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ABSTRACT OF THE DISSERTATION

Uncertainty-Aware Unsupervised and Robust Reinforcement Learning

by

Weitong Zhang
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 2024

Professor Quanquan Gu, Chair

This dissertation is centered around addressing several key concerns in reinforcement learning
(RL). RL has been a popular topic in the design of autonomous intelligent agents that make
decisions and learn optimal actions through interaction with the environment. Over the
past decades, RL has achieved significant success in various domains. However, RL has
consistently been criticized for its inefficiency in exploration and vulnerability to model
errors or noise. This dissertation aims to tackle these challenges through uncertainty-aware

methods.

In the first part of this dissertation, we explore how an RL agent can efficiently explore the
environment without human supervision. We begin with a theoretical framework on reward-
free exploration and establish a connection between reward-free exploration and unsupervised
reinforcement learning. We provide both theoretical analyses and practical algorithms that
exhibit competitive empirical performance. In the second part of this dissertation, we aim to
develop robust RL algorithm in a misspecified setting, where the function class (e.g., Neural
Networks) cannot adequately approximate the underlying ground truth function. We show

how significant the approximation error needs to be in order to prevent the agent from
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efficiently learning the environment and making good decisions. We also present several
algorithms that ensure the agent will only make a finite number of mistakes over infinite

runs when this approximation error is small.

The methods and techniques discussed in this dissertation advance the theoretical un-
derstanding of key concerns and limitations in RL, particularly in scenarios that require
performance guarantees. Additionally, these findings not only suggest further research di-
rections but also pose several open questions that would help better design more robust and

efficient decision making processes in the future.
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CHAPTER 1

Introduction

Recent years have witnessed great success of reinforcement learning (RL) in excelling at a
wide spectrum of games, such as Atari (Mnih et al., [2013), Go (Silver et al., 2016) and
even more complex games (Berner et all 2019; Vinyals et al., 2019). In order to achieve
these objectives, reinforcement learning agents usually need to explore and interact with
the environment. By receiving the rewards which encode information about the goal of the
task, the RL agents can learn through trial and error. Taking the Breakout game as an
example, as presented in Figure , the RL agent observes visual input from the screen,
which encodes information about the positions of the ball and paddle, as well as the brick
structure. It needs to control a paddle to hit the moving ball, receiving positive rewards
when the ball hits the bricks and negative re-
wards when the ball falls off the screen. Through
exploring by randomly moving the paddle, the
RL agent will learn that moving the paddle to the
right in Figure [I.I]s situation will lead to a pos-

itive reward, whereas moving the paddle to the

left will cause the agent to lose the game, thus
yield a negative reward. Therefore, RL agents Figure 1.1: A screenshot of the Atari
can leverage this information and learn to con- Breakout game.

quer the Breakout game or eventually beat human experts (Mnih et al.; 2013). Besides being

Image credit: https://en.wikipedia.org/w/index.php?title=Breakout_(video_game)&oldid=
1224017580
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applied in games, RL has also emerged as a new paradigm for automatically solving more
practical tasks such as recommendation systems (Li et al., 2011), robotic systems (Kober
et al) 2013), and autonomous driving (Sallab et al., 2017), which all rely on interacting
with the environment and dynamically making decisions based on the observations from the

environment, such as the user feedback or the system response.

Despite these advances, since massive interaction with the environment is a must in
reinforcement learning, there are a series of crucial concerns that prevent RL from being
applied to more serious tasks, such as drug design, scientific discovery, and clinical treatment
design. These concerns usually consist of the efficiency and robustness of exploration for RL
agents, especially in the face of uncertainty. This dissertation focuses on studying these
concerns through theoretical analysis. Inspired by these insights, we also develop a series
of algorithms that not only offer theoretical guarantees but also demonstrate competitive

empirical performance.

The first concern we would like to address is

the case when the reinforcement learning agent

is facing the “extrinsic” uncertainty when explor-
ing the “unknown” environment. In particular,

we would like to address the efficiency of explo-

ration in reinforcement learning, especially ex-
ploration without human supervision or human-

crafted rewards. Usually, reward functions are Figure 1.2: A screenshot of the Atari

. Mont ’ )
human-crafted to encode the expected behavior ontezuma’s Revenge
of the agent. For example, in the Atari game Montezuma’s Revenge, as presented in Fig-
ure , the agent is designed to receive a reward of 1 when obtaining the key and 0 otherwise.

However, it has been demonstrated that RL agents cannot perform well in environments with

these sparse rewards (Kang et al., 2022) because the reward in most of the collected data

2Image credit: https://www.retrogames.cz/play_124-Atari2600.php
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is zero. Therefore, more complicated and nontrivial rewards (Dilokthanakul et al., |2019)
are crafted to guide the behavior of the agent. However, these reward-design processes are
inefficient because they require a lot of trial and error to train the agent and adjust the
reward. This difficulty also arises when applying RL to environments with limited human
knowledge. For instance, when applying RL to drug discovery tasks (Popova et al., 2018]),
current human knowledge may not adequately describe the detailed mechanisms of some
new proteins, making reward design challenging and requiring additional efforts. Moreover,
this inefficiency also appears in multi-task robotics (Kalashnikov et al. 2022)), where RL
agents are expected to excel in multiple objectives instead of a single task. In such cases,
using the reward for a single task would lead to repeated exploration of the environment
and be inefficient. Therefore, since exploration using a single human-crafted reward raises
efficiency issues, the question “How to explore the environment without human supervision

or human-crafted rewards” becomes a natural concern for these tasks.

To answer the previous question, |Jin et al. (2020a) provided a theoretical framework
called reward-free exploration (RFE) to force the agent to explore without reward signals.
Over the past few years, there has been a body of work (Ménard et al., 2020; Wang et al.,
2020b; [Zhang et al., |2020) theoretically improving the efficiency of RFE in the regime of
“tabular RL,” where the state and action spaces are finite. On the other hand, Laskin et al.
(2020) proposed an empirical framework called unsupervised reinforcement learning (URL)
to pre-train the RL agent to explore the environment without the reward signals for any
specific tasks. Then these pretrained models are expected to behave well in a spectrum of
downstream tasks with different reward functions by simply fine-tuning on these tasks. In
parallel with the development of theoretical analysis of RFE, there has also been a series of
works (Pathak et al. 2017, |2019; Burda et al., 2018b]) on empirically designing exploration
heuristics for URL.

Both RFE and URL aim to improve the efficiency of multi-task decision-making sys-

tems, such as multi-task robotics. In particular, both methods explore the environment by



either collecting data (RFE) or learning good representations of the environment through
a pretraining process (URL). Then, with different reward functions representing various
downstream tasks, both methods can efficiently output the optimal policy without extensive
interaction with the environment. Additionally, these methods both encourage exploration
in environments that inherently lack rich reward information, like the aforementioned Mon-
tezuma’s Revenge. In Chapter [2, we make the first step in connecting RFE and URL by
studying RFE in a more general case where the state and action spaces are too large to
apply the “tabular RL” method. In this case, we study RL with function approximations so
that the action space and the state space can be represented compactly (Sutton et al., 1998]).
We start from linear mixture MDP (Ayoub et al. 2020) which assumes that the transition
kernel can be approximated by a linear function. Through uncertainty measurement under
linear function approximation, we are able to deliver an RFE strategy that is guaranteed
to efficiently explore the environment. In the latter part of Chapter [2| we seck to further
improve the analysis and the design of the algorithm to make it optimal in various settings,
such as the sparse reward setting. In Chapter [3| we further push the analysis to general
function approximation. We design a practical RFE algorithm that not only enjoys the the-
oretical RFE guarantee but also has competitive performance on a set of URL benchmarks.
The result builds a connection between RFE from a theoretical perspective and URL from

an empirical perspective.

When function approximation is used to compress the state and action space, yet an-
other crucial concern is whether the function approximation is expressive enough for making
good decisions. Therefore, the second concern we would like to address is the case when
the reinforcement learning is facing the “ntrinsic” uncertainty from the expressiveness of
the function approximation. For example, when using linear functions and linear regression
to approximate the data generated by some quadratic function, one will suffer from model
misspecification. Intuitively, a larger model misspecification will potentially have a more

negative impact on decision-making systems. Existing theoretical RL literature (Jin et al.



2020b; Zanette et al., |2020a]) usually assumes that the function can perfectly approximate
the ground truth function. When model misspecification exists, their analysis will leave an
“approximation error” term indicating that the model will always make mistakes, regardless
of the number of interactions (Takemura et al., [2021; |Vial et al., 2022). In Chapter , we
improve this analysis by connecting the “required precision” with the “model misspecifica-
tion” in misspecified contextual bandits, where the agent is only required to make a one-step
decision. The “required precision” can generally be viewed as the difference between the best
action and the second best action (a.k.a., suboptimality gap (Lattimore and Szepesvari,
2020))). Obviously, when the “required precision” is larger than the “model misspecification”,
it would be easy to distinguish the optimal action from the rest of the actions; thus, the agent
will easily make the correct decision. Based on that observation, we propose an algorithm
that actively learns from the data with higher uncertainty while filtering out the data about
which the agent is certain. Intuitively, through this process we can guarantee that the agent
will not be significantly affected by the model misspecification. We also reveal the interplay
between the “misspecification level” and the “suboptimality gap”, indicating how large mis-
specification will prevent us from making good decisions. This positive result matches the
negative result proposed in [Lattimore et al|(2020). In Chapter 5| we extend this result to a
general RL setting, i.e., sequential decision processes. We show that through an active data
selection regime, the agent suffers only a finite suboptimality (a.k.a., constant regret) when
making decisions over an infinite run, even when the model misspecification exists. This con-
stant regret result requires no prior assumption as made in [Papini et al.| (2021a); Zhang et al.
(2021a), and the interaction between the “required precision” and “model misspecification”

provide an insightful vision on the development of empirical robustness algorithms.



1.1 Organization of the Dissertation

The rest of this dissertation is organized as follows. In Chapter [2| we discuss reward-
free exploration under linear function approximation, which improves the previous results
in the tabular setting with finite state and action spaces. An improved algorithm leverag-
ing variance information and an algorithm working in the bound total reward setting are
presented in the latter part of Chapter 2] In Chapter 3| we extend RFE with linear func-
tion approximation to RFE with general function approximation. In addition to theoretical
analysis, numerical experiments demonstrate that our reward-free exploration algorithm has
competitive performance on a set of unsupervised reinforcement learning benchmarks. In
Chapter [ we move on to the second topic regarding the robustness of misspecified lin-
ear bandits (Li et all 2010; Chu et al., 2011; Abbasi-Yadkori et al [2011)). By proposing
an active data selection algorithm and revisiting an improved version of (Chu et al.| (2011]),
we show the interplay between model misspecification and the suboptimality gap. We are
also able to deliver a high-probability constant regret for misspecified linear bandits without
prior assumptions on contextual vectors. In Chapter [5] we extend this result to linear
MDP (Jin et al., 2020b). By introducing the “certified estimator”, we are able to provide
robust estimation for sequential decision processes in linear MDP and deliver a similar con-
stant regret bound. The conclusions are drawn in Chapter [0, which also includes the future
directions and open questions in the unsupervised, reward-free reinforcement learning and

the misspecified, robust reinforcement learning algorithms.

1.2 Notation System in this Dissertation

In this dissertation, scalars are denoted by lowercase letters. Vectors are denoted by lowercase
boldface letters x, and matrices by uppercase boldface letters A. We denote by [k] the set
{1,2,---  k} for positive integers k. We use logx to denote the logarithm of = to the base

2. For two nonnegative sequences {a,}, {b,}, a, = O(b,) means that there exists a positive



constant C' such that a, < Cb,. Notation a, = O(b,) means that there exists a positive
constant k such that a, = O(b, log” b,). Notation a, = §2(b,) means that there exists a
positive constant C' such that a,, > Cb,,. Notation a,, = ﬁ(bn) means there exists a positive
constant k such that a,, = Q(b, log™* b,). Notation a,, = w(b,) means that lim,,_, b,/a, = 0.
For a vector x € R? and a positive semidefinite matrix A € R¥? we define ||x|3 = x' Ax.
For any set C, we use |C| to denote its cardinality. We denote the identity matrix by I and
the empty set by . The total variation distance of two distribution measures P(-) and Q(-)
is denoted by |P(-) — Q(:)|rv. Remaining notations are defined before they are used in each

chapter.



CHAPTER 2

Uncertainty-Aware Reward-Free Exploration with Linear

Function Approximation

2.1 Introduction

In this chapter, we study a theoretical framework for unsupervised exploration in reinforce-
ment learning, which is called reward-free exploration. In reinforcement learning (RL), an
agent sequentially interacts with an environment and receives rewards from it. In many
real-world RL problems, the reward function is designed manually to encourage the desired
behavior of the agent. Thus, engineers have to change the reward function time by time
and train the agent to check whether it has achieved the desired behavior. In this case, RL
algorithms need to be repeatedly executed with different reward functions and are sample
inefficient or even intractable. To tackle this challenge, |Jin et al| (2020a) proposed a new
reinforcement learning paradigm called Reward-Free Ezploration (RFE), which explores the
environment without using any reward function. In detail, the reward-free RL algorithm
consists of two phases. The first phase is called the Fzploration Phase, where the algorithm
explores the environment without receiving reward signals. The second phase is called the
Planning Phase, where the algorithm is given a specific reward function and uses the data
collected in the first phase to learn the policy. In Figure [2.1] we provide a comparison be-
tween the classical “reward-aware” exploration and the proposed ‘reward-free” exploration
when the RL agent is asked to learn three tasks (e.g., ice skating, swimming and playing

golf). Reward-aware exploration (Figure [2.1a]) explores the environment with a single, spe-
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Figure 2.1: Comparison between (a) the “reward-aware” exploration and (b) the “reward-free”

exploration.

cific reward so when the reward changes, the agent needs to repeat the exploration to adapt
the new reward function. Reward-free exploration, as presented in Figure 2.1D] aim to learn
a dataset without the reward function, which can potentially transferred to any single reward

without explore the environment again.

As a first step for reward-free exploration, |Jin et al.| (2020a)) has shown that this explo-

ration paradigm can learn a near-optimal policy in the planning phase given any reward

function after collecting a polynomial number of episodes in the exploration phase. The

subsequent work (Kaufmann et al., [2021a; [Ménard et al., 2020; Zhang et al., [2020) proposed

improved algorithms to achieve a better or nearly optimal sample complexity.

All of the aforementioned works are focused on the tabular Markov decision process

(MDP), where the number of states and the number of actions are finite. In practice, the



number of states and actions can be large or even infinite, for example, in a Go game (Silver
et al., 2016, the number of states is typically as large as 10%%°, making it impossible to apply
tabular methods that store data as a table of states. In the Atari games (Mnih et al., 2013)),
the input is usually a 210 x 160 image representing the visual input from the video game.
In both of these cases, function approximations (usually neural networks) are required for
the sake of computational tractability and generalization. However, the understanding of
function approximation for reward-free exploration, even under the simplest linear function
approximation, remains underexplored. To mention a few, Wang et al.| (2020b) studied linear
MDPs (Yang and Wang), 2019; |Jin et al., [2020b]), where both the transition probability and
the reward function admit linear representations, and proposed a reward-free RL algorithm
with a (5(d3H 6¢72) sample complexity, where d is the dimension of the linear representation,
H is the planning horizon, and € is the required accuracy. They also proved that if the
optimal state-action function is linear, then the reward-free exploration needs an exponential
number of episodes in the planning horizon H to learn an e-optimal policy. [Zanette et al.
(2020d) considered a slightly larger class of MDPs with low inherent Bellman error (Zanette
et all [2020b), and proposed an algorithm with O(d®H%2) sample complexity. However,
both works assume that the reward function is a linear function over some feature mapping.
Moreover, the lower bound proved in (Wang et al., 2020b) is for a very large class of MDPs
where the optimal state-action function is linear, thus it is too conservative and cannot
determine the information-theoretic limits of reward-free exploration for linear MDPs or

related models.

2.1.1 Organization of this Chapter

In this chapter, we seek a theoretical understanding of the statistical efficiency for reward-free
RL with linear function approximation. This chapter is organized as follows. In Section [2.2]
we review the related literature. In Section [2.3] we present the basic assumption of RL

with linear function approximation and the rigorous definition of reward-free exploration.
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The preliminary algorithm and analysis are presented in Section [2.4] In Section [2.5 we
seek to improve the sample complexity by incorporating the variance information into our
algorithm. In Section [2.6] we further extend the algorithm to a long-horizon setting and
present a nearly-minimax-optimal algorithm which does not suffer from curse of horizon in
RL. The conclusion is drawn in Section and we defer the detailed proof of the theorems
to Section 2.8

2.2 Related Works

2.2.1 Reinforcement Learning with Linear Function Approximation

In recent years, a series of works have been devoted to the study of RL with linear function

approximation (Jiang et all) [2017; Dann et al., 2018; Yang and Wang| 2019; [Wang et al.

2019 Du et all, [2019; [Sun et all, [2019; |Jin et al., [2020b} [Zanette et al., [2020a/b} [Yang and

Wang, [2020al, Modi et al., 2020} [Ayoub et al., 2020} [Jia et all, [2020; [Cai et al.l 2020 [Weisz
et all, 2021} [Zhou et all 2021c]a; He et all [2022a; [Agarwal et all, [2022). Our work belongs

to the linear mixture MDP setting (Yang and Wang), 2019; Modi et al.l 2020; Ayoub et al.|

2020}, [Jia et al. [2020; [Zhou et all [2021alld), where the transition kernel can be parame-

terized as a linear combination of some basic transition probability functions. [Zhou et al.
(2021a) firstly achieved minimax regret 9] (dH VT ) in linear mixture MDPs by proposing

a Bernstein-type concentration inequality for self-normalized martingales. Another kind of

popular linearly parameterized MDP is linear MDP (Wang et al., [2019; [Du et al., 2019;
Yang and Wang}, [2020a); [Jin et al., 2020b; [Zanette et all, [2020a; [Wang et al., 2020c}
2021a), which assumes that both transition probability and reward function are lin-

ear functions of known feature mappings in state-action pairs. In this setting,
(2020b) first proposed the statistically and computationally efficient algorithm LSVI-UCB
and achieved a O (\/ A3H3T ) regret bound. Recent works (He et al.| 2022a)) further achieved

nearly minimax optimal regret 6(d\/ H3K) by proposing the computationally efficient algo-

11



rithm LSVI-UCB++. Its concurrent work (Agarwal et all 2022)) achieves a similar result
under assumption Y2, (sy, a) < 1 with regret upper bound of O(dvHT + dH®).

2.2.2 Reward-free Exploration

Exploration efficiency has always been a popular topic in RL. sophisticated exploration
strategies like 3 (Kearns and Singh), 2002) have been proposed to guide the exploration and
these algorithms are proved to require only polynominal time to explore the environment.
Unlike standard RL settings in which the agent interacts with the environment with reward
signals, reward-free exploration (Jin et al. 2020a)) in RL introduced a two-phase paradigm.
In this approach, the agent initially explores the environment without any reward signals.
Then, upon receiving the reward functions, it outputs a policy that maximizes the cumula-
tive reward, without any further interaction with the environment. Jin et al.| (2020a)) first
achieved 5([—] ’S2A/e*) sample complexity in tabular MDPs by executing exploratory policy
visiting states with probability proportional to its maximum visitation probability under any
possible policy. Subsequent works (Kaufmann et al., |2021b; [Ménard et al. 2021 proposed
algorithms RF-UCRL and RF-Express to gradually improve the result to O (H352Ae2).

The optimal sample complexity bound O(H252Ae~2) was achieved by the algorithm SSTP
proposed in|Zhang et al.| (2020]), which matched the lower bound provided in|Jin et al. (2020a))
up to logarithmic factors. Recent years have witnessed a trend of reward-free exploration in
RL with function approximations, while most of these works are considering linear function
approximation: In the linear MDP setting, Wang et al.| (2020b) proposes an exploration-
driven reward function, and the minimax optimal bound was achieved by Hu et al.| (2022)
by introducing weighted regression into the algorithm. In linear mixture MDPs, Zhang et al.
(2021€)) proposed the ‘pseudo reward’ to encourage exploration, |Chen et al. (2021); [Wagen-
maker et al| (2022) improved the sample complexity by introducing a more complicated,

recursively defined pseudo reward. The minimax optimal sample complexity, (5(d2/ €?) was

!Time means if the algorithm is time-homogeneous (v') or not (x).
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Table 2.1: Comparison of episodic reward-free algorithms.

Setting Algorithm Rewards Scale Timd] Sample Complexity
Jin et al.| (2020a) rn(Sn,an) € [0, 1] X O(H5S2Ac2)
Kaufmann et al.| (2021a) rr(sn,an) € [0,1] X O(H*S2Ae~2)
Tabular Ménard et al.| (2021) rn(Sn, an) € [0,1] X O(H3S2Ae2)
MDP Zhang et al, (2020) SH rp(span) <1 v O(52A:72)
Lower bound rn(Sn, an) € [0,1] X Q(H?S%A4:7?)
(Jin et al, [2020a)
bower bond S rGsman) <1 ¢ Q(524e2)
(Zhang et al., [2020)
Linear Wang et al.7(2020b) rn(Sn, an) € [0,1] X 0 (H®d%—2)
MDP Zanette et al. (2020d)) rh(sn,ap) € [0, 1] X 0 (H5d3€72)
Wagenmaker et al.| (2022]) rn(sh,an) € [0, 1] X 0 (H5d2€_2)
Theorem [2.5.1 rr(sn,an) € [0,1] v O (H4d(H + d)€_2)
Linear Chen et al| (2021) r(sn, an) € [0,1] x O (H3(H + d)e?)
Mixture Corollary [2.6.4 Zthl rh(sh,ap) < 1 v O(d2e2)
MDP Corollary [2.6.6 Zthl ri(sn,an) < H v O(H?d?~2)
Lower bound (Thm. [2.6.8 ZhH:1 rh(Sh,ap) <1 v Q (d25_2)
Lower bound (Cor. [2.6.10 rn(Sn,an) € [0,1] v Q(H?d*c2)

achieved by [Zhang et al.| (2023a) in the horizon-free setting. Moving forward, in the general
function approximation setting, Kong et al. (2021) used ‘online sensitivity score’ to esti-

mate the information gain. As a result, they were able to provide a sample complexity of

O(d*H®¢™%). Here, d represents the dimension of contexts when the problem is reduced to
linear function approximations. Yet another line of works (Chen et all |2022a,b) aimed to
follow the Decision-Estimation Coefficient (DEC, [Foster et al. 2021) and provided a uni-
fied framework for reward-free exploration with general function approximations, achieving

a O(poly(H)d2e2), nevertheless, all existing works with general function approximations
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leave a huge gap between their proposed upper bound and lower bound, even when reduced

to linear settings. We record existing results in Table

2.2.3 The Curse of Horizon in Reinforcement Learning

The long planning horizon has long been viewed as RL’s main challenge. However, a series
of works have shown that RL is no more difficult than contextual bandits by removing the
influence of the total reward scale. In tabular MDPs, the algorithm proposed in Wang
et al. (2020a) first achieved the polylogarithmic H dependency sample complexity bound
O(S5A%=2) by carefully reusing samples and avoiding unnecessary sampling. Zhang et al.
(2021¢)) further proposed an improved algorithm MVP to achieve the near-optimal regret
bound 5(\/5/17 + S?A) based on a new Bernstein-type bonus. Similar polylogarithmic
dependency bounds H had been established by Ren et al| (2021) for linear MDP with
anchor points, [Tarbouriech et al. (2021) for the stochastic shortest path. [Li et al. (2022)
achieved the surprising H independent sample complexity bound O((SA4)°%)e=?) by building
a connection between discounted MDPs and episodic MDPs and a novel perturbation analysis
in MDPs. The algorithm proposed by Zhang et al.| (2022) further improved the sample
complexity to O(S? A3 2polylog(S, A,e71)) only polynomially depending on the size of the
state and the action spaces by exploiting the power of stationary policy. Thanks to the linear
function approximation, Zhou and Gul (2022a)) first achieves the horizon-free regret bound
9] (d\/? +d?) independently of the size of the state and action spaces. However, all the above
works are limited to standard RL settings. In the paradigm of reward-free exploration, the
only horizon-free result was achieved by Zhang et al.| (2021b) with sample complexity bound
of 5(5 2Ae?), where the polynomial dependency on S and A is still unacceptable when the
state space and action space are large. Our algorithm HF-UCRL-RFE+-+ establishes the
first horizon-free sample complexity bound independent of the size of the state space and

action space in reward-free exploration.
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2.3 Preliminaries

2.3.1 Episodic Markov Decision Processes

We consider episodic finite-horizon Markov Decision Processes (MDPs), which are denoted
by a tuple M (S, A, H,{r,}:L ). Here S is the countable state space (may be infinite), A
is the action space, H is the length of the episode, and 7, : S x A — [0,1] is the reward
function. Without loss of generality, we assume that the reward function ry, is deterministic.
P(s'|s,a) is the transition probability function that denotes the probability for state s to
transit to state s’ given the action a at step h. A policy 7, : S — A is a function that maps
a state s to an action a. We define the action-value function (i.e., Q-function) Q7(s,a) as

follows:

H

Qis.aitrula) = E| 3 relow )

h/=h

%=a%=4wmmwm=mum@mwn

For simplicity, we denote Q7 (s, a;7) = Q7 (s, a; {rp}n) and V;"(s;7) = V™ (s; {rn}n). We define
the optimal value function {V;*}/_, and the optimal state-action value function {Q;}_, as
Vi¥(s;r) = sup, Vi (s;7) and Qj(s,a;r) = sup, QF(s,a;r) respectively. For any function

VS8 — R, we denote [PV](s,a;7) = Eg. pi|s,0)V (5';7), and denote the variance of V' as

[VI(s,a) = [Pf*](s,a) — ([Pf](s,a)*). (2.3.1)

In particular, we have the following Bellman equation, as well as the Bellman optimality

equation:
Qh(s,a;7) = (s, @) + [PV ](s, a5 1), Qh(s, ;) = (s, @) + [PVi'] (s, a5 ).

In this paper, we focus on model-based algorithms and consider the following linear miz-
ture/kernel MDP (Modi et al., 2020; |Jia et al., 2020; |Ayoub et al., 2020} |Zhou et al., 2021d),
which assumes that the transition probability P is a linear mixture of d signed basis measures.
Meanwhile, for any function V', we assume that we can do the summation ), s @(5'|s, a)V (s)

efficiently, e.g., using the Monte Carlo method (Yang and Wang, 2020b).
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Definition 2.3.1 (Linear Mixture MDPs (Jia et al. 2020; |Ayoub et al., [2020; Zhou et al.|
2021d))). The unknown transition probability P is a linear combination of d signed basis
measures ¢;(s'|s, a), that is, P(s'|s,a) = 3.7, ¢:i(s'|s, a)8*. Meanwhile, for any V : S — [0, 1],
i€ [d],(s,a) € S x A, the calculation of the summation Y ¢ ¢:i(5'|s,a)V (s) is feasible. For
simplicity, let ¢ = [¢1,...,¢4)", 0% = [0F,...,05]" and Yy (s,a) = D .5 P(s]s,a)V ().
Without loss of generality, we assume |0*|, < B, ¢y (s,a)|2 <1 forall V : S — [0,1] and
(s,a) e S x A.

Remark 2.3.2. A similar but notably different definition (i.e., linear MDPs (Yang and
Wang, 2019; |Jin et al [2020b)) has been used in Wang et al| (2020b), which assumes that
P(s'|s,a) = {¢p(s,a), u(s")) and ry, = {(¢(s,a),0), pn(-) is a measure and 8}, is an unknown
vector. Comparing with linear MDPs;, linear mixture MDPs do not need the reward function

r to be linear, which makes our algorithms more general.

With Definition [2.3.1] it is easy to verify that the expectation of any bounded function

V' is a linear function of 1:

[PV](s,a) = (v (s,a),0%). (2.3.2)

2.3.2 Formal Definition of Reward-Free Exploration

For reward-free exploration, the algorithm can be divided into two phases: exploration phase
and planning phase. In the exploration phase, the algorithm cannot access the reward
function but collect K episodes by doing exploration. In the planning phase, the algorithm
is given a series of reward functions and find the optimal policy based on these reward
functions, using the K episodes collected in the exploration phase. We formally define (e, 0)-

learn and sample complexity of the algorithm as follows (Jin et al., [2020a)).

Definition 2.3.3 ((€, d)-learnability). Given an MDP transition kernel set P, reward func-

tion set R and a initial state distribution p, we say a reward-free algorithm can (e, §)-learn
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the problem (P, R) with sample complexity K (e, ), if for any transition kernel P € P, af-
ter receiving K (e, d) episodes in the exploration phase, for any reward function r € R, the
algorithm returns a policy 7 in planning phase, such that with probability at least 1 — 9,
EonnVit(s137) = Vi (s1im)] < e

2.4 Theoretical Guaranteed Reward-Free Exploration

In this section, we propose a reward-free algorithm. This algorithm works as follows: Firstly,
during the exploration phase, it samples the MDP episodes, build an estimator 8 for the
MDP parameter 8*, and compute the covariance matrix ¥ of the feature mappings, which
characterizes the uncertainty of the estimator 6. Secondly, during the planning phase, the
algorithm uses the collected @ and ¥ in the exploration phase to find the optimal policy 7

based on the given reward functions.

2.4.1 Proposed Algorithms
2.4.1.1 Planning Phase Algorithm

We first introduce the PLAN function (Algorithm [1), which is a common module in both
planning phase and exploration phase. Given a series of reward functions {r,}, the goal of
PLAN function is to output the optimal policies {m,}; and Q-functions {@Q,} corresponding
to {rn}tn. Suppose the parameter 6* is known, we can compute {Q,}, recursively by the

following Bellman equation:

Qn(s,a;r) = (s, a) + [PVhi1](s, a;7) = rp(s,a) + Py, (s,a),0%), (2.4.1)

Qn(s,a;r) can be viewed as the summation of the reward function rj,(s,a) and a linear
function (v, ., (s,a),0%). However, since 6* is unknown, we cannot compute @), as in
(2.4.1). Instead, PLAN takes the estimated parameter 8 and the “covariance matrix” X as

input. To calculate @), PLAN replaces 0* with the estimated @ and plus an additional
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Algorithm 1 UCRL-RFE Planning Module (PLAN)

Input: Estimated parameter and covariance 6, X, reward {r,}/__  parameter 3.

1: For consistency, set Qgi1(-,+) < Vigi1(:) < 0

2: forh=H,H—-1,---,1do

3 Compute Q function as Qu(-7) — [1a(+-) + (v, (58> + Bltbvi, (s ] oy
4:  Compute value function Vj(-) « maxqes Qn(-, a)

5. Compute policy as () «— argmax,c 4 Qn(-, a).

6: end for

Output: Policy m < {m,}_, and {V},,}}L,

exploration bonus term Sy, (-,-)|s- to (2.4.1)), as in Line [3] of Algorithm []} Then PLAN
takes the greedy policy of the calculated optimistic (), and proceeds to the previous step.

Finally, the algorithm returns policy 7 in Line [5| as well as the estimated value functions

{Vh}h'

2.4.1.2 Exploration Phase Algorithm

Based on the introduced PLAN function, we propose the UCRL-RFE algorithm in Algo-
rithm [2 In general, UCRL-RFE guides the agent to explore the unknown state space
without the information of the reward functions. In detail, for the k-th episode, UCRL-RFE

first defines the exploration driven reward function as follows:

. 28
bt = min {137, [ s (s.0)ly | (2.42)

where X, is the “covariance matrix” of the feature mapping. Intuitively speaking, 5 (s, a)
represents the maximum possible uncertainty level of the state-action pair (s, a) caused by
the randomness of the MDP transition function, which is independent of the true reward
functions. Therefore, in order to obtain a good estimation of the optimal policy for any given
reward functions, it suffices to obtain the optimal policy for rf(s,a). Thus, after obtaining

{r¥};,, UCRL-RFE finds the corresponding near-optimal policies {7}'}; using PLAN function,
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with the estimated parameter 8, and the “covariance matrix” 3; ; as input. UCRL-RFE

uses {7F};, as its exploration policy and observes the new episode s¥, a¥, ..., s%, a¥ induced

by {7}

Next, UCRL-RFE needs to compute the parameters 8;,, and ¥ ;. for planning in the
next episode. Similar to UCRL-VTR proposed by (Jia et al. 2020; Ayoub et all 2020,
UCRL-RFE also uses a “value-targeted regression (VTR)" estimator, which computes ;.4
as the minimizer to a ridge regression problem with the target being the past value functions.
The main difference between UCRL-RFE and UCRL-VTR is that, due to the lack of true
reward functions, UCRL-RFE can not use the estimated value functions as its regression
targets. Instead, UCRL-RFE defines the following pseudo value function uk:

up = argmax ¥ (sy, aﬁ)Ei,lgzpf(s’fL, ar). (2.4.3)
feS—[0,H—h]

Here, uf maximizes the “uncertainty" caused by the transition kernel, which will help the

agent to explore the state space. Now given the pseudo value functions, Algorithm [2| com-
putes the estimated 6,1 as the minimizer to the following ridge regression problem:
k H )
Or1 < argmin A6 + Z Z <<07¢uk/(sz Lap )y — up (SZH)) : (2.4.4)
0 h
k'=1h=1

which has a closed-form solution as in Line [I2] It also updates the covariance matrix 3 j1,
as in Line by the observed feature mapping {gbuﬁ(sﬁ,aﬁ)}h in the current episode. In
the end, after collecting H K state-action samples, UCRL-RFE calculates the policy {m,} as

output based on Ok and ¥ k1.

Remark 2.4.1. Here we do a comparison between our UCRL-RFE and the reward-free RL
algorithm in Wang et al. (2020b). The main difference is that [Wang et al.| (2020b)) estimates
0, by regression with the value function V;* being the target, while our UCRL-RFE does
regression with the pseudo-value function u being the target. That is mainly due to the

different problem settings (linear MDP vs. linear mixture MDP).
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Algorithm 2 UCRL-RFE (Hoeffding Bonus)

Input: Confident parameter /3, regularization parameter A

1: Phase I: Exploration Phase

2: Initialize 37 ; <« AL by <~ 6, < 0O

3: for k=1,2,--- K do

4:  Compute the exploration driven reward function {rf(-,-)}*_, according to ([2.4.2)

5. Compute exploration policy and value function as ({m/}iL, {VFIL)) <
PLAN(O)., 1, {ry}i1. B)

6:  Receive the initial state sf ~ u

7. forh=1,2,---,H do

8: Take action af « 7f(sf) and receive sf_,
9: Calculate uf for s§, a¥ according to (2.4.3)
10: Set Xpi1 g Bnp + Pur (sh ap)Pur (sh ai) T brri < ok + P (sh, ap)uf(shy)

11:  end for

122 Set 3y pi1 < Bpsik bresr < bryig, Orpr Eillc+1b1,k+1

13: end for

14: Phase II: Planning Phase

15: Receive target reward function {rj}7_,

16: Compute policy as ({mn i, {Vi}iL,) < PLAN(Ok 11, X1 k11, {Th}11, )

Output: Policy {m,}1,

Remark 2.4.2 (Implementation Details). In general, solving the maximization problem
(2.4.3) is hard. Here, we provide a simple approximate solution to the problem ([2.4.2))
and ([2.4.3) for the finite state space case (|S| < ). Instead of maximizing the ¢, norm-

based objective | E;,lfw,bf (s§,af)

,» We write ¥¢(s,a) = ®(s,a)f with

(I)<S7 CL) = <¢(87 a, Sl)a R 7¢(87 a, S\S|))7 f= (f(Sl)ﬂ e Jf(S\3|>>T
By relaxing the ¢, norm into ¢; norm due to x|y = [x1]1/v/d for any x € R? we reach a
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surrogate objective:
max HE;}C/Q@(s,a)le subject to |f| < H — h, (2.4.5)

which can be further formulated as a linear programming problem, and solved by interior
method (Karmarkar, |1984) or simplex method (Dantzig, 1965) efficiently. Since |x|;/v/d <
|x|2 < |1, the performance of this approximate solution is guaranteed. For the case where
the state space is infinite, we can use state aggregation methods such as soft state aggregation
(Michael and Jordan, [1995) to reduce the infinite state space to a finite state space and then

apply the above approximate solution to solve it.

2.4.2 Sample Complexity Analysis

Now we provide the sample complexity for Algorithm

Theorem 2.4.3 (Sample complexity of UCRL-RFE). For Algorithm [2] setting parameter
B = H+/dlog(3(1+ KH3B?)/6)+1, A= B7% thenforany0<e<1,if K = O(H5d2e2),

we have with probability at least 1 —¢ that, for any reward function r, Algorithm [2| produces
a policy m with E,_,[Vi*(s;r) — V] (s;7)] < e

Remark 2.4.4. Theorem m shows that UCRL-RFE only needs poly(d, H, e~ ') sample
complexity to find an e-optimal policy, which suggests that model-based reward-free algo-
rithm is sample-efficient. Thanks to the linear function approximation, the sample complex-
ity depends only on the dimension of the feature mapping d and the length of the episode

and does not depend on the cardinality of the state and action spaces.

Corollary 2.4.5. Under the same conditions as in Theorem [2.4.3] if solving the relaxed
optimization problem in ([2.4.5), Algorithm [2{ has K = O(H?d3¢2) sample complexity.
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2.5 Improved Algorithm and Analysis with Variance Information

Theorem suggests that UCRL-RFE in Algorithm [2 enjoys an O(H?d%e2) sample com-
plexity to find an e-optimal policy. In this section, we seek to further improve the sample

complexity.

A key observation is that for any given reward function {r},, the error between the
exploration policy {m,}, and the optimal policy can be decomposed into two parts: the
exploration error which is the difference between {rj}; and the exploration-driven reward
function {rf},, and the approximation error which is the difference between the optimal
value function Vi*(:;r¥) and our estimated value function Vfﬁ(-; rk¥) with respect to {rf},.
For the latter, our exploration strategy adapted from VTR is often too conservative since it
does not distinguish different value functions and state-action pairs from different episodes
and steps. Therefore, inspired by (Zhou et al., [2021al), we propose a variant of UCRL-RFE
called UCRL-RFE+, which adopts a Bernstein-type bonus for exploration and achieves a

better sample complexity.

