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Abstract

Understanding genetic events that lead to cancer initiation and progression remains one of the 

biggest challenges in cancer biology. Traditionally most algorithms for cancer driver identification 

look for genes that have more mutations than expected from the average background mutation 

rate. However, there is now a wide variety of methods that look for non-random distribution of 

mutations within proteins as a signal they have a driving role in cancer. Here we classify and 

review the progress of such sub-gene resolution algorithms, compare their findings on four distinct 

cancer datasets from The Cancer Genome Atlas and discuss how predictions from these 

algorithms can be interpreted in the emerging paradigms that challenge the simple dichotomy 

between driver and passenger genes.
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Introduction

Cancer is a heterogeneous disease that is driven by genomic and epigenomic abnormalities. 

Recent efforts in cancer genomics have provided us with details of such abnormalities in 

tens of thousands of human cancers1. This catalogue has significantly expanded our 

understanding of the molecular aspects of this disease. However, the mutation landscape, in 

cancer has turned out to be extremely complex2-4, as most tumors have hundreds or 

thousands of somatic mutations, which are seldom found again in other tumors. This 

apparent heterogeneity is usually interpreted within the driver/passenger paradigm in which 

the few recurrent mutations are viewed as drivers of the oncogenic process, providing cancer 

cells with a selective advantage, while most mutations, especially rare ones, are viewed as 

passengers without any significant consenquences for the cell5.

There are many possible ways to identify cancer driver events. For instance, one can look for 

signals of non-random distribution of mutations at various levels of biological resolution, 

spanning from individual positions in the protein6 up to whole genes5 or pathways7 (Fig. 

1a). Many of the recently developed methods aim to find driver events at the sub-gene level. 

One advantage of such higher-resolution approaches is that they can identify cases when 

different mutations in the same gene lead to distinct phenotypes8.

While there are several reviews of cancer driver-detection algorithms9,10, to the best of our 

knowledge none has focused on sub-gene resolution algorithms. Given their increasing 

popularity we decided to review, classify and compare such algorithms and discuss their 

strengths and weaknesses based on their results on four different cancer datasets. Note that it 

is not our intention to determine which methods are better, as this is something that likely 

depends on the type of question being asked, but rather to inform potential users about how 

the different assumptions and technical choices of each method influence their results. Next, 

we show how the results of these methods can be integrated with other biological data to 

gain a deeper understanding of the consequences of mutations in these driver regions. 

Finally, we discuss the implications that the existence of such mutation clusters might have 

regarding novel ideas in cancer biology, such as expanding the drivers/passenger paradigm 

in favor of more nuanced or even continuous models11-13.

Results

A classification of mutation-clustering algorithms

While the overall goal of all sub-gene resolution driver detection algorithms is the same, 

identifying non-random clusters of mutations in cancer genomes, the details of their 

implementations and some of their assumptions can vary significantly. For example, some 

methods rely solely on the protein sequences14,15, and therefore can only find clusters of 

mutations that are linear in the primary sequence. Other methods leverage information from 

three-dimensional protein structures and can identify spatial patterns that are discontinuous 

along the sequence6,16. Similarly, while some algorithms only use the position of the 

mutations (either in one or three dimensions) to find clusters de novo16,17, others focus on 

externally-defined protein regions (such as protein domains18,19, phosphorylation sites20 or 

interaction interfaces 21,22) to identify those enriched in somatic mutations.
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Based on these two criteria (number of dimensions and use of externally-defined regions), it 

is possible to classify sub-gene resolution algorithms into four different groups (Fig 1b,c). In 

the following paragraphs we list and discuss algorithms from each of these categories. We 

also provide an overview (further extended in Supplementary Table 1) of their 

implementation, statistical approaches and their strengths and weaknesses.

