
UC Merced
UC Merced Electronic Theses and Dissertations

Title

Adaptive Edge Systems for Smart IoT Applications

Permalink

https://escholarship.org/uc/item/7997155r

Author

Liu, Miaomiao

Publication Date

2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7997155r
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, MERCED

Adaptive Edge Systems for Smart IoT Applications

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Electrical Engineering and Computer Science

by

Miaomiao Liu

Committee in charge:

Professor Wan Du, UC Merced, Chair
Professor Shawn Newsam, UC Merced
Professor Dong Li, UC Merced

Spring 2023

Copyright

Miaomiao Liu, Spring 2023

All rights reserved.

The dissertation of Miaomiao Liu is approved, and

it is acceptable in quality and form for publication

on microfilm and electronically:

Professor Wan Du, Chair

Professor Shawn Newsam

Professor Dong Li

University of California, Merced

Spring 2023

iii

DEDICATION

I dedicate this dissertation to all of the professors and mentors who

have shaped my life and my career. Their wisdom, guidance, and

encouragement have been instrumental in helping me to achieve my

goals, and I am forever grateful for their influence. I am also

grateful to my friends and colleagues, who have supported me

throughout this journey and who have made this work a truly

collaborative effort. Finally, I dedicate this dissertation to my

family, who have always been my greatest source of inspiration and

my biggest supporters. Without their love and encouragement, I

would not be where I am today. Thank you all for your unwavering

support.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . x

Acknowledgements . xi

Vita and Publications . xii

Abstract . xiii

Chapter 1 Introduction . 1

Chapter 2 Continuous, Real-Time Object Detection on Mobile Devices
without Offloading . 5
2.1 Introduction . 6
2.2 Related work . 9
2.3 Motivation . 11

2.3.1 Experimental Setting 11
2.3.2 Experimental Results and Observations 13

2.4 Design of AdaVP . 16
2.4.1 System Overview 16
2.4.2 Parallel detection and tracking pipeline 18
2.4.3 Object Tracker 19
2.4.4 Model Adaptation 22

2.5 Implementation . 26
2.6 Evaluation . 27

2.6.1 Experimental Setting 28
2.6.2 Overall Performance 29
2.6.3 Performance Gain of Parallel Detection and Track-

ing . 31
2.6.4 Parameter Setting in AdaVP 32
2.6.5 Energy Consumption and Accuracy 33

2.7 Conclusion . 33

v

Chapter 3 Driving Maneuver Anomaly Detection Based on Deep Auto-
Encoder and Geographical Partitioning 34
3.1 Introduction . 35
3.2 Related Work . 38
3.3 Motivation . 40
3.4 System Design of GeoDMA 42

3.4.1 System Overview of GeoDMA 42
3.4.2 Auto-Encoder for Driving Maneuver Anomaly De-

tection . 43
3.4.3 Geographical Partitioning for Anomaly Detection 47
3.4.4 Sub-Region Model and In-Situ Updating 51

3.5 Implementation . 52
3.6 Evaluation . 53

3.6.1 Experimental Setting 53
3.6.2 Dataset and Data Processing 54
3.6.3 Overall Performance 58
3.6.4 Performance under Different Scenarios 59
3.6.5 Parameters Settings of GeoDMA 61
3.6.6 In-Situ Model Updating of GeoDMA 64
3.6.7 Execution Efficiency of GeoDMA 64

3.7 Discussion . 65
3.8 Conclusion . 66

Chapter 4 Real-Time Tracking of Smartwatch Orientation and Location
by Multitask Learning . 67
4.1 Introduction . 68
4.2 Related Work . 72
4.3 Background & Motivation 74

4.3.1 Orientation Representation 74
4.3.2 Conventional Orientation Tracking 75
4.3.3 Conventional Location Tracking 77

4.4 The Design of RTAT . 78
4.4.1 Overview . 78
4.4.2 Multitask Learning Neural Network 80
4.4.3 Attention-based Feature Adjustment 83
4.4.4 Smooth Losses . 85
4.4.5 Labeled Data Collection 86

4.5 Implementation . 93
4.6 Evaluation . 94

4.6.1 Experimental Settings 94
4.6.2 RTAT Performance 96
4.6.3 Performance Decomposition of RTAT 99
4.6.4 Performance of Different Applications 102

vi

4.6.5 System Overhead 103
4.7 Discussion . 104
4.8 Conclusion . 105

Chapter 5 Adaptive Orientation Estimation Piloted by Deep Reinforce-
ment Learning and Envision 106

Bibliography . 109

vii

LIST OF FIGURES

Figure 2.1: Detection latency and accuracy per frame for different frame
sizes. The latency is presented by the bars, and the accuracy is
shown by the lined stars. 11

Figure 2.2: Tracking accuracy of two different videos. The content of Video
1 changes faster than that of Video 2. YOLOv3-608 is used to
detect the objects in the first frame. 12

Figure 2.3: Architecture of AdaVP . Each frame is either processed by the
object detector or by the object tracker. The object tracker
takes the objects detected by the object detector as input. The
object detector uses the results of the object tracker to calculate
the video content change rate and further adapt its DNN model
settings. Finally, the processed frame will be passed to the
overlay drawer module to draw the bounding boxes and display
the frame on screen. 16

Figure 2.4: Two different video processing systems, i.e., a baseline system
and the pipeline of parallel detection and tracking. 17

Figure 2.5: Frame accuracy of MPDT using two different model settings
(First row: MPDT-YOLOv3-320; second row: MPDT-YOLOv3-
608). 20

Figure 2.6: Performance comparison of AdaVP and baseline systems. . . . 29
Figure 2.7: Cumulative probability of number of cycles per DNN model

setting switching . 30
Figure 2.8: Trigger percentage of every DNN model setting from AdaVP . 30
Figure 2.9: Frame accuracy comparison of AdaVP and MPDT-YOLOv3-

512 (the best baseline) . 30
Figure 2.10: Performance comparison under different thresholds of F1 score 30
Figure 2.11: Performance comparison under different IoU value 30

Figure 3.1: The trajectories of vehicles that receive low detection accuracy
with singer-user models. 40

Figure 3.2: The relationship between vehicles’ distance and vehicles’ driv-
ing maneuver similarity. 40

Figure 3.3: System architecture of GeoDMA. 42
Figure 3.4: The workflow of deep auto-encoder. The vehicle GPS data

is preprocessed by vector calculator. It generates the original
feature vector x. The vector x is represented by combining
the state transition probability vector and the state transition
duration vector. This feature x is mapped to a representation
feature z by the encoder. Then z is reconstructed as x̂ by the
decoder. Finally, we leverage the reconstruction error Le as the
criterion to detect anomaly. 44

viii

Figure 3.5: Overall performance comparison. 58
Figure 3.6: The performance of GeoDMA from time and driver perspective. 63
Figure 3.7: Performance of the different number of sub-regions. 63
Figure 3.8: Different representation sizes. 65
Figure 3.9: GeoDMA with or without model updating. 65

Figure 4.1: System Overview of RTAT . 79
Figure 4.2: Multitask Network Structure. 81
Figure 4.3: Orientation error changes along with time of the models with

different combinations of sensor inputs. 83
Figure 4.4: Attention Network Structure. 85
Figure 4.5: Labeled Data Collection System. 86
Figure 4.6: Time synchronization of smartwatch and VR. 92
Figure 4.7: Orientation error and location error at hallway and room. . . . 96
Figure 4.8: Overall orientation and location error. 97
Figure 4.9: Orientation error along with time in the hallway and room. . . 98
Figure 4.10: Location error along with time in the hallway and room. . . . 98
Figure 4.11: Orientation of different users in the hallway and room. 98
Figure 4.12: Location error of different users in the hallway and room. . . . 98
Figure 4.13: Performance under different motion speeds at room. 102
Figure 4.14: Energy Consumption on Samsung S9. 104

ix

LIST OF TABLES

Table 2.1: Comparison of AdaVP and existing work 9
Table 2.2: The latency of detection and tracking for one frame. 14
Table 2.3: Comparison of energy consumption and accuracy 32

Table 3.1: Anomalous Driving Maneuvers that can be Detected by GeoDMA. 37
Table 3.2: Data distribution of normal data and anomalous data 56
Table 3.3: Performance comparison of different models on real-world data

with simulated anomalies . 60
Table 3.4: Performance Comparison of different ratios of the normal data

to the anomalous data in test data 62

Table 4.1: Average orientation error of complementary filter at different
places for ten-minute data traces. 74

Table 4.2: The orientation error (degree) and Be-The-Best (BTW, %) for
ten-minutes data from different sensor combinations. 84

Table 4.3: Statistical analysis on users’ test data 95
Table 4.4: Average orientation and location estimation error of different

models at hallway and room. 100
Table 4.5: Analysis on smoothness of orientation and location at two places. 100
Table 4.6: Statistic on different motion speed 102
Table 4.7: Inference overhead of RTAT on smartphones 104

x

ACKNOWLEDGEMENTS

I would like to express my profound gratitude for the incredible journey that

has led me to this point. When I began my Ph.D study in Fall 2018, I could not

have imagined the depth and breadth of experiences that awaited me.

I would like to express my sincere gratitude to my advisor, Professor Wan

Du, who has played an instrumental role in the completion of my Ph.D. program.

His guidance, support, and expertise have been the cornerstones of my academic

journey. I will always be grateful for the countless hours he devoted to discussing

my research ideas, providing insightful feedback on my work, and encouraging me

to strive for excellence. His commitment to academic rigor and his passion for

research have been constant sources of inspiration for me.

I am also deeply grateful to the members of my dissertation committee, Pro-

fessor Shawn Newsam and Professor Dong Li, for their invaluable feedback and

for their willingness to share their knowledge and expertise. Their insights and

comments have been essential to the refinement of my dissertation.

I would like to express my appreciation to my colleagues and friends at UC

Merced, Xianzhong Ding, Kang Yang, Sikai Yang, Wyssanie Chomsin, Yuning

Chen, Zhiyu An, Bohao Xu, Weifeng Gao, Haiqiao Wu, and Di An. I am grateful

for the many discussions, debates, and brainstorming sessions that have helped

me to develop my ideas and to improve my arguments. I am also grateful for the

encouragement during times of struggle.

I sincerely thank my collaborators outside UC Merced, Professor Yanjie Fu and

Professor Dapeng Wu, for their guidance and suggestions on my work.

I would like to thank the authors of the papers I have read, who I have never

met, but who have generously responded to my emails and provided valuable

advice. Their willingness to help and their kindness have saved me a significant

amount of time and prevented me from making mistakes in my research.

Finally, I want to extend my deepest appreciation to my family and friends,

whose unwavering love and support have been the pillars of my study. Their belief

in me has given me the strength to overcome challenges.

Thank you all for everything. It is you who have made me who I am today.

xi

VITA

2010 - 2014 B. S. in Software Engineering, Northeastern Univer-
sity (China)

2015 - 2018 M. S. in Software Engineering, Northeastern Univer-
sity (China)

2018 - Now Ph. D. in Electrical Engineering and Computer Sci-
ence, University of California, Merced

PUBLICATIONS

Miaomiao Liu, Sikai Yang, Wyssanie Chomsin, and Wan Du. Demo Abstract:
Real-Time Tracking of Smartwatch Orientation and Location by Multitask Learn-
ing, in Proceedings of the 20th ACM Conference on Embedded Networked Sensor
Systems (SenSys), 2022.
Miaomiao Liu, Sikai Yang, Wyssanie Chomsin, and Wan Du. Real-Time Track-
ing of Smartwatch Orientation and Location by Multitask Learning, in Proceedings
of the 20th ACM Conference on Embedded Networked Sensor Systems (SenSys),
2022.
Miaomiao Liu, Kang Yang, Yanjie Fu, Dapeng Oliver Wu, and Wan Du. Driv-
ing Maneuver Anomaly Detection based on Deep Auto-Encoder and Geographical
Partitioning , ACM Transactions on Sensor Networks (TOSN), 2022.
Miaomiao Liu, Xianzhon Ding, and Wan Du. Continuous, Real-Time Object
Detection on Mobile Devices without Offloading, in Proceedings of the 40th IEEE
International Conference on Distributed Computing Systems (ICDCS), 2020.
Miaomiao Liu and Wan Du. Poster Abstract: Geo-Distributed Driving Maneuver
Anomaly Detection, in proceedings of the 7th ACM International Conference on
Systems for Energy-Efficient Buildings, Cities, and Transportation (BuildSys)
2020.
Miaomiao Liu, Sikai Yang, Arya Rathee, and Wan Du. RLPilot: Deep Rein-
forcement Learning Piloted Classical Orientation Estimation, under submission.
Kang Yang, Miaomiao Liu, and Wan Du. RALoRa: Rateless-Enabled Data Rate
Adaption for LoRa Networks , under submission.
Sikai Yang, Miaomiao Liu, and Wan Du. Magnetic Distortion Resilient Orien-
tation Estimation, under submission.

xii

ABSTRACT OF THE DISSERTATION

Adaptive Edge Systems for Smart IoT Applications

by

Miaomiao Liu

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California Merced, Spring 2023

Professor Wan Du, UC Merced, Chair

The proliferation of the Internet of Things (IoT) and cloud services has given

rise to the edge computing paradigm, where data is processed partly or entirely

at the edge of the network, rather than solely in the cloud. Edge computing can

address problems such as latency, limited battery life of mobile devices, bandwidth

costs, security, and privacy [1, 2, 3]. Typical applicable scenarios based on edge

computing include video analytics, smart home, smart city, and collaborative edge.

With the development of deep learning techniques, research on employing deep

learning to develop intelligent edge systems is emerging. In this dissertation,

we aim to investigate how deep learning can process data on source-constrained

individual edge devices in real time and how deep learning can process data by

utilizing collaborative edge devices to provide better services.

We build several critical systems, including video analytics, driving anomaly

detection, arm posture tracking, and device orientation tracking. In the video

analytics system, we combine deep learning with traditional image processing tech-

niques to achieve real-time object detection on mobile devices without offloading.

In the driving anomaly detection system, we train deep learning models for driving

anomaly detection by leveraging the information from collaborative peer devices to

provide better accuracy. In the arm posture tracking system, we employ multitask

learning to track the orientation and location of the wrist simultaneously, which

significantly improves the latency compared to the conventional methods. In the

xiii

device orientation tracking system, we develop a deep reinforcement learning frame-

work to train an agent that adjusts the parameters of a conventional orientation

tracking method in response to changing environments.

As IoT systems continue to grow in complexity and size, preserving training

data has become an increasingly important challenge. In our future work, we

plan to investigate the use of representation learning to address this issue. By

leveraging representation learning techniques, we aim to develop a more robust

and efficient method for saving and utilizing training data in IoT systems. This

could enable better performance of IoT systems, which in turn could lead to

significant improvements in a variety of fields, such as healthcare, transportation,

and manufacturing.

xiv

Chapter 1

Introduction

The widespread adoption of wireless networks and IoT devices has led to a sig-

nificant increase in the number of edge devices, which are located at the periphery

of the network. These devices generate a vast amount of data every day, which

traditionally has been offloaded to data centers for processing. This centralized

processing approach is known as cloud computing, but it has several limitations.

First, it cannot guarantee real-time responses for applications with time-sensitive

requirements. Second, transferring large amounts of data to data centers can

strain network bandwidth. Additionally, cloud computing raises concerns about

data security and privacy.

In response to these challenges, edge computing was proposed as a distributed

computing technology that enables data to be stored and processed closer to the

devices where it is generated. This approach can significantly reduce application

response times and conserve network bandwidth. Furthermore, since the data does

not need to be transferred to data centers, there are fewer concerns about data

security and privacy [1, 2, 3]. Research in this area has shown promising results,

with edge computing demonstrating its potential to enable new use cases and

improve the performance of existing applications. Edge computing is becoming

increasingly popular in various fields, such as healthcare, transportation, and

manufacturing, where real-time response and data privacy are critical.

IoT devices, with their network connectivity, enable the automatic collection of

data from the environment, which in turn, allowing us to develop more intelligent

1

2

edge systems. Deep learning has been particularly effective in bringing intelligence

to these systems and improving their performance in various applications.

In this dissertation, we present methods for developing smart IoT applications

using deep learning techniques on resource-limited edge devices. We introduce

three applications in this direction: the first uses a full DNNmodel to detect objects

in real-time videos on edge devices. The second utilizes deep learning techniques

to track arm postures on mobile devices using the IMU readings of smartwatches.

The third combines deep reinforcement learning with classical algorithms to track

the orientation of a mobile device. Our approaches significantly reduce resource

usage, reduce latency, and improve accuracy compared to conventional methods.

We also extend our approach to multiple edge devices by demonstrating a driving

anomaly detection system that utilizes collaboration among multiple devices to

achieve better system performance. Our approach highlights the potential benefits

of edge computing for distributed systems, particularly in scenarios where real-time

response and resource efficiency are critical factors.

In Chapter 2, we introduce AdaVP , the real-time video processing system which

adapts to the change of video content on resource-limited mobile devices. Auto-

matic object detection and recognition in videos become a fundamental component

in many mobile applications, such as traffic monitoring and control, autonomous

driving, and augmented reality. However, executing large object detection deep

learning on mobile devices in real-time remains a challenge. Additionally, urban

traffic monitoring systems generate a vast number of videos daily, and streaming all

of these videos to the cloud consumes excessive bandwidth and can induce network

congestion. To address those challenges, we develop AdaVP , which employs object

detection and object tracking for video object detection tasks on mobile devices.

The object detector is heavyweight, while the object tracker is lightweight, and the

combination of the two speeds up computation. However, due to changes in video

content over time, this approach may not always achieve high accuracy. To over-

come this challenge, AdaVP proposes a model setting adaptation method which

aims at dynamically switching the settings of the system at runtime, depending

on the changes of video content. The material in this Chapter appears in the 40th

3

IEEE International Conference on Distributed Computing Systems. The authors

are Miaomiao Liu, Xianzhong Ding, and Wan Du. © 2020 IEEE.

In Chapter 3, we present GeoDMA, the driving maneuver anomaly detection

system that collaboratively utilizes multiple mobile devices. Abnormal driving

maneuvers are responsible for numerous fatal accidents every year, making it

essential to detect them and alert nearby pedestrians or drivers in a smart city.

The GPS data of vehicles contains a wealth of information about reckless driving,

which can be potentially utilized to detect abnormal driving maneuvers. First, the

system processes the GPS data from multiple vehicles by using a deep learning

model to do the anomaly detection. Second, driver maneuvers can vary based

on the location in the city. For example, in the downtown, the vehicles usually

have more stop-and-go due to the more traffic lights and the speed of them are

usually slower. We further develop a geographical partitioning algorithm to divide

a city into several sub-regions to adapt to the road and traffic conditions in each

sub-region. This allows for more precise anomaly detection in specific areas. The

material in this Chapter appears in ACM Transactions on Sensor Networks. The

authors are Miaomiao Liu, Kang Yang, Yanjie Fu, Dapeng Wu, and Wan Du. ©

2023 Copyright held by the authors.

In Chapter 4, we present RTAT , the first 3D human wrist tracking system

that utilizes inertial measurement unit (IMU) data from smartwatches. This

system tracks both the orientation and location of the wrist simultaneously using a

multitask learning neural network. Since not all IMU sensors are always important

for orientation estimation, we design an attention mechanism and a smooth loss

in the multitask neural network to further improve its performance. The attention

mechanism focuses on the most important IMU sensors for orientation estimation,

while the smooth loss ensures a smooth output trajectory. RTAT is lightweight

and supports real-time tracking on smartphones with high sampling frequency.

Compared to conventional methods, RTAT significantly reduces resource usage

and improves latency. To support RTAT , we also develop a ground truth data

collection system based on a VR system to collect orientation and location labels.

This enables us to train and evaluate the system with high-quality labeled data.

4

The material in this Chapter appears in the 20th ACM Conference on Embedded

Networked Sensor Systems. The authors are Miaomiao Liu, Sikai Yang, Wyssanie

Chomsin, and Wan Du. © 2022 Copyright held by the authors..

In Chapter 5, we briefly introduce an adaptive device orientation estimation

system piloted by deep reinforcement learning. We then present the future direc-

tions of what we plan to study based on common problems - saving labeled training

data for smart IoT applications.

Chapter 2

Continuous, Real-Time Object

Detection on Mobile Devices

without Offloading

This chapter presents AdaVP , a continuous and real-time video processing

system for mobile devices without offloading. AdaVP uses Deep Neural Network

(DNN) based tools like YOLOv3 [4] for object detection. Since DNN computation

is time-consuming, multiple frames may be captured by the camera during the pro-

cessing of one frame. To support real-time video processing, we develop a mobile

parallel detection and tracking (MPDT) pipeline that executes object detection

and tracking in parallel. When the object detector is processing a new frame, a

light-weight object tracker is used to track the objects in the accumulated frames.

As the tracking accuracy decreases gradually, due to the accumulation of tracking

error and the appearance of new objects, new object detection results are used

to calibrate the tracking accuracy periodically. In addition, a large DNN model

produces high accuracy, but requires long processing latency, resulting in a great

degradation for tracking accuracy. Based on our experiments, we find that the

tracking accuracy degradation is also related to the variation of video content, e.g.,

for a dynamically changing video, the tracking accuracy degrades fast. A model

adaptation algorithm is thus developed to adapt the DNN models according to the

change rate of video content. We implement AdaVP on Jetson TX2 and conduct

5

6

a variety of experiments on a large video dataset. The experiments reveal that

AdaVP improves the accuracy of the state-of-the-art solution by up to 43.9%.

2.1 Introduction

Continuous and real-time object detection is essential for many mobile appli-

cations, like traffic monitoring [5] and augmented reality (AR) [6]. For example,

real-time warnings can be sent to road users automatically by a camera installed

on top of a highway road if any reckless driving maneuvers are detected. AR-based

videos are promising in many applications, such as tourism, navigation and enter-

tainment [7], which require the detection and tracking of objects in videos on mobile

devices continuously and in real time, like 30 or 60 Frames Per Second (FPS). Deep

learning has shown superior performance in object detection and many deep neural

networks have been developed, like YOLO [8] and SSD [9]. Although they achieve

high accuracy, they normally involve intensive computation that cannot be fully

supported by the constrained hardware resource of mobile devices, i.e., they cannot

accomplish the processing of one frame before the next frame is captured, i.e., 33

ms for 30 FPS. Some solutions offload a part of computation from mobile devices

to the cloud [10, 11, 12]. However, offloading suffers from privacy concerns and

unpredictable network latency [13].

Recently, some compressed DNN models have been developed to do object

detection on mobile devices without offloading, e.g., YOLOv3-tiny[8] and Faster

R-CNN based on MobileNets [14]. Our experiments show that YOLOv3-tiny can

process a frame on an Nvidia Jetson TX2 within 60 milliseconds, but its detection

accuracy is low. At the same time, some light-weight deep learning frameworks

have been developed, such as DeepMon [13] and NestDNN [15]; whereas they

cannot meet the real-time requirement of video processing. For example, DeepMon

achieves continuous video processing at 1-2 frames per second [13].

In this chapter, we develop AdaVP , an accurate and real-time video processing

system on mobile devices. AdaVP is based on a novel parallel object detection

and tracking pipeline, named as Mobile Parallel Detection and Tracking (MPDT).

7

Nowadays, many mobile devices have a GPU, like the Samsung Galaxy S10 and

the Apple iPhone 11, which allows us to implement DNN-based object detection

on the GPU and object tracking on the CPU. The two types of operations are

executed independently on two different hardware resources.

At the beginning, we use a general DNN-based object detector (i.e., YOLOv3

[4] in our current implementation) to process one frame (frame 0). After the

processing of that frame (e.g., 330 ms), the camera may have already captured

several frames in the buffer (e.g., 11 frames at a capture rate 30 FPS). The object

detector will start processing the newest frame in the buffer (e.g., the 12th frame).

At the same time, based on the objects identified by the object detector, an object

tracking algorithm will localize these objects in the accumulated frames (the 1st-

11th frames). The tracking accuracy degrades gradually due to the accumulation

of tracking error and the appearance of new objects. Before the tracking accuracy

drops to too low, the object detector will provide the objects in a new frame (e.g.,

the 12th frame) with a high detection accuracy. By parallel detection and tracking,

we can obtain the object detection results at the maximum frequency and use them

to calibrate the object tracking.

To further improve the accuracy of the proposed parallel detection and tracking

pipeline, we adjust the settings of the DNN object detection model at runtime,

based on the tradeoff of the initial object detection accuracy and the accuracy

degradation of object tracking. On the one hand, a high object detection accuracy

normally requires intensive computation (i.e., a heavy-weight DNN model) and

long processing time, which means more frames will be accumulated in the buffer.

One the other hand, the object tracking accuracy degrades sharply if the video

content changes fast, since the tracking error accumulates fast and many new

objects may appear in the accumulated frames. In this case, we need to run a

light-weight object detector in order to calibrate the object tracker more frequently,

although the detection accuracy is relatively low. On the contrary, if the video

content changes slowly, we prefer to use a heavy object detector that provides high

detection accuracy. Although the detection latency is long, it does not cause the

tracking accuracy to degrade much.

8

In this work, we adapt the DNN model settings by changing the frame size

of YOLOv3 at runtime. YOLOv3 allows us to change the frame size at runtime

without reloading the model. A large frame size indicates long computation latency

and high detection accuracy. In AdaVP , we measure the video content change

rate based on the intermediate results of object tracking. We learn the quantified

relationship between the best frame size and the video content changing rate,

based on a large amount of training data. We then develop a DNN model setting

adaptation algorithm that decides whether to switch to a different frame size after

each object detection.

To perform object tracking, we use the standard good features to track [16]

method to extract good features in the last DNN detected frame. And then we

track these features in the following frames by the Lucas-Kanade optical flow

method [17]. Due to the tracking and rendering latency of one frame (from 57 to

70 ms) is larger than the frame interval of a video (e.g., 33 ms), we also design a

scheme to skip some frames from tracking without impacting the synchronization

with the operations of object detection.

We implement AdaVP on an open mobile platform, the Nvidia Jetson TX2,

based on the Pytorch deep learning framework. We use both a standard video

dataset [18] and some videos downloaded from public websites [19, 20] to do

experiments. The data we used to train our DNN model adaptation module

contains 105205 frames, and the videos for validation contain 141213 frames. The

evaluation results show that AdaVP improves the accuracy of the state-of-the-art

solution up to 43.9%. In particular, the parallel detection and tracking pipeline

(MPDT) improves accuracy up to 21.95%, and the model setting adaptation

algorithm in AdaVP further improves accuracy up to 34.1% on top of MPDT.

In summary, the contributions of this work are as follows:

• We develop AdaVP , a mobile video processing system that achieves high

detection accuracy in real time on mobile devices without offloading.

• We develop a parallel detection and tracking pipeline to fully utilize the

computation resources on current mobile devices for high detection accuracy.

9

Table 2.1: Comparison of AdaVP and existing work

Glimpse

[21]

Tiny

YOLO

[8]

Deep

Mon

[13]

Deep

Cache

[22]

Deep

Decision

[11]

Liu

et al.

[6]

MARLIN

[23]
AdaVP

Real-time

updates ! ! ! ! !

No offloading ! ! ! ! !

Localizes

multiple objects ! ! ! ! ! ! !

Using DNN ! ! ! ! ! ! !

Model

adaptation !

High accuracy ! ! ! !

• We further increase the detection accuracy by adjusting the DNN model

settings at runtime according to the variation of video content.

• We implement the system on an open mobile platform, the Nvidia Jetson

TX2 and extensively evaluate the system using different types of videos.

2.2 Related work

We compare AdaVP with some prior works in terms of some common features

of video processing in Table 2.1.

Real-Time Mobile Vision without Offloading. MARLIN [23] is the latest

work about real-time mobile vision without offloading. It runs the object detector

and object tracker in a sequential order. When the object tracker starts tracking

the objects in the accumulated frames, the object detector stops its detecting task.

MARLIN is inefficient when the video content becomes complex and varies fast.

And it always uses a fixed DNN model setting during video processing. Different

10

from MARLIN, AdaVP runs the object detector and object tracker in parallel

and switches among different input size settings according to the change of video

content at runtime.

