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Abstract

Optical Coherence Tomography (OCT) is a widely used 3D imaging technology in ophthalmology.
Segmentation of retinal layers in OCT is important for diagnosis and evaluation of various retinal
and systemic diseases. While 2D segmentation algorithms have been developed, they do not fully
utilize contextual information and suffer from inconsistency in 3D. We propose neural networks to
combine motion correction and segmentation in 3D. The proposed segmentation network utilizes
3D convolution and a novel graph pyramid structure with graph-inspired building blocks. We

also collected one of the largest OCT segmentation dataset with manually corrected segmentation
covering both normal examples and various diseases. The experimental results on three datasets
with multiple instruments and various diseases show the proposed method can achieve improved
segmentation accuracy compared with commercial softwares and conventional or deep learning
methods in literature. Specifically, the proposed method reduced the average error from 38.47% to
11.43% compared to clinically available commercial software for severe deformations caused by
diseases. The diagnosis and evaluation of diseases with large deformation such as DME, wet AMD
and CRVO would greatly benefit from the improved accuracy, which impacts tens of millions of
patients.

INDEX TERMS
Retinal imaging; motion correction; OCT; vessel segmentation; deep learning

l. INTRODUCTION

Optical Coherence Tomography (OCT) is a 3D imaging technology widely used in
ophthalmology. An infrared beam is used to obtain the cross-sections of the retina in vivo
at high resolution [1]. The role of OCT imaging is crucial in diagnosing and monitoring
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both retinal and systemic diseases [2], including age-related macular degeneration (AMD),
diabetic macular edema (DME), glaucoma, multiple sclerosis (MS), and so on.

In OCT imaging, the back-scattered intensities of infrared beam represent 1D depth (A-scan,
Z axis of Fig. 1). By moving the beam in a raster scanning pattern, a sequence of 2D
cross-sectional images (B-scan, XZ plane of Fig. 1) can be acquired. Finally, a 3D OCT
volume can be formed by stacking the B-scans (XZ planes) to the Y axis. The fast scanning
axis refers to the direction where B-scans are acquired (X axis of Fig. 1), and the s/fow
scanning axis refers to the direction where B-scans are stacked (Y axis of Fig. 1).

Cross-sectional imaging of OCT is useful for observing the layered structure of the retina,
and changes of the retinal layers are critical indicators of both retinal and systemic diseases
[3]. For example, thinning of the retinal nerve fiber layer (RNFL) and ganglion cell layer
(GCL) is frequently used for assessment of glaucoma. The overall retinal thickness is often
used for assessment of DME and choroidal neovascularization (CNV) [2]. It is therefore
important to develop an accurate segmentation method for retinal layers to assess these
changes automatically. In particular, recent studies reveal that the thickness and vessel
density of RNFL is related to Alzheimer disease and Parkinson’s disease [4], [5], and

joint OCT-A vessel density estimation with layer segmentation algorithm could be used to
develop a clear and non-invasive tool for early detection of these CNS disorders.

Many OCT layer segmentation approaches have been proposed [6], [7], [8], [9], and
commercial OCT systems also provide their own segmentation softwares [10]. However,
segmentation error is prevalent with these approaches and compromises the quality of
downstream tasks such as OCT-A projections [11]. Recent deep learning segmentation
neural networks [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22] lead to
significant improvement of accuracy thanks to publicly available annotated datasets [9],
[20], [23]. Most networks are modified based on the 2D U-net [24] architecture, which has
achieved remarkable performance in numerous image segmentation tasks. However, most
deep learning methods are applied on singular 2D B-scan slices. These methods ignore the
3D contextual information within neighboring B-scans, which are especially important for
segmenting OCT with diseases. Therefore, the 2D methods are limited in accuracy and their
segmentation results lack 3D consistency.

Motion artifact is one of the major reasons that hinder the development of 3D contextual
information [25]. Motion artifacts in OCT can be caused by involuntary head motion,
respiration, pulsation, or fixational eye movements during the imaging process [25]. These
involuntary motions lead to axial and coronal misalignment between neighboring B-scans,
shown in sub-figures (b) and (c) in Fig. 1, respectively, where major motion artifacts are
indicated by red arrows. The axial motion introduces discontinuities in the slow B-scan as in
sub-figure (b), which results in discontinuities in the 2D segmented layers in sub-figure (c).
After motion correction, the discontinuities are reduced in sub-figure (d), but the layers lack
3D consistency.

