UC Irvine
ICS Technical Reports

Title
Progress Report on the Distributed Computing System

Permalink
https://escholarship.org/uc/item/79q94t940

Publication Date
1972

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/79g4t940
https://escholarship.org
http://www.cdlib.org/

PROGRESS REPORT
ON THE

DISTRIBUTED COMFUTING SYSTEM

JANUARY, 1972

THIS WORK HAS BEEN SUPPORTED BY THE NAT [ONAL

SCIENCE FOUNDATION UNDER GRANT GJ - 1045

DEPARTMENT OF INFORMATION & COMPUTER SCIENCE
FUNIVERSITY OF CALIFORNIA, IRViNE

IRVINE, CALIFORNIA 92664

PROGRESS REPORT ON THE DISTRIBUTED COMPUTING SYSTEM

JANUARY 1972

The pfogressifhaf has been made on the design of the DCS since
July 1971, has been sufficiently promisingbfhaf we want to extend our
plans for constructing a prototype system. The work to date has been
primarily concerned with the design of a prototype Sysfem inciuding the
Operéfing system kernel, communication protocols, the ring Interface,
and the file system. An important next step in the development of'This
design is the construction of a prototype system. The prototype will
sefve as a vehlcle tc study the design and demonstrate +He use of these

concepts.,

A BRIEF FUNCTIONAL DESCRIPTION OF THE PROTOTYPE

The prototype will be capable of providing general purpose interactive

computing. To keep the size of the effort within reasonable bounds only

a single application will be provided initially. The supervisory programs
and implementation will be kept general so that additional functions can

be added at a later time. This approach will allow us to experiment with

a general purpose system while still keeping the amount ofAﬁrogramming less

than would be required for a general purpose.

Thé system will be composed of (l) general purpose supervisory routines
and (2) an apﬁlicafions program‘

Initially all of the supervisory routines will be provided. However,
some of these will be somewhat abreviated in the initial implementation.
As stated previously a single application will be provided.

This organization will permit the addition of new'applicafions without

changes to the supervisory routines. The application to be written will be

@ simpie manuscript text editing system. Tﬁé capabilities of the editor
Will be similar to fhe IBM Administration Terminal System (ATS) and will
facilitate entering, correcting, and prinffng documents such as form
letters, reports, and manuscripts.

The text editing application is appropriate for a number of reasons.
The requirements of such a system typify many of fhe problems which the
DCS is designed to solve. In particular an administrative tex?t editing
system should be available whenever needed. Down time is a nuisance in
the office environment. To be acceptable for pfacfica! use such a system
must use a low cost Technologye [T is also desirable to be able fo easily
make incremental changes in the size and capacity of such a.sysTem.

The text editing system is also appropriate because it requires to
some exfent most of the facilities required for any applicaffon. These
include a very refiabie file system, as well.as the usual requirements for
main memory and central prdcessor resources. |

The logic of a text editor is relatively simpje and it will be
possible To'imbiemenf without too much difficulty.

Another characferisfic which is important to the modeling and measure-
ment aspects of the project is that the way in which the application is
used is relatively constant. As a result the demand for system resources
does not vary too much. This is in contrast +o an application such as BASIC

where the resources required vary greatly wiThidifferenT users and at

different times.

ANATOMY OF THE PROTOTYPE

The distributed computer system approach is based on the following

principies: (1) resource sharing, (2) redundancy, (3) comparimentalization,

(4) simple structures.

The DCS system will provide mechanisms for allocating the work to
be done among all fﬁncfioning components. Redundant components will not
be treated as standby units in the usual parallel'redundancy sense.
Instead all components wiil be a!located a portion of the work. When a
component fails it will be leiminated from the pool of available compo-

@
nents. The total capacity of system will be reduced, but since other
components of fhis Tvpe exist, all functions will continue to be avai la-
ble. Compartmentalization will facilitate The‘logical exclusion of
‘non-functioning components. This is analogous to the independent compart-
ments on a jarge ship that facllitate sealing of leaking compartments

so that the ship continues fo float. The simple structures make i+

possible to design the above principles into an easily implementable

framework.
The system will provide processors, file machines, and terminal
controlfers connected in a ring. Each of these components will be

c§nnec+ed through a ring interface fo a undiirectional circular communica-
tions ring. In addition a PDP-10 will] be connected to the ring through
a ring interface to facilitate Testing of Thebsysfeh.
The prototype system will consist of the following hardware units:
(1) minicomputers, (2) ring interfaces, and (3) interconnecting cable.
Three of the minicomputers will share Thé processing load. Al

computing except that performed in the file machines and by the terminal

controllers will be performed by these machines. |If one fails, the other
two will continue to provide service. Two minicomputers with disks will
serve as file machines. Two other minicomputers will be terminal control

ters for the connection of terminals to the system. The minicomputers wil|

be purchased.

PROCESSOR

PROCESSOR
INTERFACES
PDP-10

PROCESSOR

The ring interfaces will provide for the connection of +the minicomputers
to the communication ring. They will be designed as general purpose ring
in}erfaces which can be customized slightly through microprogramming to
accomodate the particular component to be connected. A brief decription
of the ring inTerfa&e is included in Appendix G. Design is currently in
progress. Construction will be either at UCI or an outside facility.

The interconnecting cable will be purchased.

The principal software parts are (1) the operating system, (2) the file
system, and (3) the editor program. Preliminary descriptions of the operat-.
ing system are in UCI Technical Reporf 11 (included as Appendix E). An
overview of the file system is included as Appendix F. The text editing
program is envisioned as similar to IBM's ATS.. All programming will be
done by the DCS staff. The campus PDP-10 will be used +o prepare programs
in the development of the sysTan.<

PROGRESS ON THE INITIAL GRANT

The work to date has principally been to determine the scope of “the
project and to design at a high Ievél basic a.system which would achieve the
goals set forth. This work falls into five general areas:

1) Specification of communications protocol for the ring

2) Design of an operating system which resides at each node and is

responsible for resource alfocafion, scheduling and fail-soft

3) Design of a distributed file system which also exhibits the fai!—soff

characteristics

4) Specifications of the form and scope of a profotype which will be

compleg enough to yield realistic measurements

5) Preliminary design of hardware for a ring interface

6) Development of a simulation model

Significant progress has been made in all of these areas; Appendix E
(UCI Tech Report 1) describes work done on the communications protoco! and
operating system. Since UC! Tech Report |1 was pub]ished; ithe operating
system has been specified and flowcharted in much greater defailé The
currenT'design of the distributed file system is included in Appendix F.

Design of the ring interface has proceeded in pace with the deve!opmenf of

FUTURE ANALYSIS OF THE PROTOTYPE

The construction of a profotype DCS system will result in more than
ju§+ a working system. Prior to, concurrent with, and after the construction
of the system careful attention will be paid to the task of gathering
quantitative and qualitative information. There are a number of areas to
be examined in detail. These bear on such iséues as:

I} the load vs response behavior

2} the reacTion‘of the DCS to induced errors in the transmission system

3) the reaction of the DCS ‘to jnduced faults and failures of the

processors, file devices, and software

4) the incremental costs incurred by the distribution of control in the

OCS. This includes where and how much +ime is spent.

We intend to also develope a reasonably complete simulation model of R
the prototype system. We will use +he prototype fo verify the simulation
mode! and then use both the model and +he profdype to explore the tuning
and -behavior of the system.

There are a number of other goals which will be achieved by the prototype
construction. There fé of course, the verification of +he idea. There are

also such items as:

I} What does it really cost +o pregram? We claim advantages inherent

in the DCS design. We will keep records of costs-and problems.

2) Verification of the modutarity goaf; Can'we maintain the inhefenf

modularity of the DCS design through an implementation?

3) Verification of the fail-soft design goals -- Can we really achieve

this end?

4) The problems that occur when we add a new type machine; What are

the cost and problems?

