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ARTICLE

Transcriptome prediction performance
across machine learning models and diverse ancestries

Paul C. Okoro,1 Ryan Schubert,2 Xiuqing Guo,3 W. Craig Johnson,4 Jerome I. Rotter,3

Ina Hoeschele,5,6,7 Yongmei Liu,8 Hae Kyung Im,9 Amy Luke,10 Lara R. Dugas,10,11

and Heather E. Wheeler1,12,13,*
Summary
Transcriptome predictionmethods such as PrediXcan and FUSION have become popular in complex trait mapping. Most transcriptome

prediction models have been trained in European populations using methods that make parametric linear assumptions like the elastic

net (EN). To potentially further optimize imputation performance of gene expression across global populations, we built transcriptome

prediction models using both linear and non-linear machine learning (ML) algorithms and evaluated their performance in comparison

to EN. We trained models using genotype and blood monocyte transcriptome data from the Multi-Ethnic Study of Atherosclerosis

(MESA) comprising individuals of African, Hispanic, and European ancestries and tested them using genotype and whole-blood tran-

scriptome data from the Modeling the Epidemiology Transition Study (METS) comprising individuals of African ancestries. We show

that the prediction performance is highest when the training and the testing population share similar ancestries regardless of the pre-

diction algorithm used. While EN generally outperformed random forest (RF), support vector regression (SVR), and K nearest neighbor

(KNN), we found that RF outperformed EN for some genes, particularly between disparate ancestries, suggesting potential robustness and

reduced variability of RF imputation performance across global populations. When applied to a high-density lipoprotein (HDL) pheno-

type, we show including RF prediction models in PrediXcan revealed potential gene associations missed by EN models. Therefore, by

integrating other ML modeling into PrediXcan and diversifying our training populations to include more global ancestries, we may un-

cover new genes associated with complex traits.
Introduction

Advancements in high-throughput genotyping and

sequencing technologies have led to an explosion in the

amount of genetic data publicly available.1 Leveraging

these technological successes, genome-wide association

studies (GWASs) have continued to uncover thousands of

genetic variants that are associated with different complex

traits in humans.2 However, most of these variants identi-

fied through GWAS are usually found in the noncoding re-

gion of the genome, thereby complicating identification of

their functional importance in understanding the biology

of complex traits.1–4 Many studies have shown that these

regions are particularly enriched for gene regulatory vari-

ants such as expression quantitative loci (eQTLs), and

thus genetically regulated gene expression might play a

critical role in explaining the phenotypic variability in a

wide range of complex traits.5–9 More so, given that a

handful of SNPs have large effect associations that can

explain most of the heritable component of gene expres-

sion traits, mathematical modeling of the relationship be-

tween genotype and gene expression is achievable using
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moderate sample sizes.10 Indeed, this has led to the devel-

opment of transcriptome methods such as PrediXcan11

and FUSION,12 which integrate cis-eQTL genotype and

transcriptome datasets in order to predict the transcrip-

tome from GWAS data and subsequently test for associa-

tion between the predicted transcriptome and trait of in-

terest. Unlike traditional GWASs, these gene-based

approaches combine multiple SNPs into one functional

unit and point directly to a biological mechanism, that

is, either increased or decreased expression of a particular

gene is associated with a trait. Because most GWASs lack

corresponding transcriptome data, these methods may

identify gene regulatory mechanisms underlying complex

traits.

More specifically, the mathematical model used in Pre-

diXcan is elastic net (EN),13 while FUSION uses Bayesian

sparse linear mixed model (BSLMM).14 The EN model

used by PrediXcan is a combination of L1 (LASSO)15 and

L2 (Ridge)16 regularization of the cis-eQTL effect sizes,

thus assuming a parametric prior for the cis-eQTLs. The

same parametric assumption is made by FUSION, since

BSLMM assumes a normal mixture prior, combining
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Bayesian variable selection regression (BVSR)17 and linear

mixed modeling (LMM).18 Given their parametric and

linear assumptions, these tools fail to flexibly model the

distributions of the genotypes and their relationship with

gene expression.19 Some SNP and measured gene expres-

sion relationships can be best modeled mathematically

with non-linear and non-parametric assumptions.19,20

Manor and Segal20 showed that by using simple non-linear

modeling with the K nearest neighbor (KNN)21 algorithm,

robust gene expression prediction can be achieved using

just cis-eQTLs. Wang et al.22 found that a mixed model-

based random forest (RF)23 (a non-linear model) has the

potential to capture the non-linear relationships of cis-

eQTLs and thus may improve gene expression imputation

performance. Most recently, a method called TIGAR,19

which is based on a non-parametric Bayesian method

called Dirichlet process regression,24 was shown to achieve

a better imputation coefficient of determination (R2) than

PrediXcan on simulation data where at least 1% of the cis-

eQTLs are causal and true expression heritability is at most

0.2. TIGAR19 was also shown to impute expression for

more genes than PrediXcan in a real dataset, thus corrobo-

rating the potential of using non-parametric and non-

linear modeling of gene expression prediction in order to

uncover more gene associations with complex traits.

Although several studies have shown that non-linear

modeling of cis-eQTLs and gene expression can improve

imputation performance,19,20,22 we sought to further

explore the cross-population portability of both linear

and non-linear transcriptome prediction in new cohorts.

Generally, a large UK Biobank-based study has shown

reduced accuracy in genetic prediction due to lack of diver-

sity in training cohorts.25 More specifically, the impor-

tance of genetic ancestry diversity in gene expression pre-

diction has also been corroborated by many recent studies,

which have demonstrated that similarity in ancestries be-

tween the training and testing populations improves

gene expression prediction.26–29 However, the replicability

of these observations in new cohorts and how machine

learning (ML) models perform across populations have

not been adequately studied.

In this work, in order to further optimize gene expres-

sion imputation performance across global populations,

we used two non-linear ML models, RF23 and KNN;21 a

combination of both linear and non-linear ML models,

support vector regression (SVR);30 and a linear ML model,

EN, to predict gene expression from genotypes of SNPs

within 1 Mb of each gene. We trained prediction models

using genotype and blood monocyte transcriptome

data from the Multi-Ethnic Study of Atherosclerosis

(MESA)26,31,32 in self-identified African Americans (AFA,

n ¼ 233), Hispanic Americans (HIS, n ¼ 352), European

Americans (CAU, n ¼ 578), as well as the combined cohort

(ALL, n ¼ 1,163). We tested MESA model performance on

new genotype and whole-blood transcriptome data from

participants enrolled in the Modeling the Epidemiology

Transition Study (METS), which includes Ghanaians and
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African Americans (n ¼ 76).33,34 We compared the ML

models and showed gene predictionmodels were generally

best in EN, with RF having the closest parallel perfor-

mance. We corroborated previous findings that similarity

in ancestry improves gene expression prediction accuracy.