Real-Time Mobile Vision with Offloading. Due to the limited computa-

tion, storage and power of mobile devices, offloading intensive tasks to the cloud

to process is popular [24, 25, 11, 26, 12, 21]. However, mobile vision offloading ap-

proaches are easily affected by network conditions and usually receive stale results

which degrade the processing accuracy of mobile continuous vision. MCDNN [12]

and DeepDecision [11] design a framework which decides to offload tasks to the

cloud or execute locally according to the network conditions. Glimpse [21] and Liu

et al. [6] offload some key frames to the cloud to do detection and track the detected

objects on mobile devices. However, they all suffer from long transmission latency

and privacy concerns. In contrast, AdaVP focuses on executing object detection

on mobile devices without offloading.

Mobile Deep Learning. With the development of deep learning and deep

reinforcement learning [27, 28], many works seek to reduce the latency and com-

putation time of deep learning algorithms on mobile devices. DeepX [29] designs

a pair of resource control algorithms for deep learning inference. DeepMon [13]

designs a suite of optimization techniques to accelerate the processing of DNNs on

mobile devices. DeepEye [30] proposes a novel inference software pipeline that en-

ables multiple CNN models to execute locally without offloading. DeepCache [22]

presents a principled cache design for deep learning inference in continuous mobile

vision. NestDNN [15] takes the dynamic runtime resources into account to enable

resource-aware on-device deep learning for mobile vision systems. Naderiparizi et

al. design [31] a novel architecture that gates wearable vision using low-power

vision modalities to reduce mobile power and data usage. AdaDeep [32] develops

a usage-driven selection framework to automatically select a combination of com-

pression techniques for a given DNN. Our work is orthogonal and complementary

to these prior works, it can work on the top of the above works to make the

camera-based mobile applications more efficiently.

11

320x320 416x416 512x512 608x608
DNN Model Setting

0

100

200

300

400

500

 D
et

ec
tio

n
La

te
nc

y
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Detection Latency
Accuracy

Figure 2.1: Detection latency and accuracy per frame for different frame sizes.

The latency is presented by the bars, and the accuracy is shown by the lined stars.

2.3 Motivation

In this section, we conduct experiments on real mobile devices to evaluate the

performance of state-of-the-art object detection and tracking models. From the

experimental results, we derive four observations that motivate our design.

2.3.1 Experimental Setting

DNN-based Object Detection. Two DNN-based object detection pipelines

are widely used. The first type detects and classifies objects by a single DNN

object detection model, e.g., Faster RCNN [33], SSD [9] and YOLO [8]. The

second type first detects the regions of interest using background subtraction and

then classifies each small region using a DNN classification model, e.g., ResNet

[34] and InceptionV4 [35]. The latter sometimes is insufficient if there are many

regions of interests to detect [36]. In this work, we thus adopt a single DNN model

for both detection and classification.

In particular, we use YOLOv3 [4] based on the following considerations. 1)

YOLOv3 has an optimal overall performance (i.e., accuracy and latency) among

all the object detection architectures [4]. On the same hardware, YOLOv3 runs

significantly faster than other detection models such as SSD and R-FCN, and

still provides comparable accuracy [37]. 2) YOLOv3 scales with a set of input

frame sizes, which further determines the processing time of one frame. We can

12

0 10 20 30 40 50 60 70
Frame

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

Video1

Video2

Figure 2.2: Tracking accuracy of two different videos. The content of Video 1

changes faster than that of Video 2. YOLOv3-608 is used to detect the objects in

the first frame.

change the input frame size of YOLOv3 during the processing of one video without

changing the weights of the model. This feature allows us to adjust its accuracy

and detection latency tradeoff without reloading a new model.

Object Tracking Algorithms. When the DNN model is detecting the

objects in one frame, good features to track [16] algorithm is used to extract good

feature points from the detected frame. And then we implement an object tracking

algorithm based on the standard Lucas-Kanade method [17]. The details of object

tracking can be found in 2.4. The Lucas-Kanade method is widely used in some

prior works [21, 23]. It can estimate the positions of feature points in next frame

by a local image flow (velocity) vector (Vx ,Vy).

Besides tracking objects, it is unique in our work to use the intermediate results

of the Lucas-Kanade method to adapt the DNN model settings. We need to detect

how fast the video content changes in time. The average moving velocity of key

points between frames is a lightweight and good indicator to describe the change

rate of video content.

Hardware. We use the Nvidia Jetson TX2 as the mobile device in this work.

TX2 is a representative open-source mobile platform that can easily establish

a mobile development environment with the Jetson TX2 development kit, like

configuring cuDNN, CUDA Toolkit. It includes 6 CPU cores, 8-GB DRAM and

an integrated 256-core Pascal GPU. In our implementation, we run Ubuntu 16.04

13

OS on the Nvidia Jetson TX2 platform. We implement our system based on Nvidia

JetPack[38], Nvidia TensorRT [39] and Nvidia Video Codec SDK [40].

Performance Metric. We use the F1 score to measure the detection or

tracking accuracy of a single frame. F1 score is the harmonic mean of precision

and recall, calculated as:

F1 Score = 2 (
1

Precision
+

1

Recall
), (2.1)

where precision is the ratio of the number of true positives to the total number

of objects detected by the scheme, and recall is the ratio of the number of true

positives to the total number of objects in the ground truth. When the detected

bounding box has the same label and sufficient spatial overlap with the ground

truth box, this object will be identified as a true positive. We use intersection over

union (IoU) to measure the spatial overlap.

IoU =
area(Y ∩G)

area(Y ∪G)
, (2.2)

where Y is the detected area of objects from the scheme under evaluation and G

is the ground truth area of objects. The value of IoU is set to 0.5 in this work.

Generally, a high F1 score indicates better detection and tracking accuracy,

e.g., an object detector is considered to be perfect when its F1 score is 1. To

calculate the false positives and false negatives, we need to know the ground truth,

i.e., labels and accurate locations of objects in frame. In our experiment, we use

the detection results of YOLOv3-704 as the ground truth. Since the large frame

size 704x704 provides a high detection accuracy.

2.3.2 Experimental Results and Observations

YOLOv3 has two versions, i.e., a full version [4] and a lightweight version

YOLOv3-tiny. YOLOv3-tiny is tailored for mobile devices by trading detection

accuracy for short processing latency [8]. Based on our experiments on 13 video

clips with 141213 frames, YOLOv3-tiny still cannot provide real-time (30 fps)

video processing on mobile device. What is worse, its average F1 score per frame

is as low as 0.3. Only 0.7% of frames achieve an F1 score higher than 0.7. The

14

Table 2.2: The latency of detection and tracking for one frame.

Component Time (ms)

YOLOv3 detection latency 230-500

Good feature extraction 40

Tracking latency 7-20

Overlay latency 50

official website of YOLO [8] also shows that the full YOLOv3 can provide more

than 55.6% higher accuracy than YOLOv3-tiny. Therefore, we use YOLOv3 not

YOLOv3-tiny as the object detector in this work.

Detection Accuracy and Latency. Figure 2.1 depicts the detection latency

and accuracy of YOLOv3 under different settings of frame sizes. In this experiment,

we use YOLOv3 to process 4000 frames one by one. We record the F1 score and the

processing latency of each frame. Both the average processing time and detection

accuracy per frame increases as the frame size of DNN model increases. The

processing time changes from 230 ms to 500 ms. The F1 score per frame augments

from 0.62 to 0.88, if the largest frame size 608x608 among our settings is used.

Observation 1: Even with the lightest model setting (i.e., YOLOv3-320 in our

implementation), the DNN-based object detector cannot process a video in real time.

To capture the speed of mobile cameras (like 30 or 60 FPS), after processing one

frame, the object detector must process the newest frame in the frame buffer that

was captured by the camera. The frames between two processed frames will be

skipped by the object detector. The objects detected by the first processed frame

will be used as the reference by the tracking algorithm to track these objects until

the object detector processes the next frame.

Observation 2: For one frame, a larger YOLOv3 frame size contributes to

a higher detection accuracy, but suffers from a longer processing latency, and

vice versa. If a large frame size is used, the detection accuracy is high, which

provides the tracking algorithm with a high initial accuracy; but it also needs a

15

long processing time, which means the number of frames between the two YOLOv3

detected frames is large.

Tracking Accuracy. Between the two frames that are processed by the object

detector, we track the objects in these frames based on the Lucas-Kanade method.

To study the tracking accuracy, we use YOLOv3-608 to detect the objects in one

frame, and then run the tracking algorithm to track these objects in the following

frames. We do such an experiment to detect and track objects 10 times on two

different videos respectively. Figure 2.2 shows the average tracking performance

of these two videos. The content of Video1 changes faster than Video2. For both

videos, the initial tracking accuracy is high, as the input size used by the YOLO

model is relatively larger (608x608). However, the tracking accuracy drops below

0.5 after 9 frames for video1 and 27 frames for video2. The tracking accuracy of

video1 degrades faster. Because it is hard to accurately estimate the positions of

the detected objects in the following fast-changing frames. In addition, many new

objects also appear in these frames.

Observation 3: The tracking accuracy drops quickly for the videos in which the

content varies fast. Before the tracking accuracy drops to a low level (e.g., F1 score

is below 0.5), we need to perform another object detection to calibrate the tracking

performance to the initial tracking accuracy level. If the video content varies fast,

a small frame size may be used in YOLOv3 detection, so that its processing time of

one frame is short. Therefore, the YOLOv3 frame size determines both the initial

tracking accuracy and the number of frames the tracking algorithm needs to track

before the next calibration. It needs to be carefully set according to the online

change rate of video content.

Tracking Latency. Table 2.2 shows the processing time of tracking one frame.

It takes 40 ms on average to extract good feature points for tracking. We do not

need to extract good features for each frame, but only the DNN detected frames.

It takes 7 ms to 20 ms on average to track all the feature points from one frame

to another. The latency depends on the number of objects and good features in

the frame. Finally, for each frame, it takes 50 ms to find a good feature for each

object and overlay the bounding boxes on top of all objects.

16

DNN Model
Adaptation

DNN-based
Object Detector

Object
Tracker

Overlay
Drawer

Frame
Buffer

Frame 1, n+1

Frame 2, 3, …, n

Detected
objects

Tracked
objects

Video content
change rate

Input size

Detected
objects

Figure 2.3: Architecture of AdaVP . Each frame is either processed by the object

detector or by the object tracker. The object tracker takes the objects detected

by the object detector as input. The object detector uses the results of the object

tracker to calculate the video content change rate and further adapt its DNN model

settings. Finally, the processed frame will be passed to the overlay drawer module

to draw the bounding boxes and display the frame on screen.

Observation 4: The tracking latency of one frame is larger than the frame

interval of normal camera video streams. To provide real-time video processing,

we have to skip tracking in some frames to catch up with the frame capture speed

of mobile cameras.

2.4 Design of AdaVP

In this section, we describe the design of AdaVP . After a brief overview of

AdaVP ’s architecture, we will introduce three key components of AdaVP .

2.4.1 System Overview

Figure 2.3 shows the system architecture of AdaVP . The frames taken by

a mobile camera are first stored in a frame buffer. The task of AdaVP is to

process the frames in the buffer one by one in real time, so that there is no frame

accumulated in the frame buffer. After AdaVP ’s processing, the objects of each

frame will be identified. The results will be passed to the overlay drawer module

17

Camera

Baseline System

Parallel System

Frame m0

Frame n0

frame m0 + 1, …, m1 - 1 … Frame mi frame mi + 1, …, mi - 1 …

Frame n1 Frame n2

Frame n0+1, …, n1-1 frame n1+1,…, n2-1
… Frame ni

Frame ni+1, …, ni-1 Object Tracker

Object Detector

Figure 2.4: Two different video processing systems, i.e., a baseline system and

the pipeline of parallel detection and tracking.

to draw the bounding boxes. The overlaid frames are the views with overlaid

augmented objects, which will be finally displayed on the mobile screen.

AdaVP is mainly composed of three components, i.e., DNN-based object de-

tector, object tracker and DNN model adaptation module. The object detector

and the object tracker form a parallel detection and tracking pipeline. A frame in

the frame buffer is either processed by the object detector or by the object tracker.

When the object detector is processing a new frame, the object tracker handles all

the accumulated frames before that frame in the buffer. In addition, the object

detector uses the results of the object tracker to calculate the video content change

rate and adapts its DNN model settings.

With the parallel detection and tracking pipeline, when the object detector

accomplishes the processing of one frame, the object tracker takes the objects

detected by detector as input to track these objects in the following frames. At

the same time, the object detector fetches the newest frame from the buffer and

starts detecting the objects in that frame. To support real-time video processing,

when the object detector finishes the processing of the newly fetched frame, the

object tracker needs to accomplish the processing of all frames before that frame

(details can be found in 2.4.2).

To enable an efficient parallel detection and tracking, we adapt the DNN model

settings to the change rate of video content. The DNN model adaptation module

takes the intermediate results of the object tracker to calculate the change rate of

video content. Based on Observation 3, if the video content change rate is high, the

tracking accuracy degrades sharply. A model adaptation algorithm is developed

to adapt the DNN model setting to the video content change rate.

18

2.4.2 Parallel detection and tracking pipeline

Figure 2.4 illustrates the workflow of our proposed parallel detection and track-

ing pipeline and a baseline system. The baseline system in Figure 2.4 is a simple

implementation of the latest mobile video processing work, MARLIN [23]. To avoid

offloading, the baseline system executes the object detector and object tracker on

mobile devices sequentially. At the beginning, the object detector fetches frame

m0 from frame buffer and detects the objects in this frame. It takes hundreds

of milliseconds for the DNN model to process one frame. During this process, k

frames have been accumulated in the buffer. When the object detector completes

its detection, it delivers the detection results to the object tracker. The latter will

track the objects in the following j frames (from frame m0+1 to frame m1−1) to

catch up. When the system detects significant scene changes, the object detector

will be triggered to detect a new frame, the frame m1. In this system, to catch up

with the camera feed, j must be larger than k. If the system is required to achieve

real-time processing, the object tracking time should be larger than the object

detection time. However, if the system detects significant scene changes before

the object tracker catches up, it will trigger the DNN object detector immediately

and the system latency will be accumulated. The accumulated latency will further

hurt overall accuracy.

To reduce the accumulated latency and improve processing accuracy, we pro-

pose MPDT (Mobile Parallel Detection and Tracking). It is a component in AdaVP

that executes the object detector and object tracker in parallel. For MPDT, after

the object detector delivers the detection result of frame n0 to the object tracker,

k frames have been accumulated in the buffer. The object detector fetches the

newest frame from the buffer to do object detection, which is frame n1. At the

same time, the object tracker starts tracking the objects in the frames from frame

n0+1 to frame n1−1 using the detection results (object locations, object labels) of

frame n0 received from the object detector. While the object detector is detecting

frame n1, the object tracker is tracking frame n0 + 1 to frame n1 − 1. In this

way, the object detector and object tracker keep working in parallel, so the object

detection time and object tracking time are basically same.

19

To implement MPDT, we use multithreading techniques. There are two

technical problems. The first one is to prevent multiple threads to read/write the

shared data at the same time. The second is the communication among multiple

threads. We use three threads in our system, an object detector thread, an object

tracker thread, and a main thread. The main thread is responsible for scheduling

the other two threads and displaying images. The shared data among these threads

are the frame buffer, detected results from the object detector and the display

image. The shared data cannot be accessed by multiple threads at the same time,

so we use lock to prevent data from being accessed at the same time. The threads

also need to be notified when they can access the shared data. We use event to do

the communication among different threads. To synchronize the object detector

and object tracker threads, once the object detector fetches a new frame, the object

tracker will cancel its tracking tasks after finishing the current task. But it does

not display the current task. This is because the current task the object tracker is

doing is on the prior frame to the frame is fetched by object detector, so if displays

it, the displayed results will go backwards.

2.4.3 Object Tracker

MPDT needs to continuously track objects (detected by the object detector)

across the frames in between two DNN executions. The number of frames to

be handled could be large, e.g., 20 frames for YOLOv3 with a frame size of

608x608 (YOLOv3-608). To maintain the detection accuracy and achieve real-time

performance, the object tracker needs to be accurate and lightweight. Typically,

there are two steps in the object tracker, Feature Extraction and Object Tracking.

Feature Extraction. We first extract some features in the last DNN detected

frame and then track these features in the following accumulated frames. By

tracking these features, we can estimate the moving speed of the objects in the

frame. For a frame, its features can be extracted using a feature detector and

descriptor such as SIFT (Scale-invariant feature transform), SURF (Speeded-Up

Robust Features), good features to track, FAST (Features from Accelerated Seg-

ment Test) and ORB (Oriented FAST and Rotated BRIEF) [41, 42, 16]. Generally,

20

the more accurate a feature descriptor is, the longer processing latency it needs.

After evaluating the overall performance of all the above feature descriptors, we

use the standard good features to track [16] method to extract the good feature

points in the DNN detected frames.

(a) Frame 0, by detec-

tor (acc:0.79)

(b) Frame 8, by

tracker(acc:0.62)

(c) Frame 14, by detec-

tor (acc:0.81)

(d) Frame 23, by

tracker (acc:0.75)

(e) Frame 0, by detec-

tor (acc:1)

(f) Frame 8, by tracker

(acc:0.83)

(g) Frame 14, by

tracker (acc:0.73)

(h) Frame 23, by de-

tector (acc:1)

Figure 2.5: Frame accuracy of MPDT using two different model settings (First

row: MPDT-YOLOv3-320; second row: MPDT-YOLOv3-608).

Object Tracking. We then track the extracted good features in the following

frames between two DNN detected frames using the Optical Flow Based Object

Tracking method. Optical flow captures the pattern of apparent motion of objects,

surfaces, and edges among frames. We use the well-known Lucas-Kanade [17]

optical flow method to track good features in the following frames. Because only

the feature points inside the bounding boxes detected by YOLOv3 are useful for

the system to track objects. We only detect and extract feature points inside the

bounding boxes. The feature points extracted from the same object should have

similar motion vectors (distance and direction) between frames, so the motion

vector of these feature points can describe the motion vector of the object.

There are usually multiple objects in one video frame. Different objects may

have different motion vectors. To achieve high tracking performance, instead of

calculating an average motion vector of all objects, we calculate the motion vector

for each object. As a result, the tracking time per frame is related to the numbers

21

of objects in the frame, i.e., the more objects a frame has, the longer time it takes

to find good features and calculate the motion vector for each object.

Tracking Frame Selection: The intermediate frames between two DNN

detected frames will be fetched from the frame buffer into a temporary buffer.

In this work, we call the time of one DNN detection execution as a detection or

tracking cycle. From the motivation experiments and observation 4, we know that

it is not practical to track all the frames in the temporary buffer, as the feature

tracking and overlay drawing of one frame take more than 33 ms (if the frame rate

of the video is 30 FPS). We can leverage the temporal correlation between adjacent

frames in a video, i.e., adjacent frames usually contain similar content [22, 21] to

select a certain number of frames at regular intervals in the temporary buffer to

do object tracking.

To decide the number of frames to track, we need to know the processing time

of the feature tracking per frame. However, as explained above, the tracking time

per frame varies according to the number of objects in one frame. MPDT uses the

prior tracking experience to find this number. We assume the number of objects

in two adjacent tracking cycles does not change much. MPDT counts the number

of frames that ht−1 were tracked and the total number of frames ft−1 in the buffer

during the last cycle and calculates the tracking frame fraction p = ht−1

ft−1
. Then

it gets the total number of frames ft in the buffer during the current cycle and

estimates how many frames can be tracked during this cycle ht = p ∗ ft. After

getting the predicted ht, the system knows how to select frames at regular intervals.

The frames that are not selected by the tracker use the location and label of objects

from the previous tracked or detected frame [36].

The object tracker uses the last DNN detected frame as the reference frame,

including the labels and bounding box positions (locations) of all the objects in the

reference frame. It will process the frames selected by the tracking frame selection

method. It outputs the labels and locations of the objects in these tracked frames.

A label is a class as which the DNN identified the object (e.g., person or dog). A

bounding box represents the position of an object in the frame, which is represented

by a 4-tuple vector (left, top, width, height).

22

Workflow of the Object Tracker. Putting all of these components together,

the workflow of our object tracker is as follows: 1) Receive the detection results

(labels and bounding box positions) of frame n0 from the object detector and

fetch the frame n0+ i selected by tracking frame selection method. 2) Extract all

the good feature points inside all the bounding boxes in frame n0 using the good

features to track method. 3) Find one feature point for each bounding box. 4) Use

the Lucas-Kanade method to estimate the optical flow from frame n0 to frame

n0 + i. 5) Calculate a motion vector for each good feature between frame n0 to

frame n0 + i and use it to shift the old bounding box positions to the current

positions in frame n0 + i. 6) Select a new frame in the frame buffer to track.

2.4.4 Model Adaptation

Observations 1-3 in Section 2.3 indicate that different frame sizes of YOLOv3

provide different detection accuracy and tracking performance. In this section,

we adjust the frame size to achieve better accuracy of the proposed parallel ob-

ject detection and tracking (MPDT). After showing some preliminary results, we

introduce the change rate detection of video content and the adaptation algorithm.

Preliminary experiment results

Figure 2.5 depicts an example of the detection accuracy of MPDT under two

different DNN model settings (MPDT-YOLOv3-608 and MPDT-YOLOv3-320) on

the same video clip. We show the results of 4 frames each.

• Frame 0. Both settings perform object detection for Frame 0. The detection

accuracy of MPDT-YOLOv3-608 is 1, and the accuracy of MPDT-YOLOv3-

320 is 0.79. Because the latter has 3 false positive cases, i.e., it identifies 2

cars as trucks and 1 truck as car.

• Frame 8. Both settings execute object tracking by taking the detection

results of Frame 0 as reference. The tracking accuracy of MPDT-YOLOv3-

320 drops to 0.62; whereas the accuracy of MPDT-YOLOv3-608 is still 0.83,

as the latter has an initial detection accuracy of 1.

23

• Frame 14. MPDT-YOLOv3-320 fetched this frame to do detection and its

accuracy improves to 0.81. MPDT-YOLOv3-608 is still doing tracking using

the detection results from frame 0, and its accuracy drops to 0.73, because

new vehicles appear.

• Frame 23. MPDT-YOLOv3-320 is performing tracking and its accuracy

drops to 0.75. MPDT-YOLOv3-608 fetched this frame to do detection and

its accuracy is calibrated to 1.

From the above example, we see that MPDT-YOLOv3-608 has a high initial

detection accuracy, but its long detection latency results in a large number of

frames to be tracked (i.e., low tracking accuracy for the last few frames). On the

other hand, MPDT-YOLOv3-320 has a relatively lower initial detection accuracy,

but it calibrates its tracking accuracy more frequently by performing light-weight

object detection. For some frames, MPDT-YOLOv3-320 has a higher accuracy;

but for the others, MPDT-YOLOv3-608’s performance is better.

From the experiment results in Figure 2.2, we know that when the video content

changes slowly, the tracking accuracy degrades slowly. In this situation, MPDT-

YOLOv3-608 should be used to have a high initial detection accuracy. On the other

hand, when the video scenes change fast, MPDT-YOLOv3-320 should be used,

as the tracking accuracy drops fast and needs to be calibrated more frequently.

Therefore, we propose to dynamically switch the frame size of YOLOv3 at runtime

according to the video content change rate to achieve the best performance all the

time. We first design a metric to measure the change rate of video content. Based

on that, we develop an adaptation algorithm to adjust the frame size at runtime.

Video Content Change Rate

The metric to evaluate the video content change rate must be lightweight so

that its computation will not impact the tracking and detection operation of the

real-time system. We propose to leverage the intermediate result from tracking to

measure the change rate of video content. By doing so, it almost adds no extra

computation. We use the average motion velocity of all good features extracted

24

from two adjacent frames (i and i + 1) as the change rate of video content. It is

calculated as follows.

vi,i+1 =

∣∣∣∑M
k=1 f

k
i (x, y)− fk

j (x, y)
∣∣∣

M ∗ (j − i)
(2.3)

where fk
i (x, y) and fk

j (x, y) are the pixel positions of the kth feature in the ith

frame and the jth frame respectively. We have M features extracted from these

frames. Since we skip some frames during tracking, i.e., j − i ̸= 1, we normalize

the motion velocity of features to the velocity between two adjacent frames by

dividing the results by the number of frames between the ith and jth frame.

We use the pixel coordinates of features to calculate the motion velocity. For

different cameras with different capture distance and angles, our motion velocity

metric can measure how fast the objects move in the pixel coordinates of a frame.

A high motion velocity means the video content is changing fast, i.e., the existing

objects moves out of the frame fast and new objects may appear frequently.

DNN Model Setting Adaptation

We design a lightweight DNN model adaptation module to find the relationship

between the motion velocity and different frame sizes (4 settings in our current

implementation, i.e., 320x320, 416x416, 512x512 and 608x608). At runtime, the

model adaptation module decides whether to switch to another frame size (model

setting). Our adaptation scheme also works for selecting the right model not

just model settings at runtime, as long as these DNN models have complementary

detection accuracy and latency [36]. However, in order to use multiple DNN models

simultaneously, we must pre-load these models, which requires large amounts of

memory and cannot be supported by mobile devices. Therefore, we focus on

switching to different model settings in this work. Different model settings have

similar performance as different DNN models.

Generally speaking, a high motion velocity indicates high video content change

rate and in turn sharp degradation of object tracking; as a result, a small frame size

is necessary to keep the detection latency small and calibrate the object tracking

more frequently. We assume the relationship between the motion velocity and the

25

4 frame sizes is linear, i.e., high velocity requires small frame size. To quantify

the relationship, we need to find 3 velocity thresholds, i.e., v1, v2 and v3. If v≤v1,

the frame size 608x608 will be used. If v1<v≤v2, v2<v≤v3 or v3≥v, the frame size

512x512, 416x416 or 320x320 will be used respectively.

It is a typical classification problem to find the three velocity thresholds. We

first generate a large amount of training data and then use the training data to

find the thresholds. In our current implementation, 32 videos, corresponding to

105205 frames, are used for finding the thresholds. The videos include 14 scenarios,

including surveillance videos at highways, intersections, city streets, train stations,

bus stations, and residential areas; car-mounted videos driving on the highway

or around downtown; mobile camera videos about airplanes, boat, animals in the

wild, racetrack, meeting room and skating rink.

To collect training data, we divide each video into a sequence of chunks.

Each chunk is 1 second. We run MPDT to process each video with 4 frame

sizes independently. We calculate an average detection accuracy and an average

motion velocity every second. For each video, we obtain 4 sequences of pairs

(detection accuracy and motion velocity). For each chunk, by comparing the

detection accuracy from 4 frame sizes, we can find the frame size that provides

the highest detection accuracy. Finally, we generate a training dataset that is

composed of a large number of vectors (motion velocity and the best frame size).

The best frame size is the label of the corresponding motion velocity. We then

use the motion velocities and their labels to train a classification model to find the

three thresholds under a certain frame size.

To use the adaptation module, we use the motion velocity measured in the

current detection cycle to decide which frame size of YOLOv3 will be used for

the next cycle. The motion velocity measured in the current detection cycle is

measured based on the current frame size. In our experiments, we find that for

the same chunk of the video, the motion velocity measured under different frame

size settings are similar, but not exactly the same. It may be because the object

bounding boxes detected by 4 frame sizes are not exactly the same. The feature

points are extracted within the bounding boxes, thus the extracted feature points

26

are not exactly the same. To solve this problem, we find the three thresholds for

each frame size. For online adaptation, we use the correct thresholds based on

the frame size of current detection cycle. After training, the DNN model setting

adaptation module can be used to guide the system to adapt to the change of

video content. At runtime, this module takes the motion velocity and current

DNN model setting as input and outputs the next DNN model setting.