The first segmentation approach utilizing 3D information was proposed by Garvin et al.
(OCTExplorer) [26], [27], which applied 3D “feasibility” constraints to reduce failures of
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2D graph-based approach. Nevertheless, the motion artifacts were removed by flattening the
bottom surface of the retina, which also removed the retinal curvature. Besides constraining
the 2D segmentation, 3D information can also be used for denoising upon correction of
motion artifacts. In the RETOUCH OCT Fluid Detection and Segmentation challenge [28],
the winner team [29] performed bounded variation 3D smoothing to reduce speckle noise
as pre-processing. However, the 3D information was not fully utilized as their segmentation
network was still trained on 2D slices.

The main objective of this paper is to propose a novel method for 3D segmentation of retinal
layers in OCT imaging, utilizing neural networks and motion correction. In this paper, we
propose a deep learning method that combines motion correction and 3D segmentation.

A motion correction neural network first corrects the axial motion artifacts in the input
OCT volume, and then a graph-assisted 3D neural network with a novel graph pyramid
structure is trained with 3D input and 3D output. We also collected a OCT segmentation
dataset with manually corrected segmentation for 1470 B-scan slices covering both normal
examples and various diseases. The performance of the proposed method is compared with
commercial OCT software solutions, as well as several state-of-the-art methods in literature.
Experimental results show that motion correction and 3D contextual information enhance
the accuracy of the OCT layer segmentation.

Il. RELATED WORK

With the development of OCT imaging systems in the past two decades, many OCT
segmentation methods have been proposed. However, segmentation errors with various
diseases and motion artifacts are still prevalent with existing segmentation algorithms [11].

Most existing OCT layer segmentation algorithms are 2D image-based, meaning that the
segmentation predictions are based on a single B-scan, and applied slice-by-slice for 3D data
[61, [71, [8], [9], [30], [31]. Some methods predict the 1D boundaries between each retinal
layer, while other methods predict the 2D pixel-wise label. The advantages of predicting

1D boundaries include topology guaranteed layers (i.e. the first boundary will always be
above the second boundary) and robustness to outlier regions. However, the 1D boundary
method is not able to precisely characterize the layers in retinal disease such as the example
illustrated in Fig. 2. Even for human corrected segmentation boundaries, it is not possible

to precisely follow the shape of the disease to the one-to-one mapping nature of the 1D
boundaries.

Conventional methods that predict the 1D boundaries include level set methods [6], [7], but
these methods take extremely long computational time for up to hours per OCT volume.
Graph-based methods are another popular category of algorithm [8], [31], [32], which
post-process the pixel-wise prediction from machine learning classifiers [9], [12]. However,
these conventional methods are difficult to generalize to various retinal diseases, and require
manually established features and extensive parameter tuning.

Thanks to several public datasets with available annotation [9], [20], [23], deep learning-
based methods have improved the accuracy of the pixel-wise label prediction via end-to-end
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training [12], [13], [14], [15], [16], [17], [19], [21], [22]. RelayNet [14] was one of the

first deep learning application in retinal layer segmentation. It modified the 2D U-Net
architecture, and used the weighted cross-entropy loss to penalize error near each boundary.
Other methods combined deep learning classifiers with conventional post-processing to
obtain layer boundaries from pixel-wise prediction. Fang et al. [12] combined a patch-based
neural network with graph search post-processing to segment 9 layer boundaries. Pekala

et al. [19] proposed a dense U-net classifier with post-processing using Gaussian process
regression to segment 5 layer boundaries. He et al. [15] proposed to use a second neural
network to correct topology based on initial U-Net prediction. Some methods aimed to
predict the 1D boundary based on end-to-end regression networks. He et al. [16] proposed
cascaded U-Nets to learn the thickness map of each layer achieving topology constraints.
The architecture was later improved [17], [18], [22] by multi-task training and including X,
Y coordinates as input. One of the state-of-the-art methods was the MGU-Net [20] which
combined U-Net with graph-convolution inspired global reasoning blocks [33], achieving
the highest Dice coefficient reported on the DME dataset [9].

A major problem that impedes the development of 3D segmentation approaches is that
involuntary motion causes misalignment artifacts between neighboring B-scans in 3D OCT
imaging. Therefore, motion correction is required to recover the motion-free 3D OCT
volume. Some OCT systems integrate eye-tracking hardware to compensate for eye-motion,
and there are also post-processing algorithms to correct motion after OCT acquisition [25].
Axial movement is observed to be more significant than coronal movement in magnitude
[34], and the higher axial resolution also result in larger axial shift in pixels [34], [35].
Hence, many methods solely focus on correction of axial motion between B-scans [27], [36],
[37].