2.5.1 Exploration Phase Algorithm with Variance Information

UCRL-RFE+ is presented in Algorithm |3l The structure of the algorithm is similar to that
of UCRL-RFE, which can be decomposed into the exploration phase and the planning phase.
There are two main differences. First, in contrast to UCRL-RFE which uses 8, for the PLAN
function in both exploration and planning phases, UCRL-RFE-+ only uses 8 1 for the PLAN
function in the planning phase. For the exploration phase, UCRL-RFE+ constructs a new
estimator ék based on {thil}klgk_Lh, which are the value functions of the exploration-driven
rewards. Second, to build §k, one way is to choose it as a solution to the ridge regression
problem with contexts zpvﬁl(sﬁ',ak/) and targets V%, (s¥. ), similar to (2:4.4). However,
since the targets Vi, (st ,) have different variances at different steps and episodes, we are

actually facing a heteroscedastic linear regression problem. Therefore, inspired by a recent

22



Algorithm 3 UCRL-RFE+ (Bernstein Bonus)

Input: Parameter [, B, E , B, regularization parameter \
1: Stage I: Exploration Phase
2: Initialize £,1 = £11 =81, =ALby=b; =b, =6, =6, =6, =0
3 fork=1,2,--- K do
4. Set {rF(-, )L, to (2.4.2).
5 Set ({mh}ily, (Vi) < PLAN(BL, S, {71l )
6:  Receive the initial state sf ~ p.

7. forh=12,--- Hdo

8: Take action af = 7¥(sF) and receive s}, ,
9: Calculate uf, vf for s¥ a¥ according to (2.4.3) and (2.5.2)) separately
100 Set Bppyp < Bnp + (s, ap) v (sh ai) T

11: Set ih—i—l,ka §h+1,k; Bh+1,k, bj i1k USing

122 end for

13: Set Xy 41 < BHt1k

14:  Set il,k-&—l « §H+1,k, Bl,k+1 — BH+1,k7‘§kz+l - gl_}cﬂgl,kﬂ

15:  Set §1,k+1 «— §H+1,k; Bl,k+1 « BH+1,k7§k+1 - iil&:HBLkH

16: end for

17: Set Q41 — 21_,}(“ PIED I %5(827 ay ) (sh 1)

18: Stage II: Planning Phase

19: Receive target reward function {r,},

20: Compute the exploration policy as ({ms} |, {Vi}L|) < PLAN(Of 11, X1 rc11, {rn}ily, B)

Output: Policy {m,}L,

line of work |Zhou et al.| (2021a); Wu et al.| (2021) using Bernstein inequality for vector-
valued self-normalized martingale to construct a tighter confidence ball for exploration, we

also incorporate the variance to build choose é\k as the solution to the following weighted
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ridge regression problem, which is an enhanced estimator for the heteroscedastic case:
k—1 H

o~ K 2 /
0y, — arg;nin)\HBH% + Z Z <<0a77bv}f/ Shvah > h+1 5h+1 ) /lor 17, (2.5.1)
k'=1h=1

where [0]? is the variance of Vi, (sF, ;). The idea of using variances to improve the sample
complexity is closely related to the use of “Bernstein bonus" in reward-free RL for the tab-
ular MDPs (Kaufmann et al., 2021a; Zhang et al., 2020; Ménard et al., [2020). Since of is
unknown, we will use v} = [5F]? as a plug-in estimator to replace [of ]? in ([2.5.1). After ob-
taining 0, UCRL-RFE+ sets ELk as the covariance matrix of the features ¥y (sk,af) /oy,
and feeds it into the PLAN function with the exploration-driven reward functions and the con-
fidence radius B. UCRL-RFE+ takes the output {rF},, as the exploration policy and {V/*},
as the value functions to construct the estimator §k+1 for the next episode. In the end, when
it comes to the planning phase, after receiving the reward functions {r;},, UCRL-RFE+
takes O 11 as the solution to the ridge regression problem with contexts {1, (sh, ay )} and
targets {u} (s}, )}k, and the covariance matrix 3 k41 as input, and uses PLAN to find the
near-optimal policy {m,}, with confidence radius 3. It remains to specify v} in the weighted
ridge regression. On the one hand, we need v¥ to be an upper bound of [oF]?. On the other

hand, we require ¥ to have a strictly positive lower bound to let (2.5.1)) be valid. Therefore,

we construct V,’f as follows:
vy = max{a, Vi (s, ay) + Ep sy, ap)}, (2.5.2)

where V¥ is the estimated variance of value function V¥ and EF is a correction term to
calibrate the estimated variance, and a > 0 is a positive constant. To compute V¥(s¥ a),

consider the following fact:

[VViial(s,a) = [PV P](s,a) = [PV (s, 0) = (0% by p2(s,a)) — <07, 4y (s,a))”,

it suffices to estimate (6*, ¢[V}{cﬂ]2(s, a)y and (6%, Yy (s,a)) separately. For the first term,

0* can be regarded as the unknown parameter of a regression problem between contexts
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1/)[‘/}&:1]2(3’,?:, a¥') and targets 1/)[fo 2 .(s¥ alf"). Therefore, the first term can be estimated by

(P, 2 (s, ), 6, where

k-1 H

~ Y 2
61— argmin MO + 3} 3 (0w (ot af)) — AL ()P
k'=1h=1

In addition, the second term <0*,¢Vf+1(s,a)> can be approximated by <1/Jvf+1(s,a),§k>.
Therefore, the final estimator [VV/ ,](s, a) is defined as

Vi(s,a) = [y, o (s.0). 60 (s (s,a),§k>]2 | (2.5.3)

o |

For the correction terms EY, we define it as follows:

Er(s,a) = min {HZ, E}\w[mlp(s, a>|‘§ii} + min {Hz, 2HBH¢V’5H(3, a)

I }’

1,k

where 3, ; is the covariance matrix of the features ’l/)[V}f/ 2 .(s¥ ak"), B, B are two confidence

radius. It can be shown that, with these definitions, V¥ (s, a) + E¥(s,a) is an upper bound

of [02]2.

Finally, to enable online update, UCRL-RFE+ updates its covariance matrices recursively

as follows, along with sequences B’fl, Eﬁ

Yhi1k < Dpg + 1/’\/;5“(32; a2)¢Vf+1<Sli€m ay)" /vy
Yhire < Bpp TP [Vik 2(527 az)ip[vk ]2(327 @Z)T
bh+1 k< bh kTt ka 1(3h7 ah>vh+1(5h+1)/Vh

bpsik < b + 7/’[\/}5“]2(5]13’ ap) [Vira (sh )], (2.5.4)

where uf is the pseudo value function in (2.4.3) and v is defined in (2.5.2). Then UCRL-
RFE+ computes é\k, gk as in Line |14 to Line |15 of Algorithm .

2.5.2 Sample Complexity Analysis

Now we present the sample complexity for Algorithm [3]
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Theorem 2.5.1 (Sample complexity of UCRL-RFE+). For Algorithm , setting A = B2,
a = H?/d in (2.5.2)), and the confidence radius as

= 8y/dlog(1 + K HB?)log(48K2H?2/5) + 4V dlog(48K*H?/8) + 1

8dr/log(1 + K HB?)log(48K2H?2/5) + 4v/dlog(48K*H?/5) + 1

= 8H?\/dlog(1 + K HB?)log(48K2H?/5) + 4H? log(48K*H?/5) + 1

]
B
]
B = Ha/dlog(12(1 + K H3B2)/5) + 1,

then for any 0 < € < 1, if K = O(H*d(H + d)e2), then with probability at least 1 — 4, for

any reward function r, Algorithm [2| outputs a policy 7 with Ey_,[Vi*(s;7) — V" (s;7)] < e.

Remark 2.5.2. Theorem suggests that when d > H, the sample complexity of UCRL-
RFE+ is O(H4d2¢2), which improves the sample complexity of UCRL-RFE by a factor of
H. On the other hand, when H > d, the sample complexity of UCRL-RFE+ reduces to

O(H®de™?), which is better than that of UCRL-RFE by a factor of d. At a high level, the

sample complexity improvement is attributed to the Bernstein-type bonus.

Corollary 2.5.3. Under the same conditions as in Theorem [2.5.1] if solving the relaxed
optimization problem in (2.4.5), Algorithm [3 has K = O(H5d3¢2) sample complexity.

2.6 Optimal Horizon-Free Reward-Free Exploration Algorithms

In Section and [2.5] we have discussed the reward-free exploration when the reward
function is bounded by rp(s,a) € [0,1]. Therefore, the total reward collected over H steps
is bounded by Zthl rn(s,a) < H and the sample complexity presented in Theorem m
and Theorem have a high dependence on H. In this section, we extend the reward-free
exploration algorithms to the bounded total reward setting and aim to remove the dependence
of H in this situation. Therefore, we assume that the accumulated reward of an episode for

any trajectory is upper bounded by 1, which ensures that the only factors affecting the final
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statistical complexity are difficulties brought by exploration and long planning horizon rather

than the scale of the total reward.

Assumption 2.6.1. (Bounded total reward) For any trajectory {sj,as}5_,, we have 0 <

S rn(sh, ap) < 1. We denote the set of reward functions that satisfy this by R.

Following Zhou and Gul (2022b)), we propose an exploration algorithm called HF-UCRL-
RFE++ using high-order estimation to get the horizon-free sample complexity in the regime

of reward-free exploration.

2.6.1 Proposed Algorithms

In this section, we propose our reward-free exploration algorithm HF-UCRL-RFE++. This
algorithm consists of two phases. In the exploration phase, it builds an estimator 6 for the
linear mixture MDP transition kernel parameter 8* based on the sampled episodes. At a
high level, the estimation follows the value-targeted regression (VITR) framework proposed
by |Jia et al.|(2020)). The VTR is basically a ridge regression with value functions as responses
and feature mappings as predictors. However, value functions do not have estimates since
the reward function is not accessible. Therefore, the value functions and reward functions
are replaced by well-designed exploration-driven pseudo-value functions and pseudo-reward
functions. To achieve a better estimation, we further apply the high-order moment estimation
(HOME) technique proposed by [Zhou and Gu (2022a). Then, during the planning phase,
the algorithm uses the estimator @ acquired in the exploration phase to find the optimal

policy 7 for the given reward functions. Our algorithm is described in Algorithm

2.6.1.1 Exploration-driven Pseudo Value Function

As mentioned above, in the paradigm of reward-free exploration, we have to construct the
pseudo-reward function to guide the agent in taking actions in the absence of the real reward

function. As we adopt in this work, the most natural idea is to construct the pseudo-reward
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Algorithm 4 HF-UCRL-RFE++ (High-order Estimation)

Input: Confidence radius {f}, regularization A, number of the high-order estimator M.

1: Phase I: Exploration Phase

2: nitialize 211, = 211,m = AL biim = b1y, = 0 for all m e [M], Uy = {6]0 € R}
3t Set él,m — if&,mgl,l,m, él,m — if}mgllm for all m e [M].

4: for k=1,2,--- ,K do

5. Set my, O, Tk = argMax, gy er Via(s130,m,7), Viy is defined in (2.6.2).

Denote {th()}thl = {Vi(; Ok, i) 11, Receive initial state s = .

7. forh=12,--- Hdo

2

8: Execute af = 7} (s§), receive sf | ~ P (-]}, af).
9: For m € [M], denote ¢y pm = (ﬁ"}ka (sk,ar), (bkhm = ¢V2m (sh, ar).

10: Set {ak,h,m} <~ HOMEAlg. <{$k,h,m7 Ok,ma z]k,h,ma Ek,m}? ﬁk? «, 7) .
11: Set {5k,h,m} — HOMEAlgA<{$k,h,m7§k,m7 ik,h,ma ik,m}vﬁka 04,7)-

120 Set Zpnrim < Zhnm + O ®rpmi s for m e [M].
13: Set 3. il < S, o+ b hm&;,h,ma,;ivm for m e [M].
14: Set by 1m < Bronm + GronnViine1 (S51)F4r . for m e [M].
15: Set by 1,m < bronm + GronnVin1 (s51)5 2, for m e [M].

16:  end for

17: ik-ﬁ-l,m — fj1c,H+1,m, ijk+1,m — 2A3k,H+1,m-

18:  Set fl1<;+1,17m — f3k,H+1,m, Bk-‘rLl,m — Ek,HH,m, §k+17m = Ekil 1 mgk—i-l,lnn-
19:  Set fl/<;+1,17m — ik,H+l7ma Bk+1,1,m «— Bk,HH,m, §k+1,m Ekil 1 mbkz+1,1,m-
20:  Update the confidence set U}, to U1 by adding constraints ( m, .
21: end for

22: Phase II: Planning Phase

23: Receive reward function r and return policy 7, = arg max, Vi(-; 0k, m, 7).

function related to uncertainty, which urges the agent to collect information about the most

uncertain states and actions. Two approaches follow this idea: one is constructing the pseudo
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reward function directly measuring and maximizing the uncertainty of each stage, and the
other is constructing the pseudo reward function maximizing the overall uncertainty along
trajectories. [Zhang et al. (2021e) took the first approach, constructing the pseudo-reward

function in the form of

rh(s.) = min {1, %/Vesgn[%_h] I (5. ) |51 )
and the pseudo-value function to be the argument of the maxima for the above uncertainty
measure. Under this construction, the suboptimality in the planning phase can be bounded
by the accumulation of uncertainty. This approach is straightforward but has the following
two drawbacks. Firstly, without the truncation for accumulation of uncertainty, the upper
bound of overall suboptimality in the planning phase will be in the scale of O(H), which
is meaningless since the value function lies in the interval of [0, 1] under our assumption.
Second, since VTR utilizes value functions’ variance information for @ estimation, it requires
a Bellman-equation-type equality between two consecutive stages h and h + 1. However,

the first approach does not satisfy this requirement, preventing us from acquiring a more

accurate estimate.

To address the above issues, we follow the design of pseudo value function proposed in
Chen et al. (2021). In particular, we are constructing the pseudo-reward function aiming to
maximize the overall uncertainty along trajectories. We view the uncertainty of states and

actions as a function of (pseudo) reward function r, policy 7, and transition kernel parameter

0 defined as follows

ugn(s,a;0,m, 1) =min {1, ﬁH(th(.;gﬂmﬂ)(S, a) Hf:,j }, (2.6.1)
0

where V},(+; 0,7, 1) is the the value function of policy 7 for linear mixture MDP with tran-
sition kernel parameter @ and the reward function r, and the overall uncertainty along the

trajectory is the truncated sum of each step uncertainty defined as
Vien(s;0,7,7) = min {l,uk,h(s, 7(s);0,m,r) + ¢‘T/k,h+1(.;0,mr)(s, W(s))g*}.

29



However, the definition of V4 5 (s; 8, 7, r) involves 8* | which is unknown to the agent. Hence,
we construct the optimistic estimation of Vj 5, (s; 6, 7,7) as Vk,h(s; 0, m,r) defined as

?kyh(s; 0,7, 7) = min {1,uk,h(s, 7(s);0,m, 1) + 25“¢§k7h+1(~;9,w,7~)<37W(S)) Hi-\:—l

k,0

N Y O] (2.6.2)

Vie,h+1

Notable, the definitions of uy; and ‘A/M involve the covariance matrices ik,o and f);ao, which
are computed at the end of the preceding episode at Line [I7] of Algorithm [l In the following
content, when there is no confusion, we may write \A/kh() = ‘7k7h(-;0k,7rk,rk), wp () =
Uk h(-y Ok, T, 7). In order to collect more information, the agent is expected to transit
through the trajectory with the largest uncertainty \A/k’h. It is notable that ‘A/;m is a function
of (pseudo) reward function r, policy 7, and transition kernel parameter 6. Thus, at
the beginning of each episode, we set r, m, and 0, to be arguments of the maxima, as
presented in Line [ in Algorithm [l Through this process, we acquire the pseudo value
function rg, which is essential for reward-free exploration. Afterward, the algorithm collects
samples along trajectories induced by policy 7 and improves the estimation of 6y, in Line [6]
to Line 21} In this stage, Algorithm [] encounters two series of functions in the form of
Bellman equations; one is the sum of pseudo rewards r, ‘7“() = Vi(+; O, 7k, %), which we
refer as pseudo value function, and one is the uncertainty along the trajectory, Vk,h. These
two series of functions are both eligible for refined VIR and thus help estimate 8, as we will

explain in the following.
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Algorithm 5 High-order moment estimator (HOME)

Input: Features {¢kah7m}memv vector estimators {Okvm}mGM7 covariance matrix

{Ek’h’m, Ekm} __, confidence radius [, a, 7.

me[M]

1: form=0,....,.M —2do

_ . 2
2: Set [V’f’mvlzh-ﬁ-l] (557 ai) - [qb;h,m-i-lek:m‘*‘l][o@] - [¢£h,m0k,m][o71]'
s Set B |28 [ bennlsns |+ [Beldenmalsn |
4: Set Ei,h,m < max {72 quk,h,muzglhm , kamvk%:+1] (s»ak) + Bk pm, 042}-
5: end for
6: Set Ei,h,MA < Mmax {72 H¢k,h,M—1Hz;}lyMﬂ 1 042}-

Output: {Ek,hm}mem‘

2.6.1.2 High-order Moment Estimation

The key technique used in our algorithm consists of two series of high-order estimations
for the transition kernel parameter 8. The algorithm for high-order moment estimation is
stated in Algorithm [5] In the exploration phase, the agent learns the environment with
the help of two series of value functions ‘N/k,h and ‘7“. They serve to characterize different
aspects of the model, one for pseudo values and one for trajectory uncertainty. And thus,
they rely on different estimations of transition kernel parameter 8. Two independent series
of higher-order moment estimations are necessary for achieving accurate estimation. In the
Algorithm [4] both estimations of @ are the solutions to the weighted regression problem in
the following form:
k—1
argmin ()\03 + Z
0 j

=1

H

i 2 ,_
D (#7100 = Vin(shiy)) /02-,h,0>, (2.6.3)
h=1

where the regression weight ;5 is set as Equation ((2.6.4).

T, < TAX {72 lbrnolst o [VioVinsi] (shsar) + Eeno, 042}‘ (2.6.4)
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0jn0 can be considered as an combination of aleatoric uncertainty and epistemic uncer-
tainty (Kendall and Gall 2017, Mai et al.,[2022). The first term ~? Hd)k’h’mHzﬁl,o in is
the epistemic uncertainty caused by limited available data. And the second term in Equa-
tion ([2.6.4)) is supposed to be the aleatoric uncertainty Vi oVi n+1 characterizing the inherent
non-determinism of the transition kernel, which is irreducible. Here the Vy ,,,Vj, 41 is the vari-
ance of Vi 41 to 2 defined as [IP’V,E::]( sy ap)—[PV2 1 ](sy, af)?. Then, [VioVins](sE, af)
is further replaced with its estimate Wk70Vk7h+1](sfl,ah) plus its error bound Ej ;o since
real variance [VkaVk,hH](s’fL, ar) is unknown to the agent. Because [Vka,hH](s’fL, af) is a
quadratic function of the real transition kernel parameter 8%, its estimate can be achieved

as

[VioVins1] (s, ai) [<¢k h1s Ok 1>] o [<$k,h,07 0k,0>] ;1] )

where 0, is again the solution to the weighted regression problem similar to (2.6.4) with

predictors ¢ n1 = ¢y2 (i, ay), responses Vi, 1 (sy, ) and weight @y 1. Following the

k,h+1

above idea, the value of weight o, ;1 further relies on 6y 2, which is the solution to a weighted
regression problem involving another weight & ;2. The algorithm carried out this process
recursively until @y p—1, Where its second term is replaced by the trivial upper bound of

aleatoric uncertainty.

Applying HOME to the reward-free setting brings additional difficulties in controlling
the error of our estimate for the model, as the error introduced by using the pseudo reward
function instead of the real reward function and the error introduced by estimating the
true transition kernel must be controlled separately. To address this problem, we carefully
estimate variables indicating different kinds of error into two series of HOME in Line [10] and
Line[I1] Since the separation of variables deeply exploits the inner structure of the problem,
the two series of HOME can be merged in the end to achieve a unified control for both kinds

of error.

Previous work (Chen et al. (2021) implemented the weighted value regression in a more

crude way. The weights are constructed only on aleatoric uncertainty, totally ignoring epis-
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temic uncertainty. In addition, they use the same instead of different transition kernel
parameters to calculate different order moments of the value function and stop target value
regression at second order moment, which increased avoidable error. As a result, |Chen et al.
(2021)) can only replace factor Hd with factor H + d when trying to improve the dependency
on d in the upper bound. In contrast, our work further improves factor H + d to factor H

through the well-designed target value regression, as we can see in Corollary

2.6.1.3 High Confidence Set

At the end of each episode, we add the following constraints into U to update the high
confidence set in Line 20] of Algorithm

0— 0,

. <Bume[M], (2.6.5)

k,m

o

. <Bu me[M]. (2.6.6)

k,m

High confidence set U, ensures that the estimate 6y lies in a neighborhood of real transition
kernel parameter 8*. Here the algorithm adds 2M inequalities to constraints in each episode.
These inequalities guarantee that estimations of the variance of ‘71@,11 and Vk,h up to M-th

order are near the real values.

2.6.1.4 Planning Phase

After finishing the exploration, the agent enters the planning phase and receives the real
reward function. Depending on optimal Bellman equations, the agent is able to obtain the
optimal policy backward from state H to state 1 by dynamic programming based on real
reward function r and transition kernel parameter estimate Ox. And then, the algorithm

outputs the optimal policy.

Remark 2.6.2 (Computational Complexity of HF-UCRL-RFE++). Similar with Chen
et al| (2021)), we assume that the optimization over @, m, and r in Line [5] of Algorithm
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can be accomplished with an oracle which is obvious to be called for K times. At each
episode k and each stage h, HF-UCRL-RFE++ computes {$k hm ] {$k7h7m}mem,
{ak h m}me {ak h m}me L and updates {Ek I {Ek h m}me . The computation
of {¢k h m}me and {¢k ham } mear] Teduire O(OM) times. According to Algorithm H calcu—
lating {akﬁ,m}me and {ak hm} o require O(M d2) time since the computation of the
inner-product an inversion of matrix and a vector needs O(d?). The updates of {3y, o

and {Ek T ] further require O(Md?) time. Lastly, determining the optimal policy dur—
ing the plannmg phase takes O(H (SAd + O)) time. Therefore, the total time complexity of
HF-UCRL-RFE++ is O(KH(OM + Md?) + HSAd).

2.6.2 Sample Complexity Analysis

We provide the theoretical analysis for HF-UCRL-RFE++ in this section. In order to show
the optimality of HF-UCRL-RFE++, we also provide lower bound of sample complexity for

all reward-free exploration algorithms.

2.6.2.1 Upper Bound of the Sample Complexity

We first provide the suboptimality upper bound of our algorithm HF-UCRL-RFE+-+.

Theorem 2.6.3. For Algorithm [ set M = log(TKH)/log(2), a = H™ 2 » = d~'/4

= d/B?, {Bilrs1 as Br = 12y/dnt + 307/7% + V/AB, and denote 3 = By, where n =
log(1 + kH/(a?d)\)) and 7 = log(32(log(y?/a) + 1)k*H?/§). Then, for any 0 < § < 1, we
have with probability at least 1 — ¢, after collecting K episodes of samples, algorithm

returns a policy 7, satisfying the following sub-optimality bound,

R ~ [ d? d
Vif(s1;r) — Vi(s1; 0%, 7, 1) = O (K + \/_E) .

The next corollary specifies the sample complexity of our algorithm.
Corollary 2.6.4. Under the same conditions as in Theorem [2.6.3] Algorithm [4 has sample
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complexity of

1 2
m(e,d') =€—S <64 max {85\/@, \/ 2(’} + 1208V dLHa2>
- § (2752 max {643%de, 2¢} + 24¢ + 240de + 2408~*de + 1205@@)
(2.6.7)

Moreover, setting a = H~Y2 v = d""* and A\ = d/B?, we have the reward-free sample

complexity bound m(g,§’) = O(d*c™?).

Proof of Corollary[2.6.4 (2.6.7) is derived directly from Theorem by setting the sub-
optimality to € and solving the K. O

Remark 2.6.5. To the best of our knowledge, Corollary provides the first horizon-free
sample complexity upper bound independent of state space size S and action space size A
for reward-free exploration. This result shows that long-horizon planning does not add extra

difficulty to reward-free exploration.

Corollary 2.6.6. When re-scaling the assumption 37 7, (sp, an) < 1to S0 (s, ap) <

H, under the same conditions as Theorem [2.6.3] Algorithm [4] has sample complexity of

m(e,d) =16H2 (64 max {85@, \/TC} + 1208V dLHa2>2

52
H
+ 8? (2752 max {643%de, 2¢} + 24¢ + 240de + 2408~ de + 1206dm/M)

(2.6.8)

Moreover, setting o = H™Y/2 v = d~V/* and A\ = d/B?, we have the reward-free sample

complexity bound m(e, d') = O(H?*d*c™?).
Proof of Corollary[2.6.6. (2.6.8) is a direct result of Corollary by setting 77, (sp, ap) =

’I“h(Sh,CLh)/H. O

Remark 2.6.7. The assumption ZhH:1 rh(Sn,an) < H covers the standard reward assump-

tion rp,(sp,an) € [0,1]. Therefore, compared with |Chen et al. (2021)), our analysis does
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not require the d > H assumption and achieves the same sample complexity bound up to
logarithmic factors except for the trivial 5(H ) difference between time-homogeneous and
time-inhomogeneous models with a milder assumption. This improvement can be attributed
to the refined value target regression technique, high-order moment estimation (HOME),
adopted in our approach. We provide a detailed analysis of this improvement in the “High-

order Moment Estimation” part in the Section [2.6.1]

2.6.2.2 Lower Bound of the Sample Complexity

The following results provide lower bounds of the sample complexity and suggest that our
algorithm is minimax optimal. We will consider the hard-to-learn linear mixture MDPs
constructed in [Zhou and Gu| (2022a). The state space is S = {x, 22,3} and the action
space is A = {a} = {—1,1}%"1. The reward function satisfies r(zy,:) = r(zs,-) = 0, and
r(z3,-) = %. The transition probability is defined to be P(z5 | 21,a) = 1 — (§ + {u, @)) and
P(xs | 71,a) = § + {p,a), where § = 1/6 and p € {—A, A}~ with A = \/§/K/(4V/2).

Theorem 2.6.8. Suppose B > 1. Then for any algorithm ALGg,.. solving reward-free lin-
ear mixture MDP problems satisfying assumption [2.6.1] there exist a linear mixture MDP
M such that ALGp,.. needs to collect at least Q (d?c2) episodes of samples to output an

g-optimal policy with probability at least 1 — 9. This lower bound matches the sample com-

Figure 2.2: The transition kernel of the hard-to-learn linear mixture MDPs.
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plexity upper bound provided in Corollary [2.6.4] which shows our upper bound is optimal.

Remark 2.6.9. The lower bound is similar to the lower bound provided in |(Chen et al.
(2021). The first difference is that we rescale the non-zero reward in hard-to-learn cases
from 1 to % in order to satisfy Assumption . The second difference is that we consider
the time-homogeneous model instead of the time-inhomogeneous one in theirs. By these
changes, our lower bound for reward-free exploration provided in Theorem [2.6.8 removes the

unnecessary polynomial dependency on episode length H introduced by the scale of total

reward.

Corollary 2.6.10. Under the same conditions as Theorem [2.6.8 and replacing the bounded
total reward Zle ri(sn,ap) < 1 with r, € [0,1], for any algorithm ALG,e. solving reward-
free linear mixture MDP problems satisfying assumption there exist a linear mixture
MDP M such that ALGg,.. needs to collect at least Q (H?d?¢2) episodes to output an &-
optimal policy with probability at least 1 —9, which suggests that the upper bound presented
in Theorem [2.6.3]is optimal.

Proof of Corollary[2.6.10. The result presented in Corollary 2.6.10] is directly obtained by
letting 7(z3,-) = 1 in the hard case presented in Figure [2.2] O

2.7 Conclusion

We study model-based reward-free exploration for learning the linear mixture MDPs. We
propose an algorithm which is guaranteed to efficiently explore the environment with the
help of the pseudo reward function. In order to improve the sample complexity of this
exploration, we leverage the variance information in reinforcement learning and improve the

algorithm using a Bernstein-type concentration inequality.

We also extend the aforementioned algorithm into a bounded total reward setting. In this

setting, our algorithm is guaranteed to have horizon-free sample complexity in the exploration
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phase to find a near-optimal policy in the planning phase for any given reward function. By
providing sample complexity lower bound for reward-free exploration in linear mixture MDPs
under our assumptions. We show that the sample complexity of our algorithm matches the

lower bound up to logarithmic factors, indicating that our algorithm is optimal.

2.8 Proofs

In this section we present the detailed proof of Theorem [2.4.3| Theorem [2.5.1] Theorem [2.6.3

and Theorem [2.6.8| and corollaries we claimed in this chapter.

2.8.1 Proof of Theorem [2.4.3

We will first introduce a lemma to show that for the planning module Algorithm [T} if it
is guaranteed that the estimation 0 is close to the true parameter 8*, then the estimated
value function is optimistic. Also the gap between the optimal value function and the value
function of the output policy {m,}/Z could be controlled by the summation of UCB bonus

term.

Lemma 2.8.1. Let 0,3, 5 be as defined in Algorithm [I} Suppose there exists some event
& such that [|0* — 0||s < (3 on this event. Then on this event, for all s € S, Vi(s) = V{*(s;7),

where Vj is the output value function for Algorithm [I We also have that

.

where the policy 7 = {m,}/_, is generated by the planning module Algorithm (I} and V}, is

Vis) — V7 (s) < E[ S min{H, 284y, (51,71 (50)) 21}

the value function calculated on Line [5] in Algorithm [I]

Next we will give the lemmas on how to guarantee the condition of Lemma [2.8.1 and
how to utilize the result of that lemma to control the final policy error Vi*(sy;7) — V" (s1;7)
where the policy 7 is output of the planning phase. We start with Algorithm [2] which uses
the Hoeffding bonus.

38



Firstly, the next lemma shows how to guarantee the condition in Lemma [2.8.1]

Lemma 2.8.2 (Confidence interval, Hoeffding). For Algorithm [2| let A\, 8 be as defined in
Theorem m then with probability at least 1 —§/3, [6* — 6;[|s,, < 8 for any k € [K +1].

Secondly, based on the lemma above, we find that the policy error during the planning
phase is controlled by a summation of the UCB terms. Since from the intuition, the explo-
ration driven reward function (2.4.2)) is the UCB term divided by H, the policy error during
the planning phase can be converted to the value function V[ in the exploration phase. The
next lemma shows that the summation of V}* over K iterations is sub-linear to K, thus the

policy error during the planning phase should be small.

Lemma 2.8.3 (Summation, Hoeffding). Set the parameters of Algorithm [2f as that of The-
orem [2.4.3] If the condition in Lemma holds, then with probability at least 1 — /3,

the summation of the value function V}*(s¥) during the exploration phase is controlled by

K
DI VE(sh) < 88y/HKdlog(1 + KH3B?/d) + 88Hdlog(1 + K H*B) + 2H~/2HK log(1/5).
k=1

Equipped with these lemmas, we are about to prove Theorem [2.4.3]

Proof of Theorem[2.4.3 In the following proof, we condition on the events in Lemma [2.8.2
and Lemma which holds with probability at least 1 —2§/3 by taking the union bound.
Applying Lemma to the final planning phase, we have

H
Vit(sir) = ViT(s;r) < Vals;r) = Vi (s57) < El 2 min{H, 264y, (sn, m(sn)) -1 3|,

1L,K+1
h=1

[\ J
Y

I

(2.8.1)
where the expectation is taken condition on initial state s and policy m generated by the

planning phase. Since ¥ ; < X g1 for all k € [K], we can guarantee that

v, (Shy T (Sn)) |l

1,K+1 S ||¢Vh+1 (Sha Wh(sh)) ”Eflk
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Recall the exploration driven reward function is defined by

r¥(s,a) = min{ \/fesmax (s, “)’Eii}> (2.8.3) (2.8.2)

0,H—h]

one can easily verify that min{H, 28|y, (sn, ma(sn))|g-1} < Hr¥(sp, mn(sn)). Therefore
for any k € [K] episode, we can bound the term I; using the value function V" (s; {rf}2_ )

of the output policy 7 in the planning phase given the {rf}2_  as the reward function, i.e.

| 3t malon))| = HVI (s 1) 283)

Plugging the bound of I; back into (2.8.1)) then taking the expectation over the initial

state distribution p, we have for any k € [ K],

Eovu[Vi*(s37) = V{7 (si7)] < HEowp[VF (35 {3 }hoy)]
= H(Boe (V7 (s i Y)] = VP (s 1Y)

+ HV (s {ri}hy)-
Hence

EownVi(s57) = VT (s57)] <

Nlm

2( ooV G55 ()] = VPGt )
VP (shs {rh}h:1>). (2.8.4)

Since V™ (s;{rf}¥_,) < H for all k € [K|,s € S, by Azuma-Hoeffding’s inequality, with
probability at least 1 — 0/3,

) (B V(s (o) = Vsl (il ) < HY2R I0g(3/0). (285)

k=1

By plugging (2.8.5) into (2.8.4), we have

il

Bl (57) = V)] < 3o B ook + 2V 2log3/8)/ K



Applying Lemma to the exploration phase, for any k-th episode, V{"(s¥; {rF}¥_,) <
ViE(sk {rkyk_ ) < VF(sh), thus replacing the value function V7™ with the estimated value

function V¥, we have

B[V (s37) = V7 (s37)] <

Nlm

i (s¥) + H?\/21og(3/6)/K. (2.8.6)

Finally by Lemma we can bound the summation over V}*, hence

Eow [V (s57) — Vi (s;7)] < H*/210g(3/8)/K + 88~/ H3dlog(1 + KH3B2/d)/K
+88dH?log(1 + KH?B?)/K + 2H?\/2H log(1/8)/K

and by taking union bound, the result holds with probability at least 1—9. Recall the setting
of 8 ~ O(H+/d) as in Theorem m, let K = O(Hd2?), the policy error By, [V;*(s;7) —
Vi (s;7)] is bounded by e. O

2.8.1.1 Proof of Corollary

Proof of Corollary[2.7.5. Following the proof of Theorem [2.4.3] since for all x € R?, |x|; <
Ix]2 < V/d|x]||; it follows that

—1/2
= =02 v (5o (1)

< VA= v, (sn,m(s0)) 1 (2.8.7)

[%vi i (50 T (sn)) 1,

We denote u as the result using the £; norm as the surrogate objective function in this

optimization problem (/2 , l.e.

_ 1/2
uy = argmax X, /Tl’f(shaah)ulv

feS—[0,H—h]
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then (2.8.7)) yields
[%vier (s ma(sn)) s | < < VA|BTE P (s, Talsn)) 2
< VIS 3 b (snma(sn))a
< VA S038 W (s (o) 2
<V ST g (sn, () s

where the second inequality comes from u¥ is the solution in (2.4.5), the third inequality

comes from the fact that |[x|; < |x[|2 and the forth inequality comes from the definition that

uf. Then (2.8.3) is changed to be
L < HVAVT (s, {ri}hs,)-

Noticing that comparing to the original result, there’s an additional v/d factor which yields
(2.8.7))

H
Eou[Vi¥ (5:7) = Vi (s;7)] *f Z V(%) + H?A/2d10g(3/0)/K .
Then it is easy to show that using ¢, as the surrogate objective function, the sample com-

plexity of Algorithm [2| turns out to be (’3(H5d3e*2) O

2.8.2 Proof of Theorem 2.5.1]

We are going to analyze Algorithm [3]and provide the proof of Theorem [2.5.1] Following the
proof of Theorem [2.4.3], we only need to revise Lemmas [2.8.2] and [2.8.3] to continue the proof
of Theorem [2.5.11

Lemma 2.8.4 (Confidence interval, Bernstein). Let [, B, 5, $ and X\ be defined as Theo-
rem [2.5.1] then with probability at least 1 — /3, for all k € [K + 1],

6° —Bils,, <. [6° —Bils,, < 5. 16"~ Buls,, <5

0% — Ok iilx, .y < B, (2.88)
and |[V,ViE, ](s,a) — Vi(s,a)| < Ef(s, a).
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Lemma 2.8.5 (Summation, Bernstein). For Algorithm , setting its parameters as in
Lemma with probability at least 1 — §/3, the summation of the value function during

exploration phase is controlled by
K
Z OWH3Kd + HIVK) + o(WK).

Proof of Theorem |2.5.1. The proof is almost the same as the proof of Theorem by re-
placing Lemma with Lemma [2.8.4] Lemma[2.8.3] with Lemma [2.8.5] In detail, following
the same method, (2.8.6) works for Algorithm [3| under the condition in Lemma holds.
Therefore, by using Lemma [2.8.5| instead of Lemma [2.8.3] with probability at least 1 — 9,

K
Eouu[ViF(s37) — V" (s37)] §z:: (s") + H*\/21og(3/0)/K
<O

«¢Hmr+¢Hmy¢E)

Letting K = O(H*d(H + d)e2), the policy error for the planning phase could be controlled
by Bouu[Vi*(s57) = ViT(s;7)] < € -
2.8.2.1 Proof of Corollary

Proof of Corollary[2.5.3 The proof is almost the same as proof of Corollary [2.4.5] by adding
the additional dependency d into the regret bound achieved by Theorem [2.5.1} it’s easy to
verify that the sample complexity using the ¢; norm as the surrogate function is
O(H d*(H + d)e ). O

2.8.3 Proof of Theorem [2.6.3

We first define the good event such that the high-order estimator is well-bounded.

Lemma 2.8.6. For all 0 < § < 1, suppose [ is set as in Theorem the following event
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happens with probability at least 1 — 2M§

H@km —o|. <p (2.8.9)
zk,m

Hg’”” —o. < (2.8.10)
Ek,'m

16k — 0%, <26 (2.8.11)

6, 0% <25 (2.8.12)

We define the event that Lemma [2.8.6] holds to be &zg. Then the following lemma
controls the suboptimality gap between optimal value functions and our estimated value

function in the planning phase with the uncertainty along trajectories.