It only takes 8.49 × 10−2 ms to extract the motion features from the object

tracker and 1.89×10−2 ms to switch to a different DNNmodel setting. Compared to

other components, our motion feature extraction time and DNN setting switching

time is negligible, but we can improve the system performance significantly by using

these two components. Since we change the setting of DNN model at runtime,

the latency of AdaVP is not fixed. It varies from 200 ms to 470 ms (one DNN

detection time subtract one frame time). This latency is inevitable in DNN-based

video processing system.

2.5 Implementation

Framework: We use PyTorch [43] as the deep learning framework, because

it supports dynamic computational graph building. As we know, a computational

graph is normally built to represent some complex computation in DNN models.

PyTorch can build and compute the computational graph at the same time, which

is different from Tensorflow or Darknet. Tensorflow or Darknet builds the com-

putational graph statically before computations start. Our system intends to be

adaptive to the video content, and switches the DNN model settings dynamically

during video processing according to the change of video content. The compu-

tational graph will be built according to the DNN model setting of the model.

When the setting changes, the computational graph changes as well. So static

computation graph building cannot meet the system requirements.

System implementation: We use multithreaded programming to implement

our system. The object detector and The object tracker are implemented as two

threads. CUDA is set up for the object detector thread, so it is able to use GPU

27

resources at runtime. The Frame Buffer is implemented by using Queue data

structure. Both the object detector and object tracker have access to it. For

the object detector, we get the weights file and cfg file from official darknet [8]

website. For the object tracker, we use the good features to track function

provided in OpenCV [44] to detect and extract good feature points. Because

only the feature points inside the bounding boxes detected by YOLOv3 are useful

to track objects, we use mask for the detected bounding boxes and only detect

and extract feature points inside the masks. Compared to extracting the features

across the whole image, only extracting features within masks saves computation

and energy. We use the calcOpticalFlowPyrLK function to track these feature

points in the following frames. To reduce latency, for each bounding box, we find

one point inside it, calculate the motion vector of this point, and then use this

vector to shift the bounding box.

Energy consumption: We use the shell file Power Monitor.sh to get the

power of the GPU, CPU, DDR and SoC of TX2. We record the power when the

TX2 is running AdaVP or other baseline systems and the power when it does not

run anything. The difference between these two records is the power of AdaVP

or other baseline systems. Then we can calculate the energy consumption by

multiplying power and running time.

Data storage: We save some data at runtime, including frame numbers, object

class labels and object locations, motions of video from the object detector and

object tracker. We use these data to train our DNN model setting adaptation

module and compute the evaluation accuracy offline. Saving data at runtime adds

extra computational overhead to our video processing system, which impacts the

system performance slightly. The real performance of AdaVP should be better

than that in our evaluation.

2.6 Evaluation

In this section, we conduct a variety of experiments to evaluate the performance

of AdaVP comprehensively.

28

2.6.1 Experimental Setting

Dataset. To evaluate our system completely, we use the ImageNet and Videezy

video datasets [18, 19], we also find some real-world public videos from YouTube [20].

Our dataset includes 45 indoor or outdoor videos that are recorded by static,

moving or car-mounted cameras. These videos contain various scenarios with

multiple objects (e.g., cars, trucks, trains, persons, airplanes, animals). Compared

to live camera feed, these videos are much more challenging. Most of the videos

are 30 FPS at a resolution of 1280 x 720 pixels. The length of each video ranges

from 15 seconds to 34 minutes. These videos contain 246418 frames in total.

We use 105205 frames to train the model adaptation module which explores the

relationship between the DNN model settings and the motion of video content and

141213 frames to evaluate the system performance. We conduct all the evaluation

experiments on the entire test dataset.

Baselines. We compare the performance of AdaVP with three baselines.

• MPDT. MPDT uses fixed DNN model settings for all types of videos all

the time. We use 4 settings (320x320, 416x416, 512x512 and 608x608) to do

the experiments. These four settings refer to YOLOv3-320, YOLOv3-416,

YOLOv3-512 and YOLOv3-608. AdaVP switches the model setting of DNN

model at runtime according to the changing rate of video content.

• MARLIN. MARLIN [23] is the latest work that executes object detection

and tracking sequentially, without parallel computing. The object detector

will be triggered when significant changes are detected by video content

change detector. We implement the idea of MARLIN in our framework by

the same DNN detector, object tracker and video content change detector as

AdaVP . For the video content change detector, we conduct a set of exper-

iments to find a motion velocity threshold that provides the best detection

accuracy for MARLIN.

• Without Tracking. In this scheme, there is no object tracker to do track-

ing. We only use the DNN model to do detection. The DNN model is always

29

416x416 608x608 AdaVP512x512
DNN Model Setting

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

Without_tracking MPDT AdaVPMARLIN

320x320

Figure 2.6: Performance comparison of AdaVP and baseline systems.

going to fetch the current video frame. For the skipped frames between two

DNN executions, we use the detection result from the previous frame [36].

Detection Accuracy. We use the F1 score to measure the detection or

tracking accuracy of a single frame. We use the percentage of frames with above a

certain F1 score threshold to measure the accuracy of a video [21]. The F1 score

threshold is set as 0.7 as default. For example, if the accuracy of a video is 0.6, it

means there are 60% frames with F1 score higher than 0.7. For the video set, we

use the average percentage per video as accuracy to demonstrate the evaluation.

2.6.2 Overall Performance

Figure 2.6 depicts the performance of AdaVP and the baseline systems on the

whole testing dataset. From the experiments, we find AdaVP increases 20.4%

to 43.9% accuracy compared to MARLIN and increases 13.4% to 34.1% accuracy

compared to MPDT under different DNN model settings. The experimental results

show that YOLOv3-512-based system achieves the best performance compared to

other model settings for both MPDT and MARLIN.

Number of cycles per DNN model setting switching. Figure 2.7 presents

the cumulative probability of number of cycles per DNN model setting switching.

It is near 50% the system switches model setting after one cycle. Since AdaVP

switches the DNN model setting at runtime, the duration of one cycle is not fixed,

the number of frames within one cycle is not fixed (e.g., 10 to 25 frames per cycle).

30

0 20 60 8040
Cycles

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CD
F

Figure 2.7: Cumulative

probability of number of

cycles per DNN model set-

ting switching

320x320 416x416 512x512 608x608
DNN Model Setting

0.0

0.2

0.4

0.6

0.8

1.0

P
er

ce
nt

ag
e

Figure 2.8: Trigger

percentage of every

DNN model setting from

AdaVP

0 50 100 200 250 300

0.2

0.4

0.6

0.8

1.0

F
1

S
co

re

MPDT(512x512)
AdaVP

150
Frame

Figure 2.9: Frame accu-

racy comparison ofAdaVP

and MPDT-YOLOv3-512

(the best baseline)

416x416 512x512 608x608 AdaVP
DNN Model Setting

0.0
320x320

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

alpha = 0.75
alpha = 0.7

Figure 2.10: Performance comparison

under different thresholds of F1 score

416x416 512x512 608x608 AdaVP
DNN Model Setting

0.0 320x320

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

IoU = 0.6
IoU = 0.5

Figure 2.11: Performance comparison

under different IoU value

31

For 90% of cases, the number of cycles per switching is below 20. There are 5%

of cases that AdaVP switches to another model setting after 40 cycles. For these

cases, the video content change detector does not detect significant change of the

video content. Thus, AdaVP keeps using the same DNN model setting.

Usage of different model settings. Figure 2.8 shows the trigger percentage

of different DNN model settings of AdaVP . From the experimental results, we

know that all of the model settings have been triggered at runtime according to

the video content change rate. The frame sizes of 512x512 and 608x608 are mostly

being used. The usage of the other two model settings is around 10%.

Frame Accuracy Comparison. Figure 2.9 demonstrates the accuracy of

AdaVP at the frame level. We use MPDT by YOLOv3-512 as a comparison since

it is better than other model settings we used. Most of time, AdaVP achieves higher

accuracy than MPDT-YOLOv3-512. Around frame 180, the detection accuracy of

MPDT-YOLOv3-512 drops heavily. But the accuracy of AdaVP is still high, this

is because the DNN model adaptation module decides not to use YOLOv3-512 for

this cycle according to detected change of video content. In the long run, AdaVP

combines the benefits of different settings and achieves higher accuracy.

2.6.3 Performance Gain of Parallel Detection and Tracking

From Figure 2.6, we also know MPDT outperforms MARLIN and without

tracking scheme under each model setting. MPDT achieves 7.1% to 21.95% higher

accuracy than MARLIN, MPDT achieves 2.3% to 37.3% higher accuracy than

without tracking scheme under different model settings. This is because MPDT

keeps doing object detection and tracking concurrently and calibrates the object

tracking by running object detector at the maximum frequency. However, MAR-

LIN does object detection and tracking sequentially, which is inefficient for complex

and challenging video scenes.

32

Table 2.3: Comparison of energy consumption and accuracy

AdaVP

MPDT-

YOLOv3

-320

MARLIN-

YOLOv3

-320

YOLOv3

-tiny-320

YOLOv3

-320

MPDT-

YOLOv3

-512

MARLIN-

YOLOv3

-512

YOLOv3

-608

GPU

(w · h) 3.65 2.85 2.22 4.09 36.25 3.53 3.03 68.84

CPU

(w · h) 1.88 2.08 1.25 3.14 6.64 2.14 1.84 6.24

SoC

(w · h) 0.39 0.34 0.24 0.53 3.60 0.40 0.32 6.62

DDR

(w · h) 1.34 1.18 0.82 1.66 11.25 1.36 1.13 20.17

Total

(w · h) 7.26 6.45 4.53 9.42 57.74 7.43 6.32 101.87

Accuracy 0.59 0.44 0.41 0.07 0.57 0.52 0.48 0.89

2.6.4 Parameter Setting in AdaVP

F1 Score Threshold. Figure 2.10 presents the performance under different

accuracy thresholds α at 30 FPS. As introduced in the experimental setting, we use

the percentage of frames with certain F1 score threshold as the accuracy metric for

a video. When we change the threshold α from 0.7 to 0.75, the accuracy is stricter.

But AdaVP still outperforms the baseline system MPDT. When α is set as 0.75,

AdaVP increases the accuracy of MPDT by 14.9% to 42.6%. The performance gain

is even larger than the case when α is 0.7. From these two accuracy thresholds,

we know AdaVP has more frames with higher accuracy than the baseline system.

IoU Threshold. We also compare the accuracy with different IoU values

under 4 different model settings at 30 FPS. The widely-used IoU is 0.5 in the

computer vision community. Here, we use a stricter IoU threshold, which is 0.6

for comparison. Higher IoU value means true positives are identified stricter. So,

the F1 score per frame decreases and the overall accuracy decreases. Figure 2.11

reveals that AdaVP consistently outperforms the baseline when IoU is 0.6. It

increases the accuracy by 16.1% to 41.8% compared to MPDT. The performance

gain is even higher when IoU is 0.6, compared with the default 0.5.

33

2.6.5 Energy Consumption and Accuracy

Table 2.3 shows the energy consumption of different hardware components

(GPU, CPU, SoC and DDR) from different video processing methods. We choose

MPDT and MARLIN based on both YOLOV3-512 and YOLOv3-320, since they

have the best real-time performance under the setting of 512x512, and they are

most energy-efficient under 320x320. We choose YOLOv3-tiny-320 because it is

almost real-time on TX2 without tracking or skipping any frames. For comparison,

we also execute YOLOv3-320 and YOLOv3-608 continuously without frame skip-

ping. If we do not consider latency and execute DNN for every frame, YOLOv3-320

is the most energy-efficient, and YOLOv3-608 can provide the highest accuracy for

each frame among the model settings we used.

From Table 2.3, we found AdaVP increases by 20.4% accuracy compared to

MARLIN-YOLOv3-512 at the cost of 14.9% more energy. This is because AdaVP

targets at improving accuracy, but MARLIN focuses on energy efficiency. They

have different design goals. We also found compared to the best baseline MPDT-

YOLOv3-512, AdaVP increases the accuracy by 13.4% with 2.3% less energy

consumption. AdaVP even achieves 3.5% more accuracy with 7.95x less energy

compared to YOLOv3-320. We do not consider the 7x latency from YOLOv3-

320 into the accuracy calculation. If we take the latency into consideration, the

accuracy of YOLOv3-320 even much worse. Though YOLOv3-608 without frame

skipping achieves the highest accuracy, it has 10.3x latency and consumes 14x more

energy than AdaVP .

2.7 Conclusion

This chapter presents a continuous and real-time video processing system that

incorporates object detection and object tracking on mobile devices without of-

floading. We develop MPDT, a parallel detection and tracking pipeline that

executes object detection and tracking concurrently. On top of that, we design

a DNN model setting adaptation module. This module switches the DNN model

settings at runtime according to the detected video content changes.

Chapter 3

Driving Maneuver Anomaly

Detection Based on Deep

Auto-Encoder and Geographical

Partitioning

This chapter presents GeoDMA, which processes the GPS data from multiple

vehicles to detect anomalous driving maneuvers, such as rapid acceleration, sudden

braking, and rapid swerving. First, an unsupervised deep auto-encoder is designed

to learn a set of unique features from the normal historical GPS data of all drivers.

We consider the temporal dependency of the driving data for individual drivers

and the spatial correlation among different drivers. Second, to incorporate the

peer dependency of drivers in local regions, we develop a geographical partitioning

algorithm to partition a city into several sub-regions to do the driving anomaly

detection. Specifically, we extend the vehicle-vehicle dependency to road-road

dependency and formulate the geographical partitioning problem into an opti-

mization problem. The objective of the optimization problem is to maximize the

dependency of roads within each sub-region and minimize the dependency of roads

between any two different sub-regions. Finally, we train a specific driving anomaly

detection model for each sub-region and perform in-situ updating of these models

34

35

by incremental training. We implement GeoDMA in Pytorch and evaluate its

performance using a large real-world GPS trajectories. The experiment results

demonstrate that GeoDMA achieves up to 8.5% higher detection accuracy than

the baseline methods.

3.1 Introduction

Although annual traffic fatalities have decreased from 42,702 in 2006 to 36,560

in 2018 in the United States, it is far from the “Toward Zero Deaths National

Strategy” goal [45]. Most of the fatal crashes are the results of human error or

negligence, such as speeding, distracted driving, or driving under the influence of

drugs and alcohol [46].

Smartphone apps [47, 48] have been developed by companies like Google and

Uber to detect anomalous driving maneuvers. They read instant driving sensing

data (e.g., vehicle velocity and orientation) from smartphone sensors for driving

anomaly detection. A recent work, pBEAM [49], applies conditional adversarial re-

current neural networks to develop a personalized model for each driver. It detects

anomalies from instant sensor readings and captures the temporal dependency of

driving data. However, these existing solutions are focused on individual drivers,

the peer dependency of drivers is not considered, i.e., the correlation of driving

maneuvers across vehicles, which is normally caused by local road structures, traffic

conditions, and driving habits. Peer dependency depicts the similarity of driving

maneuvers across vehicles, which is an important factor that needs to be considered

in driving anomaly detection. For example, if most of the drivers in proximity show

similar driving maneuvers during the same period, they should not be related to

anomalous drivings.

In this chapter, we develop GeoDMA, which detects driving maneuver anoma-

lies in real time by analyzing the instant GPS samples of drivers and taking the peer

dependency of drivers into account. Driving maneuver anomalies, like aggressive

driving, distracted driving, drowsy driving and driving under the influence, can

be analyzed from vehicle-based features including the pressure exerted on the

36

brake, the fluctuation of vehicle speed, the angle of wheels, and the steering wheel

movement [50, 51, 52, 53, 54]. We summarize the anomalous driving maneuvers

that can be detected by GeoDMA in Table 3.1, including rapid acceleration, sudden

braking, rapid swerving, frequent speed and direction changing. To effectively

detect anomalous driving maneuvers in real time, GeoDMA takes instant GPS

samples as input, and processes them by a deep auto-encoder model for driving

maneuver anomaly detection. The deep auto-encoder model is designed by consid-

ering both the temporal dependency of each individual vehicle and peer dependency

across different vehicles. In addition, to capture stronger vehicle-vehicle peer

dependencies, a geographical region partitioning algorithm is developed to divide

a city into different sub-regions, in each of which we train an auto-encoder-based

driving anomaly detector, further improving the detection accuracy.

Our deep auto-encoder model is composed of an encoder and a decoder. The

encoder takes the driving state transition feature vector calculated from the in-

stant GPS samples of vehicles as input. A driving state is a combination of a

speed-related operation and a direction-related operation. The driving speed and

direction of a vehicle can be calculated from its GPS samples. The encoder is

designed as a fully-connect layer and a Recurrent Neural Network (RNN) layer,

which transforms an original driving state transition feature into a representation

feature in a lower-dimensional latent space. The decoder is a fully-connected neural

network with two fully-connected layers, which recovers the lower-dimensional

representation feature to a reconstruction feature. It takes the representation

feature as input and outputs the reconstructed feature. The reconstructed feature

has the same dimension as the input of the encoder (the original driving state

transition feature). The temporal dependency can be captured by the RNN, and

peer dependency is incorporated as a regularizer of the deep auto-encoder model.

GeoDMA uses the reconstruction error between the original feature vector and

the reconstructed feature vector of the auto-encoder for anomaly detection, since

anomalous driving data cannot be represented and reconstructed well by a model

that was trained only by normal driving data. With unsupervised learning, the

labeling of anomalous driving data is not needed when training the model. The

37

deep auto-encoder is trained to learn what the normal driving maneuvers look

like. Any driving maneuvers that do not follow the distribution of normal driving

maneuvers will be considered as anomalous driving maneuvers.

To maximize the effectiveness of spatial peer dependency in driving maneu-

ver anomaly detection, GeoDMA incorporates the First Law of Geography [55],

”Everything is related to everything else, but near things are more related than

distant things”. Research in [56] also proposes that locality preservation of spatial

data leads to better service. We consider the locality of peer dependency in our

system. Since the road layouts and traffic conditions vary across a city, the driving

behaviors exist common patterns in small regions with similar contextual features

(i.e., traffic conditions and road structures). The peer dependency in a local area

is stronger than that in the entire city. We develop a geographical partitioning

scheme to perform driving anomaly detection in a geo-distributed way. Specially,

we divide a city into several sub-regions. The data of the vehicles from the same

sub-region will be collected together to develop the anomaly detection model for

this sub-region. The detection accuracy of the model in each sub-region is expected

to achieve higher accuracy than the centralized model that is trained by the data

from the whole city.

Table 3.1: Anomalous Driving Maneuvers that can be Detected by GeoDMA.

Anomalous Driving Maneuvers Corresponding Anomaly in Driving Feature

Rapid Acceleration
The transition duration from a driving state to a

acceleration-related driving state is small

Sudden Braking
The transition duration from a driving state to a

deceleration-related driving state is small

Rapid Swerving
The transition duration from a driving state to a

bearing-related driving state is small

Frequent Acceleration or Deceleration
The transition probability from a driving state to a

acceleration-related or deceleration-related state is high

Frequent Turns
The transition probability from a driving state to a

bearing-related driving state is high

The objective of geographical region partitioning is to maximize the spatial

dependency within the same sub-region and minimize the spatial dependency

38

among different sub-regions. The road segments have stronger dependency are

supposed to be divided into the same sub-region and road segments have weaker

dependency are supposed to be divided into different sub-regions. We first con-

struct the road network of a city as an undirected and weighted graph. We treat

the road segments of the city as vertices of the graph. There is an edge between

two vertices if the roads they represent are geographically connected. We then

formulate the geographical region partitioning problem as an optimization problem

and solve the optimization problem by Normalized Cut (NCut) algorithm. In NCut

algorithm, we extend the vehicle-vehicle spatial dependency to calculate the road-

road spatial dependency. The weight of an edge is specifically designed to depict

the spatial dependency between two vertices (road segments), which is measured

by the similarity of the driving maneuvers that have happened on these road

segments and similarity of the representation features of those driving maneuvers

learned from the auto-encoder.

After obtaining the partitioning result, we train a specific anomaly detection

model for each sub-region and perform in-situ updating by incremental training

to further improve the detection accuracy. We implement GeoDMA in Pytorch

platform [57] and conduct extensive experiments using the T-Drive dataset [58, 59],

which contains vehicle GPS trajectories collected from a big city. Results from

extensive experiments demonstrate that GeoDMA achieves up to 8.5% and 2.2%

higher accuracy than the single-user approach and the centralized approach.

3.2 Related Work

Autoencoder-based Anomaly Detection. With the development of deep

learning, some recent solutions apply deep autoencoders for anomaly detection

[60, 61, 62, 63]. RDA [60] demonstrates the effectiveness of deep autoencoder-based

anomaly detection on image datasets. MemAE [62] uses deep autoencoder for both

image and video anomaly detection. [63] leverages a deep autoencoder for video

anomaly detection. DAGMM [61] shows the effectiveness of deep autoencoder-

based anomaly detection model on network intrusion detection, thyroid cancer

39

analysis and arrhythmia analysis. In this chapter, we apply a deep autoencoder

for anomaly driving maneuver detection.

Driving Anomaly Detection. Smartphone-based methods have been devel-

oped by commercial companies, such as Google and Uber, to detect anomalous

driving maneuvers [47, 48, 64, 65, 66]. CarSafe [47] detects drowsy and distracted

drivers using cameras on smartphones. DriveSafe [48] uses the rear camera, the

microphone, the inertial sensors, and the GPS of a smartphones to assess if a

driver is drowsy or distracted. The camera-based methods have difficulty in

achieving real-time performance. SenSpeed [66] utilizes the accelerometer and

gyroscope of smartphones to acquire the instant vehicle speed. However, this

solution assumes the alignment between the vehicle’s coordinate system and the

smartphone’s coordinate system is fixed, which is hard to guarantee when the

vehicle is driving. [64, 65] use GPS data, and SafeDrive [67] leverages the data

from On-Board Diagnostics to identify driving anomalies. However, they rely on

the sensor readings of a single driver, and the temporal and spatial correlations of

the driving maneuvers from multiple drivers are ignored. Deep learning shows its

efficiency in anomaly detection [68, 69, 70, 71]. In pBEAM [49], it leverages un

unsupervised conditional adversarial RNN to train a single-user driving anomaly

detection model. However, it ignores the peer dependency across vehicles. In

this chapter, we consider the temporal correlation of driving maneuvers and peer

dependency of driving maneuvers in our driving anomaly detection model.

Driving Behavior Modeling. In the literature, there are also some crowd-

sensing works on collecting data from multiple users for driving behavior model-

ing [54, 72, 73, 74]. Some of these studies process the data of individual vehicles

independently, but the statistical correlations across vehicles in those studies were

ignored. Some studies group behaviors of drivers, but do not detect the driving

maneuvers of each vehicle. Most of the driving behavior modeling methods are

offline analysis and assessment. PTARL [75] learns the representation of driving

state transitions and uses the learned representation features to assess the historical

driving score of each driver. It focuses on representation learning but not driving

maneuver anomaly detection. However, GeoDMA is focused on real-time driving

40

anomaly detection, which takes both individual driving maneuvers and vehicle-

vehicle peer dependency into account. Besides, the contextual information like

weather, traffic, and road conditions in a small region tends to be similar.

Geographic Region Partition. The First Law of Geography proposed in

1970 [55] has been applied in many applications, like city management, urban traffic

control, and transportation simulations [76, 77, 78, 79, 80, 81, 82, 83]. Graph-

based road network partition methods are commonly used for region partitioning

[76, 77, 84]. Following those solutions, we also leverage the road network graph to

perform geographical partitioning. However, the graph we define is closely related

to the driving maneuver anomaly detection, e.g., we define the weight of edges

based on the spatial correlation of road segments. Our optimization objective

is to maximize the spatial correlation in a sub-region and minimize the spatial

correlation between any two sub-regions.

3.3 Motivation

Figure 3.1: The trajectories of

vehicles that receive low detection

accuracy with singer-user models.

0 10 20 30 40 50

Distance (km)

0

0.2

0.4

0.6

0.8

1

S
im

il
a
ri

ty

Figure 3.2: The relationship between

vehicles’ distance and vehicles’ driving

maneuver similarity.

In this section, we process the T-Drive dataset and demonstrate the motivation

of two key components in GeoDMA. The detailed descriptions of the T-Drive

dataset is in Section 3.6.2.

41

Peer dependency of multiple drivers. Peer dependency is considered in

driving behavior analysis [75], which processes the historical GPS trajectories of

vehicles to evaluate their driving history. We believe peer dependency is also useful

for online driving anomaly detection. For example, if a driver exhibits stop-and-go

(deceleration and acceleration) frequently, it is difficult to validate whether this

kind of behavior is caused by the driver’s anomalous driving maneuver, the road

structure or the local traffic conditions. If a driver is observed to consistently

show different driving maneuvers from the other drivers around him/her, it’s

reasonable to suspect that the driving maneuvers of that driver are abnormal. Here

we do experiments to investigate the importance of peer dependency in anomaly

detection. We use an auto-encoder (details in Section 3.4.2) to detect anomalous

driving maneuvers and test the performance of single-user models. We use the

driving data of each driver to train an auto-encoder detector independently and

analyze the detection result of each single-user model. We find that the accuracy of

some models can be lower than 0.7. Figure 3.1 highlights the trajectories of those

vehicles that receive inaccurate driving anomaly detection at the same time slot.

They are geographically close and driving in the downtown of the city. The driving

maneuvers of these vehicles can be the reference to one another when developing

the driving anomaly detection models. Based on this observation, we propose to

develop a centralized model by incorporating peer dependency in the single-user

model to improve its accuracy.

Locality of peer dependency. The centralized model is able to consider

the vehicle-vehicle peer dependency across a city. However, the peer dependency

should be considered in a fine-grained way. If a vehicle is driving far away from the

other vehicle, they will has less peer dependency than some vehicles that are close

to one another. It is hard for a centralized model developed for a big city to take

all local features of the city into consideration. Figure 3.2 depicts the relationship

between the similarity of driving features and their distances between any two

drivers. The driving feature similarity is measured by Equation (3.5), which will

be introduced in details in Section 3.4.2. We use 504 drivers to do the experiments

and show the relationship of the driving feature similarities and the distances of

42

Vehicle
Trajectories

Deep
Auto-Encoder

Geographical
Region Partitioning

Road Network

Reconstruction Error

Representation
Feature z

k Sub-Regions

eLInstant GPS
Sample

Normal Driving
Maneuver

< Threshold

> =Threshold Abnormal Driving
Maneuver

Region #1 Deep
Auto-Encoder

Region #N Deep
Auto-Encoder

…

Online Inference

Offline Training and Partitioning

Model Training

Model Training

Figure 3.3: System architecture of GeoDMA.

all driver pairs. As shown in Figure 3.2, as the distance increases, the similarity

of driving features decreases. The experiment result confirms with the First Law

of Geography, which motivates us to partition the road segments in proximity into

the same region for driving maneuver anomaly detection.

3.4 System Design of GeoDMA

In this section, we introduce the design of GeoDMA, including a brief overview,

deep auto-encoder for driving anomaly detection, geographical partitioning, sub-

region model and in-situ updating.

3.4.1 System Overview of GeoDMA

Figure 3.3 depicts the architecture of GeoDMA, which is mainly composed

of two modules, i.e., a deep auto-encoder for driving anomaly detection and a

geographical region partitioning algorithm.

The driving data from each driver will be first converted into the driving state

transition vectors (Section 3.4.2). They are the input of our deep auto-encoder

network. In the deep auto-encoder, we consider both individual vehicle temporal

dependency and the vehicle-vehicle spatial dependency (Section 3.4.2). The deep

43

auto-encoder model is trained by normal driving maneuvers, it cannot reconstruct

the anomalous driving data accurately. We use the reconstruction error of the

model to perform driving maneuver anomaly detection (Section 3.4.2).

To further improve detection accuracy, we partition a city into multiple sub-

regions by a geographical region partitioning algorithm. We formulate the region

partitioning problem as a graph partitioning problem (Section 3.4.3). As shown in

Figure 3.3, the inputs of region partitioning include the road network of a city, the

vehicle trajectories and the representation features generated by the centralized

auto-encoder. We develop an NCut algorithm to solve the optimization problem

(Section 3.4.3). Finally, we train a specific anomaly detection model for each sub-

region and update these models in-situ by incremental training (Section 3.4.4).

