,
where AUMats =

∑
iAUMiats, and AUMat =

∑
s

∑
iAUMiats, where i denotes plan i, a indicates

the sub-asset class, t denotes the year 2009, and s denotes one of the four mandates. The shares
are calculated separately for small and large plans, defined by the bottom and top 30th percentile
of AUM in 2009 respectively. For small and large plans, rows sum up to 100%.
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Small Plans (in %) Large Plans (in %)

Stocks IP EP IA EA IP EP IA EA

ACWI x. U.S. 39.93 60.07 16.78 7.26 75.96

EAFE 8.97 91.03 18.06 15.95 11.25 54.74

Emerging 27.82 72.18 10.76 4.82 12.57 71.85

Global 11.41 88.59 7.29 3.16 55.39 34.16

Other 7.79 92.21 16.94 0.76 39.98 42.32

U.S. Broad 0.89 45.84 53.27 24.48 30.76 12.74 32.02

U.S. Large Cap 29.26 70.74 31.95 18.50 13.92 35.62

U.S. Mid Cap

U.S. Small Cap 25.04 74.96 13.19 14.65 7.73 64.43

Fixed Income

Bundled LDI

Cash 12.51 87.49 42.89 57.11

Convertibles 100.00

EAFE 13.05 86.95

Emerging 100.00 25.74 74.26

Global 100.00 1.60 0.51 77.56 20.33

High Yield 100.00 1.32 0.01 8.48 90.19

Inflation Indexed 39.55 42.23 1.71 16.51 30.87 5.74 35.43 27.97

Long Bonds 1.04 49.66 2.18 47.12 7.08 2.23 15.00 75.69

Other 2.52 97.48 80.74 0.23 8.93 10.10

U.S. 17.73 82.27 2.32 6.13 41.47 50.09

Hedge & multi ass.

Funded TAA 100.00 1.08 98.92

Hedge Fund 100.00 100.00

Risk Parity 100.00

Private Equity

Div. Private Eq. 100 7.57 92.43

LBO 0.76 99.24

Other 38.68 61.32

Venture Capital 100 0.08 99.92

Private Debt

Mortgages 100 87.10 12.90

Credit 28.87 71.13

Real Assets

Commodities 100.00 11.86 8.27 40.13 39.74

Infrastructure 100.00 64.60 35.40

Nat. Resource 100.00 15.76 84.24

Other 11.52 88.48 14.93 85.07

Real Estate 6.55 93.45 29.96 70.04

REIT 100.00 5.22 1.55 48.25 44.98
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Table B.5. Plans’ relative allocation to multiple investment mandates. This table shows
the 2019 allocation share to different pairs of management mandates for large plans that utilize
more than one management style within the same sub-asset class. Large plans belong to the top
30th percentile by AUM. The total number of plans are indicated in parentheses and rows sum to
100%.
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Sub-Asset class EA&EP EA&IA EA&IP IA&IP EP&IP EP&IA

Stocks

ACWI X U.S. 68.19
(10)

5.12
(1)

26.69
(3)

EAFE 70.94
(10)

14.96
(3)

14.09
(2)

Emerging 32.07
(19)

34.10
(5)

17.66
(4)

16.17
(1)

Global 16.75
(11)

55.11
(13)

18.26
(1)

9.89
(1)

Other 100.00
(2)

U.S. Broad 60.45
(12)

9.70
(2)

10.41
(2)

19.45
(2)

U.S. Large Cap 57.14
(6)

9.73
(2)

13.9
(4)

19.23
(2)

U.S. Mid Cap 100.00
(2)

U.S. Small Cap 27.43
(4)

17.42
(4)

41.01
(3)

14.14
(2)

Fixed Income

Bundled LDI 100.00
(1)

Cash 100.00
(12)

Emerging 2.95
(2)

76.75
(10)

7.62
(2)

12.68
(2)

Global 36.49
(3)

6.19
(1)

54.82
(2)

2.50
(1)

High Yield 11.73
(1)

88.27
(9)

Inflation Index 64.29
(4)

8.98
(1)

2.09
(1)

24.64
(2)

Long 25.47
(1)

74.53
(3)

Other 7.11
(3)

92.89
(1)

U.S. 58.71
(7)

24.87
(4)

3.21
(1)

6.21
(1)

7.00
(1)

Hedge & Multi Ass.

Funded TAA 100.00
(3)

Risk Parity 100.00
(3)

Private Equity

LBO 100.00
(1)

Other 100.00
(4)

VC 100.00
(3)

Div. PE 100.00
(17)

Private Debt

Private Credit 100.00
(13)

Real Assets

Commodities 11.77
(1)

12.97
(3)

11.20
(1)

64.06
(2)

Infrastructure 100.00
(22)

Nat. Resource 100.00
(11)

Other 100.00
(1)

Real Estate 100.00
(33)

REITs 31.14
(3)

64.87
(3)

3.99
(1)
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Table B.6. Frequency of internal and external active management. This table shows
the mode and the mean of how often each plan employs internal (IA) –and external active (EA)
management for sub-asset classes in a given asset class for the years 1999, 2009 and 2019. The
mode and the mean are calculated across plans within a given year and asset class. Avg. AUM
denotes the average AUM (in millions U.S. dollar) allocated to IA or EA management within each
asset class.

Stocks Fixed income Hedge & multi ass.
Year Style Mode Mean Avg. AUM Mode Mean Avg. AUM Mode Mean Avg. AUM

1999 IA 1 1.70 2841.78 1 1.74 1933.32 1 1.00 911.38
EA 3 2.77 726.49 2 2.00 560.07 1 1.00 662.12

2009 IA 1 2.23 2444.96 1 2.05 2458.06 1 1.00 69.89
EA 3 3.41 781.43 2 2.51 901.38 1 1.46 728.44

2019 IA 1 2.44 3906.48 1 2.25 3292.93 1 1.07 2723.24
EA 4 3.18 1503.44 2 2.95 1415.54 1 1.61 1487.49

Private equity Private credit Real assets
Year Style Mode Mean Avg. AUM Mode Mean Avg. AUM Mode Mean Avg. AUM

1999 IA 1 1.05 459.16 1 1.00 611.12 1 1.19 512.69
EA 1 1.20 374.62 1 1.00 1751.71 1 1.18 400.05

2009 IA 1 1.09 733.78 1 1.00 2492.83 1 1.45 1605.56
EA 1 1.72 688.94 1 1.00 323.78 1 1.96 532.30

2019 IA 1 1.29 2930.15 1 1.13 2581.10 1 1.79 4379.81
EA 1 2.13 1270.12 1 1.38 606.23 2 2.96 836.72
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Table B.7. Monotonicity test of asset allocation and size. This table tests the monotonic
relation between asset allocation and size for different asset classes. p-value µ1 = µ4 tests whether
the mean on the first quartile portfolio (smallest plans) equals the mean on the fourth quartile
portfolio (largest plans). p-value MR test denotes the p-value of the null hypothesis that min(µi −
µi−1) ≤ 0 (positive relation) or min(µi−1 − µi) ≤ 0 (negative relation). Relation signifies whether
we test for a positive (“+”) or negative (“–”) monotonic relation. Portfolios are constructed as
follows: we sort plans into quartiles based on size and use an equal weighted average of plans
within a quartile and asset class. For a given year, we only include plans that also show up in the
next’s year database. At the end of the next year, the AUM allocation is calculated for each of the
portfolios.

Stocks
Fixed
income

Hedge
& multi
ass.

Private
equity

Real
assets

Aum allocation
p-value: µ1 = µ4 0.000 0.000 0.000 0.000 0.000
p-value MR test 0.014 0.123 0.000 0.000 0.006
Relation – – – + +
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Table B.8. Regression of cost on plan characteristics. This table shows regression estimates
of the model: Costiat = ca+β1,aExternaliat+β2,aActiveiat+β3,aPrivatei+β4,anonUSi+εiat, where
Costiat is the cost (in bps) of plan i in sub-asset class a at time t, Externaliat (Activeiat) is a
dummy equal to one if plan i manages sub-asset class a externally (actively) at time t, Privatei
is a dummy equal to one if plan i is private, and nonUSi is a dummy equal to one if the plan
is domiciled outside the U.S. We only keep those sub-asset classes that have 1,000 observations
or more. Robust standard errors are clustered by sponsor and reported in parentheses. Boldface
coefficients are significant at the 5% level.

