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Maternal and fetal genetic effects on birth weight and their 
relevance to cardio-metabolic risk factors

A full list of authors and affiliations appears at the end of the article.
# These authors contributed equally to this work.

Abstract

Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has 

been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-

wide association analyses of own birth weight (n=321,223) and offspring birth weight (n=230,069 
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mothers), we identified 190 independent association signals (129 novel). We used structural 

equation modelling to decompose the contributions of direct fetal and indirect maternal genetic 

effects, and then applied Mendelian randomization to illuminate causal pathways. For example, 

both indirect maternal and direct fetal genetic effects drive the observational relationship between 

lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce 

offspring birth weight, but only direct fetal effects of those alleles, once inherited, increase later 

offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse 

intrauterine environment provided no evidence that it causally raises offspring blood pressure, 

indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, 

and not to intrauterine programming.

Birth weight is an important predictor of newborn and infant survival, a key indicator of 

pregnancy outcomes, and is observationally associated with future risk of adult cardio-

metabolic diseases in the offspring. These observational associations are often assumed to 

reflect adaptations made by a developing fetus in response to an adverse intrauterine 

environment, a concept termed the Developmental Origins of Health and Disease 

(DOHaD)1. Support for DOHaD is primarily from animal models (reviewed in 2). 

Observational studies of famine-exposed populations support prenatal programming in 

relation to type 2 diabetes (T2D), but not other cardio-metabolic health measures (reviewed 

in 3). However, DOHaD cannot provide a complete explanation for the relationship between 

lower birth weight and increased risk of cardio-metabolic disease. Other likely contributing 

factors are (i) environmental confounding, leading to phenotypic associations across the life-

course4, and (ii) shared genetic effects operating at the population level5. Genetic 

associations between birth weight and later cardio-metabolic diseases may arise from the 

direct effects of the same inherited genetic variants at different stages of the life-course6. 

However, consideration of an individual’s own genotype in isolation cannot exclude 

potential confounding by any indirect effects of the correlated maternal genotype (r≈0.5) on 

the intrauterine, and possibly postnatal, environment. Evidence for maternal indirect effects 

on birth weight and later offspring disease risk could implicate the intrauterine environment 

in later-life disease etiology.

To date, 65 genetic loci have been associated with birth weight in genome-wide association 

studies (GWAS), implicating biological pathways that may underlie observational 

associations with adult disease5,7–9. However, most of those studies did not distinguish 

between maternal and fetal genetic influences. Evidence from monogenic human models10 

and variance components analyses11 demonstrate that birth weight is influenced both by 

genotypes inherited by the fetus and by maternal genotypes that influence the intrauterine 

environment. To date, GWAS of own birth weight5, and maternal GWAS of offspring birth 

weight7, have produced overlapping signals due to the correlation between maternal and 

fetal genotypes. Identified birth weight variants might have (i) a direct fetal effect only, (ii) 

an indirect maternal effect only, or (iii) some combination of the two. Performing separate 

GWAS analyses of own or offspring birth weight precludes full resolution of the origin of 

the identified genetic effects.
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To address these issues, we performed greatly-expanded GWAS of own (n=321,223) and 

offspring birth weight (n=230,069 mothers) using data from the EGG Consortium and the 

UK Biobank (2017 release). We applied a structural equation model that we recently 

developed to partition genetic effects on birth weight into maternal and fetal components at 

genome-wide significant loci7,12. We then extended the method to estimate maternal- and 

fetal-specific genetic effects across the genome in a computationally efficient manner, and 

used the results for downstream analyses. Our ability to resolve maternal and fetal genetic 

contributions provides substantial insights into the underlying biological regulation of birth 

weight and into the origins of observational relationships with T2D and blood pressure.

Results

Meta-analyses of fetal and maternal GWAS

We conducted GWAS meta-analyses of own (fetal) genetic variants on own birth weight 

(Supplementary Figure 1, Supplementary Tables 1, 2) and maternal genetic variants on 

offspring birth weight (Supplementary Figure 2, Supplementary Tables 3, 4) in individuals 

of European ancestry. We then performed approximate conditional and joint multiple-SNP 

analysis (COJO13) and a trans-ethnic meta-analysis to identify further independent SNPs 

(Methods). The GWAS meta-analysis of own birth weight (N=321,223) identified 146 

independent single nucleotide polymorphisms (SNPs) at genome-wide significance 

(P<6.6x10-9; Supplementary Figures 3, 4, 5a, Supplementary Table 5a, Methods). The 

GWAS meta-analysis of offspring birth weight (N=230,069 mothers) identified 72 

independent SNPs (P<6.6x10-9; Supplementary Figures 3, 4, 5b, Supplementary Table 5a, 

Methods). Applying the more lenient significance threshold used previously (P<5x10-8)5,7, 

211 SNPs and 105 SNPs reached significance for own and offspring birth weight, 

respectively (Supplementary Table 5b).

SNPs at 30 genome-wide significant loci (within 500Kb and r2 ≥ 0.1) were identified in the 

GWAS of both own and offspring birth weight. Of these, 9 loci had the same lead SNP and 

21 loci had fetal and maternal lead SNPs correlated with r2 ≥ 0.1. Colocalization analysis 

indicated 19/21 of these correlated lead SNP pairs were likely tagging the same birth weight 

signal (posterior probability > 0.5). Therefore, we identified a total of 190 independent 

association signals, represented by 209 lead SNPs (Supplementary Figure 4, Supplementary 

Table 5a). Of the 209 lead SNPs, 146 were novel representing 129 independent association 

signals, three are rare (minor allele frequency (MAF)<1%) and 13 are low-frequency 

(1%≤MAF<5%). The three rare variants (at the YKT6/GCK, ACVR1C and MIR146B loci) 

alter birth weight by more than double the effect (>100g per allele) of the first common 

variants identified9. In the independent Norwegian MoBa-HARVEST study (N=13,934 

mother-offspring duos), the lead SNPs explained 7% of the variance in birth weight, 

calculated as the sum of variances explained by the fetal genotype (6%), maternal genotype 

(2%), plus twice the covariance (-0.5%). Maternal genome-wide complex trait analysis (M-

GCTA11), which estimates SNP-heritability and partitions this quantity into maternal and 

fetal components, estimated that 39.8% of the variance in birth weight could be explained by 

tagged fetal genetic variation (28.5%), tagged maternal genetic variation (7.6%) and twice 

the covariance (3.7%).
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We integrated data from several sources to highlight possible causal genes underlying the 

identified associations, including gene-level expression data across 43 tissues (from GTEx 

v6p14), placental expression quantitative trait loci (eQTL)15, topologically associating 

domains (TADs) identified in human embryonic stem cells16,17 and non-synonymous SNPs 

(see Supplementary Tables 5a, 5b; Methods). Several genes were highlighted by multiple 

approaches; however, further functional studies are required to confirm causality.