We expect that our prototype construction exercise will enatle us to
make reasonably accurate estimates of the cost of a production DCS.
RESULTS

We will produce a series of reports on the following subjects:

) distribution effectiveness

2) a ring inferface design

- 3) a T-node design
4) a terminal muffiplexer design

5) design of a distributed computer software system

APPEND i XES

APPENDIX A

SCHEDULE

Ma jor Tasks

Ring interface construction

Supervisor program development

File systen deveiopment

Text-edit program development

System assembly

System integration

Experimentation

Analysis of progress and results

L

O @ ~ O \n £ W AV] (e
L]

e

Study of new and related topics

Task Steps

1., BRing interface construction
2. Preliminary design
b. Selection of components
¢. Detailed design
d. Procurement
e, Test specifications
f, Construétion
g€. Test construction
h, Preliminary tests
i, Test
J. Rework

k. Final Test

2, Supervisor pProgram development
28, Preliminary design
b. Specification of functional modules
c, Simuiation of activity
d. Detalled design of modules
e, Design of tests
f, Coding of modules
g, Coding‘of tests
h, Test of modules

i. Test of supervisor

3. File system development
&, Preliminary design
b. Specification of functional modules
c. Simulation of activity
d. Detailed design of modules
€, Design of tests
. Coding of modules
g. Test of modules

h, Test of supervisor

4, Test-edit program development
a. Preliminary design
b. Specification of functional modules
Cc. Simulstion of activity
d. Detailed design of modules
€, Design of tests

f. Coding of modules

€. Test of modules

h, Test of editor

5. System assembly
@&, Detailed layout
b, Materials procurement
¢. Intercomnection

d, Test of interconnection

6. System integration
&, Plan for integration
b, Test sub-unit relation
€. Rework
d. Test complete system
e. Rework

. Filnsl test

7. Experimentation
&, Design of models
b. Analysis of models
C. Design of experiments on models
d. Simulation experiments

e, Design of experiments on real system

f. Experiments on real system

8. Analysis of progress and results
@, Analysis of progress
b. Analysis of simulation results

C. Analysis of experimental results
4

d. Ideas for further study
e, Publication

9. Study of new and related topics
&, Identification of topics
b, Analysis of topics
c. Ideas for further study

d. Publication

TN _ : : o AT - ST S
e \ , " e / \\ . N ~ DO m\\ “
xoatpd Y., mmﬁs@né~/g?n \:mﬁmmm Cd W&fa\ ocﬁm,¢|1|\gmﬁmmmd
rsmmms 159, :.Soo\ﬁ beTte3ed m#ﬂsﬁm\ __oeds; :
011P) / o X o
4 PR NOIRH WO Imipd/ ToaiEd
4 e pmme,/ e B89,
“ { e Jo)
/m:Hmoo -r:mmmmDN
] /
| a,mﬁ@ O3 TEE B
. . n\\.‘sl u\\o. e . . ﬂv oz . - -~
\ mmﬂsﬁog/ ‘o h\mmmm rﬁim Y ozzm |t ‘:mﬂmmm
SeTTd e e RPN 189, 19U Hmoow anHmmm i wsteﬁm oadg w WiTard
NW%%%\ mmdﬁ SeTtd/ /Mmﬁﬁ&.£ ,mmﬁﬁm\. xﬂwww@\ \SeT T
N ;zqs ~— S
3 eSS CLUL S~ /80 pmmp ,
m Ty oJoo :/su“. 3
| \Wuipop mm%
A\\ ,HGM/ g o //,/ \\ ™ .,m ‘ : - / \\WOE & 3 ‘
syazedng OTNPOU g . ,c IS8 ; ound . udtse(
/ asag, /< 8 | 189y | hrgqslee) p¢m$.m+mﬁssﬁmg?&. oedg M wyresd
\dng NG A%m\ w_.r L N\@E v dms dus
e f}a).xi//,.f.:.it - All!.\’ -
g ~7 mpwmu. \ J\WPWMP ..‘.w
utBop :e*Asa amgx
ng ¢ . dn
\ dus %
VR T TN N o TN S
/189y, // £ / 3803 x [/ quew zaﬁvwax mp:m:omsoﬁ zmﬁmma
\ Teud e | T omay j= WITOI QOAMpm:oo\ wasooaA@:lvaHlme :oﬁpowH\m AR
A _TE i 4 / . 1 s o T
m/,xu P ~ : g =z
\ T T \, TTNE
/ T 39fa3suopt / oedg ¢
/ /., 158, j so, |
/ SN
sre o T . =
20wpomscon :ﬂApomsmdo [quesm Y "\
namchnﬂii;nhmpsH.&zirmHsOOHm qnokeT
\ messy’ ,, WI9BSY- ,,Emmm< N Emmmm

/;f.!..x\. o /, e . S
——— o ” (uogionrgsuo)) sogouspusdaprsiul

/:l -

Int m% B

Interdependencies (Integration and analysis)
Plan
. for ¢
H:ﬁmm\ﬂ
Iiter ~Integ Aintesn intés \ im
: Ub=__» Reworkj— o Bq....mumﬂ iiwlwmsoww oot m. ,
unit | Hm& \ ; e ot /
H,mwmw Hos S m N R .
~ / All activities
N\s Hm H\W mmwomHQWm
\m%m m@ AN -
ssmu;.
\ EXper 05
i - eal m%m v e
sHY ﬁs\\ /&w\bBDH <~ Anal-
xper oh [Wew - mﬁdupomﬁos
Hmm&. m%m \ Hammm\\ V /
e _ -~
i} \/ \\bﬁ.mu‘.,/__ | p g
Exper, ixper. imulation ,
esign Anal , Exper : L7
models » modelsy A %
A \ / 4
N . / - 2b rd
e T / go— — Lo
e 5 Tati S
Desien | L mulation)
ﬁmﬁumw oh \ Exper - 7 '
\modeld . L |
SN ey) , # \
e S
- e \\\..\.‘I../ A P A ,..,\, \. Ty
My actlvity piiotea flelated felated Related
__(Hﬂm«:. w»e,‘rza,&i\wsmﬂu,%mwm 1?2@2 Ideas éwﬁcpwom.ﬂos
cation] B \, \\

g

uoff383upw 1.1 dxg

BN TRED WS ECLR I35

5

uypol JLoqypd

udfiSoq Ko

340300 y) soTd

TUTPOD SP1Td

JTS90 sotd

qnonodup oS talddng
SUTL 0D Jlos TaLp ang _

UdTpo(J0sTadbang

anoxpoyd Putd

UotT1pnagsiiod spejasgul oMty
ud s pQ mow%pmu:H AUTH

|

6T 8T 4T 9T &1 #1 €T 2T 711 TOoT 6 g 4 g ¢ i . Z 1

U3 uoi

Schedule Summary

1.
2,

3.
u.

Design (4 months)
Construction and coding (6 months)
Checkout and Rework (6 months)

Experimentation (6 months)

APPENDIX B

BUDGET INFORMATION NOT INCLUDED

~

i

APPENDIX C

HARDWARE BUDGET

MATERIALS LIST FOR A PROPOSED DCS SYSTEM

3 Processors @%$13K $ 39K
2 File Machines
CPU 5K
Disk 15K
20K 40K
2 Terminal controllers 8K TeK
8 Ring Interfaces I.5K ‘ 12K
107K
Contingency 10K
117K

(Additionai requirements include rented terminals and purchase

of PDP-10 time from campus facility)

RING INTERFACE MATERIALS

Control memory (8bits x 512 words=4K bits

4K x 10¢/5i+=$400) ' $400
Buffers (8 buffers x $20/buffer) 160
Associative stores (15 x $20/name) 300
Line drivers and receivers for r}ng
(8 chips x $5/chip) 40
Ring relays and connectors 50
Control logic (12 chips x $4/chip) 50
Interpreter (20 chips x $5/chip) 100
Drivers and receivers for CPU 50
Power supply (for MOS and TTL) 100
Hardware (sockets, boards, etc.) | 200
Spares . 50

$1500

APPENDIX D

THE STRUCTURE OF A DISTRIBUTED COMPUTER S?STEM ——_ COMMUNICATIONS

Dave J. Farber
Kenneth Larson

Department of Information & Computer Science

University of California, Irvine
Irvine, California

ABSTRACT

The distributed computing system (DCS) is an experimental computer
network under study at the Universify of California at Irvine under NSF
funding. The network has been designed with the following goals in mind:
reliability, low cost facilities, easy addition of new processing services,
modest startup cost, and low incremental expansion cost. The structure
chosen to achieve these goals is a digital communications ring using T1
technology and fixed message lengths. The computers used are small tb
medium scale and are interfaced to the ring using a fairly sophisticated
piece of hardware called a ring interface (RI). |

There are two features which make the communicétions protocols
unique. First, messages are addressed to processes, not pfocessors.
This is accomplished by placing an associative store in each RI. The
store contains the names of all processes active on the attached processor

When a message arrives over the ring, the destination process name is

matched against the associative store. If a match occurs the message is

copied and passed over the ring to the next RI. Second, messages are

only removed at the RI from which they originate. The ring may be thought

of as a series of message slots. To transmit a message the RI waits for

an empty slot and places the message on the ring. The message is copied

PAGE 2

when necessary as it proceeds around the ring and checked against the
original when it returns to the originating RI where it is removed from
the ring. If errors are detected or the message fails to return in a
specific amount of time the message is retransmitted. The retransmission
causes problems since RI's may receive multiple copies of the message.
The paper descriEes a scheme for sequencing messages which removes these
problems. Note that this scheme allows messages to be broadcast to all
Processes or a class of processes. The DCS/0S software uses this fea-
ture extemsively. The paper also discusses the error detection and
maintanence features, Basically, each RI has a2 "short circuit" which
removes it from the ring while maintaining the ring connectivity. This
"short circuit" can be activated through internal checks within the RI
or externally by specific messages. Redundancy communication paths in
the ring protects the ring connectivity. A method for connecting such
rings using an inter-ring interfaée pProcessor is described. The scheme
perserves the above protocols on the constituent rings and extends the
notion to inter-ring operation. The paper also describes the hardware
innovations used in the implementation of this system, some design

ideas, and expected costs.

