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Abstract
Fueled by the soaring popularity of large language and foundationmodels, the accelerated growth of artificial
intelligence (AI) models’ enormous environmental footprint has come under increased scrutiny. While many
approaches have been proposed to make AI more energy-efficient and environmentally friendly, environmen-
tal inequity — the fact that AI’s environmental footprint can be disproportionately higher in certain regions
than in others — has emerged, raising social-ecological justice concerns. This paper takes a first step toward
addressing AI’s environmental inequity by balancing its regional negative environmental impact. Concretely,
we focus on the carbon and water footprints of AI model inference and propose equity-aware geographical
load balancing (GLB) to explicitly address AI’s environmental impacts on the most disadvantaged regions.
We run trace-based simulations by considering a set of 10 geographically-distributed data centers that serve
inference requests for a large language AI model. The results demonstrate that existing GLB approaches may
amplify environmental inequity while our proposed equity-aware GLB can significantly reduce the regional
disparity in terms of carbon and water footprints.

Source code: https://github.com/Ren-Research/Environmentally-Equitable-AI

1 Introduction
Building on the advances in deep neural networks, artificial intelligence (AI) has become an indispensable
powerhorse for enabling scientific breakthroughs, accelerating business growth, and addressing global chal-
lenges in numerous domains of critical needs [1, 2]. The success of AI relies heavily on computationally-
intensive calculations to learn useful information fromdata during training and provide insightful predictions
during inference. As such, AI models, especially large generative models like GPT-3 [3], are typically trained
on large clusters of power-hungry servers that may each have multiple graphic processing units (GPUs) and
are housed in warehouse-scale data centers. Moreover, for inference, AI models are often deployed in geo-
graphically distributed data centers to server users with low transmission latency.

Consequently, the exponentially growing demand for AI has created an enormous appetite for energy as
well as a negative impact on the environment [3–8]. For example, putting aside the environmental toll of
chip manufacturing (e.g., raw material extraction and toxic chemicals) [9–11] and the noise pollution of run-
ning AI servers [12], training a large language model like GPT-3 and LaMDA can easily consume hundreds of
megawatt-hour of electricity, generatemany tonnes of carbon emissions, and evaporate hundreds of thousands
of liters of clean freshwater for cooling [8, 13, 14]. In fact, even after adopting the industry’s best practices to
curb AI’s resource usage, the overall energy consumption by AI models at Google has taken up∼10-15% of its
data centers’ energy consumption [4]. Crucially, in addition to their impacts on the global climate, AI’s envi-
ronmental footprint also has significant local and regional impacts. Elevated carbon emissions have localized
social costs [15] and may increase local ozone, particulate matter, and premature mortality [16]; electricity
generation, especially when burning fuels, produces local air pollutants, discharges pollution such as thermal
pollution into water bodies, and generates solid wastes (possibly including hazardous wastes) [17]; and stag-
gering water consumption, both directly for on-site cooling and indirectly for off-site electricity generation,
can further stress the already-limited local freshwater resources and even worsen extended megadroughts in
regions like Arizona [14,18].

Fueled by the soaring popularity of large language and foundation models, the accelerated growth of
AI’s environmental footprint has come under increased scrutiny recently [19, 20]. To make AI more energy-
efficient and environmentally friendly, research studies have pursued a variety of approaches, including com-
putationally efficient training and inference [21, 22], energy-efficient GPU and accelerator designs [4, 23, 24],
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carbon-aware task scheduling [7, 20], green cloud infrastructures [25–27], sustainable AI policy recommen-
dations [10,19], among others. As supply-side solutions, data center operators have also increasingly adopted
carbon-free energy such as solar and wind power, (partially) powering AI servers and lowering carbon emis-
sions [20,28,29]. Additionally, to reduce on-site water consumption andmitigate the stress on already-limited
freshwater resources, climate-conscious cooling system designs (e.g., using air-side economizers if the climate
condition permits) have recently seen an uptick in the data center industry [30,31].

While existing efforts are encouraging, a worrisome outcome — environmental inequity — has unfortu-
nately emerged. That is, AI’s environmental footprint is disproportionately higher in certain regions than in
others, potentially exacerbating other unintended social-ecological consequences [32]. For example, a data
center’s on-site cooling water usage effectiveness (WUE, the ratio of water consumption to IT energy con-
sumption) highly depends on the outside temperature [33] — while it can stay below 1.0 L/kWh for data
centers located in cooler climates, the monthly average WUE can be as high as 9.0 L/kWh in the summer in
drought-stricken Arizona [34]. Likewise, there exists a significant regional difference in terms of the carbon
efficiency—as of 2020, only 4% of the energy for Google’s data center in Singapore is carbon-free, whereas this
number goes up to 94% in Finland [4], creating a 23× disparity. Thus, as a result of such regional differences,
certain data center locations are severely “disadvantaged” and more negatively impacted by the environmen-
tal toll of AI. Further compounded by enduring socioeconomic disparities and even potentially amplified by
existing data center scheduling algorithms, environmental inequity of AI can pose critical business risks and
hence needs to be properly reconciled.

Indeed, while it is crucial to mitigate AI’s algorithmic unfairness against disadvantaged individuals or
user groups [35–39], addressing its environmental inequity is also increasingly important and becoming in-
tegral to responsible AI. For example, in the first-ever global agreement to ensure healthy development of
AI, the United Nations Educational, Scientific and Cultural Organization (UNESCO) recommends that “AI
should not be used” if it creates “disproportionate negative impacts on the environment” [40]. Among all
the environmental-related topics, Meta ranks environmental justice as the most critical one with the greatest
impact on its business risks and opportunities [29]. More recently, studies have also emerged to suggest new
regulations pertinent to AI’s growing environmental footprint [19], and holistic assessment of AI as social-
ecological-technological systems using available tools from environmental justice [41]. In a different but rel-
evant context, the disproportionate environmental impacts (e.g., air pollution and water consumption) of
energy-consuming digital asset operations have already raised environmental justice concerns which, accord-
ing to the recommendation of the U.S. White House Office of Science and Technology, need to be addressed
as a priority to support responsible development [42].