3.4.2 Auto-Encoder for Driving Maneuver Anomaly De-

tection

Figure 3.4 presents the inference workflow of our driving anomaly detection

model. During each time window, the vehicle GPS data is fed into the vector

calculator to generate the original driving feature vector x (state transition vector).

Then the auto-encoder verifies x is normal or anomalous. Next, we will introduce

the vector calculator, the deep auto-encoder, and the driving anomaly detection

model in detail.

Vector Calculator

In the context of driving maneuver anomaly detection, the driving state of a

vehicle can be described by its moving speed and direction. The speed-related

driving operations include acceleration, deceleration, and driving in a constant

speed. The direction-related operations include turning left, turning right, and go-

ing straight. A speed-related operation and a direction-related operation constitute

a driving state. There can be nine driving states: S1 (acceleration, turning left),

S2 (acceleration, turning right), S3 (acceleration, going straight), S4 (deceleration,

turning left), S5 (deceleration, turning right), S6 (deceleration, going straight), S7

44

State Transition
Probability Vector

State Transition
Duration Vector

GRU Layer

z

Representation
Feature z

Reconstructed Feature Original Feature x

ENCODER

DECODER

Reconstruction Error:
2

2
ˆeL x x= -

GRUtx tz
1tz -

x̂

Instant GPS
Sample

State Transition
Probability Graph

State Transition
Duration Graph

Vector Calculator

Figure 3.4: The workflow of deep auto-encoder. The vehicle GPS data is

preprocessed by vector calculator. It generates the original feature vector x. The

vector x is represented by combining the state transition probability vector and

the state transition duration vector. This feature x is mapped to a representation

feature z by the encoder. Then z is reconstructed as x̂ by the decoder. Finally, we

leverage the reconstruction error Le as the criterion to detect anomaly.

(constant speed, turning left), S8 (constant speed, turning right) and S9 (constant

speed, going straight). The details about speed and direction calculation from

GPS data are introduced by Equation (3.14) and Equation (3.15).

When a vehicle is moving, the driving state of a vehicle usually changes over

time. A sequence of driving states of a vehicle during a time window can be

obtained. For instance, [S2, S2, S5, ..., S8]. Such a time-varying sequence can be

summarized as a state transition graph. As shown in the vector calculator of Figure

3.4, the nodes of the graph are driving states, there are nine nodes in the graph

and they are fully connected, we use five nodes in the figure for simplicity. The

weights of edges depict the relations between any two states [67]. In this chapter,

the weights are constructed from two aspects, the state transition probability and

state transition duration between two driving states [75]. The value of the weights

are normalized between 0 and 1. The driving state transition probability is the

frequency a driver drives from a state to another state during a time window. The

driving state transition duration is how long a driver takes to response from one

driving state to another. For example, if the transition from <constant speed,

going straight> to <acceleration, going straight> is small, it indicates this is a

rapid acceleration anomaly.

45

During each time window, we can get a state transition probability graph and a

state transition duration graph. The feature of the driving maneuvers are captured

from these two graphs. The adjacent matrices of these two graphs can be flattened

into two vectors, the state transition probability vector and the state transition

duration vector. As shown in Figure 3.4, the combination of these two vectors

is the original feature x, which is the output of the vector calculator and the

input of the deep auto-encoder. Since there are nine states, there can be 81 state

transitions (including self to self) for both probability graph and duration graph,

the dimension of x is 162. The state transition vectors that differ significantly from

the normal state transition vectors will be detected as anomalies.

Deep Auto-Encoder

As shown in Figure 3.4, the encoder projects the original feature vector x into a

lower-dimensional feature, i.e., representation feature z. The decoder reconstructs

z to x̂. The more similar the x and the x̂, the more accurate the model is. In this

work, the encoder is a fully-connected layer and a Gated Recurrent Unit (GRU) [85]

layer. The GRU can capture the temporal dependency of the input features. The

decoder is a fully-connected neural network with two fully-connected layers. The

auto-encoder is updated as:

zti = GRU(zt−1
i ,xt

i) (3.1)

x̂t
i = Dθ(z

t
i) (3.2)

where the Dθ in Equation (3.2) represents the decoder network and θ is its weight.

The standard method to train an auto-encoder is to minimize the reconstruction

error Le between xt
i and x̂t

i.

Le =∥xt
i − x̂t

i∥
2

2
(3.3)

If the trajectories of two drivers exhibit similar original driving features x, the

representation features z of them that are generated from the encoder should be

similar. Therefore, the vehicle-vehicle peer dependency can be integrated into the

loss function. The peer dependency can be modeled as a regularizer Lr.

Lr = sti,j · ∥zti − ztj∥
2

2
(3.4)

46

sti,j = cos(xt
i,x

t
j) (3.5)

where sti,j in Equation (3.4) is the cosine similarity between the original driving

feature vectors xt
i and xt

j that are generated from driver di and driver dj during

time window t, which is calculated by Equation (3.5). The zti and ztj are the

representation features of xt
i and xt

j during time window t. To incorporate the

peer dependency, the loss function L is defined as:

L = argmin
∑
t∈T

(
∑
di∈D

Le + α ·
∑

dj∈D,di ̸=dj

Lr) (3.6)

where α is the hyperparameter to control the regularizer Lr. The di and dj are any

two drivers in the driver set D. The regularizer Lr is used to guide the training of

the auto-encoder.

Driving Maneuver Anomaly Detection

Instead of training a multicalss classifier using labeled normal and anomalous

data by supervised learning, we leverage deep auto-encoder to train a one class

classifier. One class classifier is an unsupervised learning process and has been

widely used in the state-of-the-arts for anomaly detection [86, 87]. We use one

class classifier is because it is not easy to collect, predefine and manually labelling

various types of anomalies to train a supervised muilticlass classifier to detect

different types of anomalies. More importantly, if any new anomalies occur in the

future, the anomalies need to be redefined and the classifier needs to be retained.

By using unsupervised one class classifier, we address the above problems. During

training phase, the deep auto-encoder model is trained only on the normal driving

data. During inference phase, the anomalies can be detected as long as the model

memorized the feature of normal data well. That is because anomalies cannot be

reconstructed accurately by the model trained only on normal data [60, 88, 89].

As shown in Figure 3.4, we leverage the reconstruction error Le as the criterion to

detect the anomalies.

During inference phase, the model is expected to produce higher reconstruction

error for the driving anomalies than the normal ones. The detection principle is

47

shown as follows:

x =

Normal Input, if Le(x, x̂) < τ

Anomalies, Otherwise
(3.7)

where τ is the largest reconstruction error of normal data. It is predefined for

online inference [86, 87]. During inference, given a sample input x, if the recon-

struction error Le between input vector x and its reconstructed vector x̂ is lower

than the threshold, it indicates that the well-trained model can reconstruct the

input accurately. The input x will be considered as a normal driving maneuver.

Otherwise, the input x will be detected as an anomalous driving maneuver.

3.4.3 Geographical Partitioning for Anomaly Detection

In this work, we propose to develop the driving anomaly detection model in

a geo-distributed way. We first partition a city into several sub-regions to get

stronger spatial peer dependency, and then develop a specific model for each

sub-region. The challenge here is how to partition the region to the full extent

of spatial peer dependency. To tackle the challenge, we develop a geographical

region partition algorithm . The design objective is to improve the accuracy of

driving maneuver anomaly detection in each sub-region. We extend the vehicle-

vehicle dependency to the road-road dependency. Three principles are considered

in the partition algorithm. 1) The road segments with stronger correlations should

be partitioned into the same sub-region. 2) The road segments with weaker

correlations should be partitioned into different sub-regions. 3) The road segments

that are partitioned into the same sub-region should be geographically connected.

Problem Formulation

We represent the road network of a city as a graph G = (V,E), where V =

(v1, v2, ..., vn) represents all road segments, and E = {e(vm, vn)}vm,vn∈V describes

the relationships among these road segments. If two road segments are geograph-

ically connected, there will be an edge connecting these two vertices. The weight

of an edge, w(vm, vn) of e(vm, vn), qualifies the correlation between two vertices

48

vm and vn. We extend the vehicle-vehicle dependency to road-road dependency to

get the correlation between two road segments. The similarity of driving maneu-

vers that happened on two road segments is used to approximate the correlation

between them. We formulate this similarity by Equation (3.8).

w(vm, vn) =
∑
t∈T

1

Kt
mK

t
n

∑
di∈Dm,dj∈Dn

stdi,dj
∥ztdi − ztdj∥

2

2

(3.8)

where T represents all time windows, vm and vn denote two road segments, Kt
m

andKt
n represent the number of drivers on these two road segments at time window

t, Dm and Dn are two sets of drivers on these two road segments at time t, stdi,dj

is the similarity of original driving maneuvers between driver di and driver dj

at time t. stdi,dj is acquired by Equation (3.5), its value range is between 0 to

1. The higher the similarity, the higher the stdi,dj . The di is the driver on road

segment vm and the dj is the driver on road segment vn. The ztdi and ztdj are

the representation features of the driving maneuvers that are generated from the

encoder for driver di and dj at time t. If the original driving maneuvers (x) of

two drivers are similar, the stdi,dj is higher, and the ∥ztdi − ztdj∥
2

2
is lower, the ratio

of them is higher. At each time window, we calculate this ratio from all of driver

pairs on the two road segments vm and vn and get the average ratio of all pairs. We

use multiple time windows to do the experiments and use the average value from

these time windows as the correlation of these two road segments. The underlying

rationale for the Equation (3.8) is that two road segments have strong correlation

when the original driving maneuvers (x) on these two road segments are similar

and their representation features (z) are also similar. A higher w(vm, vn) means a

higher correlation between the road segments vm and vn.

Based on Equation (3.8), we can obtain the weight of each edge in G. The

objective of graph partitioning is to divide vertices vx ∈ V into k subsets V1,

V2, ... , Vk. Each subset Vi corresponds to a set of the road segments that are

partitioned into the same sub-region. According to the above partition principles,

the spatial correlation within one subset Vi should be strong, and the spatial

correlation among different sub-regions (Vi and Vk) should be weak. We formulate

49

it as an optimization problem. Its objective is shown as follows:

max
1

M

∑
vm,vn∈Vi

w(vm, vn)−
1

N

∑
vm∈Vi,vl∈Vk

w(vm, vl),

vm ̸= vn ̸= vl, Vi ̸= Vk

(3.9)

where Vi and Vk are two vertex subsets in the graph G = (V,E), vertex vm and vn

belong to the same subset Vi, vl is a vertex in subset Vk. w(vm, vn) is the weight of

edge e(vm, vn), w(vm, vl) is the weight of edge e(vm, vl). The edge e(vm, vl) connects

subset Vi and Vk. M is the total number of edge within the same subset Vi and N

is the total number of edges that connect subset Vi and Vk. The first part of the

objective is the average weight of edges within a subset Vi, the second part is the

average weight of edges that connect two subsets Vi and Vk. The objective is to

maximize the average weight difference across different subsets.

Normalized Cut Algorithm

Graph partitioning has been proven to be an NP-hard problem [77, 90, 91].

Partitioning the graph into k = 2 parts is already an NP-hard problem. Solutions

are generally derived using heuristic algorithms. Spectral clustering is one of the

most common graph partitioning methods by grouping graph vertices. MinCut,

RatioCut and Ncut are three common spectral clustering algorithms. MinCut

tries to find the minimum weight of edges that connect different sub-graphs. But

in many cases, MinCut simply separates a vertex in the graph from the rest of

the vertices, which is not what we want. A reasonable solution should consider

that there are as many vertices as possible in each sub-graph. RatioCut and Ncut

were proposed to solve the limitation of MinCut. In RatioCut, the size of a sub-

graph is measured by the number of vertices in this sub-graph, while in Ncut

the size of a sub-graph is measured by the weights of edges in this sub-graph.

Since maximizing the number of vertices in each sub-graph does not necessarily

mean the total weights of this sub-graph is large, cutting the graph based on the

weights is more in line with our goal. Ncut is a normalized spectral clustering

algorithm, while RatioCut is an unnormalized one. In general, Ncut is better than

RatioCut [92]. Hence, we leverage Ncut [93] to solve our optimization problem.

50

The normalized cut criterion measures the total similarity within each subset of

the graph and the total dissimilarity among different subsets of the graph.

It is important to construct a similarity function among different vertices when

using Ncut. The vertices which are defined as ”similar” by the similarity function

should be closely related in the application. In our scenario, the correlation between

any two vertices does not only depend on how similar these two vertices are. It

first depends on the physical geographical connection, because vertices are the road

segments. The two road segments that are supposed to be divided into the same

sub-region should be at first connected with each other. We use the correlation

function (Equation (3.8)) as the similarity function of vertices. Suppose the vertex

set V and edge set E in the graph G = (V,E) can be partitioned into two subsets

Vi and Vk, Vi ∪ Vk = V , Vi ∩ Vk = ∅ by removing the edges that connect these two

subsets. The degree of similarity between these two parts is defined as cut(Vi, Vk).

It is the total weights of the edges that connect these two subsets.

cut(Vi, Vk) =
∑

vi∈Vi,vk∈Vk

w(vm, vl) (3.10)

where vm is the vertex in subset Vi, vl is the vertex in subset Vk. Finding the

minimum cuts is the objective of graph partitioning. It is designed by considering

both the total disassociation (Ncut) between two subsets and the total association

(Nassoc) within each subset. The Ncut and Nassoc are defined as follows:

Ncut(Vi, Vk) =
cut(Vi, Vk)

cut(Vi, V)
+

cut(Vi, Vk)

cut(Vk, V)
(3.11)

Nassoc(Vi, Vk) =
cut(Vi, Vi)

cut(Vi, V)
+

cut(Vk, Vk)

cut(Vk, V)
(3.12)

Importantly, the Ncut and Nassoc are closely related to each other, it can be

inferred that:

Ncut(Vi, Vk) =
cut(Vi, Vk)

cut(Vi, V)
+

cut(Vi, Vk)

cut(Vk, V)

=
cut(Vi, V)− cut(Vi, Vi)

cut(Vi, V)
+

cut(Vk, V)− cut(Vk, Vk)

cut(Vi, V)

= 2− cut(Vi, Vi)

cut(Vi, V)
+

cut(Vk, Vk)

cut(Vk, V)

= 2−Nassoc(Vi, Vk)

(3.13)

51

So minimizing the dissociation (Ncut) between the sub-graphs and maximizing the

association (Nassoc) within each sub-graph can be reached simultaneously.

The solution can be approximated as follows:

1. Build a weighted graph G = (V,E,w) from the road network, compute the

weight of each edge according to Equation (3.8).

2. Compute the diagonal matrix D of the graph. The diagonal value di =∑
j w(i, j). Then get the symmetrical matrix W of the graph with W (i, j) =

wij.

3. Solve the equivalent eigenvalue system (D − W)y = λDy for eigenvectors,

obtain the second smallest eigenvalue.

4. Use the eigenvector with the second smallest eigenvalue to bipartition the

graph.

5. Recursively partition the subgraphs until the desired number of clusters is

reached.

3.4.4 Sub-Region Model and In-Situ Updating

The subsets partitioned by our Ncut are the sub-regions in the road network.

We then train a specific detection model for each sub-region by using the vehi-

cle trajectories that are just collected from this sub-region and perform in-situ

updating of these models in each sub-region periodically.

Model Training and Inference for Sub-Regions

Since the models for the sub-regions need to be trained by using the driving data

collected from each sub-region, we first map the data in the dataset into different

sub-regions. To implement this, we add the <RoadID> attribute to every sample

of the GPS data. By grouping the GPS data with the same RoadID value, the

data will be mapped into different sub-regions. Besides, we want to find the drivers

with driving behaviors in a set of consecutive time windows to train the model, so

52

we filter the drivers that do not meet the requirements. The number of sub-regions

k to be partitioned is a parameter of the Ncut algorithm. We try different values

of k and find the one with the best performance. Since we divide the whole city

into several sub-regions, the driving maneuvers that happen within each sub-region

become the peer dependencies when training the models. The models trained using

the driving data within each sub-region learn the distribution of normal driving

maneuvers in corresponding sub-regions. The workflow of the models for the sub-

regions is the same as the base model we introduced in 3.4.2. After training, we

use the threshold of reconstruction error of these models to classify the driving

maneuvers. The sub-region models are trained with different subsets of the data,

the reconstruction error threshold for these models are not exactly the same.

In-Situ Updating of the Sub-Region Models

To improve the trustworthiness of the geo-distributed driving maneuver anomaly

detection system, we will perform incremental learning to update all the driving

maneuver detection models in-situ. The models will be updated offline after each

server collects a reasonable amount of data or simply after a fixed time period T .

In our current implementation, T is set to 25 time windows, corresponding to 54

minutes. We update the models twice in our implementation. Each server uses

the data which detects as the normal driving data by itself to update its driving

maneuver detection model.

3.5 Implementation

Deep Learning Models. GeoDMA is implemented in Pytorch [57]. The

encoder contains one fully-connected (FC) layer and one GRU layer. The FC layer

has 40 neurons. The GRU has 20 neurons. The decoder consists of two FC layers,

which has 40 and 162 neurons in the first and second layer. The activation function

is a sigmoid function. The performance comparison of different representation sizes

can be found in Section 3.6.5. Besides, we use an SGD optimizer to optimize our

models, as it has shown good performance in modeling sequential data.

53

The learning rate is set to be 0.1. The batch size is 128. The number of

epochs is 500. The α in Equation (3.6) is 0.01. The models are trained on an

Alianware Aurora R7, which contains one Intel Core i5 8400 CPU (6-core) and

one NVIDIA GeForce GTX 1070 GPU (8GB memory). Sklearn python package is

used to implement the evaluation metrics.

Graph Partitioning. It is non-trivial to construct a graph based on the

road network for a big city. To implement it, the road network information is

needed. We get the GEOJSON file of road network from OpenStreetMap [94],

which is a kind of file format for representing geodata. After parsing the file, there

are 43 types of roads, including 138,155 road segments. We visualize the road

information and filter the road segments that do not contain any driving data,

such as pedestrian ways, cycle ways and so on. There are many road segments that

only contain several pair of coordinates, which indicates these roads are short. We

first combine these short road segments into longer ones and then construct the

graph using the longer road segments. We assign a RoadID to each road and find

out the connected roads by comparing coordinates. After getting the geographical

connection of each road, the graph G = (V,E) can be constructed and the weight of

each edge can be computed. Finally, we implement Ncut by using Sklearn package

to partition the graph.

3.6 Evaluation

We conduct a variety of experiments to evaluate the performance of GeoDMA,

including overall performance, performance under different scenarios, effectiveness

of region partitioning, in-situ model updating, and execution efficiency.

3.6.1 Experimental Setting

We compare the performance ofGeoDMA with two baselines over a large vehicle

GPS trajectories dataset. We use 80% of the data to do training, and 20% of the

data to do testing [27, 95, 96]. We set the number of sub-regions to 4, the size of

the representation feature to 20. We use these settings by default in the following

54

experiments. In Section 3.6.5, we present experimental results demonstrating how

we fine-tuned these parameters.

Performance Metrics.

We use the F1 Score [97] and AUC to do the performance evaluation.

Baselines.

We compare the performance of GeoDMA with two baselines.

• Centralized Model. The centralized model is a simple version of GeoDMA.

It uses all training data to train a general model, without geographical

partitioning. The general model is based on an auto-encoder that takes

both temporal dependency and peer dependency into account.

• Single-User Model. We implement a similar version of the latest per-

sonalized driving anomaly system pBEAM [49] based on deep auto-encoder

architecture. The single-user model is trained using the driving data that is

collected from each individual driver without considering peer dependency

and geographical partitioning.

3.6.2 Dataset and Data Processing

We conduct data-driven evaluation on a real-world dataset, T-Drive [58, 59].

The data format in the dataset is (Driver ID d, Date Time t, Longitude λ, Latitude

φ). We first use a map matching algorithm [98] to map the GPS locations to

corresponding locations on the road network. We then interpolate the missing

data after map matching. We next pre-process the data, calculate the driving

speed and direction of the vehicles and simulate anomalous data for evaluation.

Map Matching. The T-Drive dataset includes the GPS trajectories collected

from 10,357 drivers. In the dataset, its sampling rate of trajectories is uneven,

the average sampling interval is about 177 seconds with a distance of about 623

meters. When the sampling interval is large, there are only a few data samples

during their corresponding time windows. That is not good to derive the driving

55

features. Therefore, it may not fully show the driving maneuvers of drivers during

these time windows. In this chapter, we leverage a map matching algorithm to

solve this drawback. The map matching algorithm maps the GPS trajectories to

the road network [98, 99]. After map matching, the data can be augmented and

is much more denser than the original data. The average sampling rate is about

9 seconds. Practically, we apply a standard map matching algorithm based on

Hidden Markov Model [98] to map the driving trajectories in T-Drive dataset onto

the road network. The map matching algorithm is implemented in Java.

Data Interpolation. After map matching, we find some pieces of data do

not have the timestamp attribute. To solve this problem, we use an interpolation

method to fill up the lost timestamps. It assumes that all the drivers are driving

with a constant speed between two consecutive timestamps. This assumption is

in line with normal driving maneuvers. For example, point A, B, C, D, E are five

samples on a route, only A and E have time values. We first calculate the average

speed vAE of the vehicle from A to E, it is vAE = dAE

tE−tA
, where dAE is the driving

distance from A to E. We assume the driver drives in a constant speed, so tB =

tA + dAB

vAE
. Thus, the time information of all the samples can be obtained. And all

the drivers are driving in a constant speed most of the time. Therefore, we assume

all the driving maneuvers derived from the dataset after map matching and data

interpolation are normal.

Data Pre-processing. To make the data in the dataset closer to the normal

driving data, we filter the bad data from the dataset. After filtering, there are

504 drivers left in the dataset. The driving time of each driver is 404 minutes.

We then use a sliding time window to construct the two driving state transition

graphs. The default size of sliding time window is 30 minutes. For example, the

first time window is 0-30 minutes, the second one is 1-31 minutes, the third one is

2-32 minutes and so on. The driving state transition graph of drivers during each

time window are the inputs to anomaly detection models. Since the total driving

time of each driver is 404 minutes, we divide it into 375 sliding time windows.

Each driver generates one driving feature vector during each window. The total

sample size of normal data is 189, 000.

56

Table 3.2: Data distribution of normal data and anomalous data

Value Normal
Anomaly 1

acc (1, 1)

Anomaly 2

angle (1, 1)

Anomaly 3

acc (0.2, 0.04)

angle (0.2, 0.04)

Acceleration

(m/s2)

< − 0.5 21.5% 17.0% 21.5% 18.8%

[− 0.5 , 0.5] 57.3% 19.5% 57.3% 52.3%

> 0.5 21.2% 63.5% 21.2% 28.9%

Bearing Angle

(radian)

< −1 8.1% 8.1% 7.1% 13.5%

[−1 , 1] 84.3% 84.3% 43.4% 68.9%

> 1 7.6% 7.6% 49.5% 17.6%

Driving Speed and Direction. In the T-Drive dataset, given two data

samples (d1, t1, λ1, φ1) and (d1, t2, λ2, φ2), the driving distance D1,2 of driver

d1 from t1 to t2 can be calculated by [100]:

D1,2 = atan2(

√
sin2(

∆φ

2
) + cosφ1 · cosφ2 · sin2(

∆λ

2
),√

1− sin2(
∆λ

2
)− cosλ1 · cosλ2 · sin2(

∆λ

2
)) · 2R

(3.14)

where ∆φ = φ2 − φ1 is the difference between latitudes, ∆λ = λ2 − λ1 is the

difference between longitudes, and R is the radius of the earth. Then we can get

the average driving speed from t1 to t2 by v1,2 =
D1,2

t2−t1
. Similarly, the driving speed

v2,3 from t2 to t3 can be acquired. By comparing the value of v1,2 and v2,3, we can

know the driver is accelerating, decelerating or driving in a constant speed. The

bearing radian θ1,2 of driver d1 from t1 to t2 can be calculated by [100]:

θ1,2 = atan2(sin∆λ · cosφ2, cosφ1 · sinφ2 − sinφ1 · cosφ2 · cos∆λ) (3.15)

By comparing θ1,2 and θ2,3 between two consecutive timestamps, we can obtain

the bearing angle of the driver, i.e., bearing towards left, bearing towards right, or

driving straight.

57

Driving Maneuver Anomaly Data. We need anomalous driving maneuvers

to test the performance of our system. Since it is dangerous to collect anomalous

driving data from real world, we borrow the idea from pBEAM [49] to simulate

the anomalies based on the real-world data to evaluate the system. Three kinds of

anomalies are simulated as follows:

• Anomaly 1: For aggressive drivers, they usually have irregular acceleration

or deceleration [51]. This is one of the typical anomalies in real world. To

simulate this scenario, we add Gaussian noise (mean 1.0, variance 1.0) to the

acceleration of our normal test data. The unit of acceleration is m/s2.

• Anomaly 2: When the driver is sleepy or distracted, the driving trajectories

may show unexpected bearing angles [50]. We add Gaussian noise (mean

1.0, variance 1.0) to the bearing angle of our normal test data to simulate

this scenario. The unit of bearing angle is radian.

• Anomaly 3: For DUI (driving under the influence) or DWI (driving while

intoxicated/driving while impaired), both the acceleration and the bearing

angle can become abnormal [101]. To simulate this scenario, we add Gaussian

noise (mean 0.2, variance 0.04) to both acceleration and bearing angle. The

mean and variance are set to a smaller value than the previous two cases is

because there are changes in both acceleration and bearing angle.

Table 3.2 shows the data distribution of normal data and the generated anoma-

lous data. We use 0.5 m/s2 as the threshold to define the acceleration of a vehicle.

If the acceleration of the vehicle is larger than 0.5 m/s2, we define the vehicle

is accelerating. If it is smaller than − 0.5 m/s2, we define it is decelerating.

Otherwise, it is going at a constant speed. Similarly, we use 1 radian and -1 radian

as the threshold to define if a vehicle is turning right, turning left, or going straight.

In most of the experiments, we set the ratio of normal and abnormal test data as

1:1. Table 3.4 shows the experimental result of changing this ratio.

58

Anomaly 1 Anomaly 2 Anomaly 3
0.5

0.6

0.7

0.8

0.9

1

M
et

ri
c

v
al

u
e

Single-user model Centralized model GeoDMA

(a) AUC (area under the ROC curve)

Anomaly 1 Anomaly 2 Anomaly 3
0.5

0.6

0.7

0.8

0.9

1

M
et

ri
c

v
al

u
e

Single-user model Centralized model GeoDMA

(b) F1 Score

Figure 3.5: Overall performance comparison.

3.6.3 Overall Performance

For the centralized model, we use the driving data of all 504 drivers to train

it. In GeoDMA, we divide drivers into four sub-regions based on their GPS

trajectories. But most of the drivers do not drive in the same sub-region all the

time. To be consistent with the centralized model, we filter the drivers in each

sub-region to find the drivers that driving in the same sub-region during all the

375 sliding windows. After filtering, there are 33, 24, 10, and 9 drivers left in each

sub-region, respectively. We train a model for each sub-region by using the filtered

data. We calculate the average AUC and F1 score of four region-based models.

For the single-user model, we train 76 different models for these 76 drivers and

calculate the average AUC and F1 score of these models. Figure 3.5 depicts the

performance of GeoDMA and two baselines.

The experiment results show that the AUC of the centralized model achieves

0.836, 0.881 and 0.894 for the three generated anomalies. The corresponding F1

score is 0.828, 0.868 and 0.881. It achieves up to 8.5% higher accuracy than the

single-user model. The reason for such an improvement is that we consider the

vehicle-vehicle peer dependency in the centralized model. Moreover, the AUC

of GeoDMA achieves 0.853, 0.895 and 0.907 for the three generated anomalies

respectively. The corresponding F1 score is 0.846, 0.886 and 0.901. It further

improves the accuracy of the centralized model by up to 2.2%.

