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Autism spectrum disorders (ASDs) are a group of neuro
psychiatric disorders that include autism, pervasive 
develop mental disorder not otherwise specified (PDD
NOS), and Asperger’s syndrome [1]. First described in 
1943, their diagnostic features continue to evolve based 
on an expanding clinical and biological understanding 
[2]. A child is diagnosed with an ASD if he or she shows 
early childhood deficits in: social communication and 
inter action, involving social reciprocity, nonverbal com
muni cation, and maintenance of relationships; language 
development, such as delay of language onset and main
tenance of conversation; and restrictive and repetitive 
behaviors, including in speech, motor movements, 
routines, and interests [3]. Classic autism, formally 
known as autistic disorder, is the most severe of the 
ASDs, with patients showing impairments in social, 
communication, and restrictive and repetitive behavior 
before the age of three. Additional features that are often 
comorbid with ASDs include sensory and motor 
abnormalities, attention deficit hyperactivity disorder 
(ADHD), epilepsy, and developmental regression [4,5]. 
Those with ASDs can range from being mentally disabled 
to having above average intelligence [6]. ASDs are 
extremely prevalent in our society, with males being 
affected more than females, especially in highfunc tion
ing cases including what is currently known as Asperger’s 
syndrome. Currently, it is estimated that one out of 88 

children has an ASD, representing a 78% increase over 
the past 6  years [7]. This drastic increase is most likely 
due to sociocultural factors rather than biological factors, 
including age at diagnosis, changing diagnostic criteria, 
and broader inclusion rates, although genetic and 
environ mental factors cannot be ruled out [811].

ASDs have a large genetic component. Concordance 
rates among monozygotic twins, dizygotic twins, and 
siblings are 5090%, 030%, and 326%, respectively, 
supporting a major genetic contribution [1214]. Interest
ingly, the risk of ASD in secondborn male siblings is 
threefold that in secondborn females, supporting 
models of reduced penetrance in females [14,15]. More
over, a recent study found a roughly twofold greater ASD 
concordance among full siblings than in half siblings, 
additionally supporting a genetic contribution and 
heritability of greater than 50% [16]. Multiple converging 
research strategies to account for ASD genetic liability 
have identified a variety of genetic causes that account for 
roughly 20% of ASD cases. These include genetic copy 
number variation (CNV; duplicated or deleted regions of 
the genome greater than 1 kb [17]), syndromic forms of 
autism (ASD that occurs within a defined syndrome, 
such as fragile X syndrome), and single gene and meta
bolic disorders [18,19]. Recent studies based on CNV and 
single nucleotide variant (SNV) data put the number of 
ASDimplicated genes at between 200 and 1,000 [2025], 
and multiple modes of inheritance have been proposed 
[2628]. In addition, many ASDimplicated genes are also 
associated with other neuropsychiatric disorders, includ
ing schizophrenia, ADHD, epilepsy, and intellec tual 
disability [22,2940], and none are specific for autism, 
suggesting that additional modifying factors dictate the 
clinical outcome of having disruptions in a specific 
gene.

The genetic complexity of ASDs mirrors their pheno
typic complexity. The core domains within ASD pheno
types   social, language and restrictive and repetitive   
also exist as a spectrum, with a distribution overlapping 
with extreme forms of normal behavior [41]. These sub
classes of impairments, or ‘endophenotypes’, are also 
observed at some degree in unaffected family members, 
but are below threshold for clinical diagnosis [42].

Abstract
Advances in genetics and genomics have improved 
our understanding of autism spectrum disorders. As 
many genes have been implicated, we look to points 
of convergence among these genes across biological 
systems to better understand and treat these disorders.
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Here, we first provide an overview of our most recent 
understanding of the genetics of ASDs and then highlight 
convergent pathways and biological mechanisms emerg
ing from gene finding and expression studies. The areas 
in which molecular mechanisms intersect have great 
potential to guide future genetic discoveries and to aid in 
therapeutic design.

The current state of autism genetics
ASDassociated variants have been identified over the 
past three decades using various techniques; recently, 
nextgeneration sequencing on large cohorts has ushered 
in a wave of gene discovery that has greatly enhanced our 
understanding of the inheritance of ASDs. Previous work 
involved the cataloging of ASDassociated major gene 
disorders, such as fragile X syndrome and tuberous 
sclerosis [43,44], cytogenetic analysis, which identified 
large structural genomic rearrangements, and genetic 
linkage studies [45]. Over the past several years, genome
wide association studies (GWAS) have revealed a handful 
of common alleles of modest effect size likely to contri
bute to ASD [4648]. Analysis of CNV has additionally 
implicated rare genomic structural changes, both de novo 
and inherited, of large effect size [20,21,4952]. Most 
recently, exome sequencing has lent insight into the 
contribution of de novo SNVs [2225]. In this section we 
review the major studies that have identified both 
common variants (CVs) and rare variants (RVs) asso
ciated with ASDs and will discuss models for how these 
variants may contribute to ASD pathology.

The contribution of common alleles versus rare alleles
The contribution of both common and rare alleles to 
ASD has been assessed using GWAS and CNV/exome 
sequencing studies. Given that ASD is highly prevalent, it 
was initially thought (consistent with the prevailing 
common variantcommon disease model [53]) that 
common genetic single nucleotide polymorphism (SNP) 
variants (those occurring in at least 5% [54] of the 
population) would lead to this common disorder.

An alternative model is that RVs with moderate to large 
effect size lead to ASD (the rare variantcommon disease 
model [55]). This is supported by mathematical modeling 
based on recurrence in multiplex families, which posits a 
relatively large contribution from spontaneous, de novo 
mutations with lower penetrance in females [15]. The 
contribution of RVs has been tested by measuring the 
frequency of rare CNVs and SNVs in cases and controls 
and is emerging as an exciting area in ASD genetics. Both 
types of study have been aided by the availability of large 
cohorts of ASD and control participants, specifically the 
Autism Genetic Resource Exchange (AGRE), Simons 
Simplex Collection (SSC), Autism Center of Excellence 
(ACE), and the Autism Genome Project AGP). Findings 

from these studies, outlined in Tables 13, are discussed 
below.