Structural equation model to estimate maternal and fetal effects

We next partitioned the 209 lead SNPs into five categories based on their maternal and/or 

fetal genetic contributions to birth weight. To achieve this, we used structural equation 

modelling (SEM) that accounts for the correlation between fetal and maternal genotypes and 

thereby provides unbiased estimates of the maternal and fetal genetic effects on birth 

weight12 (see Methods and Supplementary Figure 6a for details). The results are presented 

in Figure 1, Supplementary Figures 4, 7 and Supplementary Table 5. Using the confidence 

intervals around the SEM-adjusted maternal and fetal effect estimates, we identified 64 

SNPs with fetal-only effects, 32 SNPs with maternal-only effects, 27 SNPs with 

directionally-concordant fetal and maternal effects, and 15 SNPs with directionally-opposing 

fetal and maternal effects (Supplementary Figure 8). For example, rs10830963 at MTNR1B 
was identified in both the own birth weight (P=2.8x10-11) and offspring birth weight 

(P=9.1x10-39) GWAS, but the SEM analysis revealed that its effect was exclusively maternal 

(PSEMfetal=0.7, PSEMmaternal=4.6x10-19). In contrast, rs560887 at G6PC2 was identified only 

in the GWAS of offspring birth weight (P=1.2x10-14), but was found to have directionally-

opposing maternal and fetal effects (βSEMfetal=-0.03, PSEMfetal=2.8x10-8; βSEMfetal=0.04, 

PSEMmaternal=5.4x10-14). At present, these categories are suggestive as the current sample 

size has insufficient statistical power to detect small genetic effects, particularly maternal 

effects. There were 71 unclassified SNPs, and some that were classified as fetal only, for 

example, may have had a small, undetected maternal effect. Asymptotic power calculations 

showed we had 80% power to detect fetal (maternal) effects that explained 0.006% (0.008%) 

of the variance in birth weight (α=0.05). However, there was strong consistency with 

traditional conditional linear regression modelling in N=18,873 mother-offspring pairs 

(Supplementary Table 6, Methods), and overall, the method gave a clear indication as to 

which genetic associations are driven by the maternal or fetal genomes.

To extend the estimates of adjusted maternal and fetal effects genome-wide, we developed a 

weighted linear model (WLM) (see Methods), which yields a good approximation to the 

SEM with equivalent estimates for the 209 lead SNPs (Supplementary Figure 9). This was 

necessary because the SEM is too computationally intensive to fit across the genome. The 

adjusted fetal and maternal genotype effect estimates on birth weight from the WLM are 

hereafter referred to as WLM-adjusted estimates. Using linkage disequilibrium (LD) score 

regression18, we observed that the genetic correlation between the WLM-adjusted maternal 

and fetal effects (rg=0.10, P=0.12) was substantially lower than that between the unadjusted 

effects from the original GWAS (rg=0.82, P<0.01), indicating that the WLM largely 

accounts for the underlying correlation between fetal and maternal genotypes. No additional 

novel loci were identified, but we used the WLM-adjusted estimates in downstream analyses 
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to identify fetal- and maternal-specific mechanisms that regulate birth weight and to 

investigate the genetic links between birth weight and adult traits.

Maternal- and fetal-specific tissues and mechanisms underlying birth weight regulation

Tests of global enrichment of birth weight SNP associations across tissues sampled from the 

GTEx project14 using LD-SEG19 are presented in Supplementary Figure 10. Only 

enrichment for maternal-specific SNP associations for genes expressed in connective/bone 

tissues was detected after Bonferroni correction. Integration of epigenetic signatures defined 

by the Roadmap Epigenomics project highlighted a significant enrichment of maternal-

specific effects in the ovary for histone modification marks (H3K4me1) and regions of open 

chromatin (Supplementary Table 7); no significant enrichment was detected for other 

signatures. Gene-set enrichment analysis implicated different fetal-specific (Supplementary 

Table 8) and maternal-specific (Supplementary Table 9) gene sets.

A major determinant of birth weight is the duration of gestation. Using LD score 

regression18, we found a substantial genetic correlation between published maternal genetic 

effects on gestational duration20 and the WLM-adjusted maternal effects on offspring birth 

weight (rg=0.63; P=2.1x10-5; Supplementary Table 10; Methods), but not with the WLM-

adjusted fetal effects on own birth weight (rg=-0.10, P=0.34). Gestational duration was 

unavailable for >85% of individuals in the birth weight GWAS analyses, so it is possible that 

some identified association signals influence birth weight primarily by altering gestational 

duration. We looked up the 209 lead birth weight-associated SNPs in the published maternal 

GWAS of gestational duration20 (Supplementary Table 11) and followed up 7 associated 

SNPs (P<2.4x10-4, corrected for 209 tests, Methods) in 13,206 mother-child pairs. Meta-

analysis with summary data from 23andMe20 strengthened associations with gestational 

duration at 5/7 loci (EBF1, AGTR2, ZBTB38, KCNAB1 and KLHL25/AKAP13; 

Supplementary Table 12). The precise causal relationship between fetal growth and 

gestational duration at these loci requires further investigation, however, the majority of 

associations with birth weight do not appear to be driven by associations with gestational 

duration.

Maternal- and fetal-specific genetic correlations between birth weight and adult traits

The 209 lead birth weight-associated SNPs were associated with other phenotypes in 

previously-published GWAS and the UK Biobank (Supplementary Table 13, Methods). At 

the genome-wide level, we previously reported genetic correlations between own birth 

weight and several adult cardio-metabolic traits5 but were unable to distinguish the direct 

fetal genotype contribution from the indirect contribution of maternal genotype. To 

understand these distinct contributions, we calculated genetic correlations using LD score 

regression18 between WLM-adjusted fetal and maternal SNP effect estimates and GWAS 

estimates for a range of traits (Figure 2, Supplementary Table 10, Methods). For many traits 

(e.g. adult height), the fetal-specific genetic correlation was similar to the maternal-specific 

genetic correlation, but for some traits, the fetal-specific and maternal-specific genetic 

correlations were different in magnitude (e.g. SBP) or even in direction (e.g. T2D). For 

several glycemic traits, (e.g. fasting glucose) the genetic correlations estimated using the 

WLM-adjusted effects were substantially different from those estimated using the 
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unadjusted effects, demonstrating the importance of accounting for the maternal-fetal 

genotype correlation.

Using genetics to estimate causal effects of intrauterine exposures on birth weight

The separation of direct fetal genotype effects from indirect maternal genotype effects on 

birth weight offers the novel opportunity to estimate unconfounded causal influences of 

intrauterine exposures using Mendelian randomization (MR) analyses. The principle of MR 

is similar to that of a randomized controlled trial: parental alleles are randomly transmitted 

to offspring and are therefore generally free from confounding21,22. Consequently, an 

association between a maternal genetic variant for an exposure of interest, and offspring 

birth weight, after accounting for fetal genotype, provides evidence that the maternal 

exposure is causally related to offspring birth weight (Figure 3a). Previous attempts to 

estimate causal effects of maternal exposures on offspring birth weight were limited by an 

inability to adjust for fetal genotype in adequately-powered samples23, which can now be 

overcome by using WLM-adjusted estimates. We applied two-sample MR24 to estimate 

causal effects of maternal exposures on offspring birth weight, focusing on height, glycemic 

traits and blood pressure. We selected SNPs known to be associated with each exposure, and 

regressed the WLM-adjusted maternal effects on birth weight for those SNPs against the 

effect estimates for the maternal exposure, weighting by the inverse of the variance of the 

maternal exposure effect estimates. In the same way, we used the WLM-adjusted fetal 

effects to estimate the casual effect of the offspring’s genetic potential on their own birth 

weight, and compared the results with the estimated maternal causal effects.

