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Abstract

Emerging insights into factors responsible for soil organic matter stabilization
and decomposition are being applied in a variety of contexts, but new tools 
are needed to facilitate the understanding, evaluation, and improvement of 
soil biogeochemical theory and models at regional to global scales. To isolate
the effects of model structural uncertainty on the global distribution of soil 
carbon stocks and turnover times we developed a soil biogeochemical 
testbed that forces three different soil models with consistent climate and 
plant productivity inputs. The models tested here include a first‐order, 
microbial implicit approach (CASA‐CNP), and two recently developed 
microbially explicit models that can be run at global scales (MIMICS and 
CORPSE). When forced with common environmental drivers, the soil models 
generated similar estimates of initial soil carbon stocks (roughly 1,400 Pg C 
globally, 0–100 cm), but each model shows a different functional relationship
between mean annual temperature and inferred turnover times. 
Subsequently, the models made divergent projections about the fate of 
these soil carbon stocks over the 20th century, with models either gaining or 
losing over 20 Pg C globally between 1901 and 2010. Single‐forcing 
experiments with changed inputs, temperature, and moisture suggest that 
uncertainty associated with freeze‐thaw processes as well as soil textural 
effects on soil carbon stabilization were larger than direct temperature 
uncertainties among models. Finally, the models generated distinct 
projections about the timing and magnitude of seasonal heterotrophic 
respiration rates, again reflecting structural uncertainties that were related 
to environmental sensitivities and assumptions about physicochemical 
stabilization of soil organic matter. By providing a computationally tractable 
and numerically consistent framework to evaluate models we aim to better 



understand uncertainties among models and generate insights about factors 
regulating the turnover of soil organic matter.

1 INTRODUCTION

Soils represent the largest terrestrial carbon pool on Earth, storing nearly 
five times as much carbon as vegetation (Jobbágy & Jackson, 2000). In the 
new millennium, the theoretical understanding of factors responsible for soil 
organic matter stabilization has undergone significant revisions (Lehmann & 
Kleber, 2015; Schmidt et al., 2011). Driven by new measurements that afford
high resolution information on the chemical and physical nature of soil 
organic matter, these emerging theories posit that microbial access to 
otherwise decomposable substrates (as opposed to inherent chemical 
recalcitrance) governs soil organic matter stabilization and turnover. Such 
insights, however, remain poorly represented in global‐scale models that 
investigate potential carbon cycle – climate feedbacks (Luo et al., 2016; 
Wieder, Allison, et al. 2015), despite an expansion in the number and 
diversity of soil biogeochemical models (Manzoni & Porporato, 2009; Sierra, 
Müller, & Trumbore, 2012). Building the capacity to test emerging ecological 
theories in global‐scale models is critical to informing future research needs, 
testing soil biogeochemical theory, refining model features, and accelerating 
advancements across scientific disciplines.

Earth system models (ESMs) are typically applied to project potential carbon 
cycle – climate interactions and inform policy decisions (Ciais et al., 2013), 
but these models also represent a scientific tool to test ecological insight at 
larger spatial and longer temporal scales. In global‐scale applications where 
ESMs are used to generate numerical projections, soil biogeochemical 
models show large variation in estimates of present day soil carbon storage 
and widely divergent projections of soil carbon response to environmental 
change (Tian et al., 2015; Todd‐Brown et al., 2013). When propagated into 
future scenarios, this creates uncertainties in the magnitude of terrestrial 
carbon uptake (Anav et al., 2013; Arora et al., 2013; Friedlingstein 
et al., 2014; Hoffman et al., 2014), and presents limitations for assessing the 
allowable carbon emissions that are compatible with desired climate 
outcomes (Jones et al., 2013, 2016; Zhang, Wang, Matear, Pitman, & 
Dai, 2014). Troublingly, the soil biogeochemical models of these studies 
share a common structure, and thus fail to incorporate process uncertainties 
associated with factors regulating soil organic matter stabilization in soils. As
such, they potentially underestimate the true uncertainty associated with soil
carbon responses to environmental perturbations (Bradford, Wieder, 
et al., 2016). Moreover, without applying these emerging soil biogeochemical
concepts into global scale models, opportunities to deepen ecological insight 
by evaluating and refining theories are not being fully realized.

Building confidence in terrestrial carbon cycle projections, therefore, requires
consideration of the factors controlling the decomposition and formation of 
soil organic matter (Bradford, Wieder, et al., 2016). This research priority 



requires balancing demands between formulating model structures that 
adequately represent theoretical understanding of processes relevant for 
long‐term soil organic matter dynamics and avoiding undue complexity (Luo 
et al., 2016; Wieder, Allison, et al. 2015). More practically, it requires a 
numerically consistent, computationally efficient simulation framework that 
can be used to compare and evaluate models at ecosystem‐ to global scales.
Overlying terrestrial models generate additional variation in the 
biogeochemical and biophysical state upstream of the soil system—including
uncertainties in climate, hydrology, and plant productivity – and the potential
ecosystem responses of these factors to perturbations (Todd‐Brown 
et al., 2013, 2014). Although such considerations are critical for assessing 
the integrated terrestrial carbon cycle response to environmental change, 
they present unnecessary impediments to assessing the soil biogeochemical 
component of terrestrial models and advancing understanding of soil 
systems. Moreover, as soils respond slowly to perturbations relative to many 
of these upstream factors, modifications of soil model structures and 
parameterizations often extend spin‐up time, which ultimately slows model 
development (Exbrayat, Pitman, & Abramowitz, 2014; Koven, Chambers, 
et al., 2015). To address these challenges, we developed a soil 
biogeochemical testbed that facilitates the evaluation of and improvements 
to the process‐level representation of global‐scale soil biogeochemical 
models.

We compare three soil biogeochemical models that make distinct 
assumptions about the processes and factors regulating the formation and 
decomposition of soil organic matter. One of the models reflects traditional 
ideas about the inherent chemical recalcitrance of soil organic matter. Thus, 
it implicitly represents microbial activity and follows a conventional 
decomposition cascade regulated by first‐order decay kinetics (Bradford & 
Fierer, 2012; Schimel, 2001). The other two models explicitly represent soil 
microbial activity and physiology, but make different assumptions about 
interactions between microbial community activity and the physicochemical 
soil environment. Recognizing that multiple sources of uncertainty generate 
spread among models, in this paper we focus on quantifying model structural
uncertainty by comparing steady state soil carbon stocks, turnover times, 
and their responses over a transient simulation with soil biogeochemical 
models that are forced with identical inputs and environmental conditions.