THE STRUCTURE OF A DISTRIBUTED COMPUTING SYSTEM -~ SOFTWARE

Dave J. Farber
Kenneth Larson

Department of Information & Computer Science
University of California, Irvine
Irvine, California

ABSTRACT

The distributed computer system operating system (DCS/bS)is an
operating system designed to control a set of processors interface& to
a shared communications ring. Some feétures of the ring which greatly
affect the design of DCS/0S are:

1) Messages are addressed to processes and Ot processors; routing is
done by hardware.

2) Control of the ring does nop reside in one central processor but
must be spread out over the processors on the ring.

3) A message may be addressed te all processes or a class of processes
as well as a specific process, so messages may be "broadcast”.

Certain design goals set for the DCS/0S have forced it to be a
unique multiprocessing system. First, there is no central processor
which controls scheduling and resource allocation. These functions are
distributed among the various processors. Second, the system is insensi-
tive to the failure or malfunctioning of é&ny processor on the ring,
provided the hardware can maintain the connectivity of the ring. Third,
in the case of a small processor, it is possible to distribute the processes
controlling the processor among other distinct processors. Fourth, DCS/0S

has a modular, hierarchizal Sstructure which allows it to be streamlined for

PAGE 2

specific applications without making major modifications to the eﬁtire
system and which allows the use‘of pr&feiistant software.

To achieve the above attributed we have divided DCS/0S into
autonomous operating systems (AOS) one of which is associated with each
Processor on the communications ring. The structure of each AOS is
hierarchial. Level § is a round robin scheduler which schedules monitor
routiges when necessary. Level 1 is the software required for interprocess
communication which is deseribed in detail in the paper. The communications
scheme used relies on messages and process addfessing to allow two processes
to communicate with each other in a uniform manner whether they are on the
same processor or distinct precessors on the ring. This allows the distri-
bution of an A0S. Level 2 comprises the routines necessary to check the
ring and the processors on the ring for malfunctions. The basic strategy
is to assume a processor is malfunctioning only if two other processors
independently determine it is S0. Level 3 comprises the monitor routines.
Principally the paper deals with the resource allocator. DCS/0S uses a
bidding scheme to achieve resource allocation and scheduling.l When a process
wishe to spawn a process it sends out an RFQ to all resource allocators,
each of which estimates a "cost" of creating the process on the associated
Processor. Some return bids which the spawning process uses to déterminé
with which to sign a coniract for the creation of the procesé. This =

procedure is described at length in the paper. Level 4 is the service

and user programs.

- APPENDIX E

THE SYSTEM ARCHITECTURE OF THE DISTRIBUTED
COMPUTER SYSTEM - AN INFORMAL DESCRIPTION -

DAVID J. FARBER & KENNETH C. LARSON

UNIVERSITY OF CALIFORNIA, IRVINE |

TECHNICAL REPORT NO. 11

SEPTEMBER 1971

THIS WORK HAS BEEN SUPPORTED BY THE NATIONAL
SCIENCE FOUNDATION UNDER GRANT GJ - 1045

I. INTRODUCTION

THE REQUIREMENTS OF A DISTRIBUTED COMPUTER SYSTEM

Our desire to improve computing services in our own environment has
interested us in the design of a computing system which will have the
following characteristics: reliability, Tow initial cost, incremental
expansion capability, variety of language systems, and modest system
programming requirements.

We do not believe in absolute reliability. Rather, we seek to provide
a system that has a high probability of responding to a high percentage of
requests for services. Ineyitab]y, some user will be affected if a component

fails; .however, most users should get most of what they ask for most of the

time. While this requirement is Toosely stated, it does imply a system
£hat is invulnerable to partial faijure.

Low initial cost means simply that the minimal configuration have a
modest cost, say $250,000. This criterion excludes most of the currently
available médium scale systems, e.g., IBM 360/50, XDS SIGMA 7, and DEC PDP-
10. As the needs of the users'increase, and as additional funds become
available, incremental expansion of the system should be possible without
" disturbing the system. The ability of the system to fruitfully use small
additions of equipment is also desirable.

Most communities of users and espéciai%y university users require a
variety of languages for teaching and research. 1In some cases it is easier
to buy a computer for the language it has om it, than to implement the
language processor on another machine.

| A major cost of extending and maintaining a computer system is system

progranming. We hope a modular, regularized system design can do much to

reduce costs which usually oécur when a new'component or service is added
to an existing system.-

We believe that small machines dedicated to servicing one type of
task can provide economical service to a large percentage of our users.
They can be customized by programming and/or microprogramming for in-
creased efficiency, because the machines will be dedicated to providing a
single type of service. The overhead caused by doing different tasks can
be eliminated. In short, sma11.processors tan be very cost effective for
those jobs they can handle. This approach is directly cdntrary to the
cemmon one in which the choice of a machine is dictated by the largest
problem to be solved. Then the hardware resources are often shared
(uneconomica]]y) by users having modest requirements. We would send the
few jobs that are at the upper tail of the distribution of hardware
requirements to another computing system, so that we could contend with
thé vast majority of computing requirements. In an ultimate Qersion of
the system to be discussed here, large jobs could be handled, but it will
be Tess expensive to experiment with small machines. Perhaps more importint
@ system of small machines can have the features we desire and also handle
a large percentage of the computing tasks in an enviromment such as ours.

We also believe that we can obtain improved system performance by
connecting a set of small machines. Linking the small machines wil] permit
the sharing of a pool of peripheral facilities. Interceonnecting the small
machines wi?] also improve the reliability of the system. Should a single
processor fail, the user could be shifted to an alternate processor.

Models for interconnecting processors can in general be described by

the topology of the net. In a rich topo}ogy each processor could be connected
to every other processor via a separate communications path. As the number
of processors becomes significant and spread out geographically, the cost

of this approach beccmes high. One solution to this problem is to connect

the processors through a switching center. A1l traffic first goes through
this center and then out. The switching center is a critical and vulnerabie
component. As the number of processors grows, the bandwidth of the center
becomes a troublesome and limiting problem. We may in turn solve these
problems by a scheme utilizing digital multiplexing. The basic feature of
this approach is to pass a common broadband digital transmission system through
each processor. Thus each processor has a physical connection with only two
other processors. One can visualize the transmission system as a ring with
processors at points on the circumference. By sending a message around the
ring, a processor can talk to any other processor. The number of processors
placed on this system is limited by the bandwidth of the transmission system,
(higher than that of a switching center) and the addressing limitations of

the hardware.

Having eliminated centraf switching centers we find ourselves with no
central authority to look after the condition of the communications sys tem
vRather than designate one of the processors as the only one capable of
performing this task, (if we did we would suffer from reliability problems)
we let this control reside in any processor which is free to do this task.
We have likewise distributed the control of other aspects of the system and

its resources.

~ We have roughly sketched a system consisting of a set of different

processors interconnected by a common transmission system. The complete
control of the system is distributed in time and space as needs arise and
facilities are available. The system we have sketched we call a

- Distributed Computer System (DCS).

I1. COMMUNICATIONS

THE COMMUNICATIONS PHILOSOPHY

We would Tike to take a different point of view of the communications
system than is normally taken in computer networks. We believe that this
new view will ultimately yield a clearer image of the problem and thus will
yield a more extendable base.

This point of view is that all addressing of messages which are placed
cn the ring be in terms of processes names; not processors. The only
addressés (at least the only pertinent addresses) are the names of the
issuing process and desired desfination process. MWe propose an encoding
of the process addresses such that they contain the following extractable
information:

Name of'general class of process
Enumeration of particular subclasses within this case
Serialization of an instance of a particular member.

In particular, the processes are identified by a general classification
such as control, Tanguage, file, etc. Within each of these classes are
subcategories such as FORTRAN, PL/1, BASIC, etc. In addition, since there
may be a number of instances of a subcategory, there is an enumeration of
the subcategory that is 1,2, etc.