In this paper, we take a first step to address the emerging environmental inequity of AI by balancing its
negative environmental impact across geographically-distributed data centers. More concretely, we focus on
the carbon and water footprints of AI model inference and dynamically schedule users’ inference requests
(also referred to asworkloads in this paper) using equity-aware geographical load balancing (GLB). Tomitigate
environmental inequity, the key novelty of our GLB approach is that we augment the traditional cost-saving
objective by explicitly including minimization of the most significant negative environmental impacts among
all the data centers. We also extend our GLB problem formulation to consider more advanced settings where
there is on-site carbon-free energy available to power the AI workloads and where we can further exploit AI’s
energy-accuracy flexibility by dynamically choosing one or more AI models to serve the workloads.

To empirically evaluate our proposed equity-aware GLB, we run trace-based simulations by considering a
set of 10 geographically-distributed data centers that serve inference requests for a large language AI model.
Our results demonstrate that the proposed equity-aware GLB can significantly reduce the carbon and wa-
ter footprints in the most disadvantaged region. In stark contrast, existing carbon- and water-saving GLB
approaches may even amplify environmental inequity.

In summary, our work is the first study to advance AI’s environmental equity via GLB, connecting research
across data center scheduling, sustainable AI, and equitable AI. It highlights the need and great potential of
equity-aware GLB to address AI’s emerging environmental inequity.

2 Related Works
Our work contributes to the literature on GLB for cloud computing and data centers [26, 27, 33, 43–54]. Prior
studies focus on reducing the total energy cost, carbon footprint, water footprint, or a weighted combination
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of these metrics; ignoring the potential for regional disparities. We show in this paper that existing GLB
algorithms can potentially amplify environmental inequity by further exploiting already vulnerable regions.
For example, GLB algorithms that aggressively exploit lower electricity prices [50,53] and/ormore renewables
[51, 52] may schedule more workloads to data centers (located in, for example, Arizona) that are extremely
water-stressed; thus adding a disproportionately high pressure to local water systems.

Sustainable AI has received a significant amount of attention in recent years [3–7,13,55]. To make AI more
energy-efficient and sustainable, a variety of approaches have been explored and studied, including compu-
tationally efficient training and inference [21, 22], energy-efficient GPU and accelerator designs [4, 23, 24],
carbon-aware task scheduling [7, 20], green cloud infrastructures [25–27, 56], among others. While they are
useful for overall sustainability, these studies do not address the emerging environmental equity among differ-
ent regions for deploying AI services. Additionally, they have mostly focused on carbon footprint, neglecting
other crucial environmental footprints, e.g., water footprint [14, 28, 29, 57]. In contrast, we holistically con-
sider both carbon and water footprints and make novel contributions to sustainable AI from the perspective
of environmental equity.

There also exist non-computational approaches to improving AI’s environmental sustainability. For exam-
ple, data center operators have increasingly adopted carbon-free energy such as solar and wind power to
lower AI’s carbon emissions [20, 28, 29, 57]. To cut on-site potable water consumption and mitigate the stress
on already-limited freshwater resources, climate-conscious cooling system designs (e.g., air-side economizers
and purifying non-potable water) have recently seen an uptick in the data center industry [30,31]. These non-
computational approaches alone are typically not the most effective solution to sustainable AI, and must be
designed in conjunction with computational approaches (e.g., workload scheduling) [27,44,58,59]. As such,
our study of equity-aware GLB can inform the planning of on-site carbon-free energy and cooling system
renovation projects to better achieve social and environmental justice.

Equity and fairness are crucial considerations for the success of AI. The existing research in this space has
predominantly focused onmitigating prediction unfairness against disadvantaged individuals and/or groups
under a variety of settings [35–39, 60–66]. Our work on environmental equity adds a unique dimension of
fairness and greatly complements the existing rich body of research, collaboratively and holistically building
equitable and socially-responsible AI.

3 Problem Formulation
We consider a pre-trained AI model (e.g., large language model) that is deployed for inference services over
a set N = {1, · · · , N} of geographically distributed data centers to serve users in different regions. There
are a set J = {1, · · · , J} of front-end traffic gateways that aggregate users’ requests from their respective
surrounding areas and assign the requests to data centers, which is also referred to as geographical load
balancing (GLB) in the literature [51]. The GLB decisions are made in a time-slotted manner over a total
of T time slots. In practice, each time slot can range from a few minutes to about an hour, depending on
how frequently the decisions are updated. We also interchangeably use “workloads” and “requests” when
referring to users’ demand for the AI model inference service.

Each data center houses a cluster of servers (typically each equipped with multiple GPUs) to host AI
models for inference. For the ease of presentation, we assume a homogeneous AI model on all the servers,
while the extension to heterogeneous AI models with different model sizes is considered in Section 4.2.2.
During each time slot, the maximum service capacity for the AI model inference is Mi for data center i. We
use λj,t to denote the total amount of workloads arriving at gateway j at time t, and xij(t) ≥ 0 to represent the
GLB decision (i.e., the load assigned to data center i from gateway j). For the convenience of presentation,
we also use x(t) = {xi,j(t) | i ∈ N , j ∈ J } as the collection of all the GLB decisions at time t.