Type I – De novo linear clusters—This category includes methods that look for clusters 

along the gene sequence. The main difference between individual methods from this group 

is the specific background model they use. While there are methods that rely solely on 

statistical models15,23, most of them try to integrate other biological signals such as the 

distribution of silent mutations14,24, the ratio between the different types of mutations 

occurring in a specific gene25, the probability of each mutation given the nucleotide before 

and after the mutated position26,27 or by kernel density estimates across multiple 

biologically relevant scales28.

Type II – De novo three-dimensional clusters—Algorithms that belong to Type II 

find novel mutation clusters using information about the three-dimensional structure of the 

protein coded by a given gene. They are more limited in scope that Type I algorithms 

because they can only be applied to proteins whose three-dimensional structure is either 

known or can be reasonably predicted. While experimentally determined structures are 

available only for approximately 6100 human proteins, the structural coverage can be 

extended to over 13000 proteins29 by aligning proteins to their close homologues with 

experimental structures (Supplementary Fig. 1).

The biggest differences between Type II algorithms methods are in how they interpret 

structural data to find mutation clusters. Some tools analyze a re-ordered version of the 

protein's sequence based on the distance between residues in three dimensions30 or use 

network algorithms on the graph derived from the structure31. However, most Type II 

algorithms try to identify three-dimensional clusters using the protein structure directly and 

calculate empirical p-values by re-shuffling the mutations in the structure32. Nevertheless, 

their specific details can be very different, as some use spheres of varying radii33, while 

others use the closeness in the structure-derived residue network6, the Shannon entropy of 

the region17 or weighted-scoring functions16. Finally, while most methods can focus solely 

on individual proteins, others are capable of finding three-dimensional clusters that span 

across protein complexes17.

Type III – Linear externally-defined regions—This group contains algorithms that 

analyze externally-defined linear protein regions to identify those that are enriched in cancer 

somatic mutations. Therefore, unlike Type I algorithms, these methods can only be applied 

to proteins where at least one functional region is known, currently limiting their scope to 

approximately 65% of the human proteome (Supplementary Fig. 1). Such regions can be 

protein domains18 or post-translational modification sites20. These algorithms then compare 

the number of mutations in the selected region with that of the rest of the protein to 

determine whether there is enrichment in somatic mutations in specific domains or regions. 

We also include in this category methods that align multiple instances of the same domain in 

different proteins to find commonly mutated positions19,34. These methods are based on the 
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rationale that mutations in equivalent positions of the same domain will affect their function 

in similar ways. These analyses have revealed strikingly similar mutation patterns across 

domain families such as kinases or the EGF and FGF families of receptors34.

Type IV – Three-dimensional externally-defined regions—Type IV algorithms find 

three-dimensional externally-defined regions that are enriched in somatic mutations. To the 

best of our knowledge, this category currently includes only e-Driver3D21 and a separate 

module of CLUMPS16 (not used here) that uses structurally resolved interaction data16. This 

category is most limited in scope, because to be applied it needs to have both structural data 

and defined functional regions. For example, in the case of e-Driver3D, which currently 

analyzes protein interaction interfaces, this excludes all proteins that are not involved in 

structurally resolved complexes. In the case of CLUMPS, the number of proteins and 

structures that can be analyzed is higher, as it uses information regarding interfaces with 

DNA, RNA, ion ligands or small molecules in addition to protein partners. However, 

methods in this category exploit most biological information and, therefore, provide the 

highest functional information on the mutation clusters they identify.

Methods from the same category tend to identify similar sets of genes

In order to explore the strengths and limitations of each of these four categories, we 

compared the predictions of methods covering all four categories, as well as two methods 

that rely on whole-gene analysis5,35, on four different cancer genomics datasets from The 

Cancer Genome Atlas1. We want to stress that the goal of our analysis is not to identify “the 

best algorithm”, since the classes of methods are complementary. Instead, we aimed to 

assess how the specific assumptions behind each algorithm affect the number and type of 

drivers it identifies. We included in our analysis five methods that belong to Type I (Hotspot, 

NMC15, OncodriveCLUST14, MutSig-CL27 and iSIMPRe23), four from Type II (iPAC30, 

GraphPAC31, SpacePAC33 and CLUMPS16), three from Type III (e-Driver18, ActiveDriver20 

and LowMACA19) and one from Type IV (e-Driver3D36).