Height and birth weight

Classical animal experiments25 demonstrated that larger maternal size can support greater 

fetal growth. This is supported by observational human data showing that offspring height 

shifts from being closer to maternal than paternal height percentile in infancy towards mid-

parental height in adulthood, the latter reflecting the predominant role of inherited genetic 

variation26. However, several observational studies have provided mixed evidence regarding 

correlations between maternal or paternal height and offspring birth weight: some studies 

show a stronger correlation with maternal than paternal height27,28, which would be 

consistent with a role for intrauterine effects, while others show that maternal and paternal 

height are both strongly correlated with offspring birth weight29–31. The MR analysis, 

using 693 height-associated SNPs32 (Supplementary Table 14), estimated that a 1 SD (6cm) 

higher maternal height is causally associated with a 0.11 SD (95%CI: 0.10, 0.13) higher 

offspring birth weight (Figure 3b), independent of the direct fetal effects. A similar estimate 

was obtained using the WLM-adjusted fetal effects on own birth weight (0.11 SD (95%CI: 

0.09, 0.13)), reflecting the role of inherited height alleles (Supplementary Table 15). Both a 

previous study33 and complementary analysis using transmitted and non-transmitted height 

alleles in mother-offspring pairs estimated a much larger contribution of direct fetal effects 

than indirect maternal effects to offspring birth weight (Supplementary Table 16, Methods), 

but with relatively small sample sizes. Contrary to a previous report33, there was little 

supportive evidence that the maternal height effect on birth weight was via prolonged 

gestation, (P=0.12; Supplementary Table 15). These MR results are consistent with the 

hypothesis that greater maternal height causally increases birth weight, and that this effect is 
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independent of the direct birth weight-raising effect of height alleles inherited by the fetus. 

Although greater availability of space for fetal growth is a possible explanation, we cannot 

rule out other causal pathways. For example, causal associations between greater height and 

more favourable socio-economic position34 could enhance maternal nutritional status and 

result in higher offspring birth weight. We also cannot exclude the contribution of assortative 

mating35 to these results: correlation between maternal and paternal height genotypes could 

lead to similar maternal and fetal MR estimates.

Glycemic traits and birth weight

Maternal glucose is a key determinant of fetal growth: it crosses the placenta, stimulating the 

production of fetal insulin which promotes growth36, and as a consequence, strong, positive 

associations are seen between maternal fasting glucose, fetal insulin levels, and offspring 

birth weight37. In a randomized clinical trial of women with gestational diabetes mellitus, 

glucose control was shown to reduce offspring birth weight38. Therefore, we anticipated 

detecting a positive causal effect of maternal glucose on offspring birth weight, as previously 

observed using MR in a smaller sample23. Indeed, the MR analysis using 33 fasting 

glucose-associated SNPs (Supplementary Table 14), estimated an 0.18 SD (95%CI: 0.13, 

0.23) higher offspring birth weight due to 1 SD (0.4mmol/L) higher maternal fasting 

glucose, independent of the direct fetal effects (Supplementary Table 15, Figure 3c). A large 

part of the genetic variation underlying fasting glucose levels is implicated in pancreatic beta 

cell function and thus overlaps with the genetics of insulin secretion. To estimate the causal 

effect of insulin secretion on birth weight, we used 18 SNPs associated with disposition 

index, a measure of insulin response to glucose, adjusted for insulin sensitivity. Alleles that 

increase insulin secretion in the mother tend to decrease her glucose levels, which 

consequently reduces insulin-mediated growth of the fetus. This was reflected in the 

negative causal estimate from the MR analysis of the effect of maternal disposition index on 

offspring birth weight (-0.17 SD per 1 SD higher maternal disposition index (95%CI: -0.26, 

-0.08); Supplementary Table 15). In contrast, we estimated that birth weight was 0.10 SD 

(95%CI: 0.02, 0.19) higher per 1 SD genetically higher fetal disposition index (Methods), 

highlighting that genetic variation underlying insulin secretion plays a key role in fetal 

growth, and suggesting that the genetic effects on disposition index are similar in fetal and 

adult life.

Birth weight associations with previously-reported GWAS SNPs for fasting glucose, T2D, 

insulin secretion and insulin sensitivity loci were directionally consistent with the overall 

genetic correlations and supported the opposing contributions of fetal versus maternal 

glucose-raising alleles on birth weight (Supplementary Figures 11-14). Taken together with 

the WLM-adjusted genetic correlations, the MR results underline the importance of fetal 

insulin in fetal growth and demonstrate that fetal genetic effects link lower birth weight with 

reduced insulin secretion and higher T2D risk in later life6. However, further work is needed 

to investigate the role of maternal indirect genetic effects in the relationship between high 

birth weight and higher future risk of T2D.
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Blood pressure and birth weight

Observational studies of the relationship between birth weight and later life blood pressure 

have produced mixed findings: some studies indicate that lower birth weight is associated 

with higher later life blood pressure and related comorbidities39, whereas others have shown 

that this relationship could be driven by a statistical artifact due to adjusting for current 

weight40,41. We have previously shown that genetic factors account for a large proportion 

of an association between lower birth weight and higher blood pressure5, but it was not clear 

whether this was due to direct fetal genotype effects, or indirect maternal effects, or a 

combination of the two. We explored this association further using several complementary 

analyses. The estimate of the birth weight-SBP covariance explained was higher when using 

the maternal genotyped SNP associations with offspring birth weight (65% (95%CI: 57, 

74%)), than when using the fetal genotype associations with own birth weight (56% 

(95%CI: 48, 64%); Supplementary Table 17). A similar pattern was seen with the birth 

weight-diastolic blood pressure (DBP) covariance (maternal: 72% (95%CI: 58, 85%); fetal: 

56% (95%CI: 46, 67%); Supplementary Table 17). Together with the larger maternal than 

fetal genetic correlation for SBP (Figure 2), these results point to the importance of indirect 

maternal effects of blood pressure on offspring birth weight (Supplementary Figures 15, 16). 

In line with this, MR analyses indicated that a 1SD (10mmHg) higher maternal SBP is 

causally associated with a 0.15 SD (95%CI: -0.19, -0.11) lower offspring birth weight, 

independent of the direct fetal effects. In contrast, there was no fetal effect of SBP on their 

own birth weight, after adjusting for the indirect maternal effect (-0.01 SD per 10mmHg, 

95% CI: -0.05, 0.03; Figure 3d; Supplementary Tables 14, 15). Similar results were seen in 

the WLM-adjusted MR analyses of DBP on offspring and own birth weight.