The first OCT segmentation approach to utilize 3D information was proposed by Garvin
et al. (OCTExplorer) [26], [27], which could segment 7 boundaries for macular centered
OCT scans. The approach first flattened the bottom surface of the retina to remove

motion artifacts (along with retinal curvature) and then enhanced 2D graph-based methods
by additional 3D “feasibility” constraints. The feasibility constraints took advantage of
3D contextual information and enforced smoothness in neighboring surfaces and surface
distance constraints. They demonstrated that their proposed method with 3D information
could reduce segmentation failure compared to the 2D graph-based approaches. Besides
conventional approaches, DeepMind [13] proposed a 3D segmentation network taking 9
consecutive B-scans that could segment 15 classes of features to aid disease classification.
The major limitation was that only two retinal layers could be identified by the segmentation
network, namely the neurosensory retina and the RPE. Mukherjee et al. [21] also verified
that the 3D neural network architectures outperform their 2D counterparts for OCT
segmentation, but their networks were only trained to segment 3 layer boundaries. It is
therefore promising to combine motion correction and 3D neural networks in retinal OCT
segmentation.

In this paper, we propose a 3D OCT segmentation pipeline that combines two neural
networks to correct motion artifacts and perform segmentation based on volumetric data,
which enables utilization of 3D contextual information to achieve improved accuracy.

IEEE Access. Author manuscript; available in PMC 2024 December 30.
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Compared to our previous work [38], one of the major innovations is that the N-to-1 sliding
window-based 2D neural network is replaced with a N-to-N 3D convolution based graph-
assisted neural networks. The proposed approach avoids redundant computation imposed by
overlapping windows while improving global reasoning of 3D information. In this paper, we
also collected one of the largest OCT segmentation datasets that includes manually corrected
segmentation for 1470 B-scan slices covering both normal examples and various diseases
with moderate to severe deformations. We also include a more comprehensive analysis

on three datasets with different OCT instruments, comparing the proposed method with
commercial OCT software solutions, as well as several state-of-the-art methods in literature.

. PROPOSED METHOD

In this paper, we propose to combine OCT motion correction network with a graph-assisted
3D neural network for retinal layer segmentation. The proposed 3D segmentation pipeline
is illustrated in Fig. 3. In the motion correction stage, a 2D segmentation method is

first applied to the input OCT volume V slice-by-slice to obtain the binary segmentation
SP" for retinal and non-retinal regions. The motion correction network [37] then takes

the 3D volume V and the extracted top (inner limiting membrane, ILM) and bottom
(Bruch’s membrane, BM) layer boundary as input, to predict a 2D displacement map D
that compensates for axial motion. The original 3D volume V is warped using the 2D
displacement map D to obtain the motion-corrected volume V'. In the second stage, the

specific retinal layers SP™ are classified using a segmentation network based on the 3D
motion-corrected OCT volume V'.

The axial motion correction network [37] takes the raw OCT volume V € R XW XN a5

input, where H, W, and N denotes the resolution along the Z, X, and Y axes. The BM and
ILM boundaries are also included for improved performance. The output of the network is

a 2D displacement map D € R¥ XN which compensates for Z directional motion in the 3D
OCT volume. The architecture of the network is modified based on a residual U-Net, and the
performance is verified for various diseases and resolutions [37]. After network prediction,
the motion-corrected OCT volume V'’ can be obtained by warping the input volume V based
on the predicted axial displacement map D.

V'(z,x,y) = V(z = D(x,y),x,y).
€

The main advantage of the graph pyramid structure is the enhanced global reasoning ability.
This is achieved by deeper multi-resolution paths and the use of graph reasoning units
(GRU). Each GRU include three branches for projection to node space, re-projection to
feature space, and fusion of global features, where the two graph convolution blocks are
used after projection to the node space. The standard convolution on image data with grid
coordinates could be interpreted as a nearest neighbor graph. However, by utilizing the top
projection branch of GRU, the input features could be projected to latent space using a
learned projection matrix, which enables global reasoning over disjoint and distant areas.

IEEE Access. Author manuscript; available in PMC 2024 December 30.
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After projection to the latent node space, a graph is obtained where each node contains

a feature state. Two graph convolutions are performed implemented by channel-wise and
node-wise 1D convolutions. Finally, the graph is re-projected from node space to image
space using a learned inverse projection matrix.

For comparison of the effect of 3D convolution, we train a 2D version of the segmentation
network by removing the 1 x 1 x 3 convolutions and replacing all the 3D operations with
their 2D counterparts. We also use the 2D segmentation network to derive the top and
bottom layer boundaries for the motion correction network.

The proposed 3D architecture includes 1.940M trainable parameters, and the 2D version
includes 1.909M parameters. Both are reduced compared with MGU-Net which has 2.094M
parameters, yet the graph pyramid structure can effectively improve the segmentation
performance as demonstrated in the experimental result.

