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ABSTRACT OF THE THESIS

Limits on the Pseudorandomness

of Low-Degree Polynomials over the Integers

by

Alexis Lei Wan Korb

Master of Science in Computer Science

University of California, Los Angeles, 2020

Professor Amit Sahai, Chair

We initiate the study of a problem called the Polynomial Independence Distinguishing Problem

(PIDP). The problem is parameterized by a set of polynomials Q = (q1, . . . , qm) of n variables and

an input distribution D over the reals. The goal of the problem is to distinguish a tuple of the

form {qi, qi(x)}i∈[m] from {qi, qi(xi)}i∈[m] where x,x1, . . . ,xm are each sampled independently from

the distribution Dn. Refutation and search versions of this problem are conjectured to be hard in

general for polynomial time algorithms (Feige, STOC 02) and are also subject to known theoretical

lower bounds for various hierarchies (such as Sum-of-Squares and Sherali-Adams). Nevertheless, we

show polynomial time distinguishers for the problem in several scenarios, including settings where

such lower bounds apply to the search or refutation versions of the problem.
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1 Introduction

In this work, we consider the following problem:

Definition 1.1 (Polynomial Independence Distinguishing Problem). Let n,m be parameters where

m = nO(1). Let Q = {q1, ..., qm} denote a set of m multivariate polynomials qi : Rn → R. Let D be a

distribution on R, and let D∗n be the distribution D × · · · × D︸ ︷︷ ︸
n times

over Rn where x = (x1, . . . , xn)
R←− D∗n

means x1, . . . , xn are independently sampled from D. The Polynomial Independence Distinguishing

Problem with respect to D,Q, n,m (or simply the (D,Q, n,m) − PIDP) consists of distinguishing

the following two distributions:

Distribution 1: Distribution 2:

1. Sample x
R←− D∗n 1. Sample x1, . . . ,xm

R←− D∗n

2. Output {qi, qi(x)}i∈[m] 2. Output {qi, qi(xi)}i∈[m]

Observe that the problem of recovering x from the output of Distribution 1 corresponds to

solving the search version of a natural Constraint Satisfaction Problem (CSP). Similarly, the prob-

lem of certifying that no such x exists when given the output of Distribution 2 corresponds to the

refutation version of the CSP.

If it were possible to efficiently solve the search or refutation versions of our CSP above, then

the distinguishing problem would immediately also be solved. The converse, however, is not true,

and exploring this gap is the focus of this work.

Indeed, in many CSP problems, efficient search or refutation algorithms are not known to exist,

and are even subject to theoretical lower bounds. For instance, there are abundant examples of

CSPs where there are known Sum-of-Squares lower bounds [Gri01, Sch08, KMOW17]. In particular,

the search and refutation versions of the Polynomial Independence Distinguishing Problem are

subject to known Sum-of-Squares lower bounds for certain parameters [Jai19]. Nevertheless, in this

work, we will show efficient distinguishers for those settings (and more).
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Pseudorandomness over the Integers. The Polynomial Independence Distinguishing Problem

is intimately tied to the notion of a pseudo-random generator (PRG). A PRG G : X n → Ym with

stretch m > n takes as input x = (x1, . . . , xn) where each xi is a random sample from some

distribution Din with support over X . The pseudorandomness property requires that the output

G(x) ∈ Ym is computationally indistinguishable from m independent copies of distribution Dout

with support in Y.

Traditionally, PRGs have been defined in the Boolean setting, where X = Y = {0, 1}, or in

the setting of finite fields, where X = Y = Fq. A great deal of research has investigated these

settings; much of this work has focused on investigating the possibility of the PRG G lying in a low

complexity class such as low-locality [Gol00, AIK07, MST03, OW14, AL16, ABR12], block locality

[LT17, LV17, BBKK18], low circuit-depth [AIK07], or low degree arithmetic circuits [KS99, KS98].

The goal of our work is to explore a new setting where X = Y = Z. (By appropriate rescaling,

this is equivalent to considering finite precision reals.)

More specifically, we consider the case where Din and Dout are both distributions over the

integers (or more broadly the reals) and G is a collection of low degree multivariate polynomials

over the integers. Furthermore, instead of aiming for a particular output distribution Dout, one

can simply require that the output of the generator is indistinguishable from the product of the

marginals of the output components. One can therefore define a natural notion of a pseudorandom

generator as follows (as defined by [ABKS17]).

Definition 1.2. (Pseudo-Independent Distribution Generator) A Pseudo-Independent Distribution

Generator (or PIDG) is a tuple (D,F , n,m) where m is called the stretch of the PIDG and

• D is an efficiently samplable distribution over R.

• F = {fi}mi=1 where each fi for i ∈ [m] is a polynomial time multivariate function fi : Rn → R.
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The security requirement is that for any probabilistic polynomial time adversary A, the following

holds:

x,x1,x2, . . . ,xm
R←− D∗n

∣∣∣Pr[A(F , {fi(x)}mi=1) = 1]− Pr[A(F , {fi(xi)}mi=1)) = 1]
∣∣∣ < n−ω(1)

We are interested in exploring the possibility of whether such PIDGs can exist in settings that

do not correspond to the well-studied Boolean case. Note that relaxing either the input domain to

{0, 1}n or letting the PIDG F be sufficiently complex trivialises the problem. If the input domain is

allowed to be {0, 1}n, any such PIDG can be easily constructed using any standard Boolean PRG.

Similarly, if F is allowed to be sufficiently complex, then it is also trivial to construct a PIDG. The

generator could treat the input as a string of bits and derive pseudorandom Boolean bits from the

input bits using any standard Boolean PRG.

This paper aims to initiate the study of limits on the existence of nontrivial PIDGs. In particular,

we study the case where the following hold:

• Input Distribution. We require the input distribution to be a well-spread distribution over

the integers (or reals) such as the standard discrete Gaussian distribution. Our results apply

to different “spread” requirements, with several of our results applying to a quite minimal

condition: that the distribution is symmetric, and at least three values in Z have noticeable

probability mass.

• Complexity of the PIDG. The complexity class of the PIDG is the class of constant degree

multilinear multivariate polynomials evaluated over the integers.

Connection to the Security of Indistinguishability Obfuscation. Indeed, the choice of in-

put distribution and the complexity class above is motivated by recent progress [AJL+19, JLMS19,
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Agr19, JLS19, BHJ+19] towards a major problem in cryptography - Indistinguishability Obfusca-

tion (iO) [BGI+01, GR10, GGH+13]. Indistinguishability Obfuscation has had far-reaching con-

sequences in cryptography and beyond (see, e.g., [BFM14, GGG+14, HSW13, SW14, KLW15,

BPR15, CHN+16, GPS16, HJK+16]), including playing a pivotal role in establishing the hardness

of Nash Equilibrium by creating provably hard instances for a PPAD complete problem called the

End-of-Line EOL Problem [BPR15, GPS16, CHK+19]. Our results provide greater insight into the

core objects that underlie constructions of iO. See Appendix A for further discussion.

1.1 Our Results

We show that for certain classes of polynomials and input distributions, we can build distinguishers

for the (D,Q, n,m) − PIDP. Note that the existence of such distinguishers implies that these

classes of polynomials and input distributions cannot form secure PIDGs. We consider two kinds

of distinguishers: non-trivial and overwhelming. An algorithm A is a non-trivial distinguisher

if it succeeds in distinguishing the two distributions of the (D,Q, n,m) − PIDP with a noticable

probability (in the input size). An overwhelming distinguisher is one where this probability is very

close to 1. We define this formally below.

Definition 1.3. (Non-trivial PIDP Distinguisher) An algorithm A is a non-trivial PIDP distin-

guisher for the (D,Q, n,m)-polynomial independence distinguishing problem if

∣∣∣Pr[A(x1) = 1]− Pr[A(x2) = 1]
∣∣∣ ≥ 1

nO(1)

where x1 is sampled from Distribution 1 and x2 is sampled from Distribution 2, as defined in

Definition 1.1.

Definition 1.4. (Overwhelming PIDP Distinguisher) An algorithm A is an overwhelming PIDP

4



distinguisher for the (D,Q, n,m)-polynomial independence distinguishing problem if

∣∣∣Pr[A(x1) = 1]− Pr[A(x2) = 1]
∣∣∣ ≥ 1− 1

nω(1)

where x1 is sampled from Distribution 1 and x2 is sampled from Distribution 2, as defined in

Definition 1.1.

Results for Non-Trivial Distinguishers. We begin by building non-trivial distinguishers for

large classes of input distributions and worst-case families of polynomials chosen by an adversary.

We require the input distribution to satisfy only a few basic structural properties. Such distri-

butions, which we call weakly nice distributions, are distributions that are intuitively well spread

and symmetric around 0. We formalize this by requiring all odd moments of the distribution D to

be 0 and, in addition, requiring that for random variable X over D that
(
E[X4]

)/ (
E[X2]

)2 ≥ 1+ε

where ε > 0 is some constant1. Refer to Definition 3.7 for a formal definition.

We obtain nontrivial distinguishers for the following classes of polynomials:

• Expander-Based Polynomials: We consider the set of constant degree multilinear poly-

nomials where the monomials satisfy an expansion criteria. Namely, the expansion criteria,

formally defined in Definition 5.3, captures the idea that the set of coefficients of variables in

the monomials form an expanding set. Note that this is a key feature in low locality cryp-

tographic Boolean PRGs [Gol00, KMOW17, ABR12, AL16, Gri01, Sch08] and CSPs with

Sum-of-Squares Lower Bounds. Namely, we obtain:

Theorem 1.1. (Informal) Let Q = {q1, . . . , qm} ⊂ R[x1, . . . , xn] where Q is an Expander

Based Polynomial Set with coefficients bounded in absolute value by nO(1), and let D be a

1Although, our results do apply to the case when ε = 1/nO(1), we treat it as a constant for the sake of clarity of
exposition.
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weakly-nice distribution with bounded support in [−β, β] for β = nO(1). If m > n, then

there exists a probabilistic polynomial time algorithm can solve the (D,Q, n,m)-PIDP with

probability at least Ω(n−O(1)).

• Polynomials with Non-negative Coefficients: We also consider the set of constant degree

multilinear polynomials with non-negative coefficients Qn,nonneg ⊆ Z[x1, . . . , xn]2, obtaining:

Theorem 1.2. (Informal.) Let Q = {q1, . . . , qm} ∈ Qn,nonneg ⊆ Z[x1, ..., xn] with coefficients

bounded in absolute value by nO(1), and let D be a weakly-nice distribution with bounded

support in [−β, β] for β = nO(1). If m > n, then there exists a probabilistic polynomial

algorithm can solve the (D,Q, n,m)-PIDP with probability at least Ω(n−O(1)).

We note that both our results correspond to worst-case properties that are identifiable in poly-

nomial time. In particular, the expansion condition that we refer to above only involves sets of size

at most 4. Furthermore, the distinguisher also succeeds with non-trivial probability even if m is as

small as 2, provided the conditions required by the algorithm are met.

Results for Overwhelming Distinguishers. We next consider the problem of amplifying the

distinguishing advantage to yield overwhelming distinguishers for natural distributions of both

inputs and polynomials.

We consider random families of polynomials, where each polynomial is sampled from some

distribution Qn,d,p. The polynomials sampled from this distribution consist of homogeneous, mul-

tilinear degree d polynomials over the reals, where each coefficient is independently set to 0 with

probability 1 − p, and otherwise sampled from some “nice” distribution. The distribution is nice

if it satisfies certain conditions: 1) The fourth moment is required to be sufficiently greater than

2Our results also extend to polynomials over the reals provided that the values of the coefficients of the polynomials
are at least Ω(n−O(1)).
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the square of the second moment; 2) it is required to take values within a bound that is roughly

polylogarithmic in the second moment; and 3) it must satisfy a weak anti-concentration property.

We refer the reader to Definition 3.9 for a formal definition of a nice distribution. For the reader,

it would be helpful to think of a (discrete) Gaussian distribution, or a uniform distribution over

[−nc, nc] for a constant c > 0 as examples of nice distributions.

The input distribution is also required to be nice. Then, our main result is:

Theorem 1.3. (Informal.) Let d be any constant degree, and let p > n log n/
(
N
d

)
. Let D be a nice

distribution as described above. If m ≥ n2 · (log n)O(1), then there exists a probabilistic polynomial

time overwhelming distinguisher for the (D,Qn,d,p, n,m)− PIDP problem.

We stress that our overwhelming distinguisher applies in a context where strong sum-of-squares

lower bounds apply to the search and refutation versions of our problem [Gri01, Sch08, KMOW17,

Jai19]. In particular, for d > 6, the value of m for which our attack applies is below the value of m

for which sum-of-squares lower bounds apply.

2 Technical Overview

In this section, we give an intuitive technical guide to our results. Recall that our objective is to

build efficient distinguishers for the Polynomial Independence Distinguishing Problem.

Correlations that arise over the integers, but not over Boolean values. The starting

point for our work is the observation that polynomials with shared variables may exhibit detectable

correlations when evaluated over natural distributions over the integers instead of over uniform

Boolean values. Consider the following example: Let q1, q2 ∈ Z[x1, x2] share the variable x1 where

q1(x) = x1
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q2(x) = x1x2

Let X = (X1, X2) and Y = (Y1, Y2) where each Xi, Yi is an i.i.d. random variable with proba-

bility distribution D. Now, if D is the uniform distribution over {−1, 1}, then the distributions

(q1(X), q2(X)) and (q1(X), q2(Y )) are identical. However, if D is a non-Boolean distribution where

E[X2
1 ] 6= (E[X1])2, then

E[q1(X)q2(X)] = E[X2
1 ]E[X2]

whereas

E[q1(X)q2(Y )] = E[X1]E[Y1]E[Y2]

which differ as long as E[X2] 6= 0.

Unfortunately, if the distribution D has expectation 0, despite the above discrepancy, both

cases will still yield the same overall expectation. Therefore, we will instead consider the squared

product distributions. For our simple example, this yields:

E[q2
1(X)q2

2(X)] = E[X4
1 ]E[X2

2 ]

E[q2
1(X)q2

2(Y )] = E[X2
1 ]E[Y 2

1 ]E[Y 2
2 ]

which differ as long as E[X4
1 ] 6= (E[X2

1 ])2 and E[X2
2 ] 6= 0. As we will later show in Lemma 4.1,

such conditions are reasonable for symmetric mean zero distributions over integers. In fact, for any

random variable Z, then E[Z4] = E[Z2]2 if and only if var[Z2] = 0. In other words, this will hold

if and only if the input distribution either (1) is a point distribution, or (2) has support on {−k, k}

for some k ∈ R+, in which case it is a scaled Boolean.

8



Polynomials. The (D,Q, n,m)-polynomial independence distinguishing problem can be studied

for any set of multivariate polynomials and any input distribution over the reals. In this paper,

we initiate this study by considering multilinear polynomials of constant degree over the reals. We

leave it as an open question as to whether, and under what conditions, these results can be extended

to arbitrary polynomials.

In all cases, we will consider m, the number of polynomials, to be larger than n, the number

of variables. Otherwise, one can trivially build a set of m polynomials, namely {qi(x) = xi}i∈[m],

for which {qi, qi(x)}i∈[m] and {qi, qi(xi)}i∈[m] have identical distributions when x,x1, . . . ,xn
R←− D

for some distribution D over the reals. We note that viewed as a pseudorandom number generator

G : Rn → Rm where G(x) = {qi(x)}, this is just the identity function truncated to the first m

values of the input.

Results. We show how we leverage the simple starting observation above to achieve nontrivial

distinguishers for a wide variety of worst-case polynomials and a very large class of input distribu-

tions. In the case of natural randomized families of polynomials and natural input distributions,

we also show how to amplify the nontrivial correlations we identify in the case of our nontrivial

distinguishers to obtain overwhelming distinguishers. We now elaborate.

2.1 Non-trivial Probability Distinguishers

We want to identify distributions D and classes of polynomials C such that for any set of m >

n polynomials Q ⊆ R[x1, . . . , xn] chosen from C, there is an efficient algorithm that solves the

(D,Q, n,m)− PIDP with non-trivial probability.

Input Distributions. Our results apply to any bounded symmetric mean zero distribution over

the reals with a wide enough spread. This is formalised by requiring that for a random variable

9



Z over our distribution D, then E[Z4]/(E[Z2])2 ≥ γ for some γ > 1 and E[Z2] ≥ η for some

η > 0. The property of having E[Z4]/E[Z2]2 ≥ γ is called the γ−hyper expansion property of the

distribution. For the technical overview, we will consider γ, η to be constants.

Leveraging Expectation Differences of the Squared Product Differences. Let Q =

{q1, . . . , qm} ⊂ R[x1, . . . , xn], let D be a distribution on R, and let D∗n sample an n-tuple of values

each independently drawn from D. Let X be a random variable on distribution D∗n. If m > n,

then by the pigeonhole principle, there exist i, j ∈ [m] such that qi, qj share a variable. We want

to leverage the correlation between these two polynomials (or rather the correlation between the

squares of these two polynomials). By definition of covariance,

cov[q2
i (X), q2

j (X)] = E[q2
i (X)q2

j (X)]− E[q2
i (X)]E[q2

j (X)]

Therefore, if the covariance between qi and qj is large, then this expectation difference is also large.