Estimating the causal effect of birth weight-lowering intrauterine exposures on offspring 
SBP

A key question is whether maternal SNPs that reduce offspring birth weight through 

intrauterine effects are also associated with higher SBP in their adult offspring. Such an 

association would suggest that the maternal intrauterine effects cause the later SBP effect 

(i.e. through developmental adaptations) (Figure 4a, Supplementary Figure 17). To 

investigate this possibility, we tested the conditional association between maternal and 

offspring genetic scores for birth weight and offspring SBP as measured in 3,886 mother-

offspring pairs in the UK Biobank, with sensitivity analyses in 1,749 father-offspring pairs. 

The fetal genetic score for lower birth weight was associated with higher offspring SBP, 

even after adjustment for maternal (or paternal) birth weight genotypes. However, when 

adjusted for fetal genotypes, the maternal genetic score for lower birth weight was 

associated with lower (not higher) offspring SBP (Supplementary Table 18). Taken together, 

our results demonstrate that the observed negative correlation between birth weight and later 

SBP is driven by (i) the causal effect of higher maternal SBP on lower offspring birth weight 

(Figure 3d), in combination with (ii) the subsequent transmission of SBP-associated alleles 

to offspring, which then increase offspring SBP (Figure 4b), rather than by long-term 

developmental compensations to adverse in utero conditions.
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Discussion

In greatly-expanded GWAS and follow-up analyses of own and offspring birth weight, we 

have identified 129 novel association signals and partitioned the genetic effects on birth 

weight into direct fetal and indirect maternal (intrauterine) effects. Using these partitioned 

effects, we identified fetal- and maternal-specific mechanisms and tissues involved in the 

regulation of birth weight, and mechanisms with directionally-opposing effects in the fetus 

and mother (e.g. insulin secretion, fasting glucose).

MR analyses using the WLM-adjusted estimates showed (i) both direct fetal and indirect 

maternal effects of height-raising genotypes contribute to higher offspring birth weight, (ii) 

fetal, and not maternal, genotype effects explain the negative genetic correlation between 

birth weight and later T2D, and (iii) the negative genetic correlation between birth weight 

and adult SBP is the result of both indirect SBP-raising effects of maternal genotypes 

reducing offspring birth weight, and direct effects of fetal genotypes on higher adult SBP. 

The resolution of maternal vs. fetal effects was higher in these MR analyses than has 

previously been achieved using analyses of available mother-child pairs23, due to greater 

statistical power. Recently, a number of studies have attempted to use MR methodology to 

investigate causal links between birth weight and later T2D43–45. However, such naïve MR 

analyses using two-sample approaches in unrelated sets of individuals, which do not 

properly account for the correlation between maternal and fetal genotype effects, may result 

in erroneous conclusions regarding causality. Future investigations into causal links between 

birth weight and later T2D or other disease outcomes will require larger samples than are 

currently available, with maternal and offspring genotypes and offspring later life disease 

outcomes.

There are some limitations to this study (see Supplementary Note for a full discussion). 

First, the MR results concern birth weight variation within the normal range and do not 

necessarily reflect the effects of extreme environmental events (e.g. famine), which may 

exert qualitatively different effects. Additionally, we have assumed a linear relationship 

between birth weight and later life traits, which may be an oversimplification for some traits 

such as T2D. Second, birth weight is the end marker of a developmental process, with 

critical periods during the process that may make the fetus particularly sensitive to 

environmental influences. The MR analyses could therefore be masking effects at certain 

critical periods. Third, we have assumed that genetic variants identified in large GWAS of 

SBP and glycemic traits in males and non-pregnant females are similarly associated in 

pregnant women. Fourth, we have not investigated the potential gender difference in the 

associations between birth weight and later life traits. Fifth, we have assumed that the 

critical period of exposure to maternal indirect genetic effects is pregnancy, and that the 

estimates do not reflect pre-pregnancy effects on primordial oocytes or post-natal effects42. 

Sixth, we have not considered paternal genotypes, and it is possible that this omission has 

biased the results of some of our analyses. Finally, although we were able to fit the full SEM 

at the 209 lead SNPs, we were unable to fit the SEM, including the two degree of freedom 

test (i.e. where maternal and fetal paths are constrained to zero), at all SNPs across the 

genome.
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To conclude, the systematic separation of fetal from maternal genetic effects in a well-

powered study has enhanced our understanding of the regulation of birth weight and of its 

links with later cardio-metabolic health. In particular, we show that the association between 

lower birth weight and higher adult blood pressure is attributable to genetic effects, and not 

to intrauterine programming. In successfully separating fetal from maternal genetic effects 

and using them in Mendelian randomization analyses, this work sets a precedent for future 

studies seeking to understand the causal role of the intrauterine environment in later life 

health.

Online Methods

Ethics statement

All human research was approved by the relevant institutional review boards and conducted 

according to the Declaration of Helsinki. Participants of all studies provided written 

informed consent. The UK Biobank has approval from the North West Multi-Centre 

Research Ethics Committee (MREC), which covers the UK. Ethical approval for the 

ALSPAC study was obtained by the ALSPAC Ethics and Law Committee and the local 

Research Ethics Committees. Ethical approval for the EFSOCH study was given by the 

North and East Devon Local Ethics Committee. Approval for access to data and biological 

material for MoBa-HARVEST was granted by the Scientific Management Committee of 

MoBa and the Regional Committee for Medical and Health Research Ethics.

Statistical tests

Details of statistical tests used in the various analyses are reported under the appropriate 

headings below. All tests were two-sided, unless otherwise stated.

GWAS of own birth weight

European ancestry meta-analysis—The European ancestry GWAS meta-analysis of 

own birth weight consisted of two components (Supplementary Figure 1): (i) 80,745 

individuals from 35 studies participating in the EGG Consortium from Europe, USA and 

Australia; and (ii) 217,397 individuals of white European origin from the UK Biobank (see 

Supplementary Note for details on phenotype preparation and GWAS analyses). We 

combined the summary statistics from the EGG meta-analysis with the UK Biobank 

summary statistics using a fixed-effects meta-analysis in GWAMA46 (max N=297,142). 

Variants failing GWAS quality control filters, reported in less than 50% of the total sample 

size in the EGG component, or with MAF<0.1%, were excluded. We also performed a fixed-

effects meta-analysis of the association summary statistics for 16,095 directly genotyped 

SNPs on the X-chromosome from the UK Biobank and the EGG meta-analysis using 

GWAMA46 (max N=270,929). Genome-wide significance was defined as P<6.6x10-9 as 

calculated by Kemp et al.47, which was similar to the thresholds calculated using 

permutations by Jones el al.48. A locus was defined as one or more SNPs reaching genome-

wide significance within a region of the genome; two genome-wide significant SNPs are 

defined as belonging to two separate loci if the distance between them is ≥500kb. The lead 

SNP within each locus was the SNP with the smallest P-value.
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Several sensitivity analyses were conducted to confirm the quality of our meta-analysis 

results (see Supplementary Note for details). Univariate LD score regression49 estimated the 

genomic inflation as 1.08, indicating that the majority of genome-wide inflation of the test 

statistics was due to polygenicity. To assess the impact of this inflation, we re-calculated the 

association P-values after adjusting the test statistics for the LD score regression intercept 

(Supplementary Table 5).