The segmentation network is trained using a hybrid loss function, which is a weighted
sum of cross-entropy loss and Dice loss. Denoting the last convolution layer output as

x € REXWXM the ground truth class label as y € R " XM ‘and the ground truth one-

hot label as SOT. Note that we also include a valid mask M € R X W XM tq exclude regions

without annotation, where 1 denotes annotated pixels and O denotes otherwise. The masked
cross-entropy loss can be expressed as

-1 eXpXy,
gCEX7y=Z MZIOg K_ly M, |,
n =ty Yk =0 CXPXg,

@

where n spans the batch and spatial dimensions. Note that the cross-entropy loss could

be implemented with better numeric stability by using the “log-sum-exp” trick, combining
logsoftmax activation with the negative log likelihood loss for the last convolution layer
output x.

The Dice loss is included to regularize the class-imbalance issue of each retinal layer, and
emphasize retinal region (class k = 1 to K — 2) over non-retinal regions (k =0 or K — 1).

It is defined as one minus the soft Dice coefficient, which is a score between 0 and 1
characterizing the overlapping ratio between prediction and ground truth. The soft Dice
coefficient can be expressed as

22 G(Xk,n)sg-l;an
. GT) _ n
SoftDice; (x,S )_ Zn (% M, + Zn STTM,’

®

where o( - ) denotes the softmax function along the channel dimension. Then the Dice loss
for retinal layers is defined as
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SDice(x, SGT) =1- mean  SoftDice, (x, SGT).

©

Finally, the total loss is combined with weights A = 1, Ape = 2,

Lo = AceZL ce + AbiceL Dice -

®)

Simulated shearing along the X axis is used besides standard data augmentation methods
such as random cropping and horizontal flipping, which adds another degree of freedom to
the image transformation. The method to generate simulated shearing is described in [37].
The random shearing is generated by an affine transformation with two Gaussian variables
a~N(0,y/2/W) and b~N(0,1),

(6)

Boundary extraction is a optional post-processing to convert the pixel-wise label prediction
sPd into segmentation boundaries BP™Y, The boundaries are detected, joined, and
interpolated using the pseudo-code in Algorithm 1.

IV. EXPERIMENTAL RESULT

In the experiment, we test and compare the segmentation performance of our proposed
joint motion correction and 3D segmentation neural networks with several state-of-the-art
conventional or deep learning methods.

IEEE Access. Author manuscript; available in PMC 2024 December 30.
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Algorithm 1 Pixel-Wise Label to Boundary
I: Pixel-wise label SPed e RH#*W
2: K+1 boundaries BPd ¢ RIK+DxW
3: fork =0: K do
4:  k-thedge C (W lists)
5: for.r:O:W—ldle :
6: Cay < Z5.4. SF;:.J =k+1& S{p:'i‘l‘_r} #k+1
7: ifx = 9 then
8: Bf,, < minC)
" ed
5 by B
10: else if C(y) is not empty then
11 Br,fcf] <« arg T}inl(:m — bprevl
-{x}
ed
12: Dprev < BEI:.}
13 end if
14:  end for
15:  Interpolate Bﬂr_f" for missing x values using b-spline
16: end for
A. DATASETS

The methods are evaluated on three different datasets: DME dataset [9], AMD and Control
dataset [23], and our own dataset collected by Jacobs Retina Center (JRC). The comparison
of the three dataset is summarized in Table 1.

We use the DME dataset [9] as a benchmark of the proposed method to compare with the
state of the art methods in literature. The DME dataset [9] is one of the most widely used
public datasets in literature [14], [17], [20]. The dataset includes 10 macular centered OCT
volumes for patients with DME imaged by Heidelberg Spectralis OCT system after motion
correction. The resolution for each volume is 496 x 768 x 61, with voxel size ranging

from 3.87 x 11.07 x 118m 10 3.87 x 11.59 x 128um. 11 selected B-scans out of 61 B-scans in
each volume (in total 110 B-scans) are manually annotated with 8 segmentation boundaries
(K =9 classes) in the central region. We follow the training and test division in other papers
[14], [17], [20], where the first 55 images from subject 1 to 5 are used for training, and the
last 55 images from subject 6 to 10 are used for testing.

We then use the AMD and control dataset [23] to evaluate the influence of the motion
correction network in 3D segmentation on OCT volumes with real motion artifacts. The
AMD and control dataset [23] is a public dataset with 384 macular centered OCT volumes
from 269 patients with AMD and 115 normal control subjects. The OCT volumes are
imaged by the Bioptigen system and mostly has resolution 512 x 1000 x 100, with some
exceptions that has 82 B-scans. Manual annotations for 3 layer boundaries (K = 4 classes)
are provided in a central circular region. Due to the different definition of the RPE-DC
layer in AMD group [23], we only utilized normal control group for evaluation of the
segmentation methods. The first 55 OCT volumes are used for training, and next 5 volumes
are used for validation, and the last 55 volumes are used for testing.