Three largescale GWAS have been conducted so far 
[4648] that are adequately powered to detect CVs of 
modest effect size (Table  3). Only two variants reached 
genomewide significance: an intergenic variant, 
rs4307059, between cadherin 9 (CDH9) and cadherin 10 
(CDH10) [46] and rs4141463 in an intronic region of the 
MACRO domain containing 2 (MACROD2) gene [48]. 
An additional intergenic variant, rs10513025, between 
SEMA5A and TAS2R1, had a pvalue suggestive of 
genomewide significance (p = 2.1 x 107) [47].

What conclusions can be made from GWAS? First, the 
effect size for any single CV is rather small, as studies 
have had the power to detect odds ratios (ORs) of greater 
than 1.5 but have not found such variants. This suggests 
either widespread epistasis, or that multiple CVs of small 
effect size are needed for disease, or, alternatively, that 
the role for CVs in limited (Figure  1). Second, using 
unaffected relatives as controls, who under some models 
may harbor a subthreshold genetic load of associated 
variants, would decrease the association signal. Studies of 
endophenotypes or intermediate phenotypes are one 
strategy that may help in this regard [29]. Third, the 
epistatic interaction of combinations of CVs, rather than 
single variants, may confer disease risk, prompting the 
need for bioinformatic tools capable of testing combi na
torial models. In sum, GWAS has not provided evidence 
that single CVs ranging from modest to large effect 
contribute significantly to ASD risk. However, at the 
same time, the cohorts tested have been relatively small 
compared with the tens of thousands of patients tested in 
other common diseases [56,57].

This has led many to a model in which RVs (either 
CNVs or rare SNVs) of moderate to large effect explain a 
large proportion of ASD heritability [15]. Over the past 
5 years, 6 major studies have conducted refined screens 
of the genome to identify rare CNVs, both inherited and 
de novo, in ASD participants and matched controls 
(Table 2). These studies have shed light on the contri bu
tion of rare CNVs to ASD pathophysiology, with several 
themes emerging. First, in all five studies that examined 
inherited CNVs, inherited CNVs were equally prevalent 
in individuals with ASD as in controls [20,21,50,51]. 
Although one study reports a 1.19fold higher number of 
CNVs (de novo and inherited) in cases than in controls, 
this signal is driven by the contribution of rare de novo 
CNVs, as removing these CNVs from the analysis results 
in an equal distribution of CNVs between cases and 
controls [52]. Second, the emerging consensus from 
multiple studies is that larger CNVs, containing more 
genes, are observed in probands versus controls [20,21, 
50,51]. Third, these studies do not consistently find that 
simplex families (those with only one member with an 
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ASD) harbor many more large de novo mutations than 
multiplex families (those with more than one). For 
example, whereas two studies report a higher number of 
de novo events in simplex than in multiplex families (10% 
simplex versus 3% multiplex [49] and 7% simplex versus 
2% multiplex [51]), another reports an even distribution 
of de novo events across the two types of families (5.6% 
simplex versus 5.5% multiplex [52]). Lastly, many CNVs 
are multigenic, especially in the genomes of people with 
ASD, making it difficult to determine the putative 
causative gene. Determination of pathogenicity of speci fic 
genes or pathways may be aided by modeling in animals 
[58], intersection with other functional data such as gene 
expression [59], and systems biology approaches, as 
discussed below. In any case, these largescale CNV 
studies have generated the following list of intriguing 
ASD candidate genes disrupted by rare de novo CNVs in 
ASD participants: A2BP1, ANKRD11, C16orf72, CDH13, 
CDH18, DDX53, DLGAP2 [51,52], DPP6, DPYD, FHIT, 
FLJ16237, NLGN4, NRXN1, SHANK2, SHANK3, 
SLC4A10, SYNGAP1, and USP7 [20,21] (Table 2).

Advances in nextgeneration sequencing now enable 
the most powerful approach to finding de novo RVs. Four 

independent groups have recently conducted whole
exome sequencing projects using nonoverlapping samples 
[2225] (Table  1). Strikingly, across all four studies, the 
frequency of de novo mutation was equal between ASD 
and control participants. Another commonality across 
studies was the correlation between older fathers and 
increased number of de novo point mutations, which 
could help explain the paternalagedependent risk for 
ASD [6063]. In addition, two studies report an increase 
in genedisrupting SNVs in ASD individuals versus 
unaffected siblings, although the overall SNV mutation 
rate is equal between probands and siblings [23,25]. In 
one study [25], there was a significantly greater number 
of nonsynonymous and nonsense de novo SNVs in ASD 
individuals than in unaffected siblings when looking 
across all genes (OR of 1.93 (all nonsynonymous to silent 
SNVs); OR of 4.03 (nonsense/splicesite to silent SNVs) 
and brainexpressed genes only (OR of 2.22 (all non
synonymous to silent SNVs); OR of 5.65 (nonsense/
splicesite mutations to silent SNVs)), with silent SNVs 
showing an equal mutation rate between cases and 
controls. The other study [23] reported a twofold higher 
number of frameshift, splicesite, and nonsense de novo 

Table 1. Whole-exome gene finding sequencing studies that reveal common and rare variants associated with ASD

  De novo variant Single genes
References Participants characteristics implicated Novel findings Trends

Neale et al. 
2012 [24]

175 families*, simplex/
multiplex and trios. 
175 cases, 350 parents

Equal frequency of 
de novo mutations in 
cases and control

KATNAL2 and CHD8 harbor 
de novo mutations in cases, 
none found in controls 
(935 cases versus 870 
controls; targeted exome 
sequencing)

Significantly enriched number 
of protein interactions among 
genes with missense or 
nonsense de novo mutations

Greater paternal and 
maternal age correlates 
with greater number of 
de novo mutations

O’Roak et al. 2012 
[22]

209 families (SSC), 
simplex, trios and 
quads. 209 cases, 418 
parents, 50 unaffected 
sibs

Equal frequency of 
de novo mutation in 
cases and controls

ASD cases harbor protein-
disrupting mutations in 
GRIN2B, LAMC3, and SCN1A 
(mutation screening; 1,703 
ASD cases, 744 controls) 
and CHD8 and NTNG1 
(recurrent)

Genes with de novo mutations 
that cause missense or nonsense 
mutations form a β-catenin/
chromatin remodeling protein 
network enriched for ASD 
candidate genes

4:1 paternal origin of de 
novo mutations. Greater 
paternal age correlates 
with greater number of 
de novo SNVs

Sanders et al. 
2012 [25]