Note that in the (D,Q, n,m)−PIDP problem, we either get samples of the form {qi, yi = qi(x)}i∈[m]

where E[Y 2
i Y

2
j ] = E[q2

i (X)q2
j (X)] or samples of the form {qi, yi = qi(xi)}i∈[m] where E[Y 2

i Y
2
j ] =

E[q2
i (X)]E[q2

j (X)]. Here, we use random variables Yi to correspond to the samples yi received.

Thus, the covariance is equal to the difference in the expectation of the distribution of Y 2
i Y

2
j when

getting evaluations on the same input and the expectation of the distribution of Y 2
i Y

2
j when getting

evaluations on independent inputs. To build a distinguisher to solve the (D,Q, n,m) − PIDP, we

proceed in two steps.

1. Expectation Distinguisher: First, we build a general algorithm which, when given a

single sample from one of two bounded non-negative distributions whose expectations differ

by a non-negligible amount, can distinguish between the two distributions with non-negligible

probability (Lemma 5.1). We will call this algorithm the Expectation Distinguisher.

10



2. Covariance Guarantee: Second, we show that for certainQ andD, then cov[q2
i (X), q2

j (X)] =

E[q2
i (X)q2

j (X)]− E[q2
i (X)]E[q2

j (X)] is non-negligible (Lemmas 5.2 and 5.3).

By combining these two steps, we get a distinguisher for the (D,Q, n,m) − PIDP: We simply

compute the product of the samples y2
i y

2
j and send the product to the Expectation Distinguisher

as input.

Expectation Distinguisher. As a basic tool for reasoning about the existence of nontrivial

distinguishers, we prove the following general lemma. Roughly, this lemma says that if there exist

two distributions D0 and D1 with support in [0, 1]—which we can assume without loss of generality

because we can shift and scale arbitrary bounded distributions—such that their expectations differ

by some quantity q, then, we can show a distinguisher that runs in time q−O(1) and distinguishes

these two distributions with probability qO(1). More generally, both the running time and the

distinguishing probability is a function of the ratio of the absolute value of the difference in the

expectations to the size of the support. More precisely,

Lemma 2.1. Let p, q be two positive parameters. Let D0 and D1 be distributions with bounded

support in [0, p].3 Let X0 be a random variable distributed according to D0 and X1 be a random

variable distributed according to D1. If

∣∣∣E[X0]− E[X1]
∣∣∣ > q

then the Expectation Distinguisher A (Algorithm 1) succeeds with probability

∣∣∣Pr[A(x
R←− D0) = 0]− Pr[A(x

R←− D1) = 0]
∣∣∣ ≥ q2

16p2

3More generally, the support is allowed to be [−p/2, p/2] and then the result follows by appropriately shifting the
two distributions by p/2.
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To prove this lemma, we construct a simple distinguisher. The distinguisher first partitions

the support of the two distributions into some ε-width intervals. Then, the distinguisher creates

an approximate histogram of the two distributions by randomly sampling from each of D0 and D1

a sufficient number of times. This allows the distinguisher to estimate the probability for each

interval and each distribution that the distribution falls within that interval. A Chernoff bound

combined with a union bound ensures that these estimated interval probabilities do not differ too

much from the actual probabilities.

Then, the distinguisher uses the histogram to make its decisions for any input x by choosing

the distribution with a larger estimated probability of producing a value in the same interval as x.

To provide a lower bound on the distinguishing probability, we show that there exists an interval

where the following occurs:

Lemma 2.2. Let p, q be two positive parameters. Suppose D0 and D1 are distributions with bounded

support in [0, p], and let X0 be a random variable distributed according to D0 and X1 be a random

variable distributed according to D1. Suppose

∣∣∣E[X0]− E[X1]
∣∣∣ > q

Then, if {Ii}ni=1 is a partition of [0, p] into equal-sized intervals for n = 2p
q , then there exists an

index i such that ∣∣∣Pr[x ∈ Ii | x
R←− D0]− Pr[x ∈ Ii | x

R←− D1]
∣∣∣ ≥ q2

4p2
.

The lower bound on the difference in probabilities follows by an averaging argument on the difference

between the expectations.

The existence of such an interval allows us to form a lower bound for the distinguishing probabil-

ity through a careful argument involving the aforementioned partitioning and accuracy guarantees
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given by a Chernoff bound combined with a union bound.

Covariance Guarantee. We now look for families of polynomials where we can apply our Ex-

pectation Distinguisher to yield a nontrivial distinguisher. Let qi, qj be multilinear polynomials

that share a variable xk, and let D be a symmetric mean zero distribution with minimum spread

as defined earlier. Let X be a random variable distributed according to the product distribution

D∗n. We introduce some notation first. Let x1, ..., xn be variables. For a set S ∈ P([n]), define

xS =
∏
i∈S(xi). Then,

qi(x) =
∑

S∈P([n])

cSxS

qj(x) =
∑

S∈P([n])

dSxS

where each cS , dS ∈ R. Since expectation is linear, then

E[q2
i (X)q2

j (X)]− E[q2
i (X)]E[q2

j (X)]

=
∑

S,T,U,V ∈P([n])

cScTdUdV (E[XSXTXUXV ]− E[XSXT ]E[XUXV ])

Recall that we want to form a lower bound on this expectation difference. Let us consider any

single term (E[XSXTXUXV ] − E[XSXT ]E[XUXV ]). First, we will show that this value is always

non-negative. Now, since D is symmetric, all odd moments of each input variable Xi are zero.

Consider the following three cases:

1. XSXTXUXV is a square, but one of XSXT or XUXV is not a square. Observe that

E[XSXT ]E[XUXV ] = 0 since the odd moments of the input variables are 0. Therefore, the

difference is non-negative, since the expectation of a square is always non-negative.
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2. XSXT and XUXV are both squares. Then, the degree of all variables in XSXT and XUXV

is 2. Also, the degree of any Xi for i ∈ [n] occurring in XSXTXUXV is even and is the sum

of the degree of Xi in XSXT and the degree of Xi in XUXV . Therefore, if Z is a random

variable with distribution D, then the difference in expectations is

E[Z4]t · E[Z2]u−2t − E[Z2]u =

((
E[Z4]

(E[Z2])2

)t
− 1

)(
E[Z2]

)u

for some u > t ≥ 0. Since D has minimum spread, we have E[Z4]/E[Z2] ≥ γ for some γ > 1

and E[Z2] ≥ η for some η > 0, so this difference is non-negative. Note that whenever t > 0,

then this difference is positive. This occurs at least once if qi, qj share a variable, as illustrated

by the example at the start of this section. The magnitude of this difference is determined

by γ, η, and the amount of overlap between the polynomials.

3. XSXTXUXV is not a square. Then, one of XSXT or XUXV is also not a square. So, the

difference is 0 because all the odd moments are zero.

Although, each (E[XSXTXUXV ]− E[XSXT ]E[XUXV ]) ≥ 0, we may have

cScTdUdV (E[XSXTXUXV ]− E[XSXT ]E[XUXV ]) < 0 depending on the coefficients. Thus, the

total expectation difference may still be close to zero because these summation terms could cancel

out. Applying certain conditions on the coefficients prevents this from occurring, ensuring that our

expectation difference is large enough. We note immediately that if all coefficients are non-negative,

then all summation terms are non-negative, so such a cancellation does not occur. However, we

also show another set of conditions, which we call Expander Based Coefficients, that is sufficient

to ensure this.

14



Expander Based Coefficients. The following definitions will ensure that the coefficients of the

summation terms where E[XSXTXUXV ] − E[XSXT ]E[XUXV ] 6= 0 are always non-negative. As

stated above, this implies that the summation terms of the expectation difference do not cancel

each other out.

Definition 2.1 (n-Half-Expanding Set). Let S = {S1, . . . , Sm} be a collection of sets. Then, S is

a n-half-expanding set if for all k ≤ n and all distinct a1, a2, ..., ak ∈ [m]

∣∣∣∣∣
k⋃
i=1

Sai

∣∣∣∣∣ > 1

2

k∑
i=1

|Sai |

Definition 2.2 (Expander Based Polynomial Set). Let Q = {q1, . . . , qm} ⊂ R[x1, . . . , xn] be a set

of multilinear polynomials over the reals. Then, each qi(x) =
∑

S∈P([n]) cS,ixS for some coefficients

{cS,i}S∈P([n]) ∈ R. We say that Q is an Expander Based Polynomial Set if

• Each qi is a polynomial of degree at most some constant d

• {S ∈ P([n]) | cS,i 6= 0 for any i ∈ [m]} is a 4-half expanding set.

• CS = {cS,i}i∈[m] contains at most one non-zero value. (i.e. All monomials appear at most

once across all polynomials in Q.)

Note that picking sufficiently sparse polynomials at random will yield an Expander Based

Polynomial Set with good probability. Indeed, the random families of polynomials that yield sum-

of-squares lower bounds for the search and refutation version of the natural CSP for our problem

have this property [Jai19].

If qi, qj come from an Expander Based Polynomial Set Q, then the following occurs: Consider

the terms where cS , cT , dU , dV 6= 0. Then, since {S ∈ P([n]) | cS,i 6= 0 for any i ∈ [m]} is a 4-half

expanding set, then for distinct S, T, U, V ∈ P([n]), we have |S∪T ∪U∪V | > 1
2(|S|+|T |+|U |+|V |).

15



Therefore, some Xi occurs once in XSXTXUXV . Thus, XSXTXUXV is not a square, which means

that E[XSXTXUXV ] − E[XSXT ]E[XUXV ] = 0. Suppose then that S, T, U, V are not all distinct.

Let one of S or T equal one of U or V . Suppose without loss of generality that S = U . But

since we assumed that cS , cT , dU , dV 6= 0, this means that cS and dU = dS are both nonzero.

But this contradicts the fact that all monomials appear at most once in all polynomials of Q

since Q is an Expander Based Polynomial Set. Therefore, if S, T, U, V are not all distinct, we need

either S = T or U = V . Suppose without loss of generality, that S = T . Then, in order for

XSXSXUXV = X2
SXUXV to be a square (so that E[XSXTXUXV ]− E[XSXT ]E[XUXV ] 6= 0.), we

need U = V as well. Therefore, the actual coefficient that arises in the expectation calculation is

cScTdUdV = c2
Sd

2
U ≥ 0 whenever E[XSXTXUXV ]− E[XSXT ]E[XUXV ] 6= 0. This implies that the

summation terms of the expectation difference do not cancel each other out, which lets us obtain

a non-trivial distinguisher.

2.2 Overwhelming Probability Distinguisher

We now describe how to amplify the correlations described above to yield our overwhelming prob-

ability distinguisher for certain parameter settings of the (D,Qn,p,d, n,m)−PIDP where D is some

nice input distribution and Qn,p,d is the natural random family of polynomials described in Sec-

tion 1.1 of the Introduction. In this setting, we are given polynomials {qi}i∈[m] sampled from Qn,p,d

along with evaluations of the form {qi(x) = yi}i∈[m] or {qi(xi) = y′i}i∈[m] where each x as well

as {xi}i∈[m] are chosen at random from distribution D∗n, the product distribution of D, as defined

in Definition 1.1. For the purpose of this technical overview, the reader may assume that a nice

distribution is simply a discrete Gaussian centered at zero with standard deviation nO(1).

Remark 2.1. Inputs to the generated polynomials are taken from D∗n where the notation is as

described in Definition 1.1. Throughout, we will treat x in small letters as an input variable to the
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polynomial and X in capital letters as the corresponding random variable sampled from D∗n. Let

X, {Xi}mi=1 be random variables with distribution D∗n. We will let Yi denote the random variable

q(X) which is a function of random variable X and the implicit random variables representing

the coefficients of a polynomial q sampled from Qn,p,d. Similarly, we will let Y ′i denote the ran-

dom variable q(Xi) which is a function of random variable Xi and the implicit random variables

representing the coefficients of q.

Aside: Amplification in the case of Gaussian samples. If one observes yi = qi(x) =∑
S cSΠi∈Sxi =

∑
S cS · xS , then a single sample should be distributed somewhat like a Gaussian

distribution of mean 0 and appropriate standard deviation (this could be formalized for example

using the Berry-Esseen theorem.). Thus, consider the following simplistic setting. Suppose we have

been given either an instance of the form consisting of independently chosen Gaussian samples

z′ = (z′1, ..., z
′
m) or some arbitrarily correlated Gaussians z = (z1, ..., zm) and the goal is to identify

the case. Consider the following ratio for Z1, Z2 random variables over the standard Gaussian.

β =
EZ1 [Z4

1 ]

EZ1,Z2 [Z2
1 · Z2

2 ]

If z1, z2 are sampled according to identical and independently distributed Gaussian distribution,

then β =
EZ1

[Z4
1 ]

EZ1
[Z2

1 ]2
. For a centered Gaussian variable Z1, this quantity, which we will refer to as βdiff

(diff for different) is exactly equal to 3 since the ratio of the fourth moment to the square of the

second moment of a centered Gaussian distribution is 3. On the other hand, when Z1 and Z2 are

ρ correlated (i.e. Z2 = ρ · Z1 +
√

1− ρ2Z⊥ where Z⊥ is independently and identically distributed

as Z1), then, the ratio we get is

βsame =
3

1 + 2 · ρ2
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Thus, as the correlation increases, this ratio (with maximum value 3) decreases until it attains a

minimum value of 1 when ρ ∈ {+1,−1}. This example suggests that we consider the following

idea:

Ratios for the PIDP problem. Define two ratios for Y1, Y2, Y
′

1 , Y
′

2 random variables as defined

in Remark 2.1:

αdiff =
EY ′1 [Y ′41]

EY ′1 ,Y ′2 [Y ′21 · Y ′22]
αsame =

EY1 [Y 4
1 ]

EY1,Y2 [Y 2
1 · Y 2

2 ]

One can compute αdiff = E[Y ′41]

E[Y ′21·Y ′22]
by expanding the random variables:

αdiff =
Eq1,X1 [q4

1(X1)]

Eq1,q2,X1,X2 [q2
1(X) · q2

2(X2)]

=
Eq1,X1 [q4

1(X1)]

Eq1,X1 [q2
1(X1)] · Eq2,X2 [q2

2(X2)]

Denote q1(X) =
∑

S;|S|=d cSXS and q2(Y ) =
∑

S;|S|=d dSYS where coefficients cS and dS are chosen

independently from some nice distribution D with probability p and are 0 otherwise. Assume x and

y are chosen at random from D∗n. Let D be such that a random variable Z over D has E[Z2] = 1

and E[Z4] = γ > 1. A typical value of γ is some constant greater than 1. With this notation the

numerator of αdiff can be computed as:

E
q1,X

[q4
1(X)] =E

X
E
q1

∑
S1

∑
S2

∑
S3

∑
S4

cS1cS2cS3cS4XS1XS2XS3XS4



=E
X

∑
S

pγX4
S + 3p2

∑
S1 6=S2

X2
S1
X2
S2


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This follows because the odd moments of every coefficient variable are 0. Let N =
(
n
d

)
. Then, the

numerator becomes

Npγ E
X

[X4
S ] + 3p2

∑
S1 6=S2

E
X

[X2
S1
X2
S2

]

Since, EX [X4
S ] = γd and

∑
S1 6=S2

EX [X2
S1
X2
S2

] = N(N − 1)ES1 6=S2 EX [XS1XS2 ], the numerator

becomes

Npγγd + 3p2N(N − 1) E
S1 6=S2

E
X

[XS1XS2 ]

For i ∈ [d− 1], let gi denote the probability that two randomly chosen sets S1 6= S2 in [n] of size d

have i common elements:

gi = Pr
S1 6=S2

[|S1 ∩ S2| = i] .

This means that,

E
S1 6=S2

E
X

[XS1XS2 ] = (1− g1 − . . .− gd−1) + γg1 + . . .+ γd−1gd−1

This means that the numerator is

E
q1,X

[q4
1(X)] = Npγγd + 3p2N(N − 1)

(
(1− g1 − . . .− gd−1) + γg1 + . . .+ γd−1gd−1

)
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Now, consider the denominator, Eq1,q2,X,Y [q2
1(X)q2

2(Y )].