The total load assigned to data center i is ∑j∈J xij(t) ≤ Mi at time t, thus resulting in a total server
energy consumption of ei(x(t)) which is an increasing function of∑j∈J xij(t). For example, ei(x(t)) can be
expressed as ei(x(t)) = ρi,tĒi,s +

∑
j∈J xij(t)

Mi
· Ēi,d where Ēi,s is the server cluster’s static/idle energy even

when no workload is processed in data center i, Ēi,d is the cluster’s dynamic energy consumed when only
processing workloads,

∑
j∈J xij(t)

Mi
is the cluster-level utilization, and

∑
j∈J xij(t)

Mi
≤ ρi,t ≤ 1 indicates how well

the cluster is right-sized in proportion to the workloads (i.e., ρi,t =
∑

j∈J xij(t)

Mi
means the cluster is perfectly

sized to the workloads by turning off unused servers, while ρi,t = 1 means the servers are always kept on
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regardless of the assigned workloads).
Next, we model the energy cost, carbon footprint, and water footprint in terms of the GLB decisions.
Energy cost. Suppose that the electricity price and power usage effectiveness (PUE, which accounts for

non-IT energy consumption such as cooling systems and power distribution losses) are pi,t and γi,t for data
center i at time t, respectively. Then, the total energy cost at time t can be written as

gt(x(t)) =
∑
i∈N

pi,tγi,tei(x(t)). (1)

Note that, if the AI model inference service is run on virtual machine (VM) instances rented from public
cloud providers, the electricity price pi,t becomes the VM price subject to the VM instance type and gt(x(t)) =∑

i∈N pi,tei(x(t)) is the total VM rental cost at time t where ei(x(t)) represents the number of VM instances
rented to process the assigned workloads in location i.

Carbon footprint. The carbon footprint of AI model inference is embedded in the generation of electricity
using carbon-intensive fuels such as coal [8, 11, 52]. By denoting the carbon efficiency as αi,t with a unit of
gram/kWh, we have the following carbon footprint for data center i at time t:

ci,t(x(t)) = αi,tγi,tei(x(t)) (2)
The carbon efficiency αi,t can be obtained by querying the local utility or averaging the carbon efficiency of
the grid’s fuel mix.

Water footprint. To serve AI model inference, data centers consume clean freshwater both directly and
indirectly [14, 30, 67, 68]. The direct water consumption comes from the cooling system to keep servers from
overheating. Specifically, data centers commonly use cooling towers as the heat rejection mechanism due to
their energy efficiency and applicability to a wide range of weather conditions, but a large amount of water
is evaporated into the outside environment (i.e., not returning to the source and instead entering the global
water ecosystem) and hence considered “consumed” [30]. For example, depending on the outside wet-bulb
temperature, a cooling tower typically consume 1∼4 liters of water (up to 9 liters of water in the summer) for
each kWh server energy [34]. Importantly, the vast majority of the cooling water supply is drinking-grade
(e.g., nearly 90% for Google’s U.S. data centers in 2021 [30]). Although air-side economizers (i.e., directly
using outside air to cool down servers) can be used save water if the climate condition is sutiable, water is still
needed when the outside temperature is high and/or the humidity is low — Meta’s state-of-the-art cooling
systems use an average of 0.26 liters of water for each kWh server energy across its global data center fleet in
2021 [29]. Additionally, electricity generation incurs significant water footprint (e.g., coal and nuclear power
plants require a large volume of water consumption for cooling), with the U.S. national average electricity
water intensity at around 1.8 L/kWh (excluding hydropower) [14,18,69]. Thus, the same as carbon footprint,
AI models are also accountable for indirect water footprint. By combining both direct and indirect water
consumption, the water footprint for data center i at time t is

wi,t (x(t)) = [ϵi,t + βi,tγi,t] · ei (x(t)) , (3)
where ϵi,t is the direct water usage effectiveness (WUE) for on-site cooling, βi,t is the indirect WUE for off-site
electricity generation, and γi,t is the PUE.Note that the directWUE is defined as the ratio ofwater consumption
to IT server energy consumption [70], and hence we do not need to multiply γi,t when calculating the direct
water consumption. In practice, the direct WUE ϵi,t heavily depends on the outside temperature, and hence
can be modeled as a time-varying function in terms of the outside weather condition [14,34]. Like the carbon
efficiency, the indirect WUE βi,t measures the water consumption per kWh electricity generation and can be
calculated by averaging over the water intensity of different energy fuels [33]. Note that, as a large bulk of the
on-site water cost is the fixed connection charge based on the maximum water consumption rate, the cost for
the actual on-site water usage is typically much smaller compared to the energy cost. Thus, we exclude the
actual monetary water cost from our problem formulation.

4 Geographical Load Balancing for Environmentally Equitable AI
TomakeAI environmentally equitable, we propose tomitigate the disproportionality of AI’s negative environ-
mental impacts on different regions by optimally balancing AI workloads among geographically distributed
data centers.
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4.1 Basic Setting
We first consider the setting in which all the data centers are powered by grid electricity and the inference
workloads are served by homogeneous AI models. While addressing AI’s environmental inequity, our goal
is not to blindly equalize its regional environmental footprint, which, as similarly observed in the context of
mitigating AI’s algorithmic unfairness [35], may artificially elevate the environmental footprints in those oth-
erwise advantaged regions and provide a false sense of fairness. Instead, we adopt the notion of minimax
fairness [35, 63, 71] and exploit the power of GLB as a software-based approach to explicitly minimize AI’s
environmental impact on the most disadvantaged region.