Whenwe applied theMLmodels to transcriptome-wide as-

sociation studies (TWASs) of lipid traits in MESA, we

showed that RF models detect associations missed by EN.

By integrating other ML modeling into PrediXcan and

diversifying training populations to include more global

ancestries, we may uncover new genes associated with

complex traits that have not been previously studied.
Material and methods

This study was approved by the Loyola University Chicago institu-

tional review board (IRB) #210260091217 and Project #2014.

Appropriate informed consent was obtained from human

subjects.

Genomic and transcriptomic training data
MESA

The MESA cohort is made up of 6,814 individuals recruited from 6

sites across the United States (Baltimore, MD; Chicago, IL; Forsyth

County, NC; Los Angeles County, CA; northern Manhattan, NY;

St. Paul, MN) and consists of 53% female and 47% male individ-

uals between the ages of 45 and 84 years31 with the demographics

approximately distributed as 38% CAU, 23% HIS, 28% AFA, and

11% Chinese American (CHN). From the whole cohort, RNA was

extracted from CD14þ monocytes from 1,264 individuals across

the three populations (AFA, HIS, CAU) and quantified on the Illu-

mina Ref-8 BeadChip.32 Individuals with both genotype (dbGaP:

phs000209.v13.p3) and expression data (GEO: GSE56045)

included 234 AFA, 386 HIS, and 582 CAU. Illumina IDs were con-

verted to Ensembl IDs using the RefSeq IDs from MESA and GEN-

CODE35 version 18 (gtf and metadata files) to match Illumina IDs

to Ensembl IDs. If there were multiple Illumina IDs corresponding

to an Ensembl ID, the average of those values was used as the

expression level.

MESA genotype data analysis and quality control

Genotype quality control and imputation were performed as pre-

viously described.26 To summarize, all MESA population geno-

types were in genome build GRCh37/hg19. PLINK36 was used

for quality control and cleaning of the genotype data.We removed

SNPs with call rate < 99% or not in Hardy-Weinberg equilibrium

(p < 0.00001), and linkage disequilibrium (LD) pruned the result-

ing SNPs by removing 1 SNP in a 50 SNP window if r2 > 0.3. We

conducted identity by descent (IBD) analysis on the genotype

data and removed one pair of related individuals (IBD > 0.05).

The cleaned genotypes were merged with HapMAP populations

(Yoruba in Ibadan, Nigeria [YRI]; Utah residents with Northern

and Western European descent [CEU]; and East Asians from Bei-

jing, China and Tokyo, Japan [ASN]), and principal component

analysis was done both across and within populations using EI-

GENSTRAT.37 We used pre-LD-pruned variants and the Michigan

Imputation Server and 1000 Genomes phase 3 v5 reference panel

and Eagle v2.3 to impute genotypes in each of the MESA popula-

tions. The imputation reference populations were EUR for CAU

and mixed population for AFA and HIS.38–40 Imputation results

were first filtered by R2 < 0.8 and minor allele frequency (MAF)



> 0.01, and ambiguous strand SNPs were removed. After filtering,

9,352,383 SNPs in AFA, 7,201,805 SNPs in HIS, and 5,559,636

SNPs in CAU were remaining for further analysis. After quality

control, the final sample sizes used for the gene expression predic-

tion model training are AFA ¼ 233, HIS ¼ 352, and CAU ¼ 578.

The final sample sizes used for downstream TWAS analysis are

AFA ¼ 1,188, HIS ¼ 952, and CAU ¼ 1,716.

MESA transcriptome data analysis and quality control

PEER factor (PF) analysis was performed on the expression data of

each population using the peer R package.41 Mogil et al.26

showed that the true positive replication rate was similar for

10, 20, and 30 PEER factors. As such, in each of the MESA popu-

lations, we used 10 peer factors and 3 genotype principal compo-

nents (Figure S1) to adjust for potential batch effects and experi-

mental confounders in the measured gene expression data. Then,

we quantile normalized adjusted expression levels for use in

model building.
Genomic and transcriptomic test data
METS

The METS cohort comprises 2,506 healthy individuals of African

origin between the ages of 25 to 45 years, with approximately

500 (�50% male) from each of the five sites: Ghana; South Africa;

Seychelles; Jamaica; and Chicago, IL, USA.42 Out of this cohort, 76

female individuals (37 Ghana and 39 Chicago, IL, USA) underwent

genome-wide genotyping on the Illumina Infinium Multi-Ethnic

AMR/AFR BeadChip and RNA sequencing (RNA-seq) from whole

blood using the NuGEN mRNA-Seq with AnyDeplete Globin li-

brary preparation kit (Loyola IRB #210260091217). Single-end

50 bp RNA-seq was performed by the Duke University Sequencing

and Genomic Technologies Shared Resource.

METS genotype data analysis and quality control

The METS genotype data are in genome build GRCh38/hg38. We

performed all quality control using PLINK v1.90b4.4.36 We

removed SNPs on non-autosomal chromosomes, below a call

rate threshold of 0.01, or not in Hardy-Weinberg equilibrium (p

< 0.00001). Prior to IBD and principal component analysis, we

LD-pruned variants using PLINK indep-pairwise option at thresh-

olds 50 5 0.3. Due to small sample size, we did not remove indi-

viduals based on cryptic relatedness. As such, we inferred the re-

lationships of all pairs of individuals in our sample using KING43

package version 2.2.5. To account for the cryptic relatedness, we

used the relationship inference from KING43 to calculate prin-

cipal components (Figure S1) using the PC-Air44 tool in GENE-

SIS45 package version 2.16.1. We performed METS genotype

imputation on the Sanger Imputation service40,46 using the Afri-

can Genome Resources reference panel and the pre-LD-pruned

set of variants. After imputation, non-ambiguous strand SNPs in

Hardy-Weinberg equilibrium (p > 0.05) with MAF > 0.05 and

imputation R2 > 0.8 were retained, and the cleaned genotypes

were lifted over to genome build GRCh37/hg19 for gene expres-

sion prediction analyses.