E
q1,q2,X,Y

[q2
1(X)q2

2(Y )] = E
q1,q2,X,Y

[
∑
S1,S3

c2
S1
d2
S3
X2
S1
Y 2
S3

]

= p2 E
X,Y

[
∑
S1,S3

X2
S1
Y 2
S3

]

= N2p2

Therefore,

αdiff =
Npγγd + 3p2N(N − 1)

(
(1− g1 − . . .− gd−1) + γg1 + . . .+ γd−1gd−1

)
N2p2

Setting t = Np as the average density of each polynomial (number of non-zero coefficients) and

observing that gi ≈ θ(1/ni) for i ∈ [d− 1], we get that:

αdiff =
γd+1

t
+ 3 + Ω(

1

n
)

Similarly, one can compute αsame

αsame =
Eq1,X [q4

1(X)]

Eq1,q2,X [q2
1(X) · q2

2(X)]

This will give us

αsame =
N · p · γ2 · γd + 3 · p2 ·N · (N − 1) ·

(
(1− g1 − . . .− gd−1) + γ · g1 + . . .+ γd−1 · gd−1

)
p2 ·N · γd + p2 ·N · (N − 1) · ((1− g1 − . . .− gd−1) + γ · g1 + . . .+ γd−1 · gd−1)
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Assuming p < γ/3,

αsame = 3 + θ(
γ2 · γd1
t

)

Thus, as expected αdiff > αsame. In fact, if t� n, then αdiff − αsame > Ω(1/n).

Amplifying from αdiff − αsame > Ω(1/n) to an overwhelming distinguisher. Above we

observed that αsame and αdiff for the PIDP problem are apart by at least 1/n. Can we somehow

utilize this difference to construct an overwhelming distinguisher?

In order to do that, we construct empirical approximations of α̂same of αsame and α̂diff of αdiff

which we compute as

α̂diff =
1/m

∑
i y
′4
i

2/m
∑

i∈[m/2] y
′2
2i−1 · y′22i−1

α̂same =
1/m

∑
i y

4
i

2/m
∑

i∈[m/2] y
2
2i−1 · y2

2i−1

If m is sufficiently large, then, α̂same will be close to αsame and α̂diff will be close to αdiff (at least

in expectation). Thus, to prove this claim, when given samples {vi}i∈[m] where vi = qi(x) or qi(xi)

for all i ∈ [m], we compute the ratio:

α̂ =
1/m

∑
i v

4
i

2/m
∑

i∈[m/2] v
2
2i−1 · v2

2i−1

Then, we check if α̂ − αsame+αdiff
2

?
> 0. If the check is true we declare independent, otherwise

we declare same. Indeed, we show that the check identifies the distribution correctly if m ≥

n2 logO(1)(n). Note that for showing this we need to analyze
1/m

∑
i v

4
i

2/m
∑

i∈[m/2] v
2
2i−1·v2

2i−1
. In general,

analyzing the ratio of this form may not be an easy task as the expected ratio of a quantity is

in general not the ratio of expectations. Thus, we analyze a slightly different objective. Define
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αth = αsame+αdiff
2 and consider,

F =
∑
i

v4
i − 2 · αth

∑
i∈[m/2]

v2
2i−1 · v2

2i−1

In order to prove the result, we show two claims:

• If v1, ..., vm is sampled using independent inputs then with probability 1− n−ω(1), F > 0.

• If v1, ..., vm is sampled using a single input then with probability 1− n−ω(1), F < 0.

The analysis of this claim is somewhat involved, and includes careful algebraic manipulations

and applications of concentration inequalities. Details can be found in Section 6.

3 Preliminaries

Let N,Z, and R denote the set of positive integers, integers, and real numbers respectively. For

n ∈ N, let [n] denote the set {1, . . . , n}. Let P(S) denote the power set of set S. We represent

vectors using lowercase bold-faced characters. For example, v ∈ Rn indicates a vector over the

reals of dimension n where n ∈ N.

We use the usual Landau notations. A function f(n) is said to be negligible if it is n−ω(1), and

we denote it by f(n) = negl(n). A probability p(n) is said to be overwhelming if it is 1 − n−ω(1).

For any distribution D, we denote the process of sampling x at random from distribution D by

x
R←− D. We say that an algorithm or function A(x) is polynomial time if for all x, A is computable

in time t = O
(
|x|O(1)

)
.

Definition 3.1 (Computational Indistinguishability). We say that distribution D1 is computa-

tionally indistinguishable from distribution D2, denoted D1 ≈C D2, if no computationally-bounded

adversary can distinguish between D1 and D2 except with advantage negl(·). More formally, we
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write D1 ≈C D2 if for any probabilistic polynomial time algorithm A,

∣∣∣∣∣ Pr
x

R←−D1

[A(x) = 1]− Pr
x

R←−D2

[A(x) = 1]

∣∣∣∣∣ ≤ negl(|x|)

where negl(·) is a negligible function defined above and the probabilities are taken over the coins

of A and the choice of x.

Remark 3.1. We will consider all real numbers used in our algorithms to be of some finite precision

λ. When we talk about polynomial time algorithms with real inputs, we refer to algorithms that

use a polynomial number of λ-precision operations.

Definition 3.2 (t-Samplable Distribution). A probability distribution D is t-samplable if there is

a probabilistic algorithm A that runs in time t such that A(0) = D.

For random variables X,Y , let EX [f(X)] denote the expectation of f(·) over random variable X

and let EX,Y [f(X,Y )] denote EX EY [f(X,Y )].

Definition 3.3. Let X be a random variable. For any integer i ≥ 1, we denote the ith moment of

X as

µi = E[Xi]

In general, the random variable X we are referring to will be clear by context.

Theorem 3.1. (Chernoff Bound) Suppose X1, . . . , Xn are independent random variables taking

values in {0, 1}, and let X =
∑n

i=1Xi and E[X] = µ. Then a two-sided Chernoff bound for δ > 0

is

Pr [|X − µ| > δµ] ≤ 2 · exp

(
− δ2µ

2 + δ

)
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Theorem 3.2. (Hoeffding Bound) Let X1, . . . , Xn be independent bounded random variables with

Xi ∈ [a, b] for all i, where −∞ < a ≤ b <∞. Then

Pr

[
1

n

n∑
i=1

(Xi − E[Xi]) ≥ t

]
≤ exp

(
− 2nt2

(b− a)2

)

Pr

[
1

n

n∑
i=1

(Xi − E[Xi]) ≤ −t

]
≤ exp

(
− 2nt2

(b− a)2

)

for all t ≥ 0.

3.1 Polynomial Independence Distinguishing Problem

Definition 3.4 (Polynomial Independence Distinguishing Problem). Let n,m be parameters. Let

Q = {q1, ..., qm} denote a set of m multivariate polynomials qi : Rn → R. Let D be a distribution

on R, and let D∗n be the distribution D × · · · × D︸ ︷︷ ︸
n times

over Rn where x = (x1, . . . , xn)
R←− D∗n means

x1, . . . , xn are independently sampled from D. The Polynomial Independence Distinguishing Prob-

lem with respect to D,Q, n,m (or simply the (D,Q, n,m) − PIDP) consists of distinguishing the

following two distributions:

Distribution 1: Distribution 2:

1. Sample x
R←− D∗n 1. Sample x1, . . . ,xm

R←− D∗n

2. Output {qi, qi(x)}i∈[m] 2. Output {qi, qi(xi)}i∈[m]

Remark 3.2. In the above definition, Q is a set of polynomials. However, we may overload

notation and use Q to instead denote a distribution over some family of polynomials. In this case,

the (D,Q, n,m)− PIDP consists of distinguishing the following two distributions:
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Distribution 1∗: Distribution 2∗:

0. Sample q1, . . . , qm
R←− Q. 0. Sample q1, . . . , qm

R←− Q

1. Sample x
R←− D∗n 1. Sample x1, . . . ,xm

R←− D∗n

2. Output {qi, qi(x)}i∈[m] 2. Output {qi, qi(xi)}i∈[m]

Remark 3.3. We say that an algorithm A solves the (D,Q, n,m)−PIDP with probability p if A can

distinguish between Distribution 1 and Distribution 2 of the (D,Q, n,m)− PIDP with probability

at least p.

3.2 Pseudo-Independent Distribution Generator

Definition 3.5. (Pseudo-Independent Distribution Generator) A Pseudo-Independent Distribution

Generator (or PIDG) is a tuple (D,F , n,m) where m is called the stretch of the PIDG and

• D∗n defined with respect to D as in Definition 3.4 above is a t-samplable distribution over Rn

where t = nO(1).

• F = {fi}mi=1 where each fi for i ∈ [m] is a polynomial time multivariate function fi : Rn → R.

Further, we require the generator to satisfy the following security notion:

x,x1,x2, . . . ,xm
R←− D∗n

(F , {fi(x)}mi=1) ≈c (F , {fi(xi)}mi=1))

In other words, a PIDG is a distribution along with a set of functions such that one cannot

distinguish between evaluations of these functions on independent inputs and evaluations of these

functions on the same input when the input(s) are sampled randomly from D∗n.
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Remark 3.4. If there exists a probabilistic polynomial time algorithmA that solves the (D,Q, n,m)−

PIDP with non-negligible probability, then (D,Q, n,m) is not a PIDG.

3.3 Distribution Definitions

Definition 3.6. A random variable X is called a (k, n, γ)-hyper-expanding random variable, if

E[Xn]

E[Xk]n/k
≥ γ.

We will omit parameters n and k to denote (2, 4, γ)-hyper-expanding random variables and call

them γ-hyper-expanding random variables. For example, a standard Gaussian random variable X

is 3-hyper-expanding since

E[X4]

E[X2]2
= 3,

and a uniform random variable Y on U[−β,β] for any large enough β is 3
2 -hyper-expanding. We call

a distribution D a hyper-expanding distribution if any random variable with distribution D is a

hyper-expanding random variable.

Definition 3.7. We say that a distribution D is (η, γ)-weakly-nice if

1. D is a symmetric distribution with mean 0

2. If X is a random variable over D, then E[X2] ≥ η and E[X4]
E[X2]2

≥ γ.

Definition 3.8. We say that a distribution D is C bounded if

Pr[x
R←− D, |x| < C] = 1

Definition 3.9. We say that a distribution D is (γ,C, ε)-nice if
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1. D is a symmetric distribution with mean 0

2. (Normalization.) If X is a random variable over D, then E[X2] = 1 and E[X4] = γ.

3. D is C-bounded.

4. (Anti-concentration) Pr[x
R←− D, |x| > ε] > Ω(1)

Remark 3.5. If a distribution D is (γ,C, ε)-nice, then D is also (1, γ)-weakly-nice

We will be concerned with (η, γ)-weakly-nice distributions where η, γ− 1 are positive and large

enough (to be quantified later). For bounded integer distributions, we can get a lower bound on

these values provided that we don’t have all (or almost all) of the weight of the distribution lie on

k and −k for some value k ∈ Z.

3.4 Polynomial Notation and Expectations

Notation. Let x1, ..., xn be variables. For a set S ∈ P([n]), define

xS =
∏
i∈S

xi

Consider a multilinear polynomial q ∈ R[x1, . . . , xn]. Then, q(x) is of the form

q(x) =
∑

S∈P([n])

cSxS

where each cS ∈ R.

Fact. If D is a symmetric distribution with mean 0, and X is a random variable with distribution

D, then for all odd i ∈ N, ui = E[Xi] = 0.
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Remark 3.6. Let D be a symmetric distribution with mean 0. Let X = (X1, X2, ..., Xn) where

each Xi is an i.i.d. random variable with distribution D. Let f(x) =
∏n
i=1 x

ai
i where each ai is a

non-negative integer. Then, if any ai is odd, E[f(X)] =
∏n
i=1 E[Xai

i ] = 0.

Lemma 3.1. Let D be a symmetric distribution over R with mean 0. Let X = (X1, X2, ..., Xn)

where each Xi is an i.i.d. random variable with distribution D. Let S, T ∈ P([n]). Then,

E[XSXT ] =


0 if S 6= T

µ
|S|
2 if S = T

where µ2 is the second moment of each Xi

Proof. If S 6= T , then since XS and XT contain each variable at most once, then XSXT will contain

some variable Xi of odd degree. By Remark 3.6, then S 6= T implies E[XSXT ] = 0. If S = T , then

E[XSXT ] = E[X2
S ] = E[

∏
i∈S X

2
i ] =

∏
i∈S E[X2

i ] = µ
|S|
2 .

Lemma 3.2. Let D be a symmetric distribution over R with mean 0. Let X = (X1, X2, ..., Xn)

where each Xi is an i.i.d. random variable with distribution D. Let S, T, U, V ∈ P([n]). Then,

E[XSXTXUXV ] =


0 if XSXTXUXV contains a variable Xi of odd power

µ
|a|
4 µ
|b|
2 else

where a = |S ∩ T ∩ U ∩ V |, b = 1
2(|S|+ |T |+ |U |+ |V |)− 2a, and µ2, µ4 are the second and fourth

moments respectively of each Xi.

Proof. For some {ci}ni=1 such that 0 ≤ ci ≤ 4 for all i ∈ [n], then

E[XSXTXUXV ] = E

∏
i∈S

Xi

∏
j∈T

Xj

∏
k∈U

Xk

∏
l∈V

Xl

 = E

[
n∏
i=1

Xci
i

]
=

n∏
i=1

E [Xci
i ] =

n∏
i=1

µci
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If XSXTXUXV contains a variable Xi of odd power (i.e. if any ci is odd), then by Remark 3.6,

E[XSXTXUXV ] = 0. Otherwise, each ci ∈ {0, 2, 4}. Now, ci = 4 if and only if Xi appears in each

of XS , XU , XV , XT . Define

a = |{i | ci = 4}| = |S ∩ T ∩ U ∩ V |

For any other variable Xi that appears in at least one of XS , XU , XV , XT , we must have that ci = 2.

Now,

deg(XSXTXUXV ) = |S|+ |T |+ |U |+ |V | =
n∑
i=1

ci

= 4|{i | ci = 4}|+ 2|{i | ci = 2}|

= 4a+ 2|{i | ci = 2}|

Define b = |{i | ci = 2}| = 1
2(|S|+ |T |+ |U |+ |V |)− 2a. Therefore,

E[XSXTXUXV ] =

n∏
i=1

µci = µ
|a|
4 µ
|b|
2

4 Useful Lemmas

We show that for a bounded symmetric mean zero distribution D over the integers, then we only

need a minimal notion of spread (namely that we have some noticeable probability mass on at least

three points in Z) to get a (η, γ)-weakly-nice distribution with reasonable lower bounds on η, γ− 1.

Definition 4.1. For a random variable X with integer support bounded by [a, b], define mode(X)

to be k such that Pr[X = k] = maxbi=a(Pr[X = i])
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Lemma 4.1. Let D be any distribution over Z with bounded support over [−β, β]. Let X be a

random variable with distribution D. Let t > 0. If Pr[|X| 6= mode(|X|)] ≥ 1
t , then

µ2 ≥ E[X]2 +
1

2 ·max(β + 1, t)

µ4

µ2
2

≥ 1 +
1

2µ2
2 ·max(β + 1, t)

Proof. Since
∑β

i=0 Pr[|X| = i] = 1 and Pr[|X| = mode(|X|)] = maxβi=0 Pr[|X| = i], then

Pr[|X| = mode(|X|)] ≥ 1
(β+1) . Therefore,

1

t
≤ Pr[|X| 6= mode(|X|)] ≤ 1− 1

(β + 1)

By the definition of variance

µ2 = E
[
X2
]

= E [X]2 + var [X]

Let y1 be the closest integer to E[X], and let y2 be the next closest integer to E[X] with y1 6= y2.

Then, y1 and y2 are adjacent integers where

|y1 − E[X]|+ |y2 − E[X]| = 1

Since y1 and y2 are the two closest integers to E[X], then for every integer x ∈ Z where x 6= y1

(y1 − E[X])2 ≤ (y2 − E[X])2 ≤ (x− E[X])2
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Therefore,

var[X] =

β∑
i=−β

(
Pr[X = i](X − E[X])2

)

≥ Pr[X = y1](y1 − E[X])2 + (1− Pr[X = y1])(y2 − E[X])2

By definition of mode(|X|), then

Pr[X = y1] ≤ Pr[|X| = |y1|] ≤ Pr[|X| = mode(|X|)]

Which means that

var[X] ≥ Pr[|X| = mode(|X|)](y1 − E[X])2 + (1− Pr[|X| = mode(|X|)])(y2 − E[X])2

= (1− Pr[|X| 6= mode(|X|)])(y1 − E[X])2 + Pr[|X| 6= mode(|X|)](y2 − E[X])2

To continue the proof, we will first prove the following claim.

