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ON TIIE NUMERICAL INTEGRATION OF VISCOELASTIC FLOW EQUATIONS 

J. Rosenberg and R. Keunings* 
Center for Advanced Materials, Lawrence Berkeley Laboratory 

University of California, Berkeley CA 94720, USA 

Abstract 

Various numerical techniques are compared in the integration of the upper-convected 
Maxwell (UCM) constitutive model on the basis of known kinematics. They include 
Galerkin's method, streamline upwinding schemes and the method of characteristics. The 
results show the superiority of the latter in flows endowed with stress singularities. Solutions 
of the full set of momentum, mass and constitutive equations are computed with the method of 
characteristics and a Picard iterative scheme. Convergence difficulties are addressed 

1. Introduction 

In the· past, Galerkin finite element methods (GFEM's) have been the techniques of 
choice in the numerical discretization of viscoelastic flow equations (see [1] and [2] for 
detailed reviews). GFEM's, however, are known to produce oscillatory results in flow 
problems possessing stress singularities or boundary layers, with the consequence that 
solutions can only :be obtained for small values of the Weissenberg number. (The 
Weissenberg number We is a dimensionless group determining the elastic character of the 
flow [1,2]). One cause for the numerical instabilities is related to the hyperbolic nature of 
differential viscoelastic constitutive models [1]. 

In the frrst part of the present communication, various methods are compared in the 
prediction of viscoelastic stresses on the basis of known kinematics for the planar stick-slip 
problem. The methods include Galerkin's technique, streamline upwinding (SU), streamline­
upwind Petrov-Galerkin (SUPG), and streamline integration (SI) applied to the integration of 
the UCM constitutive model. In the second part, a Picard iterative method is used together 
with SI to produce solutions of the full set of governing equations for an Oldroyd-B fluid. 
Convergence behavior of the iterations is discussed. For a complete written report, see [3]. 

2. Governing Equations 

Isothermal creeping flow of an Oldroyd-B fluid is governed by the following equations : 

(1) 

(2) 

V.u =0 . (3) 

Here A. is a relaxation time,~ and J..I.N are viscoelastic and Newtonian viscosity coefficients 
respectively, Dis the rate of deformation tensor, u is the velocity vector, pis pressure, f is a 
body force, Tv is the viscoelastic extra-stress tensor, and the superscript V refers to the upper­
convected derivative [1]. By setting appropriate parameters to zero, these equations also 
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describe Newtonian and Maxwell (UCM) flows. For fixed steady-state kinematics, the UCM 
equation (1) constitutes a set of first-order hyperbolic equations for Tv. 

3. Numerical Techniques 

The governing equations (1-3) are usually solved in terms of the primary variables Tv• u, 
and p by means of a GFEM [ 1 ]. The unknown fields are approximed by the fmite sums : 

T = ~ T ·""· , u = 't" u.lll. , v ~ vt'l't ~ J T J 
1 J 

(4) 

where Tvi' uj, and Pt are unknown nodal values, and q,i, 'Vj• and 1tk are finite element basis 
functions. For planar flows, the standard Galerkin weak form of (1-3) is 

(5) 

(6) 

(7) 

where the brackets<;> and<<;>> denote the L2 inner products over the flow domain and 
the domain boundary respectively, and tis the surface traction. In this work, the elements 
used are isoparametric quadrilaterals, extra-stress and pressure approximations are bilinear, 
and velocity interpolations are biquadratic. All approximations are of class cO. Following [4], 
the extra-stress is calculated on a mesh where each quadrilateral is subdivided uniformly into 
NxN sub-elements, with N between 1 and 4. 

3 .1. Integration of the Constitutive Equation 

GFEM's are known to be unstable in the solution of hyperbolic problems [5]. Various 
upwinding techniques have been introduced recently to stabilize finite element solutions of 
hyperbolic systems, most notably streamline upwinding (SU) and streamline-upwind Petrov­
Galerkin (SUPG) methods (see e.g. [6]). 

SU as applied to the constitutive model (1) essentially amounts to solving the modified 
equation 

(8) 

Here the tensor K, the anisotropic artificial diffusivity tensor, is given by 

K=k~, (9) 
u.u 

where k is a scalar on the order of element size. 

SUPG solves the original constitutive equation (1) but uses a weight function differing 
from the basis function : 

(10) 

2. 
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w. = ~~~.. + c u. v~~~. .. 
1 '1'1 '1'1 (11) 

where c is also a scalar on the order of element size. 

In 2-D steady-state flows, the streamlines are the characteristic lines for the hyperbolic 
constitutive model (1). Streamline integration (SI) is a method by which the constitutive 
equations are integrated along the particle paths [7]. First, streamlines are computed on the 
basis of a known velocity field. A second order A-stable adaptive method is then used to 
numerically integrate (1) along a discrete number of streamlines. The integration stepsize 
along a particle path is adjusted such that an estimate of the relative discretization error does 
not exceed some predefined tolerance. 