External Active Private nonUS Obs R2

Stocks
Canada 0.13

(0.014)
0.17
(0.016)

0.02
(0.011)

2615 0.25

EAFE 0.29
(0.028)

0.41
(0.015)

0.05
(0.014)

0.01
(0.017)

5769 0.24

U.S. Broad or All 0.19
(0.018)

0.33
(0.013)

0.04
(0.010)

0.01
(0.011)

5413 0.38

U.S. Large Cap 0.13
(0.026)

0.31
(0.017)

0.04
(0.014)

0.00
(0.014)

2509 0.39

U.S. Small Cap 0.35
(0.065)

0.53
(0.043)

0.15
(0.064)

-0.25
(0.414)

3288 0.01

Global 0.28
(0.037)

0.41
(0.023)

0.05
(0.018)

-0.01
(0.019)

2849 0.27

Emerging 0.39
(0.040)

0.52
(0.024)

0.07
(0.021)

-0.05
(0.022)

3770 0.28

ACWI x U.S. 0.32
(0.087)

0.46
(0.020)

0.09
(0.020)

1215 0.49

Fixed Income
Canada 0.10

(0.009)
0.10
(0.010)

0.02
(0.008)

2326 0.40

Cash 0.05
(0.008)

-0.11
(0.175)

0.12
(0.206)

5372 0.00

U.S. 0.15
(0.011)

0.13
(0.014)

0.05
(0.010)

0.05
(0.029)

4406 0.10

Other 0.41
(0.039)

0.23
(0.050)

0.03
(0.054)

-0.05
(0.049)

1379 0.09

Long Bonds 0.07
(0.012)

0.11
(0.009)

0.01
(0.010)

-0.02
(0.009)

1651 0.36

Global 0.24
(0.028)

0.23
(0.034)

0.06
(0.027)

-0.03
(0.024)

1108 0.19

Inflation Indexed 0.08
(0.010)

0.09
(0.010)

0.02
(0.011)

-0.02
(0.011)

1870 0.21

High Yield 0.27
(0.055)

0.24
(0.070)

0.01
(0.023)

0.04
(0.027)

2006 0.04

Emerging 0.45
(0.061)

0.38
(0.057)

0.03
(0.040)

0.03
(0.047)

1299 0.15

Hedge & Multi ass.

Funded TAA 0.60
(0.118)

-0.03
(0.185)

0.14
(0.196)

1262 0.01

Hedge Funds 0.12
(0.083)

0.09
(0.083)

2630 0.00

Private Equity

Diversified 5.28
(0.321)

-0.70
(0.305)

0.52
(0.338)

4680 0.02

Other 3.33
(0.750)

-0.90
(0.532)

0.35
(0.736)

1347 0.03

Real Assets
Real Estate ex-REITs 1.22

(0.077)
-0.10
(0.071)

-0.25
(0.085)

6416 0.08

REITs 0.40
(0.028)

0.31
(0.035)

0.04
(0.033)

-0.11
(0.032)

1825 0.12

Infrastructure 2.68
(0.248)

-0.58
(0.427)

-1.35
(0.655)

1582 0.02
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Table B.9. Economies of scale at the sub-asset class level. This table shows estimates
of the model: log(Cost$iats) = cas + λats + β1,as log(AUMiats) + β2,asPrivatei + β3,asnonUSi + εiats,
where Cost$iats is the (dollar) cost of plan i in sub-asset class a at time t for asset mandate s, cas is a
constant that varies with sub-asset class a and mandate s, λats is the time fixed effect for sub-asset
class a in investment management mandate s, log(AUMiats) is the log of total AUM of plan i in
sub-asset class a at time t for mandate s, Privatei is a dummy equal to one if plan i is private and
nonUSi is a dummy equal to one if plan i is located outside the US. For stock and fixed income,
we estimate the panel separately for the following styles s: Internal Passive (IP), Internal Active
(IA), External Passive (EP) and External Active (EA). Robust standard errors are clustered by
plan. The boldface coefficients on log(AUM) are significantly different from one at the 5% level and
boldface coefficients on the other covariates are significantly different from zero. We only include
sub-asset classes that have more than 400 observations.
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log(AUMiats) Privatei nonUSi Obs R2

EAFE (Stocks)

IP 0.74
(0.054)

0.33
(0.299)

0.51
(0.260)

956 0.69

EP 0.76
(0.033)

0.05
(0.121)

-0.14
(0.148)

3999 0.67

IA 0.94
(0.062)

0.29
(0.330)

0.48
(0.215)

1049 0.68

EA 0.90
(0.010)

0.06
(0.026)

-0.08
(0.029)

10503 0.93

U.S. Broad/All (Stocks)

IP 0.77
(0.045)

0.26
(0.208)

0.93
(0.191)

1780 0.74

EP 0.75
(0.026)

0.07
(0.070)

0.47
(0.082)

6888 0.68

IA 0.87
(0.039)

0.50
(0.183)

0.63
(0.171)

2077 0.67

EA 0.95
(0.015)

0.13
(0.044)

-0.09
(0.054)

8155 0.88

Inflation Indexed (Fixed Income)

IP 0.94
(0.079)

-0.44
(0.404)

0.85
(0.334)

1072 0.72

EP 0.78
(0.052)

0.19
(0.150)

0.33
(0.146)

1384 0.66

IA 0.76
(0.056)

-0.07
(0.234)

0.72
(0.230)

954 0.67

EA 0.88
(0.049)

0.01
(0.199)

0.05
(0.221)

1107 0.39

Diversified Private Equity

IA 1.07
(0.038)

0.54
(0.186)

0.64
(0.216)

682 0.83

EA 0.93
(0.008)

-0.16
(0.029)

-0.04
(0.034)

5042 0.96

Other Private Equity

IA 0.91
(0.063)

0.04
(0.260)

0.19
(0.319)

578 0.72

EA 0.96
(0.019)

-0.10
(0.058)

-0.14
(0.066)

1189 0.93

Real Estate ex-REITs (Real Assets)

IA 1.04
(0.043)

-0.23
(0.189)

0.06
(0.133)

1936 0.73

EA 0.95
(0.010)

-0.10
(0.037)

-0.20
(0.039)

7129 0.94

REITs (Real Assets)

IA 0.97
(0.056)

0.40
(0.301)

0.46
(0.232)

604 0.78

EA 0.88
(0.024)

0.01
(0.079)

-0.32
(0.075)

1734 0.80
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Table B.10. Average scaled investment management costs by asset class and coun-
try in 2009 and 2019. This table shows the average investment management costs mea-
sured relative to the grand average cost. The grand average cost (Cost) is calculated as Cost =

1
N |A|(T−t+1)

∑N
i=1

∑|A|
A=1

∑T
t=1991CostiAt, where i indicates plan sponsors, A indicates asset class, t

indicates year. We calculate the scaled cost (CostAt) separately for each country, asset class, and
time period as CostAt =

1
N

∑N
i=1CostiAt/Cost.

2009 2019

Country Stock
Fixed
Income

Hedge &
Multi
Ass.

Private
Equity

Private
Credit

Real
Asset

Stock
Fixed
Income

Hedge &
Multi
Ass.

Private
Equity

Private
Credit

Real
Asset

U.S. 79 48 534 1342 239 327 67 44 427 931 483 367
Australia 67 21 645 1207 267 25 22 233 719 195 153
Canada 73 28 567 1424 62 237 76 31 383 922 313 311
China 34 30 318 763 471 196
Denmark 82 17 476 981 189
Finland 51 16 683 1174 237 63 46 613 945 195 235
France 38 24 0 3149 24
Netherlands 56 33 524 1110 48 224 36 30 500 999 97 214
New Zealand 94 20 499 1399 164 59 57 211 632 190
Other USD 113 115 833 1394 193 103 77 414 910 725 311
Saudi Arabia 73 31 386 931 474 449
South Africa 72 16 536 469 135
South Korea 41 13 9511 71 35 4 619 378 200
Sweden 29 13 375 1228 92 37 9 329 1006 293 127
UK 22 14 570 1169 343 54 42 306 1046 337 279
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Table B.11. Summary statistics for asset class returns. This table reports summary
measures for returns on the six asset classes. Panel A presents summary statistics on the mean
and Sharpe ratio. Mean returns are computed as the average return of the asset class across
years and plan sponsors: r̄A = 1

NT

∑T
t=1

∑N
i=1 riAt, where riAt is the gross return of plan i in

asset class A at time t. Standard deviations of returns, reported on the diagonal in Panel B, are

computed as follows:
√

(1/T )
∑T

t=1(r̄At − r̄A)2, where r̄At = (1/N)
∑N

i=1 riAt. The Sharpe Ratio
is computed as the ratio of the mean excess return over the standard deviation of excess returns.
In panel A, summary statistics are reported separately for all plans (“All”), and for passively
managed assets (“Passive”) and actively managed assets (“Active”). Because all Private Equity
and Private Debt assets are actively managed, we do not provide any summary statistics for them
in the “Passive” subheading. The asset class “Hedge & multi ass.” includes hedge funds and
multi-assets, hence also includes passively managed assets. The lower triangle of Panel B presents
pairwise correlations between mean returns across aggregate asset classes. Boldface correlations
are statistically significant at the 5% level.