238 families (SSC), 
simplex, trios and 
quads. 238 cases, 
476 parents, 200 
unaffected sibs

Equal frequency of 
de novo mutation in 
cases and controls

SCN2A significantly 
associated with ASD. 
KATNAL2, CHD8, and SCN2A 
significantly associated with 
ASD when combined with 
[22,24]

Significantly greater non-
synonymous and nonsense 
de novo SNVs in cases than 
unaffected sibs (all genes and 
brain-expressed genes), OR 1.93 
for non-synonymous to silent 
SNVs in cases versus unaffected 
sibs

Greater paternal age 
correlates with greater 
number of de novo SNVs

Iossifov et al. 
2012 [23]

343 families (SSC), 
simplex, quads. 343 
cases, 686 parents, 343 
unaffected sibs

Equal frequency of 
de novo mutation in 
cases and controls

KATNAL2, CHD8, SCN2A, 
DYRK1A, and POGZ 
significantly associated with 
ASD when combining all 
studies [22-25]

Twofold higher numbers of 
frame-shift, splice-site, and 
nonsense de novo mutations in 
cases than in unaffected sibs. 
Enriched number of gene-
disrupting mutations in FMRP-
associated genes ([23] alone and 
when combining data from all 
studies [22-25])

Greater paternal and 
maternal age correlates 
with greater number of 
de novo mutations

* Boston Autism Consortium
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mutations in cases than in controls, although there was 
an equal distribution of de novo missense mutations in 
this study. By combining genes that harbor frameshift, 
splicesite, or nonsense de novo variants in cases across 
all four studies [2225], five highpriority genes were 
identified that were disrupted in two independent 
probands: DYRK1A, POGZ, SCN2A, KATNAL2, and 
CHD8 (Table  1). There are several interesting lessons 

from these studies, including the utility of having data 
from other family members, which can help prioritize 
variants. One example is that the Wnt/βcatenin signal
ing pathway was implicated in one study [22], but another 
that included a larger cohort of unaffected siblings [25] 
found that this pathway was overrepre sented in the 
unaffected siblings. These data suggest that more detailed 
pathway analysis is needed to understand the precise 

Table 2. Large-scale CNV studies that reveal common and rare variants associated with ASD

     Single genes,  
     ASD-associated 
     genes and regions in 
  All CNVs (de novo  Recurrent de novo or de novo CNVs found
References Participants and inherited) De novo CNVs only inherited CNVs in cases  in cases

Sebat et al. 
2007 [49]

264 families (AGRE/NIMH), 
118 simplex, 47 multiplex, 
99 control, 195 cases, 196 
controls

Focused on CNVs only 7.2% of cases; 1% of 
controls; de novo variants 
larger than 3 Mb: 2.6% of 
cases; 0.51% of controls

De novo: 2q37.3 (2 del), 
3p14.2 (1 dup, 1 del) (cases 
only)

SLC4A10, FHIT, 
FLJ16237, A2BP1

Szatmari et al. 
2007 [50]

173 families (AGP), 
multiplex, 196 cases, 292 
unaffected sibs

624 total; no significant 
difference in frequency of 
CNVs overall in cases and 
controls. 1.3 CNVs/genome 
in cases; mean size, 3.4 
Mb; 1.27 CNVs/genome in 
controls; mean size, 4.3 Mb

5.1% of cases, 2.1% of 
controls

47 CNVs (18 regions) in 
cases

17p12, 22q11.2, 
NRXN1

Marshall et al. 
2008 [51]

427 families, 237 simplex, 
189 multiplex, 427 cases, 
500 controls (unrelated), 
1,152 additional controls

2,873 total. No significant 
difference in frequency of 
CNVs overall in cases and 
controls. 3.1 CNVs/genome 
in cases; mean size, 603 
kb; 3.1 CNVs/genome in 
controls (n = 500); mean 
size, 470 kb

27 ASD cases with de novo 
variants not found in 1,152 
additional controls

983/94 (overlapping CNV/
loci) in 427 cases; 31/13 
case-only (overlapping 
CNV/loci) not found in 
1,152 additional controls. 
De novo: 5p15.31-p15.2 (2 
del) 7q31.1-q32.2 (2 del) 
15q11.2-q13.3 (2 dup) 
16p11.2 (1 dup, 2 del)

CDH18, DPYD, NLGN4, 
DPP6, DLGAP2, 
ANKRD11, SHANK3

Pinto et al. 
2010 [52]

876 families (AGP), 
simplex/multiplex, 996 
cases, 1,752 parents, 1,287 
additional controls

5,478 total. 1.19-fold 
increase in CNVs in cases 
over controls.1.69 case/
control ratio for CNVs 
≥ 500 kb. 219 inherited 
CNVs not in controls and 
disrupting single genes 
(DDX53-PTCHD1)

50 out of 876 of ASD cases 
harbor de novo CNVs. 
Seven de novo CNVs not 
in controls and disrupting 
single genes

NA SHANK2, SYNGAP1, 
DLGAP2

Sanders et al. 
2011 [21]

1,124 families* (SSC), 
simplex, 1,124 cases, 2,248 
parents, 872 unaffected 
sibs

No significant difference 
in frequency of inherited 
CNVs in cases and controls

Cases (n = 872), controls 
(n = 872). All de novo CNVs: 
5.9% of cases; 1.7% of 
sibs OR: 3.5. Multigenic de 
novo CNVs: 4.9% of cases; 
0.92% sibs; OR: 5.6. Mean 
number of genes/CNV 21.4 
in cases; 4.6 in sibs. De novo 
variants larger than 1 Mb: 
2.5% cases; 0.5% controls, 
OR: 5.6

De novo: 1q21.1 (2 
dup); 7q11.23 (4 dup); 
15q13.2-q13.3 (1 dup/1 
del); 16p11.2 (4 dup, 7 del); 
16p13.2 (2 dup); 16q23.3 
(2 del)

CDH13, USP7, C16orf72

Levy et al. 
2011 [20]

887 families (SSC), simplex, 
858 cases, 863 unaffected 
sibs

No significant difference 
in frequency of inherited 
CNVs in cases and controls

7.9% in cases (median 
genes per CNV: 4) 2% in 
unaffected sibs (median 
genes per CNV: 0)

De novo: 16p11.2 (4 dup, 
6 del); 7q11.23 (2 dup); 
16p13.2 (2 dup, 1 del); 12 
recurrent loci representing 
121 events (data combined 
with [52])

DDX53-PTCHD1, USP7

*Contains 1,340 overlapping probands and sibs with [20]. Del, deletions; dup, duplications.
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balance of signaling in this complex pathway [64] and its 
relationship to disease.