Approximate conditional and joint multiple-SNP (COJO) analysis to identify 
additional independent signals—Approximate COJO analysis13 was performed in 

GCTA50 using the European ancestry meta-analysis summary statistics to identify 

independent association signals attaining genome-wide significance (P<6.6x10-9). The LD 

reference panel was made up of 344,246 unrelated UK Biobank participants defined by the 

UK Biobank as having British ancestry and SNPs were restricted to those present in the 

HRC reference panel. At each locus, only SNPs labelled by GCTA as “independent” and not 

in LD with the original lead SNP (R2<0.05) were listed as secondary SNPs.

Trans-ethnic meta-analysis—To identify any further independent birth weight-

associated SNPs, we conducted a trans-ethnic meta-analysis combining three components 

(Supplementary Figure 1): (i) 80,745 individuals from the European ancestry component 

within EGG; (ii) 12,948 individuals from nine studies within EGG from diverse ancestry 

groups: African American, Afro-Caribbean, Mexican, Chinese, Thai, Filipino, Surinamese, 

Turkish and Moroccan; and (iii) 227,530 individuals of all ancestries from the UK Biobank. 

The same strategy and variant filtering criteria were applied as in the European meta-

analysis (Supplementary Figure 1). Univariate LD score regression49 estimated the genomic 

inflation as 1.08. P-values after adjustment of the test statistics for the LD score regression 

intercept are presented in Supplementary Table 5.

GWAS of offspring birth weight

European ancestry meta-analysis—The European ancestry GWAS meta-analysis of 

offspring birth weight consisted of three components (Supplementary Figure 2): (i) 12,319 

individuals from 10 European GWAS imputed up to the HapMap 2 reference panel; and (ii) 

7,542 individuals from two European GWAS imputed up to the HRC panel; and (iii) 

190,406 individuals of white European origin from the UK Biobank (see Supplementary 

Note for details on phenotype preparation and GWAS analyses). We conducted a European 

ancestry fixed-effects meta-analysis to combine the association summary statistics from the 

three components using GWAMA46 (max N=210,267). We also performed a fixed-effects 

meta-analysis of the association summary statistics for 18,137 directly genotyped SNPs on 

the X-chromosome from the UK Biobank and the EGG meta-analysis using GWAMA46 

(max N=197,093). The same strategy and variant filtering criteria were applied as in the 

meta-analysis of own birth weight and the same sensitivity analyses were conducted 

(Supplementary Note).

Univariate LD score regression49 estimated the genomic inflation as 1.05. We recalculated 

the P-values after adjusting the test statistics for this LD score intercept (Supplementary 

Table 5).
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Approximate COJO analysis to identify additional independent signals—We 

performed approximate COJO analysis13 using the European ancestry meta-analysis 

summary statistics of offspring birth weight, using the same reference panel as in the own 

birth weight analysis and listed any secondary “independent” SNPs associated with 

offspring birth weight.

Trans-ethnic meta-analysis—We conducted a trans-ethnic meta-analysis combining 

three components (Supplementary Figure 2): (i) 12,319 individuals from 10 European 

GWAS imputed up to the HapMap 2 reference panel; and (ii) 7,542 individuals from two 

European GWAS imputed up to the HRC panel; and (iii) 210,208 individuals of all ancestry 

from the UK Biobank. The same strategy and variant filtering criteria were applied as in the 

European meta-analysis (Supplementary Figure 2) and the same sensitivity analyses were 

conducted (Supplementary Material). Univariate LD score regression49 estimated the 

genomic inflation as 1.04 and the recalculated P-values after adjusting the test statistics for 

this LD score intercept are presented in Supplementary Table 5.

Colocalization methods

For each signal where we identified different lead SNPs in the GWAS of own birth weight 

and offspring birth weight, we performed co-localization analysis using the "coloc" R 

package51. For each signal, we input the regression coefficients, their variances and SNP 

minor allele frequencies for all SNPs 500kb up and downstream of the lead SNP from the 

European meta-analysis. We used the coloc.abf() function, with its default parameters, to 

calculate posterior probabilities that the own birth weight and offspring birth weight lead 

SNPs were independent (H3) or shared the same associated variant (H4). We called variants 

the same signal if the H4 posterior probability was greater than 0.50, and different signals if 

the H3 posterior probability was greater than 0.50.

Estimation of genetic variance explained

Firstly, we estimated the proportion of birth weight variance explained by fetal genotypes, 

maternal genotypes and the covariance between the two at the 190 genome-wide significant 

signals in the Norwegian Mother and Child Cohort Study (MoBa-HARVEST; https://

www.fhi.no/en/studies/moba/). This sample was independent of samples contributing to the 

discovery meta-analyses, apart from a small potential overlap with mothers from the 

MoBa-2008 sample that was included in the GWAS of offspring birth weight (<0.07% of the 

meta-analysis sample). For the 19 signals that had different maternal and fetal lead SNPs, 

the fetal SNP (and not the maternal SNP) was used in the analysis to avoid collinearity in the 

model. We excluded multiple births, babies of non-European descent, born before 37 weeks 

of gestation, born with a congenital anomaly or still-born. Birth weight was Z-score 

transformed and all models were adjusted for sex, gestational duration and the first 4 

ancestry informative principal components. We conducted a linear regression analysis in 

R52 using 13,934 mother-offspring pairs where offspring birth weight was regressed on the 

maternal and fetal genotypes at all 190 SNPs simultaneously. The proportion of variance 

explained by fetal genotypes at the 190 genome-wide significant signals was calculated as:
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∑
i = 1

190 2pi 1 − pi β f i
2

var BW

Where pi is the effect allele frequency of the ith SNP, β f i
 is the regression coefficient for the 

effect of the offspring’s genotype at the ith SNP on offspring birth weight and var(BW) is the 

variance of offspring birth weight (which is approximately 1 as birth weight was Z-score 

transformed). A similar formula was used to calculate the variance explained by maternal 

genotypes, using :

∑
i = 1

190 2pi 1 − pi βmi
2

var BW

Where βmi
 is the regression coefficient for the effect of the maternal genotype at the ith SNP 

on offspring birth weight. The following formula was used to calculate twice the covariance:

∑
i = 1

190 2pi 1 − pi β f i
βmi

var BW

Secondly, we used maternal genome-wide complex trait analysis11 (M-GCTA) to estimate 

the proportion of variance explained in birth weight by genome-wide SNPs, or SNPs they 

tag, in the fetal genome, the maternal genome, the covariance between the two or 

environmental factors in MoBa-HARVEST. The same phenotype was used as in the previous 

analysis and the model was adjusted for sex and gestational duration. Mothers or offspring 

were excluded if they were related to others in the sample, using a genetic relationship cut-

off 0.025, leaving N=7,910 mother-offspring pairs available for analysis.