Panel A: Summary Statistics

All Passive Active

Mean Sharpe Mean Sharpe Mean Sharpe

0.108 0.525 0.100 0.460 0.108 0.502
0.070 0.669 0.067 0.598 0.065 0.572
0.071 0.546 0.129 1.263 0.068 0.450
0.159 0.631 0.156 0.644
0.077 0.636 0.078 0.553
0.084 0.537 0.054 0.220 0.086 0.531

Panel B: Correlation Matrix

Stocks
Fixed
Income

Hedge
& multi
ass.

Private
Equity

Private
Debt

Real
Assets

Stocks 0.163
Fixed Income 0.278 0.069
Hedge & multi ass. 0.858 0.547 0.105
Private Equity 0.412 -0.050 0.382 0.223
Private Debt 0.306 0.598 0.528 -0.006 0.097
Real Assets 0.201 -0.161 0.124 0.528 0.204 0.116
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Table B.12. Regression of net returns on risk factors. This table shows estimates of alphas
and betas (factor loadings) from regressions of U.S. plans’ annual average net returns on risk factors
for different asset classes (see Equation (2.6.5) in the main text). In the column “Portfolio”, the
returns are constructed as an equally weighted average over the individual plans’ net returns in
a specific year and asset class. In the column “pooled”, returns are pooled across all U.S. plans.
Cluster robust standard errors are reported in parentheses for pooled regression and robust standard
errors are reported in parentheses for the portfolio regressions. Boldface coefficients are significant
at the 5% level.

Public asset classes

Stocks Fixed Income

Factors Portfolio Pooled Factors Portfolio Pooled
α -0.69

(0.812)
-0.01
(0.001)

α 0.65
(0.235)

0.01
(0.001)

Market 0.95
(0.047)

0.95
(0.004)

Bond Index 0.78
(0.081)

0.79
(0.040)

SMB 0.12
(0.045)

0.13
(0.008)

Corp. Index 0.44
(0.095)

0.42
(0.033)

HML 0.02
(0.048)

0.02
(0.006)

High Yield Index 0.04
(0.044)

0.05
(0.015)

Global Div. Index 0.01
(0.011)

0.01
(0.005)

Long Treasury 0.24
(0.034)

0.23
(0.023)

R2 0.95 0.92 0.97 0.58
Obs 29 4860 26 4617

Alternative asset classes

Hedge & Multi Ass. Private Equity Private Credit Real Assets

Factors Portfolio Pooled Portfolio Pooled Portfolio Pooled Portfolio Pooled
α -9.01

(2.894)
-0.10
(0.012)

2.60
(3.217)

0.02
(0.010)

5.46
(3.624)

0.08
(0.010)

2.44
(3.502)

0.03
(0.006)

Market 0.47
(0.035)

0.46
(0.017)

0.19
(0.073)

0.21
(0.021)

0.22
(0.072)

0.11
(0.027)

0.15
(0.083)

0.14
(0.014)

Markett−1 0.27
(0.048)

0.27
(0.017)

0.09
(0.124)

0.02
(0.043)

0.27
(0.130)

0.24
(0.019)

SizeSpread -0.17
(0.072)

-0.16
(0.027)

-0.06
(0.179)

-0.11
(0.035)

-0.20
(0.219)

0.15
(0.043)

0.20
(0.117)

0.14
(0.026)

SizeSpreadt−1 -0.30
(0.083)

-0.18
(0.055)

0.15
(0.096)

0.21
(0.041)

0.26
(0.102)

0.24
(0.020)

BondMarket 0.11
(0.030)

0.13
(0.012)

0.88
(0.273)

0.62
(0.067)

-0.49
(0.297)

-0.16
(0.068)

0.01
(0.268)

0.06
(0.037)

BondMarkett−1 -0.73
(0.270)

-0.46
(0.057)

0.43
(0.303)

0.07
(0.060)

0.00
(0.251)

-0.06
(0.035)

Bond trend -0.03
(0.008)

-0.03
(0.003)

Currency trend 0.02
(0.010)

0.01
(0.004)

Commodity trend 0.00
(0.011)

0.00
(0.004)

CreditSpread 0.11
(0.073)

0.12
(0.027)

R2 0.92 0.58 0.74 0.22 0.40 0.16 0.44 0.15
Obs 26 1801 25 2522 25 353 25 3105
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Table B.13. Regressions of policy-adjusted gross returns on a single risk factor. This
table shows summary statistics of plan-level policy-adjusted gross returns regressed on a single
factor (see (B.4.1)), where α denotes a plan’s “alpha” and β denotes the factor loading. For stocks
we use the excess market return factor, and for fixed income we use the U.S. aggregate bond index
factor. We require plans to have at least 10 years of observations to be included in the regression
and only consider U.S. plans.

Stocks Fixed Income

α β α β
Min. -0.0367 -0.3373 -0.0214 -1.3565
1st Qu. -0.0010 -0.0234 -0.0013 -0.0929
Median 0.0034 0.0031 0.0020 0.0015
Mean 0.0038 -0.0003 0.0029 -0.0042
3rd Qu. 0.0082 0.0252 0.0064 0.1038
Max. 0.0319 0.2257 0.0248 1.4038

# of Plans 199 203
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Table B.14. Regression of sub-asset class returns on plan characteristics. This table
shows estimates of the model: r̃iat = λat+β1,a log(AUMiat−1)+β2,aPrivatei+β3,anonUSi+β′

4,axiat+
εiat, where r̃iat denotes the policy-adjusted net return, λat is a time fixed effect, AUMiat−1 is plan
i’s total AUM allocated to sub-asset class a at time t − 1, Privatei is a dummy equal to one if
plan i is private, nonUSi is a dummy equal to one if plan i is domiciled outside the U.S., and xiat
is a vector of controls that include Externaliat and Activeiat. Both controls are dummy variables
equal to one if sub-asset class a is managed externally and actively by plan i, respectively. For
comparison, the first column reports results when running the same regression using gross returns.
We keep only those sub-asset classes that have 1,000 observations or more. Robust standard errors
are clustered by sponsor and reported in parentheses. Boldface coefficients are significant at the
5% level.
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Gross Net

Stocks log(AUM) log(AUM) Private nonUS Obs R2

Canada -0.07
(0.079)

-0.04
(0.078)

0.20
(0.174)

2568 0.35

EAFE 0.08
(0.053)

0.12
(0.052)

0.00
(0.162)

-0.31
(0.186)

5571 0.20

U.S. Broad or All 0.12
(0.074)

0.13
(0.074)

0.28
(0.137)

-0.11
(0.218)

5209 0.11

U.S. Large Cap 0.11
(0.060)

0.13
(0.060)

0.22
(0.123)

0.45
(0.220)

2439 0.09

U.S. Small Cap 0.28
(0.113)

0.18
(0.180)

0.26
(0.316)

0.86
(0.481)

3142 0.10

Global 0.12
(0.057)

0.16
(0.057)

0.13
(0.228)

-0.29
(0.256)

2698 0.07

Emerging 0.10
(0.057)

0.15
(0.057)

-0.21
(0.213)

-0.25
(0.198)

3560 0.08

ACWI x U.S. 0.14
(0.122)

0.20
(0.123)

0.12
(0.335)

1173 0.20

Fixed Income

Canada 0.03
(0.026)

0.05
(0.025)

-0.05
(0.078)

2270 0.12

Cash -0.02
(0.043)

0.01
(0.045)

0.07
(0.114)

-0.40
(0.180)

5977 0.01

U.S. -0.03
(0.052)

-0.01
(0.051)

-0.04
(0.107)

0.46
(0.405)

4277 0.30

Other -0.40
(0.449)

-0.37
(0.449)

-1.14
(1.260)

-2.19
(1.636)

1195 0.03

Long Bonds 0.06
(0.056)

0.08
(0.056)

-0.09
(0.201)

-0.38
(0.156)

1594 0.05

Global 0.30
(0.102)

0.33
(0.102)

0.51
(0.431)

-0.51
(0.426)

1020 0.15

Inflation Indexed 0.13
(0.062)

0.14
(0.062)

-0.11
(0.227)

0.16
(0.185)

1754 0.03

High Yield 0.15
(0.096)

0.17
(0.095)

-0.05
(0.242)

0.43
(0.307)

1897 0.22

Emerging -0.13
(0.105)

-0.05
(0.109)

0.30
(0.244)

-0.54
(0.238)

1224 0.26

Hedge & multi ass.