Mathematically, we augment the cost-saving objective by including minimization of the greatest environ-
mental impacts among all the data centers. Our equity-aware GLB problem is formulated as follows:

min
x(t)

T∑
t=1

gt(x(t)) + µc ·max
i∈N

[
Hi,c

(
T∑

t=1

ci,t(x(t))

)]
+ µw ·max

i∈N

[
Hi,w

(
T∑

t=1

wi,t (x(t))

)]
, (4a)

s.t. xi,j(t) = 0, if Bi,j = 0, ∀ i ∈ N , j ∈ J , t = 1, · · · , T, (4b)∑
j∈J

xi,j(t) ≤ Mi, ∀ i ∈ N , t = 1, · · · , T, (4c)
∑
i∈N

xi,j(t) = λi,j , ∀ j ∈ J , t = 1, · · · , T, (4d)

where the assignment condition Bi,j = 0 indicates that the workloads cannot be assigned from gateway j to
data center i (due to, e.g., latency constraints or data sovereignty regulations) and hence enforces xi,j = 0 in
(4b), the constraint (4c) means that the total workloads assigned to a data center cannot exceed its processing
capacity, and the constraint (4d) requires that all workloads arriving at a gateway be assigned to data centers.
In the optimization objective (4a), the monotonically-increasing functionsHi,c() andHi,w() quantify the neg-
ative environmental impacts of AI on data center i due to its carbon footprint andwater footprint, respectively,
and can be specified based on the local environment assessment.

Using a linear function Hi,w

(∑T
t=1 wi,t (x(t))

)
= θi ·

∑T
t=1 wi,t (x(t)) as an illustrative example, we can

set a higher θi ≥ 0 if data center i is located in a severely water-stressed and drought-prone region. In line
with the principle of proportionality, the total carbon footprint∑T

t=1 ci,t(x(t)) in Hi,c() and water footprint∑T
t=1 wi,t(x(t)) inHi,w() for data center i can be normalized by the maximum processing capacityMi to avoid

overly penalizing a larger data center whose environmental footprint is inevitably larger.
Note that the two functions Hi,c() and Hi,w() are general enough and can also capture the effects of addi-

tional sustainability practices that data center operators may adopt (e.g., installing solar for carbon mitigation
and restoring watersheds for local water supply [28, 29]). The term∑T

t=1 gt(x(t)) in (4a) is the total energy
cost. The hyperparameters µc ≥ 0 and µw ≥ 0 indicate the relative importance weights of carbon footprint
equity and water footprint equity, respectively, and can be flexibly tuned to balance the impact of carbon and
water footprints. For example, by setting µc = 0, we focus solely on the negative environmental impact of AI’s
water footprint. In addition, we can also include into (4a) AI’s other environmental impacts such as concerns
with the servers’ noise pollution [12].

Importantly, the two cost termsmaxi∈N

[
Hi,c

(∑T
t=1 ci,t(x(t))

)]
andmaxi∈N

[
Hi,w

(∑T
t=1 wi,t (x(t))

)]
im-

prove environmental equity by penalizing the greatest environmental impacts that AI model inference creates
on different regions. This is fundamentally different from the existing sustainable GLB techniques that have
predominantly focused on minimizing the weighted sum of energy costs, carbon footprint and/or water foot-
print [27,33,51,52,72] and, as shown in our experiments (Section 5), can even potentially exacerbate environ-
mental inequity by aggressively exploiting the already-disadvantaged regions.

Due to their dependency on the long-term carbon andwater footprints, the two equity-related costs couple
all the GLB decisions over T time slots. Thus, it is challenging to solve (4a)–(4d) and optimize the equity-
aware GLB decisions in an online manner without having complete information about all the future workload
arrivals, energy prices, carbon efficiency, andWUE.We leave the design of an efficient online algorithm as our
future research.
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4.2 Extensions
Next, we discuss how to incorporate on-site carbon-free energy and heterogeneousAImodels to further enrich
our GLB design.
4.2.1 On-site Carbon-free Energy
To directly cut the carbon footprint, some centers have begun to install on-site carbon-free energy, such as
solar power, to partially power the workloads [27,44]. Suppose the intermittent carbon-free energy available
for data center i at time t is zi,t. Then, the amount of electricity drawn from the grid by data center i becomes
max {γi,tei(x(t))− zi,t, 0}, where γi,t and ei(x(t)) are the PUE and AI server cluster’s energy consumption,
respectively. Thus, the energy cost, carbon footprint, and indirect water footprint can be calculated based on
max {γi,tei(x(t))− zi,t, 0}, while the direct water consumption remains unchanged.
4.2.2 Heterogeneous AI Models
Our current problem formulation focuses on GLB decisions by assuming a single AI model for inference and
does not exploit the performance flexibility of AI models. In practice, for the same inference service, a set of
heterogeneous AI models with distinct computing resource consumption and accuracy performance are often
available via model pruning and compression [73], offering flexible energy-accuracy tradeoffs. For example,
there are eight different GPT-3 model sizes, ranging from the smallest one with 125 million parameters to the
largest one with 175 billion parameters [3].

Suppose that there are a set K = {1, · · · ,K} of heterogeneous AI models for our considered inference
service. For time t, we can dynamically choose to run one ormore AImodels to serve the incomingworkloads.
This is also equivalent to distributing the workload∑j∈J xi,j(t) to K heterogeneous AI models within data
cener i. We denote by yi,k(t) ≥ 0 as the amount of workloads distributed to AI model k in data center i.
Naturally, yi,k(t) = 0means that the AI model k is not chosen in data center i at time t.

