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ABSTRACT OF THE DISSERTATION

Learning Visually Grounded Intelligence with Language

by

Liunian Li

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2024

Professor Kai-Wei Chang, Chair

To build an Artificial Intelligence system that can assist us in daily lives, the ability to

understand theworld around us through visual input is essential. Prior studies train visual

perception models by defining concept vocabularies and annotate data against the fixed

vocabulary. It is hard to define a comprehensive set of everything, and thus they are hard

to generalize to novel concepts and domains. In this thesis, I turn to language as a scalable

and effective tool to build visually groundedmodels. Intuitively, natural languages are the

most effective medium of learning and communication for humans. I will introduce two

lines of work to train models to understand the visual world with language as supervision.

The first line of work is inspired bymasked languagemodeling such as BERT, and extends

that to build contextualized representation models for vision and language. These models

can be fine-tuned to perform vision-language tasks such as answering questions about an

image. The second line of work uses language to supervise object detection models and

enables object detection with prompts, where the users could specify custom needs and

domain knowledge in a text prompt, and the model situates its predictions based on the

text on the fly.
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CHAPTER 1

Introduction

Humans do not learn by reading from text only. Artificial Intelligence (AI) systems need

the ability to perceive and understand visual signals. As a motivating example, consider

Figure 1.1. Suppose that we want to develop a system that can automatically report ac-

cidents from surveillance footage. The grounded agent should be able to detect related

entities, draw the connection between the upside-down car and the ambulance, and re-

port in natural language that there has been an accident. To achieve this goal, the model

needs to learn the mapping between vision and fine-grained or abstract concepts such as

“accident”. Teaching themodel to perform such visual grounding is especially challenging.

Prior studies curate datasets by labeling images with a vocabulary of a few thousand con-

cepts (e.g., ImageNet [DDS09a] has 1,000 classes while VQA [GKS17a] has an answer pool

size of less than 4,000). The limited concept pool does not support fine-grained recogni-

tion or complex reasoning.

In this thesis, we turn to language as a scalable and effective tool to build visually

grounded models. Intuitively, humans do not learn primarily from fixed and task-specific

labels. Instead, natural languages are the most effective medium of learning and com-

munication for humans. We propose representation learning methods to train vision-

language models on easily-accessible language supervision. Learning with language also

enables inference with language, where the user could communicate with the model at in-

ference time. The user specifies needs, new domain knowledge, and constraints in natural

language instructions. The model situates its predictions based on the instructions on the

1



fly without re-training. This does not only greatly enhance themodels’ ability to generalize

and adapt efficiently, but also facilitates humans to collaborate with the machine easily.

Ambulance Upside-down car

Other cars People

Figure 1.1: Attention

map produced by Visual-

BERT [LYY19].

In Part 1 of this thesis, we focus on building contextu-

alized representations given an image and associated text,

which could be used for tasks such as answering ques-

tions regarding an image or identifying hatefulmemes. Vi-

sualBERT [LYY19] (Chapter 2) presents one of the first

pre-training methods for vision-language models. People

record and describe the world in pictures and text and it is

easy to collect such data. We draw inspiration from self-

supervised learning and propose reconstructive visually-

grounded objectives to encourage a representation model

to build cross-modal alignment implicitly. Conceptually,

the objectives operate like a cloze test, where the model

needs to fill in blanks in a caption according to the im-

age. Thus, the model “reads” through millions of seman-

tic rich image-caption pairs and excels at tasks such as

detecting hateful memes. The model is a combination of

BERT [DCL19a] and pre-trained object proposals systems

such as Faster-RCNN [RHG15]. It seamlessly transfers

to many vision-language tasks. Fig. 1.1 shows an atten-

tion map of VisualBERT, which captures the intricate as-

sociation between “accident” and the ambulance and the

upside-down car in the associated image.

In many domains, it is expensive to collect grounded (aligned) data. For example, in

the medical domain, X-ray scans paired with detailed medical reports are hard to col-

lect while raw X-rays and unpaired literature are easy to collect. In Unsupervised Visu-

2



alBERT [LYW21] (Chapter 3), we explore unsupervised vision-language pre-training with

unaligned image and text corpora. This research direction aligns with the theme of unsu-

pervised and self-supervised learning that moves from heavily-annotated data to unanno-

tated data, e.g. unsupervised machine translation [FSB20]. Instead of relying on image-

caption pairs, we rely only on an object detector to provide low-level alignment between

regions and their labels. These object labels serve as “anchor points” between the visual

and text representation space. We reuse the reconstructive objective from VisualBERT

and find that Unsupervised VisualBERT achieves performance close to supervised train-

ing.

In Part 1, we rely on visual perceptionmodels to extract visual features andbuild vision-

language representations on top of the frozen features. These visual perceptionmodels are

typically trained to map the visual world to a few thousand pre-defined semantic concepts

(the label set), and generalization to novel concepts and domains has been a long-standing

challenge. This consequently bottlenecks the performance of vision-language models. In

Part 2, we argue that learning visual perception and learning vision-language representa-

tions should not be treated as separate problems. We turn the problemof visual perception

into a vision-language learning problem. In our work GLIP [LZZ22] (Chapter 4), we focus

on object detection, a representative visual perception task, which involves locating ob-

jects in an image. We posit that object detection can be cast into a vision-language task,

where themodel, augmented with a language branch, is trained to recognize objects based

on a text query. Themodel takes in an image and a text prompt – either a synthesized sen-

tence as a concatenation of category names or a natural language sentence. The task is to

identify the correspondence between phrases in the prompt and objects (or regions) in an

image. The reformulation immediately allows us to pre-train the model on image-caption

data with a contrastive objective. During inference, we can easily transfer the model to

new tasks by writing down the target categories as a text prompt (e.g., ”Detect: Bicycle.

Car. Ambulance.”).

3



Can we go beyond just using object names in the text prompt? Can we query themodel

with complex language expressions that include specifications of fine-grained details, such

as colors, shapes, and relations? We find that simply incorporating language descriptions

into queries does not guarantee accurate interpretation by the models. They often disre-

gards contextual information in the language descriptions and instead relies heavily on

detecting objects solely by their names. In Chapture 5, we propose DesCo [LDP23], a

description-conditionedway to learn object detection with rich language descriptions. We

employ a large language model as a commonsense knowledge engine to generate rich lan-

guage descriptions of objects. Then we design context-sensitive queries to improve the

model’s ability in deciphering intricate nuances embedded within descriptions and en-

force the model to focus on context rather than object names alone. DesCo can interpret

semantic-rich queries much more accurately and significantly outperforms GLIP.

An overview of the chapters are as follows:

• Chapter 1 introduces the challenge of learning vision-language models and presents

an overview of the dissertation.

• Chapter 2 presents VisualBERT, one of the first vision-language pre-training meth-

ods.

• Chapter 3 presents Unsupevised VisualBERT, which can be trained without aligned

image-text pairs.

• Chapter 4 presents GLIP, one of the first language-based open-world object detec-

tion systems.

• Chapter 5 presents DesCo, which learns object detection with rich language descrip-

tions and allows semantic-rich prompts at inference time.

• Chapter 6 concludes this dissertation and discusses future research directions.
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Part I

Vision-Language Pre-Training

5



CHAPTER 2

Pre-training with Image-Tex Pairs

Research on learningmulti-modal grounding has a long history. Starting from creating

ImageNet based on the WordNet vocabulary to collecting over 1 million image-question-

answer pairs (VQA), curated datasets with human annotations have greatly accelerated

multi-modal research. However, such human annotations in the form of image/object

labels and short answers have fundamental limitations. For example, VQA has an answer

pool size of less than 4,000, while the largest object detection dataset has a concept pool

of less than 2,000. The limited concept pool does not support the learning of fine-grained

concepts or complex reasoning, which are indispensable for vision-language grounding.

We posit that semantic-rich multi-modal knowledge exists in a natural form: image-

caption pairs. People record and describe the world in pictures and text on the Internet

and it is easy to collect millions of such data. In this chapter, we introduce VisualBERT, a

simple and flexible representation model for a broad range of vision-and-language tasks.

VisualBERT integrates BERT [DCL18], Transformer-basedmodel [VSP17] for natural lan-

guageprocessing, andpre-trained object proposals systems such asFaster-RCNN[RHG15]

and it can be applied to a variety of vision-and-language tasks. In particular, image fea-

tures extracted from object proposals are treated as unordered input tokens and fed into

VisualBERT along with text. The text and image inputs are jointly processed by multiple

Transformer layers in VisualBERT (See Figure 2.2). The rich interaction among words

and object proposals allows the model to capture the intricate associations between text

6



Man Shirt Sidewalk Pedestrians Sidewalk*

Layer 3 Layer 4 Layer 5 Layer 6 Layer 10 Layer 11

Figure 2.1: Attention weights of some selected heads in VisualBERT. In high layers (e.g.,

the 10-th and 11-th layer), the model can implicitly grounding visual concepts (e.g., “other

pedestrians” and “man wearing white shirt”). The model also captures certain syntactic

dependency relations (e.g., “walking” is aligned to theman region in the 6-th layer). The

model also refines its understanding over the layers, incorrectly aligning “man” and “shirt”

in the 3-rd layer but correcting them in higher layers.

and image.

Similar to BERT, pre-training VisualBERT on external resource can benefit down-

stream applications. We pre-train VisualBERT on image caption data, where detailed se-

manticsof an image are expressed innatural language. Wepropose two visually-grounded

language model objectives for pre-training: 1) part of the text is masked and the model

learns to predict the masked words based on the remaining text and visual context; 2) the

model is trained to determine whether the provided textmatches the image. We show that

such pre-training on image caption data is important for VisualBERT to learn transferable

text and visual representations.

We conduct comprehensive experiments on four vision-and-language tasks: (1) visual

question answering (VQA2.0 [GKS17a]), (2) visual commonsense reasoning (VCR [ZBF19]),

(3) natural language for visual reasoning (NLVR2, [SZZ19]), and (4) region-to-phrase ground-

ing (Flickr30K, [PWC15]). Results demonstrate that by pre-training VisualBERT on the

COCO image caption dataset [CFL15], VisualBERT outperforms or rivals with the state-of-

the-art models. We further provide detailed ablation study to justify our design choices.
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Figure 2.2: The architecture of VisualBERT. Image regions and language are combined

with a Transformer to allow the self-attention to discover implicit alignments between

language and vision. It is pre-trained with a masked language modeling (Objective 1),

and sentence-image prediction task (Objective 2), on caption data and then fine-tuned for

different tasks. See §2.1.2 for more details.

Further quantitative and qualitative analysis reveals how VisualBERT allocates attention

weights to align words and image regions internally. We demonstrate that through pre-

training, VisualBERT learns to ground entities and encode certain dependency relation-

ships between words and image regions, which attributes to improving themodel’s under-

standing on the detailed semantics of an image (see an example in Figure 2.1).

2.1 VisualBERT

In this section we introduce VisualBERT, a model for learning joint contextualized repre-

sentations of vision and language.

2.1.1 Architecture

The core of our idea is to reuse the self-attention mechanism within the Transformer to

implicitly align elements of the input text and regions in the input image. In addition to

all the components of BERT, we introduce a set of visual embeddings to model an image.
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Each visual embedding corresponds to a bounding region in the image, derived from an

object detector.

Each visual embedding is computed by summing three embeddings: (1) a visual fea-

ture representation of the bounding region, computed by a convolutional neural network,

(2) a segment embedding indicating it is an image embedding as opposed to a text embed-

ding, and (3) a position embedding, which is used when alignments between words and

bounding regions are provided as part of the input, and set to the sum of the position em-

beddings corresponding to the aligned words (see VCR in §2.2). The visual embeddings

are then passed to the multi-layer Transformer along with the original set of text embed-

dings, allowing the model to implicitly discover useful alignments between both sets of

inputs, and build up a new joint representation.1

2.1.2 Training VisualBERT

Wewould like to adopt a similar training procedure asBERTbutVisualBERTmust learn to

accommodate both language and visual input. Therefore we reach to a resource of paired

data: MS-COCO [CFL15] that contains images each paired with 5 independent captions.

Our training procedure contains three phases:

Task-agnostic pre-training. Herewe train VisualBERT onCOCOusing two visually-

grounded languagemodel objectives. (1)Masked languagemodelingwith the image. Some

elements of text input are masked andmust be predicted but vectors corresponding to im-

age regions are not masked. (2) Sentence-image prediction. For COCO, where there are

multiple captions corresponding to one image, we provide a text segment consisting of two

captions. One of the caption is describing the image, while the other has a 50% chance to

be another corresponding caption and a 50% chance to be a randomly drawn caption. The

model is trained to distinguish these two situations.

1If text and visual input embeddings are of different dimension, we project the visual embeddings into a
space of the same dimension as the text embeddings.
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Task-specific pre-training. Before fine-tuningVisualBERT to a downstream task, we

find it beneficial to train the model using the data of the task with the masked language

modeling with the image objective. This step allows the model to adapt to the new target

domain.

Fine-tuning. This step mirrors BERT fine-tuning, where a task-specific input, output,

and objective are introduced, and the Transformer is trained tomaximize performance on

the task.

2.2 Experiment

We evaluate VisualBERT on four different types of vision-and-language applications: (1)

VisualQuestionAnswering (VQA2.0) [GKS17a], (2)Visual CommonsenseReasoning (VCR)

[ZBF19], (3) Natural Language for Visual Reasoning (NLVR2) [SZZ19], and (4) Region-to-

PhraseGrounding (Flickr30K) [PWC15]. For all tasks, weuse theKarpathy train split [KF15]

of COCO for task-agnostic pre-training, which has around 100k images with 5 captions

each. The Transformer encoder in all models has the same configuration as BERTBase: 12

layers, a hidden size of 768, and 12 self-attention heads. The parameters are initialized

from the pre-trained BERTBase parameters released by [DCL18].

For the image representations, each dataset we study has a different standard object

detector to generate region proposals and region features. To compare with them, we

follow their settings, and as a result, different image features are used for different tasks

(see details in the subsections). 2 For consistency, during task-agnostic pre-training on

COCO, we use the same image features as in the end tasks. For each dataset, we evaluate

three variants of our model:

VisualBERT: The full model with parameter initialization fromBERT that undergoes

pre-training on COCO, pre-training on the task data, and fine-tuning for the task.

2Ideally, we can use the best available detector and visual representation for all tasks, but we would like
to compare methods on similar footing.
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VisualBERT w/o Early Fusion: VisualBERT but where image representations are

not combined with the text in the initial Transformer layer but instead at the very end with

a new Transformer layer. This allows us to test whether interaction between language and

vision throughout the whole Transformer stack is important to performance.

VisualBERTw/oCOCOPre-training: VisualBERTbutwherewe skip task-agnostic

pre-training on COCO captions. This allows us to validate the importance of this step.

Following [DCL18], we optimize all models using Adam [KB15]. We set the warm-up

step number to be 10% of the total training step count unless specified otherwise. Batch

sizes are chosen tomeet hardware constraints and text sequenceswhose lengths are longer

than 128 are capped. Experiments are conducted onTesla V100s andGTX 1080Tis, and all

experiments can be replicated on at most 4 Tesla V100s each with 16GBs of GPUmemory.

Pre-training on COCO generally takes less than a day on 4 cards while task-specific pre-

training and fine-tuning usually takes less. Other task-specific training details are in the

corresponding sections.

2.2.1 VQA

Given an image and a question, the task is to correctly answer the question. We use the

VQA 2.0 [GKS17a], consisting of over 1 million questions about images from COCO. We

train the model to predict the 3,129 most frequent answers and use image features from a

ResNeXt-based Faster RCNN pre-trained on Visual Genome [JNC18].

We report the results in Table 2.1, including baselines using the same visual features

and number of bounding region proposals as our methods (first section), our models (sec-

ond section), and other incomparable methods (third section) that use external question-

answer pairs from Visual Genome (+VG) , multiple detectors [YLY19] (+Multiple Detec-

tors) and ensembles of their models. In comparable settings, our method is significantly

simpler and outperforms existing work.
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Model Test-Dev Test-Std

Pythia v0.1 [JNC18] 68.49 -

Pythia v0.3 [SNS19] 68.71 -

VisualBERT w/o Early Fusion 68.18 -

VisualBERT w/o COCO Pre-training 70.18 -

VisualBERT 70.80 71.00

Pythia v0.1 + VG + Other Data Augmentation [JNC18] 70.01 70.24

MCAN + VG [YYC19] 70.63 70.90

MCAN + VG + Multiple Detectors [YYC19] 72.55 -

MCAN + VG + Multiple Detectors + BERT [YYC19] 72.80 -

MCAN + VG + Multiple Detectors + BERT + Ensemble [YYC19] 75.00 75.23

Table 2.1: Model performance on VQA. VisualBERT outperforms Pythia v0.1 and v0.3,

which are tested under a comparable setting.