Finally, the JRC dataset is used to compare the proposed method to OCT segmentation
solutions clinically available to ophthalmologists in segmentation of retinal layers with
various diseases. The JRC dataset contains 190 horizontal and vertical OCT volumes imaged

IEEE Access. Author manuscript; available in PMC 2024 December 30.
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with the Heidelberg Spectralis system [10], and 8 layers for 30 OCT volumes are manually
corrected using the Heidelberg HEYEX software based on Heidelberg’s segmentation
result. The 6 graders are trained retinal MD fellows at the Jacobs Retina Center, and

the annotations is revised by one grader. The OCT volumes without manual corrections

are divided into 142 and 18 for training and validation using Heidelberg’s segmentation

as ground truth, and the 30 manually corrected volumes are divided into 15 and 15 for
fine-tuning and testing. The resolution of the OCT volumes are 496 x 512 x 49 with size 1.9
x 5.8 x 5.8 mm3. The dataset includes both normal subjects and patients with wet and dry
AMD, nonproliferative diabetic retinopathy (NPDR), epi-retinal membrane (ERM), central
retinal vein occlusion (CRVO), retinal detachment, macular hole, chorioretinopathy, and so
on. The pathology and diagnosis are recorded for each OCT volume by the ophthalmologists
at JRC.

B. SIMULATED MOTION FOR DME DATASET

For the AMD and control dataset and JRC dataset, we directly apply our motion correction
approach on the original motion corrupted OCT volumes. Since the DME dataset [9] has
been motion-corrected, we include simulated motion on the input OCT volumes to test

the performance of our proposed motion correction approach. The simulated axial eye
motion is generated using a similar method in [37], which is based on cumulative sum of
Gaussian vector. We also verify the similarity of simulated motion and real eye motion by
comparing their statistics in the AMD and control dataset and JRC dataset. Fig. 5 sub-figure
(@) shows the histogram of motion amplitudes of the real and simulated motion vectors,

and it can be observed that the real and simulated motion amplitudes follow a similar
distribution. Fig. 5 sub-figure (b)—(e) respectively shows the normalized auto-correlation of
10 example mation vectors in the AMD and control dataset, JRC dataset, simulated motion,
and Gaussian random vectors. The auto-correlation of real motion on both datasets are
significantly different from Gaussian random vectors, and the auto-correlation of simulated
motion resembles that of real motion.

C. EVALUATION METRICS

The classification error and the Dice loss are used to evaluate the pixel-wise performance of
each segmentation algorithm. Specifically, we present the overall error, the error of retinal
layers, the averaged Dice loss for all layers, and the Dice loss for each layer. Denoting the
predicted binary segmentation map with SP™, ground truth segmentation with s°T, valid
mask with M, and element-wise product with ©. The Dice loss for the kth layer can be
obtained by one minus the Dice coefficient

2y S oS8 oM
& Dics,k(spredv SGT) =1- pgi . s GT s
YS oM+ Y S oM

)

and the averaged Dice loss for all retinal layers is
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®

The pixel-wise error is calculated on the valid region given by M, and non-retinal regions
(k=0o0r K — 1) are merged into one class. The layer error is calculated based on retinal
layers corresponding to class 1 to K — 2 in the ground truth label.

Z (Spred + SGT) oM
>M

Error (Sp red7 SGT) =

©)

After converting the pixel-wise predictions into layer boundaries using the proposed
Algorithm 1, the mean absolute distance (MAD) is evaluated between the predicted and
ground truth boundaries in the annotated region masked by M° e REKXW X N
3 |Bpred _ BGT‘ 1o Mb

M '

MAD (Bpred7 BGT) _

(10)

D. IMPLEMENTATION

In the experiment, we compare the performance of our proposed 3D segmentation with 7 B-
scans input (center £3 neighboring B-scans) and the 2D version using a single B-scan input
with or without OCT motion correction network. We compare with several conventional
methods by Chiu et al. [9] and Rathke et al. [31], the OCTExplorer software [27], as well as
deep learning method U-Net [24], RelayNet [14], MGU-Net [20], and the network proposed
by He et al. [17].

