UC Irvine UC Irvine Previously Published Works

Title

Mode softening and high superconducting transition temperature in some A-15 compounds

Permalink

<https://escholarship.org/uc/item/79c02921>

Journal

Ferroelectrics, 16(1)

ISSN

0015-0193

Authors

Knapp, GS Bader, SD Fisk, Z

Publication Date

1977

DOI

10.1080/00150197708237174

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, availalbe at <https://creativecommons.org/licenses/by/4.0/>

Peer reviewed

Ferroelectrics 1977, Vol. 16, pp. 263-265

MODE SOFTENING AND HIGH SUPERCONDUCTING **TRANSITION TEMPERATURE IN SOME A-15 COMPOUNDS[†]**

G. S. KNAPP and S. D. BADER

Argonne National Laboratory, Argonne, Illinois 60439

and

Z. FISK‡

University of California, San Diego, California

(Received December 3, 1975)

The electronic density of states at the Fermi level, $N(E_F)$, and the geometric mean phonon frequencies, ω_g , were determined from heat-capacity data for a number of A-15 superconductors. Although ω_g is an appropriate average phonon parameter for evaluating McMillan's expression for λ , we found that the T_c values cannot be reliably estimated using ω_g . There are, however, strong correlations between λ , $N(E_F)$ and the temperature dependence of ω_g , d ln ω_g/dT . The high- T_c , high- $N(E_F)$ materials V_3S i and V_3Ga show the largest phonon-mode softening on cooling.
We propose that, for the higher- $N(E_F)$ materials, particular phonon-modes strongly couple to the ele and enhance T_c to a greater extent than average phonon properties would indicate.

The high- T_c A-15 superconductors have anomalous electronic and phonon properties.¹ In earlier papers,^{2,3} we analyzed heat-capacity data on A-15 compounds, to determine certain average electronic and phonon properties relevant to superconductivity. In this paper, we present data on an additional compound, Nb₃Sn_{0.7}- $Sb_{0.3}$. With the new data we show that there are correlations between the electron-phonon mass enhancement, λ , and the electronic density of states at the Fermi level, $N(E_F)$. There is also a correlation between the temperature dependence of the geometric mean phonon-mode frequency and $N(E_F)$. We explain these correlations by suggesting that a relatively small number of phonon-modes strongly couple to the electronic system and selectively soften because of electronic screening effects, which in turn depend strongly on $N(E_F)$.

The sample of $Nb_3Sn_{0.7}Sb_{0.3}$ was prepared³ in the same manner as $Nb₃Sn$. Its T_c value was 14.9 K and metallographic analysis showed that it was 85-90% single phase. The heat capacity was measured over temperature range of 2-400 K. The electronic density

of states at the Fermi level can be determined from the low-temperature heat-capacity data. The highertemperature entropy can be analyzed to determine the geometric mean frequency,

$$
\omega_g = \left[\prod_s^{3N} \omega_g \right]^{1/3N}
$$

and its temperature dependence.³ In Figure 1 we display the ω_g values for all samples, as effective Debye temperatures $\theta \equiv e^{1/3} h \omega_g / k_B$. Note that the high- T_c vanadium compounds show large temperature dependencies of θ , indicating that there is considerable phonon-mode softening with decreasing temperature.

To test whether the differences in ω_g (at $T = T_c$) can account for the different T_c values, we obtained λ values from McMillan's expression for T_c and related ω_g to λ by the usual expression $\lambda = N(I^2)/M\omega_g^2$, where $\langle I^2 \rangle$ is the average electron-phonon coupling parameter and M is the gram atomic weight (see Table I). McMillan showed that $N(E_F)\langle I^2 \rangle$ was approximately constant, based on an analysis of some bcc transition metals. This is clearly not the case for these A-15 compounds, as can be seen in Table I, and the differences in T_c must be caused by differences in $N(I^2)$. In Figure 2(a), we plot λ vs. $N(E_F)$ for all compounds. Note that for the V_3X compounds, λ is approximately linearly related to $N(E_F)$ when $N(E_F)$

[†] Work supported by the US Energy Research and Development Administration.

[#] Work supported by the Air Force Office of Scientific Research Contract AFOSR/F44620-C/0017.

FIGURE 1 The temperature dependence of the effective Debye temperature associated with the geometric mean phonon-mode frequencies for the indicated compounds.

is greater than 2 states/eV-atom, whereas it is not clear whether this is true for the $Nb₃X$ compounds. In Figure 2(b), the normalized slope of ω_g , $(A/3R) \equiv$ $-(1/\omega_g)(\partial \omega_g/\partial T)$, is plotted vs. $N(E_F)$, where R is gas constant. Within experimental error, there is a linear relationship between A and $N(E_F)$ for all compounds.

The relationship between λ , (NE_F), and (1/ ω_g) $(\partial \omega_g / \partial T)$ and the lack of correlation between $M \omega_g^2$ and λ can be explained if we postulate that a relatively small number of modes are strongly coupled to the electronic system. Then, these modes can dominate the magnitude of λ , while the softening will affect

FIGURE 2 The electron-phonon mass enhancement [Figure 2(a)] and the phonon frequency shift parameter [Figure 2(b)] as functions of $N(E_F)$.

 $M\omega_g^2$ much less dramatically. Therefore, $N\langle I^2 \rangle \equiv \lambda M \omega_g^2$ is not expected to be constant. For the Nb₃X compounds, since $N(E_F)$ is lower than for the V_3X compounds, the contribution to λ from particular modes will not dominate λ . Therefore, we would expect that $N\langle I^2 \rangle$, as obtained from $\lambda M \omega_g^2$, would be more constant for these materials. From Table I it is clear that for the Nb_3X compounds, the $N\langle I^2 \rangle$ values are quite constant, except for Nb₃Sb, which,

^a In units of states/eV-atom.

because of its low $N(E_F)$, can hardly be classified a transition-metal superconductor.⁵

The correlation of $(1/\omega_g)(\partial \omega_g/\partial T)$ with $N(E_F)$
is another manifestation of strong selective electronic screening. The high $N(E_F)$ can cause the frequencies of certain phonon modes to decrease significantly. These frequencies can be temperature dependent for two reasons. First, electronic screening could cause the effective second-order term in the phonon potential energy to be reduced relative to the third- and fourth-order terms. This reduction enhances the anharmonicity as measured by A. Second, electronic screening, by near-Fermi-energy electronic states, will be quite temperature dependent because of sharp structure in $N(E)$ near E_F . If the same percentage of the modes shows this anomalous screening, for all of

the compounds, then the correlation between A and $N(E_F)$ is explained.

REFERENCES

- 1. See, for instance, L. R. Testardi, In Physical Acoustics, edited by W. P. Mason and R. N. Thurston (Academic Press, New York, 1973), Vol. 10, p. 193; L. R. Testardi, Rev. Mod. Phys. 47, 637 (1975); and M. Weger and I. B. Goldberg, in Solid State Physics, edited by H. Ehrenreich, F. Seitz and D. Turnbull (Academic Press, New York, 1973), Vol. 28, p. 1.
- 2. G. S. Knapp, S. D. Bader, H. V. Culbert, F. Y. Fradin and T. E. Klippert, Phys. Rev. B11, 4331 (1975).
3. G. S. Knapp, S. D. Bader, and Z. Fisk Phys. Rev. B 13,
- 3783 (1976).
- 4. W. L. McMillan, Phys. Rev. 167, 331 (1968).
- 5. J. J. Hopfield, Phys. Rev. 186, 443 (1969).