When deployed in data center i, the energy consumption and server resource usage of AI model k for
processing workloads yi,k(t) are denoted by ei,k(yi,k(t)) and ri,k(yi,k(t)), respectively. Thus, the total server
energy in data center i becomes ẽi(y(t)) =

∑
k∈K ei,k(yi,k(t)), where y(t) = {yi,k(t) | i ∈ N , k ∈ K} represents

the collection of decisions for workload assignment to different AI models. Similarly, with heterogeneous
AI models, we can re-define the carbon footprint and water footprint as c̃i,t(y(t)) and w̃i,t(y(t)) by replacing
ei(x(t)) with ẽi(y(t)) =

∑
k∈K ei,k(yi,k(t)) in (2) and (3), respectively.

To optimally distribute workloads to AI models with different energy-accuracy tradeoffs, we need to con-
sider the cost associated with different levels of accuracy performance, since otherwise always choosing the
smallest model can generally result in the lowest energy consumption. Specifically, we refer to the cost as
performance cost and denote it by sk(yi,k(t)), whose dependency on yi,k(t) can be explained by noting that
the performance cost is potentially more significant when more users use the model (i.e., yi,k(t) is larger).

Next, by combining the energy cost and performance cost, we consider a generalized operational cost as
follows:

g̃t(y(t)) =
∑
i∈N

∑
k∈K

[pi,tγi,t · ei,k(yi,k(t)) + ϕ · sk(yi,k(t))] , (5)

where the hyperparameter ϕ ≥ 0 converts the performance cost sk(yi,k(t)) to a monetary value and indicates
the importance of inference performance relative to the energy cost.

Finally, we formulate the GLB problem with heterogeneous AI models as follows:

min
x(t),y(t)

T∑
t=1

g̃t(y(t)) + µc ·max
i∈N

[
Hi,c

(
T∑

t=1

c̃i,t(y(t))

)]
+ µw ·max

i∈N

[
Hi,w

(
T∑

t=1

w̃i,t (y(t))

)]
, (6a)

s.t. xi,j(t) = 0, if Bi,j = 0, ∀ i ∈ N , j ∈ J , t = 1, · · · , T, (6b)∑
x∈N

xi,j(t) = λi,j , ∀ j ∈ J , t = 1, · · · , T, (6c)∑
k∈K

ri,k (yi,k(t)) ≤ Mi, ∀ i ∈ N , t = 1, · · · , T, (6d)∑
j∈J

xi,j(t) =
∑
k∈K

yi,k(t), ∀ j ∈ J , t = 1, · · · , T, (6e)
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where the objective (6a) is to minimize the generalized operational cost (including both energy and perfor-
mance costs) while addressing environmental inequity, the constraint (6d) means that the total resource de-
mandmust be nomore than the server cluster’s capacity, and the last constraint (6e) ensures that theworkload
assigned to each data center is always served by one of the heterogenous AI models.

5 Experiments
In this section, we report on experiments of different GLB algorithms using trace-based simulations. Our
results demonstrate that GLB-Equity has a great potential to effectively address AI’s environmental inequity
that would otherwise be potentially amplified by other GLB algorithms.
5.1 Methodology
Detailed information about data center operation, such as the number of housed servers and their configu-
rations, hourly WUE, hourly carbon efficiency, and pricing contracts for electricity are generally considered
to be business secretes and are not available in the public domain. Thus, in line with the prior GLB litera-
ture [33, 50–52], we run simulations by scaling up workload traces collected from public sources and consid-
ering synthetic data center settings that approximate realistic scenarios.
5.1.1 Workload Trace
We consider an inference service provided by homogeneous AI models (Section 4.1). To obtain the workload
trace, we extract the GPU power usage data from [8] for the server cluster hosting the large language model
BLOOM over an 18-day period (between September 23 and October 11 in 2022). As there is only a single
workload trace provided for BLOOM in [8], we evenly distribute the workload trace to the 10 gateways (plus
a small perturbation to account for different time zones), since each data center in our setup has the same
capacity (Section 5.1.2) and this allows us to focus on the environmental impact without introducing unnec-
essary heterogeneities. As in [8], we directly quantify the amount of workload using power demand. We also
scale up the workload trace to match our data center power capacity as introduced below.
5.1.2 Data Centers
We consider a set of 10 geo-distributed data centers, including four in the U.S. (Virginia, Georgia, Texas, and
Nevada), four in Europe (Belgium, the Netherlands, Germany, and Denmark), and two in Asia (Singapore
and Japan). These locations are all a large presence of data centers, including Google’s data centers [4]. The
details of data center locations are available in the appendix.

Assuming that there are 10 gateways corresponding to the 10 data center locations, we consider two sce-
narios: (1) full GLB flexibility: theworkloads can be flexibly dispatched from any gateway to any data center;
and (2) partial GLB flexibility: the workloads arriving at a gateway can only be dispatched to a certain subset
of data centers. The “full GLB flexibility” scenario represents an ideal case that data center operators strive to
achieve, where the “partial GLB flexibility” scenario accounts for various constraints such as network band-
width and transmission latency.

For processing AI inference workloads, we assume that each data center houses a cluster of 500 homoge-
neous servers. Each server is equipped with four NVIDIA A100 GPUs and has a maximum total power of 2
kW. Thus, excluding the network switches and servers for other services beyond the scope of our study, each
data center has a maximum power of 1 MW for AI inference.