2 MATERIALS AND METHODS

We created the biogeochemical testbed to conduct global‐scale soil 
biogeochemistry simulations using a variety of forcing data sets without the 
computational overhead and infrastructure necessary to run a full land 
model. Here, we introduce the capabilities of the testbed by using a single 
realization of climate and plant productivity estimates that serve as common
inputs to each of three soil organic matter models. In the subsections that 
follow, we describe each component of the biogeochemical testbed in 



greater detail, but briefly outline the workflow and configuration of the model
here (Figure 1).

Daily estimates of GPP, air temperature, soil temperature, and soil moisture 
are needed as inputs to the testbed. The simulations presented here used 
data from the Community Land Model (CLM version 4.5, discussed below). 
Inputs force the Carnagie‐Aimes‐Stanford Approach terrestrial biosphere 
model (CASA‐CNP; created by Potter et al., 1993), with modifications by 
(Randerson, Thompson, Conway, Fung, & Field, 1997; Randerson, Thompson,
Malmstrom, Field, & Fung, 1996); and with N and P biogeochemistry as 
implemented by (Wang, Law, & Pak, 2010). Here, we use the carbon‐only 
version of CASA‐CNP vegetation model to calculate net primary productivity 
(NPP) and carbon allocation to different plant tissues (roots, wood, and 
leaves), as well as the timing of litterfall. Litterfall inputs are passed onto 
three different soil biochemical models that include the CASA‐CNP model 
that implicitly represents microbial activity using a first‐order decomposition 
approach, as well as two recently developed microbially explicit models that 
include the MIcrobial‐MIneralization Carbon Stabilization model (MIMICS; 
Wieder, Grandy, Kallenbach, & Bonan, 2014; Wieder, Grandy, Kallenbach, 
Taylor, & Bonan, 2015) and the Carbon, Organisms, Rhizosphere, and 
Protection in the Soil Environment model (CORPSE; Sulman, Phillips, Oishi, 
Shevliakova, & Pacala, 2014). For each model, we ran a spin up simulation to
bring soil organic matter pools to steady state and then conducted a 
transient simulation including changes in climate and NPP over the historical 
period (1901–2010) to compare the stocks and changes of soil C pools 
simulated by each soil model. Below we summarize the data inputs, CASA‐
CNP vegetation model, the three soil carbon models applied in the testbed, 
and the testbed configuration. More detailed information can be found in the 
online user's manual and technical documentation that accompanies the 



publically available model testbed code available 
at github.com/wwieder/biogeochem_testbed_1.0.

2.1 Data inputs

Data inputs for the biogeochemical testbed can be modified from a variety of
sources, but for this study, data inputs were generated by the CLM using a 
satellite phenology scheme forced with the CRU‐NCEP climate reanalysis 
(Koven et al., 2013; Oleson et al., 2013; Figure 1). This standard 
configuration of CLM generated globally gridded daily output of gross 
primary productivity (GPP), air temperature, soil temperature, liquid soil 
moisture and frozen soil moisture for the historical period (1901–2010). Soil 
texture inputs to the testbed were depth‐weighted means in the top 50 cm of
soil from the CLM surface data set (Oleson et al., 2013). The testbed 
assigned a single plant functional type (PFT) to each 2° × 2° grid cell, 
computed as the mode from the 1‐km International Geosphere–Biosphere 
Program Data and Information System (IGBP DISCover) data set with 18 
vegetation types, including grassy tundra (Loveland et al., 2000; National 
Center for Atmospheric Research Staff, 2017). CASA‐CNP defines biome‐
specific parameters corresponding to each PFT (Table S1). Results presented 
here use output from the two‐degree version of CLM as input to the testbed, 
although the testbed operates independent of resolution and can even be 
configured to run for a single point or field site. Postprocessing of CLM 
history files was required to format input data that could be read into the 
testbed. Specifically, average soil temperature and liquid and frozen soil 
moisture used by the testbed are depth‐weighted means in the rooting zone 
according to the PFT‐specific root depth and root distribution (Table S1). Only
liquid soil moisture was considered when computing soil moisture limits on 
growth for the vegetation model and decomposition in the CASA‐CNP and 
CORPSE soil models. CORPSE also required information on frozen soil 
moisture to calculate air‐filled pore space. MIMICS did not consider soil 
moisture effects on decomposition.

2.2 CASA‐CNP vegetation model

The carbon‐only version of the CASA‐CNP terrestrial biosphere model 
calculated daily net primary production (NPP) and subsequent plant litter 
inputs to the soil. Daily NPP was calculated by subtracting the sum of plant 
maintenance and growth respiration from the CLM‐derived GPP. Maintenance
respiration in CASA‐CNP was zero for leaves, and calculated as a function of 
N content (g C g N−1 day−1) for wood and fine roots (determined from fixed 
biome‐specific C:N ratios, Table S1). These respiration rates were zero for air/
soil temperatures ≤250 K and increased exponentially with temperature 
using a fixed biome‐specific Q10 (Sitch et al., 2003). Growth respiration was a 
fixed fraction (0.35) of the quantity GPP minus the sum of maintenance 
respiration fluxes. The relative amounts of NPP allocated to leaves, wood, or 
fine roots were fixed biome‐specific fractions that depended on leaf 
phenology phase (Wang et al., 2010).



Turnover of live leaves, wood, and fine roots occurred daily at biome‐specific 
age‐related death rates. The leaf turnover rate increased with cold and 
drought stress, and was modeled following the approach of (Arora & 
Boer, 2005). Nonwoody plant litter was partitioned into structural and 
metabolic litter material as a function of the biome‐specific lignin:N ratio of 
the plant litter (Table S1). Woody plant litter accumulated in the coarse 
woody debris (CWD) pool, which decomposed as a function of temperature 
and soil moisture for all models and included CO2 respiration loss. Metabolic 
litter, structural litter, and decomposing CWD comprised C inputs to all soil 
carbon models in the testbed.

2.3 Soil carbon models

Previous publications document soil models applied in the testbed, but 
Table 1 summarizes some of the key similarities and differences among the 
soil models. Additional details are also available in the user's manual and 
technical documentation available in the testbed's GitHub repository 
(see Acknowledgements). The CASA‐CNP soil carbon model had two litter 
pools (metabolic and structural) and three soil organic matter pools (fast, 
slow, and passive). Live microbial biomass was not explicitly simulated as a 
driver of decomposition, but the transfer of C from litter to soil pools or 
among soil carbon pools produced CO2 respiration losses. The decomposition
of pool i (Di) is controlled pools size (Ci) and pool specific first‐order kinetics 
(ki) that are modified by environmental scalars calculated as a function of 
soil temperature and moisture (T and θ, respectively).