2.2.2 VCR

VCR consists of 290k questions derived from 110kmovie scenes, where the questions focus

on visual commonsense. The task is decomposed into twomulti-choice sub-tasks wherein

we train individual models: question answering (Q→ A) and answer justification (QA→

R). Image features are obtained from a ResNet50 [HCH16] and “gold” detection bounding

boxes and segmentations provided in the dataset are used3. The dataset also provides

alignments between words and bounding regions that are referenced to in the text, which

we utilize by using the same position embeddings for matched words and regions.

3In the fine-tuning stage, for VisualBERT (with/without Early Fusion), ResNet50 is fine-tuned alongwith
the model as we find it beneficial. For reference, VisualBERT with a fixed ResNet50 gets 51.4 on the dev set
for Q→ AR. The ResNet50 of VisualBERT w/o COCO Pre-training is not fine-tuned with the model such
that we could compare it with R2C fairly.
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Results onVCRare presented in Table 2.2. We compare ourmethods against themodel

released with the dataset which builds on BERT (R2C) and list the top performing single

model on the leaderboard (B2T2). Our ablatedVisualBERTw/oCOCOPre-training enjoys

the same resource as R2C, and despite being significantly simpler, outperforms it by a

large margin. The full model further improves the results. Despite substantial domain

difference between COCO and VCR, with VCR covering scenes from movies, pre-training

on COCO still helps significantly.

Model
Q→ A QA→ R Q→ AR

Dev Test Dev Test Dev Test

R2C [ZBF19] 63.8 65.1 67.2 67.3 43.1 44.0

B2T2 (Leaderboard; Unpublished) - 72.6 - 75.7 - 55.0

VisualBERT w/o Early Fusion 70.1 - 71.9 - 50.6 -

VisualBERT w/o COCO Pre-training 67.9 - 69.5 - 47.9 -

VisualBERT 70.8 71.6 73.2 73.2 52.2 52.4

Table 2.2: Model performance on VCR. VisualBERT w/o COCO Pre-training outperforms

R2C, which enjoys the same resource while VisualBERT further improves the results.

2.2.3 NLVR2

NLVR2 is a dataset for joint reasoning about natural language and images, with a focus

on semantic diversity, compositionality, and visual reasoning challenges. The task is to

determine whether a natural language caption is true about a pair of images. The dataset

consists of over 100k examples of English sentences paired with web images. We mod-

ify the segment embedding mechanism in VisualBERT and assign features from different

images with different segment embeddings. We use an off-the-shelf detector from Detec-
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tron [GRG18] to provide image features and use 144 proposals per image.4

Results are in Table 2.3. VisualBERT w/o Early Fusion and VisualBERT w/o COCO

Pre-training surpass the previous best modelMaxEnt by a largemargin while VisualBERT

widens the gap.

Model Dev Test-P Test-U Test-U (Cons)

MaxEnt [SZZ19] 54.1 54.8 53.5 12.0

VisualBERT w/o Early Fusion 64.6 - - -

VisualBERT w/o COCO Pre-training 63.5 - - -

VisualBERT 67.4 67.0 67.3 26.9

Table 2.3: Comparison with the state-of-the-art model on NLVR2. The two ablation mod-

els significantly outperform MaxEnt while the full model widens the gap.

2.2.4 Flickr30K Entities

Flickr30K Entities dataset tests the ability of systems to ground phrases in captions to

bounding regions in the image. The task is, given spans from a sentence, selecting the

bounding regions they correspond to. The dataset consists of 30k images and nearly 250k

annotations. We adapt the setting of BAN [KJZ18], where image features from a Faster R-

CNN pre-trained on Visual Genome are used. For task specific fine-tuning, we introduce

an additional self-attention block and use the average attention weights from each head

to predict the alignment between boxes and phrases. For a phrase to be grounded, we

take whichever box receives themost attention from the last sub-word of the phrase as the

model prediction.

Results are listed in Table 2.4. VisualBERT outperforms the current state-of-the-art

4We conducted a preliminary experiment on the effect of the number of object proposals we keep per
image. We tested models with 9, 18, 36, 72, and 144 proposals, which achieve an accuracy of 64.8, 65.5,
66.7, 67.1, and 67.4 respectively on the development set.
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model BAN. In this setting, we do not observe a significant difference between the ab-

lation model without early fusion and our full model, arguing that perhaps a shallower

architecture is sufficient for this task.

Model
R@1 R@5 R@10 Upper Bound

Dev Test Dev Test Dev Test Dev Test

BAN [KJZ18] - 69.69 - 84.22 - 86.35 86.97 87.45

VisualBERT w/o Early Fusion 70.33 - 84.53 - 86.39 -

86.97 87.45VisualBERT w/o COCO Pre-training 68.07 - 83.98 - 86.24 -

VisualBERT 70.40 71.33 84.49 84.98 86.31 86.51

Table 2.4: Comparison with the state-of-the-art model on the Flickr30K. VisualBERT

holds a clear advantage over BAN.

2.3 Ablation Study

In this section we conduct extensive analysis on what parts of our approach are impor-

tant to VisualBERT’s strong performance. We conduct our ablation study on NLVR2 and

include two ablation models in §2.2 and four additional variants of VisualBERT for com-

parison. For ease of computations, all these models are trained with only 36 features per

image (including the full model). Our analysis (Table 2.5) aims to investigate the contri-

butions of the following four components in VisualBERT:

C1: Task-agnostic pre-training. We investigate the contribution of task-agnostic

pre-training by entirely skipping such pre-training (VisualBERT w/o COCO Pre-training)

and also bypre-trainingwith only text but no images fromCOCO(VisualBERTw/oGrounded

Pre-training). Both variants underperform, showing that pre-training onpaired vision and

language data is important.

C2: Early fusion. We include VisualBERT w/o Early Fusion introduced in §2.2 to

verify the importance of allowing early interaction between image and text features, con-
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Model Dev

VisualBERT 66.7

C1
VisualBERT w/o Grounded Pre-training 63.9

VisualBERT w/o COCO Pre-training 62.9

C2 VisualBERT w/o Early Fusion 61.4

C3 VisualBERT w/o BERT Initialization 64.7

C4 VisualBERT w/o Objective 2 64.9

Table 2.5: Performance of the ablation

models on NLVR2. Results confirm that

task-agnostic pre-training (C1) and early

fusion of vision and language (C2) are

essential for VisualBERT.
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Figure 2.3: Entity grounding accuracy of

the attention heads of VisualBERT. The

rule-based baseline is dawn as the grey

line. We find that certain heads achieves

high accuracy while the accuracy peaks

at higher layers.

firming again that multiple interaction layers between vision and language are important.

C3: BERT initialization. All the models discussed so far are initialized with pa-

rameters from a pre-trained BERT model. To understand the contributions of the BERT

initialization, we introduce a variant with randomly initialized parameters. The model is

then trained as the full model. While it does seemweights from language-only pre-trained

BERTare important, performance does not degrade asmuch aswe expect, arguing that the

model is likely learning many of the same useful aspects about grounded language during

COCO pre-training.

C4: The sentence-image prediction objective. We introduce a model without

the sentence-image prediction objective during task-agnostic pre-training (VisualBERT

w/o Objective 2). Results suggest that this objective has positive but less significant effect,

compared to other components.

Overall, the results confirm that the most important design choices are task-agnostic
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pre-training (C1) and early fusion of vision and language (C2). In pre-training, both the

inclusion of additional COCO data and using both images and captions are paramount.

2.4 Dissecting AttentionWeights

In this section we use Flickr30K as a diagnostic dataset to understand whether Visual-

BERT’s pre-training phase actually allows the model to learn implicit alignments between

bounding regions and text phrases. We show that many attention heads within Visual-

BERT accurately track grounding information and that some are even sensitive to syntax,

attending from verbs to the bounding regions corresponding to their arguments within a

sentence. Finally, we show qualitative examples of how VisualBERT resolves ambiguous

groundings through multiple layers of the Transformer.

2.4.1 Entity Grounding

First, we attempt to find attention heads within VisualBERT that could perform entity

grounding, i.e., attending to the corresponding bounding regions from entities in the sen-

tence. Specifically, weuse the ground truth alignments from the evaluation set of Flickr30K.

For each entity in the sentence and for each attention head in VisualBERT, we look at the

bounding region which receives the most attention weight. Because a word is likely to at-

tend to not only the image regions but also words in the text, for this evaluation, we mask

out the head’s attention to words and keep only attention to the image regions. Then we

compute the how often the attention of a particular head agrees with the annotations in

Flickr30K.

We report this accuracy5, for all 144 attention heads in VisualBERT, organized by layer,

in Figure 2.3. We also consider a baseline that always chooses the region with the high-

5Despite that some heads are accurate at entity grounding, they are not actively attending to the image
regions. For example, a head might be only allocating 10% of its attention weights to all image regions, but
it assigns the most of the 10% weights to the correct region. We represent heads paying on average less than
20% of its attention weights from the entities to the regions with smaller and light-colored dots and others
with larger and bright dots.
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Figure 2.4: Accuracy of attention heads of VisualBERT for predicting four specific depen-

dency relationships (“pobj”, “amod”, “nsubj”, and “dobj”) across modality. The grey lines

denote a baseline that always chooses the region with the highest detection confidence.

We observe that VisualBERT is capable of detecting these dependency relationships with-

out direct supervision.

est detection confidence. We find that VisualBERT achieves a remarkably high accuracy

though it is not exposed to any direct supervision for entity grounding. The grounding

accuracy also seems to improve in higher layers, showing the model is less certain when

synthesizing the two inputs in lower layers, but then becomes increasingly aware of how

they should align. We show examples of this behavior in §2.4.3.
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2.4.2 Syntactic Grounding

Given that many have observed that the attention heads of BERT can discover syntac-

tic relationships [VTM19, CKL19], we also analyze how grounding information is passed

through syntactic relationships that VisualBERTmayhave discovered. In particular, given

two words that are connected with a dependency relation, w1
r−→ w2, we would like to

know how often the attention heads at w2 attend to the regions corresponding to w1, and

vice-versa. For example, in Figure 2.1, we would like to know if there is an attention head

that, at the word “walking”, is systematically attending to the region corresponding to the

“man”, because “man” and “walking” are related through a “nsubj” relation, under the

Stanford Dependency Parsing formalism [DM08].

To evaluate such syntactic sensitivity in VisualBERT, we first parse all sentences in

Flickr30K using AllenNLP’s dependency parser [DM17, GGN18]. Then, for each atten-

tion head in VisualBERT, given that two words have a particular dependency relationship,

and one of them has a ground-truth grounding in Flickr30K, we compute how accurately

the head attention weights predict the ground-truth grounding. Examination of all de-

pendency relationships shows that in VisualBERT, there exists at least one head for each

relationship that significantly outperforms guessing the most confident bounding region.

We highlight a few particularly interesting dependency relationships in Figure 2.4. Many

heads seem to accurately associate arguments with verbs (i.e. “pobj”, “nsub”, and “dobj”

dependency relations), arguing that VisualBERT is resolving these arguments, implicitly

and without supervision, to visual elements.

2.4.3 Qualitative Analysis

Finally, we showcase several interesting examples of how VisualBERT changes its atten-

tion over the layers when processing images and text, in Figure 2.1 and Figure 2.5. To

generate these examples, for each ground-truth box, we show a predicted bounding re-

gion closest to it and manually group the bounding regions into different categories. We
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also include regions that the model is actively attending to, even if they are not present in

the ground-truth annotation (marked with an asterisk). We then aggregate the attention

weights from words to those regions in the same category. We show the best heads of 6

layers that achieve the highest entity grounding accuracy.

Overall, we observe that VisualBERT seems to refine alignments through successive

Transformer layers. For example, in the bottom left image in Figure 2.5, initially the word

“husband” and the word “woman” both have significant attention weight on regions cor-

responding to the woman. By the end of the computation, VisualBERT has disentangled

the woman and man, correctly aligning both. Furthermore, there are many examples of

syntactic alignments. For example, in the same image, the word “teased” aligns to both

the man and woman while “by” aligns to the man. Finally, some coreference seems to be

resolved, as, in the same image, the word “her” is resolved to the woman.
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Figure 2.5: Attention weights of some selected heads in VisualBERT on 6 examples. The

first column is 3 random examples where alignments match Flickr30k annotations while

the second column is 3 random examples where alignments do not match.
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CHAPTER 3

Pre-training with Unaligned Image and Text Data

VisualBERT, along with other pre-trained vision-and-language (V&L) models [LDD19,

TB19, SZC19, CLY20], have achieved high performance on various V&L tasks. However,

different frompre-trained languagemodels, such as BERT [DCL19a], which are trained on

easily-accessible unannotated text corpora, existing V&Lmodels are still a step away from

self-supervision. They require a massive amount of aligned text-image pairs for “mask-

and-predict” pre-training. Such aligned data are costly to collect and hard to scale up. For

example, the widely used MS-COCO dataset [CFL15] requires extensive annotation from

crowd workers.1

In this chapter, we explore unsupervised V&L pre-training with unaligned image and

text corpora.2 This research direction aligns with the theme of unsupervised and self-

supervised learning that moves from heavily-annotated data to unannotated data, e.g.

unsupervised machine translation [LCD18] and unsupervised image captioning [FML19].

Unsupervised V&L pre-training is highly desirable as in many domains, aligned data is

scarce (e.g. multimodal hate speechdetection [KFM20] and themedical domain [LWL20])

and it is easier to collect unaligned text and images. In addition to its practical implication,

our endeavour challenges the widely held notion that image-caption corpora is indispens-

able for pre-training [LDD19] and brings valuable insight into the role that aligned data

1Other datasets also require cumbersome curation. For example, while Conceptual Captions is crawled
from the web, the authors report that from 5 billion images gathered over the Internet, only 3 million have
paired high-quality captions after filtering [SDG18, CSD21].

2Following [LCD18] and [FML19], we use the term “unsupervised” to refer to pre-training with unaligned
data, while “supervised” refers to pre-training with aligned text and images.
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Figure 3.1: An illustration of pre-training without aligned data. Given text, the model is

trained to predict masked words; given an image, the model is trained to predict masked

regions and detector tags. The semantic class “cake” appears in both the language modal-

ity and the visual modality and is linked through the detector tags. Note that we do not

require a text segment with the word cake to appear together with the image. Rather, we

assume that as long as the text corpora are general enough, the word cake will appear in

the textual modality eventually. The model can thus learn V&L representations from such

weak supervision signals.

play in V&L pre-training.

We are inspired by works on multi-lingual contextual language models [PSG19]. If

we treat an image as a set of regions and each region as a visual token [DBK20], V&L

models share a similar goal with multi-lingual models as they both learn shared represen-

tations across different domains. Although amulti-lingual languagemodel pre-trained on

non-parallel corpora such as mBERT [DCL19b] cannot align or translate languages out-

of-the-box, its representation spaces for different languages can be easily aligned with a

linear probe [CWL20]. This property suggests the existence of universal latent symmetries

in the unaligned contextual embedding spaces and is believed to contribute to mBERT’s

cross-lingual transfer ability. Thus we hypothesize that strong V&L representations can

be similarly learned by “mask-and-predict” pre-training on unaligned language and vision

23



data.

We propose unsupervised V&L pre-training with unaligned text and images (see an

illustration in Figure 3.1). Specifically, we take VisualBERT [LYY19] as a running ex-

ample and apply unsupervised pre-training, resulting in Unsupervised VisualBERT (U-

VisualBERT). The model takes the form of a single Transformer that can accept inputs

from both modalities. During each step of pre-training, unlike the existing models that

observe a batch of text-image pairs, our model observes either a batch of text segments

or a batch of images. When provided with text, part of the text is masked and the model

is trained to predict the masked words; when provided with an image, part of the image

regions are masked and the model is trained to predict properties of the masked regions.

To further encourage cross-modal fusion, we leverage the tags from an object detector

as “anchor points” [LYL20]. For every object, we append its detected tag as a word to the

visual input. The mask-and-predict objective is applied to the tags. For instance, for the

image in Figure 3.1, the model can observe “cake” appears naturally as a word, a tag, and

an image region. The direct typing of image regions andwords can be learned and serves as

a starting point for further alignment. The function of the detector tags resembles that of

the “overlapping vocabulary” in multi-lingual language models, i.e., identical strings that

appear in different languageswith the samemeanings (e.g., “DNA” appears in bothEnglish

and French). As the “overlapping vocabulary” improves cross-lingual transfer [WD19], we

argue the detector tags can improve cross-modal grounding.