The study of RVs as ASD risk factors poses some 
challenges. Rarity does not indicate pathogenicity; rare 
events are seen in controls as well as in ASD participants, 
and inherited CNVs, by nature, will be present in the 
transmitting unaffected parent. In addition, a variant may 
be rare to the point of uniqueness for the sample sizes 
currently being studied, making causation difficult to 
establish and increasing the number of false negatives. 
Given these challenges, it is hard to determine which RVs 
are risk factors, which modulate risk, and which are 
unrelated to phenotype. The rarity of these events may 
preclude using traditional statistical techniques given 
that these techniques require a much larger sample to 
prove statistical association with disease [65]. Some 
reasonable statistical solutions are being developed [25].

One approach to elucidate the intersection of large 
candidate gene lists is to use systems biology techniques 
to incorporate our knowledge of protein interactomes. 
Towards this end, one group conducted networkbased 
analysis of genetic associations (NETBAG) from a list of 
genes found to harbor de novo CNVs in individuals with 
ASD [20] and found a preponderance of network genes 
involved in neuronal motility, targeting of axons, and 
synapse development [66]. In addition, exome sequencing 
studies have found that proteins encoded by genes 
harboring de novo missense or nonsense mutations have 
a significantly enriched number of protein interactions 
[24] and form protein networks enriched for ASD 
candidate proteins that have specific molecular functions 
[22]. Another approach is to integrate genetic data with 

gene expression to identify CNVs that perturb gene 
expression, thus validating a functional effect. Such a 
study recently demonstrated the power of this method 
and identified several new potential ASD risk CNVs [59]. 
To fully understand the wealth of genomics data currently 
being generated, we will need both appropriate statistical 
techniques and bioinformatics approaches to identify 
signi ficant points of convergence among candidate genes.

Integrating genetic findings into a picture of ASD genetic 
architecture
How do these findings inform our genetic models of 
disease? Several models have been put forth to explain 
the inheritance of ASDs. We discuss here the ‘major 
effect model’ and several polygenic models: a combi
nation of CVs, a major effect RV in a background of CVs, 
a combination of RVs and CVs, and an oligogenic ‘two 
hit’ model (Figure  1). None of these are truly absolute 
and we expect that a wide range of genetic models will 
explain ASD in the individual [41].

The major effect model proposes that one major insult 
to the genome is sufficient for the disorder. This scenario 
is supported by the observation that disruptions of single 
genes can lead to ASD in an apparently Mendelian 
manner with reduced penetrance, as is seen in several 
syndromic forms of ASDs. For example, mutations in 
FMR1 (fragile X syndrome [43]), MECP2 (Rett Syndrome 
[67]), TSC1 and TSC2 (tuberous sclerosis [67]), CNTNAP2 
(Cortical dysplasiafocal epilepsy syndrome [68]), 
DHCR7 (SmithLemliOptiz syndrome [69]), CACNA1C 
(Timothy syndrome [70]) and PTEN [71] all result in 
syndromes with phenotypes overlapping those of ASDs 

Table 3. Large-scale GWAS that reveal common and rare variants associated with ASD

Reference Stage Families Type Most significant findings

Wang et al. 2009 [46] 1 780 families, 3,101 participants (AGRE) Multiplex Top SNP rs4307059 (p = 1.1 x 10-5)* between 
CDH9 and CDH10; may disrupt a regulatory 
non-coding RNA [158].

2 1,204 cases, 6,491 controls (ACC) Case/control Top SNP rs4307059 (p = 2.2 x 10-4)*

3 Combined GWS at rs4307059 (p = 3.4 x 10-8 combined 
with discovery cohorts; p = 2.1 x 10-10 
combined with replication cohorts)

Weiss et al. 2009 [47] 1 1,031 families, 4,233 participants (AGRE, 
NIMH)

Multiplex and simplex Top SNP rs10513025 (p = 1.7 x 10-6)* between 
SEMA5A and TAS2R1

2 318 trios (Boston Autism Consortium/
Montreal), 1,755 trios (AGP, Finnish 
families, Iranian trios)

Multiplex and simplex Top SNP rs10513025; p = 2.1 x 10-7*, 
combining replication and scan data

Anney et al. 2010 [48] 1 1,369 families (AGP), 1,385 cases(typically 
only one proband genotyped per family)

Multiplex and simplex GWS at rs4141463 (p = 2.1 x 10-8) in 
MACROD2 (intronic)

2 2,179 families (AGP group above/AGRE) Multiplex and simplex GWS at rs4141463 (p = 4.7 x 10-8) in 
MACROD2 (intronic)

*Not genome-wide significant; GWS, genome-wide significant defined as p < 5 x 10-8.
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[17]. However, each of these syndromes show incomplete 
penetrance for ASD and variable expressivity. For 
example, 10% of people with FMR1 mutations do not 
show any ASD phenotype [23], and those who do express 
a wide range of phenotypes, with no more than 30% 

crossing a threshold for clinical diagnosis of ASD [72]. 
This incomplete penetrance and variable expressivity 
suggest that additional factors   genetic, epigenetic, and 
environmental  modulate the presence of ASD in some
one with a major genetic disruption [41]. This pattern of 

Figure 1. Genetic models of ASD risk. Schematic representations of Mendelian and polygenic models of ASD risk are depicted, with evidence 
for and against each model listed below. In the diagram at the top, the rows represent the type of individual: those with ASD, and those with some 
risk factors but not sufficient to manifest the clinical syndrome, such as unaffected relatives. The columns represent the basic categories of genetic 
models under consideration. The size of the variant represents effect size, with a larger symbol indicating increased effect size. For simplicity, 
these models are presented as distinct categories, whereas in reality ASD risk is likely to be represented by a more continuous distribution of risk 
architecture. A single asterisk indicates that there is evidence to suggest that de novo CNVs in unaffected controls are smaller [21,51,52] and less 
gene-rich [20,21] than in people with ASD. A double asterisk indicates that there is conflicting evidence for increased oligogenic heterozygosity 
[25,156].