Structural and metabolic litter pools decomposed into fast and slow pools as 
a function of lignin fraction. The CWD pool decomposed to the fast and slow 
SOM pools also as a function of the wood lignin fraction. Transfers of C from 
the fast and slow pools formed the passive pool and were a function of soil 
texture. The passive pool decomposed without transfers of C to other pools. 
In CASA‐CNP the cropland PFTs had no moisture limitation on soil organic 
matter decomposition and daily turnover rates for the fast, slow, and passive
pools were multiplied by 1.25, 1.5, and 1.5 respectively. Neither MIMICS nor 
CORPSE modified decomposition rates for croplands.

MIMICS had two litter pools (metabolic and structural), two live microbial 
biomass pools (copiotrophic and oligotrophic, referred to as r and K, 
respectively), and three soil organic matter pools (available, chemically 
protected, and physically protected). Nonwoody plant litter was partitioned 
into metabolic and structural litter pools using a slightly different function of 
the lignin:N ratio than the one in the CASA‐CNP model (see user's manual). 
Decomposing CWD carbon was transferred to the structural litter pool. The 
microbial decomposition of metabolic and structural litter and available SOM 
pools were controlled by reverse Michaelis‐Menten kinetics and modified by 
soil temperature:

where Di was the decomposition of pool i, Vmax(T) was the temperature‐
sensitive maximum reaction velocity, Kes(T) was the temperature‐sensitive 
half‐saturation constant specific to the ror K microbial pool, Ci was the 
carbon pool, and MICr/K was the r or K microbial pool. Decomposition fluxes 
also controlled the growth of microbial biomass pools and had CO2respiration
losses that were determined by fixed (flux‐specific) microbial growth 
efficiencies. Microbial turnover, which was proportional to annual NPP, 
transferred C to physically protected, chemically protected, and available 
SOM pools, without CO2 respiration loss. Desorption of the physically 
protected pool followed first‐order kinetics and was described as a function 
of soil clay content, without CO2 loss. Oxidation of the chemically protected 
SOM, which transferred C to the available pool, followed reverse Michaelis‐
Menten kinetics and was therefore dependent on the size of standing 
microbial biomass pools, but as none of the carbon is assimilated into 
microbial biomass there are no associated CO2 losses.

CORPSE had separate surface litter layer pools and SOM pools, each with 
three chemically defined carbon species (labile, chemically resistant, and 
dead microbes) and a live microbial biomass pool. The surface litter pools 
were all considered unprotected while the SOM pools had unprotected and 
protected counterparts. Metabolic and structural leaf litter was transferred to
the labile and chemically resistant surface litter pools, respectively, without 
CO2respiration losses. Similarly, metabolic and structural root litter was 
transferred to labile and chemically resistant unprotected soil carbon pools, 



respectively. Root exudates, calculated as a fixed 2% of NPP, also 
contributed to the labile unprotected soil pool. We reduced root litter input 
by the amount of root exudate C added so total C inputs to CORPSE were 
identical to those of the other soil models. Carbon from the decomposing 
CWD pool was transferred to the chemically resistant litter pool. No carbon 
was transferred between the surface litter and soil layers. The microbial 
decomposition of unprotected labile, chemically resistant, and dead microbe 
litter and SOM pools, CO2 fluxes, and the growth of microbial biomass were 
controlled by the existing microbial biomass and modified by soil 
temperature and moisture:

where θ was volumetric liquid soil water content and θsat was saturation soil 
water content. Microbial growth efficiencies used fixed, pool‐specific 
fractions, with labile C having a high associated growth efficiency and 
chemically resistant C having a low efficiency. The model assumed that the 
microbial biomass limitation on decomposition was related to the microbial 
biomass as a fraction of total carbon. As a result, decomposition rate 
responded linearly to total carbon content (similar to a first‐order model) but 
was accelerated by greater labile C inputs (which stimulated microbial 
biomass growth) and suppressed when labile C was depleted relative to 
chemically resistant C. Microbial turnover, which was proportional to a fixed 
turnover rate, transferred C to the unprotected dead microbes pool, with 
CO2 respiration loss. Carbon was transferred at fixed, first‐order rates from 
the unprotected soil pools to their protected counterparts. These rates varied
with clay content and chemical species (with dead microbes having a 
relatively higher protection rate), and occurred without CO2 respiration 
losses. Protected C was transferred back to unprotected pools at a different 
fixed, first order rate.

2.4 Testbed configuration, simulations, & analyses

The simulations for each SOM model were carried out in three steps: 
initialization, spinup, and transient simulations, which are described below. 
We initialized CASA‐CNP vegetation pools by running the testbed with 1901 
forcings for 100 years. This initialization created more stable vegetation 
pools and litter inputs for subsequent simulations. The state of the CASA‐CNP
vegetation pools (but not SOM pools) from this initialization simulation were 
used to initialize spinup runs for all SOM models.

Soil carbon pools were spun up by cycling over 1901–1920 forcings until 
organic matter pools reached equilibrium. An SOM model was considered to 
be in equilibrium when all three of the following criteria were met between 
20‐year cycles: global litter plus soil carbon stocks changed <0.01 Pg, total 
litter plus soil carbon in >98% of grid cells changed <1 g C/m2, and total 
litter plus soil carbon in >98% of grid cells changed <0.1%. Spinup times 



varied between models. CASA‐CNP required 10,000 years of an accelerated 
spinup followed by 10,000 years of normal spinup in order to reach 
equilibrium. For the accelerated spinup, the decomposition rate of the 
passive pool was increased tenfold. Following accelerated spinup, the 
passive carbon stock was multiplied tenfold before starting the normal 
spinup phase. MIMICS organic matter pools required 12,000 years to reach 
equilibrium, with the physically protected pool requiring the longest spinup 
time. CORPSE organic matter pools required 50,000 years to reach 
equilibrium, primarily due to slow continuing accumulation of chemically 
resistant litter in high latitudes. In all models, these spinup times are still 
prohibitively long for doing many repeated simulations or parameter 
estimation, and highlight a research priority that must be addressed (Luo 
et al., 2016) in this and other work.

We conducted full transient simulations from 1901 to 2010. For each of the 
three soil models currently implemented in the testbed, we compared: (1) 
initial conditions following model spinup; (2) changes in soil carbon pools 
over the transient simulation; and (3) seasonal patterns of heterotrophic 
respiration. Here, we focus on total soil carbon stocks that are simulated by 
each model, which were calculated as the sum of all litter, microbial 
biomass, and soil carbon pools. Beyond initial carbon stocks, estimates of 
steady‐state soil carbon turnover times provide a metric to evaluate the 
emergent relationship between climate the mean residence time of various C
stocks (Koven, Hugelius, Lawrence, & Wieder, 2017). Recognizing that 
turnover times vary with model structure in transient simulations 
(Rasmussen et al., 2016), turnover times were calculated by dividing initial 
soil carbon stocks by heterotrophic respiration fluxes for each model, 
masking out points with initial productivity <100 g C m−2 year−1. Simulated 
results were compared to an observationally derived functional relationship 
with mean annual temperature from Koven et al. (2017) that was calculated 
by dividing soil carbon stocks from the Harmonized World Soils Database 
(HWSD; FAO et al., 2012) and Northern Circumpolar Soil Carbon Database 
(Hugelius et al., 2013) by MODIS NPP estimates (Zhao, Heinsch, Nemani, & 
Running, 2005). Although this turnover time vs. climate relationship is 
derived from present day estimates of plant productivity, we contend that 
these inferred turnover times represent important global‐scale patterns that 
models should be expected to replicate.