Funded TAA -0.10
(0.415)

0.08
(0.288)

-0.45
(0.711)

0.07
(0.709)

1123 0.14

Hedge Funds 0.37
(0.101)

0.46
(0.099)

0.48
(0.402)

-0.40
(0.395)

2406 0.17

Private Equity

Diversified 0.31
(0.215)

0.79
(0.190)

1.22
(0.620)

2.57
(0.609)

4212 0.22

Other 1.22
(0.583)

1.29
(0.579)

4.21
(3.067)

3.45
(2.078)

1176 0.07

Real Assets

Real Estate ex-REITs 0.19
(0.157)

0.29
(0.159)

0.49
(0.356)

0.72
(0.292)

6067 0.07

REITs 0.22
(0.131)

0.28
(0.131)

0.50
(0.389)

0.27
(0.351)

1686 0.06

Infrastructure 0.05
(0.383)

0.56
(0.378)

0.92
(0.816)

0.79
(0.813)

1443 0.11
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(a) U.S. Plans
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(b) Non-U.S. Plans

Figure B.1. Total AUM by asset class and year for U.S. and non-U.S. plans. This
figure presents total AUM (in billion dollars) allocated to stocks, fixed income, hedge fund and
multi assets, private equity, private debt, and real assets for U.S. and non-U.S. plans. Total AUM
is defined as AUMAt =

∑
iAUMiAt, where AUMiAt indicates the AUM of plan i in asset class A

at time t.
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(a) Stocks (b) Fixed Income

(c) Hedge & Multi-Asset (d) Private Equity

(e) Private Debt (f) Real Assets

Figure B.2. Sub-asset class allocation over time for non-U.S. plans. This figure shows
the share of total AUM allocated to each sub-asset class for a given year and asset class for plans
domiciled outside the U.S.
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(a) (b)

Figure B.3. Frequency of internal and external active management in 2019. This figure
shows a histogram of the number of sub-asset class observations by plan for internal active (IA)
and external active (EA) management in 2019 for stocks and fixed income.
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(f) Real Assets

Figure B.4. Nonparametric estimates of the relation between plan size and AUM allo-
cation. This figure shows the pooled kernel estimate of AUM allocation (ωiAt) on log(AUMiAt−1)
for different asset classes, over the sample period 1991–2019. The values of log(AUMiAt−1) are
cross sectionally demeaned to account for time trends.
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(a) (b)

Figure B.5. Investment management costs by mandate for stocks and fixed income
holdings. The figure shows boxplots of scaled cost by management mandate for public asset classes
in 2019. The different type of management styles include: Internal Passive (IP), External Passive
(EP), Internal Active (IA) and External Active (EA). Cost are scaled by the average cost across
plans, years, and asset classes.

229



Figure B.6. Evolution in investment management costs by mandate. The figure shows
box plots of total (scaled) cost for internal, external, passive, and active management across plans
over the sample period 1991–2019. Costs are averaged over the asset classes (by AUM) to get a
plan level measure. Finally, we divide the cost by the average cost computed across plans, years,
and asset classes.
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(a) (b)

(c) (d)

Figure B.7. Evolution of stock investment management costs by mandate. The figure
shows box plots of scaled cost in stock investments for the mandates: Internal Passive, External
Passive, Internal Active and External Active. Cost are defined as the weighted average (by AUM)
of all costs attributed to a particular investment style for a specific plan/year. The cost are scaled
by the average cost across years, asset classes, and plans.
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(a) (b)

(c) (d)

Figure B.8. Evolution of fixed income investment management costs by mandate. The
figure shows boxplots of scaled cost in fixed income investments for the mandates: Internal Passive,
External Passive, Internal Active and External Active. Cost are defined as the weighted average
(by AUM) of all costs attributed to a particular investment style for a specific plan/year. The cost
are scaled by the average cost across years, asset classes, and plans.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure B.9. Median management costs by mandate in public sub-asset classes. This
figure shows median (scaled) investment management costs at the sub-asset class level for four dif-
ferent management mandates: Internal Passive, External Passive, Internal Active, External Active.
Median costs represent the median of average cost across plans for a given year. We only include
sub-asset classes that have enough time series observations for all management mandates. Finally,
we scale the costs by the average cost across years, asset classes, and plans.
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Figure B.10. Policy-adjusted gross returns. This figure shows box plots of gross policy-
adjusted returns pooled across plans in a given year for different asset classes.
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Figure B.11. Policy return box Plots. This figure presents the time series box plots for policy
gross returns across plans and asset classes.
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Appendix C

Appendix to Chapter 3

C.1 Space of cumulative discount rates

Lemma C.1.1. Let X =
{
x ∈ C1[0, T ] : x(0) = 0

}
be the vector space of continuously differentiable

functions on [0, T ] with x(0) = 0. For x ∈ X , define ∥x∥X = supt∈[0,T ] |x′(t)|. Then (X , ∥·∥X ) is a

Banach space.

Proof. Write ∥·∥ = ∥·∥X to simplify notation. Let us first show that ∥·∥ is a norm on X . Since

x ∈ X is continuously differentiable, x′ is continuous, so ∥x∥ = supt∈[0,T ] |x′(t)| ∈ [0,∞). Clearly

0 ∈ X and ∥0∥ = 0. If ∥x∥ = 0, then x′(t) = 0 for all t ∈ [0, T ]. Then x(t) = x(0) +
∫ t
0 x

′(u) du = 0

because x(0) = 0, so x = 0. For any α ∈ R and x ∈ X , we have

∥αx∥ = sup
t∈[0,T ]

∣∣αx′(t)∣∣ = |α| sup
t∈[0,T ]

∣∣x′(t)∣∣ = |α| ∥x∥ .

For anly x, y ∈ X , we have

∥x+ y∥ = sup
t∈[0,T ]

∣∣x′(t) + y′(t)
∣∣ ≤ sup

t∈[0,T ]

∣∣x′(t)∣∣+ sup
t∈[0,T ]

∣∣y′(t)∣∣ = ∥x∥+ ∥y∥ .

Therefore ∥·∥ is a norm. To show that X is complete, let {xn}∞n=1 ⊂ X be a Cauchy sequence

with respect to the norm ∥·∥. Then by the definition of ∥·∥, {x′n}
∞
n=1 is Cauchy in C[0, T ], so there

exists f ∈ C[0, T ] such that ∥x′n − f∥∞ → 0 as n → ∞, where ∥·∥∞ denotes the supremum norm

in C[0, T ]. Define x(t) =
∫ t
0 f(u) du. Then clearly x is continuously differentiable and x(0) = 0, so
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x ∈ X . Furthermore,

∥xn − x∥ = sup
t∈[0,T ]

∣∣x′n(t)− x′(t)
∣∣ = sup

t∈[0,T ]

∣∣x′n(t)− f(t)
∣∣ = ∥∥x′n − f

∥∥
∞ → 0,

so we have xn → x in X . Therefore (X , ∥·∥X ) is a Banach space. ■

Lemma C.1.2 (Polynomial basis). Suppose Assumption 1 holds and hi is a polynomial of degree

i with hi(0) = 0. Then Assumption 3 holds.

Proof. Since hi is a polynomial of degree i with hi(0) = 0, without loss of generality we may

assume hi(t) = ti. Then h′i(t) = iti−1. By the Stone-Weierstrass theorem (Folland, 1999, p. 139),

span {h′i}
∞
i=1 is dense in C[0, T ]. Since ∥x∥X = ∥x′∥∞, it follows that span {hi}∞i=1 is dense in X . By

Assumption 1, we can choose I distinct points
{
tnj

}I
j=1

. Consider the I×I submatrix of H defined

by H̃ = (hi(tnj )) = (tinj
). Dividing the j-th column by tnj > 0, H̃ reduces to a Vandermonde

matrix, which is invertible. Therefore H has full row rank. The same argument applies to G. ■

Lemma C.1.3. Fix x ∈ X and define T : X → R by

Th = δP (x;h) = −
∫ T

0
e−x(t)h(t) dF (t).

Then T is a bounded linear operator.

Proof. Clearly T is a linear operator. If h ∈ X , then ∥h∥X = supt∈[0,T ] |h′(t)| < ∞. Since h(0) = 0,

we obtain

|h(t)| =
∣∣∣∣∫ t

0
h′(u) du

∣∣∣∣ ≤ ∫ t

0
∥h∥X du = t ∥h∥X .

Therefore

|Th| ≤
∫ T

0
e−x(t) |h(t)|dF (t) ≤ ∥h∥X

∫ T

0
te−x(t) dF (t),

so T is a bounded linear operator with ∥T∥ ≤
∫ T
0 te−x(t) dF (t). ■

C.2 Proof of main results

Proof of Proposition 3.3.1. Let us first show that W in (3.3.5) is compact, convex, and contains

0 in the interior. Clearly 0 ∈ W. Since w 7→ G′w is linear (hence continuous) and G′0 = 0 is an
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interior point of [−1, 1]N , 0 is an interior point of W. Since W is defined by weak linear inequalities,

it is closed and convex. Let us show compactness. By Assumption 3, H has full row rank, and so

does G. Take n1, . . . , nI such that the I × I matrix G̃ := (gi,nj ) is invertible. Define

W̃ :=
{
w ∈ RI : G̃′w ∈ [−1, 1]I

}
= (G̃′)−1[−1, 1]I .

Since W̃ is defined by a subset of inequalities that define W, clearly we have W ⊂ W̃. Furthermore,

W̃ is compact because it is the image of the compact set [−1, 1]I under the linear (hence continuous)

map (G̃′)−1 : RI → RI . Therefore W ⊂ W̃ is compact.