Claim 4.1. If a, b ≥ 0, a+ b ≥ 1, and 0 ≤ p ≤ x ≤ c, then xa2 + (1− x)b2 ≥ 1
2 min(p, 1− c)

By the Cauchy Schwarz inequality, (a + b)2 = 〈(a, b), (1, 1)〉2 ≤ 〈(a, b), (a, b)〉 · 〈(1, 1), (1, 1)〉 =

2(a2 + b2). Since a+ b ≥ 1, then (a+ b)2 ≥ 1 which means (a2 + b2) ≥ 1
2 . Then,

xa2 + (1− x)b2 ≥ pa2 + (1− c)b2

≥ min(p, 1− c)(a2 + b2)

≥ 1

2
min(p, 1− c)

By applying this claim to a = |y2 − E[X]2|, b = |y1 − E[X]2|, 1
t ≤ x = Pr[|X| 6= mode(|X|)] ≤
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(1− 1
β+1), then

var[X] ≥ 1

2
min

(
1

β + 1
,
1

t

)
=

1

2 ·max(β + 1, t)

µ2 ≥ E[X]2 +
1

2 ·max(β + 1, t)

Now, note that Pr[|X| = i] = Pr[X2 = i2], and mode(|X|))2 = mode(X2). Therefore,

Pr[X2 6= mode(X2)] = Pr[|X| 6= mode(|X|)] so that

1

t
≤ Pr[X2 6= mode(X2)] ≤ 1− 1

(β + 1)

By the definition of variance

µ4 = E
[
X4
]

= E
[
X2
]2

+ var
[
X2
]

= µ2
2 + var

[
X2
]

Let y be the closest integer to E[X2] where y 6= mode(X2). Then, since y and mode(X2) are

nonequal integers

|y − E[X2]|+ |mode(X2)− E[X2]| ≥ 1

Now,

var[X2] =

β2∑
i=0

(
Pr[X2 = i](X2 − E[X2])2

)

≥ Pr[X2 6= mode(X2)](y − E[X2])2 + (1− Pr[X2 6= mode(X2)])(mode(X2)− E[X2])2

By Claim 4.1

var[X2] ≥ 1

2
min

(
1

β + 1
,
1

t

)
=

1

2 ·max(β + 1, t)

µ4 = µ2
2 + var[X2] ≥ µ2

2 +
1

2 ·max(β + 1, t)
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µ4

µ2
2

≥ 1 +
1

2µ2
2 ·max(β + 1, t)

Corollary 4.1. Let D be any symmetric distribution over Z with mean 0 and bounded support over

[−β, β]. Let X be a random variable with distribution D. If Pr[|X| 6= mode(|X|)] ≥ 1
t for some

t > 0, then D is (η, γ)-weakly-nice where η = (min( 1
β ,

1
t ))

O(1) and γ = 1 + (min( 1
β ,

1
t ))

O(1).

The following lemma proves that if the expectations of two distributions on bounded support

[0, 1] differ by some parameter q, then there exists a sufficiently large interval such that the difference

between the probability that a sample from the first distributions lies in that interval and the

probability that a sample from the second distribution lies in that interval is O(qO(1)).

Lemma 4.2. Let p, q be two parameters. Let D0 and D1 be distributions with bounded support in

[0, p].4 Let X0 be a random variable on D0 and X1 be a random variable on D1. Suppose

∣∣∣E[X0]− E[X1]
∣∣∣ ≥ q.

If [0, p] is partitioned into n = 2p
q intervals {Ii}ni=1 each of width q

2 , then there exists an interval Ii

such that ∣∣∣Pr[x ∈ Ii | x
R←− D0]− Pr[x ∈ Ii | x

R←− D1]
∣∣∣ ≥ q2

4p2
.

Remark 4.1. Note that p
q ≥ 1. Otherwise, p

q < 1 so q > p. But this means that the difference in

expectation is bigger than the whole range of the support, which is a contradiction.

Proof. Without loss of generality, let E[X0] ≥ E[X1]. Consider the following partition process.

Partition [0, p] into n = p
ε disjoint intervals Ii each of width ε where ai = sup Ii and ai−1 = inf Ii

4More generally, the support is allowed to be [−p/2, p/2] and then the result follows by appropriately shifting the
two distributions by p/2.
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for i ∈ [n]. Since x ≤ ai for x ∈ Ii,

E[X0] ≤
∑
i∈[n]

ai Pr[D0 ∈ Ii].

Similarly, a lower bound on E[D1] is given as follows:

E[X1] ≥
∑
i∈[n]

ai−1 Pr[D1 ∈ Ii].

Thus,

q ≤ E[X0]− E[X1] ≤
∑
i∈[n]

ai Pr[D0 ∈ Ii]−
∑
i∈[n]

ai−1 Pr[D1 ∈ Ii]

=
∑
i∈[n]

ai (Pr[D0 ∈ Ii]− Pr[D1 ∈ Ii]) + εPr[D1 ∈ Ii]

= ε+
∑
i∈[n]

ai (Pr[D0 ∈ Ii]− Pr[D1 ∈ Ii])

Therefore, ∑
i∈[n]

ai (Pr[D0 ∈ Ii]− Pr[D1 ∈ Ii]) ≥ q − ε

By an averaging argument, there exists an index i∗ such that

ai∗ (Pr[D0 ∈ Ii∗ ]− Pr[D1 ∈ Ii∗ ]) ≥
1

n
· (q − ε) .

Note ai∗ ≤ p so by substitution we have:

∣∣∣Pr[D0 ∈ Ii∗ ]− Pr[D1 ∈ Ii∗ ]
∣∣∣ ≥ q

np
− 1

n2
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Choosing n = 2p
q gives us

∣∣∣Pr[D0 ∈ Ii∗ ]− Pr[D1 ∈ Ii∗ ]
∣∣∣ ≥ q2

4p2
.

5 Non-trivial Probability Distinguishers

We identify distributions D and classes of polynomials C such that for any set of m > n polynomials

Q ⊆ R[x1, . . . , xn] chosen from C, there is an efficient algorithm that solves the (D,Q, n,m) −

PIDP with non-trivial probability. We then build such non-trivial distinguishers. In this section,

we consider selections of polynomials and distributions that lead to the smallest distinguishing

advantage; we want to distinguish between any choice of polynomials and distributions from the

specified classes. This implies that we cannot form any secure PIDGs with spread m > n out of

certain classes of polynomials and distributions. In the next section, we will consider distinguishers

when the polynomials are chosen randomly from some class of polynomials.

For these distinguishers, we consider the difference of EX,Y [q2
i (X)q2

j (Y )] and EX [q2
i (X)q2

j (X)]

for polynomials qi and qj from some set Q where X = (X1, . . . , Xm), Y = (Y1, . . . , Ym), and each

Xi, Yi is an i.i.d. random variable with probability distribution D. When the polynomials are

correlated in certain ways, then this difference will be noticeable and can be used to construct

a weak probabilistic polynomial time distinguisher that can solve the (D,Q, n,m) − PIDP with

noticeable probability.
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5.1 An Expectation Distinguisher

First, we build a general algorithm which, when given a single sample from one of two bounded

non-negative distributions whose expectations differ, can distinguish between the two distributions

with probability proportional to the expectation difference and the bound.

This algorithm works by partitioning the support of the two distributions into sufficiently wide

intervals. Then, the algorithm creates an approximate histogram of each of the two distributions by

randomly sampling from each distribution a sufficient number of times. When given a value from

some interval, the algorithm guesses that the value came from the distribution which, according to

the approximate histograms, has a higher probability of landing in that interval.

Lemma 5.1. Let p, q be two parameters. Let D0 and D1 be distributions with bounded support in

[0, p].5 Let X0 be a random variable on D0 and X1 be a random variable on D1. If

∣∣∣E[X0]− E[X1]
∣∣∣ ≥ q

then the Expectation Distinguisher A below (Algorithm 1) succeeds with probability

∣∣∣Pr[A(x
R←− D0) = 0]− Pr[A(x

R←− D1) = 0]
∣∣∣ ≥ q2

16p2

Algorithm 1 (Expectation Distinguisher).

Given: x from either distribution D0 or D1

Goal: Output 0 if x was sampled from D0, and output 1 if x was sampled from D1.

5More generally, the support is allowed to be [−p/2, p/2] and then the result follows by appropriately shifting the
two distributions by p/2.

36



Operation:

1. Let t = 16000p
5

q5 . Randomly sample t points from D0 and t points from D1. Let S0

be the set of t points sampled from D0, and let S1 be the set of t points sampled

from D1.

2. Partition [0, p] into n = 2p
q disjoint intervals {Ii}i∈[n] each of width q

2

3. Count the number of samples in each interval and compute the sample probabilities,

letting

S0,i = {s ∈ S0 : s ∈ Ii} r0,i =
|S0,i|
t

S1,i = {s ∈ S1 : s ∈ Ii} r1,i =
|S1,i|
t

where i ∈ [n].

4. Pick interval index i such that x ∈ Ii. If r0,i ≥ r1,i, then output 0; else r0,i < r1,i

and output 1.

Remark 5.1. If the samplers for D0 and D1 run in time at most k, then the Expectation Distin-

guisher A performs (kpq )O(1) operations over real numbers. The running time scales multiplicatively

as the number of real operations times the cost of manipulating ` bit numbers where ` is the pre-

cision of the input to the algorithm.

Proof. To prove this, we will first use a Chernoff bound to show that the sample histograms of the

distributions do not differ too much from the actual distributions. Then, we use Lemma 4.2 to

claim that there exists some interval where the two distributions differ by a large enough amount

that our algorithm will succeed with sufficient probability.

Partition [0, p] into n = 2p
q disjoint intervals {Ii}i∈[n] each of width q

2 , and let ai = sup Ii and
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ai−1 = inf Ii. Let p0,i = Pr[D0 ∈ Ii] and p1,i = Pr[D1 ∈ Ii]. Define

∆i = p0,i − p1,i = Pr[D0 ∈ Ii]− Pr[D1 ∈ Ii]

δi = r0,i − r1,i =
|S0,i|
t
− |S1,i|

t

Note that δi is our approximation of ∆i based on our t samples from each distribution.

Note that for b, b′ ∈ {0, 1} then

Pr[A(x
R←− Db) = b′] =

∑
i∈[n]

Pr[A(x) = b′|x ∈ Ii] Pr[Db ∈ Ii] =
∑
i∈[n]

pb,i Pr[A(x) = b′|x ∈ Ii]

Therefore, we have

2
∣∣∣Pr[A(x

R←− D0) = 0]− Pr[A(x
R←− D1) = 0]

∣∣∣
=
∣∣∣Pr[A(x

R←− D0) = 0]− Pr[A(x
R←− D1) = 0]

∣∣∣+
∣∣∣Pr[A(x

R←− D1) = 1]− Pr[A(x
R←− D0) = 1]

∣∣∣
≥
∣∣∣(Pr[A(x

R←− D0) = 0]− Pr[A(x
R←− D0) = 1]

)
−
(

Pr[A(x
R←− D1) = 0]− Pr[A(x

R←− D1) = 1]
)∣∣∣

=
∣∣∣ ∑
i∈[n]

p0,i

(
Pr[A(x) = 0 | x ∈ Ii]− Pr[A(x) = 1 | x ∈ Ii]

)

−
∑
i∈[n]

p1,i

(
Pr[A(x) = 0 | x ∈ Ii]− Pr[A(x) = 1 | x ∈ Ii]

)∣∣∣
=
∣∣∣ ∑
i∈[n]

∆i

(
Pr[A(x) = 0 | x ∈ Ii]− Pr[A(x) = 1 | x ∈ Ii]

)∣∣∣
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Fix some i ∈ [n]. Suppose that ∆i ≥ 0. Then p0,i ≥ p1,i and by construction of the algorithm:

Pr[A(x) = 0 | x ∈ Ii] = Pr[δi > 0]

=
1

2
Pr[|∆i − δi| > ∆i] + Pr[|∆i − δi| ≤ ∆i]

≥ 1

2
+

1

2
Pr[|∆i − δi| ≤ ∆i]

Define the random variable Xi,k for i ∈ [n], k ∈ [t] representing whether the kth sample from D0 is

in Ii and the random variable Yi,k for i ∈ [n], k ∈ [t] representing whether the kth sample from D1

is in Ii as:

Xi,k =


1 if kth sample from D0 is in Ii

0 else

Yi,k =


1 if kth sample from D1 is in Ii

0 else

.

Then consider the sum of these random variables:

Xi =
∑
k∈[t]

Xi,k E[Xi] = tp0,i

Yi =
∑
k∈[t]

Yi,k E[Yi] = tp1,i

where Xi,k and Yi,k are i.i.d. Bernoulli random variable and Xi, Yi are binomial random variables.

Note that the distribution of δi is the same as the distribution of Xi
t −

Yi
t

Claim 5.1. Assume that ∆i ≥ 0. Then,

Pr [|δi −∆i| ≤ ∆i] ≥ 1− 4 exp

(
−∆2

i t

10

)
.
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Proof. Applying a two-sided Chernoff bound gives

Pr

[∣∣∣∣Xi

t
− p0,i

∣∣∣∣ > δp0,i

]
= Pr [|Xi − p0,it| > δp0,it] ≤ 2 · exp

(
−δ

2p0,i

2 + δ
· t
)
.

Set δp0,i = θ0 to obtain

Pr

[∣∣∣∣Xi

t
− p0,i

∣∣∣∣ > θ0

]
≤ 2 exp

(
− θ2

0

2 + θ0
· t
)
.

By the same argument,

Pr

[∣∣∣∣Yit − p1,i

∣∣∣∣ > θ1

]
≤ 2 exp

(
− θ2

1

2 + θ1
· t
)
.

Fix θ = ∆i
2 . Then θ2

2+θ =
∆2

i
8+2∆i

. Since 0 ≤ ∆i ≤ 1, then exp(− ∆2
i t

8+2∆i
) ≤ exp(−∆2

i t
10 ). So by the

union bound:

Pr

[(∣∣∣∣Xi

t
− p0,i

∣∣∣∣ ≤ ∆i

2

)
∧
(∣∣∣∣Yit − p1,i

∣∣∣∣ ≤ ∆i

2

)]
≥ 1− 4 exp

(
− ∆2

i t

8 + 2∆i

)
≥ 1− 4 exp

(
−∆2

i t

10

)
.

Then it follows:

Pr

[∣∣∣∣∣∣∣∣Xi

t
− p0,i

∣∣∣∣− ∣∣∣∣Yit − p1,i

∣∣∣∣∣∣∣∣ ≤ ∆i

2

]
≥ 1− 4 exp

(
−∆2

i t

10

)
.

Since ∆i ≤ 1,

Pr

[∣∣∣∣(Xi

t
− Yi

t

)
− (p0,i − p1,i)

∣∣∣∣ ≤ ∆i

]
≥ 1− 4 exp

(
−∆2

i t

10

)

⇒Pr [|δi −∆i| ≤ ∆i] ≥ 1− 4 exp(−∆2
i t

10
)
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By the claim,

Pr[A(x) = 0 | x ∈ Ii] ≥
1

2
+

1

2

(
1− 4 exp

(
−∆2

i t

10

))

Pr[A(x) = 1 | x ∈ Ii] ≤
1

2
− 1

2

(
1− 4 exp

(
−∆2

i t

10

))
.

Therefore,

∆i

(
Pr[A(x) = 0 | x ∈ Ii]− Pr[A(x) = 1 | x ∈ Ii]

)
≥ |∆i| ·

(
1− 4 exp

(
−∆2

i t

10

))

By a symmetric argument, if ∆i < 0, then p0,i < p1,i and

∆i ·
(

Pr[A(x) = 1 | x ∈ Ii]− Pr[A(x) = 0 | x ∈ Ii]
)
≥ |∆i| ·

(
1− 4 exp

(
−∆2

i t

10

))

Since the inequality above holds for all values of ∆i,

2 ·
∣∣∣Pr[A(x

R←− D0) = 0]− Pr[A(x
R←− D1) = 0]

∣∣∣ ≥ ∣∣∣ ∑
i∈[n]

|∆i| ·
(

1− 4 exp

(
−∆2

i t

10

)) ∣∣∣
≥ max

i
|∆i| ·

(
1− 4 exp

(
−maxi|∆i|2t

10

))

By Lemma 4.2, since |E[D0]− E[D1]| ≥ q and [0, p] is partitioned into n = 2p
q intervals of equal

width, there exists an interval indexed by j such that

q2

4p2
≤ |∆j | ≤ max

i
|∆i|.
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Suppose that the algorithm makes t = 16000p
5

q5 sampling calls for each of the distributions. Since

p
q ≥ 1 as noted in Lemma 4.2, the distinguishing advantage of the algorithm is given by:

∣∣∣Pr[A(x
R←− D0) = 0]− Pr[A(x

R←− D1) = 0]
∣∣∣ ≥ 1

2
·
(
q2

4p2

)
· (1− 4 · exp(−100 · p

q
)) ≥ q2

16p2

Corollary 5.1. Let Q = {qi}mi=1 ⊂ R[x1, . . . xn] be a collection of multilinear polynomials over the

reals of degree at most some constant d and coefficients bounded by [−ν, ν]. Let D be a samplable

distribution over R with support bounded by [−β, β]. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn)

where each Xi and each Yi is an i.i.d. random variable with probability distribution D. If a

probabilistic algorithm can compute i, j ∈ [m] such that i 6= j and

∣∣∣∣EX[q2
i (X)q2

j (X)]− E
X,Y

[q2
i (X)q2

j (Y )]

∣∣∣∣ ≥ t
then there exists a probabilistic algorithm A that solves the (D,Q, n,m)-polynomial independence

distinguishing problem with probability at least

t2

16(dndνβd)8

.