In all anomalous scenarios, GeoDMA outperforms the centralized model. This

is because GeoDMA considers the region partitioning. The driving features exist

59

common pattern in a small region across the vehicles due to similar contextual

environments. Whereas, the centralized model is a general model and is trained

for the whole city, it cannot take the local contextual features into account. We

also found basically the performance of all the systems on anomaly 2 is better

than anomaly 1. The performance on anomaly 3 is almost the same as anomaly 2.

This demonstrates the model is more sensitive to anomalous bearing angles than

anomalous speeds.

3.6.4 Performance under Different Scenarios

We evaluate the performance of GeoDMA in different sub-regions, with different

amount of anomalous data. We also analyze the performance of GeoDMA along

with the time and among different drivers.

Table 3.3 depicts the performance comparison of GeoDMA with two baselines.

Among these four regions, the model for region 4 performs the best, the perfor-

mance of the other three region models under the the same accuracy metric do not

show much difference. The model for region 4 achieves up to 10.2% and 6.0% higher

accuracy than the single-user model and the centralized model on average under F1

score. It also achieves up to 11.5% and 6.6% higher accuracy than the single-user

model and centralized model on average under AUC. More importantly, almost all

of these four models achieve better performance than the singer-user model and

centralized model under the same evaluation metric on the three anomalies except

the model for region 3. But the average performance of these models is still better

than the singer-user model and the centralized model as we get from Figure 3.5.

The experiment results demonstrate that it is reasonable to divide a big city into

multiple sub-regions and develop multiple region models.

Different ratio of normal data to the anomalous data

Table 3.4 shows the performance of GeoDMA when we change the ratio of

normal and anomalous test data. For all of the three anomalies under AUC,

the performance is basically the same when we change the ratio. The performance

under F1 score on anomaly 2 and anomaly 3 do not change much. The performance

60

Table 3.3: Performance comparison of different models on real-world data with

simulated anomalies

Model Anomaly 1 Anomaly 2 Anomaly 3

AUC

Single-User 0.80 0.87 0.89

Centralized 0.84 0.88 0.89

GeoDMA
R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

0.84 0.84 0.84 0.89 0.9 0.9 0.86 0.92 0.91 0.9 0.89 0.93

F1

Single-User 0.79 0.85 0.86

Centralized 0.83 0.87 0.88

GeoDMA
R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

0.84 0.84 0.83 0.89 0.89 0.89 0.84 0.92 0.91 0.89 0.87 0.93

under F1 score on anomaly 1 becomes a little higher when the anomalous test data

becomes smaller. This experiment shows that the performance of our system is

robust and suitable to the real-world scenarios.

Performance analysis from time perspective

We further investigate the performance of GeoDMA from time perspective. For

the construction of state transition vectors, we set the length of a sliding window as

30 minutes. The driving maneuvers of the drivers may change over different time

windows. We evaluate the performance of drivers over different time windows. In

test data, there are 75 time windows. Figure 3.6(a) presents the anomaly detection

performance of all drivers from time perspective under four sub-regions. As shown

in the figure, the F1 score of anomaly detection is higher than 0.8 during most

of the time windows. And we can see that the F1 score of the model fluctuates

slightly but is still stable during different time windows. For the third region,

from time window 35 to time window 60, its F1 score is lower than 0.8 but is still

higher than 0.7. The experimental result demonstrates that GeoDMA has good

performance along with time.

61

Performance analysis from driver perspective

We analyze the performance of drivers in each sub-region from space per-

spective. Each sub-region has a different driver set. Figure 3.6(b) depicts the

cumulative probability of F1 score for the drivers in the four sub-regions. The

cumulative probability of drivers achieving a certain F1 score in the four sub-

regions has a similar trend. On average, only 15.2% of the drivers has a F1 score

lower than 0.73. The F1 score of 66.7% drivers is higher than 0.79, the F1 score

of 44.4% drivers is higher than 0.90. It proves that GeoDMA can provide high

accuracy for almost all drivers. Moreover, the region models are robust because

they show similar trend in all sub-regions.

3.6.5 Parameters Settings of GeoDMA

We further conduct experiments to set two important parameters in GeoDMA,

i.e., the number of sub-regions, the dimension size of hidden representation feature.

The number of sub-regions

As introduced in Section 3.4, we use our customized Ncut algorithm to partition

a city into multiple sub-regions. However, the Ncut algorithm cannot decide the

optimal number of sub-regions automatically. The number needs to be tuned based

on different applications. We explore this number from 2 to 5 to find the optimal

one. For each number, we conduct experiments over the whole dataset to evaluate

driving anomaly detection accuracy.

Figure 3.7 presents the performance comparison under different numbers of sub-

regions. For each case, we use the average AUC and F1 score of all sub-regions

as its performance. Figure 3.7 shows that both AUC and F1 score increase first

and then degrade on all the three anomalies. The number of sub-region parameter

has a great influence on the system. For example, if the number is 2, the partition

result has a little difference with original road network. If GeoDMA applies such a

partition, it may have similar performance with the centralized model, i.e., 0.831

v.s. 0.836 in F1 score.

62

Table 3.4: Performance Comparison of different ratios of the normal data to the

anomalous data in test data

Ratio Anomaly 1 Anomaly 2 Anomaly 3

AUC

1:1 0.853 0.895 0.907

3:2 0.854 0.894 0.908

3:1 0.852 0.89 0.908

F1 Score

1:1 0.846 0.886 0.901

3:2 0.865 0.89 0.899

3:1 0.881 0.893 0.899

When the number changes from 2 to 4, the performance increases. The rea-

son is that the more sub-regions, the better the sub-region models extract peer

dependency. However, based on our current dataset, if the number of sub-regions

is too big, there will be few data belonging to the same sub-region, which may

cause the model overfitting because of insufficient data. When the number is 5, we

notice that the performance degrades much. We dig into this case and find that

two of these five region models do not perform very well and influence the average

performance of the system. Under the setting of our current dataset, GeoDMA

performs the best when we partition the city into four regions. However, if we can

get enough effective training data from this city, the optimal number of divisions

may be different. In addition, if the dataset is collected from another city, the road

network is different, the optimal partition result will be different. The larger the

dataset, the more parts the system will divide a city into.

The size of the representation feature vector

We also do experiments to find out the optimal size of the representation

feature. We set the representation feature size to 10, 20, 30, and 40 to train

the region models. For each feature size, we show the average performance of 4

region models under AUC and F1 score. Here we use the Anomaly 1 to do the

63

0 10 20 30 40 50 60 70

Time window

0

0.2

0.4

0.6

0.8

1

F
1

 S
co

re

Region #1

Region #2

Region #3

Region #4

(a) Accuracy along with time.

0 0.2 0.4 0.6 0.8 1

F1 Score

0

0.2

0.4

0.6

0.8

1

C
D

F

 Region #1

 Region #2

 Region #3

 Region #4

(b) Accuracy of all drivers.

Figure 3.6: The performance of GeoDMA from time and driver perspective.

2 3 4 5

The number of sub-regions

0.6

0.7

0.8

0.9

1

A
U

C

Anomaly 1

Anomaly 2

Anomaly 3

(a) AUC of different numbers of sub-regions

2 3 4 5

The number of sub-regions

0.6

0.7

0.8

0.9

1

F
1

 s
co

re

Anomaly 1

Anomaly 2

Anomaly 3

(b) F1 score of different numbers of sub-regions

Figure 3.7: Performance of the different number of sub-regions.

64

experiments. Figure 3.8 shows that when the feature size is 20, the models perform

the best in terms of both evaluation metrics. Therefore, we set the representation

feature size to 20 to train all the driving anomaly detection models, including the

singer-user model and the centralized model.

3.6.6 In-Situ Model Updating of GeoDMA

The prior experiments of GeoDMA are done without model updating. GeoDMA

updates the model for each sub-region periodically in order to improve its perfor-

mance. Each region model is updated by using the data collected from the vehicles

within its coverage. Due to the limited available data, we update the models

twice. Each time we use the data from 25 sliding windows to do incremental

training. The data for model updating is different from the initial training data

in the dataset. Figure 3.9 depicts the performance of GeoDMA under the settings

without model updating (U0), updating once (U1) and updating twice (U2). It

presents the average performance of the four sub-region models. We find that after

each update, the performance of the updated models is improved on all anomalies

under both AUC and F1 score.

3.6.7 Execution Efficiency of GeoDMA

A model for driving maneuver anomaly detection is required to be lightweight

since the detected anomalies should be sent to the nearby drivers or passengers as

fast as possible to avoid possible traffic. GeoDMA is lightweight and efficient. The

size of GeoDMA auto-encoder is only 72.2 KB. The model provides an inference

result in each sliding window (1-minute step). It takes about 8.37 ms to execute

one inference in one time window for one driver. The inference time is measured

on Alianware Aurora R7 (one Intel Core i5 8400 CPU (6-core) and one NVIDIA

GTX 1070 GPU) without using its GPU. The driving data from other vehicles

is no longer needed when doing anomaly detection for a specific vehicle with a

well-trained model.

65

10 20 30 40

Dimension

0.5

0.6

0.7

0.8

0.9

1

M
e
tr

ic
 v

a
lu

e

AUC F1 score

Figure 3.8: Different repre-

sentation sizes.

Anomaly 1 Anomaly 2 Anomaly 3

Anomaly type

0.5

0.6

0.7

0.8

0.9

1

A
U

C

U 0 U 1 U 2

(a) AUC

Anomaly 1 Anomaly 2 Anomaly 3

Anomaly type

0.5

0.6

0.7

0.8

0.9

1

F
1

sc
or

e

U 0 U 1 U 2

(b) F1 score

Figure 3.9: GeoDMA with or without model

updating.

3.7 Discussion

Privacy Issues. During online driving anomaly detection, GeoDMA collects

the GPS locations from all the vehicles and uploads the locations to the correspond-

ing edge servers. To protect user privacy, we anonymize the user identification

information by a code. We will not collect any private and sensitive information

from the users.

Static Geographical Partitioning. Due to the limited size of our current

dataset, we perform the geographical partition statically. To provide better services

for users, it is more reasonable to adjust the geographical partition dynamically as

more new data is collected from the city. If the geographical partition is formed

dynamically, new models for new local regions will be trained based on the new

partition, using the data collected under new local regions. All historical data can

be used for training, as long as it follows the new geographical partitioning. The

new models will be trained offline. We still use the previous models to do online

detection, while we are training the new models. Once the new models are well

trained, they will be deployed for detection. Transfer learning that leverages the

old models to train the new models will be explored to shorten the training time

of new models in future work.

Model Generalization. Our models can be used to do anomaly detection for

different scenarios (i.e., sparse, or dense traffic flows) if the models are trained

with sufficient data collected from those scenarios. Moreover, we believe the

detection accuracy can be further improved if the models are developed depending

66

on different scenarios. As more and more GPS locations are collected from the

users, the models in the same area can be trained in a fine-grained way. We can

train different models for workdays and weekends. To be more specific, during the

same day, we can train different models for different time periods, e.g., a model for

peak hours, a model for off-peak hours in the daytime, and a model for the night.

3.8 Conclusion

This chapter presentsGeoDMA, which leverages unsupervised deep auto-encoders

and a geo-distributed partitioning algorithm to develop a driving maneuver anomaly

detection system. The auto-encoder learns normal driving features from historical

data by considering both temporal and peer dependency. Our geo-distributed

partitioning algorithm further divides a city into several sub-regions. We then

train a specific model for each sub-region to improve the detection accuracy in

each sub-region. Extensive experiments in a large-scale real-world vehicle GPS

trajectory dataset show that GeoDMA outperforms the baseline methods.

Chapter 4

Real-Time Tracking of

Smartwatch Orientation and

Location by Multitask Learning

Arm posture tracking is essential for many applications, such as gesture recog-

nition, fitness training, and motion-based controls. Smartwatches with Inertial

Measurement Unit (IMU) sensors (i.e., accelerometer, gyroscope, and magnetome-

ter) provide a convenient way to track the orientation and location of the wrist.

Existing orientation estimations are based on predefined data fusion methods that

do not consider the variations in the data quality of different IMU sensors. Existing

location estimations rely on the estimated orientation results. A small orientation

estimation error may cause high inaccuracy in location estimation. Moreover,

these location estimation algorithms, e.g., Hidden Markov Model and Particle

Filters, cannot provide real-time tracking on commercial mobile devices due to high

computation overhead. This chapter presents RTAT , a Real-Time Arm Tracking

system that tackles the above limitations in a data-driven way. RTAT estimates

both orientation and location simultaneously using a multitask learning neural

network. It also incorporates a unique attention layer and a dedicated loss function

to learn the dynamic relationship among IMU sensors. RTAT supports real-time

tracking by performing model inference on smartphones. Finally, to train RTAT ’s

neural network, we develop an easy-to-use labeled data collection system that uses

67

68

a low-cost virtual reality system to provide orientation and location labels for the

smartwatch. Extensive experiments show RTAT significantly outperforms existing

state-of-the-art solutions in both accuracy and latency.

4.1 Introduction

Real-time and accurate arm posture tracking is essential to the performance

of many applications, e.g., gesture recognition [102, 103], gym exercise assess-

ment [104], and motion-based control [105]. Once we know the a user’s forearm

length and orientation and location of wrist, we can estimate the user’s elbow

location and track the arm movements [106, 104]. As smartwatches are more

pervasively adopted, they provide a more easily accessible arm posture-tracking

alternative to other infrastructure-based systems, such as wireless sensing [107,

108, 109], visible light [110, 111] and customized wearable sensors [112]. The

Inertial Measurement Unit (IMU) inside a smartwatch, can be used to track arm

motions [104, 106, 113, 114].

Arm posture tracking requires continuous knowledge of a smartwatch’s three-

dimensional (3D) orientation and location in a desired reference frame, e.g., the

Global Reference Frame (GRF), typically ¡North, East, Up¿. However, all three

IMU sensors report sensing readings in the Watch’s Reference Frame (WRF). We

must find the transformation between these two reference frames. The WRF-to-

GRF rotation is the orientation of the smartwatch in GRF. This rotation is needed

to calculate the watch’s location in GRF.

Gyroscopes measure the angular velocity around the three axes of a device.

Intuitively, with a known initial orientation, subsequent orientations can be es-

timated by integrating gyroscope readings over time. However, estimation error

accumulates with the noise and bias of the gyroscope [115, 116, 117, 118]. A3

calibrates the orientation results using the direction anchors measured by the

accelerometer and magnetometer when the smartphone is static or moving at a

constant speed [119]. Only in these moments can gravity be accurately decomposed

from accelerometer readings, since the accelerometer measures a mixture of gravity

69

and linear acceleration. The magnetometer measures geomagnetic North, which

can be leveraged to estimate the heading angle of a device. Once the directions

of both gravity and magnetic North are known in GRF, the device’s orientation

in GRF can be uniquely determined. However, such calibrations can only be done

opportunistically because a device may pause infrequently. MUSE [113] adopts a

complementary filter to do calibration continuously using magnetic North because

the magnetic North is unaffected by the motion of a device. However, such fixed

calibration methods prove insufficient because the magnetic readings are sensitive

to nearby environments. For example, when the magnetic readings are skewed by

nearby ferromagnetic materials, as is often true indoors [119, 113], orientation

estimation should not strongly rely on the magnetic readings. Therefore, an

adaptive orientation estimation method is necessary for incorporating the readings

of three IMU sensors according to their varying quality.

State-of-the-art approaches for wrist location estimation rely on orientation es-

timation. ArmTrak [106] adopts a Hidden Markov Model (HMM) and MUSE [113]

uses a Particle Filter. ArmTroi [104] reduces the computational latency of the

HMM proposed in ArmTrak. These methods use estimated orientation to project

accelerometer readings onto the desired reference frame. However, locations de-

rived from inaccurate orientations can fall outside the possible space. Furthermore,

they cannot provide real-time wrist location tracking on smartphones if the sam-

pling frequency is higher than 10 Hz. A high sampling frequency (e.g., 50 Hz) is

desired for fine-grained arm tracking applications, e.g., motion-based control.

In this chapter, we develop a Real-Time Arm Tracking (RTAT) system for

smartwatches. RTAT uses a multitask neural network for simultaneous prediction

of both orientation and location. It leverages Bidirectional Long Short-Term

Memory (BiLSTM) as its backbone, considering its effectiveness for time-series

data processing [49, 118]. Our proposed multitask learning scheme offers the

following benefits over conventional arm tracking systems. First, RTAT estimates

orientation and location simultaneously [120]. Orientation and location estimations

are two related tasks. Solving them together with multitask learning improves

accuracy and avoids additional overhead for training two separate models. Second,

70

as a supervised learning method, RTAT learns the best fusion scheme of three IMU

sensor data streams from the labeled data, which is more immune to the noise of

IMU sensor data [118, 117, 115, 116]. Unlike conventional sensor fusion methods

with predefined calibrations, RTAT adapts to complex temporal variations in

the quality of the three IMU sensors’ readings. Third, RTAT is faster than

conventional location estimation methods (i.e., 0.1633 ms vs. 2337.50 ms for

processing 50 samples).

Building the aforementioned learning system involves the following three chal-

lenges. 1) How do we teach the neural network to adapt to temporal variations

of IMU sensor data quality? 2) If we utilize a loss function that minimizes the

difference between inferred results and the labels, the neural network’s outputs

are independent at different timestamps. However, arm movements are not just

sequences of independent wrist orientations and locations. How can we incorporate

the temporal correlation of consecutive arm movements in our neural network? 3)

A large-scale labeled dataset is necessary to develop the system. It is challenging

to collect accurate orientations and locations of a smartwatch at a low cost.

We tackle the above three challenges with a set of novel techniques developed

for RTAT . 1) We develop a BiLSTM-based multitask neural network for processing

three IMU data streams. We also design an attention mechanism in our neural

network architecture to dynamically learn the importance of different IMU sensor

streams. 2) We incorporate a smooth loss into the loss function of the neural

network. The smooth loss ensures the change rate of the orientation and location

are sufficiently similar to those of the labels. 3) We use the Meta Quest 2 VR

system to collect labeled data to train and validate the model offline. Meta Quest

2 includes one headset and two touch controllers. To collect data, the users wear a

smartwatch and hold a VR touch controller simultaneously while they are moving

their arms. Meta Quest 2 is able to accurately measure the orientation and location

of its touch controller, but not those of the smartwatch. To address this challenge,

we develop a labeled data collection system that converts the VR measurements

into the orientation and location of the smartwatch. RTAT only relies on the VR

system for training data collection.

71

We collect data from nine volunteers (four females and five males) at two places.

This research study has been approved and exempted by the IRB committee of UC

Merced. We do not pre-define any gestures for the volunteer users. We ask them to

move their arms freely at their natural speed. They perform random arm gestures

or daily gestures, including driving, drinking, writing, exercising, push and pull,

drawing and so on. Each user performs gestures in their own way. The arm motion

style and motion speed of different users are different. To the best of our knowledge,

this is the first dataset of fine-grained orientation and location labels for smart-

watch tracking. The dataset is available at https://github.com/mmmmliu/RTAT.

We use data from five volunteers to train and evaluate a general neural network

model. Extensive experiments show that RTAT reduces the orientation estimation

error by up to 51% and 31.63% at two places, respectively, compared to state-of-

the-art orientation estimation methods. RTAT also reduces the location error up

to 45% and 46.9% these two places, respectively, compared with state-of-the-art

location estimation methods. Additionally, we test RTAT with four new users

whose data is not used for training. The experiment results show RTAT has no

significant performance degradation on new users. Furthermore, RTAT can easily

support real-time arm tracking with the maximum data sampling frequency on

commercial smartphones.

In summary, this chapter makes the following contributions.

• To the best of our knowledge, this is the first work to leverage end-to-end

deep learning for IMU-based arm tracking.

• This is the first work to track the orientation and location of a smartwatch

simultaneously, rather than sequentially.

• We consider adjusting the importance of the three IMU channels according

to their temporal variations.

• We develop a labeled data collection system to collect the orientation and

location labels of a smartwatch.

• Extensive experiments are conducted to evaluate RTAT .

72

4.2 Related Work

Deep Learning for Device Orientation Estimation. Deep learning has

been used in many applications, such as image processing [121, 97, 122], wireless

networking [123], smart buildings [95, 27], smart driving [124], smart irrigation [96],

and map matching [99]. Recent literature has begun utilizing deep neural networks

for IMU measurements processing [115, 125, 126, 127] and orientation estimation

[116, 117, 118]. OriNet [116] uses an LSTM-based architecture to estimate the

3D orientation of flying robots from gyroscope readings. Brossard et al. [117]

estimate device orientation by correcting gyroscope readings with a CNN, then

integrating the corrected readings. These methods do not explore learning from

multi-modality sensors. The accelerometer and magnetometer can help estimate

orientation when the gravity error or the deviation of magnetic field density is

small. IDOL [118] proposes an Extended Kalman Filter (EKF) architecture to

estimate device orientation. The prediction model of its EKF utilizes an LSTM-

based neural network. This neural network estimates orientation using all three

IMU sensors. The measurement model of its EKF is based on gyroscope readings

integration. While Kalman Filter and its variants are dependent on the system

noise parameters, the noise of IMU sensors is environment-dependent. IDOL uses

a static diagonal propagation noise matrix for the gyroscope readings integration,

which is not able to depict the system noise.

RTAT greatly differs from IDOL in the following ways. First, IDOL outputs

its orientation result as a unit quaternion, which cannot be accurately predicted

by a neural network without a dedicated loss design. Second, we propose a novel

network architecture from IDOL. We design a multitask learning network to output

orientation and location simultaneously rather than with separate neural networks.

Third, we do not treat readings from the three IMU channels equally. Instead, we

incorporate an attention layer to adjust the feature importance from the three IMU

channels. Finally, we develop a labeled data collection system for smartwatch-

based arm tracking.

Conventional Device Orientation Estimation. A3 [119] intelligently se-

lects the moments that gravity and magnetic North are reliable and calibrates the

73

orientation estimation from gyroscope integration. However, the assumption that

device motions have frequent pauses for resetting the orientation is inapplicable for

wearables. MUSE [113] proposes that magnetic North is more trustworthy than

gravity because it is unpolluted by device motion. It designs a magnetometer-

centric sensor fusion algorithm based on the complementary filter for orientation

tracking. However, magnetic North can only calibrate 2 of 3-DoF (Degrees of

Freedom) of orientation, and magnetic fields can vary significantly within the

same space due to the local ferromagnetic disturbances. The complementary filter’s

performance is highly dependent on the appropriate selection of its parameters. For

example, when magnetic interference is high, we should adjust our confidence in

the magnetometer readings. The complementary filter proposed by MUSE cannot

adapt to different environments with fixed magnetometer calibrations.

IMU-based Location Tracking. Prior studies [128, 129, 130, 131, 132, 133]

leverage multiple sensors to track the human body or upper limb movement.

ArmTrak [106] proposes to recover and track the 3D arm posture using only a

smartwatch. It leverages a Hidden Markov Model (HMM) to continuously estimate

elbow and wrist locations. However, its computation latency is high, and it

cannot support real-time performance on smartphones. ArmTroi [104] optimizes

ArmTrak with HMM state reorganization and hierarchical search. It is faster

than ArmTrak but still suffers from high latency with sampling rates above 10

Hz. MUSE [113] uses Particle Filters to estimate the smartwatch location. It

achieves a higher location estimation accuracy than ArmTrak and ArmTroi, but

with higher computational latency than ArmTroi Its real-time computation still

cannot be afforded by a smartphone.

Human Skeleton Tracking. Various sensing modalities have been used for

estimating the posture of the human skeleton, including vision [134], light [110,

111], wireless signals [135, 136], and mm-wave [109]. However, these systems

require infrastructure support. They also have limited service coverage and per-

formance will decrease when tracking multiple people simultaneously.

74

4.3 Background & Motivation

Table 4.1: Average orientation error of complementary filter at different places

for ten-minute data traces.

Speed

(m/s)

Gravity

Error(◦)

Magnet

Deviation(◦)

Gravity

Opportunity(%)
Sensors to use

Orientation

Error(◦)

S1:Hallway

Mag. + Accl. 58.93

0.39 7.15 45.41 3.34 % Mag. 72.53

Accl. 27.10

S2: Room

Mag. + Accl. 19.17

0.30 5.37 5.10 4.4% Mag. 46.93

Accl. 29.88

S3: Room

Mag. + Accl. 53.03

0.98 20.47 9.0 1.94% Mag. 52.59

Accl. 77.04

In this section, we introduce orientation representations and analyze the exist-

ing orientation estimation solutions.

4.3.1 Orientation Representation

The 3D orientation of an object can be represented in different ways, i.e.,

quaternion, rotation vector (axis/angle) and 3x3 rotation matrix. Each represen-

tation can be converted to another.

A unit quaternion is a 4D complex vector q = (q0, q1, q2, q3).

q0 = cos(
θ

2
), q1 = x · sin(θ

2
), q2 = y · sin(θ

2
), q3 = z · sin(θ

2
). (4.1)

It represents a rotation of degree θ along a vector (x, y, z) from the default orien-

tation. All four items in a unit quaternion must satisfy the following constraint.√
q20 + q21 + q22 + q23 = 1 (4.2)

75

A unit quaternion can be uniquely transformed into a rotation matrix using the

Rodrigues’ rotation formula as follows.
1− 2(q22 + q23) 2q1q2 − 2q3q0 2q1q3 + 2q2q0

2q1q2 + 2q3q0 1− 2(q21 + q23) 2q2q3 − 2q1q0

2q1q3 − 2q2q0 2q2q3 + 2q1q0 1− 2(q21 + q22)

 (4.3)

A unit quaternion can also be uniquely transformed into a 3D rotation vector by

Equation (4.4).

v⃗ = (v1, v2, v3) = (θ · x, θ · y, θ · z) = θ · (x, y, z)

θ = 2 · arccos(q0) (θ ̸= 0)
(4.4)

where ∥v⃗∥ = θ, and its direction is the rotation axis. Uniquely, when θ = 0,

v⃗ = 0. Any rotation vector can be uniquely transformed into a unit quaternion by

Equation (4.5).

q = (cos(
θ

2
),
v1
θ
· sin(θ

2
),
v2
θ
· sin(θ

2
),
v3
θ
· sin(θ

2
))

(θ = ∥v⃗∥, ∥v⃗∥ ≠ 0)

(4.5)

Uniquely, when ∥v⃗∥ = 0, q = (1, 0, 0, 0).

4.3.2 Conventional Orientation Tracking

We implement a complementary filter, one of the representative conventional

orientation estimation approaches. We conduct a set of experiments under different

scenarios to investigate its performance. The device we use is a Fossil Gen 5

smartwatch. A VR touch controller of Meta Quest2 is used to provide ground

truth orientations for evaluation. Details about our data processing are introduced

in Section 4.4.5.

We find two places to do experiments: a room and a hallway. From our

measurements, the magnetic field in the room is stable, whereas the magnetic

field in the hallway is unstable. We ask one volunteer to wear the smartwatch

and hold the VR controller by his/her left hand, then perform free gestures as

76

introduced in Section 4.1. The experiments are conducted under three scenarios.

For each, the user is asked to move his/her arm for ten minutes.

We implement three kinds of complementary filters, all primarily dependent

on gyroscope readings integration. The first is an implementation of MUSE [113].

It fuses magnetometer and accelerometer readings to calibrate orientation drift

caused by gyroscope readings integration. The magnetometer readings are used

continuously, while the accelerometer readings are used opportunistically (when the

accelerometer roughly measures 9.8 m/s2). The second fuses just magnetometer

readings continuously, and the third fuses just accelerometer readings opportunis-

tically to perform the calibration.

Table 4.1 shows the statistical analysis of the three scenarios: S1, S2 and

S3. In Table 4.1, speed is calculated as the average moving speed of the device

for the ten-minute data. Gravity error is the average angular difference between

every measured gravity direction and the true gravity direction (’down’). It is

highly affected by the motion of a device. Magnet deviation represents the angular

deviation of the measured magnetic direction in GRF. It measures the stability

of the magnetic field. The gravity opportunities refer to the percentage of data

samples that are considered to be linear-acceleration-free over the ten-minutes

data. They are considered as such moments when the accelerometer readings are

9.8 ± 0.3 m/s2 during consecutive 500 ms. Sensors to use denotes which sensors

are used to calibrate the gyroscope readings integration. S1 stands for the scenario

where the magnetic field is unstable but the motions of the device are slow (North

is inaccurate, gravity is accurate). S2 is the scenario where the magnetic field is

stable and the motions of the device are slow (both North and gravity are accurate).