Several additional experiments were conducted that demonstrate the utility 
of the testbed in rapidly assessing and understanding variation among 
models. Initial simulations suggested that soil texture potentially mediated 
soil C responses among models. Thus, we repeated the spinup and fully 
transient simulations with globally consistent soil texture (20% clay, 40% silt,
and 40% sand). This global loam experiment only changed the soil texture 
effects on particular transfer coefficients and turnover times that were 
simulated by each soil biogeochemical model and did not concurrently 
modify the soil hydraulic conditions. Second, to decompose the effects of 



particular forcings on soil carbon stocks we conducted three isolated‐forcing 
experiments where plant productivity, soil temperature, and soil moisture 
individually changed over the 20th century, but the remaining input variables 
were held constant (cycling over 1901–1920 values as in the spinup). We 
compared the time series of soil carbon changes from isolated forcing 
experiments to the fully transient 20th century simulations.

3 RESULTS

3.1 Initial conditions

When forced with CRU‐NCEP climate, simulated global mean annual soil 
temperatures were 15.6°C and mean liquid soil moisture was 42.1% of 
saturation (Figure S1a,b, averaged over the initialization period, 1901–1920).
GPP estimates from CLM4.5sp totaled 117 ± 1.1 Pg C/year (mean ± 1 σ) and 
initial NPP estimates from CASA‐CNP averaged 48 ± 0.8 Pg C/year 
(Figure S2a). With these inputs, the biogeochemical testbed generated total 
carbon stocks (including litter, soil organic matter and microbial biomass) 
totaling 1,360, 1,420, and 1,410 Pg carbon for CASA‐CNP, MIMICS, and 
CORPSE respectively (Figure 2a–c; Figure S3). For comparison, soil C 
estimates from the HWSD totaled 1,260 Pg C globally (Figure 2d; 0–100 cm 
depth, as regridded by (Wieder, Boehnert, Bonan, & Langseth, 2014). Our 
aim here is not to evaluate the spatial distribution of soil carbon stocks 
simulated by any of the models, although the testbed offers opportunities for
parameter estimation in single point and global simulations (e.g., Hararuk, 
Smith, & Luo, 2015) We note, however, that MIMICS was calibrated against 
the HWSD (Wieder, Grandy, et al. 2015), whereas CASA‐CNP and CORPSE 
were not similarly calibrated. We also recognize that global stocks of ‘litter’ C
are not clearly defined in globally gridded soil carbon estimates, and that the
HWSD likely underestimates high latitude soil C stocks (Todd‐Brown 
et al., 2013). Thus, we also present permafrost soil C estimates from the 
NCSCD (0–100 cm depth), which shows larger soil carbon stocks in 
permafrost regions (Figure 3, Figure S3). The three soil models implemented 
in the testbed adequately represented global soil carbon stocks, falling 
within benchmark ranges for global soil carbon stocks given an 
observationally consistent field of plant productivity (Todd‐Brown 
et al., 2014).



Despite general agreement of global soil C stocks among models, they 
exhibited notably different spatial distributions. Across high latitudes, CASA‐



CNP and CORPSE generated steady‐state soil C densities that were closer to 
observations from the NCSCD and notably larger than those simulated by 
MIMICS or observed in the HWSD (Figures 2 and 3, Figure S3). Conversely, at
low latitudes, CASA‐CNP and CORPSE displayed soil carbon densities well 
below estimates from MIMICS and the HWSD. The global loam experiment 
indicated that steady‐state carbon stocks simulated in CASA‐CNP and MIMICS
showed a greater sensitivity to soil texture (−95 and −178 Pg C, 
respectively, compared to control simulation) than CORPSE (+ 27 Pg C). 
Whereas CASA‐CNP showed relatively homogenous reductions in steady‐
state soil carbon stocks, MIMICS showed substantially larger soil C 
differences in regions of high clay content (e.g., much of the tropics, the 
southeastern United States, and SE Asia, Figure S4). All three models 
generally showed larger carbon stocks in tundra regions with loam soils, 
especially CORPSE.

Although the soil models used similar temperature functions, they showed 
large differences in patterns of inferred turnover times and temperature 
(Figure 4). Models and observations showed the longest turnover times in 
grid cells with colder mean annual temperatures. Observations suggested 
that over the cold domain (mean annual temperature <0°C) soil carbon 
turnover had a higher temperature sensitivity (steeper slope), whereas over 
the warm domain (mean annual temperature >15°C) turnover times had a 
lower temperature sensitivity (shallow slope; Koven et al., 2017). The CASA‐
CNP soil model simulated a log‐linear relationship between temperature and 
the logarithm of turnover time, with variation among individual grid cells 
largely attributed to differences in soil moisture (Figure 4a). In the cold 
domain, CASA‐CNP matched the higher temperature sensitivity of soil carbon
turnover better than the two microbially explicit models. In warmer sites, 
however, CASA‐CNP showed a linear decrease in log turnover times 
(especially in mesic and wet systems), that was not consistent with 
observation‐based estimates. (The cluster of grid cells with very low turnover
times are agricultural grid cells, mainly in India, that had high productivity, 
but very low soil carbon stocks owning to how agricultural decomposition 
rates are handled in CASA‐CNP). By contrast, MIMICS failed to represent high 
temperature sensitivity in the cold‐domain, but over the warm‐domain 
MIMICS captured the lower temperature sensitivity (flat slope) of inferred 
turnover times, although the intercept may be too high (Figure 4b). Finally, 
CORPSE showed a stronger than observed temperature sensitivity in all 
cases (Figure 4c), with long turnover times simulated by CORPSE in the cold‐
domain resulting in large carbon stocks at high latitudes. Thus, despite 
similarities in the overall soil C stocks represented by these models we find 
strong differences in the spatial distribution and potential temperature 
sensitivities among CASA, MIMICS, and CORPSE that may influence 
projections of soil carbon change over the historical period.