Next, let us show that the minmax problem (3.3.6) has a solution (z∗, w∗) ∈ Z ×W. Since

W is nonempty and compact and w 7→ ⟨w,Az − b⟩ is linear (hence continuous),

M(z) := max
w∈W

⟨w,Az − b⟩ (C.2.1)

exists. The maximum theorem (Berge, 1963, p. 116) implies that M is continuous. Furthermore,

since 0 ∈ W, we have M(z) ≥ 0 and hence VI(Z) = infz∈Z M(z) ≥ 0. Let ∥·∥2 denote the ℓ2

(Euclidean) norm. Since 0 is an interior point of W, there exists ϵ > 0 such that w ∈ W whenever

∥w∥2 ≤ ϵ. If Az ̸= b, setting w = ϵ Az−b
∥Az−b∥2

, we obtain

M(z) ≥
〈
ϵ

Az − b

∥Az − b∥2
, Az − b

〉
= ϵ ∥Az − b∥2 . (C.2.2)

Note that the lower bound (C.2.2) is valid even if Az = b.

To bound (C.2.2) from below, let us show that

∥Az − b∥2 = ∥A+z − b+∥2 (C.2.3)

when z ∈ Z. Using the definition (3.3.4), it suffices to show that a0z − 1 = 0 if z ∈ Z. But since

by Assumption 2 value matching holds, dividing (3.2.6) by P (x) and using (3.3.2) for i = 0 (hence

h0 ≡ 1), we obtain

1 =
1

P (x)

J∑
j=1

zjPj(x) =
J∑

j=1

a0jzj = a0z,
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which implies (C.2.3). Define m := min∥z∥2=1 ∥A+z∥2, which is achieved because ∥z∥2 = 1 is a

nonempty compact set and z 7→ ∥A+z∥2 is continuous. Since by assumption A+ has full column

rank, we have A+z = 0 only if z = 0, so m > 0. Therefore it follows from (C.2.2) and (C.2.3) that

for any z ∈ Z,

M(z) ≥ ϵ ∥Az − b∥2 = ϵ ∥A+z − b+∥2 ≥ ϵ(m ∥z∥2 − ∥b+∥2) → ∞ (C.2.4)

as ∥z∥2 → ∞, so we may restrict the minimization of M(z) to a compact subset of Z. Since M(z)

is continuous, the minmax value VI(Z) is achieved.

Finally, let us show that z ∈ Z achieves VI(Z) = 0 if and only if A+z = b+. If A+z = b+,

then Az = b so clearly M(z) = 0 and VI(Z) = 0. If VI(Z) = 0, then for any z ∈ Z with

M(z) = VI(Z) = 0, (C.2.2) and (C.2.3) imply ∥A+z − b+∥2 = 0 and therefore A+z = b+. ■

Proof of Proposition 3.3.2. Suppose that span{h̃i}Ii=1 = span {hi}Ii=1. Since {hi}Ii=1 span {h̃i}Ii=1,

there exists an I × I matrix C = (cij) such that h̃i =
∑I

j=1 cijhj . Since {hi}Ii=1 are linearly

independent, C is unique. Since {h̃i}Ii=1 also span {hi}Ii=1, C must be invertible. Then H̃ = CH,

Ã = CA, b̃ = Cb, G̃ = CG, so setting w = C ′w̃, we obtain

M̃(z) := sup
w̃:G̃′w̃∈[−1,1]N

〈
w̃, Ãz − b̃

〉
= sup

w:G′w∈[−1,1]N
⟨w,Az − b⟩ =: M(z).

Therefore the minimizers of M and M̃ agree and the conclusion holds. ■

To prove Theorem 3.3.3, we recall Taylor’s theorem with the integral form for the remainder

term.

Lemma C.2.1 (Taylor’s theorem). Let f ∈ Cn+1[0, 1], so f : [0, 1] → R is n+1 times continuously

differentiable. Then

f(1) =
n∑

k=0

f (k)(0)

k!
+

∫ 1

0
f (n+1)(s)

(1− s)n

n!
ds. (C.2.5)

Proof. For n = 0, (C.2.5) is obvious from the fundamental theorem of calculus:

f(1)− f(0) =

∫ 1

0
f ′(s) ds.
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Suppose (C.2.5) holds for some n− 1 and consider n. Using integration by parts and the induction

hypothesis, we obtain

∫ 1

0
f (n+1)(s)

(1− s)n

n!
ds =

[
f (n)(s)

(1− s)n

n!

]1
0

+

∫ 1

0
f (n)(s)

(1− s)n−1

(n− 1)!
ds

= −f (n)(0)

n!
+

(
f(1)−

n−1∑
k=0

f (k)(0)

k!

)

= f(1)−
n∑

k=0

f (k)(0)

k!
,

so (C.2.5) holds for n. ■

Proof of Theorem 3.3.3. For any x, h ∈ R, define f : [0, 1] → R by f(s) = e−x−sh. Applying

Lemma C.2.1 for n = 1, we obtain

e−x−h = e−x − e−xh+

∫ 1

0
(1− s)e−x−shh2 ds.

Setting x = x(t) and h = h(t) for x, h ∈ X and integrating both sides on [0, T ] with respect to F ,

we obtain

∫ T

0
e−x(t)−h(t) dF (t) =

∫ T

0
e−x(t) dF (t)−

∫ T

0
e−x(t)h(t) dF (t)

+

∫ T

0

∫ 1

0
(1− s)e−x(t)−sh(t)h(t)2 ds dF (t).

Using the definition of P and P ′, we obtain

P (x+ h) = P (x) + P ′(x)h+

∫ T

0

∫ 1

0
(1− s)e−x(t)−sh(t)h(t)2 dsdF (t). (C.2.6)

A similar equation holds for each Pj . Hence for any z = (zj) ∈ RJ we have

P (x+ h)−
J∑

j=1

zjPj(x+ h) = E0 + E1 + E2, (C.2.7)
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where

E0 := P (x)−
J∑

j=1

zjPj(x), (C.2.8a)

E1 :=

P ′(x)−
J∑

j=1

zjP
′
j(x)

h, (C.2.8b)

E2 :=

∫ T

0

∫ 1

0
(1− s)e−x(t)−sh(t)h(t)2 ds d

F (t)−
J∑

j=1

zjFj(t)

 . (C.2.8c)

Since Z satisfies value matching by Assumption 2, we have E0 = 0 by (C.2.8a). Inspection of

Assumption 3, (3.3.8), and (3.3.5) reveals that any h ∈ HI(∆) can be expressed as h = ∆
∑I

i=1wihi

for some w ∈ W. Using (C.2.8b), (3.3.2), and (3.3.3), we obtain

E1 =

P ′(x)−
J∑

j=1

zjP
′
j(x)

h = ∆P (x) ⟨w,Az − b⟩ . (C.2.9)

To bound E2, note that the last integral in (C.2.6) is nonnegative because 1 − s ≥ 0 on

s ∈ [0, 1] and F is increasing. Furthermore, it can be bounded above by

∫ T

0

∫ 1

0
(1− s)e−x(t)+∥h∥∞ ∥h∥2∞ ds dF (t) =

1

2
∥h∥2∞ e∥h∥∞P (x).

Therefore E2 in (C.2.8c) can be bounded as

−1

2
∥h∥2∞ e∥h∥∞

∑
zj≥0

zjPj(x) ≤ E2 ≤
1

2
∥h∥2∞ e∥h∥∞

P (x)−
∑
zj<0

zjPj(x)

 . (C.2.10)

Using (3.2.6) and (3.3.7), we obtain

P (x)−
∑
zj<0

zjPj(x) =
∑
zj≥0

zjPj(x) =
1

2

P (x) +

J∑
j=1

|zj |Pj(x)


=

1

2
P (x)

1 +
J∑

j=1

|θj |

 =
1

2
P (x)(1 + ∥θ∥1). (C.2.11)
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Noting that ∥h∥∞ ≤ ∆T for h ∈ HI(∆), it follows from (C.2.10) and (C.2.11) that

|E2| ≤
1

4
∆2T 2e∆TP (x)(1 + ∥θ∥1). (C.2.12)

Combining (C.2.7), E0 = 0, (C.2.9), and (C.2.12), we obtain

⟨w,Az − b⟩ − 1

4
∆T 2e∆T (1 + ∥θ∥1)

≤ 1

∆P (x)

P (x+ h)−
J∑

j=1

zjPj(x+ h)


≤ ⟨w,Az − b⟩+ 1

4
∆T 2e∆T (1 + ∥θ∥1). (C.2.13)

Since by (3.3.7) θj is proportional to zj , there exists some constant c(x) > 0 that depends only

on x such that ∥θ∥1 ≤ c(x) ∥z∥2. Therefore maximizing (C.2.13) over w ∈ W, it follows from the

definition of M(z) in (C.2.1) that

M(z)− 1

4
∆T 2e∆T (1 + c(x) ∥z∥2)

≤ 1

∆P (x)
sup

h∈HI(∆)

P (x+ h)−
J∑

j=1

zjPj(x+ h)


≤ M(z) +

1

4
∆T 2e∆T (1 + c(x) ∥z∥2). (C.2.14)

Let m, ϵ > 0 be as in the proof of Proposition 3.3.1 and take ∆̄ > 0 such that ϵm = 1
4∆̄T 2e∆̄T c(x).