Proof. Since Q is of degree at most d, then Q has at most
∑d

i=1

(
n
d

)
≤ dnd monomials. Since X,Y

are bounded by [−β, β]n and the coefficients of Q are in [−ν, ν], then for x ∈ X or y ∈ Y , then

|qi(x)|, |qj(y)| ∈ [0, dndνβd]. Therefore, q2
i (x)q2

j (x) and q2
i (x)q2

j (y) are bounded by [0, (dndνβd)4].

Now, let A be the following adversary:
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Algorithm 2 (Squared Expectation Distinguisher).

Given: (Q, E) where E is either {qi(x)}mi=1 or {qi(xi)}mi=1 and x,x1,x2, . . . ,xm
R←− D.

Operation:

1. Compute i, j ∈ [m].

2. Compute E2
i E2

j which is either q2
i (x)q2

j (x) or q2
i (xi)q

2
j (xj).

3. Let B be the Expectation Distinguisher (Algorithm 1) from Lemma 5.1. Let D0

be the distribution of q2
i (X)q2

j (X) and let D1 be the distribution of q2
i (X)q2

j (Y ).

Output B(D0,D1, E2
i E2

j ).

Since B is a probabilistic algorithm, then A is also a probabilistic algorithm. Then, by Lemma 1

since D0 and D1 are bounded distributions over [0, (dndνβd)4] then

|Pr [A(Q, {qi(x)}mi=1) = 1]− Pr [A(Q, {qi(xi)}mi=1)]|

=
∣∣Pr[B(D0,D1, q

2
i (x)q2

j (x)) = 1]− Pr[B(D0,D1, q
2
i (xi)q

2
j (xj)) = 1]

∣∣ ≥ t2

16(dndνβd)8

Therefore A is a probabilistic algorithm that solves the (D,Q, n,m)-polynomial independence dis-

tinguishing problem with this advantage.

Remark 5.2. Let the runtime of the sampler for D be nO(1), and let the algorithm to compute

i, j make nO(1) operations over real numbers. Then if m = nO(1), by Remark 5.1, the Squared

Expectation Algorithm (Algorithm 2) makes
(
nνβ
t

)O(1)
operations over real numbers. The actual

running time scales multiplicatively as the number of real operations times the cost of manipulating

` bit numbers where ` is the precision of the input to the algorithm.
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5.2 Non-trivial Distinguisher for Polynomials with Non-negative Coefficients

Now, we will show that for a certain set of polynomials and distributions, we can find a probabilistic

polynomial time algorithm that solves the (D,Q, n,m)−PIDP with non-negligible probability. First,

we recall the definition of a (η, γ)-weakly-nice distribution:

Definition 5.1. We say that a distribution D is (η, γ)-weakly-nice if

1. D is a symmetric distribution with mean 0

2. If X is a random variable over D, then µ2 = E[X2] ≥ η and µ4

µ2
2

= E[X4]
E[X2]2

≥ γ.

Definition 5.2. Let Qn,nonneg ⊂ R[x1, . . . , xn] be the set of multilinear polynomials over the reals

with degree at most some constant d and non-negative coefficients

Lemma 5.2. Let n,m be parameters. Let q1, . . . , qm ∈ Qn,nonneg, and let D be any (η, γ)-weakly-

nice distribution with η > 0 and γ > 1. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) where each

Xi and each Yi is an i.i.d. random variable with probability distribution D. Then, if m > n then a

probabilistic algorithm can find i, j ∈ [m] such that i 6= j, qi, qj share a variable xk, and

E
X

[q2
i (X)q2

j (X)]− E
X,Y

[q2
i (X)q2

j (Y )] ≥ (γ − 1)(ν ′)2(ν ′′)2ηd
′+d′′

for any ν ′, d′ that are the coefficient and degree respectively of some monomial in qi that contains

variable xk, and for any ν ′′, d′′ that are the coefficient and degree respectively of some monomial in

qj that contains variable xk.

Proof. By the pigeonhole principle, since m > n, there must exist i, j ∈ [m] where i 6= j such that

qi and qj share a variable xk. Furthermore, such i, j can be found by a probabilistic algorithm. We

know that qi(x) =
∑

S∈P([n]) cSxS and qj(x) =
∑

S∈P([n]) dSxS where each cS , dS ∈ R. Consider

any nonzero term cS∗xS∗ in qi that contains xk and any nonzero term dT ∗xT ∗ in qj that contains xk.
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Then, S∗, T ∗ ∈ P([n]) such that |S∗ ∩ T ∗| ≥ 1, |S∗| = d′, |T ∗| = d′′, cS∗ = ν ′ 6= 0, and dT ∗ = ν ′′ 6= 0

for some d′, d′′, ν ′, ν ′′. Now,

E
X,Y

[q2
i (X)q2

j (Y )] = E
X

[q2
i (X)]E

Y
[q2
j (Y )] = E

X
[q2
i (X)]E

X
[q2
j (X)]

= E
X

 ∑
S,T∈P([n])

cScTXSXT

E
X

 ∑
S,T∈P([n])

dSdTXSXT


=

∑
S,T∈P([n])

cScT E
X

[XSXT ]
∑

S,T∈P([n])

dSdT E
X

[XSXT ]

By Lemma 3.1, EX [XSXT ] equals 0 if S 6= T and equals µ
|S|
2 if S = T . Therefore,

E
X,Y

[q2
i (X)q2

j (Y )] =
∑

S∈P([n])

c2
S E
X

[
X2
S

] ∑
S∈P([n])

d2
S E
X

[
X2
S

]

=
∑

S∈P([n])

c2
Sµ
|S|
2

∑
S∈P([n])

d2
Sµ
|S|
2

=
∑

S,T∈P([n])

c2
Sd

2
Tµ
|S|+|T |
2

Now, in the other case, we have

E
X

[q2
i (X)q2

j (X)] = E
X

 ∑
S,T,U,V ∈P([n])

cScTdUdVXSXTXUXV


=

∑
S,T,U,V ∈P([n])

cScTdUdV E
X

[XSXTXUXV ]

By Lemma 3.2, ∀S, T, U, V ∈ P([n]), EX [XSXTXUXV ] ≥ 0. Since all coefficients of qi and qj are
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non-negative, then cScTdUdV EX [XSXTXUXV ] ≥ 0 Therefore,

E
X

[q2
i (X)q2

j (X)] ≥
∑

S,T∈P([n])

c2
Sd

2
T E
X

[
X2
SX

2
T

]

=
∑

S,T∈P([n])

c2
Sd

2
T

(
µ4

µ2
2

)|S∩T |
µ
|S|+|T |
2

≥
∑

S,T∈P([n]);S 6=S∗orT 6=T ∗

(
c2
Sd

2
Tµ
|S|+|T |
2

)
+ c2

S∗d
2
T ∗

(
µ4

µ2
2

)|S∗∩T ∗|
µ
|S∗|+|T ∗|
2

≥
∑

S,T∈P([n]);S 6=S∗orT 6=T ∗

(
c2
Sd

2
Tµ
|S|+|T |
2

)
+ c2

S∗d
2
T ∗

(
µ4

µ2
2

)
µ
|S∗|+|T ∗|
2

=
∑

S,T∈P([n])

(
c2
Sd

2
Tµ
|S|+|T |
2

)
+ c2

S∗d
2
T ∗

(
µ4

µ2
2

− 1

)
µ
|S∗|+|T ∗|
2

= E
X,Y

[q2
i (X)q2

j (Y )] + c2
S∗d

2
T ∗

(
µ4

µ2
2

− 1

)
µ
|S∗|+|T ∗|
2

Now, |S∗|+ |T ∗| = d′ + d′′, c2
S∗d

2
T ∗ = (ν ′)2(ν ′′)2 6= 0, µ4

µ2
2
≥ γ > 1, and µ2 ≥ η > 0. Therefore,

E
X

[q2
i (X)q2

j (X)]− E
X,Y

[q2
i (X)q2

j (Y )] ≥ (γ − 1)(ν ′)2(ν ′′)2ηd
′+d′′

Remark 5.3. Since each polynomial qi ∈ Q in the previous lemma is of degree at most some

constant d, then qi has O(dnd) monomials each of degree at most d. If m = nO(1) then finding i 6= j

such that qi, qj share a variable requires nO(1) operations over the reals. The running time scales

multiplicatively as the number of real operations times the cost of manipulating ` bit numbers

where ` is the precision of the input to the algorithm.

Theorem 5.1. Let Q = {q1, . . . , qm} ∈ Qn,nonneg with coefficients bounded by [−ν, ν] and let D be

a (η, γ)-weakly-nice distribution with η > 0, γ > 1 with bounded support in [−β, β]. If m > n, then
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a probabilistic algorithm can find i, j ∈ [m] such that i 6= j and qi, qj share a variable xk and that

solves the (D,Q, n,m)-polynomial independence distinguishing problem with probability at least

(γ − 1)2(ν ′)4(ν ′′)4η2d′+2d′′

16(dndνβd)8

for any ν ′, d′ that are the coefficient and degree respectively of some monomial in qi that contains

variable xk and for any ν ′′, d′′ that are the coefficient and degree respectively of some monomial in

qj that contains variable xk.

Proof. This follows directly from Corollary 5.1 and Lemma 5.2.

Remark 5.4. Let the runtime of the sampler for D be nO(1) and let m = nO(1). By Remark 5.3,

then the algorithm to compute i, j makes nO(1) operations over real numbers. Then, by Remark 5.1,

the distinguisher in Theorem 5.1 makes
(

nνβ
(γ−1)ν′ν′′η

)O(1)
operations over real numbers. The actual

running time scales multiplicatively as the number of real operations times the cost of manipulating

` bit numbers where ` is the precision of the input to the algorithm.

Corollary 5.2. Any (D,Q, n,m) satisfying the conditions of Theorem 5.1 where γ − 1, |ν ′|, |ν ′′|, η

are Ω(n−O(1)), and m, ν, β are nO(1) is not a PIDG.

Corollary 5.3. Suppose D and Q are over the integers Z. Any (D,Q, n,m) satisfying the condi-

tions of Theorem 5.1 where γ − 1, η are Ω(n−O(1)), and m, ν, β are nO(1) is not a PIDG.

5.3 Non-trivial Distinguisher for Expander Based Polynomials

Next, we will show that for a different set of polynomials and distributions, we can also find a

probabilistic polynomial time algorithm that solves the (D,Q, n,m) − PIDP with non-negligible

probability.
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Definition 5.3 (n-Half-Expanding Set). Let S = {S1, . . . , Sm} be a collection of sets. Then, S is

a n-half-expanding set if for all k ≤ n and all distinct a1, a2, ..., ak ∈ [m]

∣∣∣∣∣
k⋃
i=1

Sai

∣∣∣∣∣ > 1

2

k∑
i=1

|Sai |

Definition 5.4 (Expander Based Polynomial Set). Let Q = {q1, . . . , qm} ⊂ R[x1, . . . , xn] be a set

of multilinear polynomials over the reals. Then, each qi(x) =
∑

S∈P([n]) cS,ixS for some coefficients

{cS,i}S∈P([n]) ∈ R. We say that Q is a Expander Based Polynomial Set if

• Each qi is a polynomial of degree at most some constant d

• {S ∈ P([n]) | cS,i 6= 0 for some i ∈ [m]} is a 4-half expanding set.

• CS = {cS,i}i∈[m] contains at most one non-zero value. (i.e. All monomials appear at most

once across all polynomials in Q.)

Lemma 5.3. Let Q = {q1, . . . , qm} ⊂ R[x1, . . . , xn] be an Expander Based Polynomial Set and let

D be any (η, γ)-weakly-nice distribution with η > 0 and γ > 1. Let X = (X1, . . . , Xn) and Y =

(Y1, . . . , Yn) where each Xi and each Yi is an i.i.d. random variable with probability distribution D.

Let d be the maximum degree of each polynomial qi. Then, if m > n then a probabilistic algorithm

can find i, j ∈ [m] such that i 6= j, qi, qj share a variable xk, and

E
X

[q2
i (X)q2

j (X)]− E
X,Y

[q2
i (X)q2

j (Y )] ≥ (γ − 1)(ν ′)2(ν ′′)2ηd
′+d′′

for any ν ′, d′ that are the coefficient and degree respectively of some monomial in qi that contains

variable xk and for any ν ′′, d′′ that are the coefficient and degree respectively of some monomial in

qj that contains variable xk.
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Proof. By the pigeonhole principle, since m > n, there must exist i, j ∈ [m] where i 6= j such that

qi and qj share a variable xk. Furthermore, such i, j can be found by a probabilistic algorithm. We

know that qi(x) =
∑

S∈P([n]) cSxS and qj(x) =
∑

S∈P([n]) dSxS where each cS , dS ∈ R. Consider

any nonzero monomial cS∗xS∗ in qi that contains xk and any nonzero monomial dT ∗xT ∗ in qj that

contains xk. Then, S∗, T ∗ ∈ P([n]) such that |S∗ ∩ T ∗| ≥ 1, |S∗| = d′, |T ∗| = d′′, cS∗ = ν ′ 6= 0, and

dT ∗ = ν ′′ 6= 0 for some d′, d′′, ν ′, ν ′′. Since Q is a Expander Based Polynomial Set, then all monomials

appear at most once in any polynomial. So, dS∗ = 0. Therefore,

qi(x) = cS∗xS∗ + pi(x)

qj(x) = pj(x)

where

pi(x) =
∑

S∈P([n]);S 6=S∗
cSxS

pj(x) =
∑

S∈P([n]);S 6=S∗
dSxS .

Now,

E
X,Y

[q2
i (X)q2

j (Y )] = E
X

[q2
i (X)]E

X
[q2
j (X)]

= E
X

[
c2
S∗X

2
S∗ + 2cS∗XS∗pi(X) + p2

i (X)
]
E
X

[
p2
j (X)

]
= c2

S∗ E
X

[
X2
S∗
]
E
X

[
p2
j (X)

]
+ 2cS∗ E

X
[XS∗pi(X)]E

X

[
p2
j (X)

]
+ E
X

[
p2
i (X)

]
E
X

[
p2
j (X)

]
.
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On the other hand,

E
X

[q2
i (X)q2

j (X)] = E
X

[
c2
S∗X

2
S∗p

2
j + 2cS∗XS∗pi(X)p2

j + p2
i (X)p2

j

]
= c2

S∗ E
X

[
X2
S∗p

2
j (X)

]
+ 2cS∗ E

X

[
XS∗pi(X)p2

j (X)
]

+ E
X

[
p2
i (X)p2

j (X)
]

Therefore,

E
X,Y

[q2
i (X)q2

j (Y )]− E
X

[q2
i (X)]E

Y
[q2
j (Y )]

= c2
S∗

(
E
X

[X2
S∗p

2
j (X)]− E

X
[X2

S∗ ]E
X

[p2
j (X)]

)
+ 2cS∗

(
E
X

[XS∗pi(X)p2
j (X)]− E

X
[XS∗pi(X)]E

X
[p2
j (X)]

)

+

(
E
X

[p2
i (X)p2

j (X)]− E
X

[p2
i (X)]E

X
[p2
j (X)]

)

We will consider each term separately. First,

E
X

[
X2
S∗p

2
j (X)

]
− E
X

[
X2
S∗
]
E
X

[
p2
j (X)

]
= E

X

 ∑
S,T∈P([n]);S,T 6=S∗

dSdTX
2
S∗XSXT

− E
X

[∑
i∈S∗

X2
i

]
E
X

 ∑
S,T∈P([n]);S,T 6=S∗

dSdTXSXT


=

∑
S,T∈P([n]);S,T 6=S∗

dSdT E
X

[
X2
S∗XSXT

]
−
∑
i∈S∗

E
X

[
X2
i

] ∑
S,T∈P([n]);S,T 6=S∗

dSdT E
X

[XSXT ]

By Lemma 3.1, EX [XSXT ] equals 0 if S 6= T and equals µ
|S|
2 if S = T . Furthermore, by Lemma

3.2, EX [X2
S∗XSXT ] 6= 0 only if X2

S∗XSXT does not contains a variable Xi of odd power. However,
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since XS∗ is different from XS , XT , this only occurs when S = T . Therefore,

E
X

[
X2
S∗p

2
j (X)

]
− E
X

[
X2
S∗
]
E
X

[
p2
j (X)

]
=

∑
S∈P([n]);S 6=S∗

d2
S E
X

[
X2
S∗X

2
S

]
− µ|S

∗|
2

∑
S∈P([n]);S 6=S∗

d2
Sµ
|S|
2

=
∑

S∈P([n]);S 6=S∗
d2
S E
X

[
X2
S∗X

2
S

]
−

∑
S∈P([n]);S 6=S∗

d2
Sµ
|S|+|S∗|
2

=
∑

S∈P([n]);S 6=S∗
d2
S

(
µ4

µ2
2

)|S∩S∗|
µ
|S|+|S∗|
2 −

∑
S∈P([n]);S 6=S∗

d2
Sµ
|S|+|S∗|
2

=
∑

S∈P([n]);S 6=S∗
d2
Sµ
|S|+|S∗|
2

((
µ4

µ2
2

)|S∩S∗|
− 1

)

≥ d2
T ∗µ

|S∗|+|T ∗|
2

((
µ4

µ2
2

)|S∗∩T ∗|
− 1

)

Since |S∗|+ |T ∗| = d′ + d′′, d2
T ∗ = (ν ′′)2 6= 0, µ4

µ2
2
≥ γ > 1, and µ2 ≥ η > 0.