METS transcriptome data analysis and quality control

We used FASTQC47 to analyze RNA-seq quality and found 50 high-

fidelity bases with no primers or over-represented sequences. We

quantified gene expression using Salmon pseudoalignment,48

which estimates the transcripts per million (TPM) for each gene

using a reference transcriptome without performing the time-

consuming process of an actual alignment. We used only pro-

tein-coding genes as defined by GENCODE35 version 28 and

removed genes with mean TPM < 0.01. The resulting expression
Hu
data of all samples were quantile and rank normalized. We further

adjusted for potential batch effects, experimental confounders,

and population structure on all the sample expression levels

with 10 PEER factors41 and 10 genotypic principal components

(Figure S1). The resulting adjusted expression levels were used in

downstream analysis.

Prediction models

In each of the MESA populations, we used the adjusted expression

values for protein-coding genes and genotypes of SNPs within 1

Mb of each gene (i.e., in cis) to fit the models. Using nested

cross-validation for EN, and 5-fold cross-validation for the other

ML models, we calculate the R2 for how the model predicts on

the held-out fold. We report the mean R2 over all 5 folds as our

measure of model performance. R2 is defined as 1�
P ðyo � ypÞ2=

P ðyo � yoÞ2, where yo is observed expression, yp is

predicted expression, and yo is the mean of observed expression.

Note that in this paper, R2 is not the square of the Pearson corre-

lation coefficient. Instead, the coefficient of determination, R2 as

defined above, can be negative and thus indicative of a poorly fit

model. We used the fitted model to predict expression in METS.

Model performance was evaluated by Spearman correlation (r)

of the METS predicted and observed gene expression values

defined by GENCODE35 version 28. Like prior studies, we consid-

ered r > 0.1 as significant.11,26 In our TWAS application of these

models, we used the Bonferroni correction for the total number

of genes tested across all four ML models (0.05/[5,279 þ 3,651 þ
3,772 þ 2,601]) and thus considered (p < 3.3 3 10�6) to be

significant.

EN

We used the glmnet R package49 to implement EN with the alpha

parameter set at 0.5, which has previously been shown to perform

optimally for predicting gene expression.10 Alpha is the mixing

parameter of EN used to achieve the combination effect of lasso

(alpha ¼ 1) and ridge (alpha ¼ 0) penalties. For every single

gene, we carried out nested cross-validation of the ENmodel as fol-

lows: first, training data were split into roughly five equal parts;

second, for each held-out fold, 10-fold cross-validation was per-

formed on the remaining four folds to minimize the lambda

parameter, and the model with the minimal lambda was used to

predict on the held-out fold to determine the R2. Lambda is a tun-

ing parameter that controls the overall strength of the EN penalty

in each gene model. After going through each of the five folds, we

used the average R2 as our measure of model performance. The

trained models with minimal lambda were used to predict expres-

sion in the test data.26

RF

We used the scikit-learn Python package version 0.21.250 (Python

version 3.7.3) to implement RF regression, and all the hyperpara-

meters in the regressor were set to default except for the n_estima-

tors hyperparameter (which is the number of trees in the forest).

For every single gene, via 5-fold cross-validation, we conducted a

grid search of the best n_estimators hyperparameter ranging from

50 to 500, inclusive, that yields the highest cross-validated regres-

sion R2. The range of trees used in the grid search was informed by

our preliminary analysis result as shown in Figure S2. Subse-

quently, for every gene, we used the resulting best n_estimators hy-

perparameter to fit the RF regressor model and predict expression

in the test data. See Table S1 for the optimum number of trees for

each gene across training populations.

KNN

We used the scikit-learn Python package version 0.21.250 (Python

version 3.7.3) to implement KNN regression. The hyperparameters
man Genetics and Genomics Advances 2, 100019, April 8, 2021 3



were set to default except for n_neighbors (which is the number of

neighbors [k] to use), weights (which is a weight function used in

the prediction), and P (which is the power parameter for the Min-

kowski metric). We used two of the weights function parameters,

namely ‘‘uniform’’ (wherein all points in each neighborhood are

weighted equally) and ‘‘distance’’ (wherein all points in each

neighborhood are weighted by the inverse of their distance). For

every gene, via 5-fold cross-validation, we conducted a grid search

of the best three hyperparameter combinations that yield the

highest cross-validated regression R2. The three hyperparameter

combinations were drawn from k (odd numbers between 3 and

31 inclusive), weights (uniform and distance), and P (1, 2, 3). Sub-

sequently, for every gene, we used the resulting best hyperpara-

meter combination to fit the KNN regressor model and predict

expression in test data. See Table S2 for the optimum hyperpara-

meter combinations for each gene across training populations.

SVR

We used the scikit-learn Python package version 0.21.250 (Python

version 3.7.3) to implement SVR. We set all parameters to default

except for the followings: gamma (controls the bias-variance trade-

off of each gene model, where small values mean far-reaching

radius of influence while large values mean close radius of influ-

ence. We set it to ‘‘scale’’ because we want the gamma value to

be determined by the variance and number of predictors in each

gene model), kernel (which is the type of mathematical function

used to transform data in the model), degree (which is specifically

for the degree of the polynomial kernel function), and C (which is

the penalty for error term). For every gene, via 5-fold cross-valida-

tion, we conducted a grid search of the best three hyperparameter

combinations that yield the highest cross-validated regression R2.

The three hyperparameter combinations were drawn from kernel

(‘‘linear,’’ ‘‘poly,’’ ‘‘rbf,’’ ‘‘sigmoid’’), degree (2, 3, 4, 5, 6, 7), and C

(0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0).

Specifically, the kernels are divided into two groups: linear kernels,

which includes only ‘‘linear,’’ and non-linear kernels which

include ‘‘poly,’’ ‘‘rbf,’’ and ‘‘sigmoid.’’ Thus, the kernel used deter-

mines if the SVR model is a linear or non-linear model. Subse-

quently, for every gene, we used the resulting best hyperparameter

combination to fit the SVR regressor model and predict expression

in test data. The number of gene models with R2 > 0.01 built with

different kernels is distributed as follows: AFA ¼ 340, 1,243, 501,

564; CAU ¼ 1,065, 1,269, 577, 476; HIS ¼ 595, 1,210, 608, 643;

ALL ¼ 1,600, 1,288, 653, 231; for ‘‘linear,’’ ‘‘poly,’’ ‘‘rbf,’’ and ‘‘sig-

moid’’ kernels, respectively. See Table S3 for the optimum hyper-

parameter combinations for each gene across training

populations.