Polygenic models Mendelian 
Model

ASD

Sub
Threshold

Parents/relatives
Endophenotypes

Subclinical
Phenotypes

Model

Evidence
For

Evidence
Against

common 
variant (CV)

subject

rare 
variant (RV)

Combination of CVs
Major effect RV in 
background of CVs

Combination of 
RVs and CVs

ASD endophenotypes have a 
normal distribution in the 

population [17]

ASD endophenotypes present in 
relatives [17]

Inherited RVs are present in an 
unaffected parent or sibling [21]

De novo CNVs in unaffected
      controls [20,21,49-52]*

Evidence for ASD resulting from 
neuronal networks perturbed by 

rare and common variants [77]

ASD endophenotypes present in 
relatives [17]

GWAS findings do not
    replicate [46-48]

Incomplete penetrance and 
variable expressivity in 

ASD-associated single gene/rare 
variant disorders suggests 

additional contributing factors
                      [17-29]

Empirical evidence for increased 
oligogenic heterozygosity in high 
functioning ASD versus controls 

**

Inherited RVs are present in an 
unaffected parent or sibling [21]

De novo CNVs in unaffected 
controls [20,21,49-52] *

Evidence for ASD resulting from 
neuronal networks perturbed by 

rare and common variants [77]

ASD endophenotypes present in 
relatives [17]

‘Two hit’ RV

Empirical evidence for RV/RV 
combinations conferring disease 

risk [27,79]

Inherited RVs are present in an 
unaffected parent or sibling [21]

De novo CNVs in unaffected 
controls [20,21,49-52]*

ASD endophenotypes present in 
relatives [17]

ASD and ASD-associated 
disorders caused by disruptions 
of single genes, some with high 

penetrance [19]

Recurrent or single de novo SNVs 
found in cases, but not

controls [20-23]

Single causative
RV
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highly variable expressivity should not be unexpected 
even with major effect alleles, as it has been observed 
frequently in dominantly inherited neurologic diseases, 
including a wide range of neurodegenerative diseases 
[73]. Additional examples of ‘major hits’ come from early 
cyto genetic studies, such as maternally inherited dupli
cations of 15q1115q13, deletions of 22q13, deletions of 
2q37, and disruptions in 5p15, 17p11, and Xp22 [74].

An alternative to the major effect model is the poly
genic model, in which various combinations of genetic 
variants in an individual lead to disease. Here, we high
light four nonexclusive polygenic models to illustrate the 
range of likely possibilities (Figure 1). In the first model, 
ASD results from a combination of CVs that exceed a 
tolerance threshold. In this model, relatives of ASD 
participants carry a subclinical genetic load of ASD
associated CVs. Evidence to support this model is that 
ASD endophenotypes are sometimes observed in rela
tives, suggesting that subsets of CV combinations are 
sufficient for endophenotypes [17]. In addition, several 
ASD endophenotypes have a normal distribution in the 
population, which would be predicted by multiple 
contributory factors of modest to low effect [41].

The second and third polygenic models (Figure  1) are 
an RV in a genetic milieu of CVs that results in ASD 
when the load of CVs is sufficient to exceed an arbitrary 
threshold and a combination of RVs and CVs of various 
effect sizes that exceed a threshold of tolerance. Shared 
lines of support for both models are that (i) ASD risk 
factors, such as 15q1115q13 [75] and 16p11.2 [76], that 
are rare inherited disruptions are present in both the 
unaffected parent and the affected offspring, suggesting 
that additional genetic modifiers are needed to confer 
disease risk; (ii) de novo CNVs are found in both cases 
and unaffected controls, again suggesting that additional 
genetic modifiers are needed for disease state or that 
some of these variants do not contribute to disease state; 
(iii) neuronal networks identified by bioinformatic 
analysis of transcriptome data are enriched for ASD
associated common and RVs [77]; and (iv) ASDrelated 
component phenotypes are present in relatives owing to 
subthreshold loading of common and RVs. Additional 
support for the polygenic models comes from the 
observation that even rare, de novo nonsense and splice
site mutations increase the odds of ASD by an average of 
only 6 fold [23,25]. This probably represents a large range 
of genotype risk, but suggests that many rare deleterious 
mutations are not alone sufficient to cause ASD.

A fourth form of the polygenic model (Figure  1) 
involves two hits, wherein one RV is tolerated but two 
hits leads to a disease state, similar to cancer [78]. Some 
examples of this model have been presented [27,79], and 
the model is consistent with inherited RVs being present 
in the transmitting parent (discussed above), de novo 

CNVs being found in unaffected controls, and relatives 
manifesting subthreshold ASD traits. However, a two hit 
model is probably not the predominant cause based on 
recent exome data [2225] and, even in cancer, where this 
model originated, a more continuous model of genetic 
contribution is now supported [78]. Taken together, there 
is the greatest support for a more continuous, and highly 
heterogeneous, polygenic model in which ASD results 
from a combination of RVs and CVs that build to exceed 
a clinical threshold in many different combinations in the 
population.

Emerging biological themes
ASD genes fall into many potential functional classes; 
this heterogeneity raises the question of how such diverse 
mechanisms lead to ASD. To answer this question, it is 
critical to identify the points of potential convergence 
among autism candidate genes in developmental and 
anatomical terms. Toward this end, expression patterns 
of ASD genes have been annotated using wholegenome 
transcriptome profiling in blood and brain from ASD and 
control participants [54]. At the same time, large efforts 
have been made to build proteomic interactomes of 
autism candidate genes [22,24,80] so as to understand 
how these molecules functionally intersect. These efforts 
have been concurrent with the development of large 
protein and RNA expression databases that provide 
genomewide spatial and temporal expression informa
tion (the Allen Brain Atlas [81], Gene Paint [82], the 
Cere bellar Development Transcriptome Database [83], 
the RefSeq Atlas [84], the Human Protein Reference 
Database [85,86], the NIA mouse proteinprotein inter
action database [87], and the Genes to Cognition data
base [88]).