Our results (Fig 2a, Supplementary Figs. 2-4 and Supplementary Tables 2-5) show 

similarities between algorithms that belong to the same category. For example, most Type I, 

Type II and Type III algorithms tend to cluster together in all datasets. Nevertheless, each 

group seems to have its own outlier methods. In the case of Type I algorithms, for example, 

NMC does not cluster with the other methods in the case of BRCA, GBM and LUAD. In the 

case of Type II algorithms, CLUMPS predictions are very different from those of the family 

of PAC algorithms in BLCA, BRCA and GBM. Finally, ActiveDriver also seems to identify 

different genes than the other two Type III algorithms in all datasets. The reasons why these 

algorithms behave differently from the rest of methods from the same category could be 

varied. For example, in the case of ActiveDriver it could be because it analyzes post-

translational modification sites, unlike the other two Type III algorithms, which focus on 

protein domains. Therefore, these tools could be finding complementary sets of genes that 

drive cancer through distinct mechanisms.

In terms of specific predictions, most algorithms identify the most frequently mutated cancer 

driver genes in the different cancer types. For example, all methods identify EGFR and TP53 
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as GBM driver genes, all but two find PIK3CA and all but three identify IDH1 (Fig. 2b). 

However, results for other genes exemplify the complementarity between methods from 

different categories. Again, in the case of GBM, Type II algorithms do not detect PIK3R1 

because the missense mutations are spread throughout a large interface. However, Type I, 

Type III or Type IV algorithms detect the mutation cluster PIK3R1, even that they differ 

slightly in its exact size and position. In other cases, certain proteins are missed by some 

methods simply because of lacking statistical power at the selected significance threshold. 

For example, BRAF, a known driver gene in various cancer types, is also detected as a 

potential driver in glioblastoma by most sub-gene resolution algorithms but, interestingly, 

not by the algorithms that work at the gene resolution, OncodriveFM and MutSigCV. A 

possible explanation for this could be the low mutation frequency of BRAF in this cancer 

type (8 mutations in 363 samples), making it difficult to detect when comparing its 

frequency to that of other genes. Nevertheless, 6 of these 8 mutations happen in the residue 

V600, making it amenable for detection with various sub-gene algorithms. In fact, many 

genes detected only by sub-gene resolution algorithms, regardless of their category, have 

relatively low mutation frequencies, when compared to those identified by whole-gene 

algorithms (Fig. 2b).

Structure-based methods have higher precision but tend to have lower recall than whole-
gene approaches

We estimated the precision and recall values for each method and category in each dataset 

using the list of genes from the Cancer Gene Census (CGC)37 known to play a driver role in 

each cancer type. The overall results per category show that whole-gene methods have 

higher recall than any of the sub-gene categories in all four datasets we studied (Fig. 3a). 

This supports the idea that the whole-gene methods capture classical driver genes. In terms 

of precision, however, whole-gene methods show similar or lower values than the structure-

based algorithms (Types II and IV).

As for the individual methods, we observe a clear split in recall values between the two 

whole-gene methods and any of the sub-gene algorithms, with the former having higher 

recall values than the latter. In our opinion, there are likely two explanations for this result. 

The first is that whole-gene algorithms detect both, tumor suppressors and oncogenes, 

whereas sub-gene algorithms are more likely to detect oncogenes (see below). The second, 

is that most genes in the gold-standard list have been defined based on their mutation 

recurrence when compared to the rest of the genome, the signal that whole-gene methods 

look for. Sub-gene algorithms, however, are designed to detect mutation clusters and take 

into account only the mutations within a specific gene. While gives an advantage to the sub-

gene algorithms in cases of low mutation frequencies (such as BRAF in glioblastoma), it is 

not how most cancer driver genes have been defined until now. Within sub-gene resolution 

methods, we observe higher recall values for Type I algorithms than for the rest, probably 

because, unlike the other categories, they can be applied to any gene. When analyzing the 

precision data, we found two groups of methods, with CLUMPS, the two e-Driver versions 

and Hotspot making the group with higher precision values.
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Sub-gene resolution methods can find new roles for known cancer genes