Figure 4

Inferred soil carbon turnover times vs. mean annual temperature for each grid cell in CASA‐CNP, 
MIMICS, and CORPSE (a–c respectively). Points are colored by mean annual soil moisture (percent 
saturation of liquid water), and binned according to the color bar below the figure. Black lines show the
observationally derived relationship between inferred turnover times and temperature ±50% 
prediction interval (calculated by Koven et al., 2017)

3.2 Transient response

By the end of the transient simulation period, global mean annual soil 
temperature increased by 1.1°C and mean annual soil moisture (calculated 
as percent saturation) increased by 0.5%, relative to the initial conditions 

https://wol-prod-cdn.literatumonline.com/cms/attachment/29f13511-1190-4f2b-8a1b-2dff0b5efad4/gcb13979-fig-0004-m.jpg


(Figure 5a). Notably, high latitude soils showed the greatest changes, 
generally becoming warmer and wetter (Figure S1c–d), with higher 
wintertime soil temperatures increasing liquid water availability for longer 
periods of time. By the start of the 21st century, GPP increased by 
19 Pg C/year (+16%); meanwhile NPP increased 7 Pg C/year (+15%; 
Figure 5a; Figure S2b), and similar in magnitude to an ensemble of CMIP5 
Earth system models (Wieder, Cleveland, Smith, & Todd‐Brown, 2015). 
Higher plant productivity increased global vegetation carbon stocks 
simulated by CASA‐CNP by 36 Pg C, whereas coarse woody debris stocks 
declined by 0.7 Pg C.

Figure 5

Globally averaged changes in (a) environmental conditions: soil temperature (°C), soil moisture (% 
saturation), and plant litter inputs (red, blue and black lines, respectively); and the cumulative change 
(b) soil carbon stocks simulated by: CASA‐CNP, MIMICS, and CORPSE (green, purple, and brown lines, 
respectively) in the full transient simulation. Isolated forcing experiments showing changes in soil 
carbon stocks following changes in only (c) GPP, (d) soil temperature, and (e) soil moisture. For all 
plots, annual values were weighted by land area and differenced from initial conditions averaged over 
the spin‐up period

Changes in productivity and climate drove a net accumulation of soil carbon 
in CASA‐CNP and MIMICS by the end of the simulation (+18.1 and +24.1 Pg 
C, respectively), whereas CORPSE lost soil carbon over the same period 



(−21.7 Pg C; Figure 5b). Despite receiving identical litter inputs and climate 
forcing, the three soil models tested here showed dramatically different 
spatial patterns of soil carbon gains and losses (Figure 6). Particular changes 
in soil carbon stocks largely depended on the balance of changes in plant 
productivity and soil conditions, along with different assumptions made by 
each model. For example, in tundra ecosystems plant productivity increased 
by 20%–30%, whereas soil temperature warmed by <1°C 
(Figures S1 and S2). In CASA‐CNP and MIMICS this increased plant 
productivity overwhelmed soil carbon losses from the increased 
heterotrophic respiration, leading to net soil carbon accumulations – mainly 
in the litter pools simulated by both models. By contrast, CORPSE lost large 
amounts of soil carbon in these regions (Figure 6). Soil texture largely 
modulated the initial soil carbon stocks simulated by each model (Figure S4),
but had a more muted effect on transient soil C dynamics. In the global loam 
experiment, soil carbon accumulations in CASA‐CNP and MIMICS were 
dampened (+17.7 and +19.0 Pg C, respectively), whereas CORPSE lost 
slightly more soil carbon over the same period (−22.1 Pg C). MIMICS 
assumed that clay rich soils preferentially stabilize microbial residues in 
physically protected soil organic matter pools; thus, in the global loam 
experiment soil carbon accumulations were approximately 200 g C/
m2 (roughly 20%) less across the tropics in MIMICS (data not shown).



Figure 6

Spatial distribution of changes in soil carbon stocks (g C/m2) simulated by the end of the historical 
period (mean of 2001–2010) in the biogeochemical testbed for (a) CASA‐CNP (+18 Pg C), (b) MIMICS 
(+24 Pg C), and (c) CORPSE (−21 Pg C)

The testbed allowed us to parse out gross changes among models from 
isolated forcing experiments, rather than just seeing the net changes over 
the fully transient simulation. Isolated forcing experiments showed that 
MIMICS had a higher sensitivity to changes in plant productivity and 
temperature than the other models—accumulating twice the amount of C as 
CORPSE in the isolated GPP experiment, and losing twice as much C in the 
isolated soil temperature simulation (Figure 5c,d, Figure S5). Most of these 
differences, however, took place in mid‐to‐low latitudes (<50°N), where 
MIMICS simulated significantly larger initial carbon stocks than the other two 
models (Figure 3). In MIMICS, microbial turnover increased with higher plant 
productivity (Wieder, Grandy, et al. 2015). This served as a density 
dependent control over decomposition rates (Buchkowski, Bradford, Grandy, 



Schmitz, & Wieder, 2017), but it also increased the inputs of microbial 
residues to soil organic matter pools.

Our transient simulations highlighted uncertainties in understanding 
temperature and moisture sensitivity in cold regions. Warmer temperatures 
ultimately drove the high latitude soil C losses simulated over the 
20th century; but the isolated forcing experiments demonstrated that CASA‐
CNP and MIMICS had stronger direct sensitivities to changing temperatures 
(Figures 5 and 6, Figure S5). By contrast, CORPSE showed the largest 
sensitivity to isolated soil moisture forcings (including thawing of frozen soil 
water), and lost more than three times the amount of C as the comparable 
CASA‐CNP simulation (Figure 5e, Figure S5). Nearly all of the simulated C 
losses came from high latitude ecosystems—where soil moisture changes 
are mainly controlled by freeze/thaw state and the thawing of frozen soils 
allowed the large C stocks built up in frozen conditions to decompose. Thus, 
actual temperature sensitivity may be a combination of metabolic 
sensitivities to temperature, as well as interactions between temperature 
and moisture via controls over liquid water availability in soils subject to 
freezing (Commane et al., 2017; Koven, Lawrence, & Riley, 2015).