E
X

[
X2
S∗p

2
j (X)

]
− E
X

[
X2
S∗
]
E
X

[
p2
j (X)

]
≥ (γ − 1)(ν ′′)2ηd

′+d′′

For the next term, we have

E
X

[
XS∗pi(X)p2

j (X)
]
− E
X

[XS∗pi(X)]E
X

[
p2
j (X)

]
= E

X

 ∑
S,T,U∈P([n]);S,T,U 6=S∗

cSdTdUXS∗XSXTXU

− E
X

 ∑
S∈P([n]);S 6=S∗

dSXS∗XS

E
X

[
p2
j (X)

]

=
∑

S,T,U∈P([n]);S,T,U 6=S∗
cSdTdU E

X
[XS∗XSXTXU ]−

∑
S∈P([n]);S 6=S∗

dS E
X

[XS∗XS ]E
X

[
p2
j (X)

]
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Now by Lemma 3.1, then EX [XS∗XS ] = 0 whenever S∗ 6= S. So,

E
X

[
XS∗pi(X)p2

j (X)
]
− E
X

[XS∗pi(X)]E
X

[
p2
j (X)

]
=

∑
S,T,U∈P([n]);S,T,U 6=S∗

cSdTdU E
X

[XS∗XSXTXU ]

Now consider the terms where cS , dT , dU 6= 0. Then, since {S ∈ P([n]) | cS,i 6= 0 for some i ∈ [m]}

is a 4-half expanding set and cS∗ 6= 0, then for distinct S∗, T, U, V ∈ P([n]), then |S∗∪T ∪U ∪V | >

1
2(|S∗|+ |T |+ |U |+ |V |). Therefore, some Xi occurs once in XS∗XSXTXU . So, by Lemma 3.2, then

EX [XS∗XSXTXU ] = 0. Suppose then that S∗, T, U, V are not all distinct and that S∗ 6= T,U, V .

Without loss of generality, assume that U = V . Then, since S∗ 6= T and S∗ 6= U , then XS∗XTX
2
U

must contain some Xi of odd power. So, by Lemma 3.2, then EX [XS∗XSXTXU ] = 0. Therefore,

E
X

[
XS∗pi(X)p2

j (X)
]
− E
X

[XS∗pi(X)]E
X

[
p2
j (X)

]
= 0

For the last term,

E
X

[
p2
i (X)

]
E
X

[
p2
j (X)

]
= E

X

 ∑
S,T∈P[n];S,T 6=S∗

cScTXSXT

E
X

 ∑
S,T∈P[n];S,T 6=S∗

dSdTXSXT


=

∑
S,T∈P[n];S,T 6=S∗

cScT E
X

[XSXT ]
∑

S,T∈P[n];S,T 6=S∗
dSdT E

X
[XSXT ]

By Lemma 3.1, then EX [XSXT ] equals 0 whenever S 6= T and equals µ
|S|
2 whenever S = T .

Therefore,

E
X

[
p2
i (X)

]
E
X

[
p2
j (X)

]
=

∑
S∈P[n];S 6=S∗

c2
Sµ
|S|
2

∑
T∈P[n];T 6=S∗

d2
Tµ
|T |
2 =

∑
S,T∈P[n];S,T 6=S∗

c2
Sd

2
Tµ
|S|+|T |
2
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So we have that

E
X

[
p2
i (X)p2

j (X)
]
− E
X

[
p2
i (X)

]
E
X

[
p2
j (X)

]
=

∑
S,T,U,V ∈P[n];S,T,U,V 6=S∗

cScTdUdV E
X

[XSXTXUXV ]−
∑

S,T∈P[n];S,T 6=S∗
c2
Sd

2
Tµ
|S|+|T |
2

Now consider the terms where cS , cT , dU , dV 6= 0. Then, since {S ∈ P([n]) | cS,i 6= 0 for some i ∈

[m]} is a 4-half expanding set, then for distinct S, T, U, V ∈ P([n]), then |S ∪ T ∪ U ∪ V | >

1
2(|S| + |T | + |U | + |V |). Therefore, some Xi occurs once in XSXTXUXV . So, by Lemma 3.2,

then EX [XSXTXUXV ] = 0. Suppose then that S, T, U, V are not all distinct. Let one of S or

T equal one of U or V . Suppose without loss of generality that S = U . But since we assumed

that cS , cT , dU , dV 6= 0, this means that cS and dS = dU are both nonzero. But this contradicts

the fact that all monomials appear at most once in all polynomials of Q since Q is an Expander

Based Polynomial Set. Therefore, if S, T, U, V are not all distinct, we need either S = T or U = V .

Suppose without loss of generality, that S = T . Then, in order for XSXTXUXV = X2
SXUXV

to not contain a variable Xi of odd power, we need U = V as well. So, by Lemma 3.2, then

cScTdUdV EX [XSXTXUXV ] 6= 0 if and only if S = T and U = V .

E
X

[
p2
i (X)p2

j (X)
]
− E
X

[
p2
i (X)

]
E
X

[
p2
j (X)

]
=

∑
S,T∈P[n];S,T 6=S∗

c2
Sd

2
T E
X

[
X2
SX

2
T

]
−

∑
S,T∈P[n];S,T 6=S∗

c2
Sd

2
Tµ
|S|+|T |
2

=
∑

S,T∈P[n];S,T 6=S∗
c2
Sd

2
T

(
µ4

µ2
2

)|S∩T |
µ
|S|+|T |
2 −

∑
S,T∈P[n];S,T 6=S∗

c2
Sd

2
Tµ
|S|+|T |
2

≥
∑

S,T∈P[n];S,T 6=S∗
c2
Sd

2
Tµ
|S|+|T |
2 −

∑
S,T∈P[n];S,T 6=S∗

c2
Sd

2
Tµ
|S|+|T |
2

= 0
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As a result,

E
X,Y

[q2
i (X)q2

j (Y )]− E
X

[q2
i (X)]E

Y
[q2
j (Y )]

= c2
S∗

(
E
X

[X2
S∗p

2
j (X)]− E

X
[X2

S∗ ]E
X

[p2
j (X)]

)
+ 2cS∗

(
E
X

[XS∗pi(X)p2
j (X)]− E

X
[XS∗pi(X)]E

X
[p2
j (X)]

)

+

(
E
X

[p2
i (X)p2

j (X)]− E
X

[p2
i (X)]E

X
[p2
j (X)]

)

≥ c2
S∗(γ − 1)(ν ′′)2ηd

′+d′′ + 0 + 0

≥ (γ − 1)(ν ′)2(ν ′′)2ηd
′+d′′

Remark 5.5. Since each polynomial qi ∈ Q in the previous lemma is of degree at most some

constant d, then qi has O(dnd) monomials each of degree at most d. Therefore, if m = nO(1), then

finding i 6= j such that qi, qj share a variable takes nO(1) operations over the reals.

Theorem 5.2. Let Q = {q1, . . . , qm} ⊂ R[x1, . . . , xn] where Q is a Expander Based Polynomial Set with

coefficients bounded by [−ν, ν], and let D be a (η, γ)-weakly-nice distribution with η > 0, γ > 1 and

bounded support in [−β, β]. If m > n, then there exists a probabilistic algorithm A that can find

i, j ∈ [m] such that i 6= j and qi, qj share a variable xk, and that solves the (D,Q, n,m)-polynomial

independence distinguishing problem with probability at least

(γ − 1)2(ν ′)4(ν ′′)4η2d′+2d′′

16(dndνβd)8

for any ν ′, d′ that are the coefficient and degree respectively of some monomial in qi that contains

variable xk, and for any ν ′′, d′′ that are the coefficient and degree respectively of some monomial in

qj that contains variable xk.
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Proof. This follows directly from Corollary 5.1 and Lemma 5.3.

Remark 5.6. Let the runtime of the sampler for D be nO(1) and let m = nO(1). By Remark 5.5,

then the algorithm to compute i, j makes nO(1) operations over real numbers. Then, by Remark 5.1,

the distinguisher in Theorem 5.2 makes
(

nνβ
(γ−1)ν′ν′′η

)O(1)
operations over real numbers. The actual

running time scales multiplicatively as the number of real operations times the cost of manipulating

` bit numbers where ` is the precision of the input to the algorithm.

Corollary 5.4. Any (D,Q, n,m) satisfying the conditions of Theorem 5.2 where γ − 1, |ν ′|, |ν ′′|, η

are n−O(1), and m, ν, β are nO(1) is not a PIDG.

Corollary 5.5. Suppose D and Q are over the integers Z. Any (D,Q, n,m) satisfying the condi-

tions of Theorem 5.2 where γ − 1, η are n−O(1), and m, ν, β are nO(1) is not a PIDG.

6 Overwhelming Probability Distinguisher

We now show an efficient algorithm that solves the (D,Q, n,m) − PIDP with overwhelming prob-

ability for natural random classes of homogeneous multilinear constant degree polynomials Q and

natural input distributions D. We note that in this section, we consider the distinguishing proba-

bility over polynomials randomly chosen from our class Q as opposed to over worst-case selections

of polynomials. First, we recall the definitions of C-bounded and nice distributions.

Definition 6.1. We say that a distribution D is C-bounded if

Pr[x
R←− D, |x| < C] = 1.

Remark 6.1. Note that our results also apply if the probability specified above is greater than

1− n−ω(1) where n is the number of inputs. This follows from a simple union bound.
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Definition 6.2. We say that a distribution D is (γ,C, ε)-nice if

1. D is a symmetric distribution with mean 0

2. (Normalization.) If X is a random variable over D, then E[X2] = 1 and E[X4] = γ.

3. D is C-bounded.

4. (Anti-concentration) Pr[x
R←− D, |x| > ε] > Ω(1)

Problem Setup. Let m be the number of polynomials, n be the number of variables, and d be

the constant degree of each polynomial. Let p, γI , γc, CI , Cc, εI , εc be a set of parameters. We now

describe the input and polynomial distributions as follows:

• Input Variable Distribution DInp: Let DInp be a (γI , CI , εI)−nice distribution. If Xi is

a random variable over DInp, observe that all odd moments of Xi are 0, E[X2
i ] = 1, and

E[X4
i ] = γI .

• Input Distribution D∗Inp,n: Let D∗Inp,n be the distribution DInp × · · · × DInp︸ ︷︷ ︸
n times

where x =

(x1, . . . , xn)
R←− D∗Inp,n means x1, . . . , xn are independently sampled from DInp. Inputs to

the polynomials are sampled from D∗Inp,n.

• Coefficient Distribution DCoeff,p: Let DCoeff denote a (γc, Cc, εc)−nice distribution. Then,

for parameter p ∈ [0, 1], let DCoeff,p be the distribution that outputs 0 with probability 1− p

and samples from DCoeff with probability p. If Z is a random variable over DCoeff,p, observe

that all odd moments of Z are 0, E[Z2] = p, and E[Z4] = γcp.

• Polynomial Distribution Qn,d,p: We define Qn,d,p to be the distribution of polynomials
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such that for q(x) sampled from Qn,d,p, then

q(x) =
∑

S∈P([n]),|S|=d

cSxS

where each cS is sampled independently from DCoeff,p. We generate m polynomials by inde-

pendently sampling each polynomial from Qn,d,p

The problem we are interested in is the (DInp,Qn,d,p, n,m)−Polynomial Independence Distinguish-

ing Problem with respect to DInp and Qn,d,p as defined above with parameters d, p, γI , γc, CI ,

Cc, εI , εc. We will now show that for certain values of these parameters, we can obtain an over-

whelming distinguisher.

Theorem 6.1. Let n,m, d, p, γI , γc, CI , Cc, εI , εc be parameters where d ≥ 2 is an integer constant,

γI , γc, εI = θ(1), γI > 1, p = Ω(n log n · C4d
I /
(
n
d

)
), p < γc/3, and m = Ω(n2C8d

I C
8
c log10 n). Then,

Algorithm 3 is an overwhelming distinguisher for the (DInp,Qn,d,p, n,m)−PIDP problem with respect

to DInp and Qn,d,p as defined above for these parameters.

Algorithm 3 (Strong Distinguishing Algorithm).

Given: Polynomials {qi}mi=1 sampled from Qn,d,p, along with evaluations {yi}i∈[m] where either

• yi = qi(x) for a single x sampled according to D∗Inp,n (denoted by the event same),

• or yi = qi(xi) for independent xi sampled from D∗Inp,n (denoted by the event diff).

Goal: Output 0 if same holds and 1 otherwise.

Operation:

1. Let αth be as defined below.
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2. Compute F (αth, y1, . . . , ym) =
∑

i y
4
i − 2 · αth

∑
i∈[m/2] y

2
2i−1 · y2

2i

3. If F (αth, y1 . . . , ym) ≥ 0 output 1 otherwise output 0.

We define αth as:

αth =
αsame + αdiff

2

Define αsame as:

αsame =
Eqa,X [q4

a(X)]

Eqa,qb,X [q2
a(X) · q2

b (X)]

Define αdiff as:

αdiff =
Eqa,Xa [q4

a(Xa)]

Eqa,qb,Xa,Xb
[q2
a(Xa) · q2

b (Xb)]

where the expectations are taken over random variables X,Xa, Xb with distribution D∗Inp,n

and the random variables of the coefficients of qa, qb sampled from distribution DCoeff,p.

We will prove correctness of the algorithm through a series of lemmas. Refer to section 2.2 in

the Technical Overview for a proof overview and for further intuition on the proof. Then, we will

analyze the algorithm’s running time. But, first we define some notation.

Definition 6.3. Throughout this section, we will define N =
(
n
d

)
and t = Np. For a homogeneous

degree d polynomial, N denotes the number of possible monomials. If each monomial is present

in the polynomial with probability p, then t denotes the expected number of monomials in the

polynomial. In particular, t is the expected density of a polynomial q sampled from Qn,d,p.

Notation.
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• The notation
∑

S is shorthand for
∑

S∈P[n];|S|=d.

• The notation
∑

S1 6=S2
is shorthand for

∑
S1,S2∈P([n]);|S1|=|S2|=d;S1 6=S2

. The notation ES1 6=S2 and

PrS1 6=S2 are shorthand for the expectation and probability respectively over two randomly

chosen sets S1, S2 satisfying these constraints.

• Random variables X over D∗Inp,n are implicitly represented as tuples of random variables X =

(X1, . . . , Xn) where each variable Xi has distribution DInp. Recall that for a set S ∈ P([n]),

we define XS =
∏
i∈S Xi.

• For polynomials of the form q(x) =
∑

S cSxS , we will overload notation and use cS to repre-

sent both a specific coefficient sampled from DCoeff,p and a random variable with distribution

DCoeff,p. Similarly, we will overload notation and use q to represent both a specific polyno-

mial sampled from Qn,d,p and as the implicit set of random variables {cS} representing the

coefficients of q.

• For example, EX,q[q(X)] denotes EX,{cS}[
∑

S cSXS ] = E{Xi},{cS}[
∑

S cS
∏
i∈S Xi].

Our first goal is to show that αsame and αdiff differ by at least Ω(1/n). Our next several lemmas

will accomplish this.

Lemma 6.1. For the parameters and terms defined in Theorem 6.1 and Algorithm 3 and, in

particular, since p < γc/3 and γI , γc = θ(1), then

αsame = 3 + θ(
γcγ

d
I

t
).

Proof. Recall that

αsame =
Eqa,X [q4

a(X)]

Eqa,qb,X [q2
a(X) · q2

b (X)]
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Let us represent polynomials qa and qb as qa(x) =
∑

S cSxS and qb(x) =
∑

S dSxS where the

coefficients are sampled from DCoeff,p and inputs are sampled from DInp. Now we compute the

numerator.