The communications system is designed to deliver these process-oriented
messages to their appropriate destinations. Many of the messages which will
be present on the ring will be muiti-destinaﬁion messages, that is, they
will be addressed to a class of processes, rather than to a particular one.
Given this plus the inherently more time-consumming task of recognizing a

process address rather than a prewired equipment address, we propose to

design the system so that it behaves in a broadcast mode of operation. By -
this we mean that a message will circulate around the ring until it is
received by the node which sent it. At that point it will be absorbed and
removed from the communications system. Mdre will be said on the operation
and implications of such a system later in this &ocument°

WHY THE CHANGE OF METHOD

We will give some of the reasons which Tead us to propose this new
approach. The most attractive feature of this approach is that it allows a
uniform conceptual point:of view. The processor oriented view required é
rather continual translation from process name to the processor that was
supplying the service. This continual translation was required for reliability
and flexibility. Also, it was not clear that it was easy to supply multi-
user processors with the old scheme. An advantage of this method of addressing
is the easier and more dynamic entry and exit protocols available to processors
on the ring. This new approach also allows a type of scheduling which we have
referred to as the RFQ (Request for Quotation) method. |

COMMUNICATIONS SYSTEM PROTOCOL

This section deals with the philosophy and operating protoco] of thev
communications system used in the Distributed Computef System. The
architecture used is that of a data ring, that is all nodes of the system
are connected together via a uniderectional single data path. Thus when
any node wishes to communicate with some other node it can do so without

the knowledge of either the Tocation of the node or the connectivity of

the path

We shall use a fixed block length meséage format, that is, the ring is
is analogous to a "lazy susan" with dishes on it that are rotating past a
set of people (the nodes) gathered around it. To continue the analogy,
SuUppose a process, P.1 desired to send a message to one named P.2
The principal that we will use js as follows:
1) P.1 waits until an empty tray appears.
2) When it finds an empty one, it places two items in the tray,
The message and the name of the process it wishes to send it to.
3) It then waits until it sees the message passing it again. At
that point it removes the message from the tray and checks to see if
Process P.2. received the message. If noﬁ it repeats the sequence.
From P.2's point of view it looks for messages with its name on them
as the dishes pass it. If it sees one it makes a copy of the message
and drops in the tray a note telling the sending process that it has
received the message. Note that P.1 does not know either where P.2
is or for that matter whether or not P.2 stays put.
Let us now look at the Proposed actual system. There are three critical parts
of the system:
| 1) The idie slot detector and transmitting-node—detector.
2) The terminating process recognizer.
3) the nbde controller.
The message itself is composed of the following fields along with their

approximate sizes:

1) The originating physical node number (ON) (9 bits) parity checked.

2) The terminating process name (TPN) (16).
3) The originating process (OPN) (16).

4) Header check bit-parity (1).

5) Serial field (SF) (1).

6) Message Definition Field (MDF) (8).

7) Messager portion (N1000 bits).

8) Matched bit (MB) (1).

9) Accepted bit (AB} (1).
10) Ring Check (1).
11) Whole message check (N error detebting).

The idle slot detector has the foilewing function in the operation of
the ring. When an attached processor (host) desires to transmit a message,
it loads one of a set of buffers in its ring node. The node then monitors
the ring looking for a message siot with an originating physical node number
equal to zero, indicating an idie slot. It then places the message from the
transmission buffer into the idle slot. The node cifcuityy then waits until
it detects a message entering its transmitting-node—detectqrq If the
originating physical node number in the message is that of the node, the node
assumes that this is the message it jast transmitted. Note this technique
demands that a node transmit one and only one message at a time. If a host
demands a broader bandwidth than can be supported by this technique, the
section of the node which does the transmission and detection can be.dup1icated
and assigned a separate node number. The node controller and terminating

process recognizer, however, would not be duplicated.

When the transmitting-node-detector detects its node number in an
originating node number slot with proper parity, the rest of the message
is checked; if it passes, the accepted.bit is checked; This bit is set by
any node which accepts a message as addressed to it. The message is then
considered successfully transmitted and the host is thus notified. If the
parity check of the originating node number is successful, the message slot
is marked idle. 1If the parity check failed the attached host is notified of
a ring error, but the node continues to wait for the transmitted message.

The role of a destination node in the DCS is substantially different
from fhaﬁ of nodes in other similar communications systems. As has been
mentioned previcusly, messages are addressed by the name of a process of a
gass of processes. Thus each message is broadcasted to all nodes, there.to
be accepted or disregarded depending on whether or not the desired destination
process is active on the associated host. This fact and the need on the part
of the error protocols for ;ertain responses forces the recognition of active
process names to be done within the node. Thus we have packaged within each
node a small associative storage device which holds the names of the active
processes within the node's host machine. When a message is passed through
a node, other than the node which originated the message, the terminating
process name is extracted from the message. This name is matched against the
associative store of the node. IF a mateh is made, then the match-bit of
the message will be set as the message passes through the node. Note:

It is only absorbed at the transmitting node. If thevname is not found in
the asscciativé store, the message is ignored. If the match takes place, an

input buffer will be siezed in the node or in certain cases in the host.

-10-

If such a buffer exists, the message will be copied and the accepted bit
set in the message as it is passed on. When the message has been copied,
the host will be notified.

Message sequencing is used to insure that if an error occurs in a
message its valid receipt by an addressed process, the addressed process
does not receive a Copy of the message without knowing it's a copy. This
is achieved by means of a sequence field of size one bit which sequences
messages sent by a transmitting process 1o a particular process of class
of processes. Thus each process has a-table of processes to which it is
sending messages. Associated with each entry in this tabié is a sequence
Tield that is updated at the start of a new message. This protocel assures
the correct disposal of messages in the case of.one process transmitting to
another process. In the case where it is to a class of processés, certain
types of errors will cause some messages to be mishandled. To correct this
in the communications protocel is difficult. But the basic properties of
our bidding type messages insures that there will be no malfunction in the
above case. Af worst a best cheice will not be used or a retransmission
will be necessary. Thus the communication system and the software architec-
ture are well matched in this critical area.

The general node flow of control is shown in Figure 1.

=11-

FIGURE I. FLOW OF CENTRAL WITHIN THE NODE

SET
REPETITION
COUNTER

DECREMENT
COUNTER

N STATUS
<~ COUNTER ERROR
P - INTERRUPT

7 BUFFERSN. .,
oUT EMPTY >
~{1M=p),~

-12-

RIS v._| REMOVE

< ZRROR ON ORIGNY MESSAGE —%ﬁm{ﬁ}

2,

T J0DE (ONL~
xﬂ%&“ \/fy

e

dé""'f%ﬁ%!\\Q\
o~ NUMBER IS™

~ Y NUMBER

.

re -
e
L~ MESSAGE ,
< PAR 1:\\>L¢>® :
“ERROR - |

%)

rd

ral

|
Vi
REMOTE
MESSAGE

RETURN!
"PROCESS
ABSENT"

%gN

RETURN:
CCOMPLETED®

£

13

| .

0 M
N

i

i

LI

MESSAGE TO
NEXT NODE

!
v

-4

-15-

ITI. SOFTWARE

SUFTWARE PROTOCOL

Before we begin an example; some backround information concerning
interprocess communication paths, process addressing, and the teletype
node {T-node) will be necessary.

The general flow of information within a host-node pair is shown in
FIGURE 2. The Resident Message Router (RMR} routes messages Trom the ring
onto the Incoming Message Queue { IMQ). It also places messages from the
Outgoing Message Queue {OMQ) onto the ring. Should a message on the OMQ be
destined for a process active on the host it is routed directly to the IMQ
by the RMR and.is not placed on the ring. Hote that interprocess communications
netween processes on the same host is carried cut via this “short circuit”
by the RMR. Hence all communication appears to be carried cut over the
ring, as far as the process is concerned, whether it actually is or not.

Thus if a process is communicating with many others it uses the same format
for all, and if a process is moved, no one need know except the RMR,

ATl messages are addressed to brocesses rather than physical nodes or
processors. 3ince in general there will be more than one process active per
node, this requires an active process 1ist in each node. Since files will be

I~

T of active files is also necessary.

!!

referenced in much the same wWay, & 11

A‘

Each node, then has an associative store which contains a 1ist of all active

processes and files on the host. When

o

message is received in the

node the process name in the address field is checked against thié ist. If

a match cccures the message is routed to the host. A routine called the ROUTER
then routes the message to the correct process buffer within the host. This

scheme of addressing allows a process to keep the same address, ﬁts name, even

though it has been moved from one host to another.