Lemma 2.8.7. Under event &gg, for any reward function r in the planning phase, the

suboptimality gap of the outputted policy 7, can be bounded as
Vi (s157) — Vi (513 0%, 7, 7) < 4Vica (1) - (2.8.13)

The next lemma shows that the uncertainty along trajectories decreases with respect to
episodes. This lemma is intuitively right since the uncertainty should decrease with more

information collected.

Lemma 2.8.8. Under event &ggg, for uncertainty along trajectories, we have
N 1 /& .
Vici(s1; 0k, Tk, k) < — Z Vi1 (s1; 0k, T, 1) ) -
K k=1

The last lemma upper bounds the sum of the uncertainty along trajectories.

Lemma 2.8.9. For any 0 < § < 1, with probability at least 1 —4MJ, we have

K
D Via(s1; 00, 7, i) = O(dVE + d?). (2.8.14)
k=1
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Equipped with the above lemmas, we are ready to prove Theorem [2.6.3|

Proof of Theorem[2.6.3. The following proof is conditioned on fggg N Egzza, which holds
with probability at least 1 —4M§ =1 — §’. We have

4 K
< E ];1 ‘/k,l(sh Hky Tk, Tk)
4
< (896 max {64%de, 2¢} + 24¢ + 240de + 24087*de + 1208dev/ M + 24~/CMdu + MdL)

+ \/% (64 max {&6’\/@, \/i} + 12%@) :

where the first inequality holds due to Lemma [2.8.7] the second inequality holds due to
Lemma [2.8.8, and the third equality holds due to Lemma [2.8.9 O

2.8.4 Proof of Theorem [2.6.8

Reward-free exploration is more difficult than non-reward-free MDP by definitions since
we can easily solve non-reward-free MDP by ignoring its reward and executing reward-free
exploration. Thus, we will start with acquiring lower bounds under non-reward-free MDP
settings and then obtain sample complexity lower bounds of reward-free exploration. The

proof follows ideas of [Zhou and Gu| (2022a)) and (Chen et al. (2021]).

As noted in Section [2.6.2.2] we will consider the hard-to-learn linear mizture MDPs
constructed in Zhou and Gu (2022a). The state space S = {x1, 22,23} and the action
space A = {a} = {—1,1}971. The reward function satisfies r(z1,-) = r(zs,-) = 0, and
r(z3,-) = +. The transition probability satisfies P(xs | z1,a) = 1 — (6 + {p,a)) and

7
P(x3 | 71,a) = 6 +{p,a), where § = 1/6 and p € {—A, A} with A = \/6/K'/(4+/2). The
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transition kernel is formulated as

-

(a(1_5)7_/8aT)T7 S:];l,S/:.TQ;
' (a6>BaT)T7 s =uwx1,8 = w3
(5| 5.0) = ; ] 6 = (1/a,n7/5)'
(a,OT) , s € {xqg, 23}, =s;
0, otherwise.

The following lemma from [Zhou and Gu| (2022a) lower bounds the regret for linear

mixture MDP.

Lemma 2.8.10 (Theorem 5.4, Zhou and Gu| (2022a)). Let B > 1. Then for any algorithm,
when K’ > max {3d?, (d — 1)/(192(B — 1))}, there exists a B-bounded linear mixture MDP
satisfying Assumptions 3.2 such that its expected regret E[Regret(K”’)] is lower bounded by

Q (dvVK'/(16V/3)).

Given Lemma |2.8.10], we will use the regret lower bound of non-reward-free linear mixture

MDPs to derive the sample coomplexity lower bound.

Lemma 2.8.11. Suppose B > 1. Then for any algorithm ALGy,,Free SOlVing non-reward-
free linear mixture MDP problems satisfying assumption [2.6.1] there exist a linear mixture
C

M such that ALGy.nrree Needs to collect at least a—d; episodes to output an e-policy with

probability at least 1 — §. Here C' is an absolute constant.

Proof of Lemma [2.8.11. For any algorithm ALGyppree, We construct an algorithm ALGYy,,, pree
executing totally K; = cK episodes, where c is a constant integer larger than 1. The first
K episodes of ALGYy,,, pree are the same as ALGnonrree, and the rest episodes keep executing

the policy at the end of episode K. By Lemma [2.8.10, we have

K1 /
dv K

ZE[V(sl;O*,W*,r)—V(sl;O*,ﬂk,T)] > < -,

P 16v/3

(2.8.15)
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for some constant ¢’. In addition, based on the construction of the hard-to-learn MDPs,

where K’ = K, the per-episode regret is upper bounded by

d
4+/3K,

Thus, calculating (2.8.15)) - (K; — K)x (2.8.16)), and choosingc = max{5/c’7 2}, we have

Ky
dv K
E[V(s;0%, 7%, 1) —V{(s1;0%, 7, 7)]| = .
X BV ) = Vios 0] > oo

E[V(s1;0%, 7% 1) = V(s1;0,m,7)] < (2.8.16)

Since the policies in episode K + 1 to episode K are same to mx, we have

d
164/3cKc

Suppose the ALGnonrree Teturn return a e-optimal policy with probability 1 — §. Then,

E[V(s1;0%, 7% ,1r) —V(s1;0%, 7, 7)] =

d d
= )
44/ 3cK 164/3cKc

Setting 0 < min{l,1/(4c)}, by solving the inequality, we have K > (’;—Cf for some constant

C. O

(1—=08)e+4d

Since reward-free MDP is more difficult than non-reward-free MDP, Lemma [2.8.11| di-

rectly indicates Theorem [2.6.8]|

Proof of Theorem[2.6.8 We will prove the theorem by contradiction. Assume all reward-free
linear mixture MDPs can be solved with sample complexity of o(g—z). Then, for any non-
reward-free MDP M, there exists an algorithm ALG’ (¢, §) learning its reward-free counterpart
M’ with sample complexity of o(g—z). We define ALG solving M as follows: it collects K
episodes of data and outputs the policy in the same way as ALG’ by ignoring the rewards.
Then ALG can also (e,d) learning M with sample complexity of o(g—z), which contradicts

Theorem 2.8.111. O

Corollary [2.6.10| can be viewed as an direct result of Theorem [2.6.8
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2.8.5 Proofs in Section 2.8.1] and Section 2.8.2]
2.8.5.1 Filtration

For the simplicity of further proof, we define the event filtration here as
wy Hk—1 -
Ohi = {{557% i=1,k=1> {sf,af}?zll )

it is easy to verify that sfi is Gp41 ,-measurable. Also, since * is Gp, r-measurable for all
he[H], af = 7f(s¥) is also G 41 4-measurable. Also, for any function f < R built on Gy 14,
such as V¥ uf, f(sf.,) — [Pf](sf,af) is Gpy1 p-measurable and it is also a zero-mean R-

sub-Gaussian conditioned on Gy, 41 .

Since Gp11% = G1k+1, we could arrange the filtration as

G={Gi1, - .Gu1, Gk Gk Grps s Giest, Gk, G111}

and we will use G as the filtration set for all of the proofs in the following section and it is

obvious that G; k41 contains all information we collect during the exploration phase.

2.8.5.2 Proof of Lemma [2.8.1]

Proof of Lemma [2.8.1. We prove this lemma by induction on time step h. Indeed, when
h = H+1, Vgii(s) = Vi1 (s;7) = 0 by definition. Suppose for h € [H], Vi41(s) = Vi (si7),

then following the update rule of ) function in Algorithm [I we have

Qn(s,a) = Qy(s,a;7)
= min {Ha Th(sa a) + <¢Vh+1 (87 a)a 0> + /B“’(?bvh-{-l (87 a)HE*1} - Th(sa G,) o [th*+1]($7 a; T)

= min {H - QZ(Sv a; T)? <¢Vh+1 (57 CL), 0> + /B|’¢Vh+1 (S, CL) HE_l - [th*Jrl] (57 a; T)}

We need to show that Qn(s,a) = Qj(s,a;r). Since it is obvious that the first term H —

Q5 (s,a;r) in min operator is greater than zero, we only need to verify that the second term
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is also positive where

(v (s,0),0) + Blpy, (s, 0) [z — [PV ](s,a57)
> (v, (s,0),0) + By, (s, 0) |z — [PVaia](s, a57)
= (v, (5,0),0 = 0%) + Bltby,,, (s, 0) |z
=z By, (s, a)|lz-r = by, (5,0)[ 510 — 67|,

where the first inequality is from the induction assumption that V;* ;(s;7) < Vi41(s). The
second equality is from the expectation of value function is a linear function of by,
shown in (2.3.2). Then the inequality on the third line is utilizing the fact that (x,y) >
—|[x|[a-1]y[la. Since it is guaranteed that 8 > |@ — 6*|x from the statement of this lemma,

Qn(s,a) — Qr(s,a;r) = 0, which from induction we get our conclusion.

For the second part controlling V;(s) — V/(s), since aforementioned proof has shown that

Vi¥(s;1r) < Vi(s) for all h e [H], we have V*(s;r) — V7 (s;7) < Vi(s) — Vi (s;r) and

Vi(s) = Vi (sir) = min{H, ry(s, mu(s)) + (¥vi,,150) + Blvpv,,, (s, mu(s)) [ 51}
— ru(s,mn(s)) — [PV (s, mn(s);7)
< min{H, (v, 0) + Blbv,.,, (s, m(s)) g1 = [PViia](s, ma(s))}
+ [PVhia](s, ma(s))} — [PV (s, mni )
= min{H, (Yy,,,,0 — 0%) + By, (s, mn(s))[ 51}
+ [PViia](s, ma(s))} — [PV (s, ma(s); )
< min{H, 269y, ., (s, mn(s))[ 51}

+ []P)Vh+1](37 Wh(‘S))} - [PVth](Sv ﬂ-h(s); T)v

where the first inequality is directly from moving term —7r,(s, m(s)) — [PVii1](s, mh(s))

into the min operator, the second inequality uses the condition that @ — 6*||s < [ and

49



x,y) < |x|a-1]|y]a. Considering the first step h = 1, we have
Vi(s1) = Vi (s1;7) < min{H, 25[thv, (51, m1(s1)) [} + By npfsg,ms1) [Va(s2) — V5" (52)]
< min{H, 28| ¢y, (s1, m1(51))[ 21}
+ By fovima(on | M, 2819y, (52, ma(52) 31}
+ By (fsoma(sa)) [V3(53) — V:Zr(sza)]]

E[ > min{H, 284y, ., (sn (1)) |1}

h=1

31,7T:|,

which concludes our proof. n

2.8.5.3 Proof of Lemma [2.8.2]

We introduce the classical confidence set lemma from (Abbasi-Yadkori et al., [2011)).

Lemma 2.8.12 (Theorem 2, Abbasi-Yadkori et al.| (2011)). Let {F;};2, be a filtration and
{m} is a real-valued stochastic process which is F;-measurable and conditionally R-sub-
Gaussian. Set y;, = (x;, ") +1;, Vi = AT+ 3)'_, x;x] where x € R%. Denote the estimation
of ¥* as ¥, = V' S0 yixi. If [[¢*[a < S, %2 < L, then with probability at least 1 — ,
forallt >0

1+ tL2/X
[ = abi|lv, < R\/dlog (*T/) 4 SV

Equipped with this lemma, we begin our proof.

Proof of Lemma[2.8.3 Since [Puf](sF,a¥) = (1 (sh, ar¥),0*) due to 2) and uf(s) < H,

uk(s) —(tyr (s§,al), 0% is G, y-measurable and it is also a zero mean H-sub-Gaussian random

variable conditioned on Gy, ;. Also from Definition 102 < B, [t (sk,af)|2 < H
Therefore, recall the calculation of 6y, according to Lemma [2.8.12] let ¢t = (k — 1)H we have

1+ (k—1)H3/A
Hk—9*|gl’k<H\/dlog( * ) /)+B\F)\.

J
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Let A = B7% § = §/3 and relax k with k = K +1, we can get the 3 claimed in Theorem [2.4.3]
]

2.8.5.4 Proof of Lemma [2.8.3

We provide the proof to control the summation of the value function during the exploration
phase. To start with, since rather than immediately updating the parameter after each time
step, we can only update the estimation @ and its ‘covariance matrix’ 3 once after each
episode. As a result, this ‘batched update rule’ make the UCB bonus term at step (h, k) be
Hi,buh(sh,ah)HU 1 instead of [t,x (sh,ah)”U 1 in the vanilla linear bandit setting. Therefore,

we need lemmas showing that these two UCB terms are close to each other.

2 < L,V(h, k) € [H] X [K]>
let Uy = )\I—i—z 1 X; ,me +Z . ' x; kxlk, there exists at most 2Hd log(1+ K HL?/)\)

Lemma 2.8.13. For any {xj, k}thfk_l c R4

pairs of (h, k) tuple such that det Uy, < 2det Uy .

Lemma 2.8.14 (Lemma 12, Abbasi-Yadkori et al.| (2011)). Suppose A,B € R?*? are two

positive definite matrices satisfying that A > B, then for any x € R? we have |x|a <

[xl5+/det(A)/ det(B).

Following that, we also need to introduce the classical lemma to control the summation

of the UCB bonus terms in vanilla linear bandit setting.

Lemma 2.8.15 (Lemma 11, Abbasi-Yadkori et al.|(2011)). For any {x;}1 , = R? satisfying
that x| < L,Vt € [T], let U, = AT+ 32} x,x], we have

T

TI?
S min{1, x| g1} < 2dlog (dH—)
2 ; ax

We also need to introduce the Azuma-Hoeffding’s inequality to build the concentration

bound for martingale difference sequences.
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Lemma 2.8.16 (Azuma-Hoeffding’s inequality, |Azuma/ (1967)). Let {x;}"_; be a martingale
difference sequence with respect to a filtration {G;} ; (i.e. E[z;|G;] = 0 a.s. and z; is G;14
measurable) such that |z;] < M a.s.. Then for any 0 < § < 1, with probability at least 1 —J,
D < MA/2nlog(1/6).

Proof of Lemma[2.8.5. By Lemma [2.8.1} for the k-th episode, we have

¥ wk] (2.8.17)

H
VEet) = V() = B| Y min{H. 281 (n o))

h=1

H
< B 3% minft, 28l (s o)
h=1

where the inequality comes from that the pseudo value function u¥ defined in is from

maximizing the UCB term va}{cﬂ(sh, W’Ii(sh»HEf,i and we denote {7¥}/L | by 7* in short. By

the definition of 7§, we have

H
176 Zr sh, T (sn))|s%, 7]
h=1
H
:E[Z min{1, 28], (sn, 7 (s1)) |- 1 /H} s¥m ’f] (2.8.18)
h=1

Adding (2.8.17) and (2.8.18)) together and taking summation over k, we have

INGEE 1y E [Zmin{ﬂ,%%g(shwi(sh))z;;}
k=1 =1

s’f,wk] <2, (2.8.19)

J

g

Iy

where the last inequality is due to (H + 1)/H < 2. Next we are going to control the

expectation of summation /;. Consider the filtration {ghvk}thf -1 defined in Section [2.8.5.1],

denote zj,  as follows:

ohg = min{H, 26|ty (si, @)l g1} — B, [ mind 2, 28], (s, w5 (s) g1}

then z,j is obviously a martingale difference sequence bounded by H w.r.t. {gh7k}thf’k:1.

Thus by Azuma-Hoeffding’s inequality in Lemma [2.8.16, we have with probability at least
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-9, Zk 1Zh Lz < Hy/2HK log(1/5). Therefore,
K H
Z Z min{H, 26|, (5, ai) 51} + D > an

k=1 h=1 k=1h=1

K H
<28 > min{l, [ (s, af) |- 1}+H\/m

k=1h=1

K H
Z Z min{L, (3,1 (sp, ap) g1 } +46Hdlog(1 + KH?/X) + H~/2H K log(1/0),

"

h

Iz

where the inequality on the second line is due to 26 > 2H+/dlog3 > H and the last

inequality uses Lemma [2.8.14] with 21_,16 > E};}C and det 21_}: < 2det El_,lc expect for 5(Hd)

cases by Lemma [2.8.13, By min{1, ||1/Jul}§(8h77;’§(5h))||g;§€} 1 and |, (sh,ah)Hg H since
uf < H, we can further bound the O(Hd) terms where det 31, > 2det X7 ;. To bound Iy,

by Lemma [2.8.T5] using Cauchy-Schwarz inequality we have

ZZ mind, 9, (sf, a5 } < V2K Hdlog(1 + KH?3/(d))),

Plugging I, into I; then plugging I; into (2.8.19). Let A = B2, the summation of the

value function V[(s¥) is bounded by

K
S VE(sh) < 88 <\/HKd log(1 + KH?B2/d) + dH log(1 + KH3B2))

+ 2H+/2H K log(1/6).

Taking 0 = /3, we can finalize the proof of Lemma O

2.8.5.5 Proof of Lemma [2.8.4]

The proof of this lemma is similar to the proof of Lemma 5.2 in (Zhou et al., 2021a)). We
extend their proof to a time varying reward and homogeneous setting, where the rewards
(i.e., the exploration-driven reward function rf) are different in different episode k. To prove

this lemma, we need to introduce the Bernstein inequality for vector-valued martingales.
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Lemma 2.8.17 (Theorem 4.1, Zhou et al.| (2021a))). Let {G;}2; be a filtration, {x;,7;};>1 a
stochastic process so that x;, € R? is G;-measurable and 7 is G, ;-measurable. Fix R, L, o, \ >

0,u* € RY For t > 1, let y; = (u*, x;) + 1;. Suppose 1, X; satisfy
|7]t‘ < R, E[T/t|gt] = 07 E[nt2|gt] < 027 HXt”Z < L.
Then for any 0 < § < 1, with probability at least 1 — §, we have
t
Z XT/'/]T
=1

where p, = U; 'b,, U, = Al + Zi:l x, x|, b; = Z’;:Z yrX,, and

< B = i, < B+ VAL
U;

vVt > 0,

By = 8a+/dlog(1 + tL2/d\) log(4t2/5) + 4R log(4t%/6).

We also introduce the following lemma to analyze the error between the estimated vari-

ance V¥ and the true variance V¥.

Lemma 2.8.18 (Lemma C.1,|Zhou et al.|(2021a))). Let Vi(s,a) be as defined in (2.3.1]) and
V¥(s,a) be as defined in (2.5.3)), then

[VE(s,a) = VE(s,0)] < min {H2, [, 1205, )51 16k — 071, |

+min { H2, 2H [y, (5,0) 5110k — 675, , |
Equipped with these lemmas, we can start the proof of Lemma [2.8.4]

Proof of Lemma[2.8.4 Recall the regression in (2.5.4]). For the regression on 3.0, let Xy =
¢Vf+l(s§,a’,§)/5,’j, and nf = V¥ (sk,))/aF — (0*,xE). Since 6f > H/v/d defined in (2.5.2)),

we get |xF[ < V/d, |[nf| < +/d, thus one could verify that E[[nf]?|Gnr] < d, E[nF|Gnr] = O,
from Lemma [2.8.17] taking t = (k — 1)H we have

6% — Bk, , < 8dv/log(1 + (k — 1)H/A) log(4(k — 1)2H?/5)
+ 4V dlog(4(k — 1)2H?/8) + V/AB.
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For the regression of f],g, xF = ¢[v§+1]2(8§7a2) which directly implies |xF|, < H?.

Let nf = ViF  (sF.1)? — (0*,x}), one can easily verify that |nf| < H? and E[nf|Gni] =
0, E[[7512|Gnx] < H*, thus using Lemma [2.8.17| again we have

|6* — Okl5, < 8H*\/dlog(1 + (k — 1)H /) log(4(k — 1)2H?2/3)

+ 4H*1og(4(k — 1)2H?/8) + vV AB.

Since A = B2, if we select 3 and B as

3 = 8dr/log(1 + K HB?/)log(4K2H?/5) + 4v/dlog(4(k — 1)2H?/5) + 1

B = 8H>\/dlog(1 + K HB?)log(4K2H?/5) + AH? log(4K>H?/5) + 1,

then with probability at least 1—24, for all k € [K + 1], |0* _é’foh S 3, (6 - 5k|\§:1 < A.

Next we are going to give the choice of E to make sure that |0* — akah LS /3 holds
with high probability. The following proof is conditioned on that the aforementioned event

|6 — §k||§1 LS B, 6% — 5k|\§1 LS 3 holds, then from Lemma [2.8.18 we have

Vi(s,a) = Vi(s,a)|
< min {H27 Bl (s, Q)HEZ}C} + min {H2, 26H|pyy (s, a)l!ﬁ;;}
B s.a) (2.8.20)

Again, let x§ = ¢V)§+1(s’g,a§)/5§ to denote the context vector and ny = V¥ (s}, )/ok —

(0*,xF) to denote the noise term, since |6* — §k||§:1 < 3, we have
E([1]*1Gns] = Vii(sh, ap) /vy, < (Ej(sy, ap) + Vi(sq, ap))/vy <1,

where the first inequality is from ([2.8.20)), the second inequality holds because the definition
of v¥ in (2.5.2).

Therefore we have verified that the noise term 7} is a zero-mean random variable condi-

tioned on Gy, x and E[[7}]?|Grx] < 1. In that case, using Lemma [2.8.17] again we could get
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with probability at least 1 — ¢,

6% — Bk|s, , < 8/d(1 + (k — 1)H/A) log(4(k — 1)>H?/5) (2.8.21)
+ 4V dlog(4(k — 1)2H?/8) + V/AB, (2.8.22)

again, since A = B2, if we select 3 as

B = 8+/d(1 + KHB?)1og(4K?H?/8) + 4v/dlog(AK*H?/§) + 1,

then |0* — é\k’”fll LS B with probability at least 1 — & for all k e [K +1].

Next, for the regression of @ 1,31 k11, by Lemma [2.8.2] we obtain the same result with

the selection of 3 as

1+ KH?3/\
83— H\/dlog (%) + BV,
which suggests that with probability at least 10, |01 —6*|s, .., < 8. Then taking union
bound with all aforementioned event ||@* — éngl LS 3, |6*— nggl LS 3, 6% - éngl S 3,

we have all these events mentioned in this proof holds with probability at least 1 — 44.

Replace § with §/12, we obtain our final results.

Next, for the regression of O 1,21 k11, by Lemma [2.8.2] we obtain the same result with

the selection of 5 as

8= H\/dlog (ﬂ) + BV,

which suggests that with probability at least 1 —9, [@xi1 —0*|x, ,,, < 8. Again, taking an
additional union bound, with probability at least 1 — 44, all events mentioned in this proof

hold. Replace § with 6/12, we obtain our final results. n

2.8.5.6 Proof of Lemma [2.8.5]

The proof of this lemma borrows some intuition from the proof of Theorem 5.3 in (Zhou

et al.l 2021a). Unlike|Zhou et al.| (2021a)) that deals the fixed reward and time-inhomogeneous
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setting, we need to extend their proof in order to deal with the time-varying reward and time-
homogeneous setting.
The next lemmas shows the relationship between the summation of v} and the difference

between V;¥(s) calculated in Algorithm I and V(s {rk é”f pet1)

Lemma 2.8.19. Let V¥, vf be defined in Algorithm . Then if the condition in Lemmam

holds, the following inequality holds with probability at least 1 — 24,

[ViF(sh) = Vi (s)] < 4B, | 3. 3 vi/log(1 + KHB?)

1 k=1h=1

+2H*dlog(1 + KHB?d) + H+/2K H log(1/6)
K H

> Z k\/log(1 + KHB?)

k=1h=1

M=

k

2 PV = Vi) (shs af) < 4VdHS

k=1h=1

+ 2H%dlog(1 + KHB?d) + 2H?\/2K H log(1/9),

Lemma 2.8.20. Let V/*, v} be defined in Algorithm . Then if the condition in Lemma
holds, with probability at least 1 — 9,

IPITE

k=1h=1

H3K

K H
+ 3H2K + 3Hlog(1/6) + Z MRV — Vi ](sh, af)
k=1h=1

+26+/KHdlog(1 + KH5B?/d) + 43Hdlog(1 + K H> B?/d)

+8H?B+/KHdlog(1 + KHB?) + 8H%d3log(1 + KHdB?).

Equipped with these two lemmas, we can start to prove Lemma [2.8.5]

Proof of Lemma[2.8.5 In this proof, we use 5() to ignore all constant and log terms to
simplify the results. Recall the selection of B,B,B,E, we have § = (5([—]\/&), B = (5(\/3),

B = (’3(d)7 E = (’3([{2\/&) Therefore Lemma, [2.8.19| could be simplified as

>

k=1h=1

H

Vi + Hd + \/KH5> : (2.8.23)

7Tk A
P(th+1 - Vh+1)](3£» aj) < O(



Lemma [2.8.20] could also be simplified as

K H K H
~ [ H3K
PIDIRZ 0( —+ K+ HY Y [PVE, = Vi )I(sh,af) + VEH + H3d2> .
k=1h=1 k=1 h=1

(2.8.24)

et A /Zf:1 ZhH:1 vy =z, plugging (2.8.23) into ([2.8.24)), we have

2?2 < O(H*Kd™' + H*K + H?dx + H'd + VKHT + VK H @ + H*d?),

Since the quadratic inequality 22 < O(bx + ¢) indicates that = < O(b + 1/c), setting

b=O(Hd),c = O(HKd™' + H*K + H*d + VKH" + VK H5d + H*d?),

< O(H%d + +/H3K Jd + HVEK + H*d + dVH? + (KH")Y* + (K H%d*)"/*)

(2.8.25)
— OWH3K/d+ HVK) + o(WK). (2.8.26)
Plugging (2.8.26) back to Lemma [2.8.19] we have
K
DIVE(H) = Vi ()] < OWH3Kd + HAIVE) + o(VK). (2.8.27)
k=1

Next we are going to show the bound of the summation over Vfrk(slf), note that this value

function is bounded by H and from Bellman equality, we have

Vi ( 1) = TZ(Slfa%) [IP’VhH](SZ,ai)

taking summation over h € [H], k € [K]| then

K H K H

Z Vﬂ 81 2 2 Th Sl’al Z Z PVhH Shaah) Vh+1(3£+1>

h=

Z Z min{1, 28|« (sh,ah)||2 1/H} + H+/HK log(1/6),

=1 h=

e
—
—_

ol
—
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where the last inequality holds due to Azuma-Hoeffding’s inequality i.e. Lemma [2.8.16] For
the first term,

Z Zmln{l 2Pk (Shaah)HE 1/H} %

k=1h=1

H
Z min{1, |3, 5h7ah)H2 1}

1h=1

=

(T

7

Y

Iy
where the inequality is due to f > H/log(12) > H/2. Since Lemma [2.8.13| suggests

that there are only up to 6(Hd) steps with det 21’,1€ < 2det 2,;}“ by Lemma [2.8.13| and
Lemma [2.8.14 with X7 > X7 and setting A = B~2, we have

K H
I < 2Hdlog(1+ KH*B?) + V2 Y min{1, b, (sf, af)| 51}
k=1h=1 ’

K H
< 2Hdlog(1 + KH'B) + VIR 313 min{, g o o) I, )

< 2Hdlog(1 + KH?B?) + 2¢/HKdlog(1 + K H3B2/d).

Therefore, since [ = (5(H V/d), then

K
Z < 4fdlog(1 + KH3B?) + 48+/Kdlog(1 + KH3B2/d)/H + A/ H3K log(1/4)
(2.8.28)
< O(dWKH + VKH?) + o(WVK). (2.8.29)

Adding (2.8.27) and (2.8.29) together, we have the following result,

i <OWH3Kd+ HIVE) + o(WVK).

By taking the union bound, this inequality holds with probability at least 1 — 49. Since

only appears in the logarithmic terms, thus changing ¢ to /12 will not affect the result. [
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2.8.6 Proof of Auxiliary Lemmas in Section 2.8.5
2.8.6.1 Proof of Lemma [2.8.13

Proof of Lemma[2.8.13. We bound the number of tuples (h, k) with det Uy, > 2det Uy.
To begin with, if there exists k € [K] such that det Uy ;41 < 2det Uy, then it is obvious
that for all h € [H], we have det Uy < det Uy 41 < 2det Uyy.

Therefore, suppose there exists a set K < [K] such that for all £ ¢ I, det Uy 441 <
2det Uy, and for all &k € K, det Uy 41 > 2det Uy, then the pair of (h,k) such that
det Uy = 2det Uy, is upper bounded by H|K|.

Notice that for all k € IC, det U; 41 > 2det Uy, it is easy to show that
det Uy gpq > 2% det Uy, = 2K\

where the last inequality comes from U;; = Al € R¥?. Notice that det U < ||U||¢, taking

log we have
dlog(HUl,K-HH?) = log det U17K+1 > |’C| 10g2 + dlog A. (2830)

From the definition of U; g41, by triangle inequality,

H
U1kl < A+ Z KO |IxExiT e < AN+ KH|xF|2 < A+ KHL?, (2.8.31)
k=1 h=1

where the last inequality is due to x|l < L from the statement of the lemma. Therefore we

conclude our proof by merging (2.8.30) and ([2.8.31]) together to get

IK|log?2 < dlog(1+ HKL?/)),

noticing log 2 > 1/2 we can get the result claimed in the lemma. ]
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2.8.6.2 Proof of Lemma [2.8.19]

Proof of Lemma|[2.8.19. Assume that the condition in Lemma holds, then

ViE(sh) = Vi (sh)
<9ka¢vk 1(8h7ah)> [PVthl](Shaah) +5H¢Vk (Shvah)HZ !
<8k — 6", Iz, (s ab) s + [PViEy — Vil (sh, af) + Blap, (b, af)l s

h+1

< 25“‘#\/}{11(5;37 ai)”f:;i + [thk+1 Vh+1]( Shy aﬁ)

where the first inequality holds due to the definition of V¥, the second inequality holds
due to Cauchy-Schwarz inequality and the third one holds due to the condition (2.8.8) in
Lemma . Notice that V}* — Vh“Ic < H, we have

wk : ) wk
Vii(sh) = Vi (sy) < min{H, 25”’/’%@“(327 GZ)HE;}C} + [thk-i—l - Vh-i—l](sfw ay)

Taking summation over k € [K| and h € [H], we have

K K H
[VIF(sh) = V™ (sD)] < D] D) min{H, 28]epy (sh.af) 51}
k=1 k=1h=1
K H . .
+ Z Z [[thk+1 - Vhw+1](32> GZ) - [th+1(32+1) - Vhﬂ+1(5£+1)]]
k=1h=1

K H
Z me{H 2B py (sF, ak) ”z; 1}—|—H«/2KHlog 1/9),

h+1

N~

I

(2.8.32)

where the second inequality is due to Azuma-Hoeffding’s inequality as in Lemma [2.8.16

Next we bound ;. Recall the update rule of ihk, notice that 6% > H/ Vd and the fact

that Hz,bvﬁl(sﬁ(,ahK)HQ < H from V¥ | < H, it is easy to verify that Hz,bv}fﬂ(sf,af)/ﬁh\\g <
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\/3. Hence

K H

L<v2)) Y min{H, 284y (sh,a}) s} +2H?dlog(1 + KHd/\)

k=1h=1

K H
V2max{v/d, 25} Z 2 ¥ min{1, H'd)vk (sﬁ, aﬁ)/ﬁm\g};l’c} + 2H?*dlog(1 + KHd/\)

k=1h=1

< 2V2B

HMN
HMI

2
\

Mx
Mm

< 4BVd

e
I

1h

Il
—_

K H
i 2 25 mindL g, o o) ot ) + 2o (1 + K/

vEA/log(1 + KH/\) + 2H?dlog(1 + K Hd/)),

where the first inequality, similar to the corresponding proof in Lemma [2.8.3] is a direct

implication of Lemma

2.8.13 2.8.14

and Lemma with f]l_i > i;}c and det E;i

< 2det f]l_,lg

except for O(Hd) cases mentioned in Lemma [2.8.13] the second inequality moves or outside,

the third inequality holds because B >
and the forth inequality holds due to Lemma [2.8.15

W=1\= B2

M=

k=1

[V (st) —

44/dlog 12 > +/d and Cauchy-Schwarz inequality,

Plugging I; into (2.8.32) and let

, we have

K H
<aVdB, | > > vilog(1 + KHB?)

k=1h=1

+ 2H?dlog(1 + K HB*d) + H+/2K H log(1/6).

Vi (sh)]

Furthermore, by Azuma-Hoeffding’s inequality as in Lemma 2.8.16]

Z Z P[th—i-l - Vhﬂfl](sﬁaaﬁ) = Z Z[Vh Vi ]( ")

k=1h=1

k=1 h=2
K H _ .
+ Z Z P(Viiy — Vh+1](32’ ay) = [Viter = Vi) (sh11)
k=1h=17
. K' H
< M&Hﬁ\ > Z k\/log(1 + K H B?)
+ 2H?dlog(1 + KHB?d) + (H + 1)H~/2K H log(1/4),
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which becomes the second part of the statement in the lemma. Using H + 1 < 2H we can

get the result claimed in the lemma. O]

2.8.6.3 Proof of Lemma [2.8.20]

To begin with, we will first show the total variance lemma originally introduced in (Jin et al.l

2018).

Lemma 2.8.21 (Total variance lemma, Lemma C.5, Jin et al| (2018)). | With probability

at least 1 — §, we have

i ) VVh (5 {ridhi)](s, a) < 3H?K + 3H?log(1/9).

Proof of Lemma[2.8.20. Assume the condition in Lemma [2.8.4] holds, we have with proba-
bility at least 1 — 9,

H K H /o
2 Vllf < Z Z < d +Vk(5h7 h) +Eh( haaﬁ))
k=1h=1 k=1h=1
P K H o H H
=5 7 Z Z <[thh+1](8haah) [thh+1](3h7ah ) +22 Z Ey (st ay)
k=1h=1 k=1h=1 .
n I
K H K H
+ Z Z[VthH](SZ,ah + Z Z [Vk sk an) = [VaVii1(sk, ai) — Eh]
k=1h=1 k=1h=1 .
s L
3
< + 1 + I, + 3H*K + 3H?log(1/6), (2.8.33)

where the value function V;™" (s) is short for V;™* (s; {rf}_,) for simplicity. The first inequality
is from the definition of v/} in (2.5.2)), while the last inequality is from Lemma[2.8.21|to control
I5. Iy <0 is due to Lemma [2.8.4] Next we are about to bound I; and I, separately.

2The original Lemma C.5 in Jin et al.[(2018) holds for the identical reward functions, i.e., rj = -+ = rk.
Their lemma also holds for the general case r,ll Foee £ r{f without changing their proof.
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Since the estimated value function V/¥,; and the real value function Vh“f , are both bounded

by [0, H], we have

K H K H
ﬂk
L < ZZ (ViEA? = Vi) (sl < 2H Y S [P(VE,, — Vi )](sh, ab).
k=1 h=1

=1h=1

b

For term Iy, we have

K H K H
Iy < 3, Y mind 2 Bl e(shap)lgosh + D) ) min{H2, 2HB 9y (5,051}

k=1h=1 k=1h=1

K H
< maX{HQ, ﬁ} Z Z min{l’ H'l,[)[v}fﬂ]z(sz, al;;‘)Hil_}f}
k=1h=1

K H
+ Z Z max{H?,
k=1h=1

Noticing that from the definition of v/,

(5, )/t| 51}

vy = max{H?/d,V} (s}, a}) + Ef (s}, a})} < max{H?/d, H* + 2H*} = 3H?,

thus &% = \/vF < 2H. Recall that 3 > 4H2log(12) > H? and § > 1, we have

J o J
g

I Is

K H K H
2 2 in{la H‘:b[v,f (S}w ah)HZ} 1 } +4H2 Z Z min {17 ”¢v,§+1 (57 &)/5’;’?”2;%} :

For Iy, using Lemmas [2.8.13| and [2.8.14] with f)l’}c > ig}ﬂ and det f]f,lg < 2det il’}g except
for O(Hd) cases mentioned in Lemma [2.8.13, we have

K H
VIR D win{L [y, s sy + 2Hdlog(1 + K a)

K H
2 > min{1, [y e (sz,aﬁ)\\%ﬁ Y+ 2Hdlog(1 + KH®/d))
k=1 h=1 ’

< 2¢/KHdlog(1 + KH5/d\) + 2Hdlog(1 + K H?/d)),

where the first inequality is a direct implication from Lemma[2.8.13|and the second inequality
is due to Cauchy-Schwarz inequality. The third inequality utilizes Lemma [2.8.15] As for I;,
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we have
H

K
Z Z min {1, [y (s,0)/03] g } + 2Hdlog(1 + KHd/\)

ii m{l

x (s,0)/5} HE }+ 2Hdlog(1 + KHd/)\)

< 2¢/KHdlog(1 + KH/\) + 2Hdlog(1 + KHd/)).

Finally, plugging I5, I into Iy and Iy, I5 into ([2.8.33)) we have

}{3 K H
Z Z vE < +3HK + 3H"log(1/6) + 2H Y 3 [P(Vit, — ViTl(sf, af)
b1 hel k=1h=1

+20+/KHdlog(1 + K H5/d\) + 43Hdlog(1 + K H®/d))

+ 8H?B\/KHdlog(1 + KH/)\) + 8H3dflog(1 + K Hd/)).

Using A = B~2, we could get the result in the statement of the lemma. O

2.8.7 Missing Proof in Section [2.8.3]
2.8.7.1 Proof of Lemma [2.8.7

To start with, we recall that event &ggis defined by the the case when Lemma holds.
And the following lemmas are conditioned on &gg by default. We define function W), for

certain sequence { Ry} recursively as
Wh ({Rh}) = min {1, Ry + Whia ({Rh})} .

In addition we denote the trajectory of first h steps as traj, := (s1,a1, -, Sh—1, @n-1, Sn),

and the trajectory sampled from (7, P) conditioned on traj, as traj ~ (m,P)|traj,.

Lemma 2.8.22. For any policy 7 and reward function r € R, we have

Vi(s1;0k,m,1) = Vi(51;0%,7,7) = Egraja(nptraj, V1({(Px — P)Vis1(sh; O, m,7)})
(2.8.34)
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Lemma 2.8.23. For any policy m and reward function r € R, we have
Etraj~(7r,IP’)\traj1W1 ({uk,h(sha 7T(Sh); 0K7 T, ’I")}) < ‘7K,1 (31; 0K7 TK, TK) .