3.2. Solution of the Full Set of Equations 

Following [7], SI is used within a decoupled method [1] to predict viscoelastic extra­
stress and kinematics for the Oldroyd-B fluid. The iterative method, henceforth referred to as 
SLE, is as follows : 

(1) Determine Newtonian kinematics via GFEM, 

(2) For each Gauss-point on a NxN sub-mesh, determine new values for Tv via 
SI on the basis of current kinematics, 

(3) Determine kinematics based upon Tv via the Galerkin equations 

< v vT; 2<J.L. + J.LN> oN+t - PN+t I > 

T N N (12) = < V 'If j ; 2 J.l.a D - Tv > + << 'If j ; t >> + < 'If j ; f > , 

V N+l O < 1tk; .u > = ' (13) 

where the superscripts denote the iteration index. 

(4) Check for convergence. Return to step (2) if necessary. 

An "arbitrary" viscosity J.l.a is added to both sides of (12) to aid convergence of the iterative 
process. Following [7], the finite elements are made to conform with the streamlines 
computed at each iteration, so that families of Gauss-points lie on common paths. 

Convergence of SLE is expected to be first order at best. Unlike for Newton-Raphson 
iterations, convergence criteria for SLE are not altogether obvious. Maximum relative changes 
(MRC's) are defined by 

~ IT~;1 - T~gl 

nrx IT~;~ I 
I N+l N I max u. - u. 

J J J 

I N+ll max u. 
J J 

(14) 

where the subscript g refers to Gauss-points. Similar MRC's are also defined for pressure and 
streamfunction. Residuals are defined by 

R = II < v vY ; 2 J.LN oN+l - PN+l 1 + ~+1> - << 'l'j ; t >> -< 'l'j ; f >II 
2

. (15) 

3 



Finally, distances are defined by 

II ~;1 
- ,-eg 11 2 • II uf+1 

- uf 11 2 • (16) 

again where similar quantities are defined for pressure and streamfunction. The superscript 0 
in ( 16) refers to a particular (fiXed) iterate. Convergence of the iterative process is defined 
here as the situation when all MRC's remain below 0.05 and all residuals and distances do not 
diverge over prolonged iterations. 

4. Results for Newtonian Kinematics 

The planar stickslip problem [1] is chosen to test the various techniques of solving the 
differential constitutive equation (1). The Newtonian kinematics are determined via GFEM 
GFEM, SU, SUPG, and SI are then used to predict the UCM extra-stress for We=3 on the 
basis of the computed Newtonian kinematics. 

In the full report [3], the predictions of these various techniques are compared along 
several streamlines for 1x 1, 2x2, and 4x4 sub-meshes for the extra-stress computation. In 
summary, Galerkin, SU, and SUPG are inaccurate in the exit region where a steep stress 
boundary layer is predicted in the direction transverse to the flow. Away from the exit region, 
SU and SUPG give accurate results when a 4x4 sub-mesh is used. SI results are the most 
stable and accurate; they do converge with increased resolution even near the exit 

5. Results with the Decoupled Method 

Performance of SLE is tested on the stickslip flow problem of an Oldroyd-B fluid with 
viscosity ratio J.l.N/IJ.v=l/8. Iterations for a lx1 sub-mesh begin at We=O and continue until 
convergence is lost slightly above We=1n.. SLE with 4x4 sub-mesh refinement is used in a 
similar test. At We=1n., convergence has already been lost (without catastrophic divergence) 
with the MRC in stresses being on the order of unity. The 4x4 sub-refinement requires 
evaluation of stress much closer to the singularity than does its lx1 counterpart. An MRC in 
velocity on the order of 0.01 can produce an MRC in stress on the order of 1 in the elements 
close to the singularity. 

In this work, the arbitrary viscosity lla is chosen by trial and error. If lla is too low, the 
iterations diverge wildly. If J.la is chosen too high, the computed MRC's are deceptively low, 
but the solution nevertheless can diverge with prolonged iterations. Typically, convergence 
(when it does occur) is slow and oscillatory. SLE on the lx1 sub-mesh takes on the order of 
200 iterations at the total cost of about 8 CPU minutes on a CRA Y X-MP (single processor) 
to obtain converged results for We=1n.. 

6. Conclusions 

Current boundary conditions and constitutive models used in viscoelastic flow modeling 
often result in physically unreasonable stress and stress gradients. In the predicted boundary 
layers, small changes in kinematics can produce large changes in the computed stress field. 
Finite element upwinding techniques for viscoelastic extra-stress calculation have been shown 
to be an improvement over standard Galerkin methods. They do not, however, produce 
accurate results close to singularities. The streamline integration of the UCM constitutive 
model leads to stable and accurate stress predictions even near the singularity. A decoupled 
technique based on streamline integration does not, however, enjoy good convergence 
properties and fail to converge at rather low values of We. This work also shows that 
convergence criteria for decoupled viscoelastic iterations must be carefully defined. 
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