Definitive demonstration of convergence will require 
experiments testing causality in model systems. Currently, 
there are several vertebrate and invertebrate systems, 
including Drosophila [8991], zebrafish [58], and the 
mouse, that provide a tractable genetic and neuro bio
logical systems for understanding the biological impact 
of specific susceptibility from the molecular to the 
complex behavioral level. Most modeling has been done 
in the mouse, in which many of the complex behaviors 
involved in autism can be tested, including social 
responsiveness [92]. However, given that the common 
ancestor of mouse and human is separated by 60 million 
years of evolution, it is not a foregone conclusion that 
disruption of a gene or genes that cause ASD in humans 
will lead to similar behaviors in mouse. There is little 
known about the parallels between neural systems 
serving social cognition and communication in mouse 
and human. So, it is reasonable to start without many 
preconceived assumptions and view the mouse, similar to 
the fly or zebrafish, as a genetically sensitized system for 
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exploring the molecular, cellular, and circuitlevel 
mechanisms of ASDrelated genetic variation.

Crawley and colleagues [92] have elegantly outlined 
three basic levels of model validity: (i) construct validity 
(the model contains the same biological perturbation as 
the human disorder, for instance genetic or anatomical); 
(ii)  face validity (the model displays endophenotypes or 
phenotypes that mirror the human disorder); and 
(iii) predictive validity (the model has a similar response 
to treatments effective in humans). Using this construct, 
it is remarkable that several ASDassociated genetic vari
ants have recapitulated many human ASD endopheno
types when modeled in a mouse, including Cntnap2 
knockout (language, restrictive/repetitive, and social 
domains) [93], Nlgn4 knockout (language and social) 
[94], En2 knockout (restrictive/repetitive and social) 
[95,96], 15q1113 duplication; chromosome 7 in mouse 
(language, restrictive/repetitive, and social) [97], Gabrb3 
knockout (restrictive/repetitive and social) [98], Oxt 
knock out (language and social) [99101], Avpr1b knock
out (language and social) [102,103], and Fgf17 knockout 
(language and social) [104]. Inbred strains of mice, such 
as BTBR, BALB, and C58/J, also show ASD endo
phenotypes [92]. However, it is unclear exactly how a 
behavior in mouse, such as deficits in ultrasonic vocali
zation, translates into a human phenotype, such as 
language delay. Indeed, disparity in the molecular, 
anatomical, and neuronal circuitry between mouse and 
humans is likely and must be interpreted with caution. 
Keeping these caveats in mind, modeling of ASD variants 
in mouse is proving to be an exceptionally useful tool in 
understanding potential ASD mechanisms. It is hoped 
that combining mouse models and in vitro models will 
facilitate finding convergence points, especially at the 
molecular level, and will provide a tractable avenue for 
pharmaceutical intervention. Here, we touch on these 
areas of intersection at the molecular, cellular, systems, 
and neuroanatomical level and discuss progress toward 
integration across levels.

Neuronal activity and ASDs
One potential point of convergence developing from 
gene finding studies is that autism pathophysiology 
involves proteins that both modulate neuronal activity 
and show activitydependent expression (Figure  2f ). Of 
the handful of proteins identified by wholeexome sequen
cing reviewed above, SCN2A, SCN1A, and GRIN2B all 
code for subunits of synaptic ion channels, with SCN2A 
and SCN1A coding for the α subunits of voltagegated 
sodium channels [22,25]. GRIN2A, an Nmethyldaspar
tate (NMDA) receptor subunit mapping within the 
16p1113 region, was additionally identified in a large
scale ASD association study [105]. NMDA receptors are 
ionotropic ion channels that are critical regulators of 

activitydependent synaptic plasticity. Other notable 
ASD candidate genes that code for ion channels are the 
ionotropic glutamate receptors GRIK2 [106] and GRIA3 
[107] and the voltagedependent calcium channel sub
units CACNA1C [70] and CACNA1H [108].

ASD candidate genes are also enriched in sets of trans
cripts regulated by neuronal activity (Figure  2f ). For 
example, UBE3A [21,109], DIA1 [110], and PCDH10 
[110] are all regulated by MEF2A/D, a transcription factor 
that has a major role in activitydependent develop ment 
of the synapse [111]. Moreover, the autism candidate 
gene NHE9 is regulated by NPAS4, a transcription factor 
regulated by neuronal activity [110]. Lastly, a recent study 
identified ASD candidate genes UBE3B, CLTCL1, 
NCKAP5L, and ZNF18 by wholeexome sequencing and 
found their expression to be regulated by neuronal 
depolarization [112]. In sum, these results point to a 
potential contribution of genes regulated by or regulating 
neuronal activity to autism pathophysiology.

Post-synaptic translational regulation
Another potential point of molecular convergence in 
autism genetics is activitydependent protein metabolism 
at the postsynaptic density (PSD), a proteinrich speciali
zation at the postsynaptic membrane critical for effective 
neural transmission (Figure  2e). Single gene disorders 
that intersect with ASD gave us first clues that this 
process is important in the pathophysiology of autism. 
Mutations in FMR1, the leading inherited cause of ASD 
[113], results in the absence of Fragile X mental retarda
tion protein (FMRP), a key regulator of activitydependent 
protein synthesis at the synapse [114]. FMRPmediated 
translation is regulated in an activitydependent manner 
by the autism candidate gene, CYFIP1, located within the 
15q1113 duplication region [115]. Recently, whole
exome studies have reported an enrichment of FMRP
associated genes in the lists of genes disrupted by RVs in 
ASD participants [23]. FMRP is associated with the 
autism candidate genes MET [116], PTEN, TSC1, TSC2 
and NF1 [117], which are also located within the PSD 
[118120]. These genes are part of the phosphatidyl
inositol 3kinase (PI3K)AKTmTOR pathway which is 
activated by metabotropic glutamate receptor signaling 
[119,121], is an upstream effector of translation regula
tion, and is involved in cellular proliferation [122]. 
Individuals with RVs in several of these genes have been 
found in the large gene finding studies outlined above 
(PTEN [22], TSC [22], MET [21], NF1 [21]), and addi
tional regulators of protein translation have been identi
fied (RPL10 [21]).

Ubiquitination pathways, which regulate protein meta
bo lism at the PSD, are also associated with autism 
(Figure 2e). Most notably, UBE3A, a protein implicated in 
the ASDassociated disorder Angelman‘s syndrome [17], 
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is involved in ubiquitination of its target proteins, such as 
the FMRP translational target ARC [123], which leads to 
their degradation at excitatory postsynaptic densities. 
RVs in UBE3A and genes encoding associated proteins 
have been found in recent largescale CNV studies 

(UBE3A, PARK2, RFWD2, and FBXO40 [109]; USP7 and 
UBE3A [21]).