Proof of Lemma[2.8.7]. The proof follows the proof of Lemma 15 in Zhang et al| (2020).
Firstly,

Vit(s1;7) = Vi(s1; 0%, 7, 1)

= (Vi'(s1;7) = Vi(s1; 0k, 7, 7)) + (Vil(s1; Ok, 0, 1) — Vi(s1; 07, 70, 7))

< (V*(s1;r) = Vi(sy; Ok, i) + (Vi(s; Ok, oy ) — V(s 0%, 70, 1)), (2.8.35)
where 7¥ is the optimal policy for (@,r), and 7, is the optimal policy for (@, r). Then for
any policy € II,

’%(81;0K77T7T) - ‘/1(51;0*,71',7a)‘
‘Etra_] (m,P)|traj, Wl {(]P)K - P)Vh-‘rl(Sh; Qp, 0K7 , T)})‘

(O — 0%)Dv,, omm) (Shyan)})|

{(
{HOK - 0*H~ HQSV}LH(WGKJF,T) (Shv ah)Hffl })
k,0

IEtra_] |traJIW1 26 H¢Vh+1( 0K ,m,r) (Sh’ ah) H S0 })

‘Etra_] (m,P)|traj, 1

(
IEtraJ |traJIW1 (

= 2Etraj~(7r,IP)|traj1W1 ({Uh(Sh, Qps 0Ka T, T)})
< Wi (515 0k, Tic, ). (2.8.36)

The first equality holds due to Lemma [2.8.22] the second inequality holds due to Cauchy-

Schwartz inequality, the third inequality holds due to Lemma [2.8.6 and the last inequality

holds due to Lemma [2.8.23] Plugging ((2.8.36|) into ([2.8.36|), we obtain

Vi (s137) — Vils1: 0%, 7. 1) < 2Via(s1; 0k, i, i) + 2V (513 0k, i, i)

= 4‘7K,1<5130K77TK;TK)-
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2.8.7.2 Proof of Lemma [2.8.§]

Proof of Lemma[2.8.8. The proof follows the proof of Lemma 14 in (Chen et al.| (2021).
Firstly, we prove that ‘Afm(s; 0,7, r) is non-increasing w.r.t. k for any fixed @, m,r by in-
duction in h. Suppose for any k; < ko, %17h+1(3;0,7r,r) > ‘A/k27h+1(3;0,7r,r) for any s. By

definition,

o —1

30

T
Vk,h+1(-;0,7r,r) (87 7-‘_(8))0}

Vien(s; 0, m,7) = min {1, upn(s,a;0,m, 1)+ 26 qu‘/}k,thl(ﬁeﬂrﬂ")(S’ 7(s))

uk,h(“;? a? 07 7T’ T) = 5 H(ﬁvh('§077r77') (S’ a) ”i_l
k,0
Since ikl,() < ikg,() and ikl,o < ikQ,o, we have
Uky n(8,0;0,m,7) = upy (8, a;0,m,7)

o —1
k0

1= [ omn (5 7(5)
ko0 2

by, (5,7(5))0 = ¢y, (s,7(5))0

Vieyht1 (50,m,7) Vg ht1 (50,7,7)

Hqﬁf/kphﬂ(';eﬂr,r) (87 W(S))

Thus Vi, n(s;0,m,1) = Vi, n(s;0,m,7) for any ky < k. Furthermore, since Uy, < Uy,, and
0., T, 7, are argmax over Uy, we have

~

Vkl,l(sl; 0k17 Tkys rkl) = Vk1,1(81; 014:2’ Tky, rkg) = ng,l(sl; 0k27 Tky Tkz)

It follows that \A/k,l(s’f; 0y, Tk, 1)) is non-increasing w.r.t. k. Thus,

K
KVi(s1; 0k, 7x, 1) < D Via (513 O, Ty 1)
k=1
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2.8.7.3 Proof of Lemma [2.8.9]

Lemma 2.8.24. Conditioned on the event g, let ‘A}kﬁ, Vk,h? ik,ma i\]k,m, (Ek,h,ma $k,h,m be

defined in Algorithm , for any k € [K], h e [H], m € [M], we have

kO

Vin(sh) = unn(st, af) = PVipia(sf, af) < {1 /BHQf)kho —1} (2.8.37)

Ven(s8) — rpn(st, af) = PV i1 < 2min {1 o4 H¢k h 0‘ 1 } (2.8.38)

Ek()

In order to prove Lemma [2.8.9, we introduce the following quantities used in [Zhou and

Gu (2022a)) as

K H
R, = Z Z I min {Lﬁ‘ﬁk,h,m’g;lm} ,Ym e [M] (2.8.39)
k=1h=1 :
B K H N -
R, = Z Z I} min {1,6¢k,h,m|§k;} ,Ym € [M] (2.8.40)
k=1h=1 :
A=Y 3118 [ka h+1] (s, af) — V2, (sh+1)] Vm e [M] (2.8.41)
k=1h=1
B K H N -
A=Y D IF [Pv,f,hﬂ] (sk,af) — Vidha (sﬁjﬂ)] Vm e [M] (2.8.42)
k=1h=1
Sn=2,2, [}j kh+1} Shy 1) e [M] (2.8.43)
k=1h=1
=331 VVk hﬂ] sk.ab) ¥m e [M] (2.8.44)
k=1h=1
L —1)2
I} =1{vme[M] <2 )/det 1/2)<4
~1/2 1 ,
and det (Ekm ) /det / > < 4} (2.8.45)
K
G=> (1-13), (2.8.46)
k=1
Lemma 2.8.25. Let v, «, be defined in Algorlthml {Rm}meﬁ {Rm}meﬁ: {Sm}meﬁa
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{Sm}me be defined in (2.8.39), (2.8.40), (2.8.43), (2.8.44)). Then for m € [M — 1], we have

R,, < min {KH, Adu + 4B8~%du + 25\@\/ S+ AR + 2Rpi1 + KHoﬂ} (2.8.47)

R,, < min {KH, Ad + 4B~2du + 25\@\/ S+ AR + 2R i1 + KHoﬂ} , (2.8.48)

where ¢« = log(1+ K H/(d\a?)). For Ry_1 and Ry;_1, we have the trivial bound Ry < KH
and EM,l < KH.

Lemma 2.8.26. Let {fzm} {Rm}me {Sm}me {Sm}me {Am}me {Am}me
G be defined as (2.8.39), (|2.8.40|), [2.8.43), (2.8.44), (|2.8.41|), (|2.8.42|), (|2.8.46|). Then, con-

ditioned on the event &, for m € [M — 1], we have

S < [Aia| + G+ 271 (o + 4Ry ) (2.8.49)

S < \Amﬂ

+ G 4 omH! (K + 211%0) (2.8.50)

Lemma 2.8.27. Let {Su} i {Sm bmeiris {Am bmefirgs {Am ey be defined as (2:8.43),
(2.8.44), (2.8.41)), ([2.8.42]). Then we have P(§ggzn) > 1 — 2MJ, with &ggog be defined as,

Eosom = {Vmem, ﬁm‘ < min{«/2§§m +C,KH}

and ‘me‘ < min {\/2¢§m g KH}} , (2.8.51)

where ( = 4log(4log(KH)/d).
Lemma 2.8.28. Let G be defined in (2.8.46)). Then we have
G < Md., (2.8.52)

where ¢ = log (1 + KH/ (d\a?)).

Proof of Lemma[2.8.9. All the following proofs are conditioned on &ggggn zgza, which hap-
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pens with probability at least 1 — 4M . Firstly, we have

Vi (sh)
k=1
K H . . N .
-3 [ff'f [th(s’,j) - Vk,h+1(315+1)] + (1 - 1Iy) [Vk,h(si) - ‘/k,hﬂ(sﬁﬂ)]]
k=1h=1
K H H
= Z [Z Lurn(sh, az,) + Z I [Vh w(sh) — wrn(sh, ap) — PV h+1(527a2)]
k=1 [ h=1 h=1
H . . K H .
WA AN Vk,h+1(5’z§+1)]] £ 20 20— 1) [Velsh) = Venna(han) |
h=1 k=1h=1
K H K H
< Z I,]fuk,h(sfw aﬁ) + Z Z I [Vh k(Sﬁ) — Ug h(Sﬁ, (Zh) ]P)Vk h+1(8£, CLIZ)]
1321 h=1 , 1321 h=1 P
n L
K H K .
+ I DI []ka ner(sh, af) = Vi k(sh+1>] + 2 (U= 18) Vieny (sh,),
Sia . & )
I I

where hy, is the smallest index such that I }’fk = (. Following the definition of wy s,

K H
]1222 mm{lﬁHﬁbkho‘ k;}Iéo-

k=1h=1

By Lemma [2.8.24]

K H
I < 42 Z [f]fmln{175’¢kho ;\1} = 4§0
k=1h=1 k.0
By definitions,
]3 = ;{07
K
L<Y (1-1f) =G
k=1
Thus,
K A~ ~ ~ ~
Y Via(sh) < By + 4Ry + Ay + G (2.8.53)
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Substituting (2.8.49) in Lemma [2.8.26| into (2.8.47)) in Lemma [2.8.25, we have

R, < Adu + 4B8+2du + 25\@\/ ‘Emﬂ

+ G 4 2mtl (Eo + 4§0> + 4R, + 2R meq + K Ha?

< 25\/@\/‘@”“‘ 4 om+l <§0 + 4§0> + AR, + 2R

+ 4du + 4872de + 28V dVG + KHa?, (2.8.54)

I

where the second inequality holds due to va +b < +/a + +/b. Substituting (2.8.49) in
Lemma [2.8.26| into (2.8.51]) in Lemma [2.8.27] we have

2] V2G| + G 2m (R 4R) 4
< W/2¢\/‘ﬁm+1( +omt (éo + 41?0) +A/20G + ¢ (2.8.55)
Substituting (2.8.50) in Lemma [2.8.26|into ([2.8.48)) in Lemma [2.8.25, we have

Ry < 4de + 4B8+2du + 25\/@\/‘@%1’ + G+ 2mHl (K + 2]§0> + 4Ry, + 2Rime1 + K Ha?

< Qﬁm\/‘gm+l
+ 4du + 487%de + 2BV d G + KHo? (2.8.56)

Ic

Substituting (2.8.50)) in Lemma [2.8.26| into (2.8.51]) in Lemma [2.8.27] we have

+omt <K + 2&0) 4R, + 2R

lﬁm‘ < \/i\/‘flmﬂ‘ + G + 2mHl <K + 2§0> +¢
< \/i\/lﬁmﬂ‘ 4 gm+1 (K n 2§0> +/20G + ¢ (2.8.57)

Thus, calculating ([2.8.56) + (2.8.57) + 4x ([2.8.54) + (2.8.55) and using \/a+vb++/c+Vd <
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2v/a + b+ c+ d, we have
Pt T+ 4R 4| 2]
< 5L, + 24/2CG + 2¢ + 2max {85\/@, «/2g} \/2 ‘Emﬂ

VAR, + 2Ryt + 2 ‘ZmH‘ 4 2. 9mH <K + 2E0> + ARy + 2R

<51+ +24/2¢G + 2¢ + 4max{85x/@, \/i} \/@m + ’Em) T AR, + ‘Em’)

+ 4§m+1 + ‘zzl\m_H') + 2. 2m+l (K + Eo + ‘Avo‘ + 4&0 + ‘121\0D

4 9. gm (1720 v 41%0)

+ <172m+1 T ‘Zmﬂ

Then by Lemmal2.8.33|with a,, = §m+lﬁm‘+4ﬁm+lﬁm‘ < 7K H and M = log(7K H)/log 2,

.FNi(] + ’gg‘ + 4?%0 + ‘20 can be bounded as

Eo + ‘Avo‘ + 4@0 + ‘2{0‘
< 22 - 16 max{645%di, 2¢} + 301, 4+ 124/CG + 12
+ 32 max {85\/@, ’\/QC} \/K + Eo + ‘JZO‘ + 4@0 + )121\0‘

< 352 max {645%de, 2C} + 301, + 12+/CG + 12¢ + 32 max {85\@, \/i} VE

+ 32 max {&8\@, «/QC} \/EO n ‘A’O‘ 4 4Ry + ‘?10}. (2.8.58)
By the fact that x < ay/z + b= x < 2a* + 20, (2.8.58)) implies that
Eo + ‘2{0‘ + 4&0 + ’20'

< 896 max {643%ds, 2} + 601, + 244/CG + 24¢ + 64 max {85\@, \/i} VE.  (2.8.59)
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Finally, plugging (2.8.59) into ([2.8.53)) and bounding G with Lemma [2.8.28 we have

< éo + ‘2{0‘ +4§0 + ‘AA\()‘ +G
< 896 max {64/3%ds, 2¢} + 24¢ + 64 max {85\@, \/Q} VE (2.8.60)
+ 60 <4dL + 4872 + 28V di/ Mdi + KHa2) 4 248/CMdi + Mds

< 896 max {648%de, 2¢} + 24¢ + 240de + 24087°de + 1208duv/ M + 24+/CMde + Mde
4 (64 max {85\@, «/2¢} 4 120ﬁ\/dLHoz2) VK

2.8.8 Proof of Lemmas in Section
2.8.8.1 Proof of Lemma [2.8.6]

Lemma 2.8.29 (Theorem 4.3, Zhou and Gu| (2022a))). Let {Gi},_, be a filtration, and
{xx, nk}k21 be a stochastic process such that x; € R? is G;-measurable and 7, € R is Gpy1-
measurable. Let L,o,\,e > 0, u* € R% For k > 1, let y, = (u*, xx) + 1 and suppose that

Mk, X, also satisfy
E[n | G = 0.E [ | ] < 0% Inil < R el < (28.61)

For k > 1, let Z;, = M\I + Zle x;x, , by = Zle YiXi, i, = Zy, 'by, and

Br =12+/02dlog (1 + kL%/(d\)) log (32(log(R/e) + 1)k?/5) + 6log (32(log(R/e) + 1)k?/8) e

+ 241og (32(log(R/e) + 1)k?/6) max {|m! min {1, Hxiuzi__ll}} . (2.8.62)

Then, for any 0 < § < 1, we have with probability at least 1 — ¢ that,

k
Z XiM;
i=1

VEk > 1, < By e — B*lz, < B+ VAt

-1
Zk
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Lemma 2.8.30. Let Vk,m ‘7/§7h, ik,rm ik,m» 5k,m7 é\k’m, %kﬁ,m, Cgk,h,m be defined in AlgO—

rithm , for any k € [K], h € [H], m € [M]. We have

VUL (shoak) = VU2 (shoah)

< min {1,

-+ min {1 2 Hd)khm)

n *
0k,m+1 -0

i\:k,vni»l}

‘ 2.8.
flk,m} , (2.8.63)

Ek m+1

’@m—e

and

VUZE (shof) — TV (sh o)

< min {1,

-+ min {1 2 Hq{)khm)

Ormit — 0" .

zk m+1 }

am} (2.8.64)

2:k m+1

’@m—e

Proof of Lemma[2.8.30. The proof follows the proof of Lemma C.1 in |Zhou et al.| (2021b).
We first prove (2.8.63)), and the proof of (2.8.64) is similar. We have

[ViaVienal(shy ak) = [Vin Vil (sh, af)

= [[{Prsms1: Orms)]0.1) — (Prpmsr, 0%
+ (Dt 09)° = (Prpn: O o

< | Prpms1s Ormi)01] — {Prpme1s 0]

-

n
+ |(<$k,h,ma 0*>)2 - [<$k,h,m, é\k,m>]ﬁ)71]‘ (2865)
I

where the inequality holds due to triangle inequality. We have I; < 1 since both terms in [;
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lie in the interval [0, 1]. Furthermore,

I < ’[<$k,h,m+la 5k,m+1>] - <$k,h,m+17 0*)|
= |[<$k,h,m+1; é\k,m—&-l - 0*>|

< H¢k,h,m+1”§;ﬁn+1 ||0k7m+1 o 0*H§k,m+1,

where the first inequality holds due to <$k,h,m+1(3]ﬁ7 ar),0%) € [0,1], the second inequality

holds due to Cauchy-Schwarz inequality. Thus, we obtain

z:Ic,'m#—l

L <mindl, [dpnmirls o [Bpmin —0%g ) (2.8.66)
k,m+1

For I,, we have

Iy = |((@rn(sh: @§).8) = [(Binom O 101
(Brnan(5h: @5).0) + [(Brnam, B o)
< 2|(( (s, a£). ) = (Brm: Oons)

< 2 dpnm(sh, )l 1Orm — 61,

k,m

X

where the first inequality holds due to that both <$k,h7m(si, ar),0*) and [<$k’h7m, é\km>] 0,1]
lie in the interval [0, 1], and the second inequality holds due to Cauchy-Schwarz inequality.
Since 5 belongs to the interval [0, 1], we have

1 B — 67

k,m

Substituting (2.8.66|) and (2.8.67]) into (2.8.65)), we obtain (2.8.63]). The proof of [2.8.64] is
nearly identical to the proof of (2.8.65]). The only difference is to replace $ with (Z, 0 with
5, > with 3. 0

I, < min{1, 2| @ppm(sy, ak) (2.8.67)

lg $)

Proof of Lemma[2.8.6. The proof follows Lemma C.2 in |Zhou and Gu| (2022a)). Symbols we

used here may have small intuitively understandable modification compared to Algorithm
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since we have to distinguish between Algorithm [5| applied to Vk,h and ‘7k7h. We first prove
that Equation ([2.8.9) holds with high probability. By definitions,

~2 2| 2 O i om E _k ~ 2
Ol pym = MAX {7 chk,h,m g1 [Vk,mvk,hﬂ] (8 an) + Bk pm, o }
k,h,m

T ym = MAX {72 H¢k,h,M4 o .1, 042} .
zk,h,kffl
We define Cy,,,, as
C m = {0 : ||9 — 0k7m‘|§k < ﬁk}
For each m, let

~—1 T
Xk,hym = O h, m¢k,h,m>

Mk,hym = Ukhm]l{e*eckmmckmﬂ}[‘/khﬂ(shﬂ) <¢khm; 1,

~—1 2M 1
Me,h,M—1 = Uk,h,Mfl[ kh+1 <¢k:hM 1, 0%)],
gk,h = fk,fﬁ
u =0

We have

E[1knm|Gkp] =0, [ Xipm|2 < 3;;},,,,,,, <o, [Menm| < 1/a

Since 1{6* € @m N CAka} is Gy p-measurable, then we can bound the variance for m e [M]
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as follows:
E[ni,h,m%,h] = Uk h.m 1{6" € Ck om0 Ck: m+1}[VVk h+1](327 GZ)

<532 1{0% € Cln O Cronin } | YV (35, af)

+ min {]—a ‘ -1 Ok,m-i-l A B }
Skmt1 Sk,m1
+m1n{1 2Hq§khm ‘okm—e . }]
Ek m Ek,m

<thm

VVk; ht1 (s, ay) + min {1 Br H¢k hym+1
~—1 }]
EkA,m

where the first inequality holds due to Lemma [2.8.30] the second inequality holds due to the

zk ,m+1 }

+ min {1, 26| B

<1,

definition of the indicator function, and the third inequality holds due to the definition of

Oppm- Form = M —1, we have E[n2,, ..|Grn] < 1 directly by the definition of 57, ,,. For

any m € [M], we have

enml max{L, [Xinmls |} <Gk mlbenmlss | <1/77

where the first inequality follows from the definition of 7y 5., and X pm, and the second

inequality follows from the definition of oy, ,,. Let

Yk,hym = (™, Xx,h,m> + Nk hyms

k H .
Nt
Zion = ML+ D XinmX o = Shatim,
i=1h=1
k H
bm = Y\ > Xihm¥ihms
=1 h=1

-1
Him = Zk,mbk,nu

e =1/
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Then, by Lemma [2.8.29] for each m € [M], with probability at least 1 — 9§, Yk € [K + 1],

|1 = 0%, <12¢/dlog(1 + kH/(a?d))) log(32(log(v?/a) + 1)k2H?/5)
+ 301og(32(log(v?/a) + 1)E2H?/8) /4 + VAB
= D (2.8.68)

Define the event that (2.8.68)) happens for all £ and m as £. Conditioned on & , the following
properties hold:

e For k = 1, m € [M], by the definition of §1,m and il,m; we have |0* — é\lmHﬁ =
1,m
10*|xr < VAB = By, which implies

6* € Cy (2.8.69)

e For ke [K] and m = M — 1, we directly have p pr—1 = §k+17M_1, which implies

0" e ac+1,M—1- (2870)
e For ke [K] and m € [M — 1], we have

0" CAkm N é\kz,m-i—l = Ykhym = O -y 1 (Sh41) = M = 9k+1 m = 0% € Cry1m.

(2.8.71)

Therefore, by induction based on initial conditions and , induction rule
(2.8.71), we have for k € [K] and m € [M], 6* € CAkm Taking the union bound gives that
m 2.8.9) happens with probability at least 1 — M. We can use the nearly identical argument
to prove that (2 m holds with probability at least 1—M¢. The only difference is to replace
o with o, cb with qb V with V V with V ¥ with E E with E 6 with 6. By taking the
union bound, we obtain that with probability at least 1 — 2M§, Equations

both hold. For ) and m we have

6, — 6", Hmfmﬁ <28,

+ Hekmfe* .

3k0

6. — 6], ]@—m4

+ Hek,m — 0

>

Eko k,0
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2.8.8.2 Proof of Lemma [2.8.22]
Proof of Lemma|[2.8.29. We prove this inequality by induction. Suppose

Vi1 (8h115 0k, T, 7) = Vig1(Spe1; 0%, 7, 7)

= ]Etraj~(7r,IP’)|trajh+lWthl({(]P)K - ]P))Vthl(Sha Gp; HK) T, T)})a (2872>
which is true for h = H. Then, we have

Vi(sn; Ok, m, 1) — Vi(sp; 0%, 7, 1)
= min {1, 7,(sn, an) + P Vi1 (sn, an; Ok, 7, 7) — (ra(sn, an) + PViga (sp, an; 0%, 7,7)) }
= min {1, P Vis1(sh, an; O, m,7) — PViyr (sp, an; 0%, m,7)}
= min{l, (Px — P)Vis1(sn, an; Ok, m,7) + P(Vii1(sp, an; O, m,7) — Vie1(Sp, an; 0%, m,7))}
= min{1l, (Px — P)Vj11(sn, an; Ok, m, 1)
+ s, ~P(sn.an) Btraj~(r.p)traj, . Whit ({ (P — P)Vii1(sn; Ok, 7, 7))}
= Etraj~(r,p)tray, Min{1, (Px —P)Vii1(sn, an; O, m,7)
+ Whit ({(Pe = P)Vis1(sp, an; Ok, m,7) 1)}
= Etrajn(r.p)tra, Wh({(Px — P)Vii1(sh, an; Ok, 7,7)}).
The first equality holds due to that Vj,(sp;@k,m, ) and V,(sy; 0% m,1r) both belong to

[0,1], the third equality holds due to (2.8.72), and the forth equality holds due to that

Etraj~(mP)traj, = ]Esh_HN[[D(.‘Sh’ah)EtrajN(W,]}D)‘trajh+1. Thus, by induction, we obtain the desired

result (2.8.34)). m

2.8.8.3 Proof of Lemma [2.8.23

Proof of Lemma[2.8.23. We first prove (2.8.73)) by induction.

IE’traj~(7r,IP)\1:raj1I/Vl ({uK,h<Sh7 W(Sh); 0K7 T, T)}) < VK,l (31; 0K7 T, T) . (2873)
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Suppose
Etraj~(7r,IP’)\trajh+1Wthl({uK,h(sha7T(£h>; 0K77T>7")}) < VK,thl(Sl; 9K,7Ta7"), (2-8-74)
which is true for h = H. Then,

?K,h(sh; O, T,7) — Eiraj~(r,p)eraj, Wa({trn(sn, m(an); O, m,7)})

= min {O, uK,h(S}u W(Sh); OK, ™, 7’) + 26 Hgb‘/}K,thl(ﬁgKJf,T)(Sh’ 7T(8h>) .

YK,0

+. . (5n, T(58)) Ok — Eeraj~(m.p)ltraj, Wan({trn(5n, 7(58); Ok, 7, 7’))}}

Vi ht1(50K,7,7)

> min {O, ug p(Sh,m(sp); Ok, m, 1) + 20 quf/Kth(_;gKmr)(Sm (1)) -

YK,0

T

Vi h+1(,;9K77r7T)<5h; 7(s1))0r — urp(sn, 7(sn); O, m,7)

Sh+1~P(:|sh, ﬂ(sh))EtraJ ~(m, IP’)|traJh+1Wh+1({uK h(Sha (Sh); 0K7 T, ’I"))}

+oL ) (sn, m(s5n))0x

VK,h+1( 70K77T’7‘

ozﬁHcﬁVW ey (557 <sh>>Hz + gl (.;GK,W,T)<sm<sh>><eK—o*>}

V
K.0 K,h+1

KO

— 20 H¢@h+1(-;o;{,n,r)(5h’ 7T<Sh))H§K,0 }

where the first inequality holds due to the definition of ‘A/Kh, the second inequality holds
due to the definition of Wj(-) and Eiraj~(rp)jtraj, = Espii~B(|sp,r(sn) Etraj~(r, P)ltraj,,,> the
third inequality holds due to[2.8.74] the fifth inequality holds due to Lemma [2 Thus, by
induction, holds. Thanks to the optimism of VKjl(sl; Ok, Tk, TK), we have

‘71(,1(81; Ok, m,r) < Vii(s1;0k, Tk, TK),

which concludes the proof. n
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2.8.8.4 Proof of Lemma [2.8.24]

Proof of Lemma|[2.8.2]. For the equation ([2.8.37)), we have

/\

— wgn(sk, af) = PVinsa (s, af)

1,28 | Beno(sts ) + Boo(sk. ab)0 — BTy ok a@e}

k,0

= min {L 283 | binol(sh, af) 5 + P po(sh ab) (O — 9)}
nf o loc-olg |

k,0

1,28 q,)k,h,o(sfl?a’i) .~ + H¢kho (spran)|

k0

A1 }
ko

where the first inequality holds due to that each term lies in the interval [0, 1], the second

< min{1,4/@ q;k,h,o(si,alﬁ) Al}

< 4 min {1, I6] ‘(Zk,h,o(527 ay)

inequality holds due to Cauchy-Schwartz inequality, and the third inequality holds due to
lemma [2.8.6, For the equation (2.8.38)), we have

Vin(sF) — i (sh, ab) — PV i (sh, ab)
mm{l ¢kho shvah) ¢kzh0(shvah)9}

mln{l Cbk;ho (s ap) Ok — 0)}
<min {1, 5] ool |

< min {1 203 Hq{)kho(sﬁ, aﬁ)‘ E;;}

sz

where the first inequality holds due to that each term lies in the interval [0, 1], the second

Sh7ah)‘

< 2min {1 B H(ﬁkho(sza@Z)‘

inequality holds due to the Cauchy-Schwartz inequality, and the third inequality holds due
to Lemma 2.8.6 O
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2.8.8.5 Proof of Lemma [2.8.25]

Lemma 2.8.31 (Lemma B.1, Zhou and Gu|(2022a)). Let {0, Bi},~, be a sequence of non-
negative numbers, a,v > 0,{xz},o; < R and |x4x], < L. Let {Z},., and {54},-; be

recursively defined as follows: Z; = Al

Vk > 1,64 = max {ak,oz,7 HX’“”Z*%} L1 = Lo, + X%} /5L

Let ¢ = log (1 + KL?/ (d\a?)). Then we have

K K
Z min {1, Br ”anzfl} < 2du + 2 max Bpy2de + 2V do Z B% (0% + a?).
k=1 * helK] k=1

Proof of Lemma |2.8.25. The proof is nearly identical to the proof of Lemma C.5 in [Zhou
and Gu (2022a). The only difference is to replace f]k’m with flkm (or ik,m)7 ik,h,m with
Shonm (01 still S pn)y Grpm With Gpjm (08 Gpopm)- O

2.8.8.6 Proof of Lemma

Proof of Lemma [2.8.26. The proof follows the proof of Lemma 25 in |Zhang et al.| (2021d)
and Lemma C.6 in [Zhou and Gu (2022a). We have,

o
Mm

§m [ l[PVk2::] ( fwah) ([ka h+1] (S%ai))g]
]
([P kb)) ] - 30 3 (P ko) )

k=1h=1
<Api + Z []ff leQ,hH (32) - ([kaz,hﬂ] (Sﬁﬂz)) ] + Z Ill'fkvkz,h;l (Siwl) ’
k=1h=1

=
I
—

h

I
—

o
Mm

K H
[Pz shoad) - 72000 ) + X S| 7 o)

ke
I
I
—
e
I
—
>
I
—

H

k=1

(2.8.75)
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where hy, is the largest index satisfying IF = 1. For the second term, we have

=

Il
o

K H
- Z Z IF th (s) []P’Vk h+1] (Sivaﬁ))

(V2 (55) + [PV | (55 a8)")

b
I
—
>
I
—

)

Bl
Il
—
>
Il
—

K H
2m+12 Z [Ukh sﬁ,ah) ~|—4rn1n{1 ﬁHfﬁkho 21”
k,0

< omH (Ro + 430) , (2.8.76)

where the first inequality holds due to using EX? > (EX)? recursively, the first equality
holds due to the fact 2™ — 2" = (z —y) [["y(z*" — y*"), the second inequality holds
due to ‘A/k,h belongs to the interval [0, 1], the third inequality holds due to Lemma and
the last inequality holds due to wp(sf, af) = Bldv. . (60,m, 7nk)(sh?ah)H~ = B|’$kh0“§ vo
If hi < H, we have IF V20 (sk 1) <1=1- Ik, and if hyx = H, f,’jkvg’,j;l (sk 1) =
0 =1— I% which both give

K K
Z IV (sh) Z (1-1%) (2.8.77)

Substituting Equations (2.8.75)), (2.8.76)),(2.8.77) into (2.8.75)), we can get (2.8.49)). For
Equation ([2.8.44]), similarly, we have

K H
Z Z ]h [ 2m+1 ) - ([PVkQ,;H] Shvah ) } Z ]hk k2h:+11 Shk+1)

(2.8.78)

K
m+1
ZIhk thwl Shhy+1) Z (1-15) = (2.8.79)
k=1
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And we have

k=1h=1
K H _

< gm+l Z 2 [}’f max {Vk,h (5h> [PVk h+1] (sﬁ, aﬁ) ;0}
k=1h=1
K H

<2 351 (oo + min 1,25 o |
k=1h=1 Ek ’

where the first inequality holds similar to the derivation of (2.8.76)), second inequality fol-
lows Lemma [2.8.24] and the third inequality holds due to Zh L Ten(sE ar) < 1. Plugging
Equations (2.8.79)) (2.8.80)) into [2.8.78] we obtain [2.8.50 O

2.8.8.7 Proof of Lemma

Proof of Lemma[2.8.27. The proof follows the proof of Lemma 25 in Zhang et al.| (2021d)
and Lemma C.7 in Zhou and Gul (2022a). We use Lemma for A,, and A, for each m.
To avoid confusion, we write €, in Lemma [2.8.32| as €', 0"

Lot o = IF | [PV21 | (shaf) = V2 (ko) | mo = KCH, ¢ = /log(1/87), and &' =
§/(4log(KH)). Thus, E [Zyp|Fep] = 0 and E[Z3 | Fen] = IF [VViZ3,1] (sF. af). Therefore,

for each m € [M], with probability at least 1 — §, we have

- [3 2

Similarly, let zy), = IV [[P‘ZE:H] (sk,ar) — V,fzﬂ(s’flﬂ)] = KH, ¢ = 4/log(1/d"), and
§ =0/(4log(K H)). With probability at least 1 — ¢, we have

K H
-8 S <
k=1h=1

Taking union bound over m € [M] completes the proof. O

uMm

K H
<, 2¢ Z 2 [Vvk:2;:+1] (s ak) + €.
k=1 h=1

K H
20 Z 1t [vVRi | (sh ) + ¢
k=1 h=1
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2.8.8.8 Proof of Lemma [2.8.28]

= —1/2 - . —1/2
Proof of Lemma |2.8.28. By the fact that det <2k+17m) < det (2;%27”) and det (Ek+1,m>

< det (f],;%il), we have
k A &2 S—1/2
(1—1%) = 1< Ime [M],det (5,,, )/det <2ka> >4
L-12 S—1/2
or det (Ek,m ) / det (EhH’m) > 4
— ~—1/2 - —1/2
= Im € [M], det (Ek’m ) / det (Ekﬂ,m) >4
L —1/2 L —1/2
or det (Ek,m > / det (EkH’m) >4 (2.8.81)
Let @m and 5,” denote the indices k£ such that

ﬁm = {k € [K]: det <§]k+1,m> / det (i\]km> > 16}

5m = {kj e [K]: det <§]k+1,m> /det (ikm) > 16}

Then we have

M 1

-1 " M— . M-—1 _
G < D < 3, [Du| + 3, 1B
=0 m=0 m=0

M-1
JPu
m=0

m

For each m, we have

2 ’ﬁm‘ < Z log 16 < Z log (det (ikﬂm) / det (ikm>>

keﬁm keﬁm

< i log <det <§k+1,m> /det <§]km>>
k=1

Furthermore, since det (ZKJFLm) < <tr (2K+1,m) /d> and tr (2K+1,m> < tr (M) +

N 2
Dk Hﬁbk,h.m’L (O pm < AN+ KH/o?

S 1og (det (S /et (Sim) ) = 1o (et (Brcsrn) /et ($1))

k=1
< d (log (A + KH/(do?)) —log()))
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Therefore |D,,| is upper bounded by
D, < d/2log(1 + K H/(d\a?)).

And same for |D,,|. Taking summation gives the upper bound of G. O

2.8.9 Auxiliary Lemmas

Lemma 2.8.32 (Lemma 11, Zhang et al.[[2021e). Let M > 0 be a constant. Let {z;};_, be a
stochastic process, G; = o (21, ..., x;) be the o-algebra of xy,...,x;. Suppose E[z; | G;_1] =

0,]z;| < M and E[2? | G;_1] < o0 almost surely. Then, for any d,e > 0, we have

'

>1—2(log (M?n/e*) +1) 6. (2.8.82)

n

S

i=1

< 2\/2 log(1/6) Zn:E [22 | Gi_1] + 2+/log(1/6)e + 2Mlog(1/§)>

i=1

Lemma 2.8.33 (Lemma 12, [Zhang et al,| (2021d))). Let A, Ao, Ay > 0,03 = 1 and k =

max {log, \1,1}. Let aq,...,a, be non-negative real numbers such that

a; < min {)\1, )\2\/(11' + a;41 + 2i+1)\3 + )\4}

for any 1 < i < k. Let a.1 = A\;. Then we have a; < 22)\2 + 6\ + 4A24/2)3.
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CHAPTER 3

Uncertainty-Aware Unsupervised Exploration in Deep

Reinforcement Learning

3.1 Introduction

In Chapter [2| we discussed the theoretical framework of reward-free exploration, especially
with linear function approximation. In this chapter, we aim to extend this analysis and
algorithm in a more general and practical setting, which is aligned with the current prac-
tice of deep reinforcement learning. We also seek to build the foundation of unsupervised

reinforcement learning through the lens of reward-free exploration.

Deep reinforcement learning (RL) has been the source of many breakthroughs in games
(e.g., Atari game (Mnih et al.; [2013)) and Go game (Silver et al. 2016)) and robotic control
(Levine et al. 2016]) over the last ten years. A key component of RL is exploration, which
requires the agent to explore different states and actions before finding a near-optimal policy.
Traditional exploration strategy involves iteratively executing a policy guided by a specific
reward function, limiting the trained agent to solving only the single task for which it was
trained. Designing an efficient exploration strategy agnostic to reward functions is crucial,
as it prevents the agent from repeated learning under different reward functions, thereby

avoiding inefficiency and potential intractability in sample complexity.

Therefore, as discussed in Chapter , reward-free exploration (Jin et all 2020a) is pro-
posed to improve the efficiency of exploration without reward functions. A series of theo-

retical works have presented efficient exploration strategies with performance guarantees, as
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Observation s
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Intrinsic reward iyt

Training process

Neural Networks

@3 = {s7a7sl7 r3}

Online pre-training with intrinsic reward Offline RL / Online Finetuning

Figure 3.1: Diagram of the unsupervised reinforcement learning paradigm.

we discussed in Chapter 2l On the other hand, from the empirical perspective, unsupervised

reinforcement learning (Laskin et al.; 2021)) has emerged as a new paradigm for encouraging

the agent to explore without predefined supervision. Unsupervised RL diverges from classical
RL approaches by not relying on a specific reward function for exploration. Instead, Unsu-
pervised RL utilizes an “intrinsic reward”, a.k.a., pseudo-reward function, defined based on
all previously explored samples. This encourages the agent to venture into unexplored states

and actions. In particular, in the realm of deep RL where no linear structural assumptions

are made, recent studies (Pathak et al. 2017; Burda et al., [2018b; [Eysenbach et al., 2018;

Lee et all, [2019; [Pathak et all, 2019 [Liu and Abbeel, [2021ab) have developed unsupervised

RL algorithms by employing various intrinsic reward functions, demonstrating promising
performance in finding the near-optimal policy. As presented in Figure [3.1], unsupervised
reinforcement learning is similar with the reward-free exploration discussed in Chapter [2|
Compared with the reward-free RL, empirical unsupervised reinforcement learning uses the
intrinsic reward to motivate exploration and the additional application of online fine-tuning

to learn the different rewards or objectives.
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Despite the success of these heuristics on designing the intrinsic rewards for unsupervised
RL, these empirical results lack rigorous justification and could be further optimized. From
the theoretical analysis perspective, for example, Kong et al.| (2021)) defined an intrinsic re-
ward based on the maximum difference between function pairs that show similarity in past
data. This approach essentially treats each collected sample equally. It is a well-established
principle in RL that in order to achieve optimal sample efficiency, different samples should
be treated distinctively based on their importance. Notably, [Zhang et al,| (2023a)) utilized
variance-dependent weights to address the heteroscedasticity observed in samples, thereby
achieving optimal sample complexity in linear mixture MDPs. However, this approach cal-
culates its intrinsic reward by nested iterative optimization, which hampers computational
efficiency and practical applicability. Therefore, for the unsupervised reinforcement learning

tasks, we are faced with the following question:

Is it possible to craft an intrinsic reward function to explore the environment without

supervision?