S3 represents the scenario where the magnetic field is stable but the motions of the

device are fast (North is accurate, gravity is inaccurate). By analyzing the results

in Table 4.1, we get two observations.

Observation 1: Incorporating magnetometer readings will hurt the orienta-

tion estimation when the magnetic field is distorted; and vice versa. S1 and S2

are conducted at different places with similar motion speeds. They have similar

gravity errors. S1 has 45.41◦ magnetic direction deviation, whereas S2 has 5.10◦.

77

This indicates the magnetic field in the hallway is unstable, but stable in the

room. The results of S1 in Table 4.1 show a 58.93◦ error when using two sensors

to calibrate. The error when using either magnetometer or accelerometer is 72.53◦

and 27.10◦, respectively. Calibrating with two sensors results in a larger error

than calibrating with solely accelerometer, but a smaller error than calibrating

just with the magnetometer. This indicates incorporating magnetometer hurts

the performance. In comparison with S2, calibrating with two sensors produces a

smaller error than calibrating with one of them, which indicates the magnetometer

improves the orientation estimation under this scenario.

Observation 2: Incorporating gravity does not improve the orientation esti-

mation when the device moves fast. We further investigate the effect of gravity on

orientation estimation with S3 in Table 4.1. In this scenario, the motions of the

smartwatch are fast. The average moving speed is 0.98 m/s and gravity calibration

opportunities occur only 1.94% of the time. The gravity error is larger than in S1

and S2. In this scenario, calibrating with two sensors gets almost the same error

as calibrating just with the magnetometer, demonstrating that gravity does not

improve the orientation estimation.

Summary: A better sensor fusion scheme is needed to tolerate the noise from

IMU sensors for accurate orientation tracking. Each IMU sensor has its own limita-

tions. Integration of gyroscope readings drifts over time. Accelerometer readings

are highly motion-dependent. Magnetometer readings are highly environment-

dependent. Due to these inherent hardware limitations, we need a more flexible

data fusion method that can adapt to different scenarios automatically. Data-

driven methods [118, 117, 115, 116] have shown great potential for handling data

noises and adapting to the variation of data distribution in many computer vision

and natural language processing applications [137, 138, 139].

4.3.3 Conventional Location Tracking

Conventional location tracking approaches of smartwatches rely on the ori-

entation of the smartwatches. Orientation is used to transform the accelerometer

readings into a desired reference frame, e.g., GRF, to infer the location of the device

78

in GRF. As introduced in Section 4.1 and Section 4.2, three solutions have been

proposed for smartwatch location tracking recently, ArmTrak [106], ArmTroi [104],

and MUSE [113]. These solutions require pre-existing knowledge of user-specific

information, including shoulder width and the lengths of the lower arm, upper

arm and torso. They use user-specific information to generate 3D point clouds

for each user and search the possible locations of the smartwatches from these

point clouds. There are three main limitations to those solutions. First, the point

cloud generation process is time-consuming. The more point clouds generated, the

more time is needed. Second, point clouds are generated according to the user-

specific information, which require each user to generate his/her personal point

clouds and to run HMM or Particle Filters to estimate the possible locations of

the smartwatch. Point clouds are not generalizable to different users. Third, the

computation latency of such searching solutions is long and cannot be afforded by

commodity mobile devices in real-time if the sampling rate is higher than 10 Hz.

Summary: A new method that supports accurate real-time smartwatch loca-

tion tracking on mobile devices is needed. In this paper, we exploit the benefits of

deep learning to track the device’s orientation and location.

4.4 The Design of RTAT

In this section, we first introduce the overview of our system. We then show our

design of multitask learning neural network, attention-based feature adjustment,

and labeled data collection.

4.4.1 Overview

Figure 4.1 shows the two major parts of our system, i.e., real-time arm tracking

and labeled data collection. During the offline training phase, we feed the collected

IMU readings of the smartwatch and labels to RTAT to train a multitask model.

During the online inference phase, a user can use the well-trained model to do

inference by just wearing a smartwatch. The model can be executed on a smart-

phone. The smartwatch transmits the IMU sensor data stream to the smartphone

79

Multitask Learning

Attention Smoothness

Online

Inference

Orientation and

Location Tracking

Labeled Data Collection

Time

Synchronization

Orientation

Label

Location

Label

RTAT: Real Time Arm Tracking

Full IMU

Offline Training

Figure 4.1: System Overview of RTAT

via Bluetooth. The smartphone receives and then forwards the IMU readings to

the model deployed on the smartphone. The labeled data collection system is no

longer needed during the inference phase.

RTAT ’s Arm Tracking System. We design a multitask neural network

to jointly predict the orientation and location of the wrist (Section 4.4.2). The

inputs of the neural network are the IMU sensor data stream from a smartwatch,

and the outputs are the corresponding orientation and location series. Since the

importance of different IMU sensors in orientation estimation is varying over time,

we design an attention mechanism on top of our multitask neural network (Section

4.4.3). The attention mechanism adjusts the input focuses of the network auto-

matically according to the varying sensor data quality. Furthermore, to guarantee

the smoothness of the inferred arm motions, we employ smooth losses for both

orientation and location tracking (Section 4.4.4).

RTAT ’s Labeled Data Collection. To train a model with supervised

learning, we need to build a training dataset. The dataset should consist of a

large amount of time-series IMU readings from the smartwatch, and the orientation

and location labels of the smartwatch. However, acquiring accurate labels for the

smartwatch is a non-trivial task. Thus we develop a labeled data collection part

(Section 4.4.5) to derive training labels. As depicted in Figure 4.1, the training

80

data collection process requires volunteers to wear a smartwatch and hold a VR

controller simultaneously. The VR system provides labels for the smartwatch.

However, the readings we collect from the VR system describe the orientations

and locations of the VR controller, not the smartwatch. Since the center of the

VR controller and smartwatch are not aligned, training the model on unprocessed

VR controller data would constitute training a model to predict the orientations

and locations of the VR controller given IMU readings from the smartwatch. To fill

in the gap between the acquired orientations and locations of the VR controller and

the required ones of the smartwatch, we design a labeled data collection system.

The system is built in three steps, i.e., time synchronization and alignment (Section

4.4.5 and Section 4.4.5), orientation label derivation (Section 4.4.5) and location

label derivation (Section 4.4.5).

4.4.2 Multitask Learning Neural Network

Previous solutions usually estimate the orientation of devices first, and then the

location. Multitask learning provides us the opportunity to solve multiple tasks

simultaneously [140, 120]. We thus design a multitask neural network to jointly

estimate the device orientation and location from the IMU readings. Our multitask

neural network has two outputs, i.e., orientation and location.

Formally, we denote a posture Pw of a wrist as the union of an orientation oriw

and a location locw, where Pw = ⟨oriw, locw⟩. Our multitask neural network is

designed to learn a data-driven mapping from IMU measurements to orientations

and locations as follows.

orit, loct = f(at, ωt,mt) (4.6)

where at, ωt and mt are the readings from accelerometer, gyroscope and magne-

tometer at timestamp t. Each of them is a 3D vector as depicted in Figure 4.2.

f is the weight to be learned by the multitask network. orit and loct are the 3D

orientation and 3D location predicted by the neural network at at timestamp t.

Figure 4.2 demonstrates our network architecture. The network consists of

three BiLSTM layers [141] and two fully-connected (FC) layers. BiLSTM is one

kind of Recurrent Neural Network (RNN). RNN is designed for processing sequen-

81

FC

Orientation

BiLSTM BiLSTM BiLSTM

FC

Location

(𝒎𝒙
𝒕 , 𝒎𝒚

𝒕 , 𝒎𝒛
𝒕)(𝒂𝒙

𝒕 , 𝒂𝒚
𝒕 , 𝒂𝒛

𝒕) (𝝎𝒙
𝒕 , 𝝎𝒚

𝒕 , 𝝎𝒛
𝒕)

(𝒗𝟏
𝒕 , 𝒗𝟐

𝒕 , 𝒗𝟑
𝒕) (𝒑𝟏

𝒕 , 𝒑𝟐
𝒕 , 𝒑𝟑

𝒕)

Mag.Gyro.Accl.

𝒛𝟏
𝒕 𝒛𝟐

𝒕 𝒛𝟑
𝒕

𝒛𝒕 = {𝒛𝟏
𝒕 , 𝒛𝟐

𝒕 , 𝒛𝟑
𝒕 }Concatenation

Figure 4.2: Multitask Network Structure.

tial data. We set the length of a sequence as 32 time steps (32 data samples) in

our implementation. A BiLSTM consists of two LSTMs, a forward LSTM and a

backward LSTM. The forward one takes an input sequence in a forward direction,

and the backward one in a backward direction. The BiLSTM layer’s output is a

combination of the two LSTM layers’ outputs. We set the sampling rate of IMU

sensors to 50 HZ. Data for an input sequence (32 samples) can be collected in less

than one second. From Section 4.6.5, our model takes on average 2˜3 ms to process

one-second of data (50 samples) on smartphones.

Each BiLSTM layer takes the 3D vector sequences from one of the IMU sensors.

The outputs of BiLSTM layers are the hidden states of the temporally dependent

data. The hidden states from the three BiLSTMs are concatenated in the con-

catenation layer. The concatenated vectors are forwarded to each of the FC layers

to predict the orientations and locations. A loss function plays an important role

in the fast and accurate training of a neural network. The rest of this subsection

focuses on our loss function design.

Orientation Output. A rotation is a process of 3 degrees-of-freedom (DoF).

A quaternion we introduced in Section 4.3.1 is a 4D vector used to represent a 3D

rotation. If we define the orientation output as a quaternion, we should normalize

the square of the 4D vector as 1 to meet Equation (4.2). From our experiments,

82

the neural network cannot learn quaternions well following this design. Thus, we

use a 3D rotation vector instead of a quaternion as the orientation output of our

multitask neural network.

An orientation label we collect from the VR system at each timestamp is a

unit quaternion. Therefore, we transform the 3D vector output of our neural

network into a unit quaternion using Equation (4.5) when we calculate the loss. By

comparing the inferred quaternions to the quaternion labels, the neural network

is trained to learn from the labeled data. Since the quaternion label meets the

constraint in Equation (4.2), we implicitly implant the constraint into our learning

process to predict the 3D rotation vectors.

Loss Function for Orientation. Assume a quaternion label is qt and the

predicted quaternion is q̂t. The loss for orientation is:

Lori =
1

T

T∑
t=1

deg(q̂t · q−1
t) (4.7)

deg(q) = 2 · arccos((q′0, q′1, q′2, q′3)) = 2 · arccos(q′0) = θ (4.8)

where q−1
t is the inverse of qt, and q̂t · q−1

t returns a quaternion, which is the

rotation from qt to q̂t. The operator · is the Hamilton product, which represents

the quaternion product. The function deg(q) is the quaternion difference of qt and

q̂t. The constant parameter T is the number of data samples in a training batch.

Loss Function for Location. Location can be represented as a 3D vector,

with the form p = (p1, p2, p3). Mean squared error (MSE) between the predicted

locations and labels is used for location loss.

Lloc =
1

T

T∑
t=1

(pt − p̂t)
2 (4.9)

where the pt and p̂t are the position label and the predicted position at timestamp

t, respectively.

Loss Function for Multitask Learning. With the definition of the orien-

tation loss and location loss, the overall loss of the multitask learning is given.

L1 = αLori + βLloc (4.10)

twhere α and β are hyper-parameters to balance the two losses.

83

0 2 4 6 8
Time (s)

0

25

50

75

100

125

Er
ro

r (
de

gr
ee

)

Gra_Mag
Gra_Gyro
Gyro_Mag
Gyro
Gra_Gyro_Mag

Figure 4.3: Orientation error changes along with time of the models with different

combinations of sensor inputs.

4.4.3 Attention-based Feature Adjustment

As shown in the motivation experiments, three IMU sensors play varied roles

in orientation estimation in the conventional filtering algorithms. We further in-

vestigate the importance of each sensor for orientation estimation in deep learning.

We build and train five models using data from the same user, each with

different inputs. The inputs are different combinations of data from the three

IMU sensors. Gra, Mag and Gyro stand for the readings of the accelerometer,

magnetometer and gyroscope respectively. For example, the inputs for ”Gra Mag”

are the data combinations from accelerometer and magnetometer.

Figure 4.3 demonstrates how the error of different models varies over time.

None of them consistently outperform the other sensor combinations. Each of

them achieves the lowest error at different points. The model that utilized all

three sensors had the most stably low error. Table 4.2 shows a statistical analysis

over ten minutes of data. The third row, ”Be-The-Best,” presents the percentage of

time the corresponding data combination can achieve the lowest prediction error.

”Gra Gyro Mag” performs the best the majority of the time, but not always. Other

models sometimes take the place.

From Figure 4.3 and Table 4.2, we observe that we still need to use the data

from all three sensors as input for our neural network. To fully exploit the neural

network’s capabilities and achieve higher accuracy, we must dynamically identify

the importance of each sensor.

84

Table 4.2: The orientation error (degree) and Be-The-Best (BTW, %) for ten-

minutes data from different sensor combinations.

Model Gra Mag Gra Gyro Gyro Mag Gra Gyro Mag Gyro

Error 9.38 17.14 16.92 8.12 33.98

BTW 30.16 11.22 12.82 44.18 1.62

We thus introduce an attention-based design on top of the multitask neural

network to learn how important a sensor is at each timestamp. As shown in

Figure 4.4, the network inputs include three parts; They are the data from ac-

celerometer, gyroscope and magnetometer, respectively. The attention scheme

is designed to automatically adapt the network to different parts of the inputs.

Attention is an emerging technique. It is used for automatically adjusting the

focuses of a DNN by multiplying a weighting vector, the value of each element in

the vector can vary [138, 104]. In our case, the network should treat readings from

different sensors differently. It intends to use the most effective portion (context)

to derive outputs. We can exploit this ability to dynamically increase the weight

of important sensor inputs and reduce the weight of unimportant sensor inputs.

Hence, the attention scheme is suitable for learning the importance of different

input channels.

As shown in Figure 4.4, we add an attention layer into the network, which learns

to assign weights for different IMU input channels. Originally, as shown in Figure

(4.2), zt is the concatenation of the BiLSTMs’ outputs, where zt = {zt1, zt2, zt3},
they are from the accelerometer, gyroscope and magnetometer, respectively. This

feature vector zt serves as the input of the last two FC layers. Instead of equally

fusing them into the last two layers, an adaptive context vector cti is designed to

weight zt1, z
t
2, z

t
3, and then concentrate the weighted value of them as shown in the

Equation (4.11) below.

cti = concat(αt
1z

t
1, αt

2z
t
2, αt

3z
t
3) (4.11)

where ztr and αt
r are the features from different inputs and their corresponding

85

FC

Orientation

BiLSTM BiLSTM BiLSTM

FC

Location

(𝒎𝒙
𝒕 , 𝒎𝒚

𝒕 , 𝒎𝒛
𝒕)(𝒂𝒙

𝒕 , 𝒂𝒚
𝒕 , 𝒂𝒛

𝒕) (𝝎𝒙
𝒕 , 𝝎𝒚

𝒕 , 𝝎𝒛
𝒕)

(𝒗𝟏
𝒕 , 𝒗𝟐

𝒕 , 𝒗𝟑
𝒕) (𝒑𝟏

𝒕 , 𝒑𝟐
𝒕 , 𝒑𝟑

𝒕)

Attention

𝜶𝟏
𝐭

Mag.Gyro.Accl.

𝒛𝟏
𝒕

𝒛𝟐
𝒕 𝒛𝟑

𝒕

Concatenation 𝒄𝒕 = {𝜶𝟏
𝐭 𝒛𝟏

𝒕 , 𝜶𝟐
𝐭 𝒛𝟐

𝒕 , 𝜶𝟑
𝐭 𝒛𝟑

𝒕 }

𝜶𝟐
𝐭 𝜶𝟑

𝐭

Figure 4.4: Attention Network Structure.

weights. αt
r measures the importance of the feature from each part of the input

data. It differentiates the contributions of each input part to the orientation

prediction. The weight αt
r for a highly contributed ztr will be greatly increased

in Equation (4.11) by the attention function. Otherwise, αt
r will be gradually

decreased. The attention function is typically realized as a single-layer multiplayer

perceptron, such as tanh(·) and ReLu(·). The calculation of αt
r is:

attt = tanh(W · zt + b)

αt
r = fsoftmax(att

t)
(4.12)

where attt is an intermediate variable; fsoftmax(·) scales the weights αt
r to the range

[0, 1]. W and b are the trainable parameters to be determined in the training phase.

4.4.4 Smooth Losses

We train our multitask learning neural network by minimizing the distance be-

tween the predicted postures (Pw = ⟨oriw, locw⟩) and the posture labels. However,

this loss design treats the posture at each time point independently. Sometimes,

the inferred movements of the human wrist may not be continuous and smooth over

time, resulting in an unrealistic posture estimation. To fully leverage the temporal

86

(a) Different reference frames (b) Rotation experiment (c) Projection of the vector

Figure 4.5: Labeled Data Collection System.

correlation between the wrist postures at two adjacent timestamps, we add a

smoothness item in our loss function for both orientation and location predictions.

The new smooth loss makes the difference between consecutive postures close to

that of the labels:

Loris =
1

T − 1

T∑
t=2

deg((qt · q−1
t−1) · (q̂t · q̂−1

t−1)) (4.13)

Llocs =
1

T − 1

T∑
t=2

((pt − pt−1)− (p̂t − p̂t))
2 (4.14)

The difference between consecutive orientations measures the changing rate of

orientation, which is the angular velocity. The difference of consecutive locations

measures the changing rate of location, which is the velocity. With these two

smooth losses, we extend the multitask learning loss function in Equation (4.10)

as follows:

L2 = αLori + βLloc + γLoris + ηLlocs (4.15)

where α, β, γ, and η are the hyper-parameters to balance these four losses. In

our current implementation, we set all of them to 1. We optimize the above loss

through RMSprop optimizer. By this design, we minimize both the loss of the

posture (orientation and location) and the loss of the posture’s changing rate.

4.4.5 Labeled Data Collection

To train RTAT ’s model, we need the orientation and location labels of the

smartwatch for the IMU readings.

87

Why Meta Quest 2 is chosen for labeled data collection? To collect

the labeled data, we may use Azure Kinect [142], VICON motion capture system

[143], or a VR system.

Azure Kinect is not able to capture the pronation/supination (inward/outward

rotation) of the forearm due to the limitation of its current algorithm, which means

it can only capture 2 DoF orientation of the wrist [144].

VICON motion capture system can provide accurate arm posture tracking.

However, VICON cameras are expensive (more than $3000 each). Multiple cameras

from different points of view in a room are needed to provide high-precision

tracking. For instance, WiPose [136] uses 21 VICON cameras to provide labeled

locations for WiFi-based joint tracking. Moreover, once the VICON system is

installed in one room, it is costly to move it to another room.

Meta Quest 2 is the most advanced all-in-one VR system that provides accurate

orientation and location tracking of its controllers at a low cost ($299 for 64GB).

It can be used in any indoor environment with ignorable setup efforts. Thus, we

use a Meta Quest 2 to collect the labels.

Is Meta Quest 2 accurate enough for tracking? As shown in Figure 4.5

(a), the headset of Meta Quest 2 is embedded with four cameras on its four corners.

It adopts Oculus Insight, the cutting-edge VR technology that leverages com-

puter vision algorithms and visual-inertial simultaneous localization and mapping

(SLAM) to compute 6-DoF postures (3-DoF orientation and 3-DoF location) [145].

Specifically, Oculus Insight combines information from multiple IMUs in its headset

and controllers, i.e. ultra-wide-angle cameras in the headset and infrared LEDs

in the controllers, to jointly track their orientation and location. Controlled

experiments [146, 147, 148] have demonstrated that the orientation and location

tracking errors of Meta Quest 2 are smaller than 0.85◦ and 0.7 cm respectively.

Labeled data in the VR Reference Frame (VRF). The orientation and

location of the VR headset and controllers are tracked in VRF. Figure 4.5(a)

shows the coordinates of WRF and VRF. The origin of VRF is the midpoint of

the headset. The VRF can be established every time the VR system is used based

on the initial position of the headset. We collect the orientation and location data

88

of one VR touch controller in VRF. Our goal is to use the measurements of the VR

controller to calculate the orientation and location of the smartwatch. RTAT uses

the smartwatch’s IMU sensor readings measured in WRF to infer its orientation

and location in VRF.

Once the VRF is established, it will not change until the next setup, even if the

headset moves. As long as the user wears the headset properly, VRF can represent

the body’s reference frame. Therefore, RTAT tracks the arm movements relative

to the user’s body. VRF-based labeled data also offers two advantages. 1) We do

not require users to stand in the exact same position when they collect labeled

data or use RTAT for arm tracking since RTAT is focused on arm movements

relative to the user’s body. 2) We can combine the labeled data collected from the

same user at different times. 3) We can also combine labeled data from multiple

users to train a general RTAT model. Experiments in Section 4.6.2 show that our

general model provides high performance across different users, including the users

whose data has not been used for training.

Two challenges to collect labeled data with VR controllers.

• Using the orientation and location of the VR controller to derive those of the

smartwatch. If we simply wear a smartwatch and hold one VR controller in

the same hand to collect data, the relative orientation and location between

these two devices may vary when a user moves her/his wrist. As shown

in Figure 4.1, we bind the smartwatch and the VR controller onto a rigid

frame. This is constructed with four sticks to ensure the two devices are

static relative to each other. The VR system provides the orientations and

locations of the controller, while we need those of the smartwatch.

• Time Synchronization of VR system and smartwatch. The smartwatch and

VR system are based on two different time clocks. They need to be well

synchronized to provide data at the same timestamps.

89

Orientation Label.

We use Twv, a 3×3 orthogonal rotation matrix introduced in Section 4.3.1 to

denote the smartwatch’s orientation in VRF. Twv will be used as the orientation

label. Similarly, Tcv represents the orientation of the VR controller in VRF. Tcv

is measured by the VR system. Our goal is to calculate Twv from Tcv. To do so,

we need the watch’s orientation relative to the controller Twc, i.e., Twv = Twc · Tcv.

Twc is a constant matrix, as the controller and the watch are fixed to each other.

However, it is impossible to physically measure Twc.

Fortunately, the orientation of a smartwatch in GRF, Twg, can be accurately

calculated when the smartwatch is static using gravity and magnetic North as

direction anchors. If the transformation from VRF to GRF Tvg is known, we can

transform the orientation of the smartwatch in VRF Twv to the orientation of the

smartwatch in GRF Twg, and then get Twc. Leveraging this resource, we update

the strategy into Twg = Twv · Tvg = Twc · Tcv · Tvg. All four matrices are 3×3

orthogonal matrices. Since VRF does not change each time it is established, the

transformation from VRF to GRF Tvg is a constant but unknown matrix. We

perform a set of static gestures to acquire multiple Twg, and with the known Tcv,

we jointly determine Twc and Tvg. Finally, we apply Twc to Tcv to get Twv.

Twg can be acquired via its inverse, Twg = T−1
gw . For Tgw, the three axes of GRF

represented in WRF, −→xgw,
−→ygw, −→zgw, can all be determined when the watch is static.

−→zgw is the opposite direction of gravity
−→
Gr. x⃗ is the horizontal direction of Geo-

North, which is perpendicular to
−→
Gr. Thus−→xgw = x⃗′

∥x⃗′∥
, and x⃗′ =

−→
Mr−(

−→
Mr·−→zgw)−→zgw,

where
−→
Mr is the magnetometer reading. The smartwatch we used applies the

left-hand-rule, thus we also apply left-hand-rule to our reference frame, so that
−→ygw = −→xgw ×−→zgw. The inverse of an orthogonal matrix is its transpose. Then,

Tgw =


−→xgw

−→ygw
−→zgw

 , Twg = T−1
gw =


−→xgw

−→ygw
−→zgw


−1

=


−→xgw

−→ygw
−→zgw


T

(4.16)

Recall that in Twg = Twc ·Tcv ·Tvg, both Twc and Tvg do not change, and Twg and

Tcv are dynamic but can be acquired. Then we must determine the two constant

90

matrices Twc and Tvg. If we collect N static periods, we have N pairs of (Twg(i),

Tcv(i)). We define the calculation loss as:

Loss =

∑N
i=1diff(Twg(i), Twc · Tcv(i) · Tvg)

N
(4.17)

where diff(Tx, Ty) returns the minimum degree of rotation between Tx and Ty.

A rotation of reference transformation is a process of 3-DoF. We have two

unknown rotations, meaning there are six variables that need to be determined.

Fortunately, we know the VRF and the GRF share the same ‘up’ direction, which

reduces the DoF of Tvg to 1. This leaves 3+1=4 variables to be determined. We

jointly determine Twc and Tvg by searching for the best pair of them that returns

the minimum calculation loss in Equation (17). The minimum loss is 0.15◦. We

then apply Twc we get to every Tcv to calculate Twv.

Location Label

We can obtain the location of the VR controller represented in VRF Lc−V RF

from the VR system. To derive the location of the smartwatch Lw−V RF from

Lc−V RF in VRF, we need to obtain the vector points from the center of controller to

the center of smartwatch in VRF Lwc−V RF . Then Lw−V RF = Lc−V RF +Lwc−V RF .

Since the relative positions of smartwatch and the VR controller to each other

are static, the vector Lwc−V RF is constant. However, it is impossible to manually

measure this vector. As shown in Figure 4.5(b), we know that the center of the

smartwatch is the center of its body, but we cannot exactly pinpoint the center of

the VR controller.

Fortunately, we derived the transformation from WRF to VRF Twv in Sec-

tion 4.4.5, if we can acquire the vector in WRF, Lwc−WRF , then Lwc−V RF =

Lwc−V RF ·Twv. We thus design an experiment to derive the vector in WRF. If

the locations of the smartwatch and the VR controller in WRF are known, the

vector in WRF can be derived. The locations of the VR controller in WRF can be

obtained by transforming the locations of VR controller in the VRF, because the

transformation between the two references are known in Section 4.4.5. However,

the smartwatch does not provide any information about its own location in WRF.

91

To eliminate the uncertainty of the location of the smartwatch, we do not move

but rotate the center of the smartwatch along its axes, so that its location does

not change. The location trace of the VR controller in VRF is a circle.

As shown in Figure 4.5(b), we set up a spinning platform, whose rotation axis

is vertical. The platform rotates automatically with electric power. We carefully

adjust the smartwatch to a certain posture so that the Z-axis of the smartwatch

is exactly on the rotation axis of the spinning platform. In this situation, when

we rotate the platform, the location of the smartwatch does not change, from the

point of the watch (WRF), the location of the controller does not change, while

the location trace of the controller in VRF is a circle. The center of the circle is on

the Z-axis of the watch. As shown in Figure 4.5(c), the radius of the circle is the

length of the projection of the vector Lwc−WRF on the X-Y plane in WRF. We use

LX−Y
c to denote the collected locations of the controller, and LX−Y

w to denote the

location of the smartwatch (center of the circle). Then in WRF, we acquire the

vector from LX−Y
c to LX−Y

w , LX−Y
wc−WRF = LX−Y

w −LX−Y
c , which is the projection of

the vector on the X-Y in WRF.

With the same principle, we can get LY−Z
wc−WRF and LX−Z

wc−WRF . Then we search

for a vector Lwc−WRF in a small 3D space (20cm3), whose projection on the Y-

Z, X-Z and X-Y best matches LY−Z
wc−WRF , L

X−Z
wc−WRF , and LX−Y

wc−WRF , respectively.