Model standardization

In addition to our user-defined grid searches described above, we

also compared predictive performance among all the four ML

models by implementing them in the same package with stan-

dardized hyperparameter tuning. We implemented all the tested

ML models (EN, RF, SVR, and KNN) with scikit-learn Python pack-

age version 0.21.250 (Python version 3.7.3) and used Hyperopt51

version 0.2.4 to standardize the hyperparameter tuning across

the ML methods. Specifically, we fixed the maximum number of

evaluations (max_evals ¼ 30) for the ML models. The choice of

setting the maximum evaluations to thirty is to reduce computa-

tional time, especially for RF, which takes a longer time to run.

Thus, for EN versus KNN, and EN versus SVR, like in grid search

above, we built models for all protein-coding genes in chromo-

somes 1–22, while for EN versus RF, we focused only on chromo-

some 22. See Figure S3 for the model comparisons.
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Results

EN outperforms ML models for cross-validated gene

expression prediction

We sought to determine if untested ML models could

improve SNP-based imputation of the transcriptome

across populations compared to the parametric EN

models currently used in PrediXcan.11 We trained each

of the ML algorithms—RF, SVR, and KNN—using geno-

type and blood monocyte transcriptome data from each

population in the MESA. The training samples in the

MESA populations are distributed as AFA (n ¼ 233),

CAU (n ¼ 578), and HIS (n ¼ 352). To have a larger sam-

ple size, we also combined the genotype and transcrip-

tome of the MESA populations (AFA, HIS, CAU) into

the ALL cohort (n ¼ 1,163). Standard quality control

analysis was done on the genotype and expression data

to adjust for population structure and potential experi-

mental confounders (see Material and methods). Using

each of the MESA populations and ALL, we then per-

formed model training through 5-fold cross validation

of RF, SVR, and KNN and nested cross-validation of EN

by using SNPs within 1 Mb of each gene to predict its

expression level. We used the R2 between predicted and

observed expression as our measure of model perfor-

mance (see Material and methods). We found that across

all the populations and prediction algorithms, ERAP2

(MIM: 609497), HLA-C (MIM: 142840), HLA-DRB1

(MIM: 142857), CHURC1 (MIM: 608577), RAD51 (MIM:

179617), and SNAP29 (MIM: 604202) have R2 > 0.5.

We also found that EN usually outperformed the ML

models, but RF outperformed EN on some gene models,

especially those trained in HIS and CAU (Figures 1 and

S4). This suggests that different prediction algorithms

may be potentially more robust for different training

populations.

To better ensure our comparison of the four ML models

was not affected by our chosen software packages and grid

search spaces, we also compared standardized models us-

ing Hyperopt51 (see Material and methods). Hyperopt is a

Python library that standardizes model selection and hy-

perparameter optimization.51 Gene expression prediction

model performance obtained from our implementation

of the Hyperopt51 standardization approach maintained

the same trend of EN outperforming the other three tested

ML models (Figure S3). Thus, we use our grid search opti-

mization approach in the ML model results described in

the rest of this paper.

Focusing only on the model training built in the ALL

cohort, the model building converged and completed for

9,623 genes in RF, SVR, and KNN and 9,622 in EN. The

9,622 genes in EN models are also in SVR and KNN, while

9,621 are in RF. The average R2 for each of the prediction

algorithms is EN ¼ 0.0733, SVR ¼ 0.0476, RF ¼ 0.0409,

and KNN ¼ 0.0103. TACSTD2, RNF150, HLA-DRB5, HLA-

DRB1, and CHURC1 genes have R2 > 0.8 across EN, RF,

and SVR models, while all genes in the KNN model have



Figure 1. Comparison of the cross-validated
gene expression prediction performance in
the MESA cohort
Gene expression prediction R2 between elastic
net (EN) and other machine learning (ML)
models across MESA populations. The linear
regression fit is shown by the red line, and
the identity line (slope ¼ 1) is blue in each
plot. In the ALL cohort (combination of
AFA, HIS, and CAU populations), the RF
model has 9,621 genes, while the SVR and
KNN models have 9,622 genes in common
with EN. Pearson correlations (R) between
EN performance and random forest (RF), sup-
port vector regression (SVR), and K nearest
neighbor (KNN) are shown in each plot. All
correlations are significant (p < 2.2e�16). In
the AFA cohort, the overlapping genes be-
tween models are RF versus EN ¼ 9,608, SVR
and KNN versus EN ¼ 9,609. In the HIS
cohort, the other ML models each have
9,499 genes in common with EN. In the
CAU cohort, ML models have 9,499 genes in
commonwith EN. EN generally outperformed
RF, SVR, and KNN, except for some genes
where RF outperforms EN, particularly in the
HIS and CAU populations.
R2 < 0.8. Overall, EN significantly outperformed all ML

models, as shown in Figure 1 and Table 1. Focusing on

the overlapping genes with R2 > 0.01 (EN versus SVR ¼
3,736, EN versus RF ¼ 3,635, EN versus KNN ¼ 2,598),

EN performed better on approximately 99%, 97%, and

93% of the overlapping genes than KNN, SVR, and RF,

respectively. Table 2 shows the number of genes that

have models in each of the prediction algorithms at

different R2 thresholds. EN had the most gene models

compared to the other ML methods across all thresholds.

However, at R2 > 0.5, RF has almost same number of

gene models as EN (RF ¼ 194, EN ¼ 222), distantly fol-

lowed by SVR, while KNN has just 28 genes. This clearly

shows that EN, RF, and SVR models have generally good

performance for most of the highly predictable genes.

The same comparison trend is generally observed in the

models trained with AFA, CAU, and HIS (Tables S4–S6).

However, while mean predictive performance was higher

for EN across populations (Table 1), we observed that RF

outperformed EN for some genes, especially in HIS- and

CAU-trained data (Figure 1). This suggests integrating

both EN and RF models into transcriptome prediction
Human Genetics and G
may be useful. Next, we sought to deter-

mine how our models performed in an

independent test cohort.

Similarity in ancestry improves

prediction performance across

prediction models

Recent studies using EN have observed

that similarity in training and testing

population improves prediction perfor-
mance.26–29 In order to see if the same observation repli-

cated with additional ML algorithms, we used new geno-

type and whole-blood transcriptome data from 76

African American individuals in Chicago, Illinois (USA)

and Africans in Ghana enrolled in METS as a replication

cohort.34,42 We performed standard quality control and

adjusted for potential confounders in the METS genotype

and transcriptome data (see Material and methods). We

predicted gene expression in the METS cohort using only

gene models with cross-validated R2 > 0.01 in each of

the prediction algorithms trained with the MESA cohort.

Specifically, we tested models trained in each of the

MESA populations (AFA ¼ 233, HIS ¼ 352, CAU ¼ 578)

and the combined population (ALL ¼ 1,163). To accom-

modate for any effect sample size may have in our study,

we also used the combination of AFA and HIS populations

(AFHI ¼ 585), which is a similar sample size as CAU, to

train the prediction algorithms. Both AFA and HIS contain

recent African admixture and thus share more genetic an-

cestries with our test cohort (METS) than CAU (Figure S5).

To determine how accurate the prediction algorithms

trained in MESA are in METS, we computed the Spearman
enomics Advances 2, 100019, April 8, 2021 5



Table 1. Mean cross-validated gene expression prediction performance of machine learning models in MESA populations

Population EN RF SVR KNN

AFA 0.0528 0.0041 0.0120 �0.0086

HIS 0.0479 0.0156 0.0289 0.0001

CAU 0.0596 0.0283 0.0437 0.0094

ALL 0.0733 0.0409 0.0476 0.0103

Elastic net (EN) had higher mean performance than each of the other machine learning models across the MESA populations (all paired t test p values < 4 3
10�19). AFA, MESA African American; CAU, MESA European American; HIS, MESA Hispanic American; ALL, all MESA; RF, random forest; SVR, support vector
regression; KNN, K nearest neighbor.
correlation (r) between the METS predicted expression

values and METS measured expression values.

To evaluate the prediction performance of the training

MESA population in METS, for each of the prediction al-

gorithmmethods, we calculated the mean r for genes pre-

dicted in all 5 of the populations (Table 3). Across the

training populations, the mean r in METS is highest

when using AFHI-trained models for all the prediction al-

gorithms. As shown in Table 3, across all the tested predic-

tion algorithms, the training populations comprising in-

dividuals of recent African ancestries (AFA, HIS, AFHI,

ALL) significantly outperformed the training population

comprising only individuals of European descent (CAU)

(Welch’s t test, all algorithm p values < 0.0210, except

for KNN, where HIS versus CAU p value ¼ 0.1226). This

shows that prediction performance is highest when the

genetic distance between the training population and

testing population are closest, regardless of the prediction

algorithm used. Also, larger sample size improves predic-

tion performance but not as much as when majority of

the individuals in the training set share similar ancestries

with those in the test set (i.e., AFHI-trained models

perform the same as ALL-trained models) (Welch’s t test,

all algorithm p values > 0.6360) (Table 3). If larger sample

size were the main factor to improve prediction perfor-

mance, we would expect the average r to be significantly

higher in ALL. However, we see that average r in the ALL

is less than in the AFHI, even though AFHI has lower sam-

ple size. More so, the ALL-trained models’ average r were

not significantly better than AFA-trained models (Welch’s

t test p values, EN ¼ 0.5053, RF ¼ 0.3782, SVR ¼ 0.0424,

KNN ¼ 0.5391). AFA has the lowest sample size and

closest ancestry similarity to METS across the training

MESA populations. Thus, this highlights the importance
Table 2. Number of genes with expression prediction models for each

Method R2 > �0.1 R2 > �0.01 R2 > 0

EN 9,622 9,621 6,823

RF 9,544 4,924 4,158

SVR 9,622 8,929 5,355

KNN 9,263 4,193 3,206

Total gene models before filtering; EN¼ 9,622, RF¼ 9,623, SVR¼ 9,623, KNN¼ 9
nearest neighbor.
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of similarity in ancestry at improving prediction

performance.

When we examine all prediction results in METS, the

number of genes we were able to predict gene expression

values for varied across algorithms and populations

(Figure 2). The gene models trained with the ALL cohort

predicted gene expression values for more genes than the

other training populations across all prediction algo-

rithms. This is probably because the ALL cohort had

the largest sample size. In fact, the number of genes

captured decreases from ALL to AFA as the sample size

decreases, with the exception of EN trained on HIS.

Interestingly though, when we filter by r > 0.1, EN

trained on AFA captures more genes (1,622) than HIS

(1,238) and CAU (1,238), while RF trained on HIS

(1,219) and AFA (1,190) each capture more genes than

CAU (1,078), despite CAU having a larger sample size

than AFA and HIS. This again shows the importance of

similarity in ancestry between training and testing popu-

lation for gene expression prediction. The models

trained with AFHI and ALL cohorts capture more genes

than AFA, most probably because of their larger sample

size and the fact that they also contain the AFA cohort.

Therefore, although larger sample size is important in

prediction performance, it is paramount that individuals

in the training population have similar ancestry with the

testing population.

EN-trainedmodels outperformMLmodels in test cohort

EN predicts gene expression values inMETS for more genes

than RF, SVR, and KNN (Figure 2). When all genes pre-

dicted in METS by all 4 of the prediction algorithms for

each training population are compared, mean prediction

performance (r) is significantly highest for RF-trained
method after filtering by cross-validated R2 in the ALL cohort

R2 > 0.01 R2 > 0.05 R2 > 0.1 R2 > 0.5

5,729 3,176 2,108 222

3,651 2,449 1,687 194

3,772 2,185 1,454 141

2,601 1,422 839 28

,623. EN, elastic net; RF, random forest; SVR, support vector regression; KNN, K



Table 3. Mean prediction performance of MESA-trained models in METS

Model AFA HIS CAU AFHI ALL Number of genes

EN 0.1123 0.0859 0.0674 0.1211 0.1185 2,097

RF 0.1217 0.1163 0.0931 0.1272 0.1265 1,574

SVR 0.1015 0.1005 0.0857 0.1144 0.1142 1,415

KNN 0.0854 0.0784 0.0684 0.0897 0.0899 1,069

We focused on the genes predicted in all 5 of the training populations for each prediction method. EN, elastic net; RF, random forest; SVR, support vector regres-
sion; KNN, K nearest neighbor; AFA, MESA African American; HIS, MESA Hispanic American; CAU, MESA European American; AFHI, MESA African American and
Hispanic American; ALL, all MESA.
models in the HIS and CAU populations, while mean pre-

diction performance is highest for EN-trained models in

the AFA, AFHI, and ALL populations (Figure 3; Table 4).

Furthermore, when we compare test prediction perfor-

mance of each of the ML algorithms against EN on the

genes they both can predict (intersection) for each training

population, EN performs best regardless of training popu-

lation except in HIS and CAU, where mean prediction per-

formance was again better in RF than EN (Figures 4 and S6;

Table 5). Focusing only on ALL-trained models, the num-

ber of overlapping genes between EN and the other algo-

rithms are RF ¼ 1,198, SVR ¼ 1,141, and KNN ¼ 676.

Although EN generally outperforms the other algo-

rithms, we observe that all the genes in each of the algo-

rithms did not overlap with those in EN even though

they captured fewer genes than EN (Table 6). That is,

these algorithms have significant performance (r > 0.1)

on some genes that EN does not, and vice versa. To probe

further into the algorithm pairs, we counted the genes

unique to each algorithm (Table 6). Expectedly, EN cap-

tures 778 unique genes; however, the few unique genes

(<310) captured by each of RF, SVR, and KNN suggest
Figure 2. Number of predicted genes in METS after filtering by
r
TheMESA population used to train each set of models is shown on
the x axis, and the number of genes with predicted expression
values in METS is shown on the y axis. r is the Spearman correla-
tion between predicted and observed gene expression in METS.

Hu
that prediction performance in test cohorts may be

improved by combining gene models from EN and these

other algorithms. Focusing only on the RF and EN sets of

unique genes, we found that the average normalized

expression levels were slightly higher in the RF group

(mean ¼ 0.0318) than the EN group (mean ¼ 0.0291)

(Welch’s t test p value ¼ 0.0014). Additionally, the

average variance in the normalized expression levels

was slightly higher in the RF group (0.678) than the

EN group (0.639) (Welch’s t test p value ¼ 0.019). Since

the magnitude of these differences is not large, it is un-

likely variation in the expression levels is the reason

these genes are captured only by the RF algorithm. More-

over, model performance and, by extension, ability to

capture unique genes is not driven by or correlated

with expression levels (Figures S7 and S8). In addition,

upon performing principal component analysis of

expression levels, we found that the genes did not cluster

by prediction algorithm (Figure S9).
Figure 3. Prediction performance of models trained in MESA
populations and tested in METS
We predicted expression in METS using only gene models with R2

> 0.01. The MESA population used to train each set of models is
shown on the x axis, and the Spearman correlation between pre-
dicted and observed gene expression in METS is shown on the y
axis. For each training population, only gene intersects of all pre-
diction algorithms are shown in the plot. For example, in AFA, all
gene intersects of EN, RF, SVR, and KNN are plotted.
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Table 4. Mean prediction performance of genes predicted in METS by all 4 of the prediction algorithms for each training population

Population EN RF SVR KNN Number of genes

AFA 0.1210 0.1150 (p ¼ 3.0 3 10�3) 0.0959 (p ¼ 4.5 3 10�23) 0.0723 (p ¼ 1.9 3 10�47) 1,640

HIS 0.0880 0.1066 (p ¼ 5.3 3 10�11) 0.0896 (p ¼ 5.9 3 10�1) 0.0648 (p ¼ 1.4 3 10�12) 1,809

CAU 0.0620 0.0770 (p ¼ 1.3 3 10�7) 0.0699 (p ¼ 4.0 3 10�3) 0.0475 (p ¼ 5.4 3 10�6) 2,091

AFHI 0.1111 0.1068 (p ¼ 1.1 3 10�2) 0.0944 (p ¼ 8.8 3 10�16) 0.0695 (p ¼ 9.6 3 10�50) 2,290

ALL 0.1074 0.1046 (p ¼ 1.2 3 10�1) 0.0944 (p ¼ 1.3 3 10�11) 0.0659 (p ¼ 9.0 3 10�49) 2,315

For each training population, we took only intersection genes predicted by EN, RF, SVR, and KNN. Focusing on these intersects for each training population, we
calculated the mean prediction performance (r). The paired t test p value between EN and each other model is shown in parentheses. EN, elastic net; RF, random
forest; SVR, support vector regression; KNN, K nearest neighbor; AFA, MESA African American; HIS, MESA Hispanic American; CAU, MESA European American;
AFHI, MESA African American and Hispanic American; ALL, all MESA.
EN and ML models identify the same gene in lipid

TWASs

To evaluate the biological importance of the prediction

algorithms in identifying significant genes associated

with traits, we carried out TWASs on high-density lipo-

protein (HDL) levels. In our analysis, we used a genotype

dataset from theMESA cohort (n¼ 3,856), comprising in-

dividuals from the populations that were not used in

building any of the imputation models and in which

we have corresponding lipid phenotype data (AFA ¼
1,188, HIS ¼ 952, and CAU ¼ 1,716). The genotype

data were cleaned using standard quality-control proced-

ures (see Material and methods). We used the ALL-trained

imputation gene models (genes with cross-validated R2 >

0.01) from each algorithm to impute transcriptome levels

from the MESA genotypes. We adjusted the predicted

transcriptome levels for population structure using the

first 3 genotype principal components (Figure S1) and

rank normalized the HDL levels. Using the adjusted pre-

dicted transcriptome levels and normalized HDL data,

we conducted association tests using linear regression.

Interestingly, all tested prediction algorithms except

KNN identified a significant association (p < 3.3 3 10�6

) for the cholesteryl ester transfer protein, plasma gene

(CETP [MIM: 118470]) (Figures 5 and S10). The lack of as-

sociation with HDL for all gene-expression values pre-

dicted from KNN-trained models is consistent with our

earlier results in this paper that KNN is worse at imputing

transcriptome levels compared to the other algorithms.

The directions of effect of CETP transcriptome levels as

predicted by EN, RF, and SVR are the same (Figure 6).

An increase in predicted CETP expression is associated

with decreased HDL levels across EN, RF, and SVR. The

ability of the three algorithms to identify the same signif-

icant hit underscores their effectiveness at imputing gene

expression (CETP R2: EN ¼ 0.0917, RF ¼ 0.0772, SVR ¼
0.0539). Consequently, wecompared EN and RF t-statistic

values from the association tests between HDL and pre-

dicted gene expression. We found that both EN and RF

t-statistic values were almost parallel for the genes they

have in common, thus corroborating the observed

similar performance on their common genes from our

previous results (Figures 1 and 3). In the EN TWAS,
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5,279 genes were tested for association with HDL. In

the RF TWAS, 16 unique genes that were not present in

the EN TWAS were tested for association with HDL

(Figure 7). Among the RF unique genes, we found a po-

tential gene, ST8SIA4 (MIM: 602547), that may be associ-

ated with normalized HDL (p ¼ 3.192 3 10�3) but was

missed by EN (ST8SIA4 R2: EN ¼ �0.0005, RF ¼ 0.0100)

(Figure 7). Although the association did not pass the Bon-

ferroni correction to be genome-wide significant, this dis-

covery is consistent with our previous results, wherein we

found that although EN has many genes in commonwith

RF in their imputation models, the RF algorithm gener-

ated some unique gene models (Table 6). Thus, by

combining EN and RF models in gene expression imputa-

tion and subsequent TWAS analysis, we may uncover

more and new significant gene-trait associations. Note,

however, that by combining EN and RF models, we are

not significantly changing the number of tests per-

formed. Depending on predictive performance inclusion

threshold, adding RF expression prediction models may

increase the number of tests by up to 16% (Table 6),

which does not dramatically change the Bonferroni

correction threshold.
Discussion

In this paper, we explored the potential of using RF, SVR,

and KNN to further improve gene expression prediction

performance across global populations in comparison to

EN modeling, which is currently used in PrediXcan.11 To

accomplish this, we trained each of the prediction models

with genotype and transcriptome data from the MESA

cohort on 9,623 protein-coding genes and compared their

cross-validated imputation performance (R2). Although

almost paralleled by RF and SVR, we found EN generally

outperformed the other tested ML models. This is consis-

tent with a recent study where it was shown that the

genome-wide polygenic risk score method based on simple

linear additive effects of genetic factors outperformed ML

models in genetic prediction of cardiovascular disease

risk.52 However, in our study, we found that when the pre-

diction models are trained within each of the MESA



Figure 4. Comparison of algorithm test prediction performance in METS from models trained in MESA
Prediction performance r (Spearman correlation between predicted and observed gene expression in METS) for each gene in each other
MLmodel versus EN is shown. The linear regression fit is shown by the red line, and identity line (slope¼ 1) is blue in each plot. Pearson
correlations (R) between performance are shown in each plot (all p < 2.2e-16). In the ALL cohort, the number of genes that overlap are
EN versus RF¼ 3,378, EN versus SVR ¼ 3,477, and EN versus KNN¼ 2,414. In the AFHI cohort, the number of genes that overlap are EN
versus RF ¼ 3,269, EN versus SVR ¼ 3,166, and EN versus KNN ¼ 2,482. In the AFA cohort, the number of genes that overlap are EN
versus RF¼ 2,414, EN versus SVR¼ 2,125, and EN versus KNN¼ 1,894. In the HIS cohort, the number of genes that overlap are EN versus
RF¼ 2,374, EN versus SVR¼ 2,342, and EN versus KNN¼ 1,995. In the CAU cohort, the number of genes that overlap are EN versus RF¼
2,686, EN versus SVR ¼ 2,855, and EN versus KNN ¼ 2,255.
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Table 5. Mean prediction performance in METS of pairwise model intersecting genes

Population EN versus RF EN versus SVR EN versus KNN

AFA 0.1075 versus 0.1021 (p ¼ 2.8 3 10�3) 0.1072 versus 0.0857 (p ¼ 2.2 3 10�20) 0.1111 versus 0.0691 (p ¼ 6.4 3 10�6)

HIS 0.0793 versus 0.0960 (p ¼ 2.1 3 10�11) 0.0797 versus 0.0799 (p ¼ 0.95) 0.0846 versus 0.0616 (p ¼ 1.8 3 10�13)

CAU 0.0555 versus 0.0699 (p ¼ 1.1 3 10�8) 0.0535 versus 0.0588 (p ¼ 0.024) 0.0592 versus 0.0450 (p ¼ 3.7 3 10�6)

AFHI 0.0991 versus 0.0924 (p ¼ 8.7 3 10�6) 0.0975 versus 0.0815 (p ¼ 9.9 3 10�19) 0.1058 versus 0.0661 (p ¼ 1.7 3 10�49)

ALL 0.0909 versus 0.0871 (p ¼ 0.017) 0.0902 versus 0.0774 (p ¼ 2.8 3 10�14) 0.1041 versus 0.0628 (p ¼ 1.5 3 10�50)

We performed paired t tests between the prediction performance of EN and each of the other machine learning models with each training population. The t test p
values are shown in parentheses. EN, elastic net; RF, random forest; SVR, support vector regression; KNN, K nearest neighbor; AFA, MESA African American; HIS,
MESA Hispanic American; CAU, MESA European American; AFHI, MESA African American and Hispanic American; ALL, all MESA.
populations, RF sometimes outperformed EN, specifically

on HIS and CAU data (Figures 1 and 3; Tables 1 and 4).

This suggests potential robustness and reduced variability

of RF imputation performance across global populations.

We further tested the MESA-trained models on genotype

and transcriptome data from African-origin individuals in

the METS cohort. We show that models trained with the

cohorts (AFA, HIS, AFHI, ALL) comprising individuals

similar in ancestries with METS have better prediction per-

formance than the models trained with individuals (CAU)

of no recent African ancestries (Table 3; Figure 3). Thus, as

demonstrated in several recent studies,26–29 here we also

show similarity in ancestries between training and testing

populations improves prediction performance. Notably,

we found that the improvement in prediction due to

ancestry similarity is consistent within all tested prediction

algorithms, further underscoring the huge importance of

diverse ancestries in genetic studies.

In the application of the MESA-trained models to the

METS cohort, we further compared the prediction perfor-

mance of EN against the other ML models. Although EN

consistently outperformed the other tested models (which

further corroborates the cross-validated performance re-

sults), we found gene models that are unique to each pre-

diction algorithm (Table 6). Further analysis suggests there

is nothing strikingly unusual in the expression levels of

these groups of genes (Figures S7–S9). Therefore, it is un-

likely variation in the expression levels is the reason these

genes are captured only by one algorithm over another.

We applied the trained models on out-of-sample MESA

genotype data with corresponding HDL phenotype values.

All tested prediction models except for KNN identified the

gene CETP to be significantly associated with HDL. As seen

in a recent study on lipid traits,53 we show that increased

CETP expression is significantly associated with lower

HDL levels, and the direction of effect is the same for EN,
Table 6. Number of ALL-trained predicted genes in METS in algorithm

Genes EN versus RF EN vers

Overlap 1,198 1,141

Unique 778 309 835

We only counted genes where the algorithms have significant performance (r > 0
nearest neighbor.
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RF, and SVRmodels. Thus, we computationally corroborate

the biological importance of CETP gene in HDL-associated

diseases. In many studies, the CETP gene has been experi-

mentally associated with HDL levels in humans, and it

currently stands as a potential drug target for the treatment

of atherosclerosis.54–58 Thus, our analysis in a relatively

small TWAS (n ¼ 3,856) identified a known drug target

that has been studied extensively in the context of pre-

venting cardiovascular disease.

Nonetheless, there are some limitations to the practical

application of the non-linear ML models like RF in com-

parison to linear models like EN. One of the major flaws

of ensemble tree regressions such as RF is that they cannot

extrapolate to data points (or ranges) they have not seen,

thus restricting predictive performance of each RF model

to the boundaries of the training dataset. Unlike RF, linear

models such as EN and SVR with linear kernel can

generate prediction values for data points beyond the

boundaries of the training data because they can extrapo-

late well. Additionally, EN models typically expose the

predictors and their corresponding effect sizes such that

they are easily accessible and extractable, while RF models

do not. Access and utilization of these predictors and ef-

fect sizes can make application on test datasets much

easier and relatively faster. Another practical consider-

ation is the ability of the prediction models to utilize

GWAS summary statistics as input data instead of the

actual genotype dataset. This is important because of

the data-sharing limitations often associated with human

genetic information. EN as implemented in S-PrediX-

can59 is able to predict gene expression with only the

GWAS summary statistics, while the applicability of

non-linear models like RF in TWASs is limited to only

GWASs with genotype and phenotype data available. As

such, EN has more practical advantage than RF for genes

that both algorithms can predict.
pairs

us SVR EN versus KNN

676

309 1,300 233

.1). EN, elastic net; RF, random forest; SVR, support vector regression; KNN, K
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Figure 5. High-density lipoprotein (HDL)
transcriptome-wide association study
(TWAS) results
Manhattan plot of the gene p values from
the TWAS between HDL values and pre-
dicted gene expression. Using models
trained in MESA ALL cohort, we predicted
gene expression in MESA (n ¼ 3,856) geno-
type data comprising individuals not used
in the model training with HDL phenotype
data and then carried out in TWAS.
Genome-wide significance (p < 3.3 3
10�6) is shown by the red line in the plots.
The x axis is ordered from chromosomes 1
to 22 (left to right).
We also note that improvements in expression predic-

tion performance beyond EN have recently been demon-

strated by integrating adaptive shrinkage methods like

MASHR, which improves effect size estimates across multi-

ple experiments.60 Applying MASHR worked well in the

context of using GTEx Project data to build gene expres-

sion prediction models because of similar eQTL effect sizes

across the 54 tissues of GTEx.61 There might be a role for a

MASHR-like framework to build cross-population models

in either the same or multiple tissues, and this is a prom-

ising avenue for future research when more diverse popu-

lation transcriptome data are available.

In conclusion, although linear modeling of SNPs and

gene expression is generally good at imputing expression

for new data, linear models may fail to accurately predict

expression for some genes. Interestingly, our study shows

the imputation performances for some genes are compara-
Hum
tively better with non-linear ML models like RF (Figure 4)

than linear models like EN, especially between diverse pop-

ulations. Therefore, by increasing ancestry diversity and

sample sizes of study populations, optimizing prediction

performance on these genes with RFmodelingmay be war-

ranted. While incorporating RF models into the existing

PrediXcan tool has practical limitations, doing so may be

justified when genotypes are available to increase the prob-

ability of uncovering new gene-trait associations in down-

stream transcriptome-phenotype analyses.
Data and code availability

All the scripts used and models built in this study are

freely available at GitHub: WheelerLab/ML-PredictDB.

MESA genotype data are available at dbGaP (dbGaP:
Figure 6. Increased HDL levels correlate
with decreased CETP predicted expression
Direction of effect of the CETP gene on
HDL levels. Using models trained in the
MESA ALL cohort, we predicted gene
expression in MESA (n ¼ 3,856) genotype
data comprising individuals not used in
the model training with HDL phenotype
data. Each point in the plot represents an
individual. The linear regression fit is
shown by the red line in each plot. The
blue contour lines from two-dimensional
kernel density estimation help visualize
where the points are concentrated.
Although KNN is shown here, the CETP
gene HDL TWAS with KNN was not
genome-wide significant (p ¼ 0.016). The
EN (p ¼ 4.1 3 10�11), RF (p ¼ 2.1 3 10�13

), and SVR (3.9 3 10�8) models were
genome-wide significant.
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Figure 7. Comparison of the HDL association t-statistics from RF
and EN models trained in the MESA ALL cohort
Comparison of RF and EN t-statistics from the TWAS of HDL and
predicted transcriptome in MESA individuals not used for imputa-
tion model building. Each dot in plot represents the t-statistic
value of a gene from the HDL TWAS, while the identity line
(slope ¼ 1) is shown in blue. We see that the t-statistic values are
similar between RF and EN except for genes that are unique in
each algorithm shown as red dots in the plot. CETP is strongly
associated with HDL levels using both EN- and RF-trained models.
RF-trained models revealed the unique gene ST8SIA4 (no predic-
tion model in EN) may be potentially associated with HDL levels
(p ¼ 4.3 3 10�3).
phs000209.v13.p3) and MESA expression data at GEO

(GEO: GSE56045). 1000 Genomes genotype data are avail-

able at the IGSR website. There are restrictions to the avail-

ability of METS genotype and phenotype data due to data-

sharing limitations of the IRB-approved informed consent

(Loyola IRB #210260091217).
Supplemental information

Supplemental Information can be found online at https://doi.org/

10.1016/j.xhgg.2020.100019.
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