Our proposed motion correction and segmentation networks are implemented in PyTorch.
The motion correction network utilizes the pre-trained model in [37]. On the DME dataset,
the 2D network is first trained on the first 55 images with expert 1’s annotation as ground
truth, using batch size 4 for 200 epochs with an initial learning rate of 1073 and decayed to
104 after 100 epochs, using Adam optimizer with weight decay of 104, Since the dataset
is sparsely annnotated, we use the prediction of the 2D network as pseudo-ground truth for
B-scan slices without manual annotations to obtain dense label for the 3D OCT volume. The
3D segmentation network is then trained based on 3D labels with batch size 1. On the AMD
and control dataset, the segmentation networks are trained using batch size 4 for 15 epochs
with an initial learning rate of 1073 and decayed to 10~ after 10 epochs. We first pre-train
the model on the JRC training set using Heidelberg segmentation as ground truth for 15
epochs with initial learning rate 1073 and weight decay of 1074, and then fine-tune on 15
OCT volumes with manual labels for 20 epochs with learning rate 5 x 10~ and 10 epochs
with learning rate 1074 using weight decay of 1073,

IEEE Access. Author manuscript; available in PMC 2024 December 30.
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The method by Chiu et al. [9] uses the predicted layer boundaries provided in the DME
dataset, and the method by Rathke et al. [31] uses the original implementation in Matlab.
The OCTExplorer [27] software version 3.8.0 is used. We include both the pre-trained
PyTorch model on the DME dataset provided by the original authors of RelayNet [14],
and also include our retrained model on all three datasets. The network by He et el. [17]
uses the prediction results on the DME dataset provided by the authors. The U-Net [24]
and MGU-Net [20] are trained in PyTorch using similar hyper parameters as our proposed
segmentation network.

E. DME DATASET

The qualitative results of segmentation on the original motion-corrected DME dataset are
shown in Fig. 6, where the first group (a) shows the pixel-wise segmentation and group (b)
shows the layer boundaries. Sub-figure (1) shows the input B-scan cropped in the labeled
retinal region, sub-figure (2) shows the ground truth manual label, and sub-figures (3) to (10)
show the segmentation result of different segmentation methods. The results demonstrate
that the conventional methods by OCTExplorer [27] and Rathke et al. [31] could not
accurately segment the retinal layers for the B-scan with DME. The method by Chiu et

al. [9] produces more accurate segmentation, while the RNFL (in blue) is thinner than the
ground truth, and the OPL (in yellow) does not follow the shape of lesions in the B-scan. For
deep learning methods, the boundaries between each class of the RelayNet [14] prediction is
noisier compared with the MGU-Net [20] and our proposed networks. MGU-Net [20] yields
mis-classification of the OPL, and He et al. [17] yields discontinuities denoted by yellow
arrows. The segmentation result of our proposed networks with 2D or 3D input are both
visually continuous, and our 3D network result in lower Dice loss and MAD.

We also visualize the central slow B-scans in Fig. 7 to compare the 3D consistency of

the MGU-Net and our proposed networks after applying simulated motion and our motion
correction network. It can be observed that the simulated motion in sub-figure (al) causes
axial distortion to the slow B-scan in sub-figure (al), and it can be effectively corrected

by our motion correction network in sub-figure (b1). Overall, our proposed 3D network in
sub-figure (b4) after motion correction achieves the best consistency, compare to MGU-Net
[20] in sub-figures (b2) and our 2D network in sub-figure (b3) at the location denoted by
yellow arrow. It demonstrates the joint motion correction and 3D segmentation networks can
improve the performance of 3D consistency.

Quantitative evaluation for pixel-wise accuracy on the DME dataset [9] is shown in Table 2.
The raw network output without boundary detection post-processing described in Algorithm
1 is used in this evaluation for deep learning methods, and the pixel-wise labels are derived
for conventional methods using the predicted boundaries. The best performance in each
column for original OCT and OCT with simulated motion is denoted by bold text, and

the second best is denoted by blue text. We only include our proposed methods in the
experiment with simulated motion in order to evaluate the performance of our motion
correction network. On the original input, our proposed 3D segmentation network achieves
the lowest error of 1.80%, layer accuracy of 9.75%, and average Dice loss of 0.1155.

The Dice loss of our 3D network is also the lowest in the each retinal layer, except for
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the RNFL layer where it ranks as the third best result. For OCT with simulated motion,
our proposed 3D segmentation network after motion correction achieves the lowest error
and Dice coefficient, and note that the error of the 3D network increases without motion
correction.

The mean average distance of layer boundaries are evaluated in Table 3. The proposed
boundary detection algorithm is used to post-process the deep learning methods. Overall, the
proposed 3D approach achieves the lowest average MAD at 1.1624 pixels, and the result by
He et al. [17] achieves the second lowest average MAD at 1.3190 pixels. When comparing
the the results on OCT with simulated motion, our 3D segmentation network with motion
correction also achieves the lowest MAD with a improvement upon our 2D network and our
3D network without motion correction.