3.1.1 Organization of this Chapter

In this chapter, we will answer the above question affirmatively from both a theoretical
perspective and an empirical perspective. This chapter is organized as follows. We first
present the related works in Section [3.2] and preliminaries in Section [3.3] In in Section [3.4]
we propose a variance-adaptive intrinsic reward for unsupervised reinforcement learning. In
Section [3.5] we show that our method enjoys a finite sample complexity in finding the near-
optimal policy for any given reward, and our theoretical guarantee is tighter than that of
existing methods. In Section [3.6] we conduct experiments and show that by incorporating
variance information, a series of existing baselines can be further improved in terms of sample
efficiency. The conclusion is drawn in Section [3.7|and we defer detailed proof of the algorithm
to Section 3.8
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3.2 Related Works

3.2.1 Unsupervised Reinforcement Learning

With recent advances in unsupervised CV and NLP tasks, unsupervised reinforcement learn-
ing has emerged as a new paradigm trying to learn the environment without supervision,
such as the reward signals. As suggested in|Laskin et al.| (2021), these works are mainly sepa-
rated into two lines: unsupervised representation learning in RL and unsupervised behavioral

learning.

Unsupervised representation learning in RL mainly addresses issues on how to learn good
representations for different states s, which can facilitate efficient learning of a policy 7(als).
From the theoretical side, a list of works have identified how to select or learn good repre-
sentations for various RL tasks with linear function approximations, by using MLE (Uehara
et al., 2021)), contrastive learning (Qiu et al., 2022) or model selection (Papini et al., 2021aj;
Zhang et al., 2021a). From the empirical side, various methods in unsupervised learning
or self-supervised learning are applied to RL tasks, including contrastive learning (Laskin
et all [2020; Stooke et al., [2021}; [Yarats et al., [2021a), autoencoders (Yarats et al., |2021b))
and world models (Hafner et al., [2019a,b]).

Unsupervised behavioral learning in RL aims to eliminate this reward signal during explo-
ration. Therefore, the agent can be adapted to different tasks in the downstream fine-tuning.
To replace the ‘extrinsic’ reward signals, these methods usually leverage different ‘intrinsic
rewards’ during exploration. Many recent algorithms have been proposed to learn from dif-
ferent types of intrinsic reward, which is based on the prediction error (Pathak et al., 2017}
Burda et al., 2018a; Pathak et al., |2019), information gain (Eysenbach et al., 2018; Hansen
et all [2019; Sharma et al. [2019) and entropy (Liu and Abbeel, 2021ab; [Seo et al., 2021
of the observations. URLB (Laskin et al., 2021 provided a unified framework providing

benchmarks for all these intrinsic rewards.
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3.2.2 Reinforcement Learning with General Function Approximation

RL with general function approximation has been widely studied in recent years, due to its
ability to describe a wide range of existing RL algorithms. To explore the theoretical limits
of RL and understand the practical DRL algorithms, various statistical complexity measure-
ments for general function approximation have been proposed and developed. For instance,
Bellman rank (Jiang et al. 2017), Witness rank (Sun et al., [2019)), eluder dimension (Russo
and Van Roy, 2013), Bellman eluder dimension (Jin et al., 2021)), Decision-Estimation Coeffi-
cient (DEC) (Foster et al.l 2021), Admissible Bellman Characterization (Chen et al., 2022c),
generalized eluder dimension (Agarwal et al., 2022)), etc. Among different statistical com-
plexity measurements, Foster et al. (2021)) showed a DEC-based lower bound of regret which
holds for any function class. Specifically, our algorithm falls into the category of generalized
eluder dimension function class, which includes linear MDPs (Jin et al., 2020b)) as its special

realization.

3.3 Preliminaries

3.3.1 Time-Inhomogeneous Episodic MDPs

We model the sequential decision making problem via time-inhomogeneous episodic Markov
decision processes (MDPs), which can be denoted as tuple M = (S, A, H,P = {P,}iL, r =
{rn}fL) by convention. Here, S and A are state and action spaces, H is the length of each
episode, P, : S x A x § — [0, 1] is the transition probability function at stage h for state s
to transit to state s” after executing action a, and 7, : S x A — [0,1] is the deterministic
reward function at stage h. For any policy 7 = {m,}}L |, reward r = {r,}/L,, and stage

h € [H], the value function V;7(s;r) and the state-action value function Q7 (s, a;r) is defined
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as:

H
QhSaT: lz sh/ah,

Vi (sir) = Qi (s, ma(s); 7).

Sp = S,ap = A, Spr41 ~ Ph/('|8h/, (Zh/), ap'4+1 = 7T(8h/+1) s

Furthermore, the optimal value function V;*(s;7) is defines as max, V;"(s; r), and the optimal
action-value function Qj (s, a;r) is defined as max, Q7 (s, a;r). For simplicity, we utilize the

following bounded total reward assumption:
Assumption 3.3.1. The total reward for every possible trajectory is assumed to be within

the interval of (0,1).

Up to rescaling, Assumption is more general than the standard reward scale as-
sumption where 7, € [0,1] for all h € [H]. Assumption also ensures that the value

function V;"(s) and action-value function Q7 (s, a;r) belong to the interval [0, 1].

For any function V : & — R and stage h € [H], the first-order Bellman operator 7y, is
defined as:

TV (s,a;7) = By p(s.a) [rh(s, a) + V(s 7’)]
For simplicity, we further define the shorthand:
[PuV]1(s,a57) = Egap,(1s.a)V (83 7), [VaV](s,a;7) = [P V?](s,a;7) — [BRV]?(s,a57).
Throughout the paper, if the reward r is clear in the context, we omit the notation r in @)

and V for simplicity.

3.3.2 General Function Approximation

In this work, we focus on the model-free value-based RL methods, which require us to use a
predefined function class to estimate the optimal value function Q7 (s, a;r) for any reward r.

We use F := {F,}L, to denote the function class we will use during all H stages. To build
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the statistical complexity of using F to learn Q5 (s, a; ), we require several assumptions and

definitions that characterize the cardinality of the function class.

Assumption 3.3.2 (Completeness, Zhao et al. (2023)). Given F := {F;,}L | which is com-
posed of bounded functions f, : S x A — [0, L]. We assume that for any h and function
V:S—[0,1]and r: S x A — [0,1], there exist f1, fo € F}, such that for any (s,a) € S x A,

fl (37 CL) = Es/~Ph(-|s,a) I:T(Sa CL) + V(‘S/)]v f2(57 CL) = Es/~Ph(-|s,a) [(T(Sa (1,) + V(S/))2] :
We assume that L = O(1) throughout the paper.

Definition 3.3.3 (Generalized eluder dimension, Agarwal et al.|[2022). Let A > 0 and
h € [H], a sequence of state-action pairs Z, = {z;, = (s}, a},) }ie(x] and a sequence of positive
numbers o}, = {ai,h}ie[K]. The generalized eluder dimension of a function class Fj, : S x A —

[0, L] with respect to A is defined by dimg i (Fr) 1= SUpy, 4,12, 1=K.0n50 U (Fhs Zn, o)
- 1
dim(-Fm Ly, O'h) = Z min (17 ?D;‘h(zi,lﬁ Z[i—1],h> 0[@1],h)),
i=1 i

fi(z) — f2(z>)2
D2 (27217 y Oli— ) = Sup ( '
Fh =R =1L f1,f2€Fn Zse[i—l] 021 (fl(zs,h) - fZ(ZS’h))Z +A

s,h

We write dim,, g (F) := H! -ZhE[H] dim, g (Fp) for short when F is a collection of function

classes F = {F,}L | in the context.

Remark 3.3.4. Kong et al. (2021) introduced a similar definition called “sensitivity". In

particular, it is defined by

. _ (h(z) = (2))?
senSIthItyz,J:(Z) = ff]gle)f min{Z(s,a)GZ(fl(s’ a) — fos,a))?, )\}7

where A is defined by T(H + 1)? for the RL task with r,,(s,a) € [0,1][] The major differ-

ence between the generalized eluder dimension and sensitivity is that the generalized eluder
dimension incorporates the variance o into the historical observation Z to craft the hetero-

geneous variance in Z.

'We ignore the clipping process making sensitivity z »(z) « min{sensitivity z »(z)} for the clarity of
demonstration
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Since D%, in Definition is not computationally efficient in some circumstances, we

approximate it via an oracle EZH, which is formally defined in Definition [3.3.5

Definition 3.3.5 (Bonus oracle E;h). The bonus oracle returns a computable function
ﬁ;h(z; 2[),hs O#,n), Which computes the estimated uncertainty of a state-action pair z =
(s,a) € S x A with respect to historical data zp), and corresponding weights oy, It

satisfies

Dz, (%5 25y 010) < D, (25 2000, 01.0) < C- D7, (25 200105 011.0),
where C' is a fixed constant.
The covering numbers of the value function class and the bonus function class are intro-

duced in the following definition.

Definition 3.3.6 (Covering numbers of function classes). For any ¢ > 0, we define the

following covering numbers of involved function classes:

1. For each h € [H], there exists an e-cover C(Fp, €) € Fj, with size |C(Fp,€)| < Nz, (e€),
such that for any f € Fj,, there exists [’ € C(Fy,¢) satisfying || f — [l < €. For

any € > 0, we define the uniform covering number of F with respect to € as Nx(e) :=

maxperp) N, (€).

2. There exists a bonus function class B = {B : § x A — R} such that for any t > 0,
2 € (S x A)', oy € RY, h € [H], the bonus function D(-; 24, 07y) returned by the
bonus oracle in Definition [3.3.5] belongs to B.

3. For the bonus function class B, there exists an e-cover C(B, ¢) < B with size |C(B, €)| <

Ng(€), such that for any b € B, there exists b/ € C(B, €), such that ||b— V|, < e.

4. The optimistic function class at stage h € [H] is:
Vy = {V(.) — max min (1, f(a)+ 8- b(~,a)> ‘f e Fnbe B}.
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There exists an e-cover C(Vy, €) with size |[C(Vy, €)| < Ny, (€). For any € > 0, we define

the uniform covering number of V with respect to € as Ny(e) := maxpery Ny, (€).

3.4 Proposed Algorithm

In this section, we introduce our algorithm GFA-RFE as presented in Algorithm [6] and
Algorithm [7] GFA-RFE consists of two phases, where in the first exploration phase as
Algorithm [0, GFA-RFE collects K episodes without reward signal. Then in the second
planning phase as presented in Algorithm [/, GFA-RFE leverages the collected K episodes
to learn a policy trying to maximize the cumulative reward given a specific reward function

r. The details of these two phases are presented in the following subsections.

3.4.1 Exploration Phase: Efficient Exploration via Uncertainty-aware Intrinsic

Reward

The ultimate goals of the exploration phase are exploring environments and collecting data
in the absence of reward to facilitate finding the near-optimal policy in the next phase. At
a high level, GFA-RFE achieves these goals by encouraging the agent to explore regions
containing higher uncertainty, which intuitively guarantees the maximal information gained

in each episode.

3.4.1.1 Intrinsic Reward

GFA-RFE evaluate the uncertainty by Dz, in Definition [3.3.3, and uses its oracle D, as
the intrinsic reward ry, in Line [4] to generate an uncertainty-target policy in Line [§] Recall
that D% (2; 2k—1),h, Ok—1],5) 18 defined as

(fi(2) = fa(2))*
fl:Sfljgfh Zse[i_q az} (fi(zen) = fa(zen))? + X

s,h
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In particular, a high reward signal means that there exist functions in Fj close to each
other on all historical observations but divergent for the current state and action pair. This
further suggests that the past observations are not enough for the agent to make a precise

value estimation for the current state-action pair.

3.4.1.2 Weighted Regression

The usage of the intrinsic reward ry j, induces an intrinsic action-value function Qj ; (-, 7%),
which serves as a metric for cumulative uncertainty of remaining stages. As in model-free
approaches, GFA-RFE aims to estimate Q (-, -;7) and further finds a policy 7 that would
maximize the cumulative uncertainty over H stages. This part is presented in Algorithm [0]

through Line [5] to Line [§

To reduce the estimation error, GFA-RFE incorporates the weighted regression proposed
in Zhao et al.| (2023) into estimating Qf (s, a;7%). The algorithm starts at final stage h = H

and estimating the Qj (s, a; 1) approximated by function ﬁﬁ using Bellman equation:

fen(snyan) = men(sn, an) + [PrVine1](sh, an) ~ mip(Shs an) + Vi ns1(She1)-

However, estimating [P, Vi n+1](sn, an) using Vi p11(Sp41) may also introduce error since the
variance of distribution Pj(-|s,a) varies among different state-action pair. Therefore, we
tackle this heterogeneous variance issue by minimizing the Bellman residual loss weighted

by using the estimated variance oy 5, of observed state-action pairs s}, aj,:

(fi,h(sl}'u aﬁz) - Tﬁh(sza CL;L) - V;ﬁ-‘rl(serl))Q
Z 72 ’
ic[k—1] i,h
Obviously, a lower variance 0;j, yields a larger weight during the regression. The calculation
of variances 7, 5, involves both aleatoric uncertainty and epistemic uncertainty (Kendall and
Gal, 2017; Mai et al., [2022), where the aleatoric uncertainty is oy, calculated in Line

caused by indeterminism of the transition and epistemic uncertainty is E;/f caused by limited

data. Such an approach can be proved to improve the sample efficiency of our algorithm
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GFA-RFE (see Theorem and its discussion). Similar approaches have been used
in |Zhou et al| (2021b); |Ye et al.| (2023)) to provide more robust and efficient estimation.

After obtaining the ﬁﬁ function through weighted regression, GFA-RFE follows the
standard optimism design in online exploration methods to add the bonus term by for
overestimating the Qz,h(s, a;r) function in Line @ Using this optimistic estimation, GFA-
RFE thus takes the greedy policy and estimates the value function V) in Line [7| before

proceeding to the previous stage h — 1.

Algorithm 6 GFA-RFE — Phase I: Exploration Phase

Input: Confidence radius 3, regularization parameter \
1: for k=1,2,--- ,K do
22 forh=H H-1,---,1do

3: ben(s ) < 287 - Dr, (3 2k—110s Op—110)-

4: ren(c ) < ben(-.)/2.

5: J?k,h — argming, .-, Zie[k;—l] éh (fu(shs ah) = Thn(Shs ah) = Vin1(8h41))°
6: Qk.n(s,a) < min {J?k,h(s, a) + bgp(s,a), 1}.

7: Vin(s) < max, Qg i(s, a).

8: Set the policy 7f(-) « argmax,. 4 Qr.a(, @).

9: end for

10:  Receive the initial state s¥.

11: for stage h=1,...,H do

12: Take action af « 75 (sF), receive next state s}, .
13: Ok,hy < 2\/log Ny(e) - min{fk’h(sﬁ, ar),1}.

_ —1/2 _
14: Ok,p < IMax {’y . D]_—h (Z]ﬁh; Z[k—1],h> O'[kfl]’h), Ok, hs O./}.

15:  end for

16: end for
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Algorithm 7 GFA-RFE — Phase II: Planning Phase

Input: Dataset {(s¥,af, 6,%7h)}(k,h)e[K]x[H], confidence radius B

Input: Reward function r = {7 }pe(m
1: Initiate Viry1(-) < 0, Qusi(:,) < 0
2: for step h=H,---,1do
3 by(e,) < min{B"Dz, (2; 2(r) 0, O1x)0)s 1}-
4 fp—argming p Mg 77 (falsh, i) — ru(sh, ah) — Vis1(sh11))%
5. Qu(s,a) < min {fh(s, a) + by(s,a), 1}.
6: Vh() «— MaXge4 @h(-, a).
r () < argmax,es On(a).
8: end for

Output: Policy 7

3.4.2 Planning Phase: Effective Planning Using Weighted Regression

After exploring environments and collecting data in the exploration phase, the agent is now
given the reward for a specific task, but no longer interacts with the environment. GFA-
RFE enters its planning phase and ensures a policy to maximize the cumulative reward of
r, across all H stages. GFA-RFE estimates Qj (s, a;r) by weighted regression and further
finds the optimal policy 7y, which is the same process as in the exploration phase. This part

is presented in Algorithm [7] through Line [3| to Line [7]

Remark 3.4.1. Compared with Kong et al.|(2021]), our algorithm leverages the advantage
of generalized elude dimension and incorporates the estimated variance o into 1) weighted
regression in Line [4|in the planning phase and Line |5|in exploration phase; 2) intrinsic reward
design in Line . Also, our algorithm does not set the reward r 5, = by /H as of [Kong et al.
(2021)); Wang et al. (2020b)), thus the agent can explore more aggressively and more efficiently
using the knowledge of variance of the observation. Therefore, GFA-RFE is more sample

efficient compared with Kong et al. (2021)), which is discussed in detail in Remark [3.5.7
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3.5 Sample Complexity Analysis

We analyze GFA-RFE theoretically in this section. The uncertainty-aware reward-free ex-
ploration mechanism leads to efficient learning with provable sample complexity guarantees.

The first theorem characterizes how the sub-optimality decays as exploration time grows.

Theorem 3.5.1. For GFA-RFE, set confidence radius 8% = 5( H log Nv(e)) and A7 =
5( Hlog Nx(e)), and take a = 1/vV'H and v = 4/log Ny(¢). Then, for any d € (0, 1), with
probability at least 1 — ¢, after collecting K episodes of samples, for any reward function
r = {rp}fL, such that Z,Ile rn(sn,an) < 1, GFA-RFE outputs a policy 7 satisfying the

following sub-optimality bound,
Eoyu[Vi*(517) = V7 (s157)] = O H/log Nr(e)y/dim i (F)/K ).

We are now ready to present the sample complexity of GFA-RFE for the reward-free

exploration.

Corollary 3.5.2. Under the same conditions in Theorem [3.5.1) with probability at least
1 — 6, for any reward function r = {r;}__, such that Zthl Th(sh, an) < 1, GFA-RFE returns

an e-optimal policy after collecting K < O(H?log Nz(€) dim, x(F)e ?) episodes during the

exploration phase.

Remark 3.5.3. Let di s be max{log Nx(¢), dim, x(F)}, GFA-RFE yields an (’3(H2d§<’5e_2)
sample complexity for reward-free exploration with high probability. In tabular setting,
digs = O(SA), thus yields an O(H252A%2) sample complexity. In linear MDPs and
generalized linear MDPs with dimension d, dx s = O(d), thus yields an O(H2d%2) sample
complexity which matches the result from Hu et al.| (2022)). For a more general setting where
the function class with eluder dimension d, dg s = O(d), which yields a O(H2d%2) sample

complexity.

For a fair comparison with some existing works, we translate our sample complexity
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result to the case where the reward scale is ry, € [0, 1], Yh € [H]. The result can be trivially

obtained by replacing r — r/H in GFA-RFE.

Corollary 3.5.4. With probability at least 1—9, for any reward function such that r,(s,a) €
[0,1] or the total reward is bounded by 31", 75 (s, an) < H, GFA-RFE returns an e-optimal

policy after collecting K < O(H 4d%(756*2) episodes in the exploration phase.

Remark 3.5.5. Compared with Chen et al.| (2022a) which provides a O(dlog |P|e~2) sample
complexity for model-based RL, GFA-RFE is a model-free algorithm which does not need
to directly sample transition kernel P (-|-,-) from all possible transitions Z(H), therefore,
GFA-RFE is computationally efficient and can be easily implemented based on the current

empirical DRL algorithms.

Remark 3.5.6. Compared with (Chen et al| (2022b) which achieves a O(H7d3%¢2) sample
complexity, one can find our result significantly improves the dependency on H,d. |Chen
et al.| (2022b)) didn’t optimize the exploration policy by constructing intrinsic rewards but
by updating Bellman error constraints on the value function class. It sacrificed the sample
complexity to adapt the general function approximation settings. In addition, this approach
is generally computationally intractable as it explicitly maintains feasible function classes.
For its V-type variant, it even maintains a finite cover of the function class, which can be

exponentially large.

Remark 3.5.7. [Kong et al.|(2021)) leveraged the “sensitivity" as the intrinsic reward during
the exploration and achieved a (5(H 6d¢=2) reward-free sample complexity. Compare their
algorithm and ours, ours improves a H?d? factor from 1) using weighted regression to handle
heterogeneous observations 2) using a “truncated Bellman equation” (Chen et al., 2021) in

our analysis, and 3) a properly improved uncertainty metric ﬁ;h instead of the sensitivity.
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Table 3.1: Cumulative reward for various exploration algorithms across different environ-
ments and tasks. The cumulative reward is averaged over 8 individual runs for both online
exploration and offline planning. The result for each individual run is obtained by evaluat-
ing the policy network using the last-iteration parameter. Standard deviation is calculated
across these runs. Results presented in boldface denote the best performance for each task,
and those underlined represent the second-best outcomes. The cyan background highlights

results of our algorithms.

‘ Baselines ‘ Ours
Task

‘ ‘ ICM ‘ APT ‘ DIAYN ‘ APS ‘ Dis. ‘ SMM ‘ RND ‘GFA—RFE

Environment

Flip | 177 £80 | 523 £ 57 | 207 £ 119 | 246 + 103 | 570

-

32| 242 £ 71 | 507 £+ 48 | 554 + 64

Run | 108 +41 | 304 £+ 38 | 113 +38 | 132 +39 | 340 + 37| 116 + 21 | 306 + 34 | 339 + 34
Walker Stand | 466 + 17 | 891 + 62 | 587 + 169 | 573 + 177 | 726 + 79 | 443 + 104 | 750 + 62 | 925 + 50
Walk | 411+237 772460 | 432 £ 222 | 645 £ 156 | 851 + 63 | 273 + 162 | 709 + 115 | 826 + 89
Run 93 £ 68 | 452 +49 | 158 + 64 | 159 + 82 | 524 + 24 | 162 + 140 | 522 + 30 | 460 + 36
Jump | 89 £47 | 740 £91 | 218 £ 114 | 123 £67 | 829 + 22 | 211 + 127 | 790 4+ 38 | 719 £ 68
Quadruped

Stand | 207 + 134 | 910 + 45 | 331 + 81 | 308 + 147 | 953 + 16 | 239 + 104 | 940 + 27 | 867 + 61
Walk | 94 +60 | 680 + 117 | 171 + 72 | 141 + 80 | 720 + 175 | 125 + 36 | 820 + 94 | 726 + 146

3.6 Numerical Results

3.6.1 Experiment Setup

Based on our theoretical perspective, we integrate our algorithm in the unsupervised rein-
forcement learning (URL) framework and evaluate the performance of the proposed algo-
rithm in URL benchmark (Laskin et al.l |2021). As suggested by Ye et al. (2023), we use the
variance of n-ensembled () functions as the estimation of the bonus oracle Ei which will be
used in (1) intrinsic reward 7y 5; (2) exploration bonus by x; and (3) weights o7, for the value
target regression. All these ) networks are trained by Q-learning with different mini-batches
in the replay buffer. Obviously, the variance of these () networks comes from the randomness

of initialization and the randomness of different mini-batches used in training. The pseudo
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code for the practical algorithm is deferred to Section [3.9]

The original implementation of |Laskin et al.| (2021) involves two phases where the neural
network is first pretrained by interacting with the environment without receiving reward
signals and then finetuned by interacting with the environment again with reward signal.
However, in our experiments, we strictly follow the design of reward-free exploration by
first exploring the environment without the reward. The explored trajectories are collected
into a dataset D = {(s,a,s’)}. Then we call a reward oracle r to assign rewards to this
dataset D and learn the optimal policy using the offline dataset D, = {(s,a,s',r(s,a,s"))}
without interacting the dataset anymore. Intuitively speaking, this online exploration +
offtine planning paradigm is more challenging than the online pretraining + online fine-

tuning and would be more practical, especially with different reward signals.

3.6.1.1 Unsupervised Reinforcement Learning Benchmarks

We conduct our experiments on Unsupervised Reinforcement Learning Benchmarks (Laskin
et al., 2021), which consists of two multi-tasks environments (Walker, Quadruped) from
DeepMind Control Suite (Tunyasuvunakool et al.| 2020). Each environment is equipped with
several reward functions and goals. For example, Walker-run consists of rewards encouraging
the walker to run at speed and Walker-stand consists of rewards indicating the walker should
stead steadily. We consider the state-based input in our experiments where the agent can

directly observe the current state instead of image inputs (a.k.a. pixel-based).

3.6.1.2 Baseline Algorithms

We inherit the baseline algorithms ICM (Pathak et al., [2017)), Disagreement (Pathak et al.
2019), RND (Burda et al., 2018b)), APT (Liu and Abbeel, 2021b)), DIAYN (Eysenbach et al.
2018), APS (Liu and Abbeel, 2021al), SMM (Lee et al., 2019)). All these algorithms provide

different ‘intrinsic rewards’ in place of ours during exploration. We make all these baseline
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algorithms align with our settings which first collect an exploration dataset and then do

offline training on the collected dataset with rewards.

3.6.2 Experiment Results

Experimental results are presented in Table 3.1} It’s obvious that GFA-RFE can efficiently
explore the environment without the reward function and then output a near-optimal pol-
icy given various reward functions. For the baseline algorithms, APT, Disagreement, and
RND perform consistently better than the rest of the 4 algorithms on all 2 environments
and 8 tasks. The performance of GFA-RFE enjoys compatible or superior performance com-
pared with these top-level methods (APT, Disagreement, and RND), on these tasks. These
promising numerical results justify our theoretical results and show that GFA-RFE can in-

deed efficiently learn the environment in a practical setting.

3.6.2.1 Ablation Study

To verify the performance of our algorithm, we also did ablation studies on 1) the relation-
ship between offline training processes and episodic reward 2) the relationship between the
quantity of online exploration data used in offline training and the achieve episodic reward.

The details of the ablation study are deferred to Section [3.9]

3.7 Conclusion

In this chapter, we study the reward-free exploration under general function approximation,
which can be viewed as a theoretical framework of the unsupervised reinforcement learning.
We show that, with an uncertainty-aware intrinsic reward and variance-weighted regression
on learning the environment, GFA-RFE can be theoretically proved to explore the environ-

ment efficiently without the existence of reward signals. Experiments show that our design of
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intrinsic reward can be efficiently implemented and effectively used in an unsupervised rein-
forcement learning paradigm. In addition, experiment results verify that adding uncertainty
estimation to the learning processes can improve the sample efficiency of the algorithm,

which is aligned with our theoretical results of weighted regression.

3.8 Proofs

3.8.1 Proof of Theorems in Section [3.5
3.8.1.1 Additional Definitions and High Probability Events

In this section, we introduce additional definitions that will be used in the proofs. Also, we

define the good events that GFA-RFE is guaranteed to have near-optimal sample complexity.

Definition 3.8.1 (Truncated Optimal Value Function). We define the following truncated

value functions for any reward r:

Vi (s;1)=0, VseS
Qi (s, a;r) = min{ry(s, a) + th/h*ﬂ(s, a;r), 1}, V(s,a)e S x A

Vi(syr) = mzﬁcé,ﬁ(s,a;r). Vse S,he[H].
ae
The good event 8£h at stage h of episode k in exploration phase is defined to be:

1 = . S\ 2
8=+ Y = (Fenlshoah) = TVenn(shoah)) < (85},
ie[k—1] ~&h
The intersection of all good events in exploration phase is:

EF = ﬂ En
[H]

k=1,he

The following lemma indicates that £ holds with high probability for GFA-RFE.

Lemma 3.8.2. In Algorithm [6] for any § € (0,1) and fixed h € [H], with probability at
least 1 — 6, £F holds.
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In the planning phase, we define the good events for exploration phase with indicator

functions as

Ef = {/\ + Z jTh <ﬁl(‘5§zvah) 771Vh+1(3h7ah))2 < (BP)Q}a

where T, = 1(V;#, ,(s) < Viya(s), Vs € S) - 1(Visr(s) < Vinga(s) + VE(s:ir), Vs € S) -
LV (Vigr — Vi) (sy, ap) <n7'oR,,, Yk e [K]) and n = log Ny(e). Like in the exploration
phase, we also have that €" holds with high probability for GFA-RFE.

Lemma 3.8.3. In Algorithm [6] for any § € (0,1) and fixed h € [H], with probability at
least 1 — 4, &" holds.

Furthermore, we have the following good events in the planning phase without indicator

function:

. . 2
( P (st ai,) — n,vh,+1(s;,,a;,)) < (B, Vh<IW < H ke [K]}.

And we define £¥ := £F'. We shows that £ holds if both £F ,EP hold with the help of the

following lemma:

Lemma 3.8.4. If the event £F,&", &P P all hold, then event £/ holds.

Since £} holds trivially, Lemma indicates that £ holds.

3.8.1.2 Covering Number

The optimistic value functions at stage h € [H] in our construction belong to the following

function class:

V), = {V() rzleaj(mm(l f(,a)+p-b ‘f € Fn,be B} (3.8.1)
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Lemma 3.8.5 (e-covering number of optimistic value function classes). For optimistic value
function class V5, defined in (3.8.1]), we define the distance between two value functions V;
and V5 as |V] — Vo] := maxses |Vi(s) — Va(s)|. Then the e-covering number with respect to

the distance function can be upper bounded by
Ny, (€) := Ng, (¢/2) - Np(€/2). (3.8.2)
Lemma [3.8.5] further indicates that

Ny(e) = max Ny, (€) = max N7, (€/2) - Ng(e/28) = Nz(€/2) - N5(e/25).

3.8.1.3 Proof of Theorems

We first introduce the following lemmas to build the path to Theorem [3.5.1

Lemma 3.8.6. On the event £, we have
|ﬁz(3» @) - 771‘7h+1’ < 5Pth(2; Z[K],h> 5[K],h)-

Lemma 3.8.7 (Optimism in the planning phase). On the event £, for any h € [H], we

have
Vii(s;r) < Vi(s), VseS.
Lemma 3.8.8. On the event £F, with probability at least 1 — 35, we have

> Via(sh) = O(87y/dimg,  (F)HVE).

Lemma 3.8.9. With probability 1 — §, we have
K ~ ~
’ Z (Esw[‘/l*(s;rk)] — Vl*(s;rk))‘ < A/2K log(1/9).
k=1

We denote the event that Lemma holds as @, and the event that Lemma holds
as V.
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Lemma 3.8.10. Under event £¥ n ® n U, we have

E,., [171* (s: b)] ~0 (ﬁE\/ H dimg, x(F)/K+/log Nx(¢)/ log Ny(e)> ,

where b = {b;}}L| is the UCB bonus in planning phase.
With these lemmas, we are ready to prove Theorem |3.5.1}

Proof of Theorem |3.5.1. By Lemma [3.8.7, we can upper bound the suboptimality as
By, [Vi (s1:7) = V7 (s1;7)] < Eapopa[Va(s1) = V(515 7)]:

Then, we can decompose the difference between optimistic estimate of value function and

the true value function in the following:

B[ i(s1) = V7 (s157)
= Euyp| min{Fi(s1,7(51)) + ba(s1,w(s1)). 1) = (s, 7(50)) = PV (s, m(sa)i7) |
< Buyop | min{Fi(s1,7(51)) + ba(s1,w(s1)) = ra(sn, w(s0)) = BV (51, w(s0)i 1), 1
= Euyp | min { i1, m(5)) = ra(sn,w(s0)) = BVF (s, 7(s0):7)
BT (51w (51);7) + b, w(s0) = PaVy (s1,m(s1)ir), 1
= oy | min { fi(s1, (1)) = iV (51, (1)) + By (1, w(s1): 7)
+ba(sn,m(sn)) — BUVF (s w(s)ir), 1

< Esw[mm {251(51, 7(51)) + PLVF (s, 7(s51) 7) — PL VI (51, m(50); 7). 1}]
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where the last inequality holds due to Lemma [3.8.6 Then, by the induction, we have
Epul[Vils1) = Vi (s157)]
< Eslw[min {261(31, m(s1)) + Py (51, 7(s1);7) — PV (s, 7(s1);7), 1}]
= Es1~u,sz~ﬂ"(-|81,7r(s1)) [ min {21)1 (817 71-(81)) + ‘727r(82; T) - ‘/ZW(SQ; T)’ 1}]
H
<E, 4 [min{ Z 2by,(sp, m(sh)), 1}]
h=1
< 2B, | W (s1:0)]
< 2By, | Vi (s13b)

~ 0 <BE\/ H dime, i (F) /K \/log N7 (e)/log Ny (6)).

Therefore, by substituting 3% = 6( Hlog Nv(e)), we complete the proof:

By, [V (s1;7) — Vi (s137)] = O(Hq [dimg, x (F)/K/log Nf((—:)).

]
Proof of Corollary[3.5.3. By solving Eg, «,[Vi*(s1;7) — V{7 (s1;7)] < €, we have that
K> H?log N]-‘(Gg dimayK(}").
€
]

3.8.2 Proof of Lemmas in Section [3.8.7]

In this section, we prove the lemmas used in Section

Proof of Lemma [3.8.3 We first prove that £, holds with probability 1 —46/(KH). We have
TVin+1 € Fp due to Assumption m For any function V : S — [0,1], let nF(V) =
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ren(s,al) + V(sf,) — TaV (sk,af). For all f € F, since a* — 2ab = (a — b)? — b%, we have

> s (Fshah) — i (shoah))

1 S S
72 (b 0h) = TaVige (sh )k (Vi)

J

e[k—1
I(fvﬁVk,f:rth,hH)
i i)’ 1 2
Z (msh,ah>+vkh+1<sh+1> fhod)) = X ok (Vi)
iefh—1] \Ti-h

Take f ﬁﬁ. By the the definition of fk,h, we have
]_ ~ . . . . 2 A~
(fk n(shs ap) — TnVin+1 (s, GZ)) — 21 (fen, ThViht1s Viensr) <0

2 Gy
ie[k—1] (Ti.n)

Applying Lemma [3.8.19] for fixed f, f, and V, with probability at least 1 — &
1 i 3
> = (ko ah) = Flshal) )nk(V)

I(f? f_v V) = —
ielkh1] (Tin)

2T 1 i i _ : 2 l . 1

< a? ie[kz_l] (Gin)? (f(sh, ap) — f (s ah)) + . log 5

Applying a union bound and take 7 = % for any k, with probability at least 1 — 4, we have

for all V¢ in the e-net V,,; that
Ny (e)

= 1 1 o _ N2 2
1V <7 X s (fhea) = Tsa)) + 5 lg =

1€[k—1]
n (V)| < 4e. Thus,

2 N
+ el log 3(6) +4e-kL/a®

For all V' such that |V —V¢|, <€, we have |n} (V) —

(7 ai) — Flsioah)

(Gin)

I(f, f, Viner) <% Z

i€[k—1]
§, we have for all f¢, f* in

Applying a union bound, for any k, with probability at least 1

the e-net C(Fp, €) that
afoi i by iy)2
f(sp,a,) — f (8h7ah)>

1 1
a b -
I(f Jfavk,h+1><4'2 (5-ih)2<
i€[k—1] ’
2 N - N 2
+ — - log v(€) - Nr(€) +4e-kL/a”.
Q@ )



Therefore, with probability at least 1 — §, we have

I(Fions TnViensts Vinst) < IO f2, Vions1) + 8e - k/a?

1 1 afgi i beai i) L A Ny(e) - Np(e)  4ekL + 8ek
< Z Z (5i,h)2 (f (Sh,ah) - f (Sh,ah)> + E . IOg 5 + -

1 1 X i i in)? 4 Ny(€) - Nx(e)
<7 Z Gon)? (fk:,h(sha ar) = TuVins1(sh, Cbh)) tog log 5 +4e- kL/o?

+8¢-k/a* + 2Le - k/a®

Ly L (Fsha DL A (o) Nr(e)
< 4 ie[kzl] (Gin)? (fk,h(sm ay) = TnVih+1(Sh, %)) + 2 log — + 14Le - k/a”.

Substituting it back, with probability at least 1 — §/(K H), we have

iie[kZ—l] @;hy(fk,h(% aj,) = TnVeni1(sh, a2)>2 < g -log KH - NV<5€) - Nx() + 56Lek/a?
Take o = 1/\/ﬁ and let

pr = \/16H log 21 N"E;) NAO | s6re. Kja2 4 2
Then we complete the proof by taking a union bound for all k£ € [K] and h € [H]. O

Proof of Lemma[3.8.3. We have TiVis1 € Fn due to Assumption m For any function
Vi S —[0,1], let ni(V) = rp(sf,af) + V(sk,q1) — ToV (s}, af). For all f € F,, we have

i,

o ~ N2 1 L oal) — TV i 0 )V
s (Fshoth) ~ Tilhsioaiy)” —2 3, ) = Tt o )T

—
ie[K] @in)
I(f,T0Vit1, Vi)
i i) [P
Z (Th Shs @) +Vh+1(5h+1) f(Smah)) - Z (@, )277h(Vh+1) :
e[K] Tih ie[K]

By definition, we have that

27

K”

. N2 .
(fh (sh,ap) — 77th+1<527@2)> — 21(fn, ThVis1, Vas1) < 0.
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We decompose I(ﬁ, 771‘7“1, XA/hH) into two parts:

(0—> (s @h) = TuVha (sho ad) )k (Vi = Vi)

I(ﬁh 777,‘7}14-17 ‘7h+1) = Z

€[ K]

(fh Sy Q) — ﬁz‘?h+1(327@2)>77;]§(vh*+1). (3.8.3)

For the first term in (3.8.3)), we have
ih i Frob 4 k(17 *
B| 25 (k) = Flsh )ik (s = V2o | =0,

Furthermore, we can bound the maximum as following:

-~

1y i i Floi i k({7 Y
gl[il%i @—h)Q <f(5h7 ay,) — f(sh, ah))nh<vh+1 Vh+1)
i, o
<2 —_— ho @) — hy Q)
2 1 o0 = T )
i 1 -
< 2max D% (2ins 2[im1],n, O] ]h)( Z C h)Q(f(Sh7ah) f(s5,a3))? + )\>

ie[K] ((nﬁ)?\

1 1, -
2 D
{2[?(}]( (O'i7h)2\ Tn (Zz h» Z[ 1,hs OTi—1] h) (Seél] (5_57]1)2 (f(sh7 ah) f(8h7 ah)) + A)
. 1 .
<2777 Z @ Z)g(f(shvah) f(shra3))* + A,
se[K] V%

where the first inequality is due to bounded total rewards assumption, the second inequality
holds due to Definition [3.3.3] and the last inequality holds due to Line [14] in Algorithm [0]
and Definition [3.3.6]

We further define var(V — V%) as

* /ﬂh i 3 Floi i 2 i *
var(V = Vi) o= 3] B[t (fshoah) = Fshoah)) (T = Vi Y|
€[ K] b
< L*K/a*.
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By the definition of the indicator function, we have

+ 4 i i iy Fd i)
var(V — V') < — Z @ h)2 <f(5hv ay) = f(sh, ah))
T ierr) \Oih

For fixed f, f, by applying Lemma|3.8.20|with V? = L?K /a*, M = 2L/a? v = "2, m = 12,

and probability at least 1 — 6/(Nz(€)>*Ny(e)H) we have

S s (Flshoah) = Flshoal) rk(V — i)

ie[K] (@5.0)?