Then if 0 < ∆ < ∆̄, by (C.2.4) both sides of (C.2.14) grow to infinity as ∥z∥2 → ∞. Therefore

when we take the infimum of (C.2.14) as well as M(z) with respect to z ∈ Z, we may restrict it to

some compact subset Z ′ ⊂ Z. Therefore there exists a constant c′ > 0 such that

M(z)− c′∆ ≤ 1

∆P (x)
sup

h∈HI(∆)

P (x+ h)−
J∑

j=1

zjPj(x+ h)

 ≤ M(z) + c′∆

for all z ∈ Z ′ and ∆ ∈ (0, ∆̄). Taking the infimum over z ∈ Z (which is achieved in Z ′) and letting

∆ → 0, by the definition of VI(Z) in (3.3.6), we obtain (3.3.9).

To show the error estimate (3.3.10), let z∗ ∈ Z be a solution to the minmax problem (3.3.6).
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It follows from (C.2.13) that

1

∆P (x)

∣∣∣∣∣∣P (x+ h)−
J∑

j=1

z∗jPj(x+ h)

∣∣∣∣∣∣ ≤ |⟨w,Az∗ − b⟩|+ 1

4
∆T 2e∆T (1 + ∥θ∥1).

Taking the supremum over w ∈ W and noting that W is symmetric (w ∈ W implies −w ∈ W), it

follows from the definition of VI(Z) in (3.3.6) that (3.3.10) holds. ■

Proof of Proposition 3.3.4. For each I, let MI(z) = supw∈WI
⟨w,AIz − bI⟩, where AI , bI denote the

matrix A and vector b defined by (3.3.2) and (3.3.3) and WI denotes the set W defined by (3.3.5).

Suppose I < I ′. Letting 0N denote the zero vector of RN , we have WI × {0I′−I} ⊂ WI′ , so

MI(z) = sup
w∈WI

⟨w,AIz − bI⟩ = sup
w∈WI×{0I′−I}

⟨w,AI′z − bI′⟩

≤ sup
w∈WI′

⟨w,AI′z − bI′⟩ = MI′(z).

Taking the infimum over z ∈ Z, we obtain VI(Z) ≤ VI′(Z). Similarly,

VI(Z) = inf
z∈Z

MI(z) ≥ inf
z∈Z′

MI(z) = VI(Z ′). ■

Proof of Theorem 3.3.5. Because the proof is similar to that of Theorem 3.3.3, we only provide a

sketch.

By assumption, Z1 in (3.3.12) is nonempty, and it is clearly closed. Hence by Proposition

3.3.1 the minmax value VI(Z1) defined by (3.3.6) is achieved by some z∗ ∈ Z1. Inspection of

Assumption 3, (3.3.11), and (3.3.5) reveals that any h ∈ HI(∆1,∆2) can be expressed as h =

∆1vh1 + ∆2
∑I

i=1wihi for some w ∈ W and v ∈ R with |v| ≤ minn 1/ |h′(tn)| =: v̄ ∈ (0,∞).

Applying a similar argument to the derivation of (C.2.13), we obtain

1

P (x)

P (x+ h)−
J∑

j=1

zjPj(x+ h)


= ∆1v(Az − b)1 +∆2 ⟨w,Az − b⟩+O(∆2

1 +∆2
2),

where (Az − b)1 denotes the first entry of the vector Az − b. Maximizing both sides over h ∈
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HI(∆,∆1), we obtain

sup
h∈HI(∆,∆1)

1

P (x)

P (x+ h)−
J∑

j=1

zjPj(x+ h)


= ∆1v̄ |(Az − b)1|+∆2M(z) +O(∆2

1 +∆2
2),

where M(z) is defined by (C.2.1). Dividing both sides by ∆2 > 0 and letting ∆2 → 0, ∆1/∆2 → ∞,

and ∆2
1/∆2 → 0, the objective function remains finite only if (Az − b)1 = 0, which is equivalent to

z ∈ Z1. Under this condition, we have

1

∆
sup

h∈HI(∆1,∆2)

1

P (x)

P (x+ h)−
J∑

j=1

zjPj(x+ h)

 = M(z) +O(∆2 +∆2
1/∆2).

Minimizing over z ∈ Z1 and letting ∆2 → 0, we obtain (3.3.13). The proof of (3.3.14) is similar. ■

Proof of Proposition 3.3.7. Suppose that the liability has maturity s with face value 1. Then the

value of the liability is

P (x) =

∫ T

0
e−x(t) dF (t) = e−x(s).

Let z∗ = A−1
+ b+ be the immunizing portfolio and assume z∗ ≥ 0. Take any perturbation h ∈

span {hi}Ii=1 and write h =
∑I

i=1wihi. Then the funding ratio is

ϕ(w) :=

∑J
j=1 z

∗
jPj(x+ h)

P (x+ h)
=

J∑
j=1

z∗j

∫ T

0
e−x(t)+x(s)−h(t)+h(s) dFj(t).

Since z∗ ≥ 0 and the exponential function is convex, ϕ(w) is convex in w ∈ RI .

Let us show that ∇ϕ(0) = 0. To this end we compute

∂ϕ

∂wi
(0) =

J∑
j=1

z∗j

∫ T

0
e−x(t)+x(s)(−hi(t) + hi(s)) dFj(t)

= ex(s)
J∑

j=1

z∗j

(
−
∫ T

0
e−x(t)hi(t) dFj(t) + hi(s)

∫ T

0
e−x(t) dFj(t)

)

= ex(s)

−P (x)

J∑
j=1

aijz
∗
j + hi(s)

J∑
j=1

z∗jPj(x)

 , (C.2.15)
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where the last line uses (3.3.2) and (3.2.4) for each bond j. Using value matching (3.2.6) and the

fact that the liability is a zero-coupon bond, we obtain

hi(s)
J∑

j=1

z∗jPj(x) = hi(s)P (x) = e−x(s)hi(s) =

∫ T

0
e−x(t)hi(t) dF (t) = P (x)bi, (C.2.16)

where the last equality uses (3.3.3). Combining (C.2.15) and (C.2.16), we obtain

∇ϕ(0) = b−Az∗ = 0. (C.2.17)

Since ϕ is convex, it follows that ϕ(w) ≥ ϕ(0) = 1 for all w, which implies (3.3.17). ■

Proof of Lemma 3.3.8. For i = 1, since T0(x) = 1, we have g1(t) = 1 and hence (3.3.19) implies

(3.3.20a). For i = 2, since T1(x) = x, we have g2(t) = min {2t/T − 1, 1}. Integrating this expression

gives (3.3.20b). Suppose i ≥ 3. Letting x = cos θ, we can evaluate the integral of Chebyshev

polynomials as

∫ x

−1
Tn(x) dx =

∫ θ

π
cosnθ(− sin θ) dθ

=
1

2

∫ θ

π
(sin(n− 1)θ − sin(n+ 1)θ) dθ

=
1

2

[
cos(n+ 1)θ

n+ 1
− cos(n− 1)θ

n− 1

]θ
π

=
1

2

(
Tn+1(x)

n+ 1
− Tn−1(x)

n− 1
− 2(−1)n

(n+ 1)(n− 1)

)
.

Therefore for i ≥ 3 we have

hi(t) =
1

4
T

(
Ti(2t/T − 1)

i
− Ti−2(2t/T − 1)

i− 2
+

2(−1)i

i(i− 2)

)
,

which is (1.3.3) ■

C.3 Generic full column rank of A+

This appendix shows that the matrix A+ in (3.3.4) generically has full column rank, which

makes Proposition 3.3.1 applicable.
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Proposition C.3.1. Let I ≥ J − 1, {hi}Ii=1 be the basis functions, and set h0 ≡ 1. Suppose that

there exist {mi}Ji=1 ⊂ {0, 1, . . . , I} with m1 = 0 and {τj}Jj=1 ⊂ (0, T ] such that (i) at date τj, bond

j makes a lump-sum payout fj := Fj(τj) − Fj(τj−) > 0, and (ii) the J × J matrix H̃ = (hmi(τj))

is invertible. Then there exists a closed set S ⊂ RJ with Lebesgue measure 0 such that the matrix

A+ in (3.3.4) has full column rank whenever (f1, . . . , fJ) /∈ S.

If in addition all bonds are zero-coupon bonds, then A+ has full column rank.

We need the following lemma to prove Proposition C.3.1.