Intrigued by the relatively low precision values of most sub-gene resolution algorithms, we 

classified the genes identified by each method into different categories (Fig. 3b) depending 

on whether they are known somatic drivers in that specific tissue and whether they are 

affected by missense mutations or through other genomic alterations (such as copy-number 

variations or genomic rearrangements). As expected, many of the identified genes are known 

to be missense somatic drivers in their corresponding tissue. However, there are also 231 

genes that are predicted as drivers by at least one method and that, while they do not have 

any known driver roles in the tissue where they are detected, they are identified as drivers in 

other tissues. A total of 123 of these genes (53%) are missed by whole-gene methods but, 

nonetheless, are detected by sub-gene resolution algorithms (Supplementary Table 6).

To our surprise, sub-gene resolution algorithms also detected genes whose driver role is 

known, but that are usually affected by copy-number variations or genomic rearrangements. 

For example, PDGFRB acts as a driver in a variety of leukemias via translocations, however, 

iPAC, GraphPAC, SpacePAC and MutSig-CL all detected it as a potential driver in GBM due 

to a cluster of mutations in its kinase domain. Similarly, FGFR1 has been linked to breast 

cancer when amplified, and to myeloproliferative syndromes when translocated. 

Nevertheless, both ActiveDriver as well as LowMACA, identified a small cluster of 

mutations in its kinase domain. Another unexpected finding was that several genes known to 

cause cancer through germline (but not somatic) mutations were identified by some of the 

methods. The most significant example of this category is CDK4. Germline mutations in this 

gene are associated with familial melanoma, but 6 sub-gene algorithms identified it as a 

likely driver in lung adenocarcinoma. Notably, some of the somatic mutations affect the 

same amino acids as the germline variations associated with melanoma, such as R24L.

Regarding the mode of action of the detected genes, it has been previously suggested that 

mutation clusters are more frequent in oncogenes, whereas tumor suppressor genes have 

more distributed mutation patterns17 (although this notion has been questioned by recent 

studies16). Our results support the original observation, as all the sub-gene resolution 

algorithms, regardless of the type, identify more oncogenes than tumor suppressor genes 

(Supplementary Fig. 5). In fact, when combining the predictions from all four datasets, there 

is a statistically significant enrichment of oncogene recognition between 1.4 and 3.7 fold in 

all sub-gene resolution algorithms (Fisher's test p < 0.01). Whole-gene methods, on the other 

hand, do not seem to show such bias and detect both tumor suppressor genes as well as 

oncogenes.

Sub-gene resolution algorithms detect clusters of mutations in novel cancer driver genes

Most sub-gene methods identify non-random mutation distributions in many genes that are 

not part of the CGC (Fig. 3b). It is likely that some of these genes will be false positives, but 

many could be true driver genes that are missed by whole-gene methods. Just in the four 

cancer datasets that we studied there are 66 genes that are not yet known to be somatic 

drivers and that have been detected by at least three different sub-gene methods but not by 

the methods that work at the gene resolution (Supplementary Table 7).
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Though they are not yet part of the CGC, some of these genes have been reported to have 

roles in cancer or are likely to have them given their biological functions. For example, 

OncodriveCLUST, Hostpot and ActiveDriver all detected clusters of mutations in CSNK2A1 

in lung adenocarcinoma. This protein is the catalytic subunit of the casein kinase II, a serine/

threonine kinase involved in several pathways that are important in cancer, such as Wnt/

CTNNB138 or apoptosis39. Similarly, three algorithms detected a cluster of mutations at in 

PARP4 in the breast adenocarcinoma dataset (Supplementary Fig. 3). Recent reports suggest 

that germline mutations in PARP4 might increase the risk to thyroid cancer and breast 

adenocarcinoma40, thus we believe that this gene could play an important role in this type of 

cancer.