We set the data center PUE as 1.1, which is consistent with the state-of-the-art PUE value with efficient
operation [4,28]. For simplicity, we use the actual carbon footprint andwater footprint tomeasure the regional
environmental impact (i.e., Hi,c(x) = x andHi,w(x) = x in (4a)).
5.1.3 Energy Price, Carbon Efficiency, and WUE
We collect hourly energy prices for the 10 data centers over the same 18-day period as our workload trace.
Specifically, for each data center in Europe and Asia, we collect the hourly country-level energy prices from
[74]. For the U.S. data centers, we collect the hourly energy prices from their respective ISOs [75].

For each of the U.S. data centers, we collect the state-level hourly energy fuel mix data [75] and calculate
the hourly carbon efficiency and indirect WUE based on the fuel mix by following [52] and [33], respectively.
The carbon efficiency and energy water intensity factor (EWIF) for each fuel mix are chosen based on [52]
and [14]. We do not have free access to the hourly energy fuel mix data for our data center locations in Europe

7



and Asia [74]. Thus, we generate synthetic hourly fuel mixes for these locations based on the U.S. data. The
details are available in the appendix.

To model the on-site WUE, we assume that the data centers use cooling towers, which are very common
in the industry (even in water-stressed regions like Singapore [76] and Arizona [34]). We collect the hourly
weather data from [77] for the airports closest to each of our data center locations, and then obtain the wet
bulb temperature from the dry bulb temperature and relative humidity based on [78]. Next, we calculate
the on-site WUE using the empirical formula in terms of the wet-bulb temperature presented in [33]. While
we assume cooling towers as the heat rejection mechanism, our study can be easily generalized to air-side
economizers, which use water for humidity control or when the outside dry bulb temperature is high [31].
5.1.4 Optimizer
We focus on offline optimization to quantify the potential of equity-aware GLB to address AI’s environmental
inequity, while leaving the design of online GLB algorithms as our future work to investigate howmuch of the
potential can be realized with online information in practice. Specifically, we consider hourly GLB decisions
and use cvxpy to solve (4a)–(4d) offline based on the complete information about all the future workload
arrivals, energy prices, carbon efficiency, and WUE values. We refer to this offline algorithm as GLB-Equity.
It takes about 3 minutes on a desktop with Intel i7-9700K CPU and 16GB RAM to solve the problem for an
18-day simulation in our experiments. The weight hyperparameters in (4a) are set as µc = 1500 $/ton and
µw = 60 $/m3. Note that these hyperparameters are only used to adjust the relative importance of different
cost terms in the optimization process and do not reflect the true monetary costs of carbon or water footprints.
5.1.5 Metrics
We evaluate GLB-Equity in terms of the followingmetrics: average energy cost (the total energy cost through-
out the 18-day period divided by 10 data center locations), average carbon/water footprint (the total car-
bon/water footprint throughout the 18-day period divided by 10 data center locations), and the maximum
regional carbon/water footprint over the 18-day period among the 10 data center locations. If scaled up by a
factor of 10, the average value is equivalent to the total value.
5.2 Baseline Algorithms
We consider the following GLB-related algorithms as baselines for comparison.

• GLB-Cost: This algorithm is based on [50,51,53] and only minimizes the total energy cost. It is a special
case of GLB-Equity by setting µc = 0 and µw = 0 in (4a).

• GLB-Carbon: This algorithm only minimizes the total carbon footprint.
• GLB-Water: This algorithm only minimizes the total water footprint.
• GLB-C2: This algorithm is based on [52] and minimizes the weighted sum of the total energy cost and

carbon footprint.
• GLB-All: This algorithm is based on [33] andminimizes theweighted sumof the total energy cost, carbon

footprint, and water footprint.
• GLB-Null: This algorithm is a special case of GLB and directly routes workloads from each gateway to

its nearest data center. It is commonly used in practice as a default baseline algorithm [52,53].
The weights for carbon and water (if applicable) in GLB-C2 and GLB-All are set such that their respective

total carbon and water footprints are smaller than those of GLB-Equity.
5.3 Results
We show our results in Table 1 by considering two different scenarios: full and partial GLB flexibilities. Our
results highlight that GLB-Equity can improve AI’s environmental equity by reducing the environmental im-
pact on the most disadvantaged region while still keeping the average environmental footprint and energy
cost close to or even lower than those of alternative GLB algorithms. Next, we discuss our results in detail.
5.3.1 Full GLB Flexibility
We first consider the full-flexibility scenario in which the workloads can be dispatched to any data center.
Among all the algorithms, GLB-Equity has the lowest carbon and water footprints for the most disadvan-
taged regions. Meanwhile, the average energy cost, carbon footprint, and water footprint of GLB-Equity are
comparable to or even lower than the other GLB algorithms. Thus, GLB-Equity has the lowest “maximum to
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Table 1: Comparison of GLB approaches in terms of the energy cost, carbon footprint and water footprint. The results of
GLB-Equity are bolded.

GLB Metric Algorithm
Flexibility GLB-Cost GLB-Carbon GLB-Water GLB-C2 GLB-All GLB-Null GLB-Equity

Full

Energy (US$) avg 29170 45535 56184 31272 31474 47038 33669

Water (m3) avg 1525.1 1365.9 1243.9 1467.8 1429.5 1446.7 1432.8
max 2607.5 2530.2 2010.4 2669.6 2566.6 2090.9 1818.7

Carbon (ton) avg 108.71 93.07 99.63 100.22 101.13 109.02 104.91
max 182.14 158.44 203.56 175.56 179.17 153.37 118.56

Partial

Energy (US$) avg 29659 45535 53976 31652 31836 47038 34186

Water (m3) avg 1524.1 1365.9 1249.9 1464.3 1425.6 1446.7 1432.8
max 2616.1 2530.2 2028.4 2675.7 2568.9 2090.9 1860.8

Carbon (ton) avg 108.32 93.07 98.46 99.78 100.76 109.02 104.45
max 182.77 158.44 203.56 175.45 179.37 153.37 117.63

average” ratio in terms of both the carbon footprint and water footprint, reducing the regional disparity and
improving environmental equity.