Lwc−WRF will be the vector we want to derive in WRF. The best match loss is 0.14

cm. We then apply this vector to every data sample and acquire the true location

of the watch in VRF:

Lw−V RF = Lc−V RF +Lwc−V RF = Lc−V RF +Lwc−WRF ·Twv (4.18)

Time Synchronization of VR system and Smartwatch

Since the VR controller and the smartwatch are static to each other. Their

angular movements relative to the world should always be the same. To find the

time bias between these two systems, we make use of the magnitude of angular

velocity measured by the VR system and the smartwatch, ∥ωvr∥ and ∥ωwatch∥.
∥ωvr∥ and ∥ωwatch∥ should match the most when the two systems are well synchro-

nized. As shown in Figure 4.6 (a), Given the data sequences from the VR system

92

0 2000 4000 6000
Time (ms)

0

1

2

3

ra
d/

s

Watch
VR

(a) Before synchronization.

0 2000 4000 6000
Time (ms)

0

1

2

3

ra
d/

s

Watch
VR

(b) After synchronization.

Figure 4.6: Time synchronization of smartwatch and VR.

and the smartwatch, we add a time compensation tc on the timestamp of VR

readings and find the tc that returns the minimum difference between ∥ωvr(t+ tc)∥
and ∥ωwatch(t)∥. Finally, we synchronize the VR system with the smartwatch by

adding tc to all of the VR readings. Figure 4.6 (b) demonstrates the data traces

after synchronization.

Alignment of Time Series Data From the Two Systems.

The smartwatch and the VR system output data at different timestamps with

different frequencies. The smartwatch outputs data with an average interval of 20

ms. The three IMU sensors may output data at different timestamps. The VR

system outputs data with an average interval of 15 ms. We need to align the four

time series data from the two systems.

Assume we want a data sample from sensor S at time t, while the sensor does

not have outputs at this specific timestamp. We search for the two nearest data

samples ti and ti+1 that enclose time t, ti ¡ t ¡ ti+1. Sensor S outputs S(ti) at ti,

and S(ti+1) at ti+1. We then perform a linear interpolation to acquire a virtual

data sample S(t) at time t , with ti, ti+1, S(ti) and S(ti+1):

S(t) =
S(ti+1) · (t− ti) + S(ti) · (ti+1 − t)

ti+1 − ti
(4.19)

We prepare a timeline with a fixed sampling frequency f, and perform linear

interpolation at every wanted timestamp. We set f as 50Hz, which is close to

the smartwatch’s sampling frequency, and lower than VR system’s frequency of 66

Hz. By this step, the data streams from the two systems are aligned.

93

4.5 Implementation

Data Collection. Data collection consists of IMU data from the smartwatch

and ground truth data from the VR system.

To read the IMU data from the smartwatch, we develop and install an App into

the watch. The SensorManager API in Android is used to read data from sensors.

To collect the IMU readings, we establish a server based on Apache Tomcat and

Eclipse. The application installed in the smartwatch capture the IMU sensor data

of the smartwatch and sends the data automatically to the server via http by

finding the IP address of the server when the application is running. The server

connects to a MySQL database to store data. The application and data collection

server are implemented in Java.

To read the orientation and location of the VR controller, we develop an

application based on unity in C# and install it to the VR system. Since the

VR device has sufficient disk space, we save the data locally. The orientation and

location readings of the VR controller are saved into a CSV file automatically

created by the application when it is running.

Multitask Model. Our multitask model is implemented and trained by Keras

in Python. Each BiLSTM layer has 32 units, and each FC layer has three units.

The optimizer is RMSprop, with a learning rate of 0.0001. The training epoch

is 100, the batch size is 128, and the number of time steps considered by the

BiLSTM is 32. The computer we use to collect data and develop our framework

is an Alienware Aurora R7, with a Intel Core i5 8400 CPU (6-core) and NVIDIA

GeForce GTX 1070 GPU (8GB memory).

TensorFlow Lite model. To run RTAT on smartphones, it is necessary

to convert the well-trained TensorFlow model that was developed on a desktop

computer into a TensorFlow Lite model that is capable to run and do inference on

mobile devices. This can be achieved using the TensorFlow Lite Converter. First,

the TensorFlow model is frozen into a concrete function. This process fixes the

input size, which is specified as a tensor, and also specifies a tf.function that can

be saved into a .pb file, which is the preferred input format for the TensorFlow

Lite Converter. Next, the TensorFlow Lite Converter is used to convert the saved

94

model into a FlatBuffer file with a .tflite extension. This file can be imported and

used on mobile devices running Android or iOS, as well as some embedded devices

and microcontrollers.

4.6 Evaluation

In this section, we introduce our experiment settings. We demonstrate the per-

formance and performance decomposition of RTAT , the performance of different

applications, and the system overhead.

4.6.1 Experimental Settings

Platform and Devices. The platform we used to do evaluation experiments

is introduced in Section 4.5. As introduced in Section 4.3, the smartwatch we use

is Fossil Gen 5. It includes an LSM6DSO 3D accelerometer + 3D gyroscope and

an AK0991X magnetometer. Similar chips are in many other commercial devices,

including Samsung Galaxy A52, Samsung Galaxy S22 Ultra, Samsung Galaxy Note

10, Xiaomi Mi 10T Pro, Xiaomi POCO X3 Pro, Oneplus 7, MiWatch, TicWatch

Pro 3, Sony Xperia 1 III, Motorola moto g fast, etc. We still use the Meta Quest

2 VR system to provide the ground truth for the evaluation.

Evaluation Metrics. We use the following metrics to quantify the perfor-

mance of RTAT in estimating orientation and location.

• 3D orientation error. It is measured as the minimum degree of rotation

required to align the estimated orientation to the ground truth orientation.

• 3D location error. It is the Euclidean distance between the estimated location

and the ground truth location.

Baselines for Orientation Estimation. We compare the orientation estimation

error of RTAT to two baselines.

• MUSE [113]: The state-of-the-art conventional sensor fusion approach for

estimating device orientation.

95

• IDOL [118]: IDOL is based on Extended Kalman Filter (EKF). The predic-

tion model of its EKF uses an RNN to predict orientation. The measurement

model of its EKF is based on gyroscope readings integration.

Baselines for Location Estimation. We compare the smartwatch’s location

estimation error of RTAT with two baselines.

• MUSE [113]: It estimates the location using Particle Filters.

• ArmTroi [104]: It estimates location using HMM. As stated in [104], ArmTroi

provides real-time computation on smartphones when the sampling rate is

5 Hz, but it is less accurate than MUSE. We will compare the accuracy of

RTAT with MUSE, and the latency of RTAT with ArmTroi.

Table 4.3: Statistical analysis on users’ test data

Hallway / Room
Gravity

Error(◦)

Magnet

Deviation(◦)

Static

Moments

Gravity

Opportunity(%)

Speed

(m/s)

User1 8.83 / 9.54 13.34 / 5.69 85 / 71 5.92 / 4.74 0.55 / 0.56

User2 8.05 / 6.23 21.50 / 6.82 141 / 124 8.97 / 10.63 0.59 / 0.48

User3 7.15 / 5.37 45.41 / 5.10 165 / 216 10.52 / 13.3 0.39 / 0.30

User4 10.57 / 20.47 26.13 / 9.0 34 / 40 3.37 / 3.49 0.66 / 0.98

User5 7.69 / 9.56 26.61 / 7.15 75 / 17 5.62 / 2.61 0.42 / 0.57

Mean(User1-5) 8.46 / 10.23 26.60 / 6.75 100 / 93.6 6.88 / 6.95 0.52 / 0.58

User6 (new) 7.21 / 4.54 24.71 / 5.91 110 / 351 8.22 / 30.77 0.61 / 0.29

User7 (new) 11.12 / 14.97 29.91 / 8.90 153 / 233 11.53 / 18.59 0.67 / 0.86

User8 (new) 12.61/10.25 26.15 /6.19 79/74 5.8/6.4 0.73 / 0.57

User9 (new) 23.92/16.94 36.08/9.10 17/5 3.0/4.5 1.27/0.78

Dataset. We collect data from five users (two females and three males) to train

and test our model. We collect data at two places, the hallway and the room. At

each place, we collect 50-minute data from each user. The dataset collected from

the hallway includes 754,688 samples, and the dataset collected from the room

96

0 50 100 150
Orientation Error (degree)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

MUSE
IDOL
RTAT

(a) Hallway

0 50 100
Orientation Error (degree)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

MUSE
IDOL
RTAT

(b) Room

0 50 100 150
Location Error (cm)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

MUSE
RTAT

(c) Hallway

0 50 100 150
Location Error (cm)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

MUSE
RTAT

(d) Room

Figure 4.7: Orientation error and location error at hallway and room.

includes 761,856 samples. We divide each dataset into train and test data at a

ratio of 4:1. At each place, we use the data from all 5 users to train a general

model and test its performance on all 5 users. The test data for RTAT and the

baselines is the same. We also collect data from four new users (two females and

two males) to test the model. The model has never seen their data during training.

We collect 10-minute data (around 30000 samples) from each user at each place.

Dataset Collection Scenarios. The age of the nine users ranges from 21 to 32,

i.e., 30, 28, 23, 26, 21, 32, 32, 22, and 22, respectively. Their height ranges from

158 cm to 182 cm, i.e., 168 cm, 170 cm, 182 cm, 177 cm, 158 cm, 175 cm, 165 cm,

179 cm, and 160 cm, respectively. We ask users to move their arms freely at their

normal movement speed. They perform random arm gestures or daily gestures,

including driving, drinking, writing, exercising, push and pull, drawing, and so on.

4.6.2 RTAT Performance

In this subsection, we compare the performance of RTAT to the baseline meth-

ods in orientation and location estimation. The performance of RTAT is evaluated

from the overall performance, the performance over time, the performance of

different users and the performance of new users.

Overall Performance

Figure 4.8 depicts the overall orientation and location estimation error at the

two testing places. From Figure 4.8 (a), in the hallway, the orientation error of

MUSE, IDOL and RTAT are 35.13◦, 22.87◦ and 17.19◦, respectively averaged over

the whole test data. RTAT decreases the orientation error by 24.84% and 51.07%

97

RoomHallway

10

20

30

40

Er
ro

r (
de

gr
ee

)

MUSE
IDOL
RTAT

0

(a) Orientation error

MUSE
RTAT

Hallway Room

10

20

30

Er
ro

r (
cm

)

0

(b) Location error

Figure 4.8: Overall orientation and location error.

compared to IDOL and MUSE, respectively. In the room, the orientation error of

MUSE, IDOL and RTAT are 24.66◦, 16.86◦ and 12.67◦, respectively on the whole

test data. RTAT decreases the orientation error by 24.85% and 31.63% compared

to IDOL and MUSE, respectively. All systems perform better in the room than

the hallway as magnet deviation in the hallway is larger.

The neural network of IDOL outputs quaternions directly. The orientation

error defined as the norm quaternion difference between its predicted quaternions

and the ground truth quaternions. Although its orientation estimation error is not

high, we found its predicted quaternions do not meet Equation (4.2). Because its

loss design ignores this constraint. The neural network finds a way to minimize

the loss but it does not realize the constraint.

Figure 4.8 (b) shows the average location estimation error at the two different

places. In the hallway, the location error of MUSE and RTAT are 19.87 cm and

10.93 cm, respectively. RTAT decreases the location error by 45% compared to

MUSE. In the room, the location error of MUSE and RTAT are 22.75 cm and

12.09 cm, respectively. RTAT decreases the error by 46.9% compared to MUSE.

Figure 4.7 demonstrates the CDF of RTAT ’s orientation and location error

compared to the baselines at the two places. RTAT consistently outperforms the

baselines for orientation and location estimation. From Figure 4.7 (a), for 80% of

cases, the orientation error of RTAT is less than 25 ◦ in the hallway. Similarly,

Figure 4.7 (b) shows the orientation error of RTAT is less than 25 ◦ for 90% of

cases in the room. The CDF of location error at two places are similar, for 80% of

cases, the location error is smaller than 25 cm.

98

0 20 40 60 80 100
Time (s)

0

50

100

Er
ro

r (
de

gr
ee

) MUSE
 IDOL
RTAT

(a) Orientation at hallway

0 20 40 60 80 100
Time (s)

0

20

40

60

80

100

Er
ro

r (
de

gr
ee

) MUSE
IDOL
RTAT

(b) Orientation at room

Figure 4.9: Orientation error along with time in the hallway and room.

0 20 40 60 80 100
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r (
cm

)

MUSE
RTAT

(a) Location at hallway

0 20 40 60 80 100
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r (
cm

) MUSE
RTAT

(b) Location at room

Figure 4.10: Location error along with time in the hallway and room.

U1 U2 U3 U4 U5 U6 U7 U8 U9
Different Users

0

10

20

30

40

50

60

Er
ro

r (
de

gr
ee

)

MUSE
IDOL
RTAT

(a) Orientation at hallway

U1 U2 U3 U4 U5 U6 U7 U8 U9
Different Users

0

10

20

30

40

50

60

Er
ro

r (
de

gr
ee

)

MUSE
IDOL
RTAT

(b) Orientation at room

Figure 4.11: Orientation of different users in the hallway and room.

U1 U2 U3 U4 U5 U6 U7 U8 U9
Different Users

0

10

20

30

40

Er
ro

r (
cm

)

MUSE
RTAT

(a) Location at hallway

U1 U2 U3 U4 U5 U6 U7 U8 U9
Different Users

0

10

20

30

40

Er
ro

r (
cm

)

MUSE
RTAT

(b) Location at room

Figure 4.12: Location error of different users in the hallway and room.

99

Performance Along with Time

Figure 4.9 and Figure 4.10 show the orientation and location error of RTAT

and baselines along with time at the two places. They are plotted based on 100-

second data. From Figure 4.9 and Figure 4.10, we show RTAT performs better than

MUSE and IDOL on orientation estimation and exhibits better location estimation

than MUSE over time. RTAT is also more stable than the baseline orientation

and location estimation methods.

Performance of Different Users

Figure 4.11 and Figure 4.12 plot the orientation and location error of RTAT

and the baseline methods on different users at the two places. We collect both

training and test data for RTAT from the U1-U5, while RTAT has never seen

the data of the U6-U9 during training. For each user, RTAT exhibits better than

MUSE and IDOL on orientation estimation and exhibits better than MUSE on

location estimation. In comparison with MUSE, RTAT achieves more consistent

performance across all users.

Performance of New Users

The U6-U9 in Figure 4.11 and Figure 4.12 depict the orientation and location

of new users, whose data was omitted from the training phase. For the new users,

the performance of RTAT does not degrade much, indicating its applicability to

new users. Moreover, RTAT still outperforms baselines at both orientation and

location estimation for the four new users. Table 4.3 shows the statistical analysis

on the users’ test data at the two places. The motion speed of users will influence

the prediction accuracy.

4.6.3 Performance Decomposition of RTAT

We test the benefits provided by the three components of RTAT (i.e., multitask

learning, attention and smooth loss) on the whole test data at the two places.

100

Table 4.4: Average orientation and location estimation error of different models

at hallway and room.

Hallway Room

Model
Orientation

Error(◦)

Location Error

(cm)

Orientation

Error(◦)

Location

Error(cm)

RTAT Orientation Only 21.00 \ 13.23 \

RTAT Location Only \ 18.40 \ 13.44

RTAT Multitask 19.09 14.39 13.00 12.70

RTAT Multitask Att 18.20 11.85 12.86 12.50

RTAT Multitask Att Smooth 17.19 10.93 12.67 12.09

Table 4.5: Analysis on smoothness of orientation and location at two places.

Hallway Room

Orientation Location Orientation Location

Model
Error

(◦)
Error std

Error

(◦)
Error std

Error

(◦)
Error std

Error

(◦)
Error std

RTAT w/o

Smooth Loss 1.28 2.91 1.58 2.43 1.30 2.68 1.43 2.0

RTAT w/

Smooth Loss 1.05 2.71 1.27 1.84 0.92 1.91 1.39 2.0

101

Multitask Learning. We first compare a multitask learning model against

two single-task models, an orientation-only model and a location-only model. Both

of the models are trained with the data from all three IMU sensors. Table 4.4

shows that while multitask learning decreases the orientation and location error

by 9.1% and 21.8% in the hallway, it decreases the orientation and the location

error by 1.7% and 5.5% in the room. Multitask learning reduces the model training

time and the model inference overhead by half in comparison to implementing two

single-task learning methods.

Attention Mechanism. We then compare RTAT Multitask Att to RTAT

Multitask. Table 4.4 demonstrates that the attention mechanism decreases the

orientation and location error by 4.7% and 17.7% in the hallway. Compared to

the hallway, the performance gain from the attention mechanism in the room is

marginal. It only decreases the orientation and location error by 1.1% and 1.6% in

the room. This is because the gravity error at these two places is very similar, but

the magnetic field in the room is more stable than in the hallway. The attention

mechanism contributes less in the room.

Smooth Loss. Finally, we show the benefits of smooth loss. The primary

purpose of smooth loss is not to reduce the orientation and location error but to

improve the smoothness of orientation and location tracking and makes posture

tracking more realistic. We evaluate the orientation/location smoothness error

by comparing the orientation/location difference of predicted ones to the orienta-

tion/location difference of ground truth between two consecutive timestamps. We

also calculate the standard deviation of the orientation/location smoothness error.

Table 4.4 shows that using smooth loss decreases the orientation and location

error by 5.5% and 7.8% in the hallway, and 1.5% and 3.3% in the room. Table 4.5

provides the orientation/location smoothness error and the standard deviation of

smoothness error at the two places. The RTAT Multitask Att model is denoted as

RTAT w/o Smooth Loss. From Table 4.5, with smooth loss, RTAT improves the

orientation smoothness and location smoothness by 18% and 19.6% in the hallway,

and by 29.2% and 2.8% in the room. Additionally, the standard deviations of

orientation/location smoothness error decrease under almost all scenarios.

102

ow Medium Fast
Different Motion Speeds

Sl

10

20

30

Er
ro

r (
de

gr
ee

)

MUSE IDOL RTAT

0

(a) Orientation performance.

Medium Fast
Different Motion Speeds

0

5

10

15

20

Er
ro

r (
cm

)

MUSE RTAT

owSl

(b) Location performance.

Figure 4.13: Performance under different motion speeds at room.

4.6.4 Performance of Different Applications

Table 4.6: Statistic on different motion speed

Room
Speed

(m/s)

Gravity Error

(degree)

Magnet Deviation

(degree)

Gravity

Opportunities (%)

Slow 0.35 4.43 5.59 25.06

Medium 0.51 8.14 5.86 7.21

Fast 1.01 20.78 9.0 2.36

For different application scenarios, user motion speed may vary. When a user

performs gym gestures, such as front raise and chest fly, motion is slow. When

a user performs some daily gestures like making a call, pushing and pulling, the

motion speed is moderate. When a user performs some AR games, motion is fast.

We ask one user to perform gestures with different motion speeds in the room.

Table 4.6 shows the statistical analysis. Figure 4.13 plots the orientation and

location error with different motion speeds. As motion speed increases, the error

of all systems increases. However, RTAT always performs better than the baseline

systems, demonstrating its stability.

103

4.6.5 System Overhead

Location latency on desktop

We evaluate the location latency of different systems on an Alienware Aurora R7

desktop. It takes MUSE, ArmTroi and RTAT 5427.05 ms, 2337.50 ms and 0.1633

ms respectively to process one-second data (50 samples). In MUSE [113] and

ArmTroi [104], they use 10 Hz and 5 Hz respectively. RTAT is significantly faster

than two conventional approaches, since they are based on searching algorithms.

The deep learning architecture of RTAT is very lightweight.

Inference overhead on mobile devices

We also run RTAT on two commercial smartphones, Samsung S9 and Google

Pixel3. We convert a well-trained TensorFlow model to a TensorFlow Lite model

capable of inference on mobile devices by TensorFlow Lite Converter. Then we

test the overhead of RTAT on the two smartphones. As shown in Table 4.7, the

execution latency, memory usage and CPU usage of RTAT are low at both devices.

It is even much faster than MUSE and ArmTroi running on the desktop.

Energy Consumption on Mobile Devices

We measure the energy consumption of RTAT on Samsung S9 by Monsoon

monitor in Figure 4.14. The IMU data measured by the smartwatch is transmitted

to the smartphone for processing via Bluetooth. We run the inference of RTAT

for about 2 seconds, as indicated as the inference segment in Figure 4.14. The

average working current (mA) in idle state with screen on is about 221 mA. The

average working current on the RTAT inference state is about 357 mA. The average

working current on playing music state is about 498 mA. RTAT only increases the

working current by 136 mA, including both running the model and receiving IMU

data via Bluetooth; whereas, playing music increases the current consumption by

277 mA. The power consumption of RTAT is less than half of playing music.

Similar to previous works [106, 104, 113], RTAT requires the smartwatch to

continuously collect IMU sensor data and transmit the data to the smartphone

104

Figure 4.14: Energy Consumption on Samsung S9.

while the system is in use. This process is power-consuming. Based on our experi-

ments, it drains the watch’s battery in around 3.5 hours. However, this limitation

is not unique to our system. All the applications that require smartwatches to

transmit IMU readings suffer from the same problem due to the limited battery

power of smartwatches. We expect smartwatches will have more powerful batteries

in the future.

Table 4.7: Inference overhead of RTAT on smartphones

Samsung S9 Google Pixel3

Latency(ms) 2.98 1.82

Memory Usage (MB) 4.8 5.1

CPU Usage(%) 17 13

4.7 Discussion

Data efficiency. We develop our system based on supervised learning. Col-

lecting labeled data is labor-intensive. To train a generalized and robust model, the

dataset should cover a wide variety of gestures, users, and environments. To reduce

the labeled data, we may explore self-supervised training to capture temporal

relations and feature distributions in IMU data in the future [127].

105

Smartwatch-wearing angles. We indirectly study the different smartwatch-

wearing angles in this work. Each user collects the data several times. We do not

require the users to wear the smartwatch at the same angle. Even the same user

may wear the smartwatch slightly differently each time. Different users also wear

smartwatches at different angles. Our system is tolerant to wearing the smartwatch

with slightly different rotation angles. Our data collection scenario is to accurately

reflect how people wear a smartwatch in daily life, thus we do not consider wearing

the watch with significantly different rotation angles on the wrist when we build

the dataset. Inference accuracy drops when we apply the model to data collected

from a smartwatch worn at significantly different rotation angles on the wrist. To

accommodate this limitation, we may collect training data by wearing the watch

with different rotation angles on the wrist, summarizing the data features with

different rotation angles, and exploring domain shift in future work.

Generalization. It refers to two perspectives: the generalization across differ-

ent users and the generalization across different places. The accuracy of our system

drops slightly for new users because the data from new users has not been seen

by the model during the training process. To improve the model generalization

across users, training data could be collected from users with broader age and

height ranges. To improve the model generalization across different places, transfer

learning may be used to transfer the DNN model learned by the data at one place

to a new model for another place. We leave generalization as future work.

4.8 Conclusion

This chapter presents RTAT , the first 3D human wrist tracking system via a

smartwatch based on multitask deep learning. We design an attention mechanism

and a smooth loss on top of the multitask learning network to improve its perfor-

mance. RTAT is lightweight and supports real-time tracking on smartphones with

high sampling frequency. We collect a large-scale dataset using our customized

labeled data measurement system. Extensive experimental results show RTAT

achieves higher accuracy and lower latency when compared with baseline methods.

Chapter 5

Adaptive Orientation Estimation

Piloted by Deep Reinforcement

Learning and Envision

Adaptive Orientation Estimation.The orientation of a mobile device is

a crucial input for many applications, including augmented reality, gaming, and

navigation. However, accurately estimating the device’s orientation over a longer

period of time is challenging due to various factors like sensor noise, drift, and

external magnetic interference. To address this problem, researchers have proposed

classical sensor fusion and supervised learning methods for device orientation esti-

mation. Sensor fusion combines data from multiple IMU sensors (i.e., accelerom-

eter, gyroscope, magnetometer) to obtain more accurate estimates, while deep

learning techniques can learn from large amounts of data to improve orientation es-

timation. However, the generalization ability of supervised learning is limited, and

the adaptive ability of classical sensor fusion methods is limited. To overcome these

limitations, we integrate a classical complementary filter with a deep reinforcement

learning (DRL) framework to leverage the benefits from both methods. The DRL

agent learns dynamic sensor characteristics to improve orientation estimation over

time. It then continuously pilots the complementary filter to adjust its parameters

based on the change sensor noise to improve the adaptability of the complementary

filter and the generalization ability of the supervised learning.

106

107

Envision. In this thesis, we have investigated the data processing by deep

learning on individual edge devices and collaborated edge devices. The systems

we developed including video analytics, driving anomaly detection, arm posture

tracking, and device orientation tracking. Based on the insights from those sys-

tems, in this chapter, we present the future directions of what we plan to study

based on common problems - saving labeled training data for IoT applications.

Collecting labeled data for IoT systems can be challenging due to several

reasons. Firstly, IoT devices generate vast amounts of data, and labeling this

data manually can be time-consuming and expensive. In many cases, it may

not be feasible to label all the data generated by IoT devices due to resource

constraints. Secondly, labeling IoT data can also be challenging due to the nature

of the data. IoT data can be complex, heterogeneous, and noisy, making it difficult

to define labeling criteria and ensure labeling consistency. Thirdly, in some cases,

labeling may require human expertise and domain knowledge. For example, in a

healthcare application, labeling medical data requires specialized knowledge and

expertise that may not be available to the labeling team.

Contrastive learning has recently been applied to IoT applications, including

human activity recognition, 3D pose estimation and silhouette generation [149,

150]. Contrastive learning is a machine learning technique that learns representa-

tions of data by contrasting different views of the same data. The goal of it is to

learn a representation of data that is invariant to various transformations, such as

rotation, scaling, and translation. In contrastive learning, the model is trained to

distinguish between positive pairs (two views of the same data) and negative pairs

(two views of different data). This is done by mapping each view of the data to a

low-dimensional embedding space, where views of the same data are close to each

other, and views of different data are far apart.

Using contrastive learning, we can train a model to learn a representation of the

IMU data that is invariant to various transformations, such as different orientations

and movements. This involves contrasting different views of the same IMU data,

such as different time windows or sensor configurations, to learn a low-dimensional

embedding space that captures the essential features of the data. However, using

108

contrastive learning for IMU data processing requires careful consideration of the

data preprocessing steps, the model architecture, and the choice of contrastive loss

function. These are some of the key aspects that we will need to focus on to apply

the technique effectively in our system.

In the future, we plan to investigate the optimal data preprocessing steps that

can be taken to ensure that the IMU data is appropriately processed before being

used in contrastive learning. We will also explore different model architectures and

experiment with different types of contrastive loss functions to determine which

ones are most effective in learning the essential features of the IMU data. By paying

close attention to these factors, we hope to develop a more effective approach to

processing IMU data using contrastive learning, which can help us to reduce the

amount of labeled training data for our system and improve its overall performance.

Bibliography

[1] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge
computing: Vision and challenges. IEEE internet of things journal, 3(5):637–
646, 2016.

[2] Weisong Shi and Schahram Dustdar. The promise of edge computing.
Computer, 49(5):78–81, 2016.

[3] Keyan Cao, Yefan Liu, Gongjie Meng, and Qimeng Sun. An overview on
edge computing research. IEEE access, 8:85714–85728, 2020.

[4] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767, 2018.

[5] Ganesh Ananthanarayanan, Paramvir Bahl, Peter Bod́ık, Krishna Chintala-
pudi, Matthai Philipose, Lenin Ravindranath, and Sudipta Sinha. Real-time
video analytics: The killer app for edge computing. Computer, 2017.

[6] Luyang Liu, Hongyu Li, and Marco Gruteser. Edge assisted real-time object
detection for mobile augmented reality. In ACM MobiCom, 2019.

[7] Dimitris Chatzopoulos, Carlos Bermejo, Zhanpeng Huang, and Pan Hui.
Mobile augmented reality survey: From where we are to where we go. Ieee
Access, 5:6917–6950, 2017.

[8] Joseph Redmon. Darknet: Open source neural networks in c. http://

pjreddie.com/darknet/, 2013–2016.

[9] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox
detector. In ECCV, 2016.