Identifying eQTL linked genes

We used FUSION53 with the v6p release of the GTEx data14 to identify eQTL linked 

genes. FUSION incorporates information from gene-expression and GWAS data to translate 

evidence of association with a phenotype from the SNP-level to the gene. Only gene level 

results from the adjusted model were taken forward for consideration. Each of the genes 

implicated by this analysis survived multiple testing correction (Bonferroni corrected 

P<6x10-7, after adjusting for 44 tissues) and were independent from other proximal genes 

tested in a joint model.

Placenta eQTL look ups

We annotated genome-wide significant birth weight-associated SNPs with gene expression 

data (200/209 SNPs available) from European ancestry placental samples in the Rhode 

Island Child Health Study15 (RICHS; N=123 with fetal genotype, including 71 with birth 

weight appropriate for gestational age, 15 small for gestational age, and 37 large for 
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gestational age). SNPs were annotated if they had genome-wide empirical FDR<0.01 for 

association with one or more transcripts and r2>0.7 with a lead eQTL SNP.

TAD pathways

Topologically associating domains (TAD) pathway analysis was performed using software 

described in Way et al.16. Briefly, the software uses publicly available TAD boundaries, 

identified in human embryonic stem cells and fibroblasts using a Hidden Markov Model17, 

to prioritize candidate genes at GWAS SNPs. These TAD boundaries are stable across 

different cell types and can be used to identify genomic regions where non-coding causal 

variants will most likely impact tissue-independent function.

Structural equation model for estimating adjusted maternal and fetal effects of the 
genome-wide significant variants

The structural equation modelling (SEM) approach used to estimate adjusted maternal and 

fetal effects has been described elsewhere12 (for additional details, see Supplementary 

Note).

The SEM was fit to data from 146 genome-wide significant lead fetal SNPs and 72 lead 

maternal SNPs from the GWAS meta-analysis (Supplementary Figure 4). In order to identify 

a subset of unrelated individuals in the UK Biobank (as the SEM cannot easily account for 

relatedness), we generated a genetic relationship matrix in the GCTA software package50 

(version 1.90.2) and excluded one of every pair of related individuals with a genetic 

relationship greater than 9.375%. After the same exclusions were made as in the GWAS, 

85,518 unrelated individuals of European ancestry with their own and their offspring’s birth 

weight, 98,235 individuals with their own birth weight only, and 73,981 with their 

offspring’s birth weight only were available for analysis. We fit linear regression models to 

birth weight and offspring birth weight in this subset of unrelated, European ancestry 

individuals adjusting for sex (own birth weight only), assessment centre and the top 40 

ancestry informative principal components provided by the UK Biobank to account for any 

remaining population substructure. The residuals from these regression models were Z-score 

transformed for analysis. Because we included the summary statistics from the meta-

analysis of the EGG studies, rather than the individual level data, we were unable to account 

for the small subset individuals who contributed to both the own birth weight and offspring 

birth weight GWAS meta-analyses. Based on the results from simulations (not shown), we 

expect that this non-independence will result in very slightly smaller standard errors and 

increased type 1 error rate, particularly for the fetal effect which is estimated from a larger 

sample size than was available to estimate the maternal effect. Therefore, we conducted a 

sensitivity analysis that first excluded EGG studies from the meta-analysis of own birth 

weight that contributed to both GWAS meta-analyses of own and offspring birth weight (e.g. 

ALSPAC), and then refitted the non-overlapping data in the SEM; these results are presented 

in Supplementary Table 19. For SNPs identified on the X chromosome, we fit a slightly 

different SEM due to males having double the expected genetic variance at X linked loci 

compared to females. We did not incorporate summary statistics from the EGG consortium 

as the GWAS results were not stratified according to sex (additional details on the X 
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chromosome analysis are provided in the Supplementary Note and Supplementary Figure 

6b).

We used the estimates from the SEM to classify the lead SNPs into the following five 

categories; 1) fetal only: the 95% confidence interval surrounding the fetal effect estimate 

does not overlap zero and does not overlap the 95% confidence interval around the maternal 

effect estimate. Additionally, the 95% confidence interval surrounding the maternal effect 

estimate overlaps zero; 2) maternal only: the 95% confidence interval surrounding the 

maternal effect estimate does not overlap zero and does not overlap the 95% confidence 

interval around the fetal effect estimate. Additionally, the 95% confidence surrounding the 

fetal effect estimate overlaps zero; 3) fetal and maternal, effects going in the same 
direction: the 95% confidence intervals around both the maternal and fetal effect estimates 

do not overlap zero, and their effect is in the same direction; 4) fetal and maternal, effects 
going in opposite direction: the 95% confidence intervals around both the maternal and fetal 

effect estimates do not overlap zero, and their effects are in opposite directions; and 5) 

unclassified: SNPs that do not fall into any of these categories, and therefore the 95% 

confidence intervals around the maternal and fetal effect estimates overlap, and at least one 

overlaps zero.

Meta-analysis of maternal and fetal effects from a conditional regression analysis in 
mother-offspring pairs

We conducted conditional association analyses for all 209 lead SNPs in 18,873 mother-

offspring pairs from three studies (MoBa-HARVEST, ALSPAC and EFSOCH) adjusting for 

both maternal and offspring genotype and combined the summary statistics for each SNP in 

a fixed effects meta-analysis using METAL54. We compared the estimates of the maternal 

and fetal effects of this meta-analysis to the SEM-adjusted maternal and fetal effects using a 

heterogeneity test (Supplementary Table 6).

Approximation of the SEM for genome-wide analyses

The SEM is computationally intensive to fit, making it difficult to run on all SNPs across the 

genome. Therefore, we developed an approximation of the SEM using a linear 

transformation and ordinary least squares linear regression, which we refer to as the 

weighted linear model adjusted (WLM-adjusted) analyses. The full details of the derivation 

are provided in the Supplementary Note. Briefly, from ordinary least squares regression we 

know that the estimated fetal effect size from the GWAS of own birth weight, β f unadj
, is 

calculated by dividing the sample covariance between birth weight and SNP by the sample 

variance of the SNP. Similarly, the estimated maternal effect from the GWAS of offspring 

birth weight, βmunadj
, is calculated by dividing the sample covariance between offspring 

birth weight and SNP by the sample variance of the SNP. It follows that an estimate of the 

fetal effect adjusted for the maternal genotype is (see Supplementary Note for full 

derivation):
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β f ad j
= − 2

3 βmunad j
+ 4

3 β f unad j

and an estimate of the maternal effect adjusted for the fetal genotype is:

βmad j
= 4

3 βmunad j
− 2

3 β f unad j

If the model is truly linear, then the same estimates can be obtained by transforming the 

reported birth weights rather than the regression coefficients55. See the Supplementary Note 

and Supplementary Figure 18 for a flow diagram of the full analysis pipeline. A comparison 

of the results using this WLM method and the full SEM for the lead SNPs is presented in 

Supplementary Figure 9.

