UC Irvine

UC Irvine Previously Published Works

Title

Mode softening and high superconducting transition temperature in some A-15 compounds

Permalink

https://escholarship.org/uc/item/79c02921

Journal

Ferroelectrics, 16(1)

ISSN

0015-0193

Authors

Knapp, GS Bader, SD Fisk, Z

Publication Date

1977

DOI

10.1080/00150197708237174

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

MODE SOFTENING AND HIGH SUPERCONDUCTING TRANSITION TEMPERATURE IN SOME A-15 COMPOUNDS[†]

G. S. KNAPP and S. D. BADER

Argonne National Laboratory, Argonne, Illinois 60439

and

Z. FISK ±

University of California, San Diego, California

(Received December 3, 1975)

The electronic density of states at the Fermi level, $N(E_F)$, and the geometric mean phonon frequencies, ω_g , were determined from heat-capacity data for a number of A-15 superconductors. Although ω_g is an appropriate average phonon parameter for evaluating McMillan's expression for λ , we found that the T_c values cannot be reliably estimated using ω_g . There are, however, strong correlations between λ , $N(E_F)$ and the temperature dependence of ω_g , $d \ln \omega_g/dT$. The high- T_c , high- $N(E_F)$ materials V₃Si and V₃Ga show the largest phonon-mode softening on cooling. We propose that, for the higher- $N(E_F)$ materials, particular phonon-modes strongly couple to the electronic system and enhance T_c to a greater extent than average phonon properties would indicate.

The high- T_c A-15 superconductors have anomalous electronic and phonon properties. In earlier papers, 2,3 we analyzed heat-capacity data on A-15 compounds, to determine certain average electronic and phonon properties relevant to superconductivity. In this paper, we present data on an additional compound, Nb3 Sn0.7-Sb_{0.3}. With the new data we show that there are correlations between the electron-phonon mass enhancement, λ , and the electronic density of states at the Fermi level, $N(E_F)$. There is also a correlation between the temperature dependence of the geometric mean phonon-mode frequency and $N(E_F)$. We explain these correlations by suggesting that a relatively small number of phonon-modes strongly couple to the electronic system and selectively soften because of electronic screening effects, which in turn depend strongly on $N(E_F)$.

The sample of $Nb_3Sn_{0.7}Sb_{0.3}$ was prepared³ in the same manner as Nb_3Sn . Its T_c value was 14.9 K and metallographic analysis showed that it was 85-90% single phase. The heat capacity was measured over temperature range of 2-400 K. The electronic density

$$\omega_g = \left[\prod_{g}^{3N} \omega_g \right]^{1/3N}$$

and its temperature dependence.³ In Figure 1 we display the ω_g values for all samples, as effective Debye temperatures $\theta \equiv e^{1/3}h\omega_g/k_B$. Note that the high- T_c vanadium compounds show large temperature dependencies of θ , indicating that there is considerable phonon-mode softening with decreasing temperature.

To test whether the differences in ω_g (at $T=T_c$) can account for the different T_c values, we obtained λ -values from McMillan's expression for T_c and related ω_g to λ by the usual expression $\lambda = N\langle I^2 \rangle/M\omega_g^2$, where $\langle I^2 \rangle$ is the average electron-phonon coupling parameter and M is the gram atomic weight (see Table I). McMillan showed that $N(E_F)\langle I^2 \rangle$ was approximately constant, based on an analysis of some bcc transition metals. This is clearly not the case for these A-15 compounds, as can be seen in Table I, and the differences in T_c must be caused by differences in $N\langle I^2 \rangle$. In Figure 2(a), we plot λ vs. $N(E_F)$ for all compounds. Note that for the V_3 X compounds, λ is approximately linearly related to $N(E_F)$ when $N(E_F)$

of states at the Fermi level can be determined from the low-temperature heat-capacity data. The highertemperature entropy can be analyzed to determine the geometric mean frequency,

[†] Work supported by the US Energy Research and Development Administration.

[‡] Work supported by the Air Force Office of Scientific Research Contract AFOSR/F44620-C/0017.