Interestingly, while GLB-Cost, GLB-Carbon, and GLB-Water can minimize the total energy cost, carbon
footprint, and water footprint, respectively, they can even amplify the environmental inequity compared to
GLB-Null. This is due to the inequity unawareness of these algorithms— their aggressive exploitation of certain
regions may come at the cost of harming these regions in terms of environmental impacts. For example,
GLB-Cost exploits the cheaper energy price of Texas by assigning more workloads to this region, but this can
result in a disproportionately high environmental footprint in Texas due to its worse carbon efficiency and/or
WUE than some other regions. While GLB-C2 and GLB-All can balance the energy cost and environmental
footprints in terms of the average/total metric, they can still result in disproportionately high environmental
burdens on the already-disadvantaged regions due to the unawareness of equity. This is similar to algorithmic
unfairness against disadvantaged individuals or user groups caused by an AI model that purely minimizes
the average loss [35, 63].

While the prior studies [33, 52] have demonstrated that the total carbon footprint and water footprint are
often in tension with the energy cost, our results further add that environmental equity may not be cost-free
either. Nonetheless, by balancing the energy cost and environmental equity as formulated in (4a), the extra
price we pay for equity can be reasonably low compared to equity-unaware GLB-C2 and GLB-All.
5.3.2 Partial GLB Flexibility
Now, we consider the partial-flexibility scenario in which intra-continental workload routing is fully flex-
ible but inter-continental workload routing is partially restricted. Specifically, we only allow partial inter-
continental workload routing as follows: workloads can be flexibly routed between Asia and the western U.S.
(Nevada), and between Europe and the eastern U.S. (Virginia and Georgia).

Our results are similar to those in the full-flexibility scenario. Specifically, while the inter-continental work-
load routing restriction limits the GLB decision space, GLB-Equity still has the lowest carbon and water foot-
prints for the most disadvantaged regions. Meanwhile, the average energy cost, carbon footprint, and wa-
ter footprint of GLB-Equity are all comparable to or even lower than the other GLB algorithms. Thus, even
without full flexibility, GLB-Equity demonstrates a great potential to address AI’e environmental inequity in
today’s geographically distributed data center infrastructures.

GLB-Null does not routeworkloads across data centers and hence is not affected by the partial GLB flexibil-
ity. Interestingly, the result of GLB-Carbon is not affected by the inter-continental workload routing restriction
in our setting, because the workloads from each continent can be processed in at least one low-carbon data
center in our setup (see Table 3).

6 Concluding Remarks
In this paper, we take a first step to address the emerging environmental inequity of AI by balancing its re-
gional negative environmental impact in an equitable manner. Concretely, we focus on the carbon and wa-
ter footprints of AI model inference and propose equity-aware GLB to explicitly address the environmental
impact on the most disadvantaged region. We also consider more advanced settings where there is on-site
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carbon-free energy available to power theAIworkloads andwherewe can further exploit AI’s energy-accuracy
flexibility by dynamically choosing one or more AI models to serve the workloads. We run trace-based sim-
ulations by considering a set of 10 geographically-distributed data centers that serve inference requests for a
large language AI model. The results highlight that, compared to the existing GLB approaches, our proposed
equity-aware GLB can significantly reduce the regional disparity in terms of AI’s carbon and water footprints.

Our work demonstrates the need and great potential of equity-aware GLB to address AI’s emerging envi-
ronmental equity. An important future research problem is how to design an efficient online GLB algorithm
to realize the potential in practice. This is a challenging problem that has not been well studied by the prior
literature on GLB or online optimization. The key technical challenge is that reducing AI’s long-term environ-
mental impact on the most disadvantaged region (i.e., minimax in (4a)) requires all the future information,
such as futureAIworkloads, which is only revealed sequentially in practice. Additionally, ourwork also opens
upmultiple new research directions to further improve AI’s environmental equity, such as how to jointly opti-
mize GLB and non-IT resource (e.g., batteries) management and how to leverage environmental science tools
to quantify the impact of AI’s carbon and water footprints.

References
[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
[2] David Rolnick, Priya L. Donti, Lynn H. Kaack, Kelly Kochanski, Alexandre Lacoste, Kris Sankaran, An-

drew Slavin Ross, Nikola Milojevic-Dupont, Natasha Jaques, Anna Waldman-Brown, Alexandra Sasha
Luccioni, Tegan Maharaj, Evan D. Sherwin, S. Karthik Mukkavilli, Konrad P. Kording, Carla P. Gomes,
Andrew Y. Ng, Demis Hassabis, John C. Platt, Felix Creutzig, Jennifer Chayes, and Yoshua Bengio. Tack-
ling climate change with machine learning. ACM Comput. Surv., 55(2), feb 2022.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, SamMcCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language mod-
els are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc.,
2020.

[4] David Patterson, Joseph Gonzalez, Urs Hölzle, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel
Rothchild, David R. So, Maud Texier, and Jeff Dean. The carbon footprint of machine learning training
will plateau, then shrink. Computer, 55(7):18–28, 2022.

[5] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. Green ai. Commun. ACM, 63(12):54–63,
nov 2020.

[6] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in NLP. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pages 3645–3650, Florence, Italy, July 2019. Association for Computational Linguistics.

[7] Peter Henderson, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky, and Joelle Pineau. Towards
the systematic reporting of the energy and carbon footprints of machine learning. J. Mach. Learn. Res.,
21(1), jan 2020.