[10] Jiajun Wu, Joshua B Tenenbaum, and Pushmeet Kohli. Neural scene de-
rendering. In IEEE CVPR, 2017.

[11] Xukan Ran, Haolianz Chen, Xiaodan Zhu, Zhenming Liu, and Jiasi Chen.
Deepdecision: A mobile deep learning framework for edge video analytics.
In IEEE INFOCOM, 2018.

109

110

[12] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal, Alec
Wolman, and Arvind Krishnamurthy. Mcdnn: An approximation-based
execution framework for deep stream processing under resource constraints.
In ACM MobiSys, 2016.

[13] Loc N Huynh, Youngki Lee, and Rajesh Krishna Balan. Deepmon: Mobile
gpu-based deep learning framework for continuous vision applications. In
ACM MobiSys, 2017.

[14] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[15] Biyi Fang, Xiao Zeng, and Mi Zhang. Nestdnn: Resource-aware multi-tenant
on-device deep learning for continuous mobile vision. In ACM MobiCom,
2018.

[16] Jianbo Shi and Carlo Tomasi. Good features to track. Technical report,
Cornell University, 1993.

[17] Bruce D Lucas, Takeo Kanade, et al. An iterative image registration
technique with an application to stereo vision. In IJCAI, 1981.

[18] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael
Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. IJCV, 2015.

[19] Videezy. https://www.videezy.com/free-video/traffic//.

[20] Youtube. https://www.youtube.com//.

[21] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and
Hari Balakrishnan. Glimpse: Continuous, real-time object recognition on
mobile devices. In ACM SenSys, 2015.

[22] Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin, and Xuanzhe Liu.
Deepcache: Principled cache for mobile deep vision. In ACM MobiCom, 2018.

[23] Kittipat Apicharttrisorn, Xukan Ran, Jiasi Chen, Srikanth V Krishnamurthy,
and Amit K Roy-Chowdhury. Frugal following: Power thrifty object
detection and tracking for mobile augmented reality. In ACM SenSys, 2019.

[24] Jiaxi Gu, Jiliang Wang, Zhiwen Yu, and Kele Shen. Walls have ears: Traffic-
based side-channel attack in video streaming. In IEEE INFOCOM, 2018.

111

[25] Linsong Cheng and Jiliang Wang. Vitrack: Efficient tracking on the edge for
commodity video surveillance systems. In IEEE INFOCOM, 2018.

[26] Qiang Liu, Siqi Huang, Johnson Opadere, and Tao Han. An edge network
orchestrator for mobile augmented reality. In IEEE INFOCOM, 2018.

[27] Xianzhong Ding, Wan Du, and Alberto Cerpa. Octopus: Deep reinforcement
learning for holistic smart building control. In Proceedings of the 6th ACM
International Conference on Systems for Energy-Efficient Buildings, Cities,
and Transportation, pages 326–335, 2019.

[28] Zhihao Shen, Kang Yang, Wan Du, Xi Zhao, and Jianhua Zou. Deepapp:
a deep reinforcement learning framework for mobile application usage
prediction. In Proceedings of the 17th Conference on Embedded Networked
Sensor Systems, pages 153–165, 2019.

[29] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi,
Lei Jiao, Lorena Qendro, and Fahim Kawsar. Deepx: A software accelerator
for low-power deep learning inference on mobile devices. In IEEE/ACM
IPSN, 2016.

[30] Akhil Mathur, Nicholas D Lane, Sourav Bhattacharya, Aidan Boran, Claudio
Forlivesi, and Fahim Kawsar. Deepeye: Resource efficient local execution of
multiple deep vision models using wearable commodity hardware. In ACM
MobiSys, 2017.

[31] Saman Naderiparizi, Pengyu Zhang, Matthai Philipose, Bodhi Priyantha, Jie
Liu, and Deepak Ganesan. Glimpse: A programmable early-discard camera
architecture for continuous mobile vision. In ACM SenSys, 2017.

[32] Sicong Liu, Yingyan Lin, Zimu Zhou, Kaiming Nan, Hui Liu, and Junzhao
Du. On-demand deep model compression for mobile devices: A usage-driven
model selection framework. In ACM MobiSys, 2018.

[33] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. In
NeurIPS, 2015.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In CVPR, 2016.

[35] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
Inception-v4, inception-resnet and the impact of residual connections on
learning. In AAAI, 2017.

112

[36] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen,
and Ion Stoica. Chameleon: scalable adaptation of video analytics. In ACM
SIGCOMM, 2018.

[37] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.
Focal loss for dense object detection. In ICCV, 2017.

[38] Péter Baranyi. Nvidia jetpack. https://developer.nvidia.com/

embedded/jetpack.

[39] Nvidia tensorrt. https://developer.nvidia.com/tensorrt.

[40] Péter Baranyi. Nvidia video codec sdk. https://developer.nvidia.com/

nvidia-video-codec-sdk.

[41] Peizhen Guo and Wenjun Hu. Potluck: Cross-application approximate
deduplication for computation-intensive mobile applications. In ACM
ASPLOS, 2018.

[42] Ling-Yu Duan, Vijay Chandrasekhar, Shiqi Wang, Yihang Lou, Jie Lin, Yan
Bai, Tiejun Huang, Alex Chichung Kot, and Wen Gao. Compact descriptors
for video analysis: The emerging mpeg standard. IEEE MultiMedia, 2018.

[43] Pytorch. https://pytorch.org/.

[44] Opencv. https://https://opencv.org//.

[45] NHTSA. 2018 Fatal Motor Vehicle Crashes: Overview. https://

crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812826.

[46] WHO. Global Status Report on Road Safety 2018. https://www.who.int/
violence_injury_prevention/road_safety_status/2018/en/.

[47] Chuang-Wen You, Nicholas D Lane, Fanglin Chen, Rui Wang, Zhenyu Chen,
Thomas J Bao, Martha Montes-de Oca, Yuting Cheng, Mu Lin, Lorenzo
Torresani, et al. Carsafe app: Alerting drowsy and distracted drivers using
dual cameras on smartphones. In ACM MobiSys, 2013.

[48] Bergasa and Roberto Arroyo. Drivesafe: An app for alerting inattentive
drivers and scoring driving behaviors. In IEEE IV, 2014.

[49] Xingzhou Zhang, Mu Qiao, Liangkai Liu, Yunfei Xu, and Weisong Shi.
Collaborative cloud-edge computation for personalized driving behavior
modeling. In ACM/IEEE SEC, 2019.

[50] Sinan Kaplan, Mehmet Amac Guvensan, Ali Gokhan Yavuz, and Yasin
Karalurt. Driver behavior analysis for safe driving: A survey. IEEE
Transactions on Intelligent Transportation Systems, 16(6):3017–3032, 2015.

113

[51] Cian Ryan, Finbarr Murphy, and Martin Mullins. End-to-end autonomous
driving risk analysis: A behavioural anomaly detection approach. IEEE
Transactions on Intelligent Transportation Systems, 2020.

[52] Zhongyang Chen, Jiadi Yu, Yanmin Zhu, Yingying Chen, and Minglu Li. D 3:
Abnormal driving behaviors detection and identification using smartphone
sensors. In 2015 12th Annual IEEE International Conference on Sensing,
Communication, and Networking (SECON), pages 524–532. IEEE, 2015.

[53] Lex Fridman, Daniel E Brown, Michael Glazer, William Angell, Spencer
Dodd, Benedikt Jenik, Jack Terwilliger, Aleksandr Patsekin, Julia Kindels-
berger, Li Ding, et al. Mit advanced vehicle technology study: Large-scale
naturalistic driving study of driver behavior and interaction with automation.
IEEE Access, 7:102021–102038, 2019.

[54] Jin-Hyuk Hong, Ben Margines, and Anind K Dey. A smartphone-based
sensing platform to model aggressive driving behaviors. In ACM SIGCHI,
2014.

[55] Waldo R Tobler. A computer movie simulating urban growth in the detroit
region. Economic geography, 46:234–240, 1970.

[56] Isam Mashhour Al Jawarneh, Paolo Bellavista, Antonio Corradi, Luca
Foschini, and Rebecca Montanari. Locality-preserving spatial partitioning
for geo big data analytics in main memory frameworks. In GLOBECOM
2020-2020 IEEE Global Communications Conference, pages 1–6. IEEE, 2020.

[57] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and
Adam Lerer. Automatic differentiation in pytorch. In NeurIPS-W, 2017.

[58] Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong
Sun, and Yan Huang. T-drive: driving directions based on taxi trajectories.
In ACM SIGSPATIAL, 2010.

[59] Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. Driving with
knowledge from the physical world. In ACM SIGKDD, 2011.

[60] Chong Zhou and Randy C Paffenroth. Anomaly detection with robust deep
autoencoders. In ACM SIGKDD, 2017.

[61] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu,
Daeki Cho, and Haifeng Chen. Deep autoencoding gaussian mixture model
for unsupervised anomaly detection. In ICLR, 2018.

114

[62] Dong Gong, Lingqiao Liu, Vuong Le, Budhaditya Saha, Moussa Reda
Mansour, Svetha Venkatesh, and Anton van den Hengel. Memorizing
normality to detect anomaly: Memory-augmented deep autoencoder for
unsupervised anomaly detection. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 1705–1714, 2019.

[63] Mahmudul Hasan, Jonghyun Choi, Jan Neumann, Amit K Roy-Chowdhury,
and Larry S Davis. Learning temporal regularity in video sequences.
In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 733–742, 2016.

[64] Apichon Witayangkurn, Teerayut Horanont, Yoshihide Sekimoto, and
Ryosuke Shibasaki. Anomalous event detection on large-scale gps data from
mobile phones using hidden markov model and cloud platform. In Proceedings
of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct
publication, pages 1219–1228, 2013.

[65] Siqian Yang, Cheng Wang, Hongzi Zhu, and Changjun Jiang. App:
augmented proactive perception for driving hazards with sparse gps trace.
In Proceedings of the twentieth ACM international symposium on mobile Ad
Hoc networking and computing, pages 21–30, 2019.

[66] Jiadi Yu, Hongzi Zhu, Haofu Han, Yingying Jennifer Chen, Jie Yang, Yanmin
Zhu, Zhongyang Chen, Guangtao Xue, and Minglu Li. Senspeed: Sensing
driving conditions to estimate vehicle speed in urban environments. IEEE
Transactions on Mobile Computing, 15(1):202–216, 2015.

[67] Mingming Zhang, Chao Chen, Tianyu Wo, Tao Xie, Md Zakirul Alam
Bhuiyan, and Xuelian Lin. Safedrive: online driving anomaly detection
from large-scale vehicle data. IEEE Transactions on Industrial Informatics,
13(4):2087–2096, 2017.

[68] Vidyasagar Sadhu, Teruhisa Misu, and Dario Pompili. Deep multi-task
learning for anomalous driving detection using can bus scalar sensor data.
arXiv preprint arXiv:1907.00749, 2019.

[69] Raghavendra Chalapathy and Sanjay Chawla. Deep learning for anomaly
detection: A survey. arXiv preprint arXiv:1901.03407, 2019.

[70] Sarah M Erfani, Mahsa Baktashmotlagh, Masud Moshtaghi, Vinh Nguyen,
Christopher Leckie, James Bailey, and Kotagiri Ramamohanarao. From
shared subspaces to shared landmarks: A robust multi-source classification
approach. In AAAI, 2017.

[71] Samet Akcay, Amir Atapour-Abarghouei, and Toby P Breckon. Ganomaly:
Semi-supervised anomaly detection via adversarial training. In ACCV, 2018.

115

[72] Abd-Elhamid M Taha and Nidal Nasser. Utilizing can-bus and smartphones
to enforce safe and responsible driving. In IEEE ISCC, 2015.

[73] Tanushree Banerjee, Arijit Chowdhury, and Tapas Chakravarty. Mydrive:
Drive behavior analytics method and platform. In ACM WPA, 2016.

[74] Xiaoyu Zhu, Yifei Yuan, Xianbiao Hu, Yi-Chang Chiu, and Yu-Luen Ma.
A bayesian network model for contextual versus non-contextual driving
behavior assessment. Transportation research part C: emerging technologies,
81:172–187, 2017.

[75] Pengyang Wang, Yanjie Fu, Jiawei Zhang, Pengfei Wang, Yu Zheng, and
Charu Aggarwal. You are how you drive: Peer and temporal-aware
representation learning for driving behavior analysis. In ACM SIGKDD,
2018.

[76] Yan Xu and Gary Tan. An offline road network partitioning solution in
distributed transportation simulation. In IEEE/ACM DS-RT, 2012.

[77] Ying-Ying Ma, Yi-Chang Chiu, and Xiao-Guang Yang. Urban traffic signal
control network automatic partitioning using laplacian eigenvectors. In IEEE
ITSC, 2009.

[78] Yuxuan Ji and Nikolas Geroliminis. On the spatial partitioning of urban
transportation networks. Transportation Research Part B: Methodological,
46(10):1639–1656, 2012.

[79] Jing Yuan, Yu Zheng, and Xing Xie. Discovering regions of different functions
in a city using human mobility and pois. In ACM SIGKDD, 2012.

[80] Nicholas Jing Yuan, Yu Zheng, and Xing Xie. Segmentation of urban areas
using road networks. MSR-TR-2012–65, Tech. Rep., 2012.

[81] Wei Liu, Yu Zheng, Sanjay Chawla, Jing Yuan, and Xie Xing. Discovering
spatio-temporal causal interactions in traffic data streams. In ACM
SIGKDD, 2011.

[82] Yanjie Fu, Pengyang Wang, Jiadi Du, Le Wu, and Xiaolin Li. Efficient region
embedding with multi-view spatial networks: A perspective of locality-
constrained spatial autocorrelations. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 906–913, 2019.

[83] Yunchao Zhang, Yanjie Fu, Pengyang Wang, Xiaolin Li, and Yu Zheng.
Unifying inter-region autocorrelation and intra-region structures for spatial
embedding via collective adversarial learning. In ACM SIGKDD, 2019.

116

[84] Hector Gonzalez, Jiawei Han, Xiaolei Li, Margaret Myslinska, and John Paul
Sondag. Adaptive fastest path computation on a road network: a traffic
mining approach. In VLDB, 2007.

[85] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.
Empirical evaluation of gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555, 2014.

[86] Mohammad Sabokrou, Mohammad Khalooei, Mahmood Fathy, and Ehsan
Adeli. Adversarially learned one-class classifier for novelty detection. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3379–3388, 2018.

[87] Muhammad Zaigham Zaheer, Jin-ha Lee, Marcella Astrid, and Seung-Ik Lee.
Old is gold: Redefining the adversarially learned one-class classifier training
paradigm. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 14183–14193, 2020.

[88] Hongyong Wang, Xinjian Zhang, Su Yang, and Weishan Zhang. Video
anomaly detection by the duality of normality-granted optical flow. arXiv
preprint arXiv:2105.04302, 2021.

[89] Mujtaba Asad, Jie Yang, Enmei Tu, Liming Chen, and Xiangjian He.
Anomaly3d: Video anomaly detection based on 3d-normality clusters.
Journal of Visual Communication and Image Representation, 75:103047,
2021.

[90] Andreas Emil Feldmann and Luca Foschini. Balanced partitions of trees and
applications. Algorithmica, 71(2):354–376, 2015.

[91] Michael R Garey and David S Johnson. Computers and intractability: A
guide to the theory of NP-completeness, volume 174. freeman San Francisco,
1979.

[92] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and
computing, 17(4):395–416, 2007.

[93] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation.
IEEE Transactions on pattern analysis and machine intelligence, 22(8):888–
905, 2000.

[94] Openstreetmap. https://www.openstreetmap.org.

[95] Xianzhong Ding, Wan Du, and Alberto E Cerpa. Mb2c: Model-based deep
reinforcement learning for multi-zone building control. In Proceedings of the
7th ACM international conference on systems for energy-efficient buildings,
cities, and transportation, pages 50–59, 2020.

117

[96] Xianzhong Ding and Wan Du. Drlic: Deep reinforcement learning for
irrigation control. In ACM/IEEE IPSN, 2022.

[97] Miaomiao Liu, Xianzhong Ding, and Wan Du. Continuous, real-time
object detection on mobile devices without offloading. In 2020 IEEE 40th
International Conference on Distributed Computing Systems (ICDCS), pages
976–986. IEEE, 2020.

[98] Paul Newson and John Krumm. Hidden markov map matching through noise
and sparseness. In ACM SIGSPATIAL, 2009.

[99] Zhihao Shen, Wan Du, Xi Zhao, and Jianhua Zou. Dmm: fast map matching
for cellular data. In Proceedings of the 26th Annual International Conference
on Mobile Computing and Networking, pages 1–14, 2020.

[100] Geosphere. http://www.edwilliams.org/avform.htm#Dist.

[101] Jiangpeng Dai, Jin Teng, Xiaole Bai, Zhaohui Shen, and Dong Xuan. Mobile
phone based drunk driving detection. In 2010 4th International Conference
on Pervasive Computing Technologies for Healthcare, pages 1–8. IEEE, 2010.

[102] Yash Jain, Chi Ian Tang, Chulhong Min, Fahim Kawsar, and Akhil
Mathur. Collossl: Collaborative self-supervised learning for human activity
recognition. ACM IMWUT, 6(1):1–28, 2022.

[103] Linlin Tu, Xiaomin Ouyang, Jiayu Zhou, Yuze He, and Guoliang Xing. Feddl:
Federated learning via dynamic layer sharing for human activity recognition.
In ACM SenSys, 2021.

[104] Yang Liu, Zhenjiang Li, Zhidan Liu, and Kaishun Wu. Real-time arm
skeleton tracking and gesture inference tolerant to missing wearable sensors.
In Proceedings of the 17th Annual International Conference on Mobile
Systems, Applications, and Services, pages 287–299, 2019.

[105] Wenguang Mao, Mei Wang, Wei Sun, Lili Qiu, Swadhin Pradhan, and Yi-
Chao Chen. Rnn-based room scale hand motion tracking. In ACM MobiCom,
2019.

[106] Sheng Shen, He Wang, and Romit Roy Choudhury. I am a smartwatch and
i can track my user’s arm. In Proceedings of the 14th annual international
conference on Mobile systems, applications, and services, pages 85–96, 2016.

[107] Peijun Zhao, Chris Xiaoxuan Lu, Bing Wang, Niki Trigoni, and Andrew
Markham. Cubelearn: End-to-end learning for human motion recognition
from raw mmwave radar signals. arXiv preprint arXiv:2111.03976, 2021.

118

[108] Chengkun Jiang, Yuan He, Songzhen Yang, Junchen Guo, and Yunhao Liu.
3d-omnitrack: 3d tracking with cots rfid systems. In ACM/IEEE IPSN,
2019.

[109] Hao Kong, Xiangyu Xu, Jiadi Yu, Qilin Chen, Chenguang Ma, Yingying
Chen, Yi-Chao Chen, and Linghe Kong. m3track: mmwave-based multi-
user 3d posture tracking. In MobiSys, 2022.

[110] Tianxing Li, Chuankai An, Zhao Tian, Andrew T Campbell, and Xia Zhou.
Human sensing using visible light communication. In Proceedings of the
21st Annual International Conference on Mobile Computing and Networking,
pages 331–344, 2015.

[111] Tianxing Li, Qiang Liu, and Xia Zhou. Practical human sensing in the
light. In Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services, pages 71–84, 2016.

[112] Dongyao Chen, Mingke Wang, Chenxi He, Qing Luo, Yasha Iravantchi,
Alanson Sample, Kang G Shin, and Xinbing Wang. Wearable, untethered
hands tracking with passive magnets. In ACM MobiCom, 2021.

[113] Sheng Shen, Mahanth Gowda, and Romit Roy Choudhury. Closing the gaps
in inertial motion tracking. In Proceedings of the 24th Annual International
Conference on Mobile Computing and Networking, pages 429–444, 2018.

[114] Qiang Yang and Yuanqing Zheng. Model-based head orientation estimation
for smart devices. ACM IMWUT, 5(3):1–24, 2021.

[115] Changhao Chen, Xiaoxuan Lu, Andrew Markham, and Niki Trigoni. Ionet:
Learning to cure the curse of drift in inertial odometry. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32, 2018.

[116] Mahdi Abolfazli Esfahani, HanWang, Keyu Wu, and Shenghai Yuan. Orinet:
Robust 3-d orientation estimation with a single particular imu. IEEE
Robotics and Automation Letters, 5(2):399–406, 2019.

[117] Martin Brossard, Silvere Bonnabel, and Axel Barrau. Denoising imu
gyroscopes with deep learning for open-loop attitude estimation. IEEE
Robotics and Automation Letters, 5(3):4796–4803, 2020.

[118] Scott Sun, Dennis Melamed, and Kris Kitani. Idol: Inertial deep orientation-
estimation and localization. arXiv preprint arXiv:2102.04024, 2021.

[119] Pengfei Zhou, Mo Li, and Guobin Shen. Use it free: Instantly knowing your
phone attitude. In ACM MOBICOM, 2014.

119

[120] Hussein Hazimeh, Zhe Zhao, Aakanksha Chowdhery, Maheswaran Sathi-
amoorthy, Yihua Chen, Rahul Mazumder, Lichan Hong, and Ed Chi. Dselect-
k: Differentiable selection in the mixture of experts with applications to
multi-task learning. Advances in Neural Information Processing Systems,
34:29335–29347, 2021.

[121] Yuxin Tian, Xueqing Deng, Yi Zhu, and Shawn Newsam. Cross-time
and orientation-invariant overhead image geolocalization using deep local
features. In IEEE/CVF Winter Conference on Applications of Computer
Vision, 2020.

[122] Yunzhong He, Yuxin Tian, Mengjiao Wang, Feier Chen, Licheng Yu,
Maolong Tang, Congcong Chen, Ning Zhang, Bin Kuang, and Arul Prakash.
Que2engage: Embedding-based retrieval for relevant and engaging products
at facebook marketplace. arXiv preprint arXiv:2302.11052, 2023.

[123] Kang Yang and Wan Du. LLDPC: A Low-Density Parity-Check Coding
Scheme for LoRa Networks. In ACM SenSys, 2022.

[124] Miaomiao Liu, Kang Yang, Yanjie Fu, Dapeng Oliver Wu, and Wan
Du. Driving maneuver anomaly detection based on deep auto-encoder and
geographical partitioning. ACM Transactions on Sensor Networks (TOSN),
2022.

[125] Hang Yan, Qi Shan, and Yasutaka Furukawa. Ridi: Robust imu double
integration. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 621–636, 2018.

[126] Sachini Herath, Hang Yan, and Yasutaka Furukawa. Ronin: Robust neural
inertial navigation in the wild: Benchmark, evaluations, & new methods. In
2020 IEEE International Conference on Robotics and Automation (ICRA),
pages 3146–3152. IEEE, 2020.

[127] Huatao Xu, Pengfei Zhou, Rui Tan, Mo Li, and Guobin Shen. Limu-bert:
Unleashing the potential of unlabeled data for imu sensing applications. In
Proceedings of the 19th ACM Conference on Embedded Networked Sensor
Systems, pages 220–233, 2021.

[128] Andrea Giovanni Cutti, Andrea Giovanardi, Laura Rocchi, Angelo Davalli,
and Rinaldo Sacchetti. Ambulatory measurement of shoulder and elbow
kinematics through inertial and magnetic sensors. Medical & biological
engineering & computing, 46(2):169–178, 2008.

[129] Mahmoud El-Gohary and James McNames. Shoulder and elbow joint
angle tracking with inertial sensors. IEEE Transactions on Biomedical
Engineering, 59(9):2635–2641, 2012.

120

[130] Qaiser Riaz, Guanhong Tao, Björn Krüger, and Andreas Weber. Motion
reconstruction using very few accelerometers and ground contacts. Graphical
Models, 79:23–38, 2015.

[131] Jochen Tautges, Arno Zinke, Björn Krüger, Jan Baumann, Andreas Weber,
Thomas Helten, Meinard Müller, Hans-Peter Seidel, and Bernd Eberhardt.
Motion reconstruction using sparse accelerometer data. ACM Transactions
on Graphics (ToG), 30(3):1–12, 2011.

[132] Pengfei Zhou, Yuanqing Zheng, and Mo Li. How long to wait? predicting
bus arrival time with mobile phone based participatory sensing. In ACM
MobiSys, 2012.

[133] Wan Du, Panrong Tong, and Mo Li. Uniloc: A unified mobile localization
framework exploiting scheme diversity. IEEE Transactions on Mobile
Computing, 20(7):2505–2517, 2020.

[134] Zhengyou Zhang. Microsoft kinect sensor and its effect. IEEE multimedia,
19(2):4–10, 2012.

[135] Mingmin Zhao, Yonglong Tian, Hang Zhao, Mohammad Abu Alsheikh,
Tianhong Li, Rumen Hristov, Zachary Kabelac, Dina Katabi, and Antonio
Torralba. Rf-based 3d skeletons. In Proceedings of the 2018 Conference of
the ACM Special Interest Group on Data Communication, pages 267–281,
2018.

[136] Wenjun Jiang, Hongfei Xue, Chenglin Miao, Shiyang Wang, Sen Lin, Chong
Tian, Srinivasan Murali, Haochen Hu, Zhi Sun, and Lu Su. Towards 3d
human pose construction using wifi. In Proceedings of the 26th Annual
International Conference on Mobile Computing and Networking, pages 1–
14, 2020.

[137] Yuxin Tian, Shawn Newsam, and Kofi Boakye. Fashion image retrieval with
text feedback by additive attention compositional learning. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision,
pages 1011–1021, 2023.

[138] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville,
Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and
tell: Neural image caption generation with visual attention. In International
conference on machine learning, pages 2048–2057. PMLR, 2015.

[139] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective
approaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025, 2015.

121

[140] Huimin Ren, Sijie Ruan, Yanhua Li, Jie Bao, Chuishi Meng, Ruiyuan Li,
and Yu Zheng. Mtrajrec: Map-constrained trajectory recovery via seq2seq
multi-task learning. In ACM SIGKDD, 2021.

[141] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech
recognition with deep recurrent neural networks. In IEEE international
conference on acoustics, speech and signal processing, pages 6645–6649, 2013.

[142] Azure kinect, 2022. https://azure.microsoft.com/en-us/services/kinect-dk/.

[143] Vicon motion system, 2022. https://www.vicon.com/.

[144] Orientation tracking of azure kinect, 2019.
https://github.com/microsoft/Azure-Kinect-Sensor-SDK/issues/654.

[145] Oculus insight, 2019. https://ai.facebook.com/blog/powered-by-ai-oculus-
insight/.

[146] Ana Rojo, Javier Cortina, Cristina Sánchez, Eloy Urendes, Rodrigo Garćıa-
Carmona, and Rafael Raya. Accuracy study of the oculus touch v2 versus
inertial sensor for a single-axis rotation simulating the elbow’s range of
motion. Virtual Reality, pages 1–12, 2022.

[147] Valentin Holzwarth, Joy Gisler, Christian Hirt, and Andreas Kunz. Com-
paring the accuracy and precision of steamvr tracking 2.0 and oculus quest
2 in a room scale setup. In 2021 the 5th International Conference on Virtual
and Augmented Reality Simulations, pages 42–46, 2021.

[148] Tyler A Jost, Bradley Nelson, and Jonathan Rylander. Quantitative analysis
of the oculus rift s in controlled movement. Disability and Rehabilitation:
Assistive Technology, 16(6):632–636, 2021.

[149] Xiaomin Ouyang, Xian Shuai, Jiayu Zhou, Ivy Wang Shi, Zhiyuan Xie,
Guoliang Xing, and Jianwei Huang. Cosmo: contrastive fusion learning
with small data for multimodal human activity recognition. In Proceedings
of the 28th Annual International Conference on Mobile Computing And
Networking, pages 324–337, 2022.

[150] Ruiyuan Song, Dongheng Zhang, Zhi Wu, Cong Yu, Chunyang Xie, Shuai
Yang, Yang Hu, and Yan Chen. Rf-url: unsupervised representation learning
for rf sensing. In Proceedings of the 28th Annual International Conference
on Mobile Computing And Networking, pages 282–295, 2022.