Overall, while one needs to be cautious when interpreting these gene lists and further 

evidence is needed before the exact role of these genes and mutations in cancer is clear, we 

believe that sub-gene resolution algorithms can identify valuable potential cancer driver 

genes missed by approaches that analyze mutation data at other biological scales.

Implications for novel concepts in cancer biology: towards a continuum model of cancer 
mutations

Only a small number of cancer mutations have well defined and confirmed functional 

consequences. Most don't and are usually referred to as variants of unknown significance 

(VUS), as their consequences, in terms of driver effects, are unknown. Many of such VUS 

are part of mutation clusters recognized as drivers by sub-gene algorithms, which 

immediately poses the question whether or not these mutations can act as drivers in the 

patients that carry them. Even that is now possible to systematically test some of these 

mutations experimentally41, the most frequent approach to prioritize VUS in cancer driver 

genes are tools that predict the impact of such mutations in the function of the protein42,43 or 

map them into three-dimensional structures44,45.

Sub-gene resolution algorithms also provide a natural way to predict the impact of these 

variants and prioritize them. Since most of these methods identify specific clusters of 

positions within the protein, one can hypothesize that mutations in these positions are the 

most likely to be carcinogenic, whereas those located in other protein regions are less likely 

to have any significant driver effect. The power of this classification has been previously 

exemplified in the analysis of EGFR mutations in glioblastoma. There is a correlation 

between the location of EGFR mutations in glioblastoma and the overall level of EGFR 

protein as well as EGFR phosphorylation levels21 (Fig. 4a,b,c). Samples with mutations in 

the dimerization interface have the highest EGFR protein and phosphorylation levels, 

suggesting a higher activation of the EGFR pathway, while those with mutations in other 

EGFR regions have an intermediate phenotype between the interface-mutated and the EGFR 

wild-type samples, a result that has also been recently verified using cancer cell lines6. This 

is consistent with the role of interface and hotspot mutations acting as major-driver events 

and other EGFR mutations having a different role in cancer. To the best of our knowledge, 

this phenomenon has not been widely studied and this is one of the few cases analyzed in 

more detail16. We believe that sub-gene resolution algorithms will be key to explore such 

effects.
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Another important point is that the results of these algorithms can also be interpreted as an 

emerging challenge to the driver/passenger paradigm. Interestingly, conceptual doubts about 

this paradigm have been formulated for many years. For instance, it was proposed that some 

drivers may play a role only in specific circumstances, thus being dubbed as latent12, mini-

drivers13, or simply part of a continuum of cancer-promoting mutations each with a 

relatively small but additive effect11. Regardless of the specifics, all these models, at their 

core, expand on the binary driver/passenger paradigm to go towards a more nuanced 

classification in which mutations, and the genes they affect, can have different degrees of 

contribution to cancer growth. The results of sub-gene resolution algorithms provide a 

natural classification for mutations in well-established cancer driver genes between those 

that happen in clusters or hotspots (and more likely to be major drivers) and those that 

happen in other regions of the same protein that are less frequently mutated (more likely to 

have a lower driver effect or even be passengers). They also identify many genes that are 

potential low frequency cancer drivers, which could be nevertheless important in specific 

cases and could lead to actionable predictions as to the molecular mechanism of specific 

tumors they are found in.

Discussion

We have classified sub-gene resolution driver-detection algorithms into four distinct 

categorie depending on their overall scope and their data requirements, with each category 

having a series of advantages and limitations. Overall, these methods find key driver genes 

in each cancer cohorts, but also identify new genes that are missed by whole-gene 

approaches. Furthermore, they provide more detailed information than whole-gene 

approaches, identifying specific protein regions and often suggesting specific mechanisms of 

driver functions. Integrating the results of these algorithms with other –omic datasets will 

likely have broad implications for cancer research, including, but not limited to, shedding 

light into the ongoing efforts to define how mutations contribute to cancer onset and 

progression.