[8] Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-Laure Ligozat. Estimating the carbon footprint of
bloom, a 176b parameter language model. In arXiv:2211.02001, 2022.

[9] Jennifer Switzer, Gabriel Marcano, Ryan Kastner, and Pat Pannuto. Junkyard computing: Repurpos-
ing discarded smartphones to minimize carbon. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, Volume 2, ASPLOS 2023, page
400–412, New York, NY, USA, 2023. Association for Computing Machinery.

10



[10] OECD. Measuring the environmental impacts of artificial intelligence compute and applications: The
AI footprint. OECD Digital Economy Papers, (341), 2022.

[11] Udit Gupta, Mariam Elgamal, Gage Hills, Gu-Yeon Wei, Hsien-Hsin S. Lee, David Brooks, and Carole-
Jean Wu. Act: Designing sustainable computer systems with an architectural carbon modeling tool. In
Proceedings of the 49th Annual International Symposium on Computer Architecture, ISCA ’22, page 784–799,
New York, NY, USA, 2022. Association for Computing Machinery.

[12] StevenGonzalezMonserrate. The Cloud IsMaterial: On the Environmental Impacts of Computation and
Data Storage. MIT Case Studies in Social and Ethical Responsibilities of Computing, (Winter 2022), January
2022. https://mit-serc.pubpub.org/pub/the-cloud-is-material.

[13] Romal Thoppilan, Daniel De Freitas, JamieHall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng, Amin
Ghafouri, MarceloMenegali, YanpingHuang,MaximKrikun, Dmitry Lepikhin, JamesQin, DehaoChen,
Yuanzhong Xu, Zhifeng Chen, AdamRoberts, Maarten Bosma, Vincent Zhao, Yanqi Zhou, Chung-Ching
Chang, Igor Krivokon, Will Rusch, Marc Pickett, Pranesh Srinivasan, Laichee Man, Kathleen Meier-
Hellstern, Meredith Ringel Morris, Tulsee Doshi, Renelito Delos Santos, Toju Duke, Johnny Soraker, Ben
Zevenbergen, Vinodkumar Prabhakaran, Mark Diaz, Ben Hutchinson, Kristen Olson, Alejandra Molina,
Erin Hoffman-John, Josh Lee, Lora Aroyo, Ravi Rajakumar, Alena Butryna, Matthew Lamm, Viktoriya
Kuzmina, Joe Fenton, Aaron Cohen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-Arcas, Claire Cui,
Marian Croak, Ed Chi, and Quoc Le. LaMDA: Language models for dialog applications, 2022.

[14] Pengfei Li, Jianyi Yang, Mohammad A. Islam, and Shaolei Ren. Making AI less “thirsty”: Uncovering
and addressing the secret water footprint of ai models, 2023.
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Appendix: Additional Details of the Simulation Setup
We do not have free access to the hourly energy fuel mix data for our data center locations in Europe and
Asia. Thus, we generate synthetic hourly fuel mixes for these locations based on the U.S. data. We first obtain
from [74] the average percentages of renewable and non-renewable energy in electricity generation between
September 23 andOctober 11, 2022, for each data center location in Europe andAsia. Then, we scale the hourly
energy fuelmix data in theU.S. tomatch the average percentages bymapping Texas’ fuelmixes between June 1
and June 19, 2022, toGermanywith non-renewable energy fuels scaled by 0.8503, Georgia’s fuelmixes between
June 1 and June 19, 2022, to Belgium with non-renewable energy fuels scaled by 1.5319, Georgia’s fuel mixes
between March 1 and March 19, 2022, to the Netherlands with non-renewable energy fuels scaled by 1.2759,
Oregon’s fuelmixes between July 1 and July 19, 2022, toDenmarkwith non-renewable energy scaled by 0.2657,
Nevada’s fuel mixes between March 1 and March 19, 2022, to Japan with non-renewable energy fuels scaled
by 3.2374, Georgia’s fuel mixes between May 1 and May 19, 2022, to Singapore with non-renewable energy
fuels scaled by 4.4875. We choose different 18-day periods in order to de-correlate the European and Asian
energy fuel mix traces from our actual U.S. data over the workload trace period (between September 23 and
October 11, 2022).

We also show the estimated energy water intensity factor (EWIF) in m3/MWh for common energy fuel
types in the U.S. in Table 2 [14,79], and the details of our 10 data center locations in Table 3.

Table 2: Estimated EWIF for common energy fuel types in the U.S. [79].

Fuel Type Coal Nuclear Natural Gas Solar (PV) Wind Other Hydro
EWIF (L/kWh) 1.7 2.3 1.1 0 0 1.8 68 (0, if excluded)

Table 3: The detailed information of our data center locations. The estimated values are averaged over the 18-day period
between September 23 and October 11, 2022.

Country State/Province City Total WUE Carbon Efficiency Energy Price
(m3/MWh) (ton/MWh) ($/MWh)

U.S. Texas Midlothian 5.7397 0.4011 64.931
U.S. Virginia Loudoun 5.9755 0.3741 77.793
U.S. Georgia Douglas 5.9001 0.4188 80.566
U.S. Nevada Storey 4.9306 0.2980 84.738

Germany Hessen Frankfurt 4.5889 0.3295 315.233
Belgium Hainaut Saint-Ghislain 4.9316 0.4802 247.083

Netherlands Groningen Eemshaven 3.0928 0.4454 248.258
Denmark Fredericia Fredericia 3.8900 0.1391 213.773
Japan Chiba Prefecture Inzai 2.4989 0.3280 129.269

Singapore Singapore Jurong West 5.8652 0.5260 155.462
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