Gene expression integration

To identify which tissue types were most relevant to genes involved in birth weight, we 

applied LD score regression to specifically expressed genes (“LDSC-SEG”)19. We used the 

summary statistics from the GWAS meta-analysis of own and offspring birth weight and the 

WLM-adjusted meta-analyses. Briefly, the method takes each tissue, ranking genes by a t-

statistic for differential expression, using sex and age as covariates, and excluding all 

samples in related tissues. It then takes the top 10% of ranked genes, and makes a genome 

annotation including these genes (exons and introns) plus 100kb on either side. Finally, it 

uses stratified LD score regression to estimate the contribution of this annotation to per-SNP 

birth weight heritability, adjusting for all categories in the baseline model. We computed 

significance using a block jackknife over SNPs, and corrected for the number of tissues 

tested.

Gene-set enrichment analysis (MAGENTA)

Pathway-based associations using summary statistics from the GWAS meta-analysis of own 

and offspring birth weight and WLM-adjusted meta-analysis were tested using 

MAGENTA56. Briefly, the software maps each gene to the SNP with the lowest P-value 

within a 110kb upstream and 40kb downstream window. This P-value is corrected for factors 

such as SNP density and gene size using a regression model. Genes within the HLA region 

were excluded. The observed number of gene scores within a given pathway with a ranked 

gene score above a given threshold (95th or 75th percentile) was calculated. This statistic was 

compared with 1,000,000 randomly permuted pathways of the same size to calculate an 

empirical P-value for each pathway. We considered pathways with false discovery rate 

(FDR) < 0.05 to be of interest. The 3,230 biological pathways tested were from the 

BIOCARTA, Gene Ontology, KEGG, PANTHER and READTOME databases along with a 

small number of custom gene-sets.

Gestational duration associations

We extracted the 209 lead birth weight-associated SNPs from the summary statistics 

provided by 23andMe and published in a recent GWAS of gestational duration20. Any birth 
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weight-associated SNP that was also associated with gestational duration (P<2.4x10-4, 

corrected for 209 tests) was followed-up in 13,206 mother-child pairs from the MoBa-

HARVEST, ALSPAC and EFSOCH studies. Preterm births (gestational duration <37 weeks) 

were removed before analysis, and gestational duration and birth weight were both z-score 

transformed. We conducted linear regression analyses to test the association between 

maternal or fetal genotype (both unadjusted and adjusted genotype effects) and gestational 

duration, birth weight or gestational duration adjusted for birth weight. The association 

analysis results were combined using inverse variance weighted meta-analysis. We also 

combined the unadjusted maternal SNP-gestational duration associations with the 23andMe 

summary statistics20 using P value based meta-analysis implemented in METAL54.

Association between birth weight-associated SNPs and a variety of traits

We performed GWAS on 78 traits in the UK Biobank using BOLT-LMM in an analogous 

way to analysis of own birth weight. Phenotype definitions for the 78 traits are described in 

Frayling et al.57. Association statistics for the 209 lead birth weight-associated SNPs were 

then extracted from the results (Supplementary Table 13). Additionally, we searched the 

NHGRI GWAS catalog (https://www.ebi.ac.uk/gwas/; accessed 16th January 2018) for the 

209 lead birth weight-associated SNPs, or SNPs in high LD with the 209 lead SNPs 

(r2>0.8), and reported associations with other traits (Supplementary Table 13).

Linkage-Disequilibrium (LD) score regression

LD score regression, which has been described in detail elsewhere18, was used to estimate 

the genetic correlation between birth weight and a range of traits/diseases. We used 

LDHub58 (ldsc.broadinstitute.org/) to perform the LD score regression analyses. Due to the 

different LD structure across ancestry groups, the summary statistics from the European 

only birth weight analyses were uploaded to LDHub and genetic correlations were 

calculated with all available phenotypes. We conducted four separate analyses in LDHub 

using: (1) GWAS meta-analysis of own birth weight, (2) GWAS meta-analysis of offspring 

birth weight, (3) WLM-adjusted fetal effect and (4) WLM-adjusted maternal effect.

To calculate the genetic correlation between the maternal and fetal effect estimates from the 

unadjusted and WLM-adjusted analyses, and also between gestational duration and the 

WLM-adjusted maternal and fetal effects, we used the scripts provided by the developer 

(https://github.com/bulik/ldsc).

Mendelian randomization analyses of maternal and fetal exposures on offspring birth 
weight

Two-sample Mendelian randomization analyses were performed with own or offspring birth 

weight as outcomes. The exposures included height, fasting glucose, disposition index of 

insulin secretion59, insulin sensitivity and systolic (SBP) and diastolic blood pressure 

(DBP). The SNP-exposure associations were taken from external studies (Supplementary 

Table 14). The SNP-outcome associations were taken from the current European GWAS 

meta-analyses of own birth weight, offspring birth weight, WLM-adjusted fetal effect and 

WLM-adjusted maternal effect. Two-sample Mendelian randomization regresses effect sizes 

of SNP-outcome associations against effect sizes of SNP-exposure associations, with an 
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inverse-variance weighted (IVW) analysis, giving similar results to the two-stage least 

squares analysis in a single sample60. We performed several sensitivity analyses to assess 

the impact of genetic pleiotropy on the causal estimates including MR-Egger61, Weighted 

Median (WM)62 and Penalized Weighted Median (PWM)62 (see Supplementary Table 15 

for results). Details of the R code for the MR analyses are provided elsewhere61,62.

Due to the strong negative correlation between estimates of the maternal and fetal genetic 

effects on birth weight, we conducted simulations to confirm that this correlation did not 

bias the results of downstream MR analyses; these simulations are described in the 

Supplementary Note.

Transmitted/non-transmitted allele scores in ALSPAC

Allelic transmission was determined for 4,962 mother/offspring pairs in ALSPAC. We first 

converted maternal and fetal genotypes into best guess genotypes where SNPs of interest 

had been imputed. Where one or both of the mother/offspring pair were homozygous, allelic 

transmission is trivial to determine. Where both mother and offspring were heterozygous for 

the SNP of interest we used phase imputation generated using SHAPEIT263 to examine the 

haplotypes in the region of the SNP of interest to determine allelic transmission. Weighted 

allele scores were generated for maternal non-transmitted, shared (maternal transmitted) and 

paternally inherited fetal alleles for SBP, DBP, fasting glucose, insulin secretion and insulin 

sensitivity. Associations were tested between the weighted allele scores and birth weight.

Covariance between birth weight and adult traits explained by genotyped SNPs

The genetic and residual covariance between birth weight and several quantitative/disease 

phenotypes was calculated in the UK Biobank using REML in BOLT-LMM64. We included 

215,444 individuals of European ancestry with data on own birth weight and 190,406 with 

data on offspring birth weight. SNPs with minor allele frequency < 1%, evidence of 

deviation from Hardy-Weinberg equilibrium (P≤1x10-6) or overall missing rate > 0.015 were 

excluded, resulting in 524,307 genotyped SNPs for analysis. Ninety-five per cent confidence 

intervals for the proportion of covariance explained by genotyped variants were calculated as 

gcov/(gcov+rcov) ± 1.96*gcovSE/abs(gcov+rcov) where gcov is genetic covariance, rcov is 

residual covariance, gcovSE is the standard error for gcov and abs is the absolute value. 

Details of the phenotype preparation for the adult traits is provided in the Supplementary 

Note.