< L\/2 (2var(V — V5 ) +n7Y)

+ ;3 (47-2 ST (F(sial) — Flshiai)® + A+ n)

—
ie[K] (i)
where

Nr(€)? - Ny(e) - (log(L2Kn/a”) +2) - (log(2Ln/a?) + 2)

2k, h,6) :=log 5/

Using a union bound over all (f, f,V) € C(Fp, €) xC(Fp, €) xC(Vy_1, €), we have the inequality
above holds for all such f, f,V with probability at least 1 — §/H. There exist a Viiiq in the
e-net such that |Vj41 — V)%, | < e. Then we have

ih A i i i i s
2 m (fh(sm ap,) = ThVas1(sh, ah))nﬁ(VhH - Vh+1)
ie[K] VY

~

1 ~
<O (L(k’ h, 5>77_1/2 + L<k7 h, 6)27_2) ’ Z (5‘ };)2 (fh(s;;? a;) - 771‘/}1_,_1(8;;, a;))2 + A
re[K] VT

+ O(ekL/a®) + O(P(k, b, 8)n~ ") + O(u(k, h, 8)n~?). (3.8.4)

For the second term in (3.8.3)), applying Lemma [3.8.19] for fixed f, f, and Vi1, with
probability at least 1 — 9, we have

&N
Z ﬁ(f(sz,aﬁl) — f(s;,a;»nﬁ(vh*ﬂ)
ie[K] VY
3 1 = . 2 8 1
(5’2‘,}1)2 <f(8;“ CLZ) - f(S;U a@) + E . IOg 3
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Applying a union bound, for any k, with probability at least 1 — J, we have for all f¢, f* in
the e-net Fy,

izyh af.i i b )2 8 NF(€>2
(@in)? (f (shrap) — f (%y%)) +£'10g 5

a * 1
UFVACHESEDY
i€

[k—1]
Therefore, with probability at least 1 — ¢, we have

I TiVass, ViEy) < I(F% [P Vi) + 8e - K

~

1 1 o S .\2 8 Nz(€)?
<13 M (el - )+ 10w 2D e gy

—
4 ie[K] (i)
1 1, (= i g i 2, 8 Nz(e)?
15 Eur (P i) = il (s i)+ 55 -loa =55

+ 8¢ k/a® + 2Le - k/a?

1 1 o N2 8 Nx(e)?
<23 I (Flsheal) — Thn(shoa) + 5 o T2 1 10Le - ka2, (385)
4.4 (@in)? a? 0

Taking n = log Ny(e), v = 6( log Nv(e)) and a = 1/+/H and substituting (3.8.4) and
(3.8.5)) back into (3.8.3)), we have

A+ Z - (fh(Sz,GZ) - ﬁLVh+1(S;17a;L>)
ie[K] Tih

<0 <H log N;(e)) +0 ((log No(e))~ log UBLK/ o)+ ?} ;log(m/ o)+ 2)) +O(N).
O

Lemma 3.8.11. On the event £¥ n &) for any h € [H], we have
Vi (s:7) + Vin(s) = Vi(s). (3.8.6)

Lemma 3.8.12. On the event E¥ n &L, |, for each episode k € [K], we have

log Ny(€) - [Va(Visr = Viry)](shs af) < oi

where 0,%7,1 = 4log Ny (e) - min{ﬁ}h(sﬁ, aﬁ), 1}.

113



Proof of Lemma[3.8.4 Recall that the indicator function in event & s

o~

1, = II(Vh*+1($) < Viyi(s), Vse 82 : 11(‘7h+1(8) < Vinsa(s) +V*(s;r), Vs e S,Vk € [K])

/

I I
U(VaFr — Vi) (shah) < 0. Vi e [K))
I
where n = log Ny(€). Lemma [3.8.11] Lemma [3.8.7, and Lemma [3.8.12 indicate that [, =
L=I=1. O

Proof of Lemma[3.8.5. There exists an €/2-net of F, denoted by C(Fp,€/2), such that for
any f € Fj, we can find f' € C(F,€/2) such that |f — f'[|,x < €/2. Also, there exists an
€¢/2p-net of B, C(B,¢€/205).
Then we consider the following subset of V),
Vi = {V0) = magmin (17,0 + 8- 0,) | < C(Fre/2.0 CB.e/26) |
ae
Consider an arbitrary V' € V where V' = maxue4 min(1, f;(-,a) + 8 - b;(-,a)). For each f;,
there exists ff € C(Fp,€/2) such that |f; — ff|ew < €/2. There also exists b° € C(B,€/25)

such that |b; — b < €/26. Let V¢ = max,e4min(1, f7(-,a) + 8- 0°(-,a)) € V°. It is then
straightforward to check that |V — V||, <e€/2+ [ -€/20 = €.

By direct calculation, we have |V¢| = Nz, (¢/2) - Ng(e/25). O

Proof of Lemma[3.8.6. According to the definition of D% function, we have

(Fien(s,a) = TVinsa(s,a))’

< D%h(z Z[k—1],h> [ ( Z

2 _
< (B7)" x Dth(Z; 211,k Ok—1],h)5

. . 2
(fkh Shyap) — 771Vk,h+1(527a2)) >

where the first inequality holds due the definition of D% function with the Assumption m

and the second inequality holds due to the events £F. Thus, we have

‘fk,h(é‘, a) — ToVins1 (s, a)| < 5ED]-';L(Z§ 2k—1],h> Ok—1],h) -
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]

Proof of Lemma[3.8.77 We prove this statement by induction. Note that Vi, (s;r) =
Vis1(s). Assume that the statement holds for h + 1. If V,(s) = 1, then the statement

holds trivially for h; otherwise, we have for any (s,a) € S x A that

Qn(s,a) — Qi(s,a;7)
= ]?h(s, a) + by(s,a) — [ru(s,a;7) + PpVy' (s, a;7)]

~

= [fn(s;a) — rn(s,a;1) — Ph‘/}h+1(3aa§ )]+ bu(s, a) + Ph‘/}h—l—l(saa;r) —PuViia(s,asm)
> [fu(s,a) = (s, a;7) — PuViri(s,a:7)] + bu(s, a)

> —B"Dx, (2 21x1,n, 1x10) + B° D, (25 2(x) 0 O[1)0)

where the first inequality holds due to the induction assumption, and the second inequality

holds due to Lemma [3.8.6l O

In order to prove Lemma [3.8.8 we need the following three lemmas.

Lemma 3.8.13 (Simulation Lemma). On the event £¥, we have

H

0 < Vin(sy) < ET’kdek(sﬁ) min {35E Z D2k 15 2[k—1]07s T[h—1]7) 1}~
h'=h

Lemma 3.8.14. [Lemma C.13 in Zhao et al| (2023)]For any parameters 8 > 1 and stage

h € [H], the summation of confidence radius over episode k € [K] is upper bounded by

K
Z min (ﬂD]:h (25 2110 O[k—1],0) 1)

k=1

K
< (1+CBy?) dimg, g (Fp) + 264/ dimg x (Fr) Z th + a?),
k=1

where z = (s,a) and zp—11,n = {210, 22,8 - Zh—1,h} -
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Lemma 3.8.15. Under event £¥, we have

K H
Z Z o2, < 2304C2 H (log Ny (€))?(6)? dimg, i (F)

k=1h=1

+ 48 H?log Ny(e)(1 + CBP~?) dimg x (Fn)

+16H log Ny (e)A/2HK log(H/5) + K.

Now we can prove Lemma [3.8.8

Proof of Lemma[3.8.8. We have
K Ho
Z Vien 81 < Z Er,’f~d’gk(s§) min {3ﬁE Z D(zk.p; Z[k],haa[k],h)v 1}

) e w
ZZ & dw m1n{35 (Zk,h;Z[k—1],h,5[k—1],h)71}

K H
H(1 +4CB%~%) dimg, g (Fr) + 8874 /dimy g (F), | H 2 Z (ohp +a?)

k=1h=1

= O(B"\/ K H dimg (),

where the first inequality follows from Lemma [3.8.13] the third inequality follows from
Lemma |3.8.14] and the last equality holds due to Lemma [3.8.15] O

Proof of Lemma[3.8.9. Denote Aj = ESNN[V (s;re)] — Vi#(s¥: 7). By Azuma-Hoeffding
inequality (Lemma [3.8.21)), we have

‘i Ak‘ < /2K log(1/9).
k=1

Lemma 3.8.16. On the event £, for any k € [K] and h € [H], we have

Vi(s;r) < Vin(s), VseS.
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Proof of Lemma[3.8.10. Since ¥ = O(\/Hlog Ny(e)) and 7 = O(y/H log Nx(¢)), for

some constant ¢, we have

¥ = ey/log Ny(e)/log Nx(e) - 5.

Therefore, for any h € [H], we have 1y 5,(-,") = rxu(:, ) = c/log Ny(e)/log Nx(€) - by(, ).

Hence,

cv/log Ny (€)/log N#(€) - Es-, [171*<s; b)]
= Eoy| V7 (55 c1/log Nu(e)/ Tog N () - b)]

E.., [17*(5- rk)] /K

- [i Ve (stine) + Z [Bona [ i) = P (ki ||/

N

K

M V(s )/K +\/210g(1/0)/K

k=

<
(ivm (857 )/K—FW
:O(ﬂE\/HdlmaK (F)/K),

where the second inequality follows from Lemma [3.8.9] and the third inequality follows from

—_

Lemma [3.8.16| Therefore, we have

E,., [171* (s: b)] ~0 (ﬁE\/ H dimg, x (F)/K+/log Nx(c)/ log N,,(e)) .

3.8.3 Proofs of Lemmas in Section [3.8.2]

Proof of Lemma[3.8.11 We see that
Q (o) =71n() + PpViga (5 7),
Qi) = min frp (-, ) + bea(, ), 1},
Qn() = min{fu(, ) + bal-, ), 1}
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We prove this statement by induction. Note that Vi, (s;r) + Vi uii(s) = Vigga(s) = 0.

Assume the statement holds for A + 1. By definition, we have

Qi(s,a;7) + 1= Qu(s, a).

Therefore, we only need to prove

Qi (s,a;r) + fk,h(s, a) + byn(s,a) — @h(s, a) = 0.

We have

Qr(s,a;r) + fk,h(s, a) + by (s, a) — Qu(s,a)

=mu(s,a) + PV (s a57m) + fA'k,h(s, a) + byn(s,a) — min{ fy(s,a) + by(s, a), 1}

> rp(s,a) + BV (s,a7) + frn(s,a) + bes(s,a) — (fu(s,a) + bu(s, a))

=P Vi (s,a;7) + PrVipga(s,a) — ]P’thH(S, a) + Trn(s,a) + ben(s,a) — bp(s,a)
+ (fun(s,0) = Tinls, @) = PuVinsi(s, a)) + (ra(s,a) + PVi(s,a) = fu(s, a))

= Ten(s,a) + bgp(s,a) — by(s,a) + (ﬁ,h(s, a) —Ten(s,a) — PpVinti(s, a))
+ (ra(s,a) + PuVi(s, a) — fi(s,a))

> 36" D, (2; 2pe—11h: Oe—110) — B D, (23 210 T1c1n) — B Dr (25 21100 Tle-11.0)
— B"Dr, (2 2110, O (5] 1)

>0,

where the second inequality holds due to induction assumption, the third inequality holds
by high probability events, and the last inequality holds by 8 > 8%, Dxz, (z; 2(k.n, O[k)0)
decreasing with k, and Definition [3.3.5] O]

Lemma 3.8.17. On the event £, we have

| fen(s,a) = ToVansa| < 87D, (z; 2[k—1],hs O[k—1],h)
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Proof of Lemma[3.8.13 We have Lemma and [3.8.11 both hold on &/, ;. Therefore, we

have

(Vi (Visr = Vi) 1(sh, af)
< [Pu(Vier — Vii1)?1(sh. af)
Q[Ph(VhH Vh+1)](3h7alﬁ)
< 2[Py Vi ] (7, af)
= 2(TaVins1(sh, ag) — rin(sh, ap))
2(fkh(5h>ah> B D, (zin; 2110 Op—11) — B° D, (21ni 21105 Ok—11,1))

< 2fpn(sk, ab),

where the second inequality holds due to Lemma and YA/hH, Vi1 € [0,1], the third
inequality holds due to Lemma [3.8.11] the fourth inequality holds due to Lemma|[3.8.17, and
the last inequality holds due to Definition |3.3.5 n

Proof of Lemma[3.8.15 According to Algorithm [0, we have that

Qk,h('? ) = min{ﬁfﬁ('? ) + bkyh(W ')7 1}7
Vk,h(') = mthQk,h(',a)’

GIZ - Wﬁ(s"’) = argmax Qk,h(8ﬁ7 a).
a
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For all k and all h, we have that V; 5 (sf) = Qpu(sF,af) and thus

Vi (sh)
< Fen(shoal) + bpa(sh, ab)

= 28D (2115 2p—11> Opp—1]0) + (fk n(shaf) — TaVins(si, ap)) + TaVinsa (sE, af)

H

=B art ot 2 [fk w (s aie) = TaVew 1 (8y, ) + 267D (2w 2110, Tpe—1], h')]
h'=h
H

SEpgrt o) 2 38D (s 211 T 110,

h'=h

where the last inequality holds due to Lemma and Definition [3.3.5]

Lemma 3.8.18. On the event £, with probability at least 1 — 6,

K H K
DD PhVinsa(sh, af) < H ) Emln {45 Dz, (21,05 2(k-1)0 O—11,0) 1}

k=1h=1 k=1h=1

+ (H + 1)\/2H K log(1/9)
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Proof of Lemma[3.8.15. Recall o} ), = 4log Ny(e) - min{f, (s, ak), 1}. We have

K H
Z Za,%h = 4log Ny (e)

k=1h=1

H
Z mm{fk n(shy an), 1}

h

-
I

min{ 7, Vini1(sk, ay) + 8% Dr, (25p; 2110 Oe—11.)s 1}

Mw
M=

< 4log Ny (e)

e
I
—
>
I
—

min{Py Vi ni1 (s, af) + 265D, (2105 20110, Opp—1)0)s 1}

Mw
M=

< 4log]VV()

x>
Il
—_
>
Il

1

< 4log Ny (e) P Vi1 (sh, ay)

Mw
M=

>
Il

1

K
+ 8log Ny (e Z

k=1h

>
Il

MNH

{B" Dz, (.05 2(5-110s O—110)5 1}

min {6E§Fh (Zk,hs 2[k—1],h> Ok—1],h )5 1}

>

M=
D=

< 24H log Ny (€)
1h

1

(T

-~

I

+ 8H log Ny(e)r/2HK log(H /6),

where the first inequality holds due to Lemma [3.8.17], the second inequality holds due to
Definition [3.3.5, and the last inequality holds due to Lemma [3.8.18 For the term I, we

further have

K

T

min {5E5fh (Zkhs 2[k—11,h> O[k—1],h) 5 1}

g
g

k=1

Il
>
Il

1

H
2 min «{CBEth (Zk,h3 2[h=1],h5 Olk—1],1) 1}

Mw

k=1h=1

H K

< ). (1+ CB"y?) dimg, k (Fi) +205E24/d1ma;( (Fuly| D, (02, +0?)
h=1 k=1

K H
H(1+ CpBF4%) dim, x (F) + 20 6% Z dim, g (Fn) Z Z Ukh + a?)

h=1 k=1h=1

H(1+ CB7?) dim o (Fy) + 205 [dimg (), | H
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where the first inequality holds due to Definition [3.3.5 the second inequality holds due to
Lemma [3.8.14], the third inequality holds due to Cauchy-Schwarz inequality. Therefore, we

can get

K H
D) op, < 24H?log Ny(e)(1 + CB%y?) dimg, k (F)

k=1h=1

K H
+ 48C H log Ny (€) 37 /dimg i (F) | H Y > (0}, + 0?)

k=1h=1

+ 8H log Ny(e)r/2HK log(H /6).

Since z < ay/z + b implies x < a® + 2b, taking o = 1/+/H, we have that

K H
1) of, < 2304C° HP (log Ny(€))*(8")? dimg, i (F)

k=1h=1

+ 48 H?log Ny (e)(1 + CB3F~?) dim,,  (Fr)

+ 16H log Ny (e)A/2HK log(H/5) + K.
O

Proof of Lemma |3.8.16. We prove this statement by induction. Note that ‘713 (sime) =
Vi.m+1(s) = 0. Assume that the statement holds for h+ 1. If Vj ,(s) = 1, then the statement

holds trivially for h; otherwise, we have for any (s,a) € S x A that

@M(s, a) — éz(s, a;ry) = ﬁ,h(s, a) + byn(s,a) = [rin(s,a;r) + PRV (s, a57)]
= []?M(s, a) — ren(s,a;7) — PpVinia(s, a;7)] + brn(s, a)
+ PpVinti(s,a;7) — PV, (s, a; r)
> []/”;@h(s, a) — rn(s,a;1) — PuVine1(s, a;7)] + bea(s, a)
—BE Dy, (2 21K s O[Kh) T 26" D, (; 2[K,hs O[K],h)

=0,
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where the first inequality holds due to Definition [3.8.1] the second inequality holds due
to induction hypothesis, the third inequality holds due to Lemma [3.8.17, and the forth
inequality holds due to Definition [3.3.5 O

3.8.4 Proof of Lemmas in Section [3.8.3

Proof of Lemma[3.8.17. According to the definition of D% function, we have

(J?k,h(é’, a) = TnVien+1(s, CL))2

. . 2
< D% (23 2[—1)h, Ol ( (fkh sh,ap) — 77LVk,h+1(SZ,GZ)> >

2 _
< (B")" x Djth<2; Z[k—l],haa[k'—l],h)u

where the first inequality holds due the definition of D% function with the Assumption m

and the second inequality holds due to the events £F. Thus, we have

!J?k,h(S, a) — TiVins1(s,a)| < B Dz, (2 2p—11h, Opr—1],0)-

Proof of Lemma|3.8.18. By Lemma [3.8.21], we have

K H
Z Z Py Vinii(sF,af) Z Z Vins1(sh41) Z Z (P Vins1 (s, ag) — Vinra(sh i)

k=1h=1 gt
K H
Z Z sl (sE1) + /2K Hlog(1/6).
Then, under event £¥, we have
Vk,h(si) = Qk,h(sfw alﬁ)
= min{ frn(s¥, a¥) + 265D, (2hn; 2110 110, 1}
< min{Py Vi ni1(sh, ai) + 48D, (2kn; Zir—11.0, Opp—110), 1}
= min{1, Vir1(sy) + PuVins1(sh, af) = Viensa(sh))

+ 485D, (2kn; 2ph-1]hs Or—10) }
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where the inequality holds due to Lemma [3.8.17] and Definition [3.3.5 Therefore, for fixed h,

we have

K K H
Z Vin(sy) < Z min{ Z [4BE§}'h/(Zk,h’; k=111, O[k—1],1")
k=1 h=h

+ GPhL@Jy+1(sﬁ,aiJ _'v%Jﬂ+1(520)]71}

N
M=
M=

min {45E7_)Fh, (Zhht5 2[k—11,1 > OTk—1],07) 1}

=
Il
—

h

Il
>

H
+ Z (P Viewrs1(sh, ak) — Vi 1(sh))

'—h

M=

k

>

1

N
M=
M=

min {4ﬁEZ_)fh/ (Zk,h'; Z[k—l],h’a 5'[]{;_1],}1/), 1} + 2HK 10g(1/(5>,

Eey
I
—

h'=h

where the first inequality holds due to induction, and the last inequality holds due to

Lemma (3.8.21} Hence, by combining the above two inequalities, we have

K H
P.V. k)
hVkh+1 Shaah

k=1 h=1
K H
Z Z Vieht1 3h+1 2K H log(1/9)
k=1h=1
K H -
<H) > min {45Epfh(zk,h; k11 Ok 1] 1} + (H + 1)4/2HK log(1/5).
k=1h=1

3.8.5 Auxiliary Lemmas

Lemma 3.8.19 (Self-normalized bound for scalar-valued martingales). Consider random
variables (v,|n € N) adapted to the filtration (#,, : n = 0,1,...). Let {n;}2, be a sequence of
real-valued random variables which is H,;,;-measurable and is conditionally o-sub-Gaussian.

Then for an arbitrarily chosen A > 0, for any § > 0, with probability at least 1 — 9, it holds
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that

n n

Ao? 9
vai < vt log(1/8)/A Vn e N.
i=1 i=1
Lemma 3.8.20 (Corollary 2, Agarwal et al. (2022))). Let M > 0,V > v > 0 be constants,

and {z;},c[q be stochastic process adapted to a filtration {H,},cq. Suppose E[z;|H;—1] =

0, |zi] < M and Y g E[27|H;—1] < V? almost surely. Then for any d,e > 0, let + =
\/108; (2log(V/v)+2)(~S(log(M/m)+2)

we have

2
P ;> [2]2 E[x?|H;_ +02>+—L2<2max:p,-+m> < 0.
(2[] (2.3 Biatipe 22 (2max

i€[t]

Lemma 3.8.21 (Azuma-Hoeffding Inequality). Let {z;}!", be a martingale difference se-
quence with respect to a filtration {G;}7*! such that |z;] < M almost surely. That is, z; is

Gi+1-measurable and E[z;|G;] a.s. Then for any 0 < 6 < 1, with probability at least 1 — 0,

2 x; < Ma/2nlog(1/6).
i=1

3.9 Experiment details

3.9.1 Details of exploration algorithm

We present the practical algorithm in this subsection. We start by introducing the notation
¢; as the parameter for the i-th () networks, which is a three-layer MLP with 1024 hidden
size, same as other benchmark algorithms implemented in URLB (Laskin et al., [2021)). For
the ease of presentation, we ignore the () network as (g, as @); and the target network
Qgp, as @Q; when there is no confusion. We initialize the parameters in ¢; using Kaiming

distribution (He et al., 2015).

The algorithm works in the discounted MDP with the discounted factor v. For each ¢ in

training steps, the algorithm updates the t%N-th @ function by taking the gradient descent
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Algorithm 8 GFA-RFE — Exploration Phase — Implementation

Input: Number of ensemble N, update speed 7, exploration step T', (reward-free) environ-

ment env,

2 minibatch size B, exploration bonus 3, discount factor

Input: Action variance o
1: For all 4 € [N], initialize ¢, let ¢; < ¢;
2: Initialize policy network mg, replay buffer D = &
3: Observe initial state s;
4: fort=1,---,T do
5. Sample ¢ ~ Unif.[0, 1], sample a; ~ {N(?T('|St),0'2) if (<1-celse Unif.(.A)}
6:  Observe syy1, let D «— D U (s, ay, S¢41)
7. If env.done, restart env and observe initial state s;,1
8:  Sample a minibatch B = {(s,a,s’)} < D with size B
9:  For each (s, a,s') triplet, calculate 0(s, a), riu (s, a), b(s, a) according to (3.9.2)).
10:  Update Q-network Q% n by taking one step minimizing £(¢on) according to
11:  Update actor mg(+|s) by taking one step maximizing £(0) according to (3.9.4))
12:  Update target Q-network following

13: end for

regarding the loss function

2(2, a) (Qt%N(Sv a) — (Tint(sa a) + YQtarget (s, @) + b(s, a)))z, (3.9.1)

Ligon) = )

(s,a,5')eB
where the target () function is the average of N target () network, i.e., Qarget(s,a) =
Zie[ N Qi(s,a)/N, Bis the minibatch randomly sampled from replay buffer D. We encourage
the diversity of different ) function by using different batch B for updating different @)

functions. As the key components of our algorithm, weighted regression o2(s,a); intrinsic

reward 7y, (8, a), exploration bonus b(s, a) is calculated based on the variance of the target
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Algorithm 9 GFA-RFE — Planning Phase — Implementation (DDPG)

Input: Update speed 7, training K, environment env, reward function r(-, -)

Input: Action variance o2, minibatch size B, discount factor +, offline training data D
1: Initialize ¢, let ¢ «— ¢
2: Initialize policy network g
3: Update every (s,a,s’) in D to (s,a,s',r(s,a))
4: for k=1,--- K do
5. Sample a minibatch B = {(s,a,s',7(s,a))} € D ,
6:  Calculate £(@) = >, , o)en (Q¢(s, a) — <r(s, a) + ’}/Qtarget<5/,ﬂg(5l>)>>
7. Update @-network Qo n by taking one step minimizing £(¢)
8:  Calculate actor loss £(0) = >, , s1e5 Qo(5, To(als))
9:  Update actor mg(+|s) by taking one step maximizing £(0)

10:  Update target Q-network by ¢ « (1 — 1)@ + ne

11: end for

() network across (); instances:

0?(s,a) = Var[Q;(s,a)]; min(s,a) = (1 — )4/ Var[Qi(s,a)]; b(s,a) = B4/ Var[Qi(s,a)],

(3.9.2)

where we simply set 5 = 1 to align with our theory, the factor (1 — 7) before the intrinsic
reward is because we want to balance the horizon 1/H ~ (1 — ) in the setting. The reason
for choosing the target @ function Q; instead of the updating @ function is to update the
intrinsic reward, exploration bonus slower than the update of () function, therefore give the
agent more time to explore the optimal policy for maximizing a certain intrinsic reward
rims(S,a). After updating the parameter ¢y, we perform a soft update for the target

network as

b — (1= 0)buwin + 1P, (3.9.3)
where we follow the setting in URLB to set n = 0.01. After updating the @) function, the
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algorithm then updates the actor mg(als) following DDPG in maximizing

LO)= > > Qi(s,malals)) (3.9.4)

(s,a,s')eB i€[N]

We summarize the exploration algorithm in Algorithm [§] in particular, we use Adam to

optimize the loss function defined by (3.9.1) and (3.9.3]).

3.9.2 Details of offline training algorithm

After collecting the dataset D, we call a reward oracle to label the reward r for any triplet
(s,a,s’) € D. Then the DDPG algorithm is called to learn the optimal policy. For the
fair comparison with other benchmark algorithm, we do not add weighted regression in the
planning phase, thus the algorithm stays the same with the one presented in URLB, as stated
in Algorithm [J]

3.9.3 Hyper-parameters

We present a common set of hyper-parameters used in our experiments in Table[3.2 And we
list individual hyper-parameters for each method in table All common hyper-parameters
and individual hyper-parameters for baseline algorithms are the same as what is used in

Laskin et al.| (2021) and its implementations.

3.9.4 Ablation Study
3.9.4.1 Learning Processes

Figure [3.2] illustrate the episode rewards for each algorithm across training steps for various
tasks, demonstrating that the performance of our algorithm (Algorithm @ ranks among the

top tier in all tasks.
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Table 3.2: The common set of hyper-parameters.

Hyper-parameter Value
Replay buffer capacity 108
Action repeat 1
n-step returns 3
Mini-batch size 1024
Discount () 0.99
Optimizer Adam
Learning rate 1074
Agent update frequency 2
Critic target EMA rate (7q) 0.01
Features dim. 50
Hidden dim. 1024
Exploration stddev clip 0.3
Exploration stddev value 0.2
# frames per episode 1 x 103
# online exploration frames up to 1 x 109
# offline planning frames 1 x 10°

Critic network (|0 + |A]) = 1024 — LN — Tanh — 1024 — RELU — 1

Actor network |O] — 50 — LN — Tanh — 1024 — RELU — action dim

3.9.4.2 Numbers of Exploration Episodes

Figure show the episode rewards for top-performing algorithms, including our algorithm
(GFA-RFE), RND, Disagreement, and APT, across varying numbers of exploration episodes
for different tasks. Notably, GFA-RFE competes with these leading unsupervised algorithms

effectively, matching their performance across a range of exploration episodes.

129



Table 3.3: Hyper-parameters of for GFA-RFE and baseline (ICM, Disagreement, RND).

GFA-RFE Value

Ensemble size 10

Exploration bonus 2

Exploration e 0.2

ICM hyper-parameter Value

Reward transformation log(r + 1.0)

Forward net arch. (|0] + |A|) — 1024 — 1024 — |O| ReLU MLP
Inverse net arch. (2 x |0]) - 1024 — |A| ReLU MLP
Disagreement hyper-parameter Value

Ensemble size 5

Forward net arch: (|0] + |A|) — 1024 — 1024 — |O| ReLU MLP
RND hyper-parameter Value

Representation dim. 512

Predictor & target net arch. |O] — 1024 — 1024 — 512 ReLU MLP
Normalized observation clipping 5
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Table 3.4: Hyper-parameters of for baseline algorithms (APT, SMM, DIAYN, APS).

APT hyper-parameter Value
Representation dim. 512
Reward transformation log(r + 1.0)

Forward net arch.

Inverse net arch.

(512 + |A]) — 1024 — 512 ReLU MLP
(2 x 512) — 1024 — |A| ReLU MLP

k in NN 12

Avg top k in NN True

SMM hyper-parameter Value

Skill dim. 4

Skill discrim Ir 1073

VAE Ir 1072

DIAYN hyper-parameter Value

Skill dim 16

Skill sampling frequency (steps) 50
Discriminator net arch. 512 — 1024 — 1024 — 16 ReLU MLP
APS hyper-parameter Value

Reward transformation log(r + 1.0)
Successor feature dim. 10

Successor feature net arch. |O] — 1024 — 10 ReLU MLP
k in NN 12

Avg top k in NN True

Least square batch size 4096
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Figure 3.2: Episode reward at different training steps for tasks on walker and quadruped.
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Figure 3.3: Episode reward with different exploration episodes on walker and quadruped.
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CHAPTER 4

Uncertainty-Aware Robust Linear Contextual Bandits

4.1 Introduction

From this chapter, we move on to the second topic: how
to design robust decision making systems by leveraging the
uncertainty quantification. In this chapter, we start from
(linear) contextual bandits. A contextual bandit is a task ﬂ D
in which, in each round, the agent observes a set of con-

textual vectors describing the features of different actions.

AN T L

The agent needs to select the action that has the maximum
reward, where the reward can be viewed as a function of the

contextual vectors. For example, in a recommender system Figure 4.1: An illustration of

as demonstrated in Figure For each round, the agent the recommender system.

observes different possible choices of food. These choices are described in terms of their
category, calories, or style as the contextual vector (feature) of the foods. The goal for the
agent is to select a type of food that the user is most likely to eat and then recommend it
to the user. The reward is 1 when the user picks the recommendation and 0 otherwise and
can be viewed as a function of the contextual vectors with some noise. It is obvious that
the contextual bandit task can be viewed as the most simplified reinforcement learning tasks

with only one decision step instead of making sequential decision that may affect each other.

Image credit: https://www.nvidia.com/en-us/glossary/recommendation-system
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Linear contextual bandits (Li et al., 2010; |Chu et al., 2011} /Abbasi-Yadkori et al., 2011;
Agrawal and Goyal, |2013)) have been extensively studied when the reward function can be
represented as a linear function of the contextual vectors. However, such a well-specified
linear model assumption sometimes does not hold in practice. This motivates the study of
misspecified linear models. In particular, we only assume that the reward function can be
approximated by a linear function up to some worst-case error ( called the misspecification
level. Existing algorithms for misspecified linear contextual bandits (Lattimore et al., [2020;
Foster et all [2020) can only achieve an (5(d\/? + (K+/dlog K) regret bound, where K is
the total number of rounds and d is the dimension of the contextual vector. Such a regret,
however, suggests that the performance of these algorithms will degenerate to be linear in
K when K is sufficiently large. The reason for this performance degeneration is because
existing algorithms, such as OFUL (Abbasi-Yadkori et al., [2011) and linear Thompson sam-
pling (Agrawal and Goyall, [2013)), utilize all the collected data without selection. This makes
these algorithms vulnerable to “outliers” caused by the misspecified model. Meanwhile, the
aforementioned results do not consider the sub-optimality gap in the expected reward be-
tween the best arm and the second best arm. Intuitively speaking, if the sub-optimality
gap is smaller than the misspecification level, there is no hope to obtain a sublinear re-
gret. Therefore, it is sensible to take into account the sub-optimality gap in the misspecified

setting, and pursue a gap-dependent regret bound.

The same misspecification issue also appears in reinforcement learning with linear func-
tion approximation, when a linear function cannot exactly represent the transition kernel
or value function of the underlying MDP. In this case, |Du et al. (2019) provided a negative
result showing that if the misspecification level is larger than a certain threshold, any RL
algorithm will suffer from an exponentially large sample complexity. This result was later
revisited in the stochastic linear bandit setting by Lattimore et al.|(2020), which shows that
a large misspecification error will make the bandit model not efficiently learnable. However,

these results cannot explain the tremendous success of deep reinforcement learning on vari-
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ous tasks (Mnih et al. 2013; |Schulman et al., 2015 2017), where the deep neural networks

are used as function approximators with misspecification error.

4.1.1 Organization of this Chapter

In this chapter, we aim to understand the role of model misspecification in linear contextual
bandits through the lens of suboptimality gap. This chapter is organized as follows. We
present the related works in Section [4.2] and the preliminaries in Section [4.3] In Section [4.4]
we propose and analyze a new algorithm with data selection, which can handle misspeci-
fied bandits with the knowledge of sub-optimality gap A. In Section [4.5, we move on to
eliminating the dependence of the knowledge of A and show that the existing algorithm,
SupLinUCB (Chu et al.; 2011)) can be also viewed as a bootstrapped version of our proposed
algorithm. Empirical results are presented in Section and the conclusion is drawn in

Section We defer the detailed proof for several key lemmas to Section [4.9

4.2 Related Works

In this section, we review the related work for misspecified linear bandits and misspecified

reinforcement learning.

4.2.1 Linear Contextual Bandits

There is a large body of literature on linear contextual bandits. For example, |Auer| (2002));
Chu et al| (2011)); Agrawal and Goyal (2013) studied linear contextual bandits when the
number of arms is finite. Abbasi-Yadkori et al.| (2011)) proposed an algorithm called OFUL
to deal with the infinite arm set. All these works come with an 6(\/? ) problem-independent
regret bound, and an O(d*?A~'log(K)) gap-dependent regret bound is also given by |Abbasi-
Yadkori et al.| (2011)).
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4.2.2 Misspecified Linear Bandits.

There is a long history of the robust contextual bandits in the face of misspecification.
Agarwal et al.[(2014) considered using an oracle to learn the contextual bandits with function
approximation and showed that the proposed algorithm is robust when misspecification
exists. |Ghosh et al.| (2017)) considered the misspecified linear bandits and showed that the
OFUL (Abbasi-Yadkori et al., 2011) algorithm cannot achieve a sublinear regret in the
presence of misspecification. They, therefore, proposed a new algorithm with a hypothesis
testing module for linearity to determine whether to use OFUL (Abbasi-Yadkori et al.
2011) or the multi-armed UCB algorithm. Their algorithm enjoys the same performance
guarantee as OFUL in the well-specified setting and can avoid the linear regret under certain
misspecification setting. |[Lattimore et al.| (2020)) proposed a phase-elimination algorithm for
misspecified stochastic linear bandits, which achieves an 6(\/@ +CK+/d) regret bound. For
contextual linear bandits, both |[Lattimore et al.| (2020) and |[Foster et al. (2020) proved an
6(d\/? + (K+/d) regret bound under misspecification. Takemura et al.| (2021) showed that
SupLinUCB can achieve a similar regret bound without the knowledge of the misspecification
level. Van Roy and Dong (2019) proved a lower bound of sample complexity, which suggests
when ¢Vd > \/W]D\ , any best arm identification algorithm will suffer a (2¢) sample
complexity, where D is the decision set. When the reward is deterministic and does not
contain noise, they provided an algorithm using (5(0[) sample complexity to identify a A-
optimal arm when ¢ < A/+/d. Lattimore et al. (2020) also mentioned that if (v/d < A, there
exists a best arm identification algorithm that only needs to pull 5(6[) arms to find a A-
optimal arm with the knowledge of (. Note that although the exponential sample complexity
lower bound for best-arm identification can be translated into a regret lower bound in linear
contextual bandits, the algorithms for best-arm identification and the corresponding upper
bounds cannot be easily extended to linear contextual bandits. Besides these works on
misspecification, He et al.| (2022b)) studied the linear contextual bandits with adversarial

corruptions, where the reward for each round can be corrupted arbitrarily. They assumed
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Algorithm Misspecified MDP? Result

LSVI-UCB (He et al., 2021a) X O(dPH’A 1 1og(K))
LSVI-UCB (Papini et al., [2021a)) x O(dBH* A log(1/)))
Cert-LSVI-UCB (ours, Theorem [4.4.1 v O(BHPA™Y)

Table 4.1: Instance-dependent regret bounds for different algorithms under the linear MDP
setting. Here d is the dimension of the linear function ¢(s,a), H is the horizon length, A
is the minimal suboptimality gap. All results in the table represent high probability regret
bounds. The regret bound depends the number of episodes K in [He et al.|(2021a) and the
minimum positive eigenvalue A of features mapping in Papini et al.| (2021b). Misspecified

MDP? indicates if the algorithm can (v') handle the misspecified linear MDP or not (x).

that the summation of the corruption up to K rounds is bounded by C' > 0 and proposed
an algorithm achieving O (dv'K + dC) regret bound with the known C. Since the corruption
level C' = K( in the misspecification setting, their result directly implied an O(dvK + dK()
linear regret, which differs from the optimal guarantee with a extra O(+/d) factor. Besides
these series of work, Camilleri et al.| (2021]) also studied the robustness of kernel bandits with

misspecification.