F. AMD AND CONTROL DATASET

We use the AMD and control dataset to evaluate the influence of the motion correction
network on real motion corrupted OCT volumes. We visualize one example OCT volume
in Fig. 8, where segmentation on the original 3D OCT volume is shown in group (1), and
segmentation on the motion-corrected OCT volume is shown in group (2). The 3D OCT is
shown in sub-figure (a), the segmentation surface of our 3D network is shown in sub-figure
(b), and the partially annotated ground truth segmentation surface is shown in sub-figure
(c). Sub-figures (d)—(f) show the central cross-section slow B-scan, our segmentation, and
ground truth respectively, and sub-figures (g)—(i) show segmentation on the central fast
B-scan. It can be observed that eye motion distorts the slow B-scan in sub-figures (al), and
causes jittered segmentation surface in (bl1), (c1), (el), and (f1). After applying the motion
correction network, the segmentation surfaces are smooth along the slow-scanning axis and
the slow B-scan provides better visualization.

The quantitative performance of several methods on the AMD and control dataset [23] are
shown in Table 4, where our proposed 3D network after mation correction achieves the
lowest error and Dice loss for each layer. It can also be observed that the performance of our
3D network degrades without the motion correction network, demonstrating the importance
of motion correction on dataset with real motion artifacts.

G. JRC DATASET

We compare the proposed method to the clinically available solutions [10], [27] on the JRC
dataset with various diseases. The qualitative results on the JRC dataset are shown in Fig.

9. Two examples with wet AMD and CRVO are illustrated in group (1) and group (2),
respectively. Sub-figure (a) shows the 3D OCT volume with motion artifacts, sub-figure (b)
shows the motion corrected 3D OCT volume, sub-figure (c) shows the slow B-scan with
motion artifacts, sub-figure (d) shows the motion corrected B-scan, and sub-figure (e) shows
a reference vertical B-scan imaged separately. Sub-figure (g) shows the segmentation of
different methods on the fast B-scan, and sub-figure (h) shows the segmentation of different
methods on the motion corrected slow B-scan. The conventional methods by Rathke et al.
[31], Heidelberg [10], and OCTExplorer [2] yield significant segmentation errors of the
OPL and GLC-IPL in example (1), as denoted by pink and red arrows. These methods also

IEEE Access. Author manuscript; available in PMC 2024 December 30.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

WANG et al.

Page 13

produce large errors denoted by red circles in example (2) compared to the ground truth
in sub-figure (g2-8) and sub-figure (h2-8). This is because the conventional methods rely
on graph prior designed for normal eyes or diseases with mild deformations, which could
not generalize well for various diseases with large deformations. Deep learning methods
including the U-Net [24], RelayNet [14], MGU-Net [20], and our proposed 3D network
could produce segmentation with higher similarity to ground truth for both examples
compared with conventional methods. However, the segmentation results of U-Net [24],
RelayNet [14], and MGU-Net [20] yield mis-classifications as denoted by red circles in
sub-figures (g2—-4) to (g2-6), and they also yield and 3D inconsistency as denoted by red
circles in sub-figures (h2—4) to (h2—6). The proposed 3D network is more accurate in the fast
B-scans, and also yields better 3D consistency in the slow B-scans for both examples.

We also visualize the 3D segmentation surfaces of Heidelberg [10], MGU-Net [20], our
3D network, and ground truth in Fig. 10. One quarter of the OCT is cut to show the cross-
section of the segmentation surfaces. It could be observed that Heidelberg and MGU-Net
produce segmentation errors denoted in red circles, and the proposed method is the most
similar to the ground truth.

The quantitative results are presented in Table 5, where the proposed 3D segmentation
network is compared with different segmentation methods. Since the manual annotation is
performed based on Heidelberg’s segmentation, the quantitative results would be biased
towards Heidelberg. Therefore we also report the error evaluated only on manually corrected
areas, where at least 4 out of 8 layers in the ground truth differ from Heidelberg’s
segmentation. The OCT volumes in the test set are divided into three categories, including
normal, moderate deformation, and severe deformation. The percentage of area that is
manually corrected is 1.02% for normal, 11.41% for moderate, and 21.47% for severe
deformation. On the entire test set, our proposed 3D segmentation network with motion
correction yields the lowest error and Dice loss on average. When divided into three
categories based on diseases, Heidelberg achieves the lowest error for normal and moderate
deformation due to the bias of the ground truth. However, our proposed method outperforms
Heidelberg segmentation by a large margin for the category of severe deformation,
decreasing the layer error from 32.01% to 10.53%, and the average Dice loss from 0.3116
to 0.1157. For evaluation on the manually corrected area, the proposed 3D segmentation
network with motion correction achieves the best performance overall and in each category
of diseases. The results demonstrate a significant advantage of the combined motion
correction and 3D segmentation network for a clinical dataset with various diseases.