E
qa,X

[q4
a(X)] = E

X
E
qa

∑
S1

∑
S2

∑
S3

∑
S4

cS1cS2cS3cS4XS1XS2XS3XS4



= E
X

∑
S

E
qa

[c4
SX

4
S ] + 3

∑
S1 6=S2

E
qa

[c2
S1
c2
S2
X2
S1
X2
S2

]



= E
X

∑
S

pγcX
4
S + 3

∑
S1 6=S2

p2X2
S1
X2
S2


= pγc

∑
S

E
X

[
X4
S

]
+ 3p2

∑
S1 6=S2

E
X

[
X2
S1
X2
S2

]

The second equality follows because the odd moments of every coefficient variable are 0. Now, let

N =
(
n
d

)
. Then, the numerator becomes

E
qa,X

[q4
a(X)] = Npγc E

X
[X4

S ] + 3p2
∑
S1 6=S2

E
X

[X2
S1
X2
S2

]

Since, EX [X4
S ] = EX [

∏
i∈S X

4
i ] = γdI and

∑
S1 6=S2

EX [X2
S1
X2
S2

] = N(N − 1)ES1 6=S2 EX [XS1XS2 ],

the numerator becomes,

E
qa,X

[q4
a(X)] = Npγcγ

d
I + 3p2N(N − 1) E

S1 6=S2

E
X

[XS1XS2 ]

For i ∈ [d− 1], let gi denote the probability that two randomly chosen sets S1 6= S2 in [n] of size d

have i common elements:

gi = Pr
S1 6=S2

[|S1 ∩ S2| = i] .
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Since for each j ∈ [n], E[X2
j ] = 1 and E[X4

j ] = γI , then

E
S1 6=S2

E
X

[XS1XS2 ] =
d−1∑
i=0

γiI Pr
S1 6=S2

[|S1 ∩ S2| = i]

= (1− g1 − . . .− gd−1) + γIg1 + . . .+ γd−1
1 gd−1

This means that the numerator is,

E
qa,X

[q4
a(X)] = Npγcγ

d
I + 3p2N(N − 1)

(
(1− g1 − . . .− gd−1) + γIg1 + . . .+ γd−1

1 gd−1

)

Now, consider the denominator, Eqa,qb,X [q2
a(X)q2

b (X)]. By a similar calculation, we can show that

E
qa,qb,X

[q2
a(X)q2

b (X)] = E
X

[
∑
S1,S2

p2X2
S1
X2
S2

]

= p2 E
X

[
∑
S

X4
S +

∑
S1 6=S2

X2
S1
X2
S2

]

= p2NγdI + p2N(N − 1)
(

(1− g1 − . . .− gd−1) + γIg1 + . . .+ γd−1
1 gd−1

)

From this, observe that

αsame =
Npγcγ

d
I + 3p2N(N − 1)

(
(1− g1 − . . .− gd−1) + γIg1 + . . .+ γd−1

1 gd−1

)
p2NγdI + p2N(N − 1)

(
(1− g1 − . . .− gd−1) + γIg1 + . . .+ γd−1

1 gd−1

)
= 3 +

Npγcγ
d
I − 3p2NγdI

p2NγdI + p2N(N − 1)
(

(1− g1 − . . .− gd−1)1 + γIg1 + . . .+ γd−1
1 gd−1

)

Since p < γc/3, the numerator of the additive term is θ(Npγcγ
d
I ). Since γI , γc = θ(1), the denomi-

nator of the additive term is θ(p2N2). Thus, for t = pN , then αsame = 3 + θ(
γcγdI
t ).
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Lemma 6.2. For the parameters and terms defined in Theorem 6.1 and Algorithm 3, and, in

particular, since d ≥ 2 is an integer constant and γI , γc are constants with γI > 1, then

αdiff = 3 +
γc · γdI
t

+ Ω(1/n)

Proof. Recall the definition αdiff:

αdiff =
Eqa,Xa [q4

a(Xa)]

Eqa,qb,Xa,Xb
[q2
a(Xa) · q2

b (Xb)]

The numerator is identical to the calculation done for αsame. Hence, the numerator is:

E
qa,Xa

[q4
a(Xa)] = Npγcγ

d
I + 3p2N(N − 1)

(
(1− g1 − . . .− gd−1) + γIg1 + . . .+ γd−1

1 gd−1

)

Now, let’s compute the denominator. Let us represent polynomials qa and qb as qa(x) =
∑

S cSxS

and qb(x) =
∑

S dSxS where the coefficients are sampled from DCoeff,p and inputs are sampled from

DInp. Then,

E
qa,qb,Xa,Xb

[q2
a(Xa)q

2
b (Xb)] = E

qa,qb,Xa,Xb

[
∑

S1,S2,S3,S4

cS1cS2dS3dS4Xa,S1Xa,S2Xb,S3Xb,S4 ]

Now, since the odd moments of every coefficient variable are 0, and the second moment of the input
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variables is 1, this becomes:

E
qa,qb,Xa,Xb

[q2
a(Xa)q

2
b (Xb)] = E

qa,qb,Xa,Xb

[
∑
S1,S3

c2
S1
d2
S3
X2
a,S1

X2
b,S3

]

= p2 E
Xa,Xb

[
∑
S1,S3

X2
a,S1

X2
b,S3

]

= N2p2

This means that:

αdiff =
Npγcγ

d
I + 3p2N(N − 1)

(
(1− g1 − . . .− gd−1) + γIg1 + . . .+ γd−1

1 gd−1

)
N2p2

=
Npγcγ

d
I + 3p2N(N − 1)

(
1 + (γI − 1)g1 . . .+ (γd−1

I − 1)gd−1

)
N2p2

=
γcγ

d
I

t
+ 3

(
1− 1

N

)(
1 + (γI − 1)g1 . . .+ (γd−1

I − 1)gd−1

)

Observe that gi = PrS1 6=S2 [|S1 ∩ S2| = i] = θ(1/ni) for i ∈ [d]. Hence, for t = Np and since γI > 1,

then

αdiff ≥
γcγ

d
I

t
+ 3

(
1− 1

N

)(
1 + θ(

1

n
)

)

Since d is a constant integer greater than 1, then N = Ω(n2) and

αdiff = 3 +
γcγ

d
I

t
+ Ω

(
1

n

)
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Corollary 6.1. For the parameters and terms defined in Theorem 6.1 and Algorithm 3, then

αth = 3 + Ω(1/n)

Proof. This follows directly from Lemmas 6.1 and 6.2.

Now we will show that our algorithm is correct with high probability by first showing correctness

given the same distribution and then showing correctness given the diff distribution.

Lemma 6.3. For the parameters and terms defined in Theorem 6.1 and Algorithm 3, and, in partic-

ular, since γI , γc, εI = θ(1), t = Ω(n log n ·C4d
I ), and m = Ω(n2C8d

I C
8
c log10 n), then with probability

1− n−ω(1), Algorithm 3 outputs 0, given a randomly chosen input from the same distribution.

Proof. Suppose that we are given a randomly chosen input from the same distribution, that is we

receive {qi, qi(x)}i∈[m] where each qi is sampled from Qn,d,p and x is randomly sampled from D∗Inp,n.

Let X be a random variable with distribution D∗Inp,n. Define Vi for i ∈ [m/2] to be the following

random variable which is a function of random variable X and the implicit random variables

representing the coefficients of q2i−1 and q2i:

Vi = q4
2i−1(X) + q4

2i(X)− 2αthq
2
2i−1(X)q2

2i(X)

We now define random variable µ as

µ = µi = E
q2i−1,q2i

[Vi] = E
q2i−1,q2i

[q4
2i−1(X) + q4

2i(X)− 2αth · q2
2i−1(X)q2

2i(X)].

Note that since the distributions of each qi are i.i.d., then µi = µj for any i, j ∈ [m/2]. Then,
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observe that

Pr[Algorithm 3 outputs 0 | same] = Pr
X,q1,...,qm

∑
i

q4
i (X)− 2αth

∑
i∈[m/2]

q2
2i−1(X)q2

2i(X) < 0



= Pr
X,q1,...,qm

 ∑
i∈[m/2]

Vi < 0



= Pr
X,q1,...,qm

 ∑
i∈[m/2]

(Vi − µ) +mµ/2 < 0



Thus, in order to prove the lemma, it suffices to show that

Pr
X,q1,...,qm

 ∑
i∈[m/2]

(Vi − µ) +mµ/2 < 0

 ≥ 1− n−ω(1). (1)

To prove the above, we will show that the following two conditions hold:

1. PrX [µ < 0] ≥ 1− n−ω(1)

2. PrX,q1,...qm

[
|
∑

i∈[m/2](Vi − µ)| < |mµ/2|
]
≥ 1− n−ω(1)

Then, Equation 1 follows from these two conditions since

Pr
X,q1,...,qm

 ∑
i∈[m/2]

(Vi − µ) +mµ/2 < 0

 = Pr
X,q1,...,qm

 ∑
i∈[m/2]

(Vi − µ) < −mµ/2



≥ Pr
X,q1,...,qm

 ∑
i∈[m/2]

(Vi − µ) < |mµ/2|

Pr
X

[µ < 0]

≥ Pr
X,q1,...,qm

| ∑
i∈[m/2]

(Vi − µ)| < |mµ/2|

Pr
X

[µ < 0]

≥ 1− n−ω(1)
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Claim 6.1. PrX [µ < 0] ≥ 1− n−ω(1)

Proof. Recall that if Z is a random variable over the coefficent distribution DCoeff,p, then all odd

moments of Z are 0 and E[Z2] = p, E[Z4] = pγc. Then, using a similar calculation as in the

previous lemmata, we obtain that:

µ = E
q2i−1,q2i

[q4
2i−1(X) + q4

2i(X)− 2αth · q2
2i−1(X)q2

2i(X)]

= 2(
∑
S

pγcX
4
S +

∑
S1 6=S2

3p2X2
S1
X2
S2

)− 2αth(
∑
S

p2X4
S +

∑
S1 6=S2

p2X2
S1
X2
S2

)

= 2p(γc − pαth)
∑
S

X4
S + p2(6− 2αth)

∑
S1 6=S2

X2
S1
X2
S2

Observe, that since αth > 3 + Ω(1/n), then

µ < 2p(γc − pαth)
∑
S

X4
S − Ω(1/n)p2

∑
S1 6=S2

X2
S1
X2
S2

< 2pγc
∑
S

X4
S − Ω(1/n)p2

∑
S1 6=S2

X2
S1
X2
S2

Since the input distribution is CI bounded, then

Pr
X

µ < 2pγcNC
4d
I − Ω(1/n)p2

∑
S1 6=S2

X2
S1
X2
S2

 ≥ 1− n−ω(1)

Since the input distribution satisfies Pr[|DInp| > εI ] > Ω(1), where εI = Ω(1), then

Pr
X

 ∑
S1 6=S2

X2
S1
X2
S2

= Ω(N2)

 ≥ 1− n−ω(1)
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This means that if

p2N2/n >> γcpNC
4d
I

then

Pr
X

[µ < 0] ≥ 1− n−ω(1)

Since γc = O(1), this is ensured because Np = t >> nC4d
I .

To prove the second condition, we will first prove the following:

Claim 6.2. With probability 1− e−Ω(log2 n) over the coins of qi, then for any x,

|qi(x) =
∑
S

cSxS | ≤ O(CdICc
√
t log n)

Proof. To prove this we will apply the Hoeffding bound. For a fixed x, we define qi(x) =
∑

S cSxS

where each coefficient is chosen independently from DCoeff,p. Recall that this means each coefficient

is set to 0 with probability 1− p and sampled from a distribution DCoeff with probability p. Now,

we can instead consider sampling qi(x) by first sampling a set T representing all monomials with

non-zero coefficients and then sampling coefficients cS from DCoeff for each set S ∈ T . If this set

T is constructed by choosing each set S of size d with probability p, then we have an equivalent

method of sampling qi(x). Thus,

qi(x) =
∑
S∈T

cSxS

where cS is now chosen from DCoeff and T is randomly sampled as described above. Note that the

expected number of elements inside set T is t = Np. Let k be the number of elements inside a set
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T . Since DInp is CI bounded and DCoeff is Cc bounded, then |qi(x)| ≤ kCdICc. we can now use the

Hoeffding bound to prove

Pr[|qi(x)| <
√
kCdICc log n] > 1− e−Ω(log2 n)

Then, observe that by chernoff bound,

Pr[|k − t| < t/2] > 1− e−Ω(t)

Thus, by the union bound and since t > n,

Pr
[
|qi(x)| ≤ O(CdICc

√
t log n)

]
≥ Pr

[
(|qi(x)| <

√
kCdICc log n) ∧ (k ∈ [t/2, 3t/2])

]
≥ 1− e−Ω(t) − e−Ω(log2 n)

= 1− e−Ω(log2 n)

Now, we prove the second condition.

Claim 6.3. PrX,q1,...,qm

[
|
∑

i∈[m/2](Vi − µ)| < |mµ/2|
]
≥ 1− n−ω(1)

Proof. We would like to use the Hoeffding bound. However, since the Vi’s are not independent, we

will first condition our variables on X = x for a specific value x. We define random variable Vi,x
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to be Vi conditioned on X = x. Similarly, we will define µx to be µ conditioned on X = x.

Vi,x = q4
2i−1(x) + q4

2i(x)− 2αth · q2
2i−1(x)q2

2i(x)

µx = E[Vi,x]

Note that Vi,x is a function of the implicit random variables representing the coefficients of q2i−1

and q2i, and that µx is a value, not a random variable. Then, by Claim 6.2, for all x,

Pr
q2i−1,q2i

[
|Vi,x| ≤ O(C4d

I C
4
c t

2 log4 n)
]
≥ 1− n−ω(1)

Now we want to apply the Hoeffding bound to bound
∑

i∈[m/2](Vi,x− µx). However, the Hoeffding

bound requires that each random variable Vi,x is bounded within an interval of O(C4d
I C

4
c t

2 log4 n)

with probability 1 over the coins of choosing the polynomials. But this happens only with prob-

ability 1 − n−ω(1) in our case. In order to deal with this issue, we define random variable V ′i,x

as

V ′i,x =


Vi,x if |Vi,x| ≤ O(C4d

I C
4
c t

2 log4 n)

0 else

and define

µ′x = E[V ′i,x]

Observe that by Hoeffding’s inequality, since V ′i,x is bounded in absolute value by O(C4d
I C

4
c t

2 log4 n),
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then

Pr
q1,...,qm

| ∑
i∈[m/2]

(V ′i,x − µ′x)| ≤ O(
√
m/2C4d

I C
4
c t

2 log5 n)

 ≥ 1− e−Ω(log2 n)

We will now relate this back to the variables we wish to bound. First, we will bound the difference

between the expectations of Vi,x and V ′i,x. Consider

E[Vi,x] = E[Vi,x | Vi,x = V ′i,x] Pr[Vi,x = V ′i,x] + E[Vi,x | Vi,x 6= V ′i,x] Pr[Vi,x 6= V ′i,x]

Note that due to the niceness of our coefficient and input distributions, each coefficient is bounded

in absolute value by Cc and each input is bounded in absolute value by CI . Thus each qi(x)

is bounded in absolute value by NCdICc and Vi,x is bounded in absolute value by O(N4C4d
I C

4
c ).

Therefore, E[Vi,x | Vi,x 6= V ′i,x] = O(N4C4d
I C

4
c ). Since Pr[Vi,x 6= V ′i,x] = O(n−ω(1)), then

E[Vi,x] = E[Vi,x | Vi,x = V ′i,x] Pr[Vi,x = V ′i,x] +O(n−ω(1))

= E[V ′i,x] +O(n−ω(1))

This means that |µx − µ′x| = |E[Vi,x]− E[V ′i,x]| ≤ O(n−ω(1)). Now, consider

∑
i∈[m/2]

(V ′i,x − µx) =
∑

i∈[m/2]

(V ′i,x − µ′x) +
m(µ′x − µx)

2

Thus, since |µx − µ′x| ≤ O(n−ω(1)), then

Pr
q1,...,qm

| ∑
i∈[m/2]

(V ′i,x − µx)| ≤ O(
√
m/2C4d

I C
4
c t

2 log5 n)

 ≥ 1− e−Ω(log2 n)
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As Vi,x = V ′i,x with probability 1− n−ω(1), then by a union bound,

Pr
q1,...,qm

| ∑
i∈[m/2]

(Vi,x − µx)| ≤ |
∑

i∈[m/2]

V ′i,x − µx|

 ≥ 1− n−ω(1)

Since the above probabilities are true for all x, it holds that

Pr
X,q1,...,qm

| ∑
i∈[m/2]

(Vi − µ)| ≤ O(
√
m/2C4d

I C
4
c t

2 log5 n)

 ≥ 1− n−ω(1)

We will now conclude a lower bound on |µ|. Recall that in the proof of Claim 6.1, we showed

µ = 2p(γc − pαth)
∑
S

X4
S + p2(6− 2αth)

∑
S1 6=S2

X2
S1
X2
S2

Since PrX [µ < 0] ≥ 1− n−ω(1) by Claim 6.1, then

Pr
X

|µ| = 2p(pαth − γc)
∑
S

X4
S + p2(2αth − 6)

∑
S1 6=S2

X2
S1
X2
S2

 ≥ 1− n−ω(1)

Since αth = 3 + Ω(1/n), then

Pr
X

|µ| ≥ −2pγc
∑
S

X4
S + (p2/n)

∑
S1 6=S2

X2
S1
X2
S2

 ≥ 1− n−ω(1)

Since the input distribution DInp is (γI , CI , εI) nice and εI = θ(1), then

Pr
X

[
|µ| ≥ −2pγcNC

4d
I + Ω((p2/n)N(N − 1))

]
≥ 1− n−ω(1)
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Since γc = θ(1) and Np = t = ω(nC4d
I ), then

Pr
X

[
|µ| = Ω(t2/n)

]
≥ 1− n−ω(1)

This means that

Pr
X,q1,...,qm

| ∑
i∈[m/2]

(Vi − µ)| < |mµ/2|

 ≥ 1− n−ω(1)

as long as

√
m/2C4d

I C
4
c t

2 log5 n <<
mt2

2n

which is true since

m > 2n2C8d
I C

8
c log10 n

Lemma 6.4. For the parameters and terms defined in Theorem 6.1 and Algorithm 3, and, in partic-

ular, since γI , γc, εI = θ(1), t = Ω(n log n ·C4d
I ), and m = Ω(n2C8d

I C
8
c log10 n), then with probability

1− n−ω(1), Algorithm 3 outputs 1, given a randomly chosen input from the diff distribution.