4.3 Preliminaries

We consider a linear contextual bandit problem. In round k € [K], the agent receives a
decision set D, < R? and selects an arm X, € Dy, then observes the reward 7, = r(xk) + €k,
where r(-) : R — [0, 1] is a deterministic expected reward function and ¢, is a zero-mean

R-sub-Gaussian random noise. i.e., E[e?*|x1., 1.4-1] < exp(A\2R2/2),Vk € [K], A e R.

In this work, we assume that all contextual vector x € Dy satisfies |[x|, < L and the

reward function r(-) : RY — [0, 1] can be approximated by a linear function r(x) = x'* +
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n(x), where n(-) : R? — [—(, (] is an unknown misspecification error function. We further
assume 0%y < B and for simplicity, we assume B, L > 1. We denote the optimal reward
at round k as 73 = maxyep, 7(x) and the optimal arm xj = argmax, 5 7(x). Our goal is to
minimize the regret defined by Regret(K) := Y& 7% — r(xy).
We focus on the minimal sub-optimality gap condition.

Definition 4.3.1 (Minimal sub-optimality gap). For each x € Dy, the sub-optimality gap
Ag(x) is defined by Ag(x) := ri —r(x) and the minimal sub-optimality gap A is defined by
A 1= mingerx xep, { Dk(X) : Ag(x) > 0}.

Then we further assume this minimal sub-optimality gap is strictly positive, i.e., A > 0.

4.4 Constant Regret Bound with Known Sub-Optimality Gap

4.4.1 Proposed Algorithm

In this subsection, we propose our algorithm, DS-OFUL, in Algorithm [I0] The algorithm
runs for K rounds. At each round, the algorithm first estimates the underlying parameter

0* by solving the following ridge regression problem in Line
: 2

where C;_1 is the index set of the selected contextual vectors for regression and is initialized as
an empty set at the beginning. After receiving the contextual vectors set Dy, the algorithm
selects an arm from the optimistic estimation powered by the Upper Confidence Bound
(UCB) bonus in Line [f] In line[§] the algorithm adds the index of current round into Cj if
the UCB bonus of the chosen arm xj, denoted by ||XkHU]:1, is greater than the threshold I'.
Intuitively speaking, since the UCB bonus reflects the uncertainty of the model about the
given arm x, Line [§| discards the data that brings little uncertainty (|\XHU;1) to the model.
Finally, we denote the total number of selected data in Line [§| by [Cx|. We will declare the

choices of the parameter I', 5 and A in the next section.
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Algorithm 10 Data Selection OFUL (DS-OFUL)
Input: Threshold I', radius f and regularizer A

1: Initialize Cy = ¢J, Uy = A1,0p = 0

2: fork=1,...,K do

3 Set Uy = A+ 3,0 XiX] .

4 Set 0, = U;? Diice,, TiXi-

5:  Receive the decision set D.
6:  Select x;, = argmax,p, {x"6; + ﬁHXHU;l}.

7. Receive reward 7,

*

if kaHU;l > I then C, = Cy—; U {k} else C\, = Ci—;

9: end for

4.4.2 Regret Bound

In this subsection, we provide the regret upper bound of Algorithm [10] and the regret lower

bound for learning the misspecified linear contextual bandit.

Theorem 4.4.1 (Upper Bound). Forany 0 < < 1, let A = B~2 and I' = A/(2+/d¢;) where
1 = (24 + 18R) log((72 + 54R)LBVdA™Y) + /8R21log(1/5). Set B = 1+ dy/diy + Ry/2d13
where 15 = log(3LBT ™), 13 = log((1 + 16L2B?*T'""%13)/§). If the misspecification level is
bounded by 2v/dCt; < A, then with probability at least 1 — §, the cumulative regret of
Algorithm [I0] is bounded by

326+/2d315 log(1 + 16dT~215) 14

Regret(K) <
egret(K) A

Remark 4.4.2. Since 8 = O(+y/d), Theorem suggests an O(d*A~1) constant regret
bound independent of the total number of rounds K when ¢ < O(A/v/d), which improves
the logarithmic regret O(d2A ! log K) in |Abbasi-Yadkori et al.| (2011) to a constant regre.

Note that our constant regret bound relies on the knowledge of the minimal sub-optimality

2When we say constant regret, we ignore the log(1/§) factor in the regret as we choose d to be a constant.
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gap A, while the OFUL algorithm in |Abbasi-Yadkori et al.| (2011) does not need prior

knowledge about the minimal sub-optimality gap A.

Remark 4.4.3. Our high probability constant regret bound does not violate the lower bound
proved in Hao et al.| (2020]), which says that certain diversity condition on the contexts is
necessary to achieve an expected constant regret bound (Papini et al., 2021b). Here we only
provide a high-probability constant regret bound. When extending this high probability

constant regret bound to expected regret bound, we have
E[Regret(K)] < O(d*A~ " log(1/6))(1 — 6) + K,

which depends on K. To obtain a sub-linear expected regret, we can choose § = 1/K, which
yields a logarithmic regret O(d2A~*log(K)) and does not violate the lower bound in [Hao
et al.| (2020).

Remark 4.4.4. Notably, Papini et al.|(2021b)) can achieve a constant expected regret bound
under certain diversity condition, which requires the contexts of arms span the whole R?
space. In contrast, our constant regret bound does not need such an assumption and is a

high-probability constant regret bound.

4.4.3 Key Proof Techniques

Here we present the key proof techniques for achieving the constant regret with the knowledge

of sub-optimality gap A. The detailed proof is deferred to Section [£.9.1]

4.4.3.1 Regret decomposition

The total regret over all K rounds can be decomposed as follows

Regret(K) = Z (ri —r(xk)) + 2 (ri = r(x)). (4.4.1)

keCk k¢Cx
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4.4.3.2 Finite samples collected in C,

Since we only adding the contextual arm with large uncertainty (i.e., HXHU;1 > T) into the

set Ci, we can bound the number of samples in C;, as C; = O(dI'"2) which is claimed in the

following lemma.

Lemma 4.4.5. Given 0 < T < 1,set A\ = B72. Forany k € [K], |Cx| < 16dT"~%log(3LBT1).

Then the following lemma suggests that a finite regression set Cp can lead to a small

confidence set with misspecification.

Lemma 4.4.6. Let A = B~2. For all § > 0, with probability at least 1 —4, for all x e R? k €

[K], the prediction error is bounded by:

|XT<9k —0%)| < (1 + RV2d + CA/ |Ck\> ||X”U;1,

where ¢ = log((d + |Cx|L?*B?)/(dd)) and |Cy| is the total number of data used in regression at
the k-th round.

Comparing the confidence radius (’N)(R\/E + ¢+/|Cx]) here with the conventional radius
(5(R\/3) in OFUL, one can find that the misspecification error will affect the radius by an
\/ICx| factor. If we use all the data to do regression, the confidence radius will be in the
order of O(vK) and therefore will lead to a O(K+/log K) regret bound (see Lemma 11
in |Abbasi-Yadkori et al.| (2011))). This makes the regret bound vacuous. In contrast, in our
algorithm, the confidence radius is only 4/|Cx| where |Ck| is finite given Lemma . As a

result, our regret bound will not grow with K as in OFUL and will be smaller.

4.4.3.3 Skipped rounds are optimal

Given the fact that the selected arm set Cy, is finite, the rest of the proof is simply showing that
the skipped rounds k ¢ C;, are optimal and will not incur regret. Since we have HXHU;l <T

for those skipped rounds, the sub-optimality is bounded by the following (informal) lemma.
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Lemma 4.4.7. The instantaneous regret for round k ¢ Cj, is bounded by
Ar(xk) < 2¢ + 2B[xefyr < O(C + A + VD),

Setting I' = O(A/+/d) suggests that the instantancous regret Ay (x;) < A, which means no

instantaneous regret occurs on round k.

4.4.3.4 Achieving the constant regret

To wrap up, as (4.4.1) suggests, for rounds k € Cx, we can follow the gap-dependent regret
analysis in |Abbasi-Yadkori et al| (2011) and obtain an O(d2log(|Cx|)/A) gap-dependent
regret bound, which is independent of K according to Lemma For rounds k ¢ Cg,
Lemma [4.4.7] guarantees a zero instantaneous regret. Putting them together yields the

claimed constant regret bound.

4.5 Constant Regret Bound with Unknown Sub-Optimality Gap

4.5.1 Proposed Algorithm

Although Algorithm can achieve a constant regret, it requires the knowledge of sub-
optimality gap A. To tackle this problem, we propose a new algorithm that does not require

the knowledge of sub-optimality gap A.

The algorithm is described in Algorithm [T1} It inherits the arm elimination method from
SupLinUCB (Chu et al., [2011)). A similar algorithm is also presented for misspecified linear
bandits in [Takemura et al.| (2021)).

Algorithm |11| works as follows. At each round k € [K], the algorithm maintains [ levels
of ridge regression with different set C!_,, where the estimation error for the [-th level is
about 3(1)27! (we will prove this in the latter analysis). Then starting from the first level

[ = 1 and the received decision set D, if there exists an arm in the decision set with a
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large uncertainty (i.e., [x[yt)+ = 27!), the algorithm directly selects that arm (Line .
According to Lemma [£.4.5) in the analysis of DS-OFUL, the number of selected contexts at
each level should be bounded. If the uncertainty for all arms is smaller than the threshold

27! the algorithm follows the arm elimination rule, which reduces the decision set into
Dy = {x:xeDj,r(x}) —ri(x) <38(1)27'}. (4.5.1)

Then the algorithm enters the next level [ + 1 until it reaches log(k)-th level as Line
suggests. For the level [ > log(k), the algorithm directly selects the arm with highest
optimistic reward on Line [11] and does not add the index k to the regression set Ci as on

Line [I2] since the uncertainty is small enough.

Algorithm can be viewed as the multi-level version of Algorithm boosted by the
peeling technique. Algorithm [I1] does not require the knowledge of the sub-optimality gap
A: if A is known, one can directly jump to a specific level In = O(log(d/A)), where
the prediction error is bounded by 28(Ix)27'4 = O(A) and is sufficient to achieve zero-
instantaneous regret. However, when the A is unknown, Algorithm has to do a grid
search over 271,272 ...27!a ... and waste some of the samples to learn the first in — 1
levels. We will revisit and compare the difference between these two algorithms in the later

regret analysis.

4.5.2 Regret Bound

This subsection provides the regret upper bound for Algorithm [T1]

Theorem 4.5.1 (Upper Bound). Forany 0 < § < 1,let A = B72. For every integer [ > 0, set
B(l) = 1+ Ry/2d15(l) where 15(l) = log((d2' + 16L2B?8"4,(1))/(dd)) and (1) = log (3LB2").
If the misspecification level is bounded by 4/ ( <1 + 4\/m ) < A where [ is the minimal
solution to [n > log(88(Ia)/A), then with probability at least 1 — J, the cumulative regret
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Algorithm 11 SupLinUCB

Input: Regularization A, confidence radius (")
1: Initialize C} = ¢ for all [ € [[log(K)]]
2: for k=1,2,---K do

3 Set D =Djpandl =1

4: repeat

o Set Uj, = AL+ Ziecfc_l xx; , 0}, = (U;)™! Zz‘eCi_l TiXi

6: Set 7t (x) = x"6%L + (1) %[l t)-1, action X}, = argmaXyepi 7;(X)
7 if max,ept HXH(U@* > 27! then

8: Choose xj, = argmax,cpt HXH(Uk),l

9: Update Ct = C._, U {k} and keep C.. = CL_, for all I' # [
10: else if k < 4!d then

11: Choose x;, = xfc

12: Keep C,Z = C,Z_l foralll’ > 1

13: else

14: Set DL according to and increase [ = [ + 1

15: end if

16:  until x;, is chosen and then receive reward r;,

17: end for

of Algorithm [10]is bounded by

214d52(lA)L1 (ZA)

t(K) < .
Regret(K) A

Remark 4.5.2. Since (1) = O(v/dl) and I5 = O(log(d/A)), Theorem suggests that
SupLinUCB enjoys a constant regret bound O(d2A~!) when ¢ < O(A/+/d), which is inde-
pendent of the total number of rounds K. Note that in Algorithm [11], the choices of A and

B; do not depend on the sub-optimality gaps A and misspecification level (.

Remark 4.5.3. When ¢ > A/+v/d, it is hard to provide a gap-dependent regret bound

145



due to the large misspecification level (. However, a gap-independent regret bound of
O(WdK + Vd¢K log(K)) is proved in Takemura et al, (2021), which suggests the perfor-
mance of SupLinUCB algorithm will not significantly decrease when the condition on mis-

specification does not hold.

Remark 4.5.4. Comparing the constant factors of DS-OFUL (Algorithm and SupLin-
UCB (Algorithm on the dominating terms O(2d/A), one can find that the constant
factors of SupLinUCB is significantly larger than DS-OFUL. This is because it takes more
samples to learn the first [x — 1 levels in SupLinUCB while DS-OFUL directly learns the
[a-th level. Therefore, despite having the same order of constant regret bound (in big-O
notation), one can expect that SupLinUCB has a worse performance than DS-OFUL (when

A is known or can be estimated by grid search).

4.5.3 Key Proof Techniques

Here we provide additional proof techniques besides the techniques discussed in Section [4.4.3]

First of all, Lemmas |4.4.5| and |4.4.6L which are built on a single level selected by ||X||U;1 =T,

can be generalized to the following lemmas for all levels [. The detailed proof are deferred

to Section [4.9.3

Lemma 4.5.5. Set \ = B72, for any k € [K] and | > 0, |C}| < 16d4'1,(l), where ¢,() =
log (3LB2").

Lemma 4.5.6. Set A\ = B~2. For any level [ > 0, for any § > 0, with probability at least
1 =9, for all k € [K], the prediction error is bounded by

x"(6, — 6*)| < (1 + Ra/2d15(1) + ¢4/ |C,Q\> [l vy

for all x such that |x[s < L, where 15(1) = log((d + |CL|L*>B?)/(dJ)).

The following two proof techniques are crucial to prove constant regret bound of Algo-

rithm [Tl
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Optimal arm is never eliminated Considering the optimal arm in the eliminated set,
which is defined by XZ* = argmax,.p, 7(x). Obviously x,* = x}. The following (informal)

lemma says that the decision set always contains a nearly optimal action ng’*:

Lemma 4.5.7 (informal). For any level [ > 0, assume some good events hold, then there ex-

ists x2* € DL, such that r(x¥) —r(xt*) < 2(1-1)¢ (1 + 4«/dL1(l)) where ¢1(I) = log (3LB2").

Given the result of Lemma and the existence of the sub-optimality gap A, we have
xﬁe* = x;, when [ is not too large. This means that the optimal arm is never eliminated from

the decision set D'.

Sub-optimal arms are all eliminated Intuitively speaking, at level [, the prediction
error is bounded by O(4(1) - 27!) with some additional misspecification term ¢. Therefore,
when we eliminate the arms at level [, the sub-optimality of the arms in D' is bounded by

the following (informal) lemma:

Lemma 4.5.8 (informal). For any level [ > 0, for any arm x € D%, r(x}) —r(x) < 63(1)27' +

21¢ (1 + 4«/dL1(l)> where ¢1(1) = log (3LB2").

Given Lemma we know that when [ is sufficiently large (e.g., larger than [A), all
x € D! enjoys a sub-optimality less than A. Combining with the existence of sub-optimality

gap A, we know that all of the sub-optimal arms are eliminated after level /.

Regret decomposition Given Lemma [4.5.5 and Lemma [4.5.8, the regret over all K

rounds can be decomposed into

Regret(K Z —r(xg)) = 2 Z (r(xp) — r(xx)) Z Z —r(xx)),
k=1 I=1kecl.

121 gecl.

where the last equality is due to the fact that no regret occurs after [ > [5. For each level

[ < la, the summation of the instantaneous regret within k € Ct. can be bounded following
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the gap-dependent regret bound of Abbasi-Yadkori et al.| (2011) to obtain a O(d? log |CL|/A)
regret bound which is independent from K. Then taking the summation over [ < [5 yields

the claimed constant regret bound.

4.6 Lower Bound

Following a similar idea in |Lattimore et al.,| (2020), we prove a gap-dependent lower bound
for misspecified stochastic linear bandits. Note that stochastic linear bandit can be seen as
a special case of linear contextual bandits with a fixed decision set D, = D across all round
k € [K]. Similar results and proof can be found in Du et al.| (2019) for episodic reinforcement

learning.

Theorem 4.6.1 (Lower Bound). Given the dimension d and the number of arms |D|, for any

A < 1and ¢ = 3A4/8log(]D])/(d — 1), there exists a set of stochastic linear bandit problems
©® with minimal sub-optimality gap A and misspecification error level (, such that for any
algorithm that has a sublinear expected regret bound for all 8 € ©, i.e., E[Regrety(K)] <
CK®* with C' > 0 and 0 < a < 1, we have

e When K < O(|D]), the expected regret is lower bounded by Eg..unit.(@)[Regrety(K)] =
KA.

e When K > Q(|D]), the expected regret is lower bounded by supg.g E[Regrety(K)] >
(D] log(K)A ™).

Remark 4.6.2. Theorem shows two regimes under the case ¢ = Q(A/+v/d). In the first
regime K < O(|D|) where the decision set is large (e.g., |D| = d'%°), any algorithm will suffer
from a linear regret O (AK), which suggests that the regime cannot be efficiently learnable.
In the second regime K > (|D|), Theorem suggests an Q(|D|A 1 log(K)) regret
lower bound, which is matched by the multi-armed bandit algorithm with an upper bound

6(|D|A*1 log(K)) (Lattimore and Szepesvari, 2020)). Therefore, in this easier regime, linear
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function approximation cannot provide any performance improvement and one can simply

adopt the multi-armed bandit algorithm to learn the bandit model.

Remark 4.6.3. Theorems and provide a holistic picture about the role of mis-
specification in linear contextual bandits. Here we focus on the more difficult regime K < |D].
In the regime K < |D|, when ¢ < O(A/V/d), Theorem suggests that the bandit problem
is efficiently learnable, and our algorithm DS-OFUL can achieve a constant regret, which
improves upon the logarithmic regret bound in the well-specified setting (Abbasi-Yadkori
et all 2011). On the other hand, when ¢ = Q(A/+/d), Theorem m provides a linear regret

lower bound suggesting that the bandit model can not be efficiently learned.

4.7 Numerical Experiments

To verify the performance improvement by data selection using the UCB bonus in Algo-
rithm and the effectiveness of the parameter-free algorithm Algorithm [I1] we conduct

experiments for bandit tasks on both synthetic and real-world datasets, which we will de-
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# or rounds # of rounds 1e6
(a) On synthetic dataset over 10K rounds (b) On Asirra dataset over 1M rounds, ¢ = 0.01.

Figure 4.2: Cumulative regret of DS-OFUL with different I". Results are averaged over 8
runs. In Figure for Asirra dataset, the cumulative regret of DS-OFUL (as well as OFUL)
can be read from the y-axis on the left. The cumulative regret of SupLinUCB algorithm can

be read from the y-axis on the right.
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Table 4.2: Averaged cumulative regret and elapsed time of DS-OFUL over 8 runs. The

bold face value indicates the best (low regret or low elapsed time) for all the algorithm

configurations

Regret Regret in last Elapsed
Algorithm Configuration, (I")
(meantstd.) 1k steps Time(sec)
OFUL (Abbasi-Yadkori et al.|
405.4 + 76.5 4.94 15.06
2011), '=0
DS-OFUL (Algorithm [10]), I' = 0.02 326.5 + 68.0 0.0 8.59
DS-OFUL (Algorithm [10), I' = 0.05 | 235.75 + 40.3 0.0 6.30
DS-OFUL (Algorithm [10), I' = 0.08 | 411.6 + 566.7 22.44 5.97
DS-OFUL (Algorithm [10), I' = 0.13 | 1789.5 + 1918.8 173.67 5.56
Eq. (6) in Lattimore et al.| (2020) 433.36 + 64 1.79 > 7 hrs.
Robust Linear Bandit (Ghosh et al.
831.5 + 880.4 42.58 12.85
2017)
SupLinUCB (Algorithm 747.9 £+ 329.5 0.0 31.86
scribe in detail below.
4.7.1 Synthetic Dataset
The synthetic dataset is composed as follows: we set d = 16 and generate parameter

0* ~ N(0,1;) and contextual vectors {x;}¥,

~ N(0,1;) where N = 100. The generated

parameter and vectors are later normalized to be |0* |y = ||x;]2 = 1. The reward function is

calculated by r; = (0*,x;) + n; where n; ~ Unif{—(, (}. The contextual vectors and reward

function is fixed after generated. The random noise on the receiving rewards ¢; are sampled

from the standard normal distribution.

We set the misspecification level ¢ = 0.02 and verified that the sub-optimality gap
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over the N contextual vectors A ~ 0.18. We do a grid search for = {1,3,10}, A =
{1,3,10} ﬁ and report the cumulative regret of Algorithm with different parameter
I' = {0,0.02,0.05,0.08,0.18} over 8 independent trials with total rounds K = 10000. It is
obvious that when I' = 0, our algorithm degrades to the standard OFUL algorithm (Abbasi-

Yadkori et al., 2011) which uses data from all rounds into regression.

Besides the OFUL algorithm, we also compare with the algorithm (LSW) in Equation (6)
of [Lattimore et al| (2020) and the RLB in |Ghosh et al|(2017) in Figure and Table [£.2]
For [Lattimore et al.| (2020), the estimated reward is updated by 7(x) = x' 6}, + 5HXHU;1 +
eS" xTU;'x;!|. However, since the time complexity of the LSW algorithm is O(K?) due
to the hardness of calculating ¢ Y*_, [x"U;'x;!| incrementally w.r.t. k. In our setting it

takes more than 7 hours for 10000 rounds.

For the RLB algorithm in (Ghosh et al. (2017), we did the hypothesis test for k& = 10
rounds and then decided whether to use OFUL or multi-armed UCB. The results show that
both LSW and RLB achieve a worse regret than OFUL since in our setting ( is relatively

small.

The result is shown in Figure |4.2a] and the average cumulative regret on the last round is
reported in Table with its variance over 8 trials. We can see that by setting I' ~ A/ Vd ~
0.18/4/16 ~ 0.05, Algorithm can achieve less cumulative regret compared with OFUL
(I' = 0). The algorithm with a proper choice of I' also convergences to zero instantaneous
regret faster than OFUL. It is also evident that a too large I' = 0.18 ~ A will cause
the algorithm to fail to learn the contextual vectors and induce a linear regret. Also, our
algorithm shows that using a larger I' can significantly boost the speed of the algorithm by

reducing the number of regressions needed in the algorithm.

Besides the performance improvement achieved by Algorithm [I0 the experiments also

demonstrates the effectiveness of Algorithm [II} As Table suggests, SupLinUCB achieves

3By “grid search”, we tune the parameter (3,) = (1,1),(1,3),---,(10,3), (10,10) and see their results.
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a zero cumulative regret over the last 1000 steps. However, as discussed in Remark [4.5.4]
the total regret of SupLinUCB is much higher than the DS-OFUL and OFUL since it takes
more samples to learn the first [o — 1 levels which is not used by DS-OFUL. This constant
larger sample complexity could also be verified by a longer elapsed time for executing the

SubLinUCB comparing to DS-OFUL.

4.7.2 Real-world Dataset

To demonstrate that the proposed algorithm can be easily applied to modern machine learn-
ing tasks, we carried out experiments on the Asirra dataset (Elson et al., 2007). The task of
agent is to distinguish the image of cats from the image of dogs. At each round k, the agent
receives the feature vector ¢y, € R°™? of a cat image and another feature vector ¢y € R
of a dog image. Both feature vectors are generated using ResNet-18 (He et al., 2016) pre-
2 = P2

is required to select the cat from these two vectors. It receives reward r; = 1 if it selects

trained on ImageNet (Deng et al., 2009). We normalize |¢; lo = 1. The agent
the correct feature vector, and receives r; = 0 otherwise. It is trivial that the sub-optimality
gap of this task is A = 1. To better demonstrate the influence of misspecification on the
performance of the algorithm, we only select the data with |@]0* — r;| < ¢ with r; = 1 if it
is a cat and r; = 0 otherwise. 8* is a pretrained parameter on the whole dataset using linear

regression * = argming .~ | (] @ — )%, which the agent does not know.

For hyper-parameter tuning, we select § = {0.1,0.3,1} and A = {1, 3,10} by doing a grid
search [] and repeat the experiments for 8 times over 1M rounds for each parameter config-
uration. As shown in Figure when ¢ = 0.01, setting T’ = 0.05 ~ A/+/d will eventually
have a better performance comapred with OFUL algorithm (setting I' = 0). On the other
hand, the SupLinUCB algorithm (Algorithm will suffer from a much higher, but constant
regret bound, which is well aligned with our theoretical result especially Remark [£.5.4] We

4By “grid search”, we tune the parameter (3,\) = (0.1,1),(0.1,3),---,(1,3),(1,10) and see their results.
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Table 4.3: The number of remaining data samples after data processing with expected

misspecification level

¢ # of cats # of dogs
o (without preprocessing) 12500 12500
0.5 (linear separable) 10316 10511
0.1 3182 3248
0.05 2408 2442
0.01 1886 1905

skip the Robust Linear Bandit (Ghosh et al., 2017) algorithm since it is for stochastic linear
bandit with fixed contextual features for each arm while here the contextual features are
sampled and not fixed. The LSW (Equation (6) in [Lattimore et al.| (2020) is skipped due to

the infeasible executing time.

As a sensitivity analysis, we also set ¢ = {0.5,0.1,0.05} to test the impact of misspeci-
fication on the performance of algorithm choices of I". More experiment configurations and

results are deferred to Section

4.7.3 Experiment Details and Additional Results
4.7.3.1 Experiment Configuration

The experiment on synthetic dataset is conducted on Google Colab with a 2-core Intel®
Xeon® CPU @ 2.20GHz. The experiment on the real-world Asirra dataset (Elson et al.,

2007) is conducted on an AWS p2-xlarge instance.
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4.7.3.2 Data Preprocessing for the Asirra Dataset

To demonstrate how our algorithm can deal with different levels of misspecification, we do
data preprocessing before feeding the data into the agent. As described in Section [4.7.2]
the remaining data with expected misspecification level ¢ are shown in Table .3 It can be
verified that even with the smallest misspecification level, there are still more than 10% of

the data is selected.

4.7.3.3 Additional Result on the Asirra Dataset

As a sensitivity analysis, we change the misspecification level in the preprocessing part in
the Asirra dataset. The result is shown in Figure [£.3] This result suggests that when
the misspecification is small enough, setting I' = A/+v/d can deliver a reasonable result
and SupLinUCB (Chu et al., 2011)) can achieve a constant regret bound when ¢ < 0.1. It is
aligned with the parameter setting in our Theorem [£.4.T]and the result in our Theorem [4.5.1]
Meanwhile, we found that when ¢ = 0.5, which means it is strictly larger than the threshold
A/+/d, the algorithm cannot achieve a similar performance with of ¢ < 0.1, regardless of
the setting of parameter I'. This also verifies the theoretical understanding of how a large

misspecification level will harm the performance of the algorithm.
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Figure 4.3: The performance of DS-OFUL under different misspecification levels (. Results

are averaged over 8 runs, with standard errors shown as shaded areas.
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4.8 Conclusion

We study the misspecified linear contextual bandit from a gap-dependent perspective. We
propose an algorithm and show that if the misspecification level ( < 0] (A/ \/g), the proposed
algorithm, DS-OFUL, can achieve the same gap-dependent regret bound as in the well-
specified case. Along with [Lattimore et al.| (2020); Du et al. (2019), we provide a complete
picture on the interplay between misspecification and sub-optimality gap, in which A/v/d
plays an important role on the phase transition of ¢ to decide if the bandit model can be

efficiently learned.

Besides the aforementioned constant regret result, DS-OFUL algorithm requires the
knowledge of sub-optimality ap A. We prove that the SupLinUCB algorithm (Chu et al.|
2011)) can be viewed as a multi-level version of our algorithm and can also achieve a constant
regret with our fine-grained analysis without the knowledge of A. Experiments are conducted
to demonstrate the performance of the DS-OFUL algorithm and verify the effectiveness of
SupLinUCB algorithm.

The promising result suggests a few interesting directions for future research. For exam-
ple, it would be interesting to incorporate the Lipschitz continuity or smoothness properties

of the reward function to derive fine-grained results.

4.9 Proofs

4.9.1 Detailed Proof of Theorem [4.4.7]

In this section, we provide detailed proof for Theorem [4.4.1| First, we present a technical

lemma to bound the total number of data used in the online linear regression in Algorithm 10}

Lemma 4.9.1 (Restatement of Lemma [4.4.5). Given 0 < I' < 1, set A = B2, For any
ke [K], |Cu| < 16dT21og(3LBL).
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Lemma suggests that up to 6(dF_2) contextual vectors have a UCB bonus greater
than I'. A similar result is also provided in He et al. (2021b), suggesting an O(I'"2) Uniform-
PAC sample complexity. Lemma [£.9.1] also suggests that the numbers of data points added
into the regression set C is finite. Thus, the impact of the noise and the misspecification on

the linear regression estimator can be well-controlled.

For a linear regression with up to |Cy| data points, the next lemma controls the prediction

error under misspecification.

Lemma 4.9.2 (Formal statement of Lemma {4.4.6). Let A\ = B™2 For all § > 0, with

probability at least 1 — 4§, for all x € R k € [K], the prediction error is bounded by:
x" (65— 6%)] < (1+ Rv2de + (/[Cil ) X,

where ¢ = log((d + |Cr|L*B?)/(dd)) and |Cx| is the total number of data used in regression at
the k-th round.

Lemma [4.9.2] provides a similar confidence bound as the well-specified linear contextual
bandits algorithms like OFUL (Abbasi-Yadkori et al.; 2011). Comparing the confidence
radius here O(RVd + ¢ \/ICk_1]) with the conventional radius in OFUL O(RV/d), one can
find that there is an additional term ( \/m that is caused by the misspecification. If we
directly use all data to do the regression, the resulting confidence radius will be in the order
of O(v/K) and therefore will lead to a O(K y/log K) regret bound (see Lemma 11 in |Abbasi-
Yadkori et al| (2011)). This makes the regret bound vacuous. In our algorithm, however,
the confidence radius is only 4/|Cx| where |Cy| is bounded by Lemma 4.9.1 As a result, our

regret bound will not be vacuous (i.e., superlinear in K).

When the misspecification level is well bounded by ¢ = O (A/+/d), the following corollary
is a direct result of Lemmas by replacing the term |Cy| with its upper bound provided
in Lemma [£.9.7]

Corollary 4.9.3. Suppose 2v/d(t; < A, let A\ = B2and 0 < T < 1. Let 8 = 1 +
2AT1 /15/11 + Rn/2dus where 15 = log(3LBT ™), 13 = log((1 + 16L*B*T'"?1,)/6), then with
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probability at least 1 — §, for all x € R k € [K], the estimation error for all k € [K] is
bounded by: [x' (6 — %) < B|x|y. 1.

Proof. By Lemma [4.9.1] replacing |Cx| with its upper bound yields
X7 (0 — 6%)] < (1 +4VdCT "oy + Ry/2dus) X[y 1 < B[y,
where the second inequality is due to the condition 2v/d( < A/uy. O

Next we introduce an auxiliary lemma controlling the instantaneous regret bound using

the UCB bonus and the misspecification level.

Lemma 4.9.4 (Formal statement of Lemma [4.4.7). Suppose Corollary holds, for all
k € [K], the instantaneous regret at round k is bounded by

Ap(xp) =rf —r(xg) <2¢+ QﬂHXkHU;l.

The next technical lemma from He et al. (2021a) bounds the summation of a subset of

the bonuses.

Lemma 4.9.5 (Lemma 6.6, He et al.|2021a)). For any subset G = {c1, -+ ,¢;} € Ck, we have

2 IxilGo < 2dlog(1 + G| L2/N).
keg

The next auxiliary lemma is used to control the dominating terms.

Lemma 4.9.6. Let 1, = (24 + 18R)log((72 + 54R)LBVdA™Y) + /8R%log(1/d), T =
A/(2Vduy), 12 = log(3LBI 1), 13 = log((1+16L2B2I'21,)/5), we have 1 > 2+4,/ia+ Rv/203.

Equipped with these lemmas, we can start the proof of Theorem [4.4.1

Proof of Theorem[{{.1 First, note that by setting I' = A/(2+/dt;), the confidence radius 3
becomes 1 + 4+/dis + R+/2dt3. Then our proof starts by assuming that Corollary holds

157



with probability at least 1 — 0. We decompose the index set [K| into two subsets. The first
set is the set of not selected data [K]\Ck, and the second set is the set of selected data Ck.

We will bound the cumulative regret within these two sets separately.

First, for those non-selected data k ¢ Cy, i.e. ||XkHU;1 < I, combining Lemma with
Corollary yields

A V2ui3RA  4A\/1y
\/&1 - 31 - L1
where 11, 19,13 are the same as Theorem , and the equality is due to T' = A/(2v/duy).
When misspecification condition 2v/d¢ < A/ty holds, suggests that

2A 4N 1z \2i3RA
NP + » + T
Lemma suggests that when ¢; = (24 + 18R) log((72 + 54R) LBV dA™") 4+ 1/8R2 log(1/9)
11 > 244, /154 Ry/2u3, yields that the instantaneous regret rf —r(x;) < A at round k.
By Definition [4.3.1] the instantaneous regret is zero for all k ¢ Cy,, indicating the non-selected

ry—r(xg) <2¢+ 207 =2¢ +

, (4.9.1)

Ty —r(xk) < (4.9.2)

data incur zero instantaneous regret.

In addition, Lemma [4.9.4] suggests that the instantaneous regret for those k € Cg is

bounded by

Y i —ria) < Y (281l + %)

k‘ECK k?ECK

<28+/1Ck| | ] [B5l135 1+ 2ICrclC

kECK

< 86T 1/ dian/2d1og(1 + 16dT—21,) + 32¢dT 21,

< 166\/2d31/2 lOg(l + 16dr_2L2)L1/A + 64\/d>3L1L2/A

< 3264/2d315 log(1 + 16d0—219)11 /A, (4.9.3)

where the second inequality follows the Cauchy-Schwarz inequality, the third one yields from

Lemma while the fourth utilizes the fact that I' = A/(2v/de1) and ¢ < A/(2v/dvy). The
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last one is due to the fact that the second term in the fourth inequality is dominated by the

first one.

To warp up, the cumulative regret can be decomposed by

328+/2d3151og(1 + 16dT~219)1,
+ A ,

Regret(K) = Z (rp —r(xg)) + 2 (rp —r(xg)) <0

where the first two zeros are given by the fact that for k ¢ Cr, we have ri — r(xx) = 0. the

regret bound for k € G is given by (4.9.3). O

4.9.2 Proof of Technical Lemmas in Section [4.9.1]
4.9.2.1 Proof of Lemma [4.9.1]

The following auxiliary lemma and its corollary are useful

Lemma 4.9.7 (Lemma A.2, [Shalev-Shwartz and Ben-David|[2014). Let ¢ > 1 and b > 0.
Then = > 4alog(2a) + 2b yields © = alog(z) + b.

Lemma [£.9.7] can easily indicate the following lemma.
Lemma 4.9.8. Let a > 1. Then x > 4log(2a) + a™! yields = > log(1 + ax).

Proof. Let y = 1 + ax,x = (y — 1)/a. Then x > 4log(2a) + a™! is equivalent with y >
4alog(2a) + 2. By Lemma this implies y > alog(y) + 1 which is exactly = > log(1 +
ax). O

Equipped with these technical lemmas, we can start our proof.

Proof of Lemma[{.9.1. Since the cardinality of set Cj is monotonically increasing w.r.t. k,
we fix k£ to be K in the proof and only provide the bound of Cx. For all selected data

k € Ck, we have H¢k”U;1 > I". Therefore, when I" < 1, the summation of the bonuses over
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data k € Ck is lower bounded by
3 min{1, Hmug;l} > |Cx|min{1,T?} = |Cx|T2. (4.9.4)
k,‘ECK

On the other hand, Lemma [2.8.15| implies

. Ad + |CK|L2
1 2 b <odlog [ /22 ). 495
3 win {1l | < 21 (> (1.9.5)

Combining (4.9.5)) and (4.9.4), the total number of the selected data points |Ck| is bounded
by

L2
I'*|Cx| < 2dlog <M> :

Ad

This result can be re-organized as

T2|Cy | 212 T2|Cx|
<log [1+ 2= .
0q S8\t ey g

(4.9.6)

Let A = B~2 and since 2L2B% > 2 > I'?, by Lemma m, if

I'%|Ck| 412 B? 412 B? 2
5 > 4log 2 +1>4log 2 +2LQBQ’

then (4.9.6) will not hold. Thus the necessary condition for (4.9.6)) to hold is

- A2 2LB 2L Bet LB
%gzﬂog( = )+1:810g<T>+10g(e)=810g< F€8> <810g(3r >

By basic calculus we get the claimed bound for |Cx| and complete the proof. O

4.9.2.2 Proof of Lemma [4.9.2]

The proof follows the standard technique for linear bandits, we first introduce the self-

normalized bound for vector-valued martingales from Abbasi-Yadkori et al.| (2011)).