FIGURE 1 The temperature dependence of the effective Debye temperature associated with the geometric mean phonon-mode frequencies for the indicated compounds.

is greater than 2 states/eV-atom, whereas it is not clear whether this is true for the Nb₃ X compounds. In Figure 2(b), the normalized slope of ω_g , $(A/3R) \equiv -(1/\omega_g)(\partial \omega_g/\partial T)$, is plotted vs. $N(E_F)$, where R is gas constant. Within experimental error, there is a linear relationship between A and $N(E_F)$ for all compounds.

The relationship between λ , (NE_F) , and $(1/\omega_g)$ $(\partial \omega_g/\partial T)$ and the lack of correlation between $M\omega_g^2$ and λ can be explained if we postulate that a relatively small number of modes are strongly coupled to the electronic system. Then, these modes can dominate the magnitude of λ , while the softening will affect

FIGURE 2 The electron-phonon mass enhancement [Figure 2(a)] and the phonon frequency shift parameter [Figure 2(b)] as functions of $N(E_F)$.

 $M\omega_g^2$ much less dramatically. Therefore, $N\langle I^2\rangle\equiv \lambda M\omega_g^2$ is not expected to be constant. For the Nb₃X compounds, since $N(E_F)$ is lower than for the V₃X compounds, the contribution to λ from particular modes will not dominate λ . Therefore, we would expect that $N\langle I^2\rangle$, as obtained from $\lambda M\omega_g^2$, would be more constant for these materials. From Table I it is clear that for the Nb₃X compounds, the $N\langle I^2\rangle$ values are quite constant, except for Nb₃Sb, which,

TABLE I
Calorimetrically determined properties of A-15 compounds

Compounds	$T_c(^{\circ}K)$	$N(E_F)^{\mathbf{a}}$	λ	$M_g^2 = \frac{\text{eV}}{\text{Å}^2}$	$N(I^2) = \frac{\text{eV}}{\text{A}^2}$
Nb ₃ Al	18.5	1.6	1.07	7.82	8.4
Nb ₃ Sn	17.9	2.4	1.17	7.18	8.4
Nb2Sn0.7Sb0.3	14.9	1.5	1.0	8.17	8.2
Nb ₃ Sb	0.2	0.4	0.3	10.85	3.3
V ₃ Si	16.5	3.8	0.86	8.61	7.4
V ₃ Ga	14.3	4.8	0.91	6.43	5.9
V3Ga0.5Sn0.5	5.6	2.7	0.62	7.30	4.5
V ₃ Sn	3.8	2.7	0.56	8.14	4.6

a In units of states/eV-atom.

because of its low $N(E_F)$, can hardly be classified a transition-metal superconductor.5

The correlation of $(1/\omega_g)(\partial \omega_g/\partial T)$ with $N(E_F)$ is another manifestation of strong selective electronic screening. The high $N(E_F)$ can cause the frequencies of certain phonon modes to decrease significantly. These frequencies can be temperature dependent for two reasons. First, electronic screening could cause the effective second-order term in the phonon potential energy to be reduced relative to the third- and fourth-order terms. This reduction enhances the anharmonicity as measured by A. Second, electronic screening, by near-Fermi-energy electronic states, will be quite temperature dependent because of sharp structure in N(E) near E_F . If the same percentage of the modes shows this anomalous screening, for all of

the compounds, then the correlation between A and $N(E_F)$ is explained.

REFERENCES

- 1. See, for instance, L. R. Testardi, In Physical Acoustics, edited by W. P. Mason and R. N. Thurston (Academic Press, New York, 1973), Vol. 10, p. 193; L. R. Testardi, Rev. Mod. Phys. 47, 637 (1975); and M. Weger and I. B. Goldberg, in Solid State Physics, edited by H. Ehrenreich, F. Seitz and D. Turnbull (Academic Press, New York, 1973), Vol. 28, p. 1.
- 2. G. S. Knapp, S. D. Bader, H. V. Culbert, F. Y. Fradin and T. E. Klippert, *Phys. Rev.* B11, 4331 (1975).

 3. G. S. Knapp, S. D. Bader, and Z. Fisk *Phys. Rev. B* 13,
- 3783 (1976).
- 4. W. L. McMillan, Phys. Rev. 167, 331 (1968).
- 5. J. J. Hopfield, Phys. Rev. 186, 443 (1969).