Proof. Suppose that we are given a randomly chosen input from the diff distribution, that is we

receive {qi, qi(xi)}i∈[m] where each qi is sampled from Qn,d,p and each xi is sampled from D∗Inp,n.

Let X1, . . . , Xm be random variables with distribution D∗Inp,n.6 Define Ui for i ∈ [m/2] to be the

6For this proof, we will switch from our usual custom of using Xi to denote a random variable with distribution
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following random variable which is a function of random variables X2i−1, X2i and the implicit

random variables representing the coefficients of q2i−1 and q2i:

Ui = q4
2i−1(X2i−1) + q4

2i(X2i)− 2αthq
2
2i−1(X2i−1)q2

2i(X2i)

We now define µ as

µ = µi = E[Ui].

Note that since the distributions of each qi are i.i.d., then µi = µj for any i, j ∈ [m/2]. Similarly

to before, observe that

Pr[Algorithm 3 outputs 0 | diff] = Pr
X1,...,Xm,q1,...,qm

∑
i

q4
i (X)− 2αth

∑
i∈[m/2]

q2
2i−1(X)q2

2i(X) ≥ 0



= Pr
X1,...,Xm,q1,...,qm

 ∑
i∈[m/2]

Ui ≥ 0



= Pr
X1,...,Xm,q1,...,qm

 ∑
i∈[m/2]

(Ui − µ) +mµ/2 ≥ 0



Thus, in order to prove the lemma, it suffices to show that

Pr
X1,...,Xm,q1,...,qm

 ∑
i∈[m/2]

(Ui − µ) +mµ/2 ≥ 0

 ≥ 1− n−ω(1). (2)

Using a similar argument as in the previous lemma, to prove the above, it suffices to show that the

following two conditions hold:

1. µ > 0

DInp and instead use Xi to denote a random variables with distribution D∗Inp,n.
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2. PrX1,...,Xm,q1,...qm

[
|
∑

i∈[m/2](Ui − µ)| < |mµ/2|
]
≥ 1− n−ω(1)

Equation 2 follows from these two conditions since

Pr
X1,...,Xm,q1,...,qm

 ∑
i∈[m/2]

(Ui − µ) +mµ/2 ≥ 0

 = Pr
X1,...,Xm,q1,...,qm

 ∑
i∈[m/2]

(Ui − µ) ≥ −mµ/2



≥ Pr
X1,...,Xm,q1,...,qm

−1 · |
∑

i∈[m/2]

(Ui − µ)| ≥ −mµ/2



= Pr
X1,...,Xm,q1,...,qm

| ∑
i∈[m/2]

(Ui − µ)| ≤ mµ/2



= Pr
X1,...,Xm,q1,...,qm

| ∑
i∈[m/2]

(Ui − µ)| ≤ |mµ/2|


≥ 1− n−ω(1)

Claim 6.4. µ = Ω(t2/n) > 0

Proof. First, observe that by definition of αdiff then

αdiff =
Eqa,Xa [q4

a(Xa)]

Eqa,qb,Xa,Xb
[q2
a(Xa) · q2

b (Xb)]

which implies

E
qa,Xa

[q4
a(Xa)]− αdiff · E

qa,qb,Xa,Xb

[q2
a(Xa) · q2

b (Xb)] = 0

Thus,

E
q2i,q2i−1,X2i−1,X2i

[q4
2i−1(X2i−1) + q4

2i(X2i)− 2αdiff · q2
2i−1(X2i−1)q2

2i(X2i)] = 0
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Therefore,

µ = E
q2i,q2i−1,X2i−1,X2i

[Ui] = E
q2i,q2i−1,X2i−1,X2i

[q4
2i−1(X2i−1) + q4

2i(X2i)

− 2αthq
2
2i−1(X2i−1)q2

2i(X2i)]

= E
q2i,q2i−1,X2i−1,X2i

[q4
2i−1(X2i−1) + q4

2i(X2i)

− (αsame + αdiff)q2
2i−1(X2i−1)q2

2i(X2i)]

= E
q2i,q2i−1,X2i−1,X2i

[q4
2i−1(X2i−1) + q4

2i(X2i)

− 2αdiffq
2
2i−1(X2i−1)q2

2i(X2i)

+ (αdiff − αsame)q
2
2i−1(X2i−1)q2

2i(X2i)]

= E
q2i,q2i−1,X2i−1,X2i

[(αdiff − αsame)q
2
2i−1(X2i−1)q2

2i(X2i)]

Observe that q2i−1 and q2i have expected density t = Np. Then, since the odd moments of each

input and coefficient variable are zero, and the second moment of each input and coefficient variable

is 1, then

E
q2i,q2i−1,X2i−1,X2i

[q2
2i−1(X2i−1)q2

2i(X2i)] = N2p2 = t2

Therefore, since αdiff − αsame = Ω(1/n) by Lemmas 6.3 and 6.4, then

µ = Ω(t2/n) > 0
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Claim 6.5. PrX1,...,Xm,q1,...qm

[
|
∑

i∈[m/2](Ui − µ)| < |mµ/2|
]
≥ 1− n−ω(1)

Proof. Since µ > 0, this will follow if we show that

Pr
X1,...,Xm,q1,...qm

| ∑
i∈[m/2]

(Ui − µ)| < mµ

2

 ≥ 1− n−ω(1)

Now, for all xi,

Pr
qi

[
|qi(xi)| = O(CdICc

√
t log n)

]
≥ 1− eΩ(− log2 n)

This can be proven with a proof identical to that of Claim 6.2. This means that

Pr
X2i−1,X2i,q2i−1,q2i

[
|Ui| = O(C4d

I C
4
c t

2 log4 n)
]
≥ 1− eΩ(− log2 n)

We now want to apply the Hoeffding bound to bound |
∑

i∈[m/2](Ui − µ)|. We will proceed in the

same manner as in the previous lemma. As before, we only have |Ui| = O(C4d
I C

4
c t

2 log4 n) with

probability 1−eΩ(− log2 n) as opposed to probability 1. To deal with this, we define random variable

U ′i as

U ′i =


Ui if |Ui| ≤ O(C4d

I C
4
c t

2 log4 n)

0 else

and define

µ′ = µ′i = E[U ′i ]

Observe that by Hoeffding’s inequality, since U ′i is bounded in absolute value by O(C4d
I C

4
c t

2 log4 n),
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then

Pr
X1,...,Xm,q1,...,qm

| ∑
i∈[m/2]

(U ′i − µ′)| ≤ O(
√
m/2C4d

I C
4
c t

2 log5 n)

 ≥ 1− e−Ω(log2 n)

We will now relate this back to the variables we wish to bound. First, we will bound the difference

between the expectations of Ui and U ′i . Consider

E[Ui] = E[Ui | Ui = U ′i ] Pr[Ui = U ′i ] + E[Ui | Ui 6= U ′i ] Pr[Ui 6= U ′i ]

Note that due to the niceness of our coefficient and input distributions, each coefficient is bounded

in absolute value by Cc and each input is bounded in absolute value by CI . Thus each qi(xi)

is bounded in absolute value by NCdICc and Ui is bounded in absolute value by O(N4C4d
I C

4
c ).

Therefore, E[Ui | Ui 6= U ′i ] = O(N4C4d
I C

4
c ). Since Pr[Ui 6= U ′i ] = O(n−ω(1)), then

E[Ui] = E[Ui | Ui = U ′i ] Pr[Ui = U ′i ] +O(n−ω(1))

= E[U ′i ] +O(n−ω(1))

This means that |µ− µ′| = |E[Ui]− E[U ′i ]| ≤ O(n−ω(1)). Now, consider

∑
i∈[m/2]

(U ′i − µ) =
∑

i∈[m/2]

(U ′i − µ′) +
m(µ′ − µ)

2

Thus, since |µ− µ′| ≤ O(n−ω(1)), then

Pr
X1,...,Xm,q1,...,qm

| ∑
i∈[m/2]

(U ′i − µ)| ≤ O(
√
m/2C4d

I C
4
c t

2 log5 n)

 ≥ 1− e−Ω(log2 n)
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As Ui = U ′i with probability 1− n−ω(1), then by a union bound,

Pr
X1,...,Xm,q1,...,qm

| ∑
i∈[m/2]

Ui − µ| ≤ |
∑

i∈[m/2]

U ′i − µ|

 ≥ 1− n−ω(1)

Therefore,

Pr
X1,...,Xm,q1,...,qm

| ∑
i∈[m/2]

(Ui − µ)| ≤ O(
√
m/2C4d

I C
4
c t

2 log5 n)

 ≥ 1− n−ω(1)

Now, by Claim 6.4, then

µ = Ω(t2/n) > 0

This means that

Pr
X1,...,Xm,q1,...,qm

| ∑
i∈[m/2]

(Ui − µ)| < mµ/2

 ≥ 1− n−ω(1)

as long as

√
m/2C4d

I C
4
c t

2 log5 n <<
mt2

2n

which is true since

m > 2n2C8d
I C

8
2 log10 n
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Corollary 6.2. For the parameters and terms defined in Theorem 6.1 and Algorithm 3, then with

probability 1 − n−ω(1), Algorithm 3 outputs 0 when given a randomly chosen input from the same

distribution and outputs 1 when given a randomly chosen input from the diff distribution.

Proof. This follows directly from Lemmas 6.3 and 6.4.

Running Time. Algorithm 3 first computes ratio αth which can be computed exactly using the

formulae described in Lemmas 6.1 and 6.2. This step consists of O(dO(1)) operations. Then, the

algorithm computes a simple objective function which consists of O(m) real operations. The run-

ning time scales multiplicatively as the number of real operations times the cost of manipulating `

bit numbers where ` is the precision of the input to the algorithm.

Thus, from the correctness and running time results above, we prove Theorem 6.1.

A On PIDGs, iO, and Pseudo-Flawed Smudging Generators

Lin and Matt [LM18] propose the notion of a pseudo-flawed smudging generator as a tool for build-

ing iO, and they propose using the candidates from the work of Ananth, Jain, and Sahai [AJS18] to

instantiate this object (see also [JLMS19]). While the definition of this object is quite complex, Lin

and Matt suggest by way of example (see [LM18], p. 26), that if the candidates of [AJS18] satisfied

the notion of a PIDG, and a little more, then this would yield a pseudo-flawed smudging generator.

However, the polynomial families suggested by [AJS18, JLMS19] in fact satisfy the conditions we

require for our non-trivial distinguishers to exist.

Intuitively, this attack arises because pseudo-flawed smudging generators require that polyno-

mials over the integers achieve computational indistinguishability with respect to a distribution

that satisfies a statistical “flawed smudging” property. The most natural such distributions would
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be product distributions, and attacking the assumption with respect to a product distribution

corresponds to solving the PIDP.

An interesting open question is whether there are non-product distributions that also satisfy

the flawed smudging property, thereby potentially allowing the existence of pseudo-flawed smudging

generators despite our attacks.
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[CHK+19] Arka Rai Choudhuri, Pavel Hubácek, Chethan Kamath, Krzysztof Pietrzak, Alon

Rosen, and Guy N. Rothblum. Finding a nash equilibrium is no easier than breaking

Fiat-Shamir. In Moses Charikar and Edith Cohen, editors, 51st ACM STOC, pages

1103–1114. ACM Press, June 2019.

[CHN+16] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel

Wichs. Watermarking cryptographic capabilities. In Daniel Wichs and Yishay Man-

sour, editors, 48th ACM STOC, pages 1115–1127. ACM Press, June 2016.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-

Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional en-

cryption. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014,

volume 8441 of LNCS, pages 578–602. Springer, Heidelberg, May 2014.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent

Waters. Candidate indistinguishability obfuscation and functional encryption for all

circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

[Gol00] Oded Goldreich. Candidate one-way functions based on expander graphs. Electronic

Colloquium on Computational Complexity (ECCC), 7(90), 2000.

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the crypto-

graphic hardness of finding a nash equilibrium. In Matthew Robshaw and Jonathan

Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 579–604. Springer,

Heidelberg, August 2016.

[GR10] Shafi Goldwasser and Guy N. Rothblum. Securing computation against continuous

leakage. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 59–79.

83



Springer, Heidelberg, August 2010.

[Gri01] Dima Grigoriev. Linear lower bound on degrees of positivstellensatz calculus proofs

for the parity. Theor. Comput. Sci., 259(1-2):613–622, 2001.

[HJK+16] Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sahai, Brent Waters, and

Mark Zhandry. How to generate and use universal samplers. In Jung Hee Cheon and

Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages

715–744. Springer, Heidelberg, December 2016.

[HSW13] Susan Hohenberger, Amit Sahai, and Brent Waters. Full domain hash from (leveled)

multilinear maps and identity-based aggregate signatures. In Ran Canetti and Juan A.

Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 494–512. Springer,

Heidelberg, August 2013.

[Jai19] Aayush Jain. Public talk: Evidence for resilient generators. New Roads to Cryptopia,

CRYPTO, 2019. https://crypto.iacr.org/2019/affevents/nrc/page.html.

[JLMS19] Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage hardness

of constant-degree expanding polynomials overa R to build iO. In Yuval Ishai and

Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages

251–281. Springer, Heidelberg, May 2019.

[JLS19] Aayush Jain, Huijia Lin, and Amit Sahai. Simplifying constructions and assumptions

for iO. Cryptology ePrint Archive, Report 2019/1252, 2019. https://eprint.iacr.

org/2019/1252.

84

https://crypto.iacr.org/2019/affevents/nrc/page.html
https://eprint.iacr.org/2019/1252
https://eprint.iacr.org/2019/1252


[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability ob-

fuscation for turing machines with unbounded memory. In Rocco A. Servedio and

Ronitt Rubinfeld, editors, 47th ACM STOC, pages 419–428. ACM Press, June 2015.

[KMOW17] Pravesh K. Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer. Sum of squares

lower bounds for refuting any CSP. In Hamed Hatami, Pierre McKenzie, and Valerie

King, editors, 49th ACM STOC, pages 132–145. ACM Press, June 2017.

[KS98] Aviad Kipnis and Adi Shamir. Cryptanalysis of the oil & vinegar signature scheme. In

Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 257–266. Springer,

Heidelberg, August 1998.

[KS99] Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE public key cryptosystem

by relinearization. In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS,

pages 19–30. Springer, Heidelberg, August 1999.

[LM18] Huijia Lin and Christian Matt. Pseudo flawed-smudging generators and their appli-

cation to indistinguishability obfuscation. IACR Cryptology ePrint Archive, 2018:646,

2018.

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear

maps and block-wise local PRGs. In Jonathan Katz and Hovav Shacham, editors,

CRYPTO 2017, Part I, volume 10401 of LNCS, pages 630–660. Springer, Heidelberg,

August 2017.

[LV17] Alex Lombardi and Vinod Vaikuntanathan. Limits on the locality of pseudorandom

generators and applications to indistinguishability obfuscation. In Yael Kalai and

85



Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 119–137.

Springer, Heidelberg, November 2017.

[MST03] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-biased generators in NC0.

In 44th FOCS, pages 136–145. IEEE Computer Society Press, October 2003.

[OW14] Ryan O’Donnell and David Witmer. Goldreich’s PRG: evidence for near-optimal poly-

nomial stretch. In IEEE 29th Conference on Computational Complexity, CCC 2014,

Vancouver, BC, Canada, June 11-13, 2014, pages 1–12, 2014.

[Sch08] Grant Schoenebeck. Linear level lasserre lower bounds for certain k-CSPs. In 49th

FOCS, pages 593–602. IEEE Computer Society Press, October 2008.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable

encryption, and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484.

ACM Press, May / June 2014.

86


	Introduction
	Our Results

	Technical Overview
	Non-trivial Probability Distinguishers
	Overwhelming Probability Distinguisher

	Preliminaries
	Polynomial Independence Distinguishing Problem
	Pseudo-Independent Distribution Generator
	Distribution Definitions
	Polynomial Notation and Expectations

	Useful Lemmas
	Non-trivial Probability Distinguishers
	An Expectation Distinguisher
	Non-trivial Distinguisher for Polynomials with Non-negative Coefficients
	Non-trivial Distinguisher for Expander Based Polynomials

	Overwhelming Probability Distinguisher
	On PIDGs, iO, and Pseudo-Flawed Smudging Generators
	References