Lemma C.3.2. Let A,B be N×N matrices and define f : RN → R by f(x) = det(Adiag(x)+B),

where diag(x) denotes the diagonal matrix with diagonal entries x1, . . . , xN . If detA ̸= 0, then for

any c ∈ R the set

f−1(c) :=
{
x ∈ RN : f(x) = c

}
is closed and has Lebesgue measure 0.

Proof. Since

det(Adiag(x) +B) = det(A(diag(x) +A−1B))

= det(A)× det(diag(x) +A−1B),

without loss of generality we may assume that A is the identity matrix. Let B = (bmn). That

f−1(c) is closed is obvious because f is continuous.

Let us show by induction on the dimension N that f−1(c) is a null set. If N = 1, then

f(x) = x1 + b11, so f−1(c) = {c− b11} is a singleton, which is a null set. Suppose the claim holds

when N = n − 1 and consider n. Let Bn be the n × n matrix obtained from the first n rows and

columns of B, and let

fn(x1, . . . , xn) = det(diag(x1, . . . , xn) +Bn).

Clearly fn is affine in each variable x1, . . . , xn. Using the Laplace expansion along the n-th column,

it follows that

fn(x1, . . . , xn) = (xn + bnn)fn−1(x1, . . . , xn−1) + gn−1(x1, . . . , xn−1)
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for some function gn−1 that is affine in each variable x1, . . . , xn−1.

Define the sets f−1
n−1(0) ⊂ Rn−1 and G ⊂ Rn by

f−1
n−1(0) := {(x1, . . . , xn−1) : fn−1(x1, . . . , xn−1) = 0} ,

G :=
{
(x1, . . . , xn) : (x1, . . . , xn−1) /∈ f−1

n−1(0), xn = (c− gn−1)/fn−1 − bnn
}
.

Then f−1
n (c) ⊂ (f−1

n−1(0) × R) ∪ G. By the induction hypothesis, f−1
n−1(0) has measure 0 in Rn−1.

SinceG is the graph of a Borel measurable function, by Fubini’s theorem it has measure 0. Therefore

f−1
n (c) is a null set. ■

Proof of Proposition C.3.1. Define h : [0, T ] → RI by h(t) = (h0(t), h1(t), . . . , hI(t))
′. Let the j-th

column vector of A+ be aj = (a0j , . . . , aIj)
′. By assumption, bond j pays fj > 0 at τj ∈ (0, T ], so

it follows from (3.3.2) that

aj =
1

P (x)

∫
[0,T ]\{τj}

e−x(t)h(t) dFj(t) +
1

P (x)
e−x(τj)fjh(τj) =: pjfj + qj . (C.3.1)

Collecting (C.3.1) into a matrix, we can write A+ = P diag(f) +Q, where P,Q are matrices with

j-th column vectors pj ,qj and f = (f1, . . . , fJ). To show that A+ generically has full column rank,

let Ã+ be the J×J matrix obtained by taking its mi-th row for i = 1, . . . , J . Define P̃ , Q̃ similarly.

Then Ã+ = P̃ diag(f) + Q̃. Since pj = e−x(τj)h(τj)/P (x), we obtain

det P̃ = P (x)−J

 J∏
j=1

e−x(τj)

det H̃ ̸= 0.

Therefore by Lemma C.3.2, Ã+ is generically invertible, so A+ has generically full column rank.

If in addition all bonds are zero-coupon bonds, then (C.3.1) reduces to aj = e−x(τj)fjh(τj)/P (x),

where τj is the maturity. Then A+ = P diag(f), which has full column rank because det P̃ ̸= 0 and

fj > 0 for all j. ■

The fact that the set of (f1, . . . , fJ) for which A+ has rank deficiency is contained in a

closed set with Lebesgue measure 0 implies that the set of rank deficiency is nowhere dense (has

empty interior). In this sense the rank deficiency of A+ is “rare”. The following example shows
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that the zero-coupon bond assumption in Proposition C.3.1 is essential.

Example C.3.1. Suppose I = J − 1 = 1 and the basis function is h1(t) = t. Bond 1 is a zero-

coupon bond with face value f1 > 0 and maturity t1. Bond 2 pays fn > 0 at time tn, where n = 2, 3.

To simplify notation, write x(t1) = x1 etc. The determinant of the matrix A+ is

detA+ = P (x)−2 det

 f1e
−x1 f2e

−x2 + f3e
−x3

f1e
−x1t1 f2e

−x2t2 + f3e
−x3t3


= P (x)−2f1e

−x1
(
f2e

−x2(t2 − t1) + f3e
−x3(t3 − t1)

)
.

Therefore for any t2 < t1 < t3 and f3 > 0, we have detA+ = 0 if and only if

(f1, f2) ∈
{
(f1, f2) ∈ R2

++ : f2 = f3e
x2−x3

t3 − t1
t1 − t2

}
. (C.3.2)

The closure of the rank deficiency set (C.3.2) is a ray in R2 and has measure 0.

C.4 No-arbitrage term structure model

The no-arbitrage term structure model of Ang, Bekaert, and Wei (2008) features multiple

factors, regime switching, and closed-form solutions for bond prices, which is convenient for simu-

lating yield curves. This appendix summarizes their model and presents parameter estimates based

on our yield curve data.

C.4.1 Model and bond price formula

The equation numbers follow that of Ang, Bekaert, and Wei (2008). The model has three

factors denoted by Xt = (qt, ft, πt)
′. The dynamics of factors follows the regime-dependent VAR

process

Xt+1 = µ(st+1) + ΦXt +Σ(st+1)εt+1, (2)
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where

µ(st) =


µq

µf (st)

µπ(st)

 , Φ =


Φqq 0 0

Φfq Φff 0

Φπq Φπf Φππ

 , Σ(st) =


σq 0 0

0 σf (st) 0

0 0 σπ(st)

 , (3)

and ε is iid N(0, I3). The regime st is a finite-state Markov chain taking values denoted by

k = 1, . . . ,K with transition probability matrix Π = (pkk′). The real short rate is given by

r̂t = δ0 + δ′1Xt. (4)

The regime-dependent price of risk is denoted by λ(st) = (λf (st), λπ(st))
′. Furthermore, define

γt = γ0 + γ1qt = γ0 + γ1e
′
1Xt, (6)

where en denotes the n-th unit vector.

With this notation, the price of zero-coupon bonds can be obtained in closed form (Ang,

Bekaert, and Wei, 2008, Proposition B). For each maturity n, the nominal zero-coupon bond price

in regime i and factor X is given by

Pn(i,X) = exp(An(i) +BnX), (B1)

where the scalar An(i) and the M × 1 vector Bn can be computed as follows.

Let M = 3 be the number of factors and M1 = 2 be the number of non-q factors. Partition

Bn as Bn = [Bnq;Bnx], where Bnq is a scalar and Bnx is 2 × 1. Similarly, let Σx(i) be the lower

2× 2 block of Σ(i).

First, define A0(i) = 0 and B0 = 0. Then define {(An, Bn)}∞n=1 recursively by

An+1(i) = −δ0 −Bnqσqγ0 + log
∑
j

pij exp
(
An(j) + (Bn − eM )′µ(j)

− (Bnx − eM1)
′Σx(j)λ(j) +

1

2
(Bn − eM )′Σ(j)Σ(j)′(Bn − eM )

)
, (B2.a)

Bn+1 = −δ1 +Φ′(Bn − eM )−Bnqσqγ1e1. (B2.b)
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C.4.2 Data

We use end of the quarter yield data from Liu and Wu (2021) for the period of 1985:Q4

to 2022:Q4; a total of 149 quarterly observations.1 The authors use a nonparametric approach to

estimate the yield curve up to the 30-year maturity, which allows us to infer the long end of the

yield curve consistently over time. The inflation data for the same period are obtained from the

Bureau of Labor Statistics, from the CPI for All Urban Consumers series (seasonally adjusted).

In our dynamic hedging experiment, we need to infer the yields up to a maturity of 50 years.

Estimating the model of Ang, Bekaert, and Wei (2008), we sometimes find counterfactual steep

declines in the yield curve for long maturities, depending on the maturities used for estimation. To

mitigate this issue, we incorporate 50-year yields in the estimation, treating them as equivalent to

observed 30-year yields. This inclusion proves essential for generating yield curves that remain rel-

atively “flat” over long horizons, thereby preventing the possibility of counterfactual steep declines

at the long end of the yield curve. Additionally, we incorporate 1-year yields in the estimation to

capture short-run dynamics.2

C.4.3 Parameter estimates

We consider the benchmark model IVC of Ang, Bekaert, and Wei (2008, §I.B.4). This model

has four regimes. There are two state variables denoted by sf , sπ, which both take values in {1, 2}.

The combined state s thus takes four values

s = 1 := (sf = 1, sπ = 1),

s = 2 := (sf = 1, sπ = 2),

s = 3 := (sf = 2, sπ = 1),

s = 4 := (sf = 2, sπ = 2).