Although not directly involved in protein metabolism, 
another large group of ASD proteins converge at excita
tory postsynaptic densities. The most notable are the 

Figure 2. Emerging biological themes in ASD. (a,b) Predominant areas of neuroanatomical convergence in ASD. (a) Aberrant brain growth 
trajectories, with the size of ASD brains outlined in red against a background of normal brains [144-146] (images adapted from [157]); (b) 
abnormal cortical columns [151]. (c,d) Systems-level convergence in ASD. (c) White matter tract and functional connectivity abnormalities 
[126,147-150,152,153] (images reproduced with permission from Mark Bastin, University of Edinburgh, UK); (d) excitation/inhibition network 
imbalances [93,132,136-141], (e-g) Genetic convergence at the cellular and molecular levels. ASD-associated genes implicated in (e) 
activity-dependent protein synthesis [17,21,23,79,109,113-123], (f ) neuronal activity [21,22,25,70,105-112], and (g) neuronal cell adhesion 
[20-22,34-37,49-52,68,75,79,93,109,126-129,131-137].
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synaptic scaffolding proteins SHANK2 and SHANK3, 
identified as ASD risk factors in several studies [27,52, 
124,125]. Recently, an autism protein interactome built 
using a human yeast twohybrid screen and 35 ASD
impli cated proteins as bait found that a large group of 
PSDlocalized ASDassociated proteins interact. This 
study additionally confirmed the SHANK3PSD95 
inter action, added nine additional protein binding 
partners to this interaction, and identified novel PSD 
interactions such as the SHANK3TSC1ACTN1
HOMER3 inter action [80]. In sum, these data point to 
the excitatory PSD as a hot spot for ASDassociated 
molecules, making it a potential target for drug 
discovery.

Neuronal cell adhesion
ASDassociated mutations in several proteins involved 
in cell adhesion include CNTNAP2, CNTN4, CNTN6, 
NLGN1-4, NRXN1, PCDH9, and CHL1 (Figure 2g). 
Multiple converging lines of evidence implicate CNTNAP2 
in ASD pathology, including its role in a syndromic 
form of autism [68], variants found in linkage and 
association studies [3537], presence of RVs [79], its 
impact in functional magnetic resonance imaging (MRI) 
readouts in humans [126], and molecular evidence that 
its knock out leads to the behavioral manifestation of all 
three core domains of autism as well as neuronal 
migration abnormalities [93]. A member of the neurexin 
super family, CNTNAP2 is involved in cellcell adhesion, 
clustering of potassium channels at the juxtaparanode 
[127], neuronal migration, and regulation of GABAergic 
interneuron numbers [93]. There are data to support an 
additional contactin family member, CNTN4, in autism 
pathophysiology [109,128,129], although this has been 
recently challenged [130]. CNTN6 has also been impli
cated by CNV studies [20,4952,75,109,131]. Neurexins 
and neuroligins have both been heavily implicated in 
ASD pathophysiology. Neurexins are located presynap
tically and bind to postsynaptically localized neuro
ligins. These molecules modulate both excitatory and 
inhibitory synaptic function [132]. NRXN1 has been 
identified as an ASD risk factor by cytogenetic analysis 
[133], largescale CNV studies [21,50,109], and case 
reports [34]. NLGN1, NLGN3 and NLGN4 have also 
been identified in several studies [21,22,109,134,135], 
and CNTNAP2 is homolo gous to Drosophila Neurexin 4 
[89]. Additional evidence for the role of NLGNs and 
NRXN1 in ASD involves intro duction of ASD
associated variants, knockout, or overexpression of 
these proteins in mouse models. These studies have 
recapitulated various aspects of the ASD phenotype 
[132,136,137] and have additionally impli cated NLGN2. 
PCDH9 and CHL1 may also contribute to ASD based on 
CNV studies [20,4952,75,109,131].

Balancing excitation and inhibition
Functional studies in mouse models have suggested that 
some of the ASD candidates contribute to network 
dynamics by altering the balance of excitation and 
inhibition (Figure  2d). For example, a slight increase in 
levels of NLGN2 in mouse reduces the excitation to 
inhibition ratio by decreasing the ratio of excitatory to 
inhibitory synapses, increasing inhibitory synaptic con
tacts, and increasing the frequency of miniature inhi bi
tory PSCs in the frontal cortex [132]. In addition, intro
duc ing the ASDassociated NLGN3 missense mutation 
into a mouse increases inhibitory function in cortex 
[136]. Similarly, Nrxn1a knockout mice exhibit a decrease 
in hippocampal excitatory function [137]. Knocking out 
Cntnap2 in a mouse reduces cortical GABAergic inter
neuron numbers, potentially altering the balance of 
excita tion and inhibition [93]. In addition, Shank3 knock
out decreases cortical excitatory transmission [138]. 
Fmr1 knockout mice show several excitatory/inhibitory 
imbalances, including impaired inhibitory transmission 
in the amygdala [139], decreased excitatory inputs into 
inhibitory neurons in the cortex [140], and an increased 
inhibitory transmission in the striatum [141].

There is corroborating data for the role of excitation 
and inhibition in autism from whole transcriptome 
studies of human postmortem brain. One recent study 
used a sophisticated systems biology approach, weighted 
gene coexpression network analysis (WGCNA), to build 
transcriptome networks from human ASD and control 
postmortem brain samples [142]. The top autism 
associated WGCNA network, enriched for ASDasso
ciated GWAS targets, showed high overlap with a 
previously identified interneuronrelated module [143]. 
Understanding how perturbations in this delicate balance 
of excitation and inhibition lead to disease will be crucial 
in understanding ASD pathophysiology. Considerations 
in this endeavor will include a clear understanding of 
how deficits affect both microcircuits and more long 
distance connectivity.

Connecting convergent molecular pathways with 
higher-order ASD phenotypes
Effective drug design would be facilitated by convergence 
at the level of molecular pathways. However, convergence 
at higher levels is also plausible. In fact, some of the most 
reproducible clinical signatures have been at the level of 
brain structure and function. For example, the trajectory 
of head growth, which corresponds to brain size, seems 
to be reproducibly abnormal in children with ASD, who 
have smaller head circumferences at birth followed by a 
burst in head circumferences postnatally, eventually 
reach ing normal size around adolescence (Figure  2a) 
[144146]. Studies have also repeatedly shown decreases 
in white matter tracts in autism (Figure  2c) [147,148]. 