We first conduct controlled experiments by pre-training on an English image-caption

corpus without providing the alignment, following unsupervised machine translation and

image captioning [GJC19]. Results on four English V&L benchmarks (VQA [GKS17b],

NLVR2 [SZZ19], Flickr30K Image Retrieval [PWC15], and RefCOCO+ [YPY16a]) show

that U-VisualBERT achieves comparable performance asmodels with access to text-image

pairs (Section 3.3).

Additionally, our approach is effective in practical settings, 1) when using indepen-
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dently collected images and captions and 2) when using images and general-domain text

(BookCorpus [ZKZ15]) without any captions (Section 3.4.1). Quantitative and qualitative

analysis confirms the anchoring effect of the detector tags (Section 3.4.2). As a byprod-

uct, we conduct preliminary experiments to show the promise of the approach in a semi-

supervised setting, where a hybrid model pre-trained with both aligned and additional

unaligned data surpasses a model pre-trained only on aligned data. (Section 3.4.3). The

above experiments demonstrate the wide applicability of our method.

3.1 RelatedWork

Pre-trained V&L transformers. Various V&L models that are pre-trained with a

“mask-and-predict” objective on aligned text-image data have been proposed [LDD19,

TB19, LYY19, SZC19, CLY20, LDF20, ZPZ20a, HZL20, YTY20, GCL20]. Two kinds of

designs have been proposed. Two-stream models [LDD19, TB19, YTY20] utilize sepa-

rate Transformers [VSP17] for each modality and a cross-modality module is adopted.

Single-stream models [LYY19, SZC19, CLY20] directly input the text and visual embed-

dings into one single Transformer. They have been widely used by downstream tasks

[KFM20]. Probing tasks [CGC20a] confirm that they capture useful V&L information after

pre-training.

Two studies also try to incorporate “tag” informationduring pre-training. Oscar [LYL20]

adds detected tags as additional signalswhenpre-trainingwith aligned data. We, however,

do so for pre-training with unaligned data and show that the tags serve a more important

role in unsupervised pre-training (Section 3.4.2). VIVO [HYL20] targets novel object cap-

tioning. They use manually annotated image-tag data for pre-training and image-caption

data for fine-tuning. We do not use manually annotated data and the tags are noisily gen-

erated by a detector.

Self-supervised Representation Learning Self-supervision involves creating su-

pervision objectives from natural data, often by corrupting the input and training the
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model to reconstruct the input [KZB19] or contrastive learning [CKN20]. Self-supervised

training on language [PNI18, DCL19a] such as BERT has been proven useful for various

NLP tasks [LGB19], while self-supervised visual representation learning has been cen-

tered around learning low-level visual features, in hope of enhancing the backbone CNN

[DGE15, PKD16, NF16, CKN20]. In this study, we conduct V&L pre-training by optimiz-

ing a reconstructive objective on unlabeled language-only and image-only data. Thus, our

proposed model could be regarded as “self-supervised”. Notably, our contextual visual

representation is built on top of a pre-trained detector, operating at a level above local

visual features.

Unsupervisedmulti-lingual languagemodel. Thiswork is inspired bymulti-lingual

representations trained without parallel corpora [DCL19b]. They are effective for cross-

lingual transfer, which involves learning a model in one language and applying it to an-

other with no additional training. Studies [WD19, CWL20] have confirmed several design

choices that facilitate such transfer, e.g. shared parameters and overlapping vocabularies

across languages, and we make similar design choices in U-VisualBERT (Section 3.2.2).

We argue that multi-lingual representations bear resemblance to multi-modal represen-

tations as both seek to encode the alignment between two domains [CGC20b].

Unsupervised grounding learning. Prior works have explored learning grounding

with weak or no supervision [RRH16, XSJ17, WTS20]. Closest to this study is unsuper-

vised image captioning [FML19, LRN19, GJC19], which conducts image captioning with

unpaired images and captions. Similar to this work, the detector tags serve as the an-

chor points for image captioning. However, unsupervised image captioning still requires

captions, while our approach works with easy-to-collect general-domain text without any

caption text (Section 3.4.1).
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3.2 Approach

We first take Supervised VisualBERT (S-VisualBERT) as an example and illustrate how a

typical V&Lmodel is pre-trained with aligned data. Then we introduce unsupervised V&L

pre-training, and the resulting model Unsupervised VisualBERT (U-VisualBERT).

3.2.1 Background

Asmentioned in Section 3.1, there are several V&L representation learningmethods based

on BERT.We take Supervised VisualBERT (S-VisualBERT) as an example, which will also

be used as a baseline in the experiments. S-VisualBERT is modified from the original

VisualBERT [LYY19] and augmented with the visual objectives from LXMERT [TB19] and

detector tags similar to Oscar [LYL20] (discussed in detail in Section 3.2.2).

Every input to S-VisualBERT contains a text segment T and an image I. The text and

the image are first mapped into embedding vectors respectively. Text embeddings T is a

matrix in which each column vector represents the embedding of a subword in the text

sequence, i.e. T = [w1:n]. Following BERT, each subword embedding wi is the sum of

its token, position, and segment embedding. Image embeddings I include both the image

region embeddings r1:m and the detector tag embeddingsd1:l (see Section 3.2.2 for details).

Each region embedding ri is the sum of a visual feature vector from the detector and a

spatial box coordinate embedding [TB19]. The text and visual embeddings are then passed

through a Transformer to built contextual representations.

The model is pre-trained with a mask-and-predict objective. Given a text-image pair

[T, I ] from the aligned dataset D, we randomly mask out some words wi, some regions

rj, and some tags dk to obtain masked [T̃, Ĩ]. The model is trained to predict the masked

words, the properties of the masked regions, and the masked tags given [T̃, Ĩ]. The pre-

training objective can be summarized as:
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min
θ

∑
[T,I]∈D

LT+I+M

(
fθ([T̃, Ĩ]), [T, I ]

)
.

fθ represents the embedding layer and the multi-layer Transformer. LT+I+M is the sum of

1) themasked languagemodel lossLT , 2) the image reconstruction lossLI , and 3) an “text-

image match” objective LM . Specifically, LI includes a tag reconstruction loss L
tag
I (more

details in Section 3.2.2) and the two visual losses as in LXMERT [TB19]: the region feature

regression loss Lref
I , which forces the model to regress to the visual vector, and the noisy

label classification loss Lcls
I , which predicts the detected labels of masked objects with the

cross-entropy loss. With a probability of 0.5, we provide the model with a mismatched

text-image pair instead of a matched pair, and LM asks the model to predict whether the

image matches the text. After the model is pre-trained, it can be fine-tuned for V&L tasks

similar to how BERT is fine-tuned for NLP tasks.

3.2.2 Unsupervised Pre-training

We introduce the two core design choices of unsupervisedpre-training: maskedpre-training

with unaligned data and the detector tags.

Masked pre-training with unaligned data. We assume access to a text corpus DT

and an image corpus DI for pre-training. During every pre-training step, we randomly

sample either a batch of text fromDT or a batch of images fromDI . No alignment between

text and images is provided to the model. When pre-training with a text segment T , the

model is trained to reconstruct T given the masked T̃ .3 When pre-training with an image

I, the model is trained to reconstruct I given the masked Ĩ. A single Transformer is used

throughout two modalities (i.e. θ shared across modalities). The pre-training objective

can be summarized as:

3We adopt the next sentence prediction task in BERT when long documents are available.
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min
θ

∑
T∈DT

LT (fθ(T̃ ), T ) +
∑
I∈DI

LI(fθ(Ĩ), I).

After pre-training, the model is fine-tuned on downstream tasks just as its supervised

counterpart, with the input being a text-image pair.

Detector tags. While masked pre-training with unaligned data in itself achieves non-

trivial performance (Section 3.4.2), we find it beneficial to provide noisy alignment signals

in the form of the detector tags. When modeling an image I, for each region detected, we

append the tag outputted by the object detector to the input. The detector [RHG15] is pre-

trained on a general object detection dataset [KZG17, AHB18] and the tags are essentially a

bag of words that provide some noisy grounding signals to themodel. During pre-training,

we apply the mask-and-predict objective to the tags, which further encourages grounding.

We process the detector tags as a subword sequence d1:l with spatial coordinates.4 Ev-

ery tag subword is embedded as the sum of its token embedding and a spatial coordinate

embedding. The token embedding is the same as the token embedding used in text mod-

eling, while the spatial coordinate embedding is the same as the coordinate embedding

of the corresponding region. The coordinate embedding allows the model to distinguish

tags from different regions.5 With the detector tags added, the image I is embedded as a

sequence of image region features r1:m followed by a sequence of detector tag embeddings

d1:l, i.e. I = [r1:m;d1:l]. The tags are added during both pre-training and fine-tuning.

Further, during pre-training, certain tag subwords are masked and the tag reconstruction

loss Ltag
I supervises the model to predict the masked tags. The tags are predicted just as

masked subwords are predicted in text modeling. The prediction softmax layer is shared

between the tag and text subwords.

4Each tag corresponds to a region. A tag could be split into multiple subwords, so the total length of the
tag subword sequence l is equal to or larger than the number of regionsm.

5This design differs from that of Oscar [LYL20]. Oscar does not add the coordinate embeddings to tags
to encourage the fusion of tag and visual representations.
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The parameters involved in modeling tags include the token embedding, the coordi-

nate embedding, and the subword softmax embedding. These embedding parameters are

shared acrossmodalities and encourage themodel to project text, visual, and tag represen-

tations into the same space (see Section 3.4.2 for an example). This resembles the design

inmulti-lingual languagemodels, which use shared BPE embeddings and softmaxweights

across languages [WD19].

3.3 Experiment

As the domain and quality of data may affect the model performance, the conventional

practice in unsupervised learning is to use aligned corpora without providing alignments,

allowing for controlled comparison with a supervised model. For example, unsupervised

machine translation creates unaligned corpora by splitting up parallel corpora [LCD18]

while unsupervised image captioning [GJC19] create unaligned corpus by shuffling images

and captions fromMSCOCO [CFL15]. Following prior work, we first conduct experiments

by using Conceptual Captions (CC) [SDG18] as the source of images and text for both the

supervised and unsupervised model. Later in Section 3.4.1, we show that our method is

effective when the images and captions are collected independently and when no caption

text is used.

U-VisualBERT. The model is pre-trained with shuffled captions and images. At each

training step, we sample either a batch of images or a batch of text. Following VL-BERT

[SZC19], we find it beneficial to include BookCorpus [ZKZ15], a general-domain text cor-

pus, during pre-training. In sum, U-VisualBERT is trained on 3M images from CC, 3M

captions from CC, and 2.5M text segments from BookCorpus6.

6Our version of BookCorpus contains around 5M text segments with 64 words per segment. For compu-
tational reasons, we downsample the dataset such that during each epoch, the model observes only half of
the text segments from BookCorpus. This downsampling is also done for the other VisualBERT variants.
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S-VisualBERT. We introduce a Supervised VisualBERT (S-VisualBERT) trained with

aligned data as introduced in Section 3.2.1. S-VisualBERT is pre-trained on 3M caption-

image pairs from CC and 2.5M text segments from BookCorpus.

Compared models. Additionally, we list the performance of a Base VisualBERT that

is initialized from BERT and does not undergo further pre-training. Previously reported

supervised models that are trained on CC are also listed, including ViLBERT, VL-BERT,

andUNITER. ForUNITER,we include the version that is trained only on CC (UNITERcc)7.

Although their network architectures differ from ours and cannot be directly compared,

they jointly paint the picture of the performance we should expect by pre-training on CC.

Models developed before BERT are listed as Pre-BERT ([GJY19] for VQA, [SZZ19] for

NLVR2, [LCH18] for Flickr30K, and [YLS18] for RefCOCO+).

Setup. For all the VisualBERT variants introduced in the paper, we initialize them from

BERTbase and pre-train for 10 epochs on their respective pre-training datasets with a batch

size of 144. All models can be trained within 3 days on 4 V100s each with 16GB of mem-

ory. We use the Adam optimizer [KB15] with a linear-decayed learning-rate schedule

[DCL19a] and a peak learning rate at 6 × 10−5. We conduct evaluations by fine-tuning

on four downstream tasks: Visual Question Answering (VQA 2.0) [GKS17b], Natural Lan-

guage for Visual Reasoning (NLVR2) [SZZ19], Image Retrieval (Flickr 30K) [PWC15], and

Referring Expression (RefCOCO+) [YPY16a]. We use a Faster R-CNN pre-trained on the

Visual Genome dataset to extract region features [AHB18]. For each task, we follow the

recommended setting in previous works.

Results. Table 3.1 summarizes the results. For eachmodel, we list the type and amount

of data used during pre-training.8 To control for randomness, we report the means and

7The results are from Appendix A.6 of [CLY20].

8For models initialized from BERT, we do not count the BERT pre-training data. VL-BERT uses both
BookCorpus and Wikipedia during V&L pre-training. We estimate that the two corpora roughly have 5OM
segments with 64 words per segment. With a different pre-processing style (e.g. longer segments), the
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Model
Aligned Unaligned VQA NLVR2 Flickr30K RefCOCO+

Image Text Test-Dev Dev Test-P R@1 R@5 R@10 Dev TestA TestB

Pre-BERT - - - 70.22 54.1 54.8 48.60 77.70 85.20 65.33 71.62 56.02

ViLBERT 3M 0 0 70.55 - - 58.78 85.60 91.42 72.34 78.52 62.61

VL-BERT 3M 0 ∼50M 71.16 - - - - - 71.60 77.72 60.99

UNITERcc 3M 0 0 71.22 - - - - - 72.49 79.36 63.65

S-VisualBERT 3M 0 2.5M 70.87±.02 73.44±.51 73.93±.51 61.19±.06 86.32±.12 91.90±.02 73.65±.11 79.48±.36 64.49±.22

Base 0 0 0 69.26 68.40 68.65 42.86 73.62 83.28 70.66 77.06 61.43

U-VisualBERT 0 3M 5.5M 70.74±.06 71.74±.24 71.02±.47 55.37±.49 82.93±.07 89.84±.21 72.42±.06 79.11±.08 64.19±.54

Table 3.1: Evaluation results on four V&L benchmarks. Our unsupervised model trained

with unaligned data (U-VisualBERT) achieves close performance with a supervisedmodel

trained with aligned data (S-VisualBERT). U-VisualBERT also rivals with several super-

vised models such as ViLBERT on most metrics.

standard deviations of U-VisualBERT and S-VisualBERT across three runs.

U-VisualBERT outperforms the Base model on all benchmarks, while only lagging be-

hind S-VisualBERT slightly on VQA, NLVR2, and RefCOCO+. U-VisualBERT even sur-

passes or rivals with some supervised models (e.g., ViLBERT on VQA and RefCOCO+,

VL-BERT onRefCOCO+, andUNITERcc onRefCOCO+). This shows that amodel through

unsupervised pre-training can perform comparably with supervised models.

OnFlickr30K ImageRetrieval, the difference betweenU-VisualBERTandS-VisualBERT

is more evident. The task focuses on identifying if an image and a text segment are coher-

ent. S-VisualBERT is provided with explicit signals for such a task with the “text-image

match” objective LM during pre-training (Section 3.2.1). While U-VisualBERT is not pro-

vided with such explicit signals, it still performs better than the Base model. Further, if

we were to remove the explicit signal (i.e. the “text-image match” objective) when pre-

training on aligned data, S-VisualBERT without LM achieves only 57.98 on R@1, much

closer to U-VisualBERT.

number of segments may change.
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Model
Text VQA NLVR2 Flickr30K RefCOCO+

Caption General Test-Dev Dev Test-P R@1 R@5 R@10 Dev TestA TestB

Base - - 69.26 68.40 68.65 42.86 73.62 83.28 70.66 77.06 61.43

U-VisualBERT CC BC 70.74 71.74 71.02 55.37 82.93 89.84 72.42 79.11 64.19

U-VisualBERTSBU SBU BC 70.70 71.97 72.11 56.12 82.82 90.12 73.05 79.48 64.19

U-VisualBERTNC - BC 70.47 71.47 71.19 54.36 82.22 89.24 72.96 79.30 64.25

Table 3.2: Unsupervised pre-training is applicable when images and captions are collected

independently (U-VisualBERTSBU) orwhenno caption text is provided (U-VisualBERTNC).

3.4 Analysis

In this section, we analyze the effect of the text data and the role of the detector tags.

3.4.1 The Effect of Text Data

The assumption behind unsupervised pre-training is that the detector tags should appear

both in the images and text corpus, serving as the grounding anchor points. When the

images and captions come from the same corpus, such an assumption clearly holds, and

unsupervised pre-training works well (Section 3.3). However, we are curious if such an

assumption still holds 1) if images and captions come from independently collected cor-

pora (U-VisualBERTSBU) and 2) if no caption text but general-domain text is provided

(U-VisualBERTNC).