To further explore differences among models we looked at mean annual 
cycles of heterotrophic respiration from the testbed (Figure 7). By design, at 
the beginning of the simulations litter inputs equaled heterotrophic 
respiration rates for all models (48.1 Pg C/year). A climatology of annual soil 
respiration rates averaged across latitudinal bands, therefore, illustrates 
differences in the seasonal cycle of carbon fluxes from each model. As each 
soil model in the testbed was driven by a common climate and vegetation 
model, differences among the left panels of Figure 7 reflect distinctions in 
the seasonal amplitude of terrestrial net ecosystem exchange with the 
atmosphere. Across midlatitudes in the northern hemisphere CASA‐CNP 
showed the lowest amplitude in seasonal CO2 fluxes (Figure 7a). Over this 
same region, MIMICS showed higher summertime respiration than CASA‐CNP,
but both models simulated similar wintertime respiration rates (Figure 7c). 
By contrast, CORPSE had very low midlatitude heterotrophic respiration 
fluxes in winter, but much larger summertime rates—generating the highest 
amplitude seasonal cycle of all the models (Figure 7e). The stronger seasonal
cycle shown by CORPSE is consistent with the high transient sensitivity to 
freeze/thaw state by that model. These distinctions were amplified over time 
(Figure 7, right panels), showing a global intensification of heterotrophic 
CO2 fluxes between the first and last decades of the simulation. By the end of
the transient simulation annual CO2 fluxes were no longer equal among 
models, however, as soil carbon losses were greater for CORPSE, which 
simulated heterotrophic respiration fluxes that were roughly 1 Pg C/year 
higher than CASA‐CNP and MIMICS. By the end of the transient simulations, 
we also note a qualitative difference in the latitude‐seasonal responses of HR
between CORPSE and the other models in the mid‐ to high‐ latitude regions, 
where CORPSE tends to show respiratory increases earlier in the season and 



more northerly than the baseline climatological cycle, while the other two 
models tend to show increases that are more closely aligned in seasonality 
and latitude with the baseline climatology (Figure 7b,d,f).

Figure 7

Hovmöller diagram showing the climatological mean daily respiration rate (g C m−2 day−1) averaged 
over each latitude band for the initialization period (1901–1920; left column), and the difference 
between the final (2001–2010) and initial (1901–1920) mean daily respiration rates (right column). 
Results from each model are shown for (a, b) CASA‐CNP, (c, d) MIMICS, and (e, f) CORPSE

To clarify differences among models we focused on fluxes from a single 
latitudinal band (here 54˚N) over the last decade of the simulation. 



Figure 8 illustrates the seasonal cycle of environmental drivers (temperature,
soil moisture, and litter inputs), as well as the annual evolution of 
heterotrophic respiration fluxes and microbial biomass represented by each 
model. Again, CASA‐CNP and MIMICS produced similar wintertime fluxes. 
With warming in spring (and greater availability of liquid water) heterotrophic
respiration rates quickly accelerated in all models, but this occurs sooner in 
the year for both CASA‐CNP and CORPSE (Figure 8). The annual respiration 
rates simulated by CASA‐CNP generally tracked soil temperature changes, 
with maximum fluxes corresponding to periods with the warmest soil 
temperatures. By contrast, the maximum respiration rates simulated by the 
microbially explicit models were somewhat lagged from the CASA‐CNP fluxes
—corresponding to periods when litter inputs and temperature were also 
highest. Moreover, MIMICS and CORPSE both simulated higher maximum 
heterotrophic respiration rates, leading to a higher amplitude in the seasonal
cycle of soil CO2 fluxes. Some of this temporal shift in respiration rates was 
likely related to changes in microbial biomass stocks, which broadly tracked 
the seasonal cycle of litter inputs.

Figure 8

Mean annual cycle of (a) soil temperature, soil moisture and litter inputs (red, blue, and black lines, 
respectively) at 54°N over the last decade of the simulation (2001–2010). The lower panel (b) shows 
heterotrophic respiration fluxes (solid lines) and microbial biomass stocks (dashed lines) from CASA‐



CNP, MIMICS, and CORPSE (green, purple, and brown lines, respectively) for the same region and time 
period

4 DISCUSSION

Our results suggest that the actual uncertainty related to soil carbon 
projections may be larger than previously realized. Todd‐Brown et al. 
(2013, 2014) reported a wider range of initial soil carbon stocks and 
trajectories over the 21st century from an ensemble of CMIP5 models, but 
each of these models was forced with spatially varying and highly model‐
idiosyncratic climate and productivity estimates. By using a consistent 
forcing among models, our results better capture the variation in soil carbon 
stocks and their potential response to environmental change that is caused 
by different model assumptions, which is translated into model structures, 
and particular model parameterizations. Indeed, given their common forcing,
global similarities in testbed results are not surprising (Ahlström, Schurgers, 
Arneth, & Smith, 2012; Friend et al., 2014). Models in the biogeochemical 
testbed, however, more broadly sample the theoretical space related to soil 
organic matter decomposition and stabilization (Wieder, Allison, et al. 2015). 
This variation in model form (and parameterization) translated into 
differences among models in the: distribution of steady state soil carbon 
stocks (Figures 2and 3); functional relationship of turnover time with mean 
annual temperature (Figure 4); transient response of soil carbon stocks to 
environmental perturbations (Figures 5 and 6) and seasonal dynamics of 
heterotrophic respiration (Figures 7 and 8). We acknowledge that some 
model spread is likely explained by differences in calibration approaches; 
specifically, MIMICS was calibrated against the global pattern of C stocks 
estimated by HWSD, while CORPSE and CASA‐CNP were not (Figure 2). 
Future calibration of all three models against the same benchmark (e.g., 
Figure 4) may reduce uncertainty in the transient responses among models 
(Figure 5).

Through the historical period, CASA‐CNP and MIMICS show similar changes in
global soil carbon stocks (+18 and +24 Pg C, respectively), which were 
opposite in sign from the soil carbon changes simulated by CORPSE (−21 Pg 
C; Figure 5). When combined with changes to vegetation C stocks from the 
CASA‐CNP simulations (+36 Pg C) projected terrestrial carbon uptake would 
fall well short of terrestrial carbon sink estimated by the Global Carbon 
Project (62–142 Pg C between 1959–2010, assuming uncertainty of 0.8 Pg C/
year; Houghton et al., 2012; Le Quéré et al., 2014). Although our simulations 
lack representation of land use and land cover change, results from the 
testbed demonstrate that in order to capture inferred trends in terrestrial 
carbon uptake over the end of the 20th century much less carbon would have
to accumulate in vegetation pools of land models that applied CASA‐CNP and
MIMICS than would be necessary in a model using CORPSE. Here, we focus 
on understanding the structural uncertainties among models that broadly 
relate to differences among models in their representation of 
physicochemical stabilization of soil organic matter, temperature 



sensitivities, and moisture sensitivities. Notably, we found that uncertainties 
regarding the physicochemical stabilization of soil organic matter and freeze‐
thaw dynamics were greater than uncertainties related to direct temperature
sensitivities among models.