Also, while we have not explicitly explored this issue, it would likely be possible to apply 

the same classification (de novo or externally-defined and linear or three-dimensional) to 

algorithms that detect clusters of non-coding driver mutations. In fact, some of the 

algorithms discussed here have also been successfully applied to the analysis of non-coding 

regions26, identifying several mutation clusters in promoters and 5′ UTR among others. 

Given the relevance of non-coding mutations in cancer46, this will be an important issue as 

whole-genome sequencing becomes more widespread.

Finally, to address the issue of long term sustainability of the benchmarking effort initiated 

here, we plan to incorporate the methods, input, output and gold standard data sets into the 

pan-european bioinformatics infrastructure ELIXIR. ELIXIR is currently developing a data 

warehouse for hosting continuous automated benchmark efforts in this and other areas of 

life-sciences e.g. homology building in close collaboration with different research 

communities. Current ELIXIR data warehouse, including documentation and further 

development plans, is accessible at http://elixir.bsc.es.
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Online Methods

Mutation data analysis and pre-processing

We compared the predictions of methods covering all four categories to explore the strengths 

and limitations of each of them. For Type I we used Hotspot47, NMC15, 

OncodriveCLUST14, MutSig-CL27 and iSIMPRe23. In the case of Type II we included 

iPAC30, GraphPAC31, SpacePAC33 and CLUMPS16. As for Type III we included e-

Driver18,21, ActiveDriver20 and LowMACA19. Finally, we used one Type IV algorithm: e-

Driver3D18,21, as well as two methods that rely on whole-gene analysis5,35.

We analyzed four different cancer genomics datasets from The Cancer Genome Atlas: 

glioblastoma (GBM, n = 363)50, breast adenocarcinoma (BRCA, n = 982)51, bladder 

adenocarcinoma (BLCA, n = 137) 52 and lung adenocarcinomas (LUAD, n = 546)53. We 

used Intogen54 to predict the location and impact of each mutation in the different protein 

isoforms from their genomic coordinates (Supplementary Fig. 6). Mutation data come 

from47 instead of the TCGA portal, as it had all the necessary additional information for 

each mutation in order to run the Hotspot algorithm.

Algorithms

We ran all algorithms using their default settings. In the case of the Hotspot algorithm, we 

used the genomic information of each mutation provided in the original publication. For 

Type II methods, when there were multiple three-dimensional structures that could be used 

as templates to map the mutations, we chose the ones that had the highest structural 

divergence as defined by PDBFlex55. This limits the impact of multiple testing issues and 

also ensures that we captured proteins that could be affected by protein flexibility. In the 

case of ActiveDriver, we used all the post-translational modification sites provided with the 

algorithm: phosphorylations, acetylations and ubiquitinations. For e-Driver and e-Driver3D 

we used the PFAM domains, disordered regions and protein interfaces described in the 

original publications.

Evaluation of the results

We used the list of genes included in the Cancer Genome Census37 (downloaded on 

September 12th 2016) as benchmark to compare the performance of the algorithms on 

known driver genes. We limited the list of genes to those that are defined as somatic and that 

had at least 5 mutations in the dataset being studied. We defined a gene as predicted by an 

algorithm if its FDR value was below 0.05. The mode of action was also obtained from the 

CGC list. Note that known cancer genes that are not described as somatic (i.e. only as 

germline) or as drivers in other tissues in CGC are considered as not known for the purposes 

of the evaluation.

Regarding the PCA analysis, for each tissue we created a matrix with all the genes detected 

by at least 2 algorithms and the p-values obtained by each method for each gene. For the 

purposes of this analysis, all the missing p-values (for example genes with no structures have 

no p-values for Type II or Type IV algorithms) were assumed to be 1. We calculated the 

PCA with the minus logarithm of the matrix. The list of candidate novel driver genes 
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identified solely by sub-gene methods was limited only to those genes identified by, at least, 

three different algorithms. This threshold was defined to minimize the risk of overfitting. 