Berg and Geschwind Genome Biology 2012, 13:247 
http://genomebiology.com/2012/13/7/247

Page 10 of 16



Specifically, longrange connections seem to be weakened, 
whereas local connections are strengthened [149,150]. 
Cortical structure abnormalities, specifically denser and 
narrower cortical columns, have also been reported 
(Figure  2b) [151], and functional MRI neural signatures 
for autism are being defined [126,152,153].

Even if the point of convergence is at the molecular 
level, how do we connect these findings with those at the 
macroscopic level, described here? Some salient examples 
are worth noting. As discussed above, the PI3KAKT
mTOR pathway is strongly enriched for ASD candidate 
genes. This pathway affects cellular proliferation, which 
could, in theory, lead to the abnormal brain growth 
reported in autism (Figure 2a). However, elucidating the 
‘dark matter’ between this molecular pathway and brain 
size will not be trivial. Another example involves the link 
between activitydependent brain specializations during 
early postnatal development and molecular pathways 
that rely heavily on neuronal activity, described as a point 
of molecular convergence above. A recent study reported 
a failure of frontal and temporal cortical specialization in 
autism brains as defined by transcriptome signatures 
[142]. This could be a result of disruptions in activity
dependent molecular pathways needed at critical 
developmental times. Nevertheless, connecting the dots 
between different levels of analysis will be a formidable 
task.

One proof of principle model involves the gene 
CNTNAP2 [154]. The ramifications of genetic perturba
tions in this gene have been studied on multiple levels, 
spanning molecular studies, mouse models, and func
tional MRI studies. A thorough examination of impli
cated pathways from molecules to brain structure will 
need to be conducted to integrate our understanding of 
autism pathophysiology across levels.

Future directions
The combination of worldwide collaborative data and 
sample sharing with advanced genomic techniques and 
bioinformatic strategies has provided the essential 
foundation for uncovering the genetic and molecular 
under pinnings of ASD. The contributory genes uncovered 
in the past 5 years have led to a revolution in our under
standing of the disorder. Not surprisingly, the near future 
is highly focused on wholegenome and wholeexome 
sequencing of large patient cohorts, which is facilitated 
by continuing technological advances that reduce cost 
barriers.

The major obvious questions raised by this approach 
are: what degree of insight will be obtained and what 
advantages will wholegenome sequencing provide over 
wholeexome sequencing? Given the role of gene dosage 
changes, implicated by CNV [59], and evidence for 
splicing dysregulation in ASD [142], one should expect a 

significant contribution of noncoding, regulatory changes 
to ASD susceptibility. Thus, we envision a signifi cant 
advance once wholegenome sequencing can be per
formed costeffectively in large cohorts. At the same 
time, exome sequencing is predicted to yield dozens of 
new ASD genes, so it remains a productive shortterm 
approach [2225]. Large population cohorts, perhaps 
using clinical sequencing rather than investigatororganized 
research cohorts, provide one avenue for comprehensive 
genetic evaluation in the necessary number of partici
pants in an efficient manner, despite many potential 
barriers [155].

One notable absence in this discussion has been linkage 
analysis, perhaps raising the question: is genetic linkage 
dead in the age of genome sequencing? Few linkage peaks 
have been identified and replicated and dense SNP 
analysis of linkage peaks has not revealed common varia
tion accounting for the linkage signal [17]. Thus, repli
cated linkage peaks are probably signals for aggregation 
of RVs. Given the emergence of RVs as factors in ASD 
susceptibility, genetic linkage, especially using quanti
tative trait approaches [29], probably provides a reason
able means for restricting the search space for ASD risk 
variants and assessing their segregation in families.

The next crucial issue is how to validate the patho
genicity of identified variants, especially noncoding 
SNVs. We envision that associated variants from these 
studies will be prioritized on the basis of their ability to 
be translated into tractable models of disease. A clear 
limitation is that associated variants may be found in 
poorly annotated noncoding regions. It has often been 
thought that noncoding variants are harder to func
tionally annotate, but in some ways they may prove more 
tractable to assess in high throughput. For example, it 
can be a very long road to understanding the effect of a 
missense mutation in a protein of known or unknown 
function. In contrast, many variants found in poorly 
annotated noncoding regions can be tested for cis or 
trans effects on gene expression, first in expression 
quantitative trait locus datasets and then in neuronal cell 
culture or in mouse models. As genome function becomes 
more densely annotated, the ease of such analyses will 
further increase. Thus, although there still remain major 
challenges in variant identification and initial assessment 
of their pathogenicity, these can be largely overcome by 
technology and greater numbers. However, phenotype 
definition and understanding what specific aspects of the 
broad ASD phenotype relate to individual genetic risk 
factors remains only superficially explored and will 
continue to be a major roadblock for those interested in 
understanding biological mechanisms of disease.

Now that significant contributions to genetic risk for 
ASD have been uncovered, it behooves us to perform 
parallel phenotypic analyses at multiple levels in humans 
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and model systems to understand the mechanisms of 
diverse forms of major contributory mutations. For 
example, understanding what a group of a dozen syn
dromic forms of ASD have in common and what 
distinguishes their phenotypes from a molecular, cellular, 
and cognitive standpoint would be informative. Further
more, combining information on chromatin structure 
and epigenetic modification to sequence data may reveal 
environmental contributions and their potential 
intersection with known genetic risks. In this manner, 
combining various forms of highthroughput data and 
pathway analyses with multiple levels of phenotype data 
in wellstudied cohorts is likely to be necessary to deepen 
our understanding of ASD pathophysiology. Despite the 
extraordinary genetic heterogeneity revealed by recent 
studies, various forms of highthroughput data and 
pathway analyses discussed here have provided evidence 
of biological convergence. As our understanding of 
genetic contributions to ASD expands from the current 
dozens of genes into the hundreds from ongoing human 
genetic studies, the notion of biological convergence can 
be tested more rigorously. Furthermore, because even 
RVs on average have intermediate effects with regard to 
ASD risk, exploration of potential epistatic interactions 
between loci may contribute to a clearer picture of the 
landscape of ASD genetics. In the mean time, these new 
genetic findings from the last few years provide us with a 
starting point to explore the first generation of genetically 
targeted therapeutics in ASD.
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