V. CONCLUSION

In this paper, we proposed to combine motion correction and 3D OCT layer segmentation
using a novel graph-inspired architecture, which led to promising improvement upon
existing 2D segmentation methods with or without motion correction. We also collected
one of the largest OCT segmentation dataset covering a variety of diseases. Experimental
results demonstrated that the motion correction is essential to apply 3D segmentation,
and combining motion correction with 3D segmentation achieved the best performance
for three datasets compared to conventional and deep learning state-of-the-art methods.
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Specifically, the proposed network demonstrated a significant advantage over clinically
available segmentation solutions for severe diseases. The diagnosis and evaluation of
diseases with large deformation such as DME, wet AMD and CRVO would greatly benefit
from the improved accuracy, which impacts tens of millions of patients.

One limitation of the proposed method is that the network could not identify retinal

fluids in diseases like DME and CRVO, where the retinal layers segmentation may have
low confidence. In future work, the segmentation network can be extended to support
segmentation of retinal fluid and other lesions. The proposed segmentation method could
be used to generate more accurate OCT-A projection images, promote the analysis of layer
thickness and vessel density, which is beneficial for diagnosing and monitoring retinal and
systemic diseases.
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FIGURE 1.
OCT motion artifacts and segmentation. (a) The axial motion artifacts in 3D OCT volume

indicated with red arrows, (b) slow B-scan (YZ plane) with motion artifacts, (c) 2D
segmented layers with OCT motion artifacts, (d) 2D segmented layers after OCT motion
correction, with 3D inconsistency indicated by yellow arrows.
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FIGURE 2.
Limitations of 1D segmentation boundaries. (a) An example OCT B-scan with retinal

disease, (b) human corrected 1D segmentation boundaries. The boundaries could not
precisely follow the shape of the disease.
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FIGURE 6.
Qualitative results on the DME dataset [9]. Group (a) shows the pixel-wise prediction of

each method with corresponding Dice loss, and group (b) shows the layer boundaries with
mean absolute distance (MAD). (1) Input B-scan, (2) ground truth segmentation, (3) Chiu
etal. [9], (4) Rathke et al. [31], (5) OCTExplorer [27], (6) RelayNet [14], (7) MGU-Net
[20], (8) He et al. [17], (9) our proposed 2D network, (10) our proposed 3D network. Yellow
arrows denote large segmentation errors.
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FIGURE 7.
Qualitative comparison of 3D consistency on the DME dataset [9]. Group (&) shows results

for OCT with simulate motion, group (b) shows results for motion-corrected OCT. (1) slow
B-scan, (2)-(4) segmentation result of MGU-Net [20] and our proposed 2D or 3D network.
Yellow arrows denote large segmentation errors.
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FIGURE 8.
Qualitative results on the AMD and control dataset. Group 1 shows segmentation on the

original OCT, group 2 shows segmentation on the motion-corrected OCT. (a) 3D OCT
volume, (b) our segmentation surface, (c) ground truth (partially annotated) segmentation
surface, (d)-(f) segmentation of the slow B-scan, (g)-(i) segmentation of the fast B-scan.
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FIGURE 9.
Qualitative results on the JRC dataset. Group (1) and (2) show two examples. (a) Original

3D OCT volume, (b) motion corrected 3D OCT volume, (c) fast B-scan, (d) original slow

B-scan, (e) motion-corrected slow B-scan, (f) reference vertical B-scan, (g) segmentation on
the fast B-scan using different methods, (h) segmentation on the slow B-scan using different
methods. Pink arrows denote large error in OPL, red arrow denotes large error in GCL-IPL,
and red circle denotes large segmentation error.
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FIGURE 10.
Visualization of segmentation result in 3D on the JRC dataset. Group (1) and (2) show

two examples. (a) Motion corrected 3D OCT volume, (b)-(e) segmentation surfaces of
Heidelberg, MGU-Net, our 3D network, and manual annotated ground truth. Red circle
denotes large segmentation error.
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Quantitative result of different methods on the AMD and control test dataset [23], where the best and the
second best are denoted by bold and underlined text, respectively.

TABLE 4.

DiceLossper Layer

Method Error Layer Error RNFL-OS RPE

Rathke et al. [31] 1.21% 5.50% 0.0292  0.3078
U-Net [24] 0.83% 2.31% 0.0135 0.1039
RelayNet [14] 1.87% 2.86% 0.0172 0.1126
MGU-Net [20] 0.56% 2.03% 0.0111 0.1061
Ours (2D, original) 0.49% 1.82% 0.0093 0.1022
Ours (3D, original) 0.48% 1.86% 0.0092 0.0990
Ours (2D, motion corrected)  0.44% 1.61% 0.0083 0.0944
Ours (3D, motion corrected)  0.41% 1.56% 0.0074 0.0892
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