This approach that has previously proven useful in detecting cancer driver genes56.

EGFR RPPA analysis

We downloaded the normalized glioblastoma RPPA data from the UCSC Cancer Genome 

Browser57 and compared the levels of EGFR-R-C (overall EGFR), EGFR_pY1068-R-V 

(EGFR phosphorylated at Y1068), EGFR_pY1173-R-C (EGFR phosphorylated at Y1173) 

and EGFR_pY992-R-V (EGFR phosphorylated at Y992) in three different groups of 

patients: those with mutations in the EGFR-EGFR interface (based on the PDB coordinates 

file 3NJP, chains A and B), those with other EGFR mutations and those with no mutations in 

EGFR. We compared protein expression levels using a two-sided Wilcoxon test.

Data availability

All the algorithms reviewed here can be downloaded from the sites indicated in the 

Supplementary Table 1. The code and data used to compare the algorithms and generate 

Figures 2, 3 and 4 can be obtained at: https://github.com/eduardporta/sub-gene_resolution

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Finding mutation drivers across biological scales
(a) Schematic of different levels for cancer driver detection and the tools used. (b) The four 

groups of sub-gene resolution algorithms according to the type of regions they find and their 

number of dimensions. (c) Types of regions detected by each class of algorithm based on 

EGFR mutations in glioblastoma.
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Figure 2. Comparison of the overall predictions of each method
(a) Principal component analysis of the predictions by each method in the four distinct 

datasets using the p-values for all the genes detected at least by one algorithm. (b) 

Predictions in the glioblastoma dataset by each method (left panel) and grouped by 

categories (second panel). Methods are clustered according to the genes they detect. Due to 

space limitations, we only show genes that are either detected by at least four different 

algorithms or detected by a single algorithm and that are included in the Cancer Gene 

Census as missense drivers. We also show the structural coverage of these genes (third 

panel), whether they are known driver genes (fourth panel) and whether they are oncogenes 

(OG), tumor suppressor genes (TSG), both (OG/TSG) or known cancer genes whose mode 

of action still needs to be determined (Unk). Finally, we also show the number of mutations 

of each gene (right panel).
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Figure 3. Evaluating the predictions of each method and type of algorithms based on CGC data
(a) Recall (left) and precision (right) values for each method category in each dataset (top) 

and each algorithm (bottom). (b) Known driver role of the detected genes by each method 

according to CGC in each dataset.
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Figure 4. Using mutation clusters to improve the definition of cancer drivers
(a) Glioblastoma mutations in EGFR located in the dimerization interface (in red) or in other 

EGFR positions (yellow). (b) Classification of glioblastoma samples depending on whether 

they have mutations in the EGFR cluster detected by each method (in red) or other EGFR 

mutations (in orange). Each row corresponds to a method and each column to a patient. (c) 

Comparing protein levels measured by RPPA of EGFR (left panel), EGFR pY992 (second 

panel), EGFR pY1068 (third panel) and EGFR pY1173 (right panel). Samples are classified 

according to whether they have a mutation in the EGFR-EGFR interface (in red), other 

EGFR mutations (in orange) or no EGFR mutations (in gray).
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Table 1
Sub-gene resolution algorithms

Category Method Reference

Type I OncodriveCLUST 14

NMC 15

SomInaClust 25

Araya et.al. 26

MutSig-CL 27

Hotspot 47

MSEA-Clust 24

iSIMPRe 23

M2C 28

Type II iPAC 30

GraphPAC 31

SpacePAC 33

Hotspot3D 6

HotMAPS 17

3DHotspots.org 32

CLUMPS 16

mutation3D 48

Type III ActiveDriver 20

Yang et.al. 49

MSEA-Domain 24

e-Driver 18

LowMACA* 19

MutAligner* 34

Type IV e-Driver3D 21

CLUMPS 16

*
Both LowMACA and MutAligner analyze all instances of a certain protein domain together, instead of individual protein domains
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