Each terminal may be connected directly to the ring via a T-node. T-
nodes are a special form of the more general node. There is only one active
process, the user, in a T-node. In general, the user doesn't want to type in
the name of the process he wishes to talk to each time he sends a message so
this information must be held in a register, the Send Register (SR). If a
process crashes, the user would like to be able to talk to his Logger agent
again, hence a Logger Register {LR). Unless the user is to perform all
Lransfers, external processes mﬁst have the ability to modify the SR. We have
elected to give this power only to the processes named in the LR or SR
{before modification). There must also be 3 register which gives the address
of the T-node on the ring. This is the user register {UR) which is set to
the T-node's physical name initially and changed to the user-name after the
user has logged in. To prevent another process from jamming a T-node by
sending it volumes of garbage, incoming messages addressed to the T-node must
be screened. We do this by allowing the T-nodes to accept only those messages
addressed fo it which originated with the process named in either the SR or LR.
Finally, the T-node must have two wired messages, a request~f0r~}ogger-services
and an acknowledgement if a bid is returned.

The T-node connection protocel begins with the user pressing the
“red button" which sends out the prewired request-for-logger-service message.
Tﬁis message is received by a general rautiae LOGGER on one or more of the
processors. Each LOGGER sends back a response conta‘néng its specific name.
The T-node Toads its SR with the name of the first LOGGER to respond, say

LOGGER.A, and sends the wired acceptiance message to this LOGGER. LOGGER.A

after receiving the acceptance examines the contents of the T-nodes LR to
determine if the T-node is currently logged in, This examination is a
privileged node control command. If the node is not togged in {LR=0)
R.A creates, in a way to be described later, a lecgin process for that
user, say L0G.7. LOGGER.A now places “LOG.7° in the T-node's LR and SR
after giving L0G.7 the T-nodes name. LOR.7 fogs in the user and places his
user-name, say US.3, in the UR. If LOG.7, or some other name, was already
in the LR, i.e. a2 login had al ready taken place, LOGGER.A would merely awaken
the login process and no new Togin would be required.

Assume that the user now wishes BASIC service. He communicates his
~desires to LOG.7, who acting as agent creates a BASIC Process, BA.Z2, and
sends it the name US.2 as the input (SIN) and cutput (SOUT) channel bindings.
L0G.7 now changes the SR of the T-node to BA.Z2 and the connection is complete.
The user may dissolve the connection in one of two ways. He may exit normaily
' .iﬁ which case BA.Z awakens LOG.7, changes the SR to “L0G.7"%, which reconnects

the user, and then deallccates itse

[0
et

.E:

He may aiso push the “red button”

2

which causes him to be reconected o LOG.7 as described before whiie BA.2
continues to run. He may now initiate another job using L0OG.7 as an agent.
BA.Z continues o runm until US.3 fails to accept its messages since the SR no
Tonger contains "BA.2%. BA.2 will now send a message describing its current

status to LOG.7 who will determine a course of action (pessibly notify US.3).

It is hoped th 2 foliowing exemples in which we follow through in
detail some interacticns on a small sample system will do a better job of

repetition in certain ar gas, we will delete the detail in these areas after
an initial description

Let us consider a ring of four Tnhomogensous machines, Machines A and
B have large core memories (12X} and a disk. They are capable of contro]

- functions such as checking the ring. They can support BASIC service, LOGGER,
text editing (TEXT), and Tile service. They also can supply an economics game
(ECON) in which the computer funciions as @me‘piayef and accepts up to three
user pleyers. 1In general each machine will be devoted to one service for a
Sizable period of time o reduce data movement. The service processes are
reentrant so if we stay with one service we need only move the user context.

Machine C has:the same amount of core as A and B byt has ne disk. Thus
machine C must depend on A and B for secondary storage. Since this requires
that a1l references to secondary storage by C be over the ring which will be
ievote C to one service and only as many

users as will it in core. We will assume tha

fan

C is devoted to BASIC service.
Machine D is the nr?matawe machine, It has only enough core storage to
support a TEXT service, ane user, and the most primitive monitor usabﬁe‘on
the ring. D must lepend on A, B, or C which can support full monitors to
perform its monitor tasks. Its First order of by siness, as you willisee later

in the example. is the establishment of the monitnr services if needs on the

Other machines. Thus %o some degree D functions as a useful parasite, both.

(AD.1), a BASIC

£
%)
{0
-4

&) who wish to use the eaconomics

ame. We begin our example with the systam shut do
d ¥

v and follow it through

as
R

i

[
5y

[P
8

1)
&3

Y

G.K.

3

achine-

ma

th

A

nd wi

poi

¥ send

b

13

ost

.
0

gttached

ke

et

g.

i
©

o
LN

tha

A
<3

as
gt
e

Ad

@l

e

4

°ckv

15 §1

the node i

ES
e

i
[

tha

s with one difference, none

=

A waz

ndicates whether

A

status can

1d controd

]
174]

-20-

o e
7] =1 S
] o ar
= @® o' i
(&) 3 Lo [ia.8 =
43 al = o (%81 $e
| [b @ 42 o (4] g 4
S (O] &= [} [1+] 48] L o a €3 [a] @) o o
23] [AT e i po== i - (]] $oe e g
B o 4+ < [= 1 42 (=N o [1e)) T [¥ @
O s~ == [Py Q) @ () dud
a %} vy L (] =2 o sy LR [&) +
L = = 3 12} (] o 3 i3
[sH) 3 =) = L Y - n W (&)
e oy &3 - E= (] =
S T Uy 153 L 3 g f3
&3 Q ©= P e (7] uy al £Z -
- = [1s] v = i ar a L et ey
<L £ [y [au] oy o} i (o] £33
il B X E=d &y 7= o = o ft
[mm,. [S £
Led @ [= e 8- @ 7] Sewsr
o o (o] =] [4] = M
L] 21 [A ar e "
(] @ & £ 5} =3
[d>] 42 [13] (@) = 4 A-? [
= o a 1 [5] Q1 g
it =3 %) [Wy = p Wwh
a5 1%} (=} @ ° @ L. £
4] as - 3]
%] @ 1%} £ L1 g
- e] M 5 g
i = = s] [y
L (e] (e
= . —d []
=y) a4 ay
(i S £ S
£ 4= 3 o
. ey = oo 4 3
i [7 e
3 &3 &} 4] S
4 1+ g
L) £ [{s] 4= e
R B e fie}
1] e T
Q)
]
g £, "
Lo Qi
B [
= [
] (¥}
3 as
wn [
Py [
)
= =
o 5
[
Lif
(65
L
o
4
Ao
“
= w
'
th
a2 3
wh =y
o]
(87
«
7} =
o o
W =
e] EN

LI
(=9

mn»l..

]

MQ
th a

T
4

o
(=]
(=
iy
]

1as respondad wi

5
i

;

the

ion gam

cannect

~
s

~NG

T

o

eTurns

i

K

Pty
fede)

e
Ve
S TR S - T s i
SHL AR At & 2 Wil respond,
RN / 2 o W T T e spnt
! = : 3 Z 5 Wl N s2ny
. ~
Tl Zve 3 T
Wi ol I . ‘_«wﬁ

7 e oy BN gy e T & o
s B Wl (S LRV B B A T

novaa
L L

fm o s e e L
tor can ftself

Ot syva Thea
fx b WA LOEED
% TT D ey
] S Aty
H (o B AN 101
Sy e o P N T -)
1T &% ¢ iy ok SINE T T m o) BT TNV
e L .] { : ooy VU LN I8 L sl Ui
ST EE D Yooy e e hts

group are coﬁnected to. ST.Z requests this service and is given the names of
‘ai? St's on the system and the corresponding processes. Among these s ST.7...
ECON.T. ST.2 now requests connection with ECON.T. L0G.6 receives the message
and sends out a normal Bid request for ECON.T service. Assume ECON.T is
currentiy active on A. A's RA(BID}, before it attempts to bid, recognizes that
ECON.T is a currently active process. It therefore sends no bid but places a
message with the name of L0G.6 and a special escape bit set on in ECON.1's
message buffer. ECON.] recognizes the escape bit and sends a message to LOG.6
requesting the name of the pr@§e55 (T-nodé) to ke connected. The connection
game proceeds as before with L0G.6 and ECON.] in command.

The last point to be considered is the connection of D. One of the jobs
of the larger machines is to provide the smaller machines with_ceytain monitor
routine services. As with any other user process this is accsmpﬁished through
bidding. Note that due, to the communication paths within the hsot, most of the

monitor service routines may reside on a different host or may move from hest to

host without affecting any other routine, since comunication is to processes

ot

and not physical addres

(73]

€s.