The latter setting bears great practical value. Conceptually, collecting caption-style text

could be as hard as collecting image-caption data as images and captions seldom appear

separately. It is desirable to explore training V&L representations without caption-style

text. Thus we experiment pre-training with general-domain text, which could be easier to

collect.
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U-VisualBERTSBU. We use 3M images from CC and 1M captions from SBU captions

[OKB11a]. To compensate for the different amounts of text between CC and SBU, we

upsample the BookCorpus so that the amount of text data used by U-VisualBERTSBU is

roughly the same as U-VisualBERT.

U-VisualBERTNC. Themodel is trained on images fromCC and text fromBookCorpus,

a general-domain corpus.

Results. Unsupervisedpre-training is effective in both scenarios (Table 3.2). Whenpre-

training images and text are collected independently, U-VisualBERTSBU achieves similar

performance as U-VisualBERT, with the latter higher on VQA, and the former higher on

the other three tasks.

When no caption text is used, the performance on NLVR2 and RefCOCO+ remains un-

affected while the performance on VQA and Flickr30K drops slightly, potentially because

the language style of VQA and Flickr30K is similar to captions, benefiting U-VisualBERT.

Such results are not surprising. In general-domain corpora like Wikipedia, grounded

words take up a decent portion (>25%) [TB20]. Thus the tags appear in pre-training text

corpora with a non-trivial frequency and U-VisualBERTNC learns from such signals. The

above results suggest the applicability of unsupervised pre-training to many language-

only and image-only datasets, which are easier to collect than image-caption datasets

[TL18, SSS17].

3.4.2 The Detector Tags as Anchor Points

We study the effect of the detector tags in unsupervised and supervised pre-training, re-

spectively.

W-VisualBERTNT. U-VisualBERTNT observes no tags and only dense region features

for image embeddings during pre-training and fine-tuning. For comparison, a basemodel

without tags is introduced (BaseNT), which is initialized from BERT and does undergo fur-
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Model
VQA NLVR2 Flickr30K RefCOCO+

Test-Dev Dev Test-P R@1 R@5 R@10 Dev TestA TestB

BaseNT 69.06 51.98 52.73 48.40 78.20 87.18 70.15 76.91 61.72

U-VisualBERTNT 69.87 67.90 68.92 50.56 80.22 88.32 71.94 77.79 62.38

U-VisualBERT 70.74 71.74 71.02 55.37 82.93 89.84 72.42 79.11 64.19

S-VisualBERTNT 70.49 72.56 73.53 60.26 85.58 91.64 72.70 77.93 62.99

S-VisualBERT 70.87 73.44 73.93 61.19 86.32 91.90 73.65 79.48 64.49

H-VisualBERT 71.05±.02 73.80±.26 74.82±.25 60.28±.60 86.30±.35 92.06±.28 74.01±.25 80.18±.23 64.89±.24

Table 3.3: Detector tags show a larger impact in the unsupervised setting (U-

VisualBERTNT vs. U-VisualBERT) than in the supervised setting (S-VisualBERTNT vs.

S-VisualBERT). Semi-supervised pre-training (H-VisualBERT) shows marginal improve-

ment over supervised pre-training (S-VisualBERT).

ther pre-training.

S-VisualBERTNT. To study the effect of the detector tagswhen aligneddata are present,

we introduce S-VisualBERTNT which is trained on aligned data but observes no tags for

image embeddings.

Result. We first find that even without tags, unsupervised pre-training benefits down-

stream tasks (Table 3.3). U-VisualBERTNT outperforms BaseNT on all metrics with a large

margin. Weattribute this to the (unaligned) contextual V&L representation learned through

pre-training. This bears resemblance to the observation in multi-lingual language mod-

els that the shared vocabulary across languages (i.e. anchor points) is not necessary for

cross-lingual transfer [CWL20].

Further, while the detector tags are beneficial for both supervised and unsupervised

pre-training, the performance improvement is more evident for the latter. For exam-

ple, performance difference on VQA between U-VisualBERT and U-VisualBERTNT is 0.95
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Figure 3.2: Visualization of the contextual representations of S-VisualBERT, U-

VisualBERT, and U-VisualBERTNT. The tags help to fuse text and visual representations

for S-VisualBERT and U-VisualBERT. In U-VisualBERTNT, common structures emerge in

the text and visual representation spaces even though they are not aligned.

(70.82 vs. 69.87) while the difference between S-VisualBERT and S-VisualBERTNT is 0.41

(70.90 vs. 70.49). The results are expected. When aligned data are present, object tags

serve as additional signalswhile in unsupervised pre-training, they serve as the only source

from which grounding is learned.

Visualization. To gain a direct sense of how the detector tags help bridge the modal-

ities, we visualize the contextual representation spaces of S-VisualBERT, U-VisualBERT,

and U-VisualBERTNT in Figure 3.2. For each of the most frequent 15 object classes in the

COCO dataset [CFL15], we randomly sample at most 50 instances and take the last-layer

contextual representations of the words, the objects, and the tags (when available) and vi-

sualize themwith t-SNE [MH08]. We highlight the representations of six selected classes.

Though trained without aligned data, U-VisualBERT can group text, tag, and visual

representations by their semantic classes. Similar phenomena canbe observed in S-VisualBERT.
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U-VisualBERTNT, lacking any signal to align the two spaces, does not show signs of such

behaviour. InU-VisualBERTNT, text and visual representations are almost completely sep-

arated (e.g., the twodisjoint red rectangles in the figure on the right). However, some com-

mon structures emerge in bothmodalities. For instance, representations for “car”, “truck”,

and “motorcycle”, the three semantically-related classes, are close to each other, in both

the textual and visual modality (the red rectangles); representations for “cup”, “bottle”,

and “bowl” are close (the blue rectangles). This also holds for the other two models and

resembles what is observed in [LYL20] and [IZF20].

3.4.3 Semi-Supervised Pre-Training

Unsupervised pre-training in itself has great practical and research value inmany domains

where aligned data is scarce. As a byproduct, we wonder if the approach could find its

use in a semi-supervised setting, where we pre-train a model with both aligned data and

unaligned data.

H-VisualBERT. We introduce a hybrid model that is trained on the 3M aligned data

from Conceptual Captions (CC) and additional unaligned 1.7M images from Open Images

(OI) [KRA20]. When a training sample comes from CC, we provide the model with a text-

image pair, and when the training sample comes from OI, we provide only the image. We

do not use any manually annotated visual labels provided in OI.

Result. We control for randomness by running H-VisualBERT for three times and re-

port the means and stand deviations. We observe that H-VisualBERT brings consistent

improvement upon S-VisualBERT on most tasks (Table 3.3) except Flickr30K9. This pre-

liminary result is promising as the dataset scale in this experiment is relatively small (million-

scale). Meanwhile, unannotated data generally could not improve upon a model trained

9On Flickr30K, the performance between H-VisualBERT and S-VisualBERT is similar, potentially be-
cause the “image-text match” objective is the dominant contributor and additional image-only data during
pre-training have limited benefit (Section 3.3).
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with annotated data significantly, unless drastically scaled up [HFW20]. We leave large-

scale experiments to future work.
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Part II

Language-Based Visual Perception
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CHAPTER 4

Open-World Object Detection with Language

Supervision

Visual recognition models are typically trained to predict a fixed set of pre-determined

object categories, which limits their usability in real-world applications since additional

labeled data are needed to generalize to new visual concepts and domains. CLIP [RKH21]

shows that image-level visual representations can be learned effectively on large amounts

of raw image-text pairs. Because the paired texts contain a boarder set of visual concepts

than any pre-defined concept pool, the pre-trained CLIPmodel is so semantically rich that

it can be easily transferred to downstream image classification and text-image retrieval

tasks in zero-shot settings. However, to gain fine-grained understanding of images, as re-

quired by many tasks, such as object detection [RHG15, LGG17], segmentation [LSD15,

CPK17], human pose estimation [XWW18, SXL19], scene understanding [KRA18, XZC17,

HYH21], action recognition [JKF19], vision-languageunderstanding [LDD19, TB19, CLY19,

SZC19, LYY19, LDF19, ZPZ20b, LYL20, LT20, ZLH21], object-level visual representations

are highly desired.

In this Chapter, we show that phrase grounding, which is a task of identifying the

fine-grained correspondence between phrases in a sentence and objects (or regions) in

an image, is an effective and scalable pre-training task to learn an object-level, language-

aware, and semantic-rich visual representation, and propose Grounded Language-Image

Pre-training (GLIP). Our approach unifies the phrase grounding and object detection tasks

in that object detection can be cast as context-free phrase grounding while phrase ground-
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ing can be viewed as a contextualized object detection task. We highlight our key contri-

butions as follows.
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Figure 4.1: A unified framework for detection and grounding. Un-

like a classical object detection model which predicts a categorical

class for each detected object, we reformulate detection as a ground-

ing task by aligning each region/box to phrases in a text prompt.

GLIP jointly trains an image encoder and a language encoder to

predict the correct pairings of regions and words. We further add

the cross-modality deep fusion to early fuse information from two

modalities and to learn a language-aware visual representation.

Two syringes and a small vial 
of vaccine.

playa esmeralda in holguin, 
cuba. the view from the top of 
the beach. beautiful caribbean 
sea turquoise

Two syringes
A small vial

vaccine

the view

playa esmeralda

beautiful caribbean sea 
turquoise

Two syringes

Figure 4.2:

Grounding pre-

dictions from

GLIP. GLIP can

locate rare en-

tities, phrases

with attributes,

and even abstract

words.

Unifying detection and grounding by reformulating object detection as

phrase grounding. The reformulation changes the input of a detection model: it takes

as input not only an image but also a text prompt that describes all the candidate categories

in the detection task1. For example, the text prompt for COCO object detection [LMB14a]

is a text string that consists of 80 phrases, i.e., the 80 COCO object class names, joined

by “. ”, as shown in Figure 4.1 (Left). Any object detection model can be converted to a

grounding model by replacing the object classification logits in its box classifier with the

1Different from typical phrase grounding tasks, phrases in the text prompt for an object detection task
may not be present in the image.
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word-region alignment scores, i.e., dot product of the region (or box) visual features and

the token (or phrase) language features, as shown in Figure 4.1 (Right). The language fea-

tures are computed using a languagemodel, which gives the new detection (or grounding)

model a dual-encoder structure. Different from CLIP that fuses vision and language only

at the last dot product layer [RKH21], we show that deep cross-modality fusion applied

by GLIP, as shown in Figure 4.1 (Middle), is crucial to learn high-quality language-aware

visual representations and to achieve superior transfer learning performance. The uni-

fication of detection and grounding also allows us to pre-train using both types of data

and benefits both tasks. On the detection side, the pool of visual concepts is significantly

enriched thanks to the grounding data. On the grounding side, detection data introduce

more bounding box annotations and help train a new SoTA phrase grounding model.

Scalingupvisual conceptswithmassive image-textdata. Given a good ground-

ing model (teacher), we can augment GLIP pre-training data by automatically generat-

ing grounding boxes for massive image-text-paired data, in which noun phrases are de-

tected by anNLP parser [BKL09]. Thus, we can pre-train our (student) GLIP-Largemodel

(GLIP-L) on 27M grounding data, including 3M human-annotated fine-grained data and

24M web-crawled image-text pairs. For the 24M image-text pairs, there are 78.1M high-

confidence (> 0.5) phrase-box pseudo annotations, with 58.4M unique noun phrases. We

showcase two real examples of the generated boxes in Figure 4.2. The teacher model

can accurately localize some arguably hard concepts, such as syringes, vaccine, beautiful

caribbean sea turquoise, and even abstract words (the view). Training on such semantic-

rich data delivers a semantic-rich student model. In contrast, prior work on scaling detec-

tion data simply cannot predict concepts out of the teachermodels’ pre-defined vocabulary

[ZGL20]. In this study, we show that this simple strategy of scaling up grounding data is

empirically effective, bringing large improvements to LVIS and 13 downstream detection

tasks, especially on rare categories (Sections 4.3.2 and 4.4). When the pre-trained GLIP-L

model is fine-tuned on COCO, it achieves 60.8 AP on COCO 2017val and 61.5 on test-dev,
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surpassing the current public SoTAmodels [DCX21, XZH21] that scale up object detection

data in various approaches.

Transfer learning with GLIP: one model for all. The grounding reformulation

and semantic-rich pre-training facilitate domain transfer. GLIP can be transferred to var-

ious tasks with few or even no additional human annotations. When the GLIP-L model is

directly evaluated on the COCO and LVIS datasets (without seeing any images in COCO

during pre-training), it achieves 49.8 and 26.9 AP on COCO val2017 and LVIS val, re-

spectively, surpassing many supervised baselines. When evaluated on 13 existing object

detection datasets, spanning scenarios including fine-grained species detection, drone-

view detection, and ego-centric detection, the setting which we term “Object Detection in

theWild” (ODinW) (Section 4.4.1), GLIP exhibits excellent data efficiency. For example, a

zero-shot GLIP-L outperforms a 10-shot supervised baseline (Dynamic Head) pre-trained

on Objects365 while a 1-shot GLIP-L rivals with a fully supervised Dynamic Head. More-

over, when task-specific annotations are available, instead of tuning the whole model, one

could tune only the task-specific prompt embedding, while keeping the model parame-

ters unchanged. Under such a prompt tuning setting (Section 4.4.2), one GLIP model

can simultaneously perform well on all downstream tasks , reducing the fine-tuning and

deployment cost.

4.1 RelatedWork

Standard object detection systems are trained to localize a fixed set of object classes pre-

defined in crowd-labeled datasets, such as COCO [LMB14a], OpenImages (OI) [KRA18],

Objects365 [SLZ19], and Visual Genome (VG) [KZG17], which contains no more than

2,000 object classes. Such human-annotated data are costly to scale up. GLIP presents

an affordable solution by reformulating object detection as a phrase grounding (word-to-

region matching) problem, and thus enables the use of grounding and massive image-

text-paired data. Though our current implementation is built upon Dynamic Head (Dy-
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Head) [DCX21], our unified formulation can be generalized to any object detection sys-

tems [RDG16, LGG17, DCX21, DLH16, RHG15, CPW19, CMS20, ZSL20, DCX21] for scal-

able Grounded Language-Image Pre-training.

Recently, there is a trend to develop vision-and-language approaches to visual recog-

nition problems, where vision models are trained with free-form language supervision.

For example, CLIP [RKH21] and ALIGN [JYX21] perform cross-modal contrastive learn-

ing on hundreds or thousands of millions of image-text pairs and can directly perform

open-vocabulary image classification. By distilling the knowledge from the CLIP/ALIGN

model into a two-stage detector, ViLD [GLK21] is proposed to advance zero-shot object

detection. Alternatively, MDETR [KSL21] trains an end-to-end model on existing multi-

modal datasets which have explicit alignment between phrases in text and objects in im-

age. Our GLIP inherits the semantic-rich and language-aware property of this line of re-

search, achieves SoTA object detection performance and significantly improves the trans-

ferability to downstream detection tasks.

This study focuses on domain transfer for object detection. The goal is to build one

pre-trained model that seamlessly transfers to various tasks and domains, in a zero-shot

or few-shot manner. Our setting differs from zero-shot detection [BSS18, RKP20, ZRH21,

GLK21, ZWS20,RKB20], where some categories are defined as unseen/rare andnot present

in the training set. We expect GLIP to perform well on rare categories (Section 4.3.2) but

we do not explicitly exclude any categories from our training set, because grounding data

are so semantically rich that we expect them to cover many rare categories. This resem-

bles the setting in open-vocabulary object detection [ZRH21], which expects raw image-

text data to covermany rare categories. However, beyond performance on rare categories,

which is the focus in prior work, we also consider the transfer cost in real-world scenarios,

i.e., how to achieve the best performance with the least amount of data, training budget,

and deployment cost (Section 4.4).
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4.2 Grounded Language Image Pre-training

Conceptually, object detection and phrase grounding bear a great similarity. They both

seek to localize objects and align them to semantic concepts. This synergy motivates us

to cast the classical object detection task into a grounding problem and propose a uni-

fied formulation (Sec 4.2.1). We further propose to add deep fusion between image and

text, making the detectionmodel language-aware and thus a strong groundingmodel (Sec

4.2.2). With the reformulation and deep fusion, we can pre-train GLIP on scalable and

semantic-rich grounding data (Sec 4.2.3).