Lemma 4.9.9 (Theorem 1, Abbasi-Yadkori et al. [2011)). Let {F;};2, be a filtration. Let

{1}, be a real-valued stochastic process such that ¢; is Fi-measurable and ¢, is conditionally
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R-sub-Gaussian for some R > 0. Let {¢;}**, be an R%valued stochastic process such that
¢ is F;_1 measurable and || < L for all t. For any ¢ > 0, define U; = ML + Y, _, ¢r s
Then for any § > 0, with probability at least 1 — ¢, for all ¢ = 0

d det(U;) )
Pre .
kZ::l k<k

2

A/ det(U0)5

Lemma 4.9.10 (Lemma 8, Zanette et al.[2020c). Let {a;}¢, be any sequence of vectors in

< 2R%log <
1

Uy

R? and {b;}¢_, be any sequence of scalars such that |b;| < ¢. For any \ > 0:

zn: a; bz

i=1

2
< n2
[27:1 a;a) +)\I] -t

The next lemma is to bound the perturbation of the misspecification

Lemma 4.9.11. Let {n;}r be any sequence of scalars such that |n;| < ¢ for any k € [K].

For any index subset C € [K], define U = A + Y, - xxx; , then for any x € R?, we have

x'U! Zxkﬁk < ¢V I[C|[x]u-1-

keC

Proof. By Cauchy-Schwartz inequality we have

Z XKk

keC

< (W IClIx[u-r,

Ufl

x'U! Z XMk
keC

< x]u—

where the second inequality dues to lemma [4.9.10 O

The next lemma is the Determinant-Trace inequality.

Lemma 4.9.12. Suppose sequence {x;}5 , < R? and for any k € [K], |xz|» < L. For
any index subset C < [K], define U = A + Y, _.xx, for some A > 0, then det(U) <
(A + [C|L?/d)".

Proof. The proof of this lemma is almost the same as Lemma 10 in |Abbasi-Yadkori et al.
(2011) by replacing the index set [K] with any subset C. We refer the readers to |Abbasi-
Yadkori et al. (2011]) for details. O

161



Equipped with these lemmas, we can start our proof.

Proof of Lemma[4.9.2. For any k € [K], considering the data samples k' € Cr_; used for

regression at round k. Following the update rule of Uy and 6, yields

UkUlzl< Z Xk/’f’k/) — ()\I + Z Xk/XE;) 9*

k/ECk,1 k/ECk,1

= Z Xk/Tk/—)\e*— Z Xk/X;LO*
kf’ECk_l k?leck—l

= —)\0* + Z Xk/(T'k/ — XLO*)

kleck,1

= —)\O0* + Z Xg' € + Z Xk Mk’ 5

]{:/EC)C,1 k’eck,l

Ui(6, — 6%)

where the first equation is due to Uj, = /\I+Zk’eck_1 xpx; and 6, = U;* Zkz’e(,’k_l X Tr. The
last equation follows the fact that ry is generated from ry = r(xp) +ep = x.,0% +n(xp) +ep,
where we denote 7(xy/) as n for the model misspecification error and &/ is the random noise.

Therefore, consider any contextual vector x € R?, we have

}XT(ek — 0*)’ = ‘XTUglUk(gk — 0*)‘

< )\ ‘XTUIZIO*‘ + XTUlzl Z ¢k/€k’ + XTUI;1 Z ¢k’nk" s
— k'eCr_1 k'eCr—1
q1 “ ~ _ - ~ _
q2 q3

where the inequality is due to the triangle inequality. Lemma [4.9.11] yields that ¢3 <
¢/ |Ck_1|\|x\|U;1. From the fact that |x" Ay| < ||x[|a|y|a, we can bound term ¢, by

0 < [xlg1 167y < A2l (40.7)

where the last inequality is due to the fact that U,;l < A I. Term ¢ is also bounded as

K
@2 < [xXlgt| X, xwew]  =lxly| X LK € Coalxwer| (4.9.8)
KeCh s Ut k=1 U’
- ~~ 7/
Iy
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where the second equation uses the indicator function to rewrite the summation over subset
Ck—1. Denoting yp = 1 [k’ € Cr—1] xp/, noticing that ||yx |2 < |xx[2 < L and

K K
Uk = Z Xk/X;Cr/ = Z 1 [k/ S Ckfl] Xk/XZ/ = Z yk’y];r/,
k=1

k’eCk,l k'=1

by Lemma [£.9.9] I; can be further bounded by

det(Uk) ( det(Uk) ) <det(Uk))
I <, |2R?log | Y——=| < R4/|2log | ———=—%= ] = R4/21o ,  (4.9.9
! s ( det(U0)5> \/ &\ det(Uy)o S\ (4.9.9)
where the second inequality follows the fact that det(U,) > det(Uy) = M. Notice that

Uy = AT+ e, XwXp Lemma(d9.12)suggests that det(Uy) < (A+[C—1|L*/d)?, plugging
this into (4.9.9)), we obtain

()\ + |Ck_1|L2/d)d d\ + |Ck_1’L2

Plugging the bound of I; into (4.9.8) and combining with (4.9.7) and Lemma 4.9.11

together, replacing |C_1| with its upper bound |Cx| we have with probability at least 1 — 4,
for all k € [K],x € RY,

. d\ + [Cic|L? _
(0~ 0)] < (R\/zdlog (P ey wm) 1o

Letting A\ = B~2 we get the claimed results. O]
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4.9.2.3 Proof of Lemma [4.9.4]

Proof. According to the definition of expected reward function r(x), we have for all k € K],

suppose the condition in Lemma holds, then

ri == () —na) + (x7) ' 6 —x[6*
<20+ (xp) 0% —x, 0"
=20+ (x)" Ok + (x)" (0" — 64) — x [0 + x[ (6 — 6)
<20+ (x0) B+ Blxt s — X0k + Blxily o
< 20+ %0 + Blxi |y — x( 0k + Blxify
< 20+ 28|xk/ly-
where the first inequality utilize the fact that |n(x)| < ¢ for all x € Dy, the second in-

equality follows from Corollary the third inequality is due to the fact that x, =
argmax,.p, X' 6y, + ﬂ\|x\|U}:1, which is executed in Line |§| of Algorithm . O

4.9.2.4 Proof of Lemma [4.9.6]

Proof. First it is clear to see that v/2t3 = 4/2log(1 + 16L2B?T~215) + 2log(1/5). Using the
fact that v/a + b < y/a + /b, it can be further bounded by

V23 < 4/2log(1 + 16 L2B2T~215) + +/21og(1/0).

Assuming L > 1,B > 1,T = A/(2V/d;) < 1 yields LBT'™' > 1, then by basic calculus one

can verify that

2+ 4y/13 < 6log(3LBT™Y),  +/2log(1 + 16L2B2I'~21,) < 3log(3LBT 1),
therefore we have that

2+ 4\/13 + R\/213 < (6 + 3R) log(3LBT 1) + 4/21og(1/6)R
— (6 + 3R) log(6LBVdA ™ 1y) + /21log(1/)R,
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where the last equality is from the fact that T' = A/(2v/dt1). Lemma suggests that the

necessary condition for

(. J [
g Y
a

b

(6LBVAA™" )iy > (6LBVAA™")(6 + 3R)log(6LBVAA™ 1) + (6LBVAA™')1/21og(1/0)R

xT

(4.9.10)
is that
(6LBVAA™" )1y = 4(6LBVAA)(6 + 3R) log(2(6LBVAA™')(6 + 3R))
+ 2(6LBVdA™Y)A/210g(1/6)R,
which suggests that setting
1 = (24 + 18R) log((72 + 54R)LBVAA™Y) + /8R?log(1/4)
implies the fact that 11 = 2 + 4,/t5 + R/2t3 O

4.9.3 Detailed Proof of Theorem [4.5.1]

The first lemma shows that the contexts selected to [-th level are bounded independent from
K

Lemma 4.9.13 (Restatement of Lemma [4.5.5). Set A = B~2 For any k € [K] and [ > 0,
ICt] < 16d4't: (1) where ¢, (1) = log (3LB2").

Proof. The proof is similar to the proof of Lemma by repalcing I' = 27, O

The next lemma provides a fluctuation control as well as the concentration in the ridge

regression

Lemma 4.9.14 (Restatement of Lemma {4.5.6). Set A = B~2. For any level [ > 0, for any

d > 0, with probability at least 1 — ¢, for all k € [K], the estimation error is bounded by
x" (6, — 6%)| < (1 + R/2d15(1) + o/ |C,@\> [l vy
for all x such that |x[s < L, where 15(1) = log((d + |CL|L?>B?)/(dJ)).
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Proof. The proof is similar to the proof of Lemma [£.9.2] O

Combining Lemma [1.9.13 and Lemma [4.9.14] we have the following corollary.

Corollary 4.9.15. Set A\ = B~2. For any ¢ > 0, with probability at least 1 — ¢, for all round

k € [K] and any level [ > 0, for all x such that |x[s < L, the prediction error is bounded by

X7 (0 = 6%)] < (80) +4¢2'V/d (D)) Il +
where B(1) = 1+ Ry/2dus(1), 12(1) = log((d2'+16L2B?8'11(1))/(d6)), and 1, (1) = log (3LB2").

Proof. The proof is simply by plugging the result in Lemma 4.9.13| into Lemma [4.9.14] and
replacing the d with §/2'. By the union bound over [ € N* and the fact that >},°, /2" = §

yields the claimed result. ]

Now, we are about to control D!, which means here we only consider the case where
%[ty < 27! for all x € D! and assuming the high-probability event in previous sub-
section always holds. The following lemma suggests that the decision set always keeps a

nearly optimal action xﬁc’*. Let Gk be the event that the high probability statement in
Corollary holds.

Lemma 4.9.16 (Formal statement of Lemma [4.5.7). For any level [ > 0, assume event
Gx holds, then there exists xi* € DL, r(x3) — r(xt*) < 2(1 — 1)¢ (1 - 4«/dL1(l)> where
1 (1) = log (3LB2').

Proof. We would prove the statement by induction. Since D} = Dy, we have x} € D;
and thus the induction basis holds according to 7(x}) — 7(x*) = 0. Now we assume the
statement holds for level [, that is, there exists Xi;* € D! such that XZ’* e DL, r(x}) —r(xi*) <
201 — 1)¢ (1 + 4@).

If xi* € DL then the desired statement directly holds by choosing x2* = x4 "*. Oth-

erwise x* is eliminated by some action x,™"* € DL that 7L (x"*) = rL(xb*) + 26(1)2-
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Moreover, from the definition of estimator r¢(-), we have

7ﬁ§€<X§€+1 )~ p(x l+1* C+< I+1,% 0 9*>+5 H I+1,% (4.9.11)

(Ut

and

P) = k) < ¢ = (T 0k = 0%) = B |7

4.9.12
- (4.9.12)

Combining (4.9.11)) and ( and the fact that rk(x:™"%) = rk(xb*) 4+ 36(1)27! gives that

PO) = () < =382 20+ (T = X0 - 0%) - B [

(U~

< 38127 +2¢ +2- 27! (5@) +4¢2! dLl(l)) + B2
2 (1 + 4«/@1(1)) ,

where the second inequality is suggested by Corollary [4.9.15) and HXH(UgC -1 < 2= for all

x € D.. The desired statement can then be reached using the induction hypothesis. O

Then, the following lemma suggests that the performance of the actions in the decision

set is guaranteed.

Lemma 4.9.17 (Formal statement of Lemma [4.5.8). For any level [ > 0, assume event
Gk holds, then for any action x € D, r(x}) — r(x) < 68(1)27" + 2I¢ (1 + 4«/da1(l)> where
u(l) = log (3LB2").

Proof. Let xi’* € D! be the optimal action given in Lemma 4.9.16. According to the elimi-
nation process, for any action x € DL, it holds that rk(x) = rL(x\*) — 38(1)27%. Moreover,

from the definition of estimator ri(-), we have

rh(x) —r(x) < ¢ + <X, 0, — 0*> + 5(1) ||XH(U§C),1
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and

P = k) < ¢ (0 - 0%) = B [y

(Up!

Combining the above three inequalities give

r(x") = () < 38027 + 20 + 27 + (x =70, — 07) = B %

(Ut

+ B(0) Hxlk—l’*

(Ul
<38()2" +2¢ +2- 27" (5(1) + 4§2a/dbl(z)) + B2
<6A(127 + 2 (1 + 4«/dbl(1)) ,

where the second inequality is suggested by Corollary 4.9.15 and |x[yi)1 < 27! for all
x € D}. The desired statement can then be reached by combining Lemma [4.9.16} O]

Proof of Theorem[{.5.1. Consider the case that event Gk holds. Let Ian be the smallest
integer solution to In > log(83(Ia)A™!). Note this relation ensures 43(Ix)27'2 < A/2. In
case that the misspecification level is bounded by 2IiA( (1 + 4@) < A/2, it holds
that 68(1a)27 + 2IaC (1 + 4@) < A. According to Lemma [4.9.17, it satisfies that

r(x5) — (%) < 66(1a)27 + 20aC (1 + 4\/dL1(lA))

for any x € fo. According to the process of arm elimination, we have D! < Dﬁf for any
[ = Ia. Thus, it holds that r(x}) — r(x) < A for any x € D}, > Ix. Note that according to
the definition of A, we have r(x}) — r(x) > A for all x € D} that r(x}) # r(x). These two
statements together restrict r(x}) = r(x) for any x € D, on every | > I, that is, any action
that remains in the decision sets on higher levels are optimal. Let UL be the set of index k

that action xy, is chosen from layer [. We have [UL| < |CL | + 4'd. Thus, we could decompose
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the total regret by

Ia—1
Regret(K) = Z Z (r(xy) — Z Z
121 kel =1 kedj
Ia—1
< Y (ICh| + 4'd) - (65(5)2—1 +2IC (1 +4\/M))
=1

Z 16d4%, (1) (66( 1271 4 21¢ (1 + 4W>)

In—1 In—1

964 Y (12" (1) +32d¢ Y 144, (1) (1 + 4«/dbl(5))

=1 =1

< 96dB(1a) 2% 11 (1n) + 32dIads 1 (1n)C (1 +4n/di (1) )
< 1536d8*(Ia)er (Ia)/A + 8192d32 (Ia )11 (Ia) /A

< 2MdB% (1) (la)/A

N

where the second equality is given by Lemma [£.9.17 the second inequality is given by
Lemma [4.9.13] the third last inequality holds since 3(-) and ¢;(+) are monotone increase and

the second inequality since 2471 < 83(In—1)A™! < 8B(Ia)A™! and 2Ia¢ <1 + 4«/da1(lA)> <
A)2.

4.9.4 Proof of Theorem [4.6.1]

To begin with, we introduce the lemma providing a sparse vector set in R¢.

Lemma 4.9.18 (Lemma 3.1, Lattimore et al.[2020). For any ¢ > 0 and d < [|D|] such that
d = [8log(|D|)e~?], there exists a vector set D = R such that |x|, = 1 for all x € D and

|(x,y)| < eforall x,y eDand x #y.

Next, we present the Bretagnolle-Huber inequality providing the lower bound to distin-

guish a system.
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Lemma 4.9.19 (Bretagnolle-Huber inequality). Let P and @ be probability measures on

the same measurable space (€2, F), let A € F be an arbitary event. Then
1
P(A) + QA > 3 exp(~KL(P,Q)).

For stochastic linear bandit problem with finite arm, we can denote T;(k) as the number of
rounds the algorithm visit the ¢-th arm over total £ rounds. Then We have the KL-divergence

decomposition lemma.

Lemma 4.9.20 (Lemma 15.1, Lattimore and Szepesvari| (2020))). Let v = (Py,---, P,)
be the reward distributions associated with one n-armed bandit and let v/ = (P],--- , P!)

be another n-armed bandit. Fix some algorithm 7 and let P, = P,.,[P,, = P, . be the

probability measures on the canonical bandit model induced by the k-round interconnection

of m and v (respectively, 7 and v/). Then KL(P,,P,/) = > | E,[T;(n)|]KL(P;, P!)

Proof of Theorem[4.6.1] The proof starts from inheriting the idea from [Lattimore et al.
(2020). Given dimension d and the number of arms |D|, setting ¢ = 1/8log(|D])/(d — 1), we

can provide the contextual vector set D such that

8log(|D])

=1,V D <
Ixl2 = 1,Vx € D, [(x,y)| 1

,Vx,yeD,x #y,

For simplicity, we index the decision set as x1, - - -, X|p|. Given the minimal sub-optimality

gap A, we provide the parameter set © as follows:
O = {O(i,j) = Ax; + 2Ax;,x;,x; € D, # j} U{Ol = Ax;,x; € D}.

It can be verified that © contains two kinds of €. The first one 6(; ;) is a mixture of two
different contexts x;,x; with different strength A and 2A. The second one is 8; which only
contains features from one context x;. We can further verify that the size of |@| = |D|? and

18]2 < v/5A for 8 € ©. For different parameter 8, the reward function is sampled from a

170



Gaussian distribution N(re(x), 1), where the expected reward function is defined as

2Aif x = x;
Aif x =x;
To(i,]')(x> = 3 A lf X = X; 7T9i(x) =
0 otherwise

0 otherwise
\

We can verify that the minimal sub-optimality of all these bandit problem is A. For
different parameter @ and input x, by utilizing the sparsity of the set D (i.e. |x'y| < € if

X # y), we can verify the misspecification level as

-

2A — 2Ax[x — Ax/ x| < Ac if x = x;
|T9(i,j)(x) - Hg,j)x| =31A- 2AX x — Ax] x| < 2Acif x = x;
0 — 2Axx — Ax/x| < 3Ae otherwise

A — Ax/x| =0 if x = x;
76, (%) — 0] (x)] = 5

\O Ax/ x| < Ae otherwise.

Therefore we have verified that the misspecification level is bounded by ¢ = 3Ae.

The provided bandit structure is hard for any linear algorithm to learn since any algorithm
cannot get any information before it encounters non-zero expected rewards, even regardless
of the noise of the rewards. We following the same method in Lattimore and Szepesvari
(2020). If the algorithm choose arm i at the first round, there would be |D| parameters
(i.e. 6;,6. receiving a non-zero expected reward. On the second round if the algorithm

choose a different arm j, there would be |D| parameters (i.e. 6}, 0(; ik receiving a non-zero
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expected reward. Therefore the average time of receiving zero expected reward should be

D] |D|—1
D2 )i = V(DI —i+1) = DI Y i(|D| - i)

|D|-1 |D|-1
i <u>\ SEES )
1=0 1=0

_ D[ <|D\ (!72>| —-1) _|PIP| - 16)(2!D| - 1))

_ D=1/, 2D -1
2 3|D|

Dl -1
> =
6

where the third equation is from the fact that Y i = n(n + 1)/2 and >, ;4> = n(n +
1)(2n 4+ 1)/6. The last inequality is from the fact that 2|D| — 1)/(3|D|) < 2/3. Therefore,
even without of the random noise, any algorithm is expected to receive min{ K, (|D| — 1)/6}
uninformative data with expected reward to be zero. Therefore any algorithm will receive a

Amin{K, (|D| — 1)/6} regret considers the suboptimality as A.

Next, we consider the effect of random noise. For any algorithm running on this parameter

set ©, we find two parameter 8; and 0, ; where j # i. Define the event as A = {T};(k) > k/2}

and A° = {T;(k) < k/2}. By Lemma 4.9.19 and Lemma 4.9.20

k
P, <Tj(k) = 5) + IP)9(1',3') <T](k‘) < 5) = Xp(*KL(P@?]P)@(i,j)))

1
— €

2
>1
/_e
2

Xp <_ Z Eq, [Tn(k)]KL (]P)o(i,j)vn’ Pejv”)) :

neD

(4.9.13)

Noticing the minimal sub-optimality gap is A. Also the j-th arm is the sub-optimal arm
for parameter ;. Therefore, once T;(k) > k/2, the algorithm will at least suffer from Ak/2
regret for parameter 6;. Also, since the j-th arm is the optimal arm for bandit 6; ;. If

T;(k) < k/2, the algorithm will also at least suffer from Ak/2 regret for 6; ;). Denoting
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Re(k) as the expected cumulative regret over k rounds, that is to say

Ro, (k) > S Bo, (1K) > k/2) R, (k) > "oBo (T (k) < k/2). (49.14)

On the other hand since the bandit using 8; and 8, only differ in the j-th arm. Since
standard Gaussian noise is adapted, KL(Pg, ,,Pg, , n) = A*1[n = j]/2. Combining this

with (4.9.14)), (4.9.13) suggests that

which suggests that

_ log(Ak) —log2 — log(Re, (k) + Re, (k)
- A?/2 ’

(4.9.15)

For any algorithm seeking to get a sublinear expected regret bound of Rg(k) < Ck* with
C>00<a<1forall @O, (4.9.15) becomes

- log(Ak) —log2 —1log(2Ck®)  log(Ak) —log(4C) — alog k

Ko, [T = 4.9.1
o, [T, (R)] s pvrs (49.16)
Since that the regret on 8; can be decomposed by
D]
Ro,(k) = A ) Tu(k), (4.9.17)
n=1n%#1
combining (4.9.17)) with (4.9.16) yields
2(|D| -1
R, (k) = % max {log(Ak) — log(4C) — alog k, 0},

where the max operator is trivially taken for Rg(k) = 0.

[
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CHAPTER 5

Uncertainty-Aware Robust Reinforcement Learning via

Certified Estimator

5.1 Introduction

In Chapter (4] we discussed a data selection method and a phased algorithm that can handle
the misspecified bandit tasks and deliver a constant regret bound. In this chapter, we move

on to a more general reinforcement learning setting.

Reinforcement learning (RL) has been a popular approach for teaching agents to make
decisions based on feedback from the environment. RL has shown great success in a variety
of applications, including robotics (Kober et al., [2013)), gaming (Mnih et al., |2013]), and
autonomous driving. In the most of these applications, there is a common expectation
that RL agents will master tasks while making only a bounded number of mistakes, even
over indefinite runs. However, theoretical support of this expectation is limited in the RL
theory literature: in the instance-independent case, |Jin et al.| (2020b)); |Ayoub et al.| (2020));
Wang et al| (2019), provided only 6(\/? ) regret upper bounds; in the instance-dependent
setting, [Simchowitz and Jamieson (2019); Yang et al. (2021)); He et al. (2021a)) provided
logarithmic (5(A*1 log K') high-probability regret upper bounds for both tabular MDPs and
MDPs with linear function approximations, given a suboptimality gap A. However, these
findings suggest that an agent’s regret increases with the number of episodes K, contradicting
the practical expectation of finite mistakes. Conversely, recent years have witnessed a series

of work providing a constant regret bound for RL and bandits, suggesting that an RL
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agent’s regret may remain bounded even when it faces an indefinite number of episodes.
Papini et al.| (2021a); Zhang et al. (2021a) have provided instance-dependent constant regret
bounds under the assumption of prior data distribution. However, verifying these data
distribution assumptions can be difficult or infeasible. On the other hand, it is known that
high-probability constant regret bounds can be achieved unconditionally in multi-armed
bandits (Abbasi-Yadkori et al., [2011) and in contextual linear bandits if and only if the
misspecification is sufficiently small with respect to the minimal sub-optimality gap (Zhang

et al., [2023c). This raises a critical question:

Is it possible to design a reinforcement learning algorithm that incurs only constant regret

under minimal assumptions?

To answer this question, we introduce a algorithm, which we refer to as Cert-LSVI-UCB,
for reinforcement learning with linear function approximation. To encompass a broader range
of real-world scenarios characterized by large state-action spaces and the need for function
approximations, we adapt the misspecified linear MDP (Jin et al.,[2020b)) setting, where both
the transition kernel and reward function can be approximated by a linear function with
approximation error (. We show that, with our innovative design of certified estimator and
novel analytical techniques, Cert-LSVI-UCB achieves constant regret without relying on any

prior assumptions on data distributions.

5.1.1 Organization of this Chapter

This chapter is organized as follows: we discuss the related work in Section and the
preliminaries in Section [5.3] In Section 5.4 we present Cert-LSVI-UCB which leverages
a certified estimator to guarantee the robustness of the estimation of the value function. In
Section [5.5, we present the regret analysis for Cert-LSVI-UCB. We highlight several key
techniques in Section and draw the conclusion in Section [5.7 The detailed proof is
deferred to Section [5.8
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Algorithm Misspecified MDP? Result

LSVI-UCB (He et al| 2021a) X O(dPH’A 1 1og(K))
LSVI-UCB (Papini et al., 2021a)) x O(dBH* A log(1/)))
Cert-LSVI-UCB (ours, Theorem [5.5.1 v O(BHPA™Y)

Table 5.1: Instance-dependent regret bounds for different algorithms under the linear MDP
setting. Here d is the dimension of the linear function ¢(s,a), H is the horizon length, A
is the minimal suboptimality gap. All results in the table represent high probability regret
bounds. The regret bound depends the number of episodes K in [He et al.|(2021a) and the
minimum positive eigenvalue A of features mapping in Papini et al.| (2021b). Misspecified

MDP? indicates if the algorithm can (v') handle the misspecified linear MDP or not (x).

5.2 Related Work

Instance-dependent regret bound in RL. Although most of the theoretical RL works
focus on worst-case regret bounds, instance-dependent (a.k.a., problem-dependent, gap-
dependent) regret bound is another important bound to understanding how the hardness
of different instance can affect the sample complexity of the algorithm. For tabular MDPs,
Jaksch et al| (2010) proved a O(D252AA'log K) instance-dependent regret bound for
average-reward MDP where D is the diameter of the MDP and A is the policy subopti-
mal gap. Simchowitz and Jamieson| (2019) provided a lower bound for episodic MDP which
suggests that the any algorithm will suffer from Q(A™!) regret bound. Yang et al. (2021)
analyzed the optimistic Q-learning and proved a O(SAH%A~'log K) logarithmic instance-
dependent regret bound. In the domain of linear function approximation, |He et al. (2021a))
provided instance-dependent regret bounds for both linear MDPs (i.c., O(d*H?A~'log K))
and linear mixture MDPs (i.c., O(d*H?A 'log K)). Furthermore, Dann et al.| (2021) pro-
vided an improved analysis for this instance-dependent result with a redefined suboptimal

gap. [Zhang et al. (2023b|) proved a similar logarithmic instance-dependent bound with [He
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et al.| (2021al) in misspecified linear MDPs, showing the relationship between misspecification
level and suboptimality bound. Despite all these bounds are logarithmic depended on the
number of episode K, many recent works are trying to remove this logarithmic dependence.
Papini et al. (2021a)) showed that under the linear MDP assumption, when the distribution
of contexts ¢(s,a) satisfies the ‘diversity assumption’ (Hao et al., 2020) called ‘UniSOFT’,
then LSVI-UCB algorithm may achieve an expected constant regret w.r.t. K. [Zhang et al.
(2021a) showed a similar result on bilinear MDP (Yang and Wang, 2020b)), and extended
this result to offline setting, indicating that the algorithm only need a finite offline dataset
to learn the optimal policy. Table summarizes the most relevant results mentioned above

for the ease of comparison with our results.

RL with model misspecification. All of the aforementioned works consider the well-
specified setting and ignore the approximation error in the MDP model. To better under-
stand this misspecification issue, Du et al. (2019) showed that having a good representation
is insufficient for efficient RL unless the approximation error (i.e., misspecification level) by
the representation is small enough. In particular, Du et al.| (2019) showed that an Q(+/H /d)
misspecification will lead to Q(2%) sample complexity for RL to identify the optimal policy,
even with a generative model. On the other hand, a series of work (Jin et al.| [2020b} |Zanette
et al., [2020blla)) provided 5(@ + (K)-type regret bound for RL in various settings, where (
is the misspecification leve]E] and we ignore the dependence on the dimension of the feature
mapping d and the planing horizon H for simplicity. These algorithms, however, require the
knowledge of misspecification level ¢, thus are not parameter-free. Another concern for these
algorithms is that some of the algorithms (Jin et al. |2020b) would possibly suffer from a
trivial asymptotic regret, i.e., Regret(k) > w(k( - poly(d, H,log(1/d))), as suggested by |Vial
et al.| (2022). This means the performance of the RL algorithm will possibly degenerate as

!The misspecification level for these upper bounds is measured in the total variation distance between
the ground truth transition kernel and approximated transition kernel, which is strictly stronger than the
infinite-norm misspecification used in [Du et al.| (2019).
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the number of episodes k grows. To tackle these two issues, |Vial et al. (2022) propose the
Sup-LSVI-UCB algorithm which requires a parameter ey,;. When ey, = d/ VK , the proposed
algorithm is parameter-free but will have a trivial asymptotic regret bound. When ey, = (,
the algorithm will have a non-trivial asymptotic regret bound but is not parameter-free since
it requires knowledge of the misspecification level. Another series of works (He et al., [2022b},
Lykouris et al., [2021; [Wei et al., [2022) are working on the corruption robust setting. In
particular, Lykouris et al.| (2021); |Wei et al.| (2022)) are using the model-selection technique

to ensure the robustness of RL algorithms under adversarial MDPs.

5.3 Preliminaries

We consider episodic Markov Decision Processes denoted by M(S, A, H, {r,}, {Ps}). Here,
S is the state space, A is the finite action space, H is the length of each episode, r;, : S x A —
[0,1] is the reward function at stage h and Py (+|s, a) is the transition probability function at
stage h. The policy m = {m,}/1, denotes a set of policy functions 7, : S — A for each stage
h. For given policy 7, we define the state-action value function Q7 (s, a) and the state value

function V;"(s) as

Q7 (s,a) = rp(s,a) + E[Zg:h+1rh’(3h’,Wh/(sh/)) ’ Sp = S,a, = a], Vi (s) = Q7 (s, m(s)),

where sp1 ~ Pp(|sp,ap). The optimal state-action value function Q; and the optimal

state value function V;* are defined by Qj(s,a) = max, Q% (s,a), V;*(s) = max, V" (s).

By definition, both the state-action value function Q7 (s, a) and the state value function
VT (s) are bounded by [0, H] for any state s, action a and stage h. For any function V' : § —
R, we denote by [P,V](s,a) = Egy.p,(|sa)V (s') the expected value of V' after transitioning
from state s given action a at stage h and [B,V|(s,a) = rn(s,a) + [P,V](s,a) where B is

referred to as the Bellman operator. For each stage h € [H] and policy 7, the Bellman
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equation, as well as the Bellman optimality equation, are presented as follows

QZ(Sv a’) = T’h(S, a) + [thhﬂJrl](Sv CL) = []BthWJrl](S? CL),

QZ(S7 a) = Th(sv CL) + []P)hvh*+1](87 (l) = [Bhvh*+1](5) a)'

We use regret to measure the performance of RL algorithms. It is defined as Regret(K) =
S (Vi(sh)— v (st)), where " represents the agent’s policy at episode k. This definition
quantifies the cumulative difference between the expected rewards that could have been
obtained by following the optimal policy and those achieved under the agent’s policy across

the first K episodes, measuring the total loss in performance due to suboptimal decisions.
We consider linear function approximation in this work, where we adopt the misspecified

linear MDP assumption, which is firstly proposed in |Jin et al. (2020Db)).

Assumption 5.3.1 ({-Approximate Linear MDP, |Jin et al.2020b)). For any ¢ < 1, we say a
MDP M(S, A, H,{ry}, {Py}) is a (-approximate linear MDP with a feature map ¢ : Sx A —
R?, if for any h € [H], there exist d unknown (signed) measures p;, = (,ug), e ,,ugd)) over S

and an unknown vector 8, € R? such that for any (s,a) € S x A, we have

H]P)h("‘sa a) - <¢(37 a)v l'l’h(')>HTV < Cv ’rh<57 CL) - <¢(87 a), 0h>‘ < Cu

w.l.o.g. we assume V(s,a) € S x A: |¢p(s,a)|| < 1 and Yh e [H] : |pn(S)| < Vd,|0s] < Vd.

The (-approximate linear MDP suggests that for any policy 7, the state-action value
function )} can be approximated by a linear function of the given feature mapping ¢ up to

some misspecification level, which is summarized in the following proposition.

Proposition 5.3.2 (Lemma C.1, |Jin et al.2020b). For a (-approzimate linear MDP, for
any policy 7, there exist corresponding weights {wW} }perr) where wi = 0, + § V7, (s))dpn(s)
such that for any (s,a,h) € & x A x [H], }Q;{(s,a) — <¢(s,a),w}{>‘ < 2H(. We have
Jwbf | < 2HVd.

Next, we introduce the definition of the suboptimal gap as follows.
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Definition 5.3.3 (Minimal suboptimality gap). For each s € S,a € A and step h € [H],
the suboptimality gap gap, (s, a) is defined by A(s,a) = V;*(s) — Q5 (s, a) and the minimal
suboptimality gap A is defined by A = miny, 5, {Ah(s, a) : Ap(s,a) # 0}.

Notably, a task with a larger A means it is easier to distinguish the optimal action
7 (s) from other actions a € A, while a task with lower gap A means it is more difficult to

distinguish the optimal action.

5.4 Proposed Algorithms

5.4.1 Main algorithm: Cert-LSVI-UCB

We begin by introducing our main algorithm Cert-LSVI-UCB, which is a modification
of the Sup-LSVI-UCB (Vial et al., [2022). As presented in Algorithm , for each episode
k, our algorithm maintains a series of index sets Cj , for each stage h € [H] and phase
[. The algorithm design ensures that for any episode k, the maximum number of phases
[ is bounded by L; < max{[log,(k/d)],0}. During the exploitation step, for each phase I
associated with the index set C,i,_Lh? the algorithm constructs the estimator vector w,";,l by
solving the following ridge regression problem in Line [6] and Line [7}

wh, —argmin A|lw|3 + Y. (W' — 1] — Vi (sh,0))"

weRd _
TECZ . !

After calculating the estimator vector W,’il in Line , the algorithm quantilizes W;;l and
(Uf,)~" to the precision of ;. Similar to Sup-LSVI-UCB (Vial et al., 2022), we note 62;1

1 rather than the inverse of

is the quantized version of inverse covariance matrix (U ,)~
quantized covariance matrix (ﬁf;l)_l. The main difference between our implementation and
that in |Vial et al.| (2022)) is that we use a layer-dependent quantification precision x; instead
of the global quantification precision x = 274 /d, which enables our algorithm get rid of the

dependence on O(log K) in the maximum number of phases Ly.
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Algorithm 12 Cert-LSVI-UCB

1: Set Vi, (s) = 0 for all (s,k) e S x [K], Ci; = & for all (h,1) € [H] x N*, X =16
2: for episode £k =1,--- , K do

3:  Set Ly = max{[log,(k/d)], 0}

4: forsteph=H,---,1do

5: for phase [ =1,--- Ly + 1 do

6: U, = AL+ Zfec,fjll ®h(o7)"

£ wi, = (Uh,)™" Zrec’“*l AGERTMCY)

8: Uz:l Y= wi|[(UF )Yk, W = s wh /| where g = 0.01 - 274!
9: end for

10: ViE(s7), - = Cert-LinUCB(sp; {W} }1. {U}; 1, Ly) for all 7€ [k — 1]
11:  end for

12:  Observe st € S

13: forsteph=1,---  H do

14: (k) U (), fi(sh) = Cert-LinUCB(s}; {Whl}l7 {Uk _1}laLk)

15 Gy = c,‘jl,} Uik} i fi(sh) =1 else Cp

16: C,’j, = C ! for all L # 1F(sh)

17: Play ﬂh(sh) set @ = @(sf, mi(s))), receive rf and observe sf,, € S
18:  end for

19: end for

optimistic value function V;*(s7) for all historical states s7 in Line Then the algorithm

transits to stage h — 1 and iteratively computes Wi’l and ﬁil_l

After obtaining wy , and ﬁifl, a subroutine, Cert-LinUCB, is called to calculate an

he[H].

each observed state s¥, the same subroutine, Cert-LinUCB, will be called in Line [14] E for the

policy m¥(sF), the corresponding phase IF(sf), and a flag f¥(sF). If the flag fF(sF) = 1, the

In the exploration step, the algorithm starts to do planning from the initial state s¥. For
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Algorithm 13 Cert-LinUCB : (s; {ﬁf’,jjl}l, {ﬁi:;l}l,L) — (‘A/hk(s),ﬂﬁ(s),l,’j(s),ff(s))
1: input: s€ S,VI: vﬂ&?,’;l e R, ﬁZ;l e R¥™4 [ e Nt
2: output: YA/hk(s) e R, mF(s) e A lF(s) e NT, fF(s) € {0,1}
3: AZ@(S) = A, ‘v/hlfo(‘g) =0, Vh’fo(‘S) =H
4: for phase [ =1,--- , L+ 1do
5. Set QF (s,a) = (p(s,a), Whl>
6: Set Wh,l(s) = argmaXqe 4x | Qh,l(sa a), th,l(s) = Qi,z(sa Wﬁ,z(s))
7. if | > L then

s return (ViE(s), (), 15(s), £(s)) = (Vi1 (s), 76,4 (5),0,1)
9:  else if v - max,car () (s, a)|\ﬁ§,;1 > 27! then
10: return (Vh’“(s),ﬂ}’f(s),l,’i(s),f,f(s)) = (\A/hklfl(s) argmax,e 4 (s) |@(s, ) g1, L, 1)

11:  else if max {V}f,(s) —3- 2_1,\7h’fl 1(8)} > min {V)F,(s) +3- 27" Vhl 1(s)} then
12: return (th(s),ﬂ}’j(s),lﬁ(s),ff’f(s)) = (Vh,z—1< ); 7Thl (s ),l,O)

13:  else

15: Vii(s) = max {V}(s) — 3- 27, ViF_ (s)}

16 A () = {ae AL(s) : QFi(s,0) = Vi (s) 40271}

17:  end if

18: end for

algorithm adds the index £ to the index set C}’f 1 (%) in Line . Otherwise, the algorithm skips
""h\“h

the current index £ and all index sets remain unchanged. Finally, the algorithm executes

policy 7 (s}), receives reward rf and observes the next state sf, ; in Line

5.4.2 Subroutine: Cert-LinUCB

Next we introduce subroutine Cert-LinUCB, improved from Sup-Lin-UCB-Var (Vial

et al., 2022) that computes the optimistic value function 17,5“. The algorithm is described as
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follows. Starting from phase [ = 1, the algorithm first calculates the estimated state-action
function Qfl,l(s, a) as a linear function over the quantified parameter va,’jJ and feature map-
ping ¢(s,a), following Proposition . After calculating the estimated state-action value
function le(s), the algorithm computes the greedy policy W