4

Khen © is started it is loaded with the minimal monitor. The first job of
the monitor is to establish missing routines, notably RA(BID) and RA(ACK), on

other hosts. To do this the monitor acts as any other user, requesting bids,

i)

acknowledgi

S}
=}
=3
[£+]
o
-% 1)
ot
s
L]
=3
D
=t
oy
=3
-
o
o
o
sl
[m S
)
W
=1}
=
[=1
7]
(f
€s+
[
)
=3

fs g up communication with the
process after it has been created on another host. After the routines have been

monitor is a2 bit

1

established, D acts much 1ika C excluding the fact that it

Ins

e

slower since it must perform communication over the ring rather than through the
"short circuit” in the RMR on which C's monitor messages are routed since all

communication is within the host,

Before we end this discussion of the software there are two points
regarding the monitor we would like %o clear up: Timing and garbage collection.
Ef the host supports more than one user at a time, so a Jjob queue is necessary,
@ system of two queues is employed, a job queue {JOB Q) and an I/Q pending
gueue (I/0PQ). When a process calls the monitor, it may communicate two time
intervals, a time-in (TI) and a time-out (TO). The monitor adds a third time,
the origination time (T@) before it places these three times and the process
name on the job queue. Processes start at the rear of the JOBQ and are
pr@éessed when they reach the frent, unless they have a pending 1/0 command in
which case the job is placed on the I/0PQ. The monitor processes jobs first
fron the I/0PQ if the pending condition has been satisfied, and if not then
from the JOBQ. Note that a job must wait the entire length of the JOBQ before
it can be placed on the I/0PQ. There are fwo exceptions to the above rules for
processing from the queues. If T is the time on the system clock, then a job
is never processed gntil T2T@ + TI and it is zlways processed if T2T@ + TO.
Hence a process can choose to be dormant for a certain period of time or to be
awakened after a certain period of time, unconditionally.

In this system there is always the chance that a job will be left in a
permanent pending state due tc some failure elsewhere on the ring. Therefore,
there is a monitor routine called the Process Garbage Collector whose job it is
to ciean up obviously dead processes. It does this by examining the T@ of
each- job on the I/0PQ. If thé systems ciock time is greater than T8 + TG,

wnere TG s a parameter, the process is deleted from the host.

FIGURE 2. COMMUNICATION PATHS

-25-

NODE
!
R MR
i <

ROUTER

=~ Ra(s10) suF -

Ty
} |
RA(ACK) BUFj

@ CONT B@"

=

=5~ RA(BID) =
== RA(ACK) >
=& MS CONTROL e

gbf'DIAGFOSTTC“\LA

0UT BUE/

. <;§ER PTOCEDREY

J._3UFEFDy

= ——mp
o | CORE-DISK |
~ | conTROL :
h ,‘\ -
| DIAGNOSTIC
ROUTINE
ISR
2 e
PROCEDURE-T
USER
£4 PLUCEDURE-N |——===p

-26-

BIBLIOGRAPHY

Farber, David J., "A New Scenario for 3 Distributed Computer System”,

- OCS Working Notes, April 19, 197]

_ » 'Supplement to Proposal for Research on Distributed
Computer System", submitted to the National Science Foundation,

October, 1970, by the University of California, Irvine.

-27-

APPENDIX
High Level Software Flowcharts
of Fundamental Routines
The following figures constitute a preliminary description of the
functioning of certain key routines. Since we are still in the early stages
of developement, the emphasis is on flow of control and information rather
than detail. Most of the routines have been functionally described in the
text to a sufficient degree to allow fairly easy reading of the flowcharts.

" One minor point, however, which may cause one trouble is the RING CHECK
bit (RC) in the monitor routine. When a user process calls the monitor in
addition to passing the TI and TO it passes an RC. The RC tells the monitor
what to do in the case of a time-out, that is when the waiting tiﬁég T8 is
exceeded. If RC equals zero the process is awakened; if RC equals one a
RING CHECK is performed and the process is not awakened. This gption proves
valuable since many messages expect responses; hence if no respoﬁgé is

received, it most probably is due to ring failure.

MONITOR ROUTINE

N

-28-

CANCEL CORE
REMOVE
FROM QUEUE

MOVE TO DISK
AND OVERLAY

- IF NECESSARY

v

PLACE J0B
AT REAR
OF QUEUE

CHECK
RETURNS OF
RING CHECK

v
Q

CHECK SPECIFIC
NODES AND SEND

SSHUTOFF" [F

NECESSARY QR

AGNOSE.

W

CALL
MS CONTROL

TG

CALL PROCESS
GARBAGE
COLLECTIO q

] "
O ,

CHECK
RESET T4

5

GET NEXT
ELEMENT OF
I/0PQ

MOVE
USER PROCESS
T0 CORE

i

 PLACE AT
. REAR OF

START

QUEUE AND |

EXIT

=30~

v

GET NEXT
ELEMENT OF

WAIT

v,

BLACE AT
REAR OF
1/0PQ

-31-

37
RA(BID) ROUTINE"

GET NEXT
ELEMENT OF
RA(BID) q

INITIALIZE
ROUTINE AND |
PLACE AT FRONT
OF OB Q |

SET ESCAPE BIT
o AND TRANSMIT
TO PROCESS

RETURN BID TO

CALLER PLACE BID

IN PENDING BID
TABLE

RA{ACK) ROUTINE

GET NEXT
ELEMENT OF
RA(ACK) QUEUE

SEND: NO
‘T SUCH BID

SEND:
REFUSE

OPEN AND
COPY FILE-

DORMANT ON

|

INIT
PROCESS AND
PLACE ON

JOB Q.

SEND RE
NAME OF CREATED
PROCESS

v

INITP ROUTINE

SEND REQUEST
FOR QUOTE
(RFQ) TO-RAs

¢

WAIT
(RC = 0)

FIND MIN
BID

CKNOWLEDGE
MEN BID
TO RA

OF PROCESS
IT0 CALLER

P

CALL
RESOURCE

FINDER (RF)|

| RETURN:
o NO SUCH
PROCESS

SEND RFQ TO
RA's, GIVING
FILE INFOR
FROM RF

WAIT
(RC=g)

RETURN:
SORRY NO
TAKERS

-35-

RESOURCE FINDER ROUTINE

I
SESVICE Oﬁ THE
DESIRED FILE

v

RETURN:

MIN BID

RETURN:

N0 succEss

-36-

APPENDIX F

THE DISTRIBUTED FiLE SYSTEM-A FILE SYSTEM
FOR THE DISTRIBUTED COMPUTER SYSTEM

Frank Heinrich

ABSTRACT

The stucture of a reliable, fail-soft file system is described.
Failure of any a processor or sTorage media devices will affect only
a portion of the files for a portion of the users. The system also
provides backup to minimize the inforﬁafion lost when a particular file
becomes permanantiy unavailabie due either fo system failure or user error.
The system is single level, that is, each file maintains i+s fully quali-
fied global name. There is no hierarchy of directories, however there is
a hierarchy of processes to assist in locafingAa file.

The system resides on several processors in a communication network.
Messages in the network are broadcasted to all locations, addressed To_
process names rather than hardware processor addresses. Thus an originator
of a message need know nothing about the topology of the network, nor the
!oéafioﬁ of the process to which the message is being'senf, in fact that
process need not remain in a fixed location.

The system has a single central component which gives initial informa-
tion to assist in focating files. This component is n-plexed on different
processors for reliability, all n components being identical. This compo-
nent is keyed by owner name and provides the name of a process, a catalog,
which references all files for that owner. Several different catalogs
exist on distinct processors. A catalog will serve more than one owner and
each owner is served by only one catalog. For each file, the catalog lists
another process, a volQme, which has access to the actual physical location

of the file. A volume is associated with each physical storage media and

contains a table of contents for +ha+t media, which'confains file name, owner
name, protection information, and +he name of The'cafalog which referenced
it. When a file is located and opened, a process having a: name correspond-
ing fo the file is created to run in the processor +o which the storage media
is attached. Henceforth alli traffic with the file takes place through this
‘Process and is addressed as a general process in the overall communication
network.,

A failure of the hardware storage media or the processor containing a
volume affects only those files of those users which may be on that particu-
lar storage media device. Since process addressing doés not require topolo-
gical knowledge, the media could be moved to another processor where the
volume and file access processes could be reestablished wi+h no effect on
the rest of the system. The failurg of a processor containing a catalog
causes temporary inconveniences only to those users who are listed in that
catalog. The catalog can easily be reconstructed by reading the table of
contents of all volumes, exfracting the file information for those files
which were referenced by the missing catalog.