1https://sites.google.com/view/jingcynthiawu/yield-data
2Unlike Ang, Bekaert, and Wei (2008), we do not use additional yield data as overidentifying restrictions.
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We also impose the following restrictions consistent with Ang, Bekaert, and Wei (2008):

δ0 = 0.0077, (mean of nominal short rate)

δ1 = (1, 1, δπ)
′,

Φfq = 0,

µq = 0,

γ0 = 0,

λπ(st) = 0.

We estimate the model using maximum likelihood using the parameters from Ang, Bekaert, and

Wei (2008, Table III) as starting values. Table C.1 below summarizes the resulting parameter

estimates.
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Table C.1. Parameter estimates

Note: This table shows parameter estimates from the regime switching model of Ang, Bekaert, and Wei (2008).

Real short rate δ1

δ0 q f π

0.008 1.000 1.000 -0.199

Companion Form Φ q f π

q 0.962 0.000 0.000
f 0.000 0.969 0.000
π -0.139 0.246 0.178

Moments of Xt

Regime 1 Regime 2

µq × 100 0.000 0.000

µf (s
f
t )× 100 -0.621 -0.020

µπ(s
π
t )× 100 -0.789 0.726

σq × 100 0.054 0.054

σf (s
f
t )× 100 0.400 0.108

σπ(s
π
t )× 100 0.048 0.624

Prices of Risk λf (s
π
t )

γ1 Regime 1 Regime 2

-84.137 -19.734 0.051

Transition Probabilities Π
st+1 = 1 st+1 = 2 st+1 = 3 st+1 = 4

st = 1 0.744 0.174 0.037 0.045
st = 2 0.685 0.216 0.052 0.047
st = 3 0.001 0.001 0.354 0.645
st = 4 0.000 0.000 0.020 0.980
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C.5 Miscellaneous results

C.5.1 Bias in the estimated yield curve

In our empirical application in Section 3.4, we assume that the forward rate is constant

beyond the 30-year maturity, f(t) = f(30) for all t ≥ 30. As a result, the inferred date s yield

curve with term t ≥ 30 satisfies3

ŷs(t) :=
1

t

∫ t

0
fs(u) du =

1

t

∫ 30

0
fs(u) du+

1

t

∫ t

30
fs(30) du

=
1

t

∫ 30

0
fs(u) du+ fs(30)−

30

t
fs(30)

= fs(30) +O

(
1

t

)
.

Taking unconditional expectations and comparing to the true (unobserved) yield, we obtain

E [ŷs(t)− ys(t)] = E [fs(30)− ys(t)] +O

(
1

t

)
= E [fs(30)− fs(t)] + E [fs(t)− ys(t)] +O

(
1

t

)
. (C.5.1)

Under integrability conditions on ys(t) and a mild stationarity assumption on bond returns, Alvarez

and Jermann (2005a, Proposition 5) show that

E
[
lim
t→∞

fs(t)
]
= E

[
lim
t→∞

ys(t)
]
. (C.5.2)

Using the dominated convergence theorem and (C.5.2) in (C.5.1), we get

E [ŷs(t)] = E [ys(t)] + E [fs(30)− fs(t)] + o(1).

Hence, on average we estimate the correct yield plus a bias term that reflects the average gap

between the 30-year forward rate and long forward rate.

3Throughout we ignore the approximation error coming from misspecification of the forward rate model.
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C.5.2 Approximating forward rate changes

In this appendix we evaluate the goodness-of-fit of approximating forward rate changes by

basis functions. Let I be the number of basis functions to include, d be the number of days ahead,

and {tn}Nn=1 be the set of terms (in years) to evaluate forward rates, where we set tn = n/12 and

N = 360 so that it corresponds to a 30-year horizon at monthly interval. We use the following

procedure.

(i) For each day s and term tn, calculate the d-day ahead change in the forward rate fs+d(tn)−

fs(tn) by evaluating (3.4.1).

(ii) Estimate

fs+d(tn)− fs(tn) =
I∑

i=1

γisgi(tn) + ϵs(tn) (C.5.3)

by ordinary least squares (OLS), where gi is the basis function for the forward rate in (3.3.18).

Let γ̂is be the OLS estimator.

(iii) Calculate the goodness-of-fit measure

R2 :=

∑S
s=1

∑N
n=1

(∑I
i=1 γ̂isgi(tn)

)2
∑S

s=1

∑N
n=1(fs+d(tn)− fs(tn))2

. (C.5.4)

The goodness-of-fit measure (C.5.4) is similar to the conventional R2 in OLS, except that

we use “0” as the benchmark instead of the sample mean because g1 ≡ 1 is already constant. The

following proposition shows that R2 in (C.5.4) can be computed efficiently.

Proposition C.5.1 (Efficient calculation of R2). Define the S × N matrix C = (csn) by csn =

fs+d(tn)− fs(tn) and the I ×N matrix G = (gi(tn)). Then

R2 =
tr(G′(GG′)−1GC ′C)

tr(C ′C)
, (C.5.5)

where tr denotes the trace (sum of diagonal entries) of the square matrix.

Proof. The n-th diagonal entry of the N ×N matrix C ′C is
∑S

s=1 c
2
sn. Therefore the denominator
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of (C.5.4) is
S∑

s=1

N∑
n=1

(fs+d(tn)− fs(tn))
2 =

N∑
n=1

S∑
s=1

c2sn = tr(C ′C),

which is the denominator of (C.5.5).

Stacking (C.5.3) into an N × 1 vector and using G = (gi(tn)), we obtain

cs = G′γs + ϵs,

where cs = (csn)
N
n=1, γs = (γis)

I
i=1, and ϵs = (ϵs(tn))

N
n=1. Therefore the OLS estimator is γ̂s =

(GG′)−1G′cs and the N × 1 vector of fitted values is

ĉs := G′γ̂s = G′(GG′)−1Gcs.

Stacking this vector for s = 1, . . . , S and taking the transpose, we can define the S ×N matrix of

fitted values Ĉ = (ĉsn) by

Ĉ := CG′(GG′)−1G.

By the same argument as the case with the denominator and using the property tr(AB) = tr(BA),

the numerator of (C.5.4) becomes

S∑
s=1

N∑
n=1

ĉ2sn = tr(Ĉ ′Ĉ) = tr(ĈĈ ′)

= tr(CG′(GG′)−1GG′(GG′)−1GC ′)

= tr(CG′(GG′)−1GC ′)

= tr(G′(GG′)−1GC ′C),

which is the numerator of (C.5.5). ■
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C.5.3 Key rate duration matching

This appendix explains the key rate duration matching method of Ho (1992). The key rate

duration of a bond with yield curve y and yield change ∆ at time to maturity t is defined by

KRD(y, t,∆) :=
P (y−)− P (y+)

2∆P (y)
,

where y± denotes the yield curve after changing y(t) to y(t) ±∆ at a specific term t and linearly

interpolating between the adjacent terms. Following the literature, we set the shift to ∆ = 0.01

(100 basis points).

Figure C.1 illustrates the procedure for a set of key rates on December 2, 2016. Key rate

duration matching amounts to matching the key rate of liabilities at maturities {tj}Jj=1 using a

portfolio of zero-coupon bonds with the same maturities.4

C.5.4 Sign test

In this section, we test whether the absolute return error of RI(1) is significantly better

compared to HD or KRD. For RI(1) and KRD, we use 5 bonds and for HD we use 3 bonds since

the performance with more bonds is comparatively worse. Subsequently, we calculate the 30-day

absolute return error (3.4.2) for non-overlapping sample periods, starting at November 25, 1985.

This procedure renders a total of 304 return error observations. Let us denote the return errors

for each method by eRI(1), eHD and eKRD. Under the (one-sided) null and alternative hypothesis, we

have

H0 : P(eRI(1) > eHD) ≥ 0.5 vs. H1 : P(eRI(1) > eHD) < 0.5 (C.5.6a)

H0 : P(eRI(1) > eKRD) ≥ 0.5 vs. H1 : P(eRI(1) > eKRD) < 0.5. (C.5.6b)

The test statistic for the sign test counts the number of positive differences between eRI(1) and the

error term of the alternative method. Under H0, this test statistic follows a binomial distribution

with success probability p = 0.5. Using the normal approximation to the binomial distribution,

4The key rate duration of a zero-coupon bond with maturity t is equal to t and zero otherwise. Since we use linear
interpolation after a key rate perturbation to keep the yield curve continuous, the key rate for a zero-coupon bond
with maturity t is not exactly equal to t in our application.
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Figure C.1. Key rate perturbations

Note: The figures show positive and negative perturbations to the yield curve due to a 1% change in the respective
key rate. We linearly interpolate the yields after a change in the key rate to ensure that the yield curve remains
continuous. The true yield curve (in blue) is calculated on December 2, 2016.

we find Z-scores of −5.22 and −9.12 corresponding to the hypotheses (C.5.6a) and (C.5.6b). Both

test scores are sufficient to reject H0 under any conventional significance level.
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