Association between maternal SNPs associated with offspring birth weight and later life 
offspring systolic blood pressure

Using the UK Biobank, we tested whether maternal SNPs associated with offspring birth 

weight were also associated with offspring SBP in later life. The UK Biobank released 

kinship information generated in KING65, which included kinship coefficients and IBS0 

estimates. We defined parent/offspring pairs using the kinship coefficient and IBS0 cut-offs 

recommended in Manichaikul et al.65. There were 5,635 unique parent/offspring pairs of 

European ancestry with SBP data (for parents who had multiple offspring with SBP data, 

only the oldest offspring was included in the analysis); 3,886 mother/offspring pairs and 

1,749 father/offspring pairs. We tested the relationship between unweighted allelic scores of 
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birth weight-associated SNPs in mothers/fathers and offspring SBP (see Supplementary 

Note for SBP phenotype preparation) before and after adjusting for offspring genotypes at 

the same loci. We examined unweighted allelic scores consisting of all autosomal lead birth 

weight-associated SNPs available in the UK Biobank (205 SNPs), 72 autosomal SNPs that 

showed evidence of a maternal effect, and 31 autosomal SNPs that showed evidence only of 

maternal effects on birth weight. We also looked at the SNPs previously associated with SBP 

(Supplementary Table 14) as a sensitivity analysis to rule out the possibility of postnatal 

pleiotropic effects contaminating our results. All analyses were adjusted for offspring age at 

SBP measurement, sex and assessment center.

Reporting Summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Editorial summary

An expanded GWAS of birth weight and subsequent analysis using structural equation 

modeling and Mendelian randomization decomposes maternal and fetal genetic 

contributions and causal links between birth weight, blood pressure and glycemic traits.
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Figure 1. Structural equation modelling (SEM)-adjusted fetal and maternal effects for the 193 
lead SNPs that were identified in the GWAS of either own birth weight (left panel) or offspring 
birth weight (right panel) with minor allele frequency greater than 5%.
The SEM included 85,518 individuals from the UK Biobank with both their own and 

offspring’s birth weight, 178,980 and 93,842 individuals from the UK Biobank and the EGG 

consortium with only their own birth weight or offspring’s birth weight respectively. The 

colour of each point indicates the SEM-adjusted fetal effect on own birth weight association 

P-value and the shape of each point indicates the SEM-adjusted maternal effect on offspring 

birth weight association P-value. P-values for the fetal and maternal effect were calculated 

using a two-sided Wald test. SNPs which are labelled with the name of the closest gene are 

those which were identified in the GWAS of own birth weight but whose effects are 

mediated through the maternal genome (left panel) and SNPs that were identified in the 

GWAS of offspring birth weight but whose effects are mediated through the fetal genome 

(right panel). SNPs are aligned to the birth weight increasing allele from the GWAS.
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Figure 2. Genome-wide genetic correlation between birth weight and a range of traits and 
diseases in later life.
Genetic correlation (rg) and corresponding 95% confidence intervals between birth weight 

and the traits were estimated using linkage disequilibrium (LD) score regression in LD Hub. 

Genetic correlations were estimated from the summary statistics of the weighted linear 

model (WLM)-adjusted fetal genome-wide association study (GWAS; WLM-adjusted fetal 

effect on own birth weight) and the WLM-adjusted maternal GWAS (WLM-adjusted 

maternal effect on offspring birth weight). The total sample size included in the WLM-

adjusted GWAS is 406,063 individuals with their own and/or their offspring’s birth weight. 

The genetic correlation estimates are colour coded according to their intensity and direction 

(red for positive correlation and blue for negative correlation). HOMA-B/IR, homeostasis 

model assessment of beta-cell function/insulin resistance; HbA1c, hemoglobin A1c; ADHD, 

attention deficit hyperactivity disorder. See Supplementary Table 10 for the references for 

each of the traits and diseases displayed and the genetic correlation results for other traits 

and diseases.
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Figure 3. Mendelian randomization (MR) to assess the causal effect of maternal intrauterine 
exposures on offspring birth weight (adapted from Lawlor et al. 44)
a. Since maternal and fetal genotypes are correlated, it is essential to account for offspring 

genotype in this analysis. The continuous, thin arrow represents the relationship between the 

genetic instrument and intrauterine exposure. The dashed arrows represent potential 

confounding via maternal characteristics which, under MR assumptions, are not associated 

with the genetic instrument. The dotted arrows represent potential violation of MR 

assumptions via offspring genotype. The thick arrow represents the causal effect of interest.
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b. Higher offspring birth weight is caused by direct fetal genetic effects of height-raising 

alleles and indirect effects of maternal height-raising alleles. Maternal indirect effects of 

height-raising alleles may increase offspring birth weight by increasing the space available 

for growth, but we cannot rule out alternative explanations e.g. assortative mating.

c. Higher maternal fasting glucose levels increase offspring birth weight. Conversely, direct 

fetal genetic effects of glucose-raising alleles reduce birth weight. This is likely due to their 

effects on insulin: variants that lower maternal insulin levels increase maternal glucose, 

which crosses the placenta and stimulates fetal insulin-mediated growth. However, the same 

variants in the fetus cause lower fetal insulin levels, and consequently, reduced fetal insulin-

mediated growth.

d. Higher maternal SBP is causally associated with lower offspring birth weight. After 

adjusting for maternal effects, there was no evidence of an effect of offspring’s own SBP 

genetic score on their own birth weight.

SEP, socio-economic position; BW, birth weight; FPG, fasting plasma glucose; SBP, systolic 

blood pressure. 1 SD of BW = 484g9,42
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Figure 4. Mendelian randomization (MR) to assess the causal effect of intrauterine growth on 
offspring adult outcomes, using maternal intrauterine exposures that influence fetal growth.
a. Maternal genotype should be associated with offspring birth weight independently of 

offspring genotype, so it is essential to adjust the analysis for offspring genotype.

The continuous, thin, arrow represents the relationship between the genetic instrument and 

intrauterine exposure. The long-dashed arrows denote the (maternal and possibly fetal) 

genotype associations with birth weight; these arrows highlight the assumption that genetic 

variation influences offspring adult outcome via intrauterine growth, not birth weight. The 

short-dashed arrows represent potential confounding via maternal and offspring 
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characteristics. The dotted arrow represents potential violation of assumptions of the MR 

analysis via offspring genotype. The thick arrow represents the causal effect of interest.

We have not estimated the size of the causal effect as we do not have effect estimates for the 

SNP-maternal intrauterine exposures influencing fetal growth. However, we have used the 

presence/absence and direction of association in 3,886 mother-offspring pairs to indicate 

whether the intrauterine environment causes changes in adult offspring SBP (see 

Supplementary Table 18 for full results).

b. Our results demonstrate that the observed negative correlation between birth weight and 

later SBP may be driven by the causal effect of higher maternal SBP on lower offspring birth 

weight (red arrow), in combination with the subsequent transmission of SBP-associated 

alleles to offspring (blue arrow), which then increase offspring SBP, rather than by long-term 

developmental compensations to adverse intrauterine conditions.

SEP, socio-economic position; BW, birth weight; SBP, systolic blood pressure.
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