The backup of individual files is provided by generation structure.
When a file is updated or modified, a new generation of that file is created,
the old version still exists as generation 'current minus dne'. Effort is
made to ensure that successive generations are on different volumes. Usérs
have access o al| previous generations, as well as automatic deletion of
files older than a certain number of generations, as specified by the user.
Appropriate archival backup proceedures (i.e. File System Dumps) will also

be used.

The issues of protection, access modes, concurrent access, and

structural sharing of files are also discussed.

THE DISTRIBUTED FILE SYSTEM-A FILE SYSTEM
FOR THE DISTRIBUTED COMPUTER SYSTEM

Frank Heinrich

The Distributed File System was designed to provide a reliable,
fail-soft file system for the Distributed Computer System. The file
system provides means for storing and retrieving information in addition
to the use of core storage during a working session. The file system
also performs a library function, storing information between sessions.

The fail-soft criteria implies a system which is vulnerable +o
parfial failure, yet relatively secure from total fajilure. In addition
it should be relatively easy to recover from partial failure. |f the
system is fo be fail-soft, the failure of either a8 processor or storage
media device should only affect a portion of fhe files for a portion of
the users. The individual user's enviromment should also be fail-soft.
That is, if a user's file becomes permanantly unavailable or damaged
either through system failure or his own error, the work necessary to
recreate that file should be minimized.

To provide the fail-soft characteristics of the file system, it is
distributed over several processors in the Distributed Computer System.
Each processor should be autoncmous and independent, capable of providing
it's portion of the file service without the assistance of any other
particular process, any as;isfance necessary should be available from more
than one source. The system accomplishes this with a minimum of redundancy.

Since the components are fto be independent and distributed, there
could be no distributed hierarchy of directories, which limit context and
allow par+ialfy specified file names. The system is single level, that is

ali files retain their fully qualified global names so a file can be

uniquely identified regardless of the availability of other components
of the file system. -

There is a hierarchy of processes which assist in locating a file;
however, the processes are expendable and, if déstroyed, can easily be
recreated.

The system does have one central component which provides initial
information fo assist in locating a file. To prevent failure of this
component from tying up the rest of the system, it is n-plexed on dif=
ferent processors, al! n components being identical. I+ is keyed by
owner name and for each owner provides the name of a process, a cafalog,
which references all files for that owner.

Several different catalogs exist on distinct processors. A catalog
will serve ﬁore than one user, and each user will be served by only one
catalog.

- For each file, the catalog provides the name of another process, a
volume, which is associated with the physical storage on whicﬁ the file
is'locafed.‘ A volume contains files for many users; the files of any one
user are distributed over many'volumes. A volume process runs in the
processor Yo which the physical media containing the file is attached, and
there is one volume process associated with each storage media device
(e.g. disc pack or cartridge) which contains Thé table of contents for
that device. The entry for each file in +he table of contents includes
the fully qualified global name, dates of creation and medification,
protection information, the name of the catalog process which referenced
that file, and.The location (physical address) of the file header on the
s%orage device. The fully qualified global name includes, in addition to

The'file name, the owners name and the generation number. Note that all

this information is accessed through a process, although the data itself
will be'sfored on the media, in a predefined, reserved locafion; Device
names and physical addresses are never used except by the volume process
itself. The volume process will also manage the storage allocation on
its device for creating new files and deleting old ones.

tn summary, the following steps are the normal way of locating a
file in the Distributed File SysTem.i These steps will most reasonably
be carried out by a process which is acting as an agent for the user at
his terminal or for the user process which requires access to a ffle;
however, there is no reason why the user or his process cannot carry them
out. Step 1: Broadcast a message to all the cenTral combonenfs, specifying
the owner name for the file that is desired. Accept a reply from the first
one fo respond. The reply should specify the catalog name which serves
the owner of the file desired. Step 2: Send a message to the catalog
specifying the file name and owner of the file desired. This message is
To a specific process; there will be only one process which can provide
the information. The reply will specify a voiume hame which will give
the final access to the file. Step 3: Send a messagé to the volume
(this is still a general message in the communication system, not a hard-
ware address) specifying the file name and owner of the file that is de-
sired. Step 4: The volume will reply requesting verification for the
protectiocn specificaTioﬁ in the table of contents. |f +he user is auth-
crized fo accessthe file in the way he has requested, the volume will
request the operating system to create a process with a name which
corresponds Yo the file name. The process name will be communicated to
The requestor and all further fraffic with the file will take place through

This process. Thus filies are addressed as general processes in the

communication scheme. Files retain +he same flexibility and mobility of
genergi processes both in initially locating and in the transfer of data
into and out of the file.

How does this structure provide the fail-soft characteristics claimed?
Consider the possible failures that could affect +he system.

(1) The storage media itself could fail (e.g. head crash on a disc pack).

(2) . The device on which the media is mounted or the processor which
controls that device may fail.

(3} The volume may fail, either the software or hardware in the processor
which contains i+.

(4) The catalog may fail, either soffware or hardware.

(5) The central componenT may fail, either software or hardware.

To recover from a failure of type (1) is near impossible. |+ would
require that all volumes have a duplicate; however, we are trying to avoid
this type of redundency. I+ is poésible that archival backup may be able
to restore some or ali of the lost information onto another volume. In any
case, oniy those files on the damaged volume are affected. All the files
on the other volumes remain intact, the access to them in no way affected.

Failures of type (2) are much easier to recover from. Assuming the
media itself remains intact, all that is necessary is fo move the media to
another device or processor. Traffic with the files on that media and

access To the information in the volume table of contents is only tempor-
| arily interrupted. When the media is on the other processor, the volume
procéss is reactivated in that processor and the access processes are
reactivated there also. Then access to the volume can begin again and the
Traffic with THe files can resume. Since all addressing is to processes,

the user processes afe not affected by the change in location. It appears

to them oniy a slight delay has occurred.

Failures of type (3) are also fairly easy to confepd with. All that
is needed is fo reestablish the volume proéess, possibly on the same’
processor if only a software error occured. Since the +ab]e of contents
information is stored on the media in a predetermined location, it should
be simple to establish a process to have access to that information. In
This éase, however, the access process for all the files in that volume
that were active will probably be lost, effectively closing the file.
Either a hardware or software error in a processor will probably destroy
all information about what processes are active. So in this case users who.
were Trying fo open a file will gain That access with only a delay; however,
the users who already opened files will have +o reopen the file and continue
where they left off. It is also possible a file that was in use may be
damaged beyond +hé ability of the user to recover and the file will have +o
be recreated. |

Fai!ureg of type (4) are less serious in consequences to users, but
will probably take more time to recover from. The failurg of a catalog will
not directly affect any files, however %T will make locating a file incon-
venient. For all practical purposes those files owned by the users served
by the missing catalog will be inaccessable for a short time. Recovery
requires reconstructing the catalog information. This is easy tTo do but
may take some time. All that is necessary is to read the table of contents
for each volume, extracting the information for those files which were
referenced by the missing catalog. A problem can occur if there is a
volume missing at the time the catalog is reconstructed: however, when
that volume is again made avaiiable, all the catalogs which are referenced

in that fable of contents can be checked to insure that they are up to date.

Failures of Type (5) have virtually no effect. Since the central
component is n-plexed on different processors, the failure of any ong of
them does not prevent access +o the information contained in The others.
It is possible there may be a slight degradation in response if the traffic
AwiTh the other copies is high, but this is fairly insignificant.

The structure providgs for fail-soft behavior for the failure of any
component of the file system, either software or hardware. Of course
muiffple failures of more than one component can cause much more chaos,
but it is expected that the probability of simultaneous multiple féiiures
is much lower than for single isolated failures.

| Providing fail-soft behavior for the individual use}'s'environmenf
implies that the loss of any fiie, either due ‘o system failure cr user
error, should cause a minimum of lost information. I+ should be easy To
restore the file to its current state without having o recreate i+
entirely from scratch.

Standard archival backup (i.e. file system dumps) does provide some
measure of backup in this area, however i+ is often the case +ha+t the
archival backup is Too»o!d to be of any real value. File system dumps
are usually not taken more often +han once & day, but it is usually the
case, especially with program files, thet if any changes were made at all,
there were several successive revisions within a single session. Thus the
archival backup provides either an exact copy of the file needed or a
previous version too old to be of any real value.

- To provide backup facility with a finer increment, and thus a better
chance of minimizing the work necessary to recreate the file, all files
will have a generation structure. Wheﬁ a file is updated or a new version

of a file is created it becomes the new current generation of that file.

The old current generation stil] exists and is available as generation
'current minus one'. All previous generations are available, being
accessed as generation current minus some increment. I+ is possible to
update or modify a file without creating a new generation, but the user
assumes the risk involved in loosing the incremental backup. Effort is
made by the file system to insure that successive generations are on
different volumes fo prevent permanent loss of a volume from affecting
the incremental backup.