4.2.1 Unified Formulation

Background: object detection. A typical detection model feeds an input image into

a visual encoder EncI , with CNN [HCH16, TL19] or Transformer [LLC21, ZDY21, YLZ21]

as backbone, and extracts region/box features O, as shown in Figure 4.1 (Bottom). Each

region/box feature is fed into two prediction heads, i.e., a box classifier C and a box re-

gressorR, which are trained with the classification loss Lcls and the localization loss Lloc,

respectively:

L = Lcls + Lloc. (4.1)

In two-stage detectors, a separate region proposal network (RPN) with RPN loss Lrpn is

used to distinguish foreground from background and refine anchors. Since Lrpn does not

use semantic information of object classes, we merge it into the localization loss Lloc. In

one-stage detectors, localization loss Lloc may also contain the centerness loss [TSC19].

The box classifier C is typically implemented using a simple linear layer, and the clas-

sification loss Lcls can be written as:

O=EncI(Img), Scls=OW T , Lcls= loss(Scls;T ). (4.2)

Here2, O ∈ RN×d are the object/region/box features of the input image, W ∈ Rc×d is

2N is the number of region/box features, d is the visual feature hidden dimension, c is the number of
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the weight matrix of the box classifier C, Scls ∈ RN×c are the output classification logits,

T ∈ {0, 1}N×c is the target matching between regions and classes computed from the clas-

sical many-to-1 matching [RDG16, LGG17, DLH16, RHG15] or the bipartite Hungarian

match [CMS20, ZSL20, DCX21]. loss(S;T ) is typically a cross-entropy loss for two-stage

detectors and a focal loss [LGG17] for one-stage detectors.

Object detection as phrase grounding. Instead of classifying each region/box into

c classes, we reformulate detection as a grounding task, by grounding/aligning each region

to c phrases in a text prompt (see Figure 4.1). How to design a text prompt for a detection

task? Given object classes [person, bicycle, car, ..., toothbrush], one simple way is

Prompt = “Detect: person, bicycle, car, ... , toothbrush”,

in which each class name is a candidate phrase to be grounded. One could design better

prompts, by providing more expressive descriptions of these classes and/or by exploiting

the preference of a pre-trained language model. For example, when the pre-trained BERT

model [DCL18] is used to initialize our language encoder EncL, the prompt “person. bicy-

cle. car. ... . toothbrush” works better than the more human-friendly prompt described

above. We will discuss the prompt design in Section 4.4.2.

In a groundingmodel, we compute the alignment scores Sground between image regions

and words in the prompt:

O=EncI(Img), P =EncL(Prompt), Sground=OP⊤, (4.3)

where P ∈ RM×d is the contextual word/token features from the language encoder and

plays a similar role to the weight matrixW in Equation 4.2, as shown in Figure 4.1 (Right).

The groundingmodel, consisting of both the image encoderEncI and the language encoder

EncL, is trained end-to-end byminimizing the loss defined in Equation 4.1 & Equation 4.2,

object classes, and we ignore the bias in the box classifier for simplicity.
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with a simple replacement of the classification logits Scls in Equation 4.2 with the region-

word aligment scores Sground in Equation 4.3.

However, in Equation 4.2, we now have the logits Sground ∈ RN×M and the target

T ∈ {0, 1}N×c. The number of (sub)-word tokens M is always larger than the number of

phrases c in the text prompt due to four reasons: 1) some phrases contain multiple words,

e.g., “traffic light”; 2) some single-word phrases are splitted into multiple (sub)-word to-

kens, e.g., “toothbrush” to “tooth#” and “#brush”; 3) some are the added tokens, such as

“Detect:”, “,”, special tokens in languagemodels, and4) a [NoObj] token is added at the end

of the tokenized sequence. When the loss is a (focal) binary sigmoid loss (the loss we use

in Section 4.3 & 4.4), we expand the original target matrix T ∈ {0, 1}N×c to T ′ ∈ {0, 1}N×M

by making all sub-words positive match if a phrase is a positive match and all added to-

kens negative match to all image features. With this change, the loss(Sground;T
′) remains

the same. During inference, we average token probabilities as the phrase probability. 3

Equivalence between detection and grounding. With the above reformulation,

we can convert any detection model into a grounding model, and the two views, i.e., de-

tection and grounding, are theoretically equivalent for both training and inference4. We

also verify this empirically: the SoTADyHead detector [DCX21] with Swin-Tiny backbone

gives the same performance on COCO val2017 before and after our reformulation. With

the reformulation, a pre-trained phrase grounding model can be directly applied to any

object detection task, thanks to the free-form input of the language encoder. This makes

it possible to transfer our GLIP model to arbitrary detection tasks in a zero-shot manner.

3When the loss is amulti-class cross entropy (CE) loss, followingMDETR [KSL21], all box proposals with
no positive match are matched to the [NoObj] token. The loss(S, T ′) becomes a multi-label multi-class CE
loss, and we sum token probabilities as phrase probability during inference.

4The equivalence holds when all candidate categories can fit into one prompt. For certain detection tasks
(e.g., Objects365 [SLZ19]), in practice, we can split the categories intomultiple prompts during training and
inference.
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Related work. Our grounding formulation is inspired by MDETR [KSL21], and our

grounding loss shares the same spirit of MDETR’s fine-grained contrastive loss. We go

further thanMDETR by finding an effective approach to reformulate detection as ground-

ing and a simple unified loss for both detection and grounding tasks. Our groundingmodel

also resembles models for zero-shot detection [BSS18, RKP20, GLK21, ZWS20, RKB20].

The seminal work of Bansal et al. [BSS18] enables a detection model to conduct zero-shot

detection, by using the pre-trained Glove word embedding [PSM14] as the phrase features

P ∈ Rc×d, if written in the form of Equation 4.3. Recently, phrase features extracted from

pre-trained deep language models are introduced in open-vocabulary detection [ZRH21].

Our GLIP model differs from zero-shot detection in that GLIP provides a unified view

of detection and grounding, and thus enables the two crucial ingredients, i.e., language-

aware deep fusion and scaling up with image-text-paired data, as to be described next.

4.2.2 Language-Aware Deep Fusion

In Equation 4.3, the image and text are encoded by separate encoders and only fused at

the end to calculate the alignment scores. We call such models late-fusion models. In

vision-language literature [LDD19, TB19, CLY19, SZC19, LYY19, LDF19, ZPZ20b, LYL20,

KSL21], deep fusion of visual and language features is necessary to learn a performant

phrase grounding model. Therefore, we introduce deep fusion between the image and

language encoders, which fuses the image and text information in the last few encoding

layers, as shown in Figure 4.1 (Middle). Concretely, when we use DyHead [DCX21] as

the image encoder and BERT [DCL18] as the text encoder, the deep-fused encoder can be

written as:

Oi
t2i, P

i
i2t = X-MHA(Oi, P i), i ∈ {0, 1, .., L− 1} (4.4)

Oi+1 = DyHeadModule(Oi+Oi
t2i), O = OL, (4.5)

P i+1 = BERTLayer(P i+P i
i2t), P = PL, (4.6)
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where L is the number of DyHeadModules in DyHead [DCX21], BERTLayer is newly-

added BERTLayers on top of the pre-trained BERT,O0 denote the visual features from the

vision backbone, and P 0 denote the token features from the language backbone (BERT).

The cross-modality communication is achieved by the cross-modality multi-head atten-

tion module (X-MHA) Equation 4.4, followed by the single modality fusion and updated

in Equation 4.5 & Equation 4.6. Without added context vectors (Oi
t2i for vision modality

and P i
i2t for language modality), the model is reduced to a late-fusionmodel.

In the cross-modality multi-head attention module (X-MHA) Equation 4.4, each head

computes the context vectors of one modality by attending to the other modality:

O(q)=OW (q,I), P (q)=PW (q,L), Attn=O(q)(P (q))⊤/
√
d,

P (v) = PW (v,L), Ot2i = SoftMax(Attn)P (v)W (out,I),

O(v) = OW (v,I), Pi2t = SoftMax(Attn⊤)O(v)W (out,L),

where {W (symbol,I),W (symbol,L) : symbol ∈ {q, v, out}} are trainable parameters and play

similar roles to those of query, value, and output linear layers inMulti-Head Self-Attention

[VSP17], respectively.

The deep-fused encoder brings two benefits. 1) It improves the phrase grounding per-

formance. 2) It makes the learned visual features language-aware, and thus the model’s

prediction is conditioned on the text prompt. This is crucial to achieve the goal of having

one model serve all downstream detection tasks (shown in Section 4.4.2).

4.2.3 Pre-training with Scalable Semantic-Rich Data

Considerable efforts have been devoted to collecting detection data that are rich in se-

mantics and large in quantity. However, human annotations have been proven costy and

limited [KRA18, GDG19]. Prior work seeks to scale up in a self-training fashion [ZGL20].

They use a teacher (a pre-trained detector) to predict boxes from raw images and generate

pseudo detection labels to train a studentmodel. But the generated data are still limited in
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terms of the size of the concept pool, as the teacher can only predict labels defined in the

concept pool, constructed on the existing datasets. In contrast, our model can be trained

on both detection and, more importantly, grounding data. We show that grounding data

can provide rich semantics to facilitate localization and can be scaled up in a self-training

fashion.

First, the gold grounding data cover a much larger vocabulary of visual concepts than

existing detection data. The largest attempts at scaling up detection vocabulary still cover

no more than 2,000 categories [KZG17, GDG19]. With grounding data, we expand the vo-

cabulary to cover virtually any concepts that appear in the grounded captions. For exam-

ple, Flickr30K [PWC15] contains 44,518 unique phrases while VG Caption [KZG17] con-

tains 110,689 unique phrases, orders of magnitude larger than the vocabulary of detection

data. We provide an empirical study in Section 4.3.4 to show that 0.8M gold grounding

data brings a larger improvement on detecting rare categories than additional 2M detec-

tion data.

Further, instead of scaling up detection data, we show a promising route to obtaining

semantically rich data: scaling up grounding data. We use a simple approach inspired by

self-training. We first pre-train a teacher GLIP with gold (human-annotated) detection

and grounding data. Then we use this teacher model to predict boxes for web-collected

image-text data, with noun phrases detected by anNLP parser [BKL09]. Finally, a student

model is trained with both the gold data and the generated pseudo grounding data. As

shown in Figure 4.2, the teacher is capable of generating accurate boxes for semantically

rich entities.

Why can the studentmodel possibly outperform the teachermodel? While discussions

remain active in the self-training literature [ZGL20], in the context of visual grounding,

we posit that the teacher model is utilizing the language context and language generaliza-

tion ability to accurately ground concepts that it may not inherently know. For example,

in Figure 4.2, the teacher may not directly recognize certain concepts such as vaccine and
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Model Backbone Deep Fusion
Pre-Train Data

Detection Grounding Caption

GLIP-T (A) Swin-T 7 Objects365 - -

GLIP-T (B) Swin-T 3 Objects365 - -

GLIP-T (C) Swin-T 3 Objects365 GoldG -

GLIP-T Swin-T 3 Objects365 GoldG Cap4M

GLIP-L Swin-L 3 FourODs GoldG Cap24M

Table 4.1: A detailed list of GLIP model variants.

turquoise, if they are not present in gold data. However, the rich language context such as

syntactic structures can provide strong guidance for the teacher model to perform an “ed-

ucated guess”. The model can localize vaccine if it can localize a small vail; it can localize

turquoise if it can find caribbean sea. When we train the student model, the “educated

guess” of the teacher model becomes a “supervised signal”, enabling the student model to

learn the concept of vaccine and turquoise.

4.3 Transfer to Established Benchmarks

After pre-training, GLIP can be applied to grounding and detection tasks with ease. We

show strong direct domain transfer performance on three established benchmarks: 1)MS-

COCO object detection (COCO) [LMB14a] containing 80 common object categories; 2)

LVIS [GDG19] covering over 1000 objects categories; 3) Flickr30K [PWC15], for phrase

grounding. We train 5 variants of GLIP (Table 4.1) to ablate its three core techniques:

1) unified grounding loss; 2) language-aware deep fusion; 3) and pre-training with both

types of data.

GLIP-T (A) is based on a SoTA detectionmodel, Dynamic Head [DCX21], with our word-

region alignment loss replacing the classification loss. It is based on the Swin-Tiny back-

bone and pre-trained on O365 (Objects365 [SLZ19]), which contains 0.66M images and

365 categories. As discussed in Section 4.2.1, the model can be viewed as a strong classical

zero-shot detection model [BSS18], relying purely on the language encoder to generalize
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Model Backbone Pre-Train Data
Zero-Shot Fine-Tune

2017val 2017val / test-dev

Faster RCNN RN50-FPN - - 40.2 / -

Faster RCNN RN101-FPN - - 42.0 / -

DyHead-T [DCX21] Swin-T - - 49.7 / -

DyHead-L [DCX21] Swin-L - - 58.4 / 58.7

DyHead-L [DCX21] Swin-L O365,ImageNet21K - 60.3 / 60.6

SoftTeacher [XZH21] Swin-L O365,SS-COCO - 60.7 / 61.3

DyHead-T Swin-T O365 43.6 53.3 / -

GLIP-T (A) Swin-T O365 42.9 52.9 / -

GLIP-T (B) Swin-T O365 44.9 53.8 / -

GLIP-T (C) Swin-T O365,GoldG 46.7 55.1 / -

GLIP-T Swin-T O365,GoldG,Cap4M 46.3 54.9 / -

GLIP-T Swin-T O365,GoldG,CC3M,SBU 46.6 55.2 / -

GLIP-L Swin-L FourODs,GoldG,Cap24M 49.8 60.8 / 61.0

GLIP-L Swin-L FourODs,GoldG+,COCO - - / 61.5

Table 4.2: Zero-shot domain transfer and fine-tuning on COCO. GLIP, without seeing any

images from the COCO dataset, can achieve comparable or superior performance than

prior supervised models (e.g. GLIP-T under Zero-Shot v.s. Faster RCNN under Fine-

Tune). When fully fine-tuned on COCO, GLIP-L surpasses the SoTA performance.

to new concepts.

GLIP-T (B) is enhanced with language-aware deep fusion but pre-trained only on O365.

GLIP-T (C) is pre-trained on 1)O365 and2)GoldG, 0.8Mhuman-annotated gold ground-

ing data curated byMDETR [KSL21], including Flickr30K, VG Caption [KZG17], and GQA

[HM19b]. We have removed COCO images from the dataset. It is designed to verify the

effectiveness of gold grounding data

GLIP-T is based on the Swin-Tiny backbone and pre-trained on the following data: 1)
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Model Backbone
MiniVal [KSL21] Val v1.0

APr APc APf AP APr APc APf AP

MDETR [KSL21] RN101 20.9 24.9 24.3 24.2 - - - -

MaskRCNN [KSL21] RN101 26.3 34.0 33.9 33.3 - - - -

Supervised-RFS [GDG19] RN50 - - - - 12.3 24.3 32.4 25.4

GLIP-T (A) Swin-T 14.2 13.9 23.4 18.5 6.0 8.0 19.4 12.3

GLIP-T (B) Swin-T 13.5 12.8 22.2 17.8 4.2 7.6 18.6 11.3

GLIP-T (C) Swin-T 17.7 19.5 31.0 24.9 7.5 11.6 26.1 16.5

GLIP-T Swin-T 20.8 21.4 31.0 26.0 10.1 12.5 25.5 17.2

GLIP-L Swin-L 28.2 34.3 41.5 37.3 17.1 23.3 35.4 26.9

Table 4.3: Zero-shot domain transfer to LVIS. While using no LVIS data, GLIP-T/L out-

performs strong supervised baselines (shown in gray). Grounding data (both gold and

self-supervised) bring large improvements on APr.

O365, 2) GoldG as in GLIP-T (C), and 3) Cap4M, 4M image-text pairs collected from the

web with boxes generated by GLIP-T (C). We also experiment with existing image cap-

tion datasets: CC (Conceptual Captions with 3M data) [SDG18] and SBU (with 1M data)

[OKB11b]. We find that CC+SBU GLIP-T performs slightly better than Cap4M GLIP-T on

COCO, but slightly worse on the other datasets. For simplicity, we report both versions on

COCO but only the Cap4Mmodel for the other tasks.

GLIP-L is based on Swin-Large and trained with: 1) FourODs (2.66M data), 4 detection

datasets including Objects365, OpenImages [KDA17], Visual Genome (excluding COCO

images) [KZG17], and ImageNetBoxes [KSH12]; 2)GoldGas inGLIP-T (C); and3)CC12M+SBU,

24M image-text data collected from the web with generated boxes.

4.3.1 Zero-Shot and Supervised Transfer on COCO

We conduct experiments onMS-COCO to evaluatemodels’ transfer ability to common cat-

egories. We evaluate under two settings: 1) zero-shot domain transfer, and 2) supervised
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Row Model Data
Val Test

R@1 R@5 R@10 R@1 R@5 R@10

1 MDETR-RN101 GoldG+ 82.5 92.9 94.9 83.4 93.5 95.3

2 MDETR-ENB5 GoldG+ 83.6 93.4 95.1 84.3 93.9 95.8

3

GLIP-T

GoldG 84.0 95.1 96.8 84.4 95.3 97.0

4 O365,GoldG 84.8 94.9 96.3 85.5 95.4 96.6

5 O365,GoldG,Cap4M 85.7 95.4 96.9 85.7 95.8 97.2

6 GLIP-L FourODs,GoldG,Cap24M 86.7 96.4 97.9 87.1 96.9 98.1

Table 4.4: Phrase grounding performance onFlickr30K entities. GLIP-L outperforms pre-

vious SoTA by 2.8 points on test R@1.

transfer, where we fine-tune the pre-trained models using the standard setting. For the

fine-tuning setting, we additionally test the performance of a GLIP-L model, where we in-

clude the COCO images in the pre-training data (the last row). Specifically, we add the full

GoldG+ grounding data and COCO train2017 to the pre-training data. Note that part of

COCO 2017val images are present in GoldG+ [KSL21]. Thus we only report the test-dev

performance of this model.

We introduce an additional baseline: DyHead pre-trained on Objects365. We find

that COCO 80 categories are fully covered in Objects365. Thus we can evaluate DyHead

trained on Objects365 in a “zero-shot” way: during inference, instead of predicting from

365 classes, we restrict the model to predict only from the COCO 80 classes. We list stan-

dard COCO detection models for reference. We also list two state-of-the-art models pre-

trained with extra data.

Results are present in Table 4.2. Overall, GLIP models achieve strong zero-shot and

supervised performance. Zero-shot GLIP models rival or surpass well-established su-

pervised models. The best GLIP-T achieves 46.7 AP, surpassing Faster RCNN; GLIP-L

achieves 49.8 AP, surpassing DyHead-T. Under the supervised setting, the best GLIP-T

brings 5.5 AP improvement upon the standard DyHead (55.2 v.s. 49.7). With the Swin-
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Large backbone, GLIP-L surpasses the current SoTA on COCO, reaching 60.8 on 2017val

and 61.5 on test-dev, without somebells andwhistles in prior SoTA [XZH21] such asmodel

EMA, mix-up, label smoothing, or soft-NMS.

We analyze the zero-shot performance of GLIP and find three contributing factors:

close domain overlap betweenObjects365 andCOCO, deep fusion, and grounding data. As

Objects365 covers all categories in COCO, the O365 pre-trained DyHead-T shows strong

performance, reaching 43.6 zero-shotAP; reformulating themodel into a groundingmodel,

we observe a slight performance drop (GLIP-T (A)); adding deep fusion boosts the per-

formance by 2 AP (GLIP-T (B)); the largest contributor is the gold grounding data, with

which GLIP-T (C) reaches a zero-shot AP of 46.7. While the addition of image-text data

brings slight or no improvement on COCO (GLIP-T v.s. GLIP-T (C)), we find it essential

in generalizing to rare classes, as we show in the LVIS experiments.

4.3.2 Zero-Shot Transfer on LVIS

We evaluate the model’s ability to recognize diverse and rare objects on LVIS in a zero-

shot setting. We report onMiniVal containing 5,000 images introduced inMDETR aswell

as the full validation set v1.0. Results are present in Table 4.3. We list three supervised

models trained on the annotated data of LVIS.GLIP exhibits strong zero-shot performance

on all the categories. GLIP-T is on par with supervisedMDETRwhile GLIP-L outperforms

Supervised-RFS by a large margin.

The benefit of using grounding data is evident. Gold grounding data brings a 4.2-point

improvement on MiniVal APr (model C v.s. model B). Adding image-text data further

improves performance by 3.1 points. We conclude that the semantic richness of grounding

data significantly helps the model recognize rare objects.
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4.3.3 Phrase Grounding on Flickr30K Entities

We evaluate the model’s ability to ground entities in natural language on Flickr30K en-

tities [PWC15]. Flickr30K is included in the gold grounding data so we directly evaluate

the models after pre-training as in MDETR [KSL21]. We use the any-box-protocol spec-

ified in MDETR. Results are present in Table 4.4. We evaluate three versions of GLIP

with different pre-training data. We list the performance of MDETR, the SoTA grounding

model. MDETR is trained on GoldG+, containing 1.3M data (GoldG is a subset of GoldG+

excluding COCO images).

GLIP-T with GoldG (Row 3) achieves similar performance to MDETR with GoldG+,

presumably due to the introduction of Swin Transformer, DyHead module, and deep fu-

sion. More interestingly, the addition of detection data helps grounding (Row 4 v.s. 3),

showing again the synergy between the two tasks and the effectiveness of our unified loss.

Image-text data also helps (Row 5 v.s. 4). Lastly, scaling up (GLIP-L) can achieve 87.1

Recall@1, outperforming the previous SoTA by 2.8 points.

4.3.4 Analysis

In this section, we performablation study by pre-trainingGLIP-T on different data sources

(Table 4.5). We answer two research questions. First, our approach assumes that the use

of a detection dataset to bootstraps the model. One natural question is what the effect of

this detection dataset is andwhether grounding data still brings improvementwhenpaired

with different detection data. We pre-train GLIP with three different detection datasets

(Row 1-6). We find that adding grounding data brings consistent improvement in all the

three settings.

Second, we have shown the effectiveness of grounding data for both common and rare

categories. One orthogonal direction is to scale up detection data by including more im-

ages and categories (Section 4.2.3). We intend to provide an empirical comparison be-
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Row Pre-Training Data
COCO LVIS MiniVal

2017val APr APc APf AP

1 VG w/o COCO 26.9 4.9 10.4 23.2 16.1

2 + GoldG 29.2 7.8 14.0 24.5 18.5

3 OpenImages 29.9 12.8 12.1 17.8 14.9

4 + GoldG 33.6 15.2 16.9 24.5 20.4

5 O365 44.9 13.5 12.8 22.2 17.8

6 +GoldG 46.7 17.7 19.5 31.0 24.9

7 O365,GoldG,Cap4M 46.3 20.8 21.4 31.0 26.0

8 FourODs 46.3 15.0 22.5 32.8 26.8

Table 4.5: Effect of different detection data.

tween scaling up detection data and grounding data. We present GLIP trained with 4

public detection datasets (Row 8) as an extreme attempt at scaling up detection data with

human annotations. The model is trained with 2.66M detection data in total, with an

aligned vocabulary of over 1,500 categories. However, it still trails behind Row 6 on COCO

and APr of LVIS, where Row 6 is trained with only 0.66M detection data and 0.8M gold

grounding data. Adding image-text data further widens the gap on LVIS APr (20.8 versus

15.0). We conclude that grounding data are indeed more semantic-rich and a promising

alternative to scaling up detection data.

4.4 Object Detection in theWild

To evaluate GLIP’s transferability to diverse real-world tasks, we curate an “Object De-

tection in the Wild” (ODinW) setting. We choose 13 public datasets on Roboflow5, each

requiring a different localization skill. Many of the datasets are designedwith a specific ap-

5https://public.roboflow.com/object-detection
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plication purpose to mimic real-world deployment scenarios. For example, EgoHands re-

quires locating hands of a person; Pothole concerns detecting holes on the road; Thermal-

DogsandPeople involves identifying dogs and persons in infrared images.

We demonstrate that GLIP facilitates transfer to such diverse tasks on two dimensions.

(1)GLIPbrings great data efficiency, reaching the sameperformancewith significantly less

task-specific data than baselines (Section 4.4.1). (2) GLIP enables new domain transfer

strategies: when adapting to a new task, we can simply change the text prompt and keep

the entire grounding model unchanged. This greatly reduces deployment cost because it

allows one centralized model to serve various downstream tasks (Section 4.4.2).

C

Figure 4.3: Data efficiency of models. X-axis is the amount of task-specific data, from

zero-shot to all data. Y-axis is the average AP across 13 datasets. GLIP exhibits great data

efficiency, while each of our proposed approach contributes to the data efficiency.

4.4.1 Data Efficiency

We vary the amount of task-specific annotated data, from zero-shot (no data provided), to

X-shot (providing at least X examples per category [KLW19, YCX19, WRH19]), to using
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all data in the training set. We fine-tune the models on the provided data and use the

same hyper-parameters for all models. Each dataset comes with pre-specified category

names. As GLIP is language-aware, we find it beneficial to re-write some pre-specified

names with more descriptive language (see Section 4.4.2 for a discussion). We compare

with the SoTA detector DyHead-T, pre-trained on Objects365. We test with the standard

COCO-trained DyHead-T and find it giving similar performance. For simplicity, we report

only the former. We also experiment with the scaled cosine similarity approach [WHD20]

but find it slightly underperforming the vanilla approach so we report only the latter.

Results are shown in Figure 4.3. We find that unified grounding reformulation, deep

fusion, grounding data, and model scale-up all contribute to the improved data efficiency

(from the bottom red line (Dyhead-T) up to the upper purple line (GLIP-L)). As a re-

sult, GLIP exhibits transformative data efficiency. A zero-shot GLIP-T outperforms 5-shot

DyHead-T while a one-shot GLIP-L is competitive with a fully supervised DyHead-T.

Examining the per-dataset performance, we find that grounding data brings significant

improvement especially on certain tasks that test novel concepts. We plot the per-dataset

performance on 5 selected datasets in Figure 4.4. On Pothole and EgoHands, which con-

tain categories not present in Objects365, the models without grounding data (GLIP-T

A&B) achieve an AP of less than 5, while the models with grounding data can achieve an

AP of over 17 and 45, respectively.

4.4.2 One Model for All Tasks

As neural models become larger, how to reduce deployment cost has drawn an growing re-

search interest. Recent work on language models [SRL20], image classification [ZLL21],

and object detection [WHD20] has explored adapting a pre-trained model to a new do-

main but only changing the least amount of parameters. Such a setting is often denoted as

linear probing [KJZ18], prompt tuning [ZLL21], or efficient task adapters [GGZ21]. The

ultimate goal is to have a singlemodel to simultaneously serve various tasks, and each task
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Figure 4.4: Per dataset zero-shot performance. The first 3 datasets contain novel cate-

gories not present in the Objects365 vocabulary while the last 2 datasets’ categories are

covered by Obj365 data. Grounding data bring significant benefit to novel categories.

Prompt: … stingray … Prompt: … stingray, which is flat 

and round…

Figure 4.5: A manual prompt tuning example from the Aquarium dataset in ODinW.

Given an expressive prompt (“flat and round”), zero-shot GLIP can detect the novel entity

“stingray” better. For simplicity, we show only the predictions for the class “stingray”.

adds only a small amount of task-specific parameters or no parameters to the pre-trained

model. This reduces training and storage cost. In this section, we evaluate models against

the metric of deployment efficiency.
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Manual prompt tuning. As GLIP performs language-aware localization, i.e., the out-

put of GLIP is heavily conditioned on the language input, we propose an efficient way for

GLIP to do task transfer: for any novel categories, the user can use expressive descriptions

in the text prompt, adding attributes or language context, to inject domain knowledge and

help GLIP transfer. For example, on the left hand side of Figure 4.5, the model fails to

localize all occurrences of the novel entity “stingray”. However, by adding the attributes

to the prompt, i.e., “flat and round”, the model successfully localizes all occurrences of

stringrays. With this simple prompt change, we improve the AP50 on stingray from 4.6

to 9.7. This resembles the prompt design technique in GPT-3 [BMR20] and is practically

appealing, as it requires no annotated data or model re-training.

GLIP-L

GLIP-T

GLIP-T (A)

DyHead-T

Full-Model 

Tuning

Prompt 

Tuning

Linear 

Probing

Figure 4.6: Effectiveness of prompt tuning. Solid lines are full-model tuning performance;

dashed lines are prompt/linear probing performance. By only tuning the prompt embed-

dings, GLIP-T and GLIP-L can achieve performance close to full-model tuning, allowing

for efficient deployment.

Prompt tuning. We further consider the setting where we have access to task-specific

training data but wish to tune the least amount of parameters for easy deployment. For
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classical detection models, Wang et al. [WHD20] report the effectiveness of “linear prob-

ing” (i.e., train only the box regression and classification head). GLIP can also be “linear

probed”, where we only fine-tune the box head and a projection layer between the region

and prompt embeddings. Because of the language-aware deep fusion, GLIP supports a

more powerful yet still efficient transfer strategy: prompt tuning [SRL20, LAC21]. For

GLIP, as each detection task has only one language prompt (e.g., the prompt for Pothole

could be “Detect pothole.” for all images), we first get prompt embeddings P 0 from the

language backbone, then discard the language backbone and only fine-tune P 0 as the task-

specific input (Section 4.2.2).

We evaluate the models’ performance under three settings (Figure 4.6): linear prob-

ing, prompt tuning (only applicable for GLIP), and full-model tuning. For DyHead-T,

prompt tuning is not applicable as the traditional object detection model cannot accept

language input; the gap between linear probing and full-model tuning is large. GLIP-T

(A) has no language-aware deep fusion; thus prompt tuning and linear tuning achieve

similar performance and lag significantly behind full-model tuning. However, for GLIP-

T and GLIP-L, prompt tuning almost matches the full-tuning results, without changing

any of the grounding model parameters. Interestingly, as the model and data size grow

larger, the gap between full-model tuning and prompt tuning becomes smaller (GLIP-L

v.s. GLIP-T), echoing the findings in NLP literature [LYF21]. In Table ??, we report the

prompt tuning performance with full data of GLIP-L (along with the prompt-tuning per-

formance on COCO) and the model can achieve high performance on 14 datasets with one

set of parameter weights.

4.5 Conclusion

GLIP unifies the object detection and phrase grounding tasks to learn an object-level,

language-aware, and semantic-rich visual representation. After pre-training, GLIP showed

promising results on zero-shot and fine-tuning settings on well-established benchmarks
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and 13 downstream tasks. We leave a detailed study of how GLIP scales with text-image

data size to future work.
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CHAPTER 5

Learning with Rich Language Descriptions

Training visual recognition models to classify or detect objects with a fixed set of pre-

defined categories has been the convention for a long time. However, models trained us-

ing this approach often encounter difficulties when adapting to unfamiliar concepts and

domains. There has been a paradigm shift towards training visual recognition models

with language supervision, using a contrastive objective on a large amount of image-text

data containing a diverse range of visual concepts. These models can then be transferred

to downstream tasks via language queries. GLIP is one such example and can perform

object detection by querying the model with “Detect: person, cat, dog · · · ”.

Early applications of these models typically utilize simple language queries that con-

sist of object names. However, language queries can convey much richer and more com-

prehensive information, such as object attributes, shapes, textures, and relations. These

pieces of information can be especially useful for identifying novel visual concepts that do

not appear in the training corpus or specifying specific needs. For example, the concept

of “mallet” can be described as “a kind of tool, wooden handle with a round head” (Fig-

ure 5.1, bottom-left). This decomposes object recognition into recognizing fine-grained

details (such as attributes, sub-parts, shapes, etc.) and aligning them to the descriptions.

Several studies [LZZ22, SLH22, MV23] have explored the idea of guiding language-based

recognition models using such descriptive prompts. However, few existing models take

complex queries into account during training. As a result, current models often strug-

gle with recognizing intricate object names, attributes, and relations described in natural
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language sentences [YBK23, TJB22] (see examples in Figure 5.1).

A kind of tool, wooden handle 
with a round head, used for 

pounding or hammering

A kind of tool, long handle, 
sharp blade, could be used 

for chopping wood

A clown kicking a soccer 
ball for a pretty lady

A clown making a balloon 
animal for a pretty lady

Headset, a kind of electronic 
device, has two earpieces 

connected to a band…


Eclair, a kind of food, long, 
cylindrical pastry, filled with 

cream, topped with chocolate

Tart, a kind of food, round, 
could be filled with fruits, 

could be served with cream

Microphone, a kind of audio 
device, long, thin, could be 

handled, could be connected…


Ours

Ours

GLIP

GLIP

GLIP

GLIP

GLIP

GLIP

GLIPOurs

Ours Ours

Ours

Ours

Ours

tool: 0.59 tool: 0.35
tool: 0.35

tool: 0.34

clown: 0.72 clown: 0.74eclair: 0.39 eclair: 0.58 tart: 0.55

headset: 0.5

tool: 0.32

tool: 0.33

clown: 0.71
clown: 0.33

microphone: 0.38

microphone: 0.53headset: 0.42

headset:0.3

headset:0.4

Target Object Confusable Object

Target Object Confusable Object

Target Object Confusable Object

Target Object Confusable Object

Detect small objects

Detect with specifications for relationDetect with specifications for shape & subpart

Detect with specifications for shape & subpart 
(w/o object name)

GLIP

headset: 0.3

Figure 5.1: Comparison between our model (DesCo-GLIP) and the baseline

(GLIP [LZZ22]). Each image is paired with a positive query for target object and a

negative query for confusable object. A successful model should locate the target object

and ignore the confusable object in the image based on fine-grained specifications for

shapes, subparts, relations, etc. We highlight the descriptions that match and do not

match to the queried object in blue and red, respectively. Results show that our model

can successfully localize the target object and suppresses the negative query even for the

difficult cases when the object name is not in the query or the object.

In this study, we develop a vision-language model capable of leveraging description-

rich language queries to perform object detection. This work aligns with the recent surge

of interest in instruction/prompt-aware vision-language models (see a discussion in Sec-
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tion 5.1). Our goal is to equipVLMswith the ability to comprehend complex language input

describing visual concepts, similar to the capability of large language models. We specif-

ically study instruction/prompts in the form of descriptive queries. We focus on object

detection, as it requires fine-grained recognition and is more challenging than image-level

tasks. However, our method can be generalized to other vision tasks such as classification

and segmentation [ZDY23].

We identify twomajor challenges that prevent existingmodels from efficiently utilizing

rich language descriptions: (1) Fine-grained descriptions are rare in image-caption data

used for training current VLMs1. This resembles the reporting bias phenomenon [PAR21]:

when writing captions for images, humans tend to directly mention the entities rather

than give a detailed description. (2) Even when provided with data rich in descriptions,

models often lack the incentive to leverage these descriptions effectively. The main train-

ing objective is to align positive phrases with relevant regions while suppressing negative

phrases. However, if positive/negative phrases can be distinguished without descriptions,

the training mechanism fails to incentivize the model to use the provided description. For

example, a positive phrase like “A toy bear holding a mallet, which has a wooden handle

with a round head,” and a negative phrase like “A toy bear holding an ax, which has a long

handle and a sharp blade,” can be differentiated based solely on the wordsmallet and ax.

This issue resembles the issue discovered by [YBK23], where vision-language models ig-

nore word order and treat a query as a “bag-of-words” due to insufficient incentives from

the contrastive objective. In addition, current models suffer severe hallucination when

given natural language queries (in contrast to “template-like” queries) due to shortcuts

introduced in training query formulation. This can be seen in the bottom-right picture of

Figure 5.1, where GLIP hallucinates and predicts multiple wrong boxes for “microphone”

while “microphone” does not appear in the image.

1We count the region-label data used by models like GLIP as image-caption data because the labels are
converted into captions through templates.
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Based on the observations, we present a Description-Conditioned (DesCo) paradigm

of learning object recognitionmodels from language descriptions based on two synergistic

ideas:

(1) Generating descriptions with large language models. Instead of learn-

ing from raw image-caption pairs, we use large language models as a world knowledge

base and generate detailed descriptions based on the original caption. We prompt GPT-

3 [BMR20] with “What features should object detection models focus on for {an entity in

the caption}?”. This serves as a scalable approach to transfer the image-caption data into

image-description data.

(2) Context-sensitive query construction. As discussed, even if we provide de-

scriptions during pre-training, models can still ignore the language context. Our solution

is to create a “context-sensitive query”, which is a set of positive and negative phrases that

can only be distinguished by reading the descriptions (Figure 5.2). We explore two strate-

gies: 1) constructing “Winograd-like” [Hir81, TJB22] queries by using large languagemod-

els to generate confusable object descriptions and captions and 2) generalizing the original

grounding task to allow full-negative queries, reducing hallucination.

We apply our approach to fine-tune two state-of-the-art language-conditioned object

detection models GLIP [LZZ22] and FIBER [DKG22]. We use the same raw training

data as the baselines but convert the data into description-rich queries. We evaluate our

methods in two settings. (1) Zero-shot generalization to novel categories (LVIS [GDG19]),

where we use GPT-3 to generate descriptions given class names. DesCo-GLIP (Tiny) im-

proves uponGLIP (Tiny) by 10.0APr, even outperforming the largerGLIP (Large); DesCo-

FIBER improves upon FIBER by 9.1 APr. (2) Zero-shot generalization to natural descrip-

tions given by humans (OmniLabel [SSD23]). DesCo-GLIP and DesCo-FIBER improve

upon the baselines by 4.5 AP and 3.6 AP, setting a new state-of-the-art performance level.
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5.1 Related work

Language-based visual recognitionmodels. Visual recognitionmodels are typically

trained to make predictions based on a fixed set of classes [KH09, DDS09b, LMB14b,

SLZ19, MCL14, ZZP17]. The trained models are hard to generalize to open-domain set-

tings. Recent studies have developed visual recognition models that take into account

language queries, i.e. language-based recognition. This line of research can be traced back

to early work of generalizing image classification [SGM13] and object detection [BSS18]

modelswithword embeddings. Recently, CLIP [RKH21] reformulates image classification

as image-text matching and pre-trains models on large-scale image-caption pairs to learn

transferrable representations. They demonstrate strong zero-shot performance on various

classification tasks. Recent work has applied the technique to fine-grained recognition

tasks, such as object detection [KSL21, GLK22, LZZ22, ZYZ22, ZLL22, CKR22, MGS22,

DKG22, LZR23], and segmentation [LWB22, GGC22, HKL22, XDL22, ZLZ23, LZS23].

These works either use pure image-text data as supervision [XDL22], or reformulate la-

beled data into image-text data [LWB22], or pseudo labels image-text data with fine-

grained labels [LZZ22]. Orthogonal to architecture design or scaling-up, which is the focus

of many prior studies, this study points out that the vanilla way of using image-text data

is insufficient and studies how to train these models to take more flexible and informative

language queries.

Vision-language models with complex prompts. As vision recognition models

become language-aware and languagemodels becomevision-aware [TMC21, ZCS23, LGY23],

there is a growing interest in studying whether these models can take complex language

prompts, such as task instructions (e.g., GPV [GKK22, KCG22], SEEM [ZYZ23], Vision-

LLM [WCC23]), descriptions [LLL22], or even dialogues (e.g., LLaVa [LLW23]). We study

specifically descriptive prompts, which are especially useful for generalizing to novel cate-

gories and customized detection needs; a model that can understand descriptive prompts
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can also serve as the backbone for supporting aforementioned other types of prompts.

Similar to our work, K-LITE [SLH22] proposes to retrieve knowledge for a visual concept

using external knowledge bases, then use the enriched concepts for image classification or

object detection; similar techniques have also been proposed by [MV23, YPZ23, YWZ23].

DetCLIP [YHW22] builds a large-scale concept dictionary, based on which they provide

definitions from WordNet. Different from these studies, our methods show that simply

presenting the descriptions at training or inference time is not enough; we propose a sim-

ple technique to force models to focus on the provided descriptions (Section 5.2.2.2). Our

work relates to a line of work that seek to reveal and fix failure patterns of image-text

matchingmodels (e.g., CLIP) by creating hard negative examples [TJB22, YBK23,DAH23,

RKK23].

5.2 Approach

In this section, we first briefly introduce language-based object detection models, then

illustrate the details of our proposed approach.

5.2.1 Background

Wegive an introduction to language-based object detectionmodels [KSL21, LZZ22,DKG22],

which take a language query and an image as inputs, and predict bounding boxes and their

alignment to phrases in the language query. In the following, we use GLIP as an example.

Baseline: GroundedLanguage-ImagePre-training (GLIP). At the center of these

approaches is “reformulating any task-specific fixed-vocab classificationproblemas a task-

agnostic open-vocabulary vision-languagematching problem” [ZZH22]. The best example

is CLIP which reformulates image classification as image-text matching. Similarly, GLIP

unifies training data into a grounding format: (I,Q,B, T ). I is the image; Q is the text

query; B ∈ RN×4 is the bounding boxes; T ∈ {0, 1}N×K indicates the ground-truth align-

ment label between the N bounding boxes and K tokens in the query. The key is how to
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formulate the query with data from two kinds of sources:

• Detection data. For object detection data such as Objects365 [SLZ19], the query is the

concatenation as a list of object classes, such as “Detect: person. bicycle. car. · · · ,

toothbrush”. Note that negative object classes are included in the query; this makes

such query-based detection models similar to classical detection models.

• Grounding data. Typically, Q is an image caption, containing entities that can are

aligned to annotated object regions [PWC15]. For example, “A toy bear holding a mal-

let” is the caption; “toy bear” and “mallet” are the “groundable” entities. For densely

annotated grounding data (multiple captions for one image) [KZG17], we can concate-

nate multiple captions into a longer query. Image-caption data (without annotated

boxes) can be transferred into grounding data via pseudo labeling with a grounding

model [LZZ22].

Given I andQ, we compute the alignment scores Sground between image regions and words

in the query:

O,L=Enc(I,Q), Sground=OL⊤,L = loss(Sground, T ) + Lloc

where L ∈ RK×d is the contextual token features and O ∈ RN ′×d are the regions features.

Enc is a vision and language encoder that takes both image and text as inputs and fuses

their representations. The training loss contains the region-word matching loss and a

localization loss Lloc)as in conventional object detection models.

Inference with language query. At inference time, the model can be used to locate

entities/class names appearing in the query. One could simply provide a list of candidate

object names (as in the detection data training format). GLIP also shows the promise of

using descriptions for generalization to novel concepts; however, we show that while GLIP

can be influenced by the description, it does not always take the details in the description

into account.
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5.2.2 Learning with Language Descriptions

To train object recognition models that fully utilize language descriptions, we propose to

generate descriptions with large language models and construct context-sensitive queries

during training. The following subsections provide further details.

5.2.2.1 Description GenerationWith Large Language Models

Fine-grained descriptions could be scarce in image-caption data due to reporting bias.

While this problem can be alleviated by scaling up the pre-training corpus, we show that

large language models [DCL18, BMR20] can be used to effectively generate the descrip-

tions and thus enrich our training corpus.

We leverage a large language model to transform a query Q into a description-rich

query Llm(Q). In this work, we only focus on generating descriptions for entities men-

tioned in the original query. We construct a vocabulary consisting of 10K entities appear-

ing frequently in the pre-training corpus. For each entity, we prompt a large language

model: what features should object detection models focus on for {entity}? We

find that large languagemodels give high-quality responses (see examples in Figure 5.1 and

Figure 5.4).

5.2.2.2 Context-Sensitive Query Construction

Can we simply add the description-rich data to the pre-training corpus? An intuitive idea

is to append the description to the original entity to form a training prompt (e.g., “Detect:

mallet. bear· · · ” → “Detect: mallet, a kind of tool, wooden handle · · · bear, a kind of

animal, · · · ”). However, we find thatmodels naively trainedwith these prompts still do not

exhibit “context-sensitivity”, i.e., they make predictions solely based on the entity names

while ignoring other contexts (see Section 5.3.1 for quantitative analysis). As a result, we

observe no evident benefit in incorporating descriptions during inference (Table 5.3). In

the following, we elaborate onwhy themodel learns to ignore the descriptions and propose
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A polar bear holding a mallet. A toy bear 

holding a mallet…

Detect: Mallet. 

Bear. Cat…

A toy bear holding 

a mallet.

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

polar


bear… mallet… toy 
bear mallet… …

Original training 

data for GLIP Description-rich and context-sensitive data for DESCO-GLIP

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

tool… tool… …

GPT-3

A toy bear  

holding a mallet

Fine-grained descriptions

GPT-3

Confusable caption
Confusable object (Ax)

A kind of tool, wooden handle with a round 

head, used for pounding… A kind of tool, 

long handle, sharp blade, …

Mallet

Figure 5.2: Given the original training data of GLIP, we transform it to be description-rich

and context-sensitive by: 1) generating descriptions for entities and composing each of

them with confusable object descriptions; 2) generating negative captions. We visualize

the gold alignment labels (ground truth) between tokens and regions for the new data.

Notably, words such as tools are assigned both positive (blue block) and negative (red

block) labels in alignment with the corresponding object depending on the context of the

query. As such, the model requires understanding the description in order to make the

correct prediction.

two solutions.

Model learn statistical shortcuts. We first illustrate that without careful design,

the model could learn two statistical shortcuts that make them insensitive to descriptive

queries.

(1) Entity shortcut. The model is trained to align the entities in the query to image

regions (this includes predicting “no-alignment” for entities not appearing in the image).

Intuitively, if the alignment can be predicted without relying on the context information

in the query, then the model is not incentivized to focus on the context information. Fig-

ure 5.2 illustrates this issue with an example. The left side shows the training data of GLIP,
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where the top query (“Detect: Mallet. Bear. Cat...”) comes from detection data and the

bottom query (“A toy bear holding a mallet.”) comes from grounding data. The problem

with such queries is that they can be grounded by only focusing on the entity names and

ignoring the context. We denote the gold alignment label of regions as T , the entities in

the query as E, and the non-entity part (context) of the query as C. The mutual infor-

mation I(T ;C|E, I) between C and T given E and the image I would be low. That is, the

non-entity parts of the queries do not affect the label of the region. Training models on

such data will not encourage the model to focus on the descriptions as they provide no

additional information. This is similar to the “memorization overfit” issue observed in

[YTZck]: the model can simply choose to “memorize” the alignment between the entities

and regions.

(2) Format shortcut (hallucination). Popularized by GLIP [LZZ22], a line of work

adopts a unified view of phrase grounding and object detection: detection can be seen

as language-context-free grounding while grounding can be seen as language-context-

dependent detection. However, this unification is still imperfect: phrase grounding (or

referring expression [YPY16b]) traditionally only concerns locating entities in a caption

that always exist in the image; thus the model learns to always treat the natural-language

queries (in contrast to the template-like queries) as positive and tries to ground every en-

tity mentioned in the sentence. This will result in failure examples as illustrated in the

bottom-right picture of Figure 5.1. Such “hallucination” can be commonly seen onmodels

trained on language grounding data [KSL21]; these models are almost incapable of distin-

guishing positive and negative “natural-language-like” queries.

Constructing context-sensitive queries. This motivates our solution of creating

queries that are hard to solve without context (Figure 5.2 and Figure 5.3). We explore

two strategies in this study.

(1) We construct training queries similar to the Winograd format. For example, when

training on detection data, instead of “Detect: mallet, a kind of tool, · · · ”, we remove the
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entity name “mallet” from the query and sample another description of a “confusable”

entity that is also a kind of tool. Pairing the descriptions of the two “confusable” entities

creates a strong supervision signal (themiddle example in Figure 5.2): the alignment label

(0 or 1) of the word “tool” now depends on its context. The confusable entities are obtained

by prompting the large languagemodels as well. Similarly, for training on grounding data,

we prompt language models to generate confusable (hard negative) captions that differ

from the original captions only by a few words (the example on the right in Figure 5.2).

Note that the label of the word “mallet” is now affected by the context: the first “mallet” is

assigned 0 as the caption (“A polar bear holding amallet”) is negative. Mixing in such hard

negative captions encourages the model to focus on the context surrounding the entities,

such as relations to other entities. To make the confusable caption generation process

scalable for image-caption data, we first perform in-context inference and prompt GPT-3

to generate around 50K negative captions based on positive captions; then we distill this

knowledge to the open-sourced LLaMA-7B [TLI23] model that is instruction-finetuned

using low-rank adaptation2 [HWA22] and perform inference on large-scale image-caption

data.

(2) To resolve the hallucination issue, we generalize the original grounding task: in-

stead of always feeding the model a query that contains at least one description/caption

matching the image, we allow the query contain only negative descriptions/captions (Fig-

ure 5.3). Thus, the model cannot blindly ground all entities mentioned in the query; im-

plicitly, it needs to perform image-text matching [RKH21] as well as phrase grounding.

This was partly done in GLIP, but the query still contains at least one positive entity.

Overview. In Figure 5.3, we summarize the overall data construction algorithm. Algo-

rithm1: B ∈ RN×4 are the bounding boxes of an image;E areM positive objects (entities)

that appear in the image; V are the descriptions of all candidate objects in a pre-defined

2https://github.com/tloen/alpaca-lora
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Algorithm 1 Generating Queries for

Detection Data

Input: B (boxes), T (alignment matrix),

E (positive entities), V (vocabulary)

1: Q← ∅

2: for i← 1 toM do

3: q, Q−← LLM(prompt, Ei)

4: if random() < pdrop then

5: q, Q−← DropEntity(q, Q−)

6: Q← Q ∪ {q} ∪Q−

7: Q← Q ∪ RandSample(V )

8: q∗← SubSampleConcat(Q)

9: q∗, T , B← LabelAssign(q∗, T , E, B)

Algorithm 2 Generating Queries for

Grounding Data

Input: B (boxes), T (alignment matrix),

E (positive entities), V (vocabulary), C

(caption)

1: if random() < pdes then

2: Q, T ,B←Algorithm1(B, T ,E, V )

3: else

4: Q−← LLM(promptneg, C)

5: Q← {C} ∪Q−

6: q∗← SubSampleConcat(Q)

7: q∗, T , B ← LabelAssign(q∗, T , C,

B)

Figure 5.3: Algorithms for generating queries from detection data and grounding data.

vocabulary; T ∈ {0, 1}N×M denotes the gold alignment between boxes and entities. We

first prompt LLM to generate descriptions for the positive entities and propose confusable

entities and descriptions (Line 3). The original entities are removed from the descriptions

with pdrop = 0.5 (DropEntity, Line 4-5). Random negative descriptions from the vocabu-

lary are added to the candicate description set (Line 7). We then randomly subsample the

descriptions and concatenate them to form a final query q∗; this is because the total length

of all the candidate descriptions is too large (Line 8). Boxes and themapping relations be-

tween boxes and tokens are accordingly adjusted (Line 9). Algorithm2: C is the original

caption and E areM positive phrases we extracted from the caption. The last two lines of
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both algorithms are important: after SubSampleConcat, it is very likely that some positive

sub-queries are dropped from Q; then LabelAssign would drop boxes that are mapped to

the dropped sub-queries. The outputB could end with fewer boxes or even no boxes. This

is different from the strategy in GLIP or traditional object detection training recipe, where

we strive to keep all boxes provided.

5.3 Experiment

In this section, we first investigate whether current models (GLIP) can utilize language

descriptions out-of-the-box; then we show that our method allows the model to utilize

language descriptions and improves performance on LVIS and OmniLabel significantly.

5.3.1 Do Current Models Utilize Language Descriptions?

Model ∆Box ∆Conf AP

GLIP [LZZ22] 0.291 0.05 4.7

DesCo-GLIP 0.381 0.11 12.4

Table 5.1: GLIP is insensitive

to context changes compared

to DesCo-GLIP.

As a proof of concept, we first show the GLIP struggles to

utilize language descriptions out of the box and analyze

the failure patterns.

GLIP does not effectively utilize language de-

scriptions. Wemake an attempt at using descriptions

to transfer GLIP to LVIS [GDG19], which contains over

1,200 classes. The process is similar to that of [MV23].

For each category, we prompt a large language model (GPT-3) to give details descrip-

tions (as in Section 5.2) We append the description to the original class name to form

a new query. An example of the queries can be seen shown in Figure 5.1 (bottom row).

Directly appending the description to the object name at inference time only degrades the

performance: GLIP-T achieves 20.8 AP on rare categories while appending the descrip-

tions makes the performance drop to 12.2 AP. This is likely due to model hallucination on

natural-language-like queries.
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GLIP is insensitive to context changes. Examining the model predictions, we find

that the model not only does not utilize language descriptions; it ignores the descriptions

and tends to only focus on entity names, as we hypothesized. To quantitatively verify the

phenomenon, we introduce a context-sensitivity test, inspired by theWinoGround [TJB22]

benchmark. For each image, we provide the model with a positive query q+ describing an

object that appears in the image and a negative query q− describing a confusable object.

The original object names are removed from the query. An example of the test is shown

in Figure 5.1 (bottom left), where the model is challenged to distinguish “mallet” and “ax”.

q+ and q− describe objects from the same general category (e.g., both are “a kind of tool”)

while differing in other aspects, similar to the Winograd test.

Intuitively, if amodel can effectively utilize the descriptions, it should exhibit two prop-

erties: 1) it should give higher alignment scores to entities in q+ compared to q−; 2) even if

the model cannot “guess” the hidden entity, at least, the model predictions should change

drastically when given two different descriptions. We thus introduce two metrics. 1) AP,

which measures how accurate the model’s predictions are. 2)∆Box and∆Conf, which are

the differences between themodel’s predictions for q+ and q−. ∆Boxmeasures the changes

in box coordinates while∆Conf measures the changes in alignment scores of boxes.

We find that the baseline model not only cannot identify the correct description (low

AP); but it effectively ignores the language context (low ∆Box and ∆Conf) (Table 5.1).

On average, the confidence of the predicted boxes changes only 0.05 between q+ and q−.

One could see the examples in Figure 5.1. GLIP models make almost identical predictions

for two different queries. Such insensitivity to language context makes it infeasible and

unreliable to use descriptions to control model predictions.

5.3.2 Setup

In this section, we apply our approach to two vision-language object detection models

GLIP [LZZ22] and FIBER [DKG22].
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Model Backbone
LVIS MiniVal [KSL21] OmniLabel [SSD23]

APr APc APf AP AP APc APd APd-P

MDETR [KSL21] RN101 20.9 24.9 24.3 24.2 - - 4.7 9.1

MaskRCNN [KSL21] RN101 26.3 34.0 33.9 33.3 - - - -

RegionCLIP [ZYZ22] ResNet-50 - - - - 2.7 2.7 2.6 3.2

Detic [ZGJ22] Swin-B - - - - 8.0 15.6 5.4 8.0

K-LITE [SLH22] Swin-T 14.8 18.6 24.8 21.3 - - - -

GroundingDINO-T [LZR23] Swin-T 18.1 23.3 32.7 27.4 - - - -

GroundingDINO-L [LZR23] Swin-L 22.2 30.7 38.8 33.9 - - - -

GLIP-L [LZZ22] Swin-L 28.2 34.3 41.5 37.3 25.8 32.9 21.2 33.2

GLIP-T [LZZ22] Swin-T 20.8 21.4 31.0 26.0 19.3 23.6 16.4 25.8

DesCo-GLIP Swin-T 30.8 30.5 39.0 34.6 23.8 27.4 21.0 30.4

FIBER-B [DKG22] Swin-B 25.7 29.0 39.5 33.8 25.7 30.3 22.3 34.8

DesCo-FIBER Swin-B 34.8 35.5 43.9 39.5 29.3 31.6 27.3 37.7

Table 5.2: Zero-shot transfer to LVIS and OmniLabel. Numbers that are grayed out are

supervised models. DesCo-GLIP and GLIP-T are directly comparable; DesCo-FIBER and

FIBER-B are directly comparable; the rest are listed for reference and not directly compa-

rable.

Models. The visual backbon of GLIP and FIBER is Swin Transformer [LLC21] and the

text backbones are BERT [DCL18] for GLIP and RoBERTa [LOG19] for FIBER. Bothmod-

els use Dynamic Head [DCX21] as the detection architecture. Built upon the two models,

we introduce two model variants: DesCo-GLIP andDesCo-FIBER.

Datasets. FollowingGLIP [LZZ22], we train themodels on 1)O365 (Objects365 [SLZ19]),

consisting of 0.66M images and365 categories; 2)GoldG that is curated byMDETR [KSL21]

and contains 0.8M human-annotated images sourced from Flickr30k [PWC15], Visual

Genome [KZG17], and GQA [HM19a]; 3) CC3M [SDG18]: the web-scraped Conceptual

Captions dataset with the same pseudo-boxes used by GLIP. We down-sample CC3M to
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around 1.4M images to save training costs, based on whether high-confidence boxes exist

in the image. As illustrated in Section 5.2, we convert the text caption of each instance into

a detailed language description to construct description-rich data.

To evaluate how well the models generalize to novel concepts, we perform a zero-shot

evaluation on the LVIS [GDG19] and OmniLabel [SSD23] datasets. LVIS is a popular

dataset that has over 1,200 object categories with a challenging long tail of rare objects;

OmniLabel is recently proposed and focuses on object detection with diverse and com-

plex object descriptions in a naturally open-vocabulary setting. For evaluation on LVIS,

for each category, we append the GPT-3 generated description to the category name; we

group several descriptions into one query to save inference time. For OmniLabel evalua-

tion, we follow the original evaluation protocol without modifications. We also verify that

the models still possess the ability to perform the conventional detection and grounding

tasks as GLIP and FIBER, on COCO [LMB14b] and Flickr30K [PWC15].

Implementation details. We initialize DesCo-GLIP from the GLIP-T checkpoint and

DesCo-FIBER from theFIBER-B checkpoint. We fine-tune themodels onboth the original

data and the new description-rich data. For DesCo-GLIP, we fine-tune with a batch size

of 16 and a learning rate of 5× 10−5 for 300K steps; for DesCo-FIBER, we fine-tune with a

batch size of 8 and a learning rate of 1×10−5 for 200K steps. Experiments can be replicated

with 8 GPUs each with 32GB memories.

5.3.3 Zero-shot Transfer to LVIS and OmniLabel

LVIS. Ourmethod shows notable improvements over the baselines on the LVISMiniVal

dataset (Table 5.2). The improvement is particularly prominent for rare object categories

(APr), with an increase of 10.0 for GLIP and 9.1 for FIBER.

OmniLabel. Our method also shows improvements over baselines on the OmniLabel

dataset (Table 5.2). OmniLabel assesses model performance using plain categories (APc),
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Row Model
LVIS MiniVal [KSL21] OmniLabel COCO [SSD23] Context Sensitivity

APr APc APf AP AP APc APd APd-P ∆Box ∆Conf AP

1 GLIP-T 20.8 21.4 31.0 26.0 18.7 45.7 11.7 31.2 0.291 0.05 4.7

2 + Description w/ Entity Name 20.5 23.9 35.5 29.2 23.6 47.4 14.7 36.0 0.293 0.06 5.7

3 + Description w/o Entity Name 25.6 25.9 35.9 30.7 24.0 46.8 16.0 37.0 0.382 0.10 10.7

4 + Description w/o Name + Neg Cap 26.5 27.1 35.8 31.3 24.7 48.2 16.6 36.2 0.381 0.10 10.5

Table 5.3: Ablation study. Directly appending the description does not improve perfor-

mance on rare categories (Row 1 v.s. Row 2, LVIS APr). Constructing context-sensitive

queries is crucial.

free-form descriptions (APd), and positive descriptions (APd-P). Because our models are

trained with description data, they naturally excel in supporting such queries, leading to

substantial increases in APd and APd-P compared to the baselines. Specifically, DesCo-

GLIP achieves a notable improvement of +4.6, while DesCo-FIBER achieves an evenmore

impressive improvement of +5.0. Furthermore, our model’s effectiveness extends beyond

free-formdescriptions to plain categories aswell, as illustrated in the table. This highlights

the robustness of our method across different evaluation settings and its ability to achieve

improvements in various types of queries. Ourmethod wins the 1st place in the Omnilabel

challenge 2023 on all three tracks.

5.3.4 Ablation Study

In this section, all ablation models are initialized from GLIP-T and trained for 100K steps.

Directly appending descriptions. We examine the impact of directly adding lan-

guagedescriptions to text queries, without incorporating context-sensitive query construc-

tion. The results are presented in Row 2 of Table 5.3. The performance on rare categories

(APr) sees no improvement but decreases. To further evaluate the sensitivity of the model

to contextual changes, we conduct the same context sensitivity analysis as the one de-
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scribed in Section 5.3.1. The context sensitivity of the model almost remains unchanged

(Row 1-2): ∆Box changes only 0.002 and ∆Conf changes only 0.01. The results indicate

that the model remains as insensitive to context changes as the baseline model. This sug-

gests that the model struggles to accurately interpret and effectively utilize the provided

language descriptions when context-sensitive query construction is removed.

GPT APr APc APf AP

ada 19.9 23.2 33.7 28.0

babbage 24.2 26.7 36.5 31.3

curie 24.7 28.4 38.2 32.8

davinci 30.8 30.5 39.0 34.6

Table 5.4: Detection perfor-

mance improves when lan-

guage model size grows.

Dropping the entity name. As in Section 5.2.2.2, we

hypothesize that randomly removing the entity name can

force the models to concentrate on the contextual infor-

mation. Remarkably, the results presented in Table 5.3

(Row 2-3) demonstrate that this simple and intuitive ap-

proach proves to be highly effective. It significantly en-

hances the model’s contextual sensitivity while concur-

rently improving object detection performance.

Negative captions. We also investigate the effective-

ness of using language models to generate hard negative

captions. As shown in Row 4 of Table 5.3, including negative captions can improve the

model detection performance across datasets while preserving its robust contextual com-

prehension. These results indicate that this technique effectively enhances the model’s

ability to grasp the subtleties embedded in the given language descriptions.

Language description quality. We explore the effect of the language model size on

detection performance. We evaluate the pre-trained DesCo-GLIP on LVIS with descrip-

tions generated from theGPT families3. As presented in Table 5.4, higher-quality language

models improve object detection performance. This finding highlights the importance of

employing strong language models, as they possess the ability to embed valuable visual

information through extensive pre-training. We showcase two examples in Figure 5.4.

3https://platform.openai.com/docs/models
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Scarecrow, a kind of object, 
tall, with a straw in its 

mouth, could have a hat, 
could be made of straw.

From GPT-Curie:
Scarecrow, a kind of 
decoration, made of 
straw, has a hat and 

clothes, could have a face.

Scarecrow: 0.38

From GPT-Davinci:

Rollerblade: 0.37

Rollerblade: 0.40

Rollerblade, a kind of 
sports equipment, wheels 
attached to a boot, used 

for skating

From GPT-Davinci:

Rollerblade, a kind of 
sports equipment, blades 
that rotate on the ground


From GPT-Curie:

Figure 5.4: Detection performance of DesCo-GLIP improves when given better descrip-

tions. GPT-Curie is a smaller model than GPT-Davinci; it gives less accurate descriptions

for objects.

5.4 Conclusion and Limitations

In this study, we introduced a new paradigm of learning object detection models from

language supervision. We show that large language models can be used to generate rich

descriptions and the necessity to construct context-sensitive queries. We hope that our

method sheds light on empowering vision models with the ability to accept flexible lan-

guage queries.

While we greatly improve the models’ ability to understand flexible language queries,

our method has several limitations that can be addressed in future work. 1) We use a large

language model to automatically generate the descriptions, which inevitably introduces

noise as not all generated descriptions are accurate or beneficial for representation learn-

ing. Future work could consider automatically selecting useful descriptions sampled from

the language model, similar to [YPZ23]. 2) The format of the descriptions we explored is

still limited (e.g., “{entity}, a kind of {type}, {list of simple features}”); it might be useful to

consider more diverse descriptions by prompting the language model with more diverse
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prompts. 3) Similar to large language models, querying our model also requires a certain

amount of prompt engineering. Future work could explore how to make the model more

robust to different kinds of queries.
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CHAPTER 6

Conclusion and Future Directions

In general, my research studies the alignment between vision and language, how to build

representations that encodes such alignment, and how such representations can be useful

for downstream tasks. While great progress has been made, there are many unanswered

research questions. Below I list some interesting future directions.

Multimodal large language models. Since the earliest pre-trained vision-language

models such as VisualBERT, vision-language models have evolved into Multimodal Larga

Language Models (MLLMs) [LLW24]. They typically consist of a vision encoder to em-

bed images into grid features, which are fed into a Large Language Model for processing

and reasoning alongside a text input. They need to pre-determine how many tokens an

image is worth, and set a fixed number for all images. Finding a flexible number that

adaptively strikes a balance between efficiency and performance is difficult. In our recent

work [HDL24], we introduce a simple way to train a single MLLM that supports adap-

tively changing the number of visual tokens at inference time. Future work could consider

how to adapt the approach for processing videos, where visual tokens will dominate the

computational cost.

Visual grounding beyond objects. In prior work, we have largely focused on rec-

ognizing objects in images, as they are basic building blocks of the visual world. As the

models improve, it is time to extend our approaches beyond objects. I envision teaching

the model to understand a broader range of visual commonsense concepts, such as ac-

tions, relations, social interactions, using approaches outlined in this thesis. Language
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will be the form of supervision in all these cases, and approaches we developed in DesCo

will useful for making sure the model does not take shortcuts.

Unificationbetweenperceptionandgeneration. Wehavewitnessed great progress

on the development of generative models [RBL22]. An interesting question is whether

generative models should also have learned perception as well. It seems natural to as-

sume that to generate an image, themodelmust possess the ability to understand it aswell.

There has been growing research in this direction. For example, MAE [HCX22] finds that

by pre-training a model to predict masked pixels, we can obtain a good visual backbone.

How to seamlessly unify perceptions models, which are usually pre-trained with a con-

trastive loss or language modeling loss, and visual generation models, which are typically

modeled using diffusion, remains an active and promising research direction.
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