4.1 Physicochemical stabilization

Physical limitation of microbial access to otherwise decomposable substrates
plays a critical role in preserving soil organic matter (Conant et al., 2011; 
Cotrufo, Wallenstein, Boot, Denef, & Paul, 2013; Dungait, Hopkins, Gregory, 
& Whitmore, 2012; Lehmann & Kleber, 2015; Schimel & Schaeffer, 2012). 
Concurrently, microbial biomass serves as both the catalyst for soil organic 
matter decomposition and the source of soil organic matter formation, 
through the mineral stabilization of microbial residues and necromass 
(Grandy & Neff, 2008; Kallenbach, Frey, & Grandy, 2016; Liang, Cheng, 
Wixon, & Balser, 2011). While the three models included in the testbed all 
represented this process, their implementations and assumptions differed 
substantially, reflecting important uncertainties in how to appropriately 
represent pore‐scale physicochemical stabilization mechanisms in global‐
scale models. Our global loam experiment illustrated that steady‐state soil 
carbon dynamics in CASA‐CNP and MIMICS showed a greater sensitivity to 
soil texture than CORPSE (Figure S4). While the appropriateness of soil 
texture to describe diverse stabilization mechanisms on mineral surfaces and
within aggregates is in itself debatable (Doetterl et al., 2015; Mikutta, Kleber,
Torn, & Jahn, 2006), texture still serves as a useful proxy for which gridded 
input data sets are available for global‐scale simulations (Bailey et al., 2017).
We also note that few of the ESMs represented in the CMIP5 archive use any 
information about edaphic properties (texture, mineralogy, or pH) in their soil
biogeochemical submodels.

Regional differences in initial soil carbon stocks highlight the need to better 
resolve factors regulating physicochemical stabilization of soil organic matter
in models. For example, CASA‐CNP and CORPSE simulated lower than 
observed steady‐state soil carbon densities in warmer ecosystems 
(Figures 2 and 3). This suggests that the physicochemical stabilization 
mechanisms implicitly represented in these models may not be strong 
enough to counteract environmental conditions that would otherwise favor 
rapid decomposition (Figure 4). By contrast, MIMICS simulated higher soil 
carbon stocks in warm regions that were more consistent with observation‐
based estimates. Similarly, variation among models in transient simulations 
reflects uncertainty related to the ultimate fate of new carbon that enters 
terrestrial ecosystems. In first order models, like CASA‐CNP, variation in 
carbon inputs largely determines the variation in soil carbon changes, 
reflecting the linear relationship between inputs and turnover times (Koven, 
Chambers, et al., 2015; Todd‐Brown et al., 2014). Accordingly, increased 
productivity in the transient simulation increased soil carbon stocks in CASA‐
CNP, especially in colder climates with longer base turnover times 
(Figures 5c and 6a, Figure S5b). In the microbially explicit models, increased 



plant productivity and litter inputs also build proportionally larger microbial 
biomass pools (Figure S2c–d). These larger microbial biomass pools can 
simultaneously accelerate the decomposition of organic matter and build soil
carbon stocks. The balance of these factors depends on assumptions about 
the catalytic capacity of larger microbial biomass pools vs. the potential fate 
of microbial residues.

Increased plant productivity over the 20th century increased the rate at which
microbial residues contributed to soil organic matter pools. MIMICS assumes 
that finely textured soils have a much greater capacity to stabilize microbial 
residues (Wieder, Grandy, et al., 2014), accounting for the larger tropical soil
C accumulation (Figure 6b, Figure S5b). In contrast, larger microbial biomass 
pools simulated by CORPSE (as well as increased root exudation) accelerated
the decomposition of unprotected soil organic matter and litter stocks 
resulting in smaller increases in C stocks globally (Figures 5c and 6c). The 
rapid turnover times simulated by CORPSE in temperate and tropical 
ecosystems (Figure 4) suggest that little of the new carbon will be retained in
CORPSE simulations, an interpretation supported by results from the isolated
GPP simulation (Figure S5b).

Indeed, losses of soil carbon have been observed with increasing plant 
productivity in high‐latitude ecosystems (Hartley et al., 2012). In temperate 
forests, multidecadal litter manipulation studies generally show modest 
carbon accumulation in organic soil horizons, but no change in the carbon 
stocks of mineral soils (Bowden et al., 2014; Lajtha, Bowden, & 
Nadelhoffer, 2014; Lajtha, Townsend, et al., 2014). This suggests a more 
nuanced relationship between plant productivity and soil carbon storage may
be necessary to understand and simulate likely terrestrial carbon responses 
to changes in plant productivity. The models in the biogeochemical testbed 
take a step in this direction, but our results highlight the need to refine the 
representation of factors affecting microbial access to otherwise 
decomposable substrates in soils.

4.2 Temperature sensitivities

Uncertainties in observed soil biogeochemical responses to temperature 
present notable challenges for projecting terrestrial carbon dynamics in a 
warming world (Conant et al., 2011; Davidson & Janssens, 2006; Jones, Cox, 
& Huntingford, 2003). Although theory predicts that warmer temperatures 
should accelerate soil organic matter decomposition and lead to soil carbon 
losses, experimental evidence for these assumptions remains unclear 
(Bradford, Wieder, et al., 2016). Recent syntheses, however, demonstrate 
that experimental warming consistently increases soil respiration rates 
(Carey et al., 2016) and leads to soil carbon losses in sites where initial soil 
carbon stocks were large (Crowther et al., 2016). Models in the testbed 
reflected these general expectations (Figure 5), but extending the insight 
provided from these relatively short‐term experimental findings to decadal‐ 
and centennial‐scales increases the uncertainty associated with societally 



relevant carbon cycle projections. Moreover, these syntheses cannot 
decompose the changes in productivity vs. turnover times associated with 
warming; however, they do corroborate field studies suggesting that warmer 
summertime temperature may be accelerating the decomposition of soil 
organic matter in the Alaskan tundra and thereby turning Arctic landscapes 
into a source of carbon dioxide to the atmosphere (Commane et al., 2017; 
Schuur et al., 2009). Collectively, these observations highlight the 
importance of capturing the appropriate soil carbon temperature sensitivity 
for understanding potential carbon cycle – climate feedbacks, especially in 
carbon‐rich, high latitude ecosystems.

Differences in base decomposition rates and temperature sensitivities largely
describe differences in steady state and transient responses among first‐
order models (Todd‐Brown et al., 2014), but understanding apparent 
temperature response functions that emerge from microbially explicit 
models is somewhat more complicated. Decomposition rates of organic 
matter in MIMICS and CORPSE were controlled by reverse Michaelis‐Menten 
based kinetics (Equations 2 and 3), and both models applied temperature 
functions to calculate maximum reaction velocities (Vmax) with similar 
temperature sensitivities (Q10, data not shown). MIMICS, however, also 
calculates a temperature sensitive half‐saturation constant (Kes). This likely 
dampened the climate sensitivity of soil carbon turnover times (German, 
Marcelo, Stone, & Allison, 2012) and decreased the apparent Q10 of simulated
reaction rates (Davidson & Janssens, 2006). These factors may explain the 
shallow slope in the MIMCS log turnover time – temperature relationships in 
warmer domains (Figure 4b). By contrast, CORPSE used a fixed half‐
saturation constant, applied an Arrhenius equation to 
calculate Vmax (resulting in higher temperature sensitivities at lower 
temperatures), and assumed that the chemical quality of different substrate 
pools conferred different temperature sensitivities. Additionally, CORPSE 
strongly limited decomposition when soil water was moistly frozen while 
MIMICS did not include an explicit soil moisture dependence. As a result, the 
inferred turnover times simulated by CORPSE in temperate and tropical 
ecosystems were very fast, but a strong moisture limitation to decomposition
rates in frozen soils drove the change in slope of the log turnover times with 
air temperature in Figure 4c.

Model structure also determines variation in the transient responses among 
models (Jones et al., 2005; Rasmussen et al., 2016). For example, steady 
state turnover times simulated by MIMICS showed the lowest temperature 
sensitivity (Figure 4), but the model also had the largest soil C losses in the 
isolated soil warming experiment (Figure 5d); whereas the opposite was true 
for CORPSE. At high latitudes, most soil carbon simulated by MIMICS was in 
pools that were vulnerable to microbial degradation and, therefore, sensitive 
to changes in temperature (Figure 5d, Figure S5c). By contrast, much of the 
soil carbon simulated by CASA‐CNP was in pools with slower decomposition 
rates, thus extending the time needed for temperature sensitivities to 



emerge. Indeed, previous work indicates that over decadal times scales 
MIMICS has a faster response to experimental warming, compared to a first 
order model, but over centennial time scales ultimately loses less carbon 
(Wieder, Grandy, et al., 2014). Moreover, local effects like edaphic 
properties, substrate quality, microbial community composition, soil 
moisture, and redox conditions compound uncertainty in assessing the 
vulnerability of soil carbon stocks to temperature change (Bradford, Berg, 
Maynard, Wieder, & Wood, 2016; Bradford et al., 2014; Davidson & 
Janssens, 2006). Interactions between soil moisture and temperature 
resulted in more modest C losses from CORPSE in the isolated soil 
temperature experiment (Figure 5d,e; discussed next). Articulating the true 
uncertainty associated with any projection of soil carbon change, therefore, 
requires a deeper investigation into the structural assumptions represented 
in models—which extends beyond temperature sensitivity of carbon turnover
times.

4.3 Moisture sensitivities

At multiple scales of interest, measuring and modeling soil water availability 
remains highly uncertain (Clark et al., 2015; Loescher, Ayres, Duffy, Luo, & 
Brunke, 2014). Subsequently, translating the effects of the soil hydrologic 
state into biogeochemical models also presents enormous challenges 
(Carvalhais et al., 2014; Manzoni & Katul, 2014; Moyano, Manzoni, & 
Chenu, 2013). Yet, water availability fundamentally determines microbial 
activity in all soils. Limited liquid water availability notably preserves soil 
organic matter in high‐latitude permafrost systems, where soil water can be 
frozen for most or all of the year. The transition from liquid to frozen water 
rapidly reduces decomposition rates in the field (Commane et al., 2017) and 
models (Koven, Lawrence, et al., 2015), albeit with varied sensitivities 
(Figure 5e). Because it lacks structures that consider the effects of liquid 
water availability on decomposition rates, MIMICS simulated rapid turnover 
times and low soil carbon stocks in permafrost regions (Figures 3 and 4b). In 
contrast, CORPSE was especially sensitive to freezing because it strongly 
limited decomposition at low soil moisture (Equation 3; Sulman et al., 2014). 
This accentuated the strong threshold behavior in steady state turnover 
times around mean annual temperatures of 0°C (Figure 4c) and resulted in 
much lower wintertime respiration fluxes from CORPSE (Figures 7 and 8).

We recognize that the abrupt changes in turnover times with frozen soils 
reflected in CORPSE simulations are at least partially due to the single‐layer 
implementation of the soil models here. Indeed, all of the models may 
benefit from explicitly resolving profiles of soil temperature and moisture in 
their representation of biogeochemical processes to better capture 
permafrost soil carbon dynamics (Koven et al., 2013, 2017). Nevertheless, 
lengthening of the nonfrozen season in permafrost soils has been shown to 
significantly increase soil carbon emissions (Commane et al., 2017); and 
these contrasting model outcomes (Figures 5and 6) highlight real and 
important sources of uncertainty in projecting carbon cycle responses to 



warming and associated hydrologic changes, especially at high latitudes. The
results from CORPSE projecting larger global soil carbon changes to soil 
moisture (which is mainly an indirect temperature effect) than to the direct 
temperature effect, as well as the larger disagreement between CORPSE and
the other models in the testbed for moisture than temperature responses 
(Figures 5e and 6, Figure S5), underscores both the importance and lack of 
model agreement on this critical process. Again, however, finding 
appropriate data streams to parameterize soil moisture effects on substrate 
availability for a global‐scale model remains a challenge. More broadly, 
uncertainties among models and observational data sets related to 
permafrost soil carbon densities and vulnerability to environmental change 
remain an outstanding challenge for global‐scale models (Burke, Jones, & 
Koven, 2013; Koven, Riley, & Stern, 2012; Koven, Lawrence, et al., 2015) 
that reflects the difficulty in representing interactions between the physical 
soil systems and the biotic agents responsible for soil organic matter 
formation and decomposition.

This work addresses a particular challenge in comparing, evaluating and 
ultimately improving global‐scale soil biogeochemical models under a 
common experimental framework. The biogeochemical testbed provides a 
computationally tractable, numerically consistent framework to begin 
exploring the effects of different model structures and parameterizations on 
soil carbon stocks and fluxes at global scales. Variation in soil carbon 
projections among models were caused by differences in the steady state 
turnover times simulated by each model, and the turnover time responses to
environmental changes over the 20th century. These can be simplified into 
uncertainties among models related to the physicochemical stabilization 
limiting microbial access to otherwise decomposable carbon substrates, 
temperature sensitivities of soil organic matter turnover, and effects of liquid
water availability on microbial activity. An important application of the 
testbed is motivating improvements in model structures and 
parameterizations. Based on our initial results we suggest that improved 
parameterization of temperature sensitivities in CORPSE and implementation
of water availability effects on decomposition (especially in frozen soils) in 
MIMICS could improve the fidelity of simulations using those models. 
Moreover, none of the carbon‐only, single layer models implemented in the 
testbed consider the effects of vertical resolution in regulating SOM turnover
—highlighting gaps that should be addressed with future model 
development. Continuing to resolve these key uncertainties will require 
greater communication between empirical and modeling communities. As 
models begin to more faithfully reflect theoretical understanding of factors 
responsible for soil organic matter formation and decomposition we see the 
testbed as a tool to facilitate regional‐ to global‐scale model comparison and 
evaluation, while developing understanding of soil biogeochemical 
processes.
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