To prevent the generation structure from becoming too extensive, the
file system will provide an automatic facility for deleting files older
than a certain number of generations, "that number being specified for each
file. Thus when a new generation is created, the oldest generation of
that file will be deleted, providing that at least the minimum number of

b

generations for that file exist. Also, users will be able to explicitly

delete any generation.

- To provide additional backup, and to guard the user against his own

inadvertent errors, files which are deleted wili not actually be removed
from the file system. Files which are deieted will only be marked as
deleteable, they will remain in storage and in the catalog until the

space is.needed. AT that time they will be expunged, that is, removed from

the file system and the catalog. A file which is deleted but not expunged
can be unde{efed if the need should arise. Files which have been expunged
can be reloaded from archivai backup if that should be necessary. Users
may expunge files explicitly when it is known that the file is of no value
o if it contains information best not leit in the system.

Thus the ﬁsers environment is made fail-soft mainly through his own

efforts. I+ is The.user’s responsibility to maintain an easily reconstruc-

table envirornment, and to do the actual recovery should that become neces-
sary. The file system provides several facilities to assist the user in
managing his environment, but the ulfimaTeAresponsibilify lies with the
user.

The preceeding has been concerned with the s+ructure of the system
for existing files and how that structure provides fail~soft characteris-
tics. The generation structure has raised the issue of how files are
created. When a new file or a new generation of & file is created, Request
For Quotation and Bid Response must take place as for any service alloca-
tion in the Distributed Computer System. Again, it is most reasonable for
an agent process to perform the dialog necessary to create a file, but
there is nothing fo prevent a user of his process from doing it himself.

When a file is o be created, first the proper catalog must be
checked to determine if the file is a new file or a new generation of a
previously existing félg. If it is a new generation, the volume which
contains the current generation will be considered only as a last resort
if no d+her‘voiumes can provide the service. Next an RFQ must go out to
all processors containihg volumes. After a suiTab!é delay, the bids which
have been received are evaluated, the volume contain +the current gener-
ation is only considered as a last resort. The confirmation and actual
request for service then takes place with the chosen volume. The volume
performs the necessary storage management, expunging deleted files if
necessary, to provide space for the file. Then +he volume requests the
operating system to create an access process for the file and +his access
process becomes the channel for all fraffic into the file. The volume
must also request the appropriate cataleg fo update itself, reflecting

’The'new file as the current generation. Thus the creation of a new file

is carried out in essentially the same manner as any resource allocation
in the Distributed Computer System.

Rafhervfhan create a new fiie, a user may wish to add to his catalog
a file which already exists in another users catalog. This is not a
redundent copy in the second users area, but is true structural sharing;
the two file names reference the same file. Changes by one user aré
apparant to the other user regardliess of the name they use, since the
files actually refer to the same physical locafion on the storage media.
Since the entries in the volume table of contents contain +he fully
qualified global name, including the owners hame, as well as reference to
~the' catalog which contains tha+ file name, seperate entries mus+ be made
in tThe volume table of contents for each file name, each pointing to the
same header record on the storage media. This permits different global
names to refer to the same file. However, if either user creates a new
generation of that file the other wil] still be éccessing the old genera-
tion. Thus a file may be the current generation for one user and an older
generafion for another. Structural sharing of files with a dynamic
generation structure is probably best done only in specialized circumstances.

The issues of protection, access modes and concurrent access are not
rigidly fixed by the system structure. In fact, all three areas are very
flexible and easily changed.

Traditiona! schemes for profection vary from explicit listing 6f all
permitted users to reliance on structure in the user names (e.g. account
number, user number) to permit or exclude classes of users. Any of these
schemes could be impiemented wi+h little difficulty. The protection con-
ventions only effect the interface with the volume process. Protection

mechanisms should be easy to build in the process, and can be changed wi+h

fittle frouble. Since the user never actually accesses the file directiy,
but always through an acces process that the volume has initiated, the
user has no way of gaining access to a file without the assistance of the
volume process.

The types of access modes are also very flexible. The protection for
granting initial access based on type of access requested is provided
by the volume process as part of the general protection mechanism. To
insure all transactions with the file are in accordance with this permission,
the access process will check each fransaction against the type of access
permission granted. Although the system in no way fixes the types of access,
the following is a reasonable set for general purpose use. (1) Update-
includes read, write, execute (2) Read-includes read and execute (3) Execute~
execute only (4) Append-allows only writing on'end of exisfiqg file.

The access process also provides flexibility for the file's internal
structure and the way the data is éccessed. Since all access Takes place
through this process, the structure and access can be sophisticated as
desired. 1t is anticipated that this flexibijity will lead to the develop-
ment of data independent access techniques. When a file is opened, the
user will specify how he wants to access +hat file and regardliess of how
the file is formated the access process will make the daTa-available in
the format the user requests, doing any transiation necessary. It is
hoped that a proceedural language for operating on data bases can be
developed. The access proceedure would then be an interpreter for the
language, providing more generalized file operations than the simple read
and write.

The access process provides additional flexibility which can be

impiemented if desiréd. The process can be used fo resolve the problems

associated with concurrent access by more than one user to the same fjle.
This is generally no problem if all the users are reading the file, however
if one user is modifying the file, the other users migh% be prevented
access until the modification is compiete. More sophisticated solutions

to the problem exist and can be implemented without difficulty in the
access processes.

It would also be possible to allow the user +o write prologues and/or
epilogues for the access process supplied by the system. Different user
supplied routines could be associated wi+h each file, and would allow the
user to create a more sophisticated environment. The user routine could be
used to provide a sophféfica+ed, inferactive protection system much more
exfensive and flexible than the system supplies. Other possiblities include
user supplied special access techniques and internal file structure which
migh¥ not be available in early versions of the system.

~In summary, the Distributed File System is a modular, reliabie
fail-soft file system for use in +he Distributed Computer System. The
system is made up of independent modules, the failure of any one of these
modules has only [imited effect, in fact much of the system will remain
completely intact. The file system also provides facilities +o help the
user create a fail-soft environment for his files, protecting him against
system failures and, probably as important, from his own errors. The
system is flexible in the areas of protection and access methods,

allowing for changes and future extensions without modification of +he

basic file system structure.

APPENDIX G

Ring Interface

The ring interface must (i) +ransmit messages onto the ring from
the computer it inTerfaces; (2) recognize messages destined for The compu-
ter it interfaces and allow that computer o accept Them; and (3) pass on
all other messages without change. The following is a summary of the ring
interface hardware to implement these functions:

The major consideration is to maintain the connectivity of the ring.
The failure of a node must not prevent other nodes from communicating with
each other. Several precautions will be taken +o prevent this. In addi+ion

to the primary data-ring, alternate node-skippihg paths will be provided:

By appropriate switching, comp!e%e failure of non-contiguous nodes can be
tolerated

Additional steps to avoid the possibility that two adjacent ring inter-
faces fail in such a way to sever the ring involve a series of bypass data
paths in the ring interfaces. A physical path independent of the power-on/off
status of the ring interface and computer will allow connection of the ring
interface inputs and outputs. This wouid be used if the ring interface is
known to be defective, during maintenance, and when the computer is not
programmed to operate on the ring. A path through the fogic of the ring

interface will also allow unaltered passing {through) of messages.,

The normal operation of the ring interface is as follows: When the
computer at the node needs to +ransmit a message on the ring, the message
text is transferred to a transmit buffer in the ring interface. When space
becomes available the message will be transmitted onto the ring. Affer the
message has traversed the ring, the message will be absorbed and status
flags associated with the message will be refurned to the processor.

As each message on the ring reaches the ring interface, the destination

process name will be compared with a [ist of names in the ring interface.
If a match is found the message will be copied into one of several receive
buffers in the ring interface. Subsequently it will be transferred to the

attached computer. The list of names in the ring interface can be changed
dynamically to reflect the processes currently residing in the attached

computer.

The ring interface will consist of the functional parts and data paths

shown.

to following

: X i Transmit [
ring inferfaces

b buffer
. T =TS
ring " :
drivers i ;
: : ‘associative lge— !
- store :
: i oo Mmicro- computer
, : g program | 1/0 G—min -
v i control inferface-———4>compu+er
T J logic
"=Z] hardwired [Tl
ring | - _-; control logic)
recejvers T 5
: -
receive
from previous buffers

ring interfaces

Hardwired logic will control the operations and flows of data closest
to The communications ring (left of diagram). A simple.micro~programming
scheme wiil control most of the operations and data flows near the computer
(right). This will allow flexible adapfafion fo the requirements of

interfacing with different computers and their specific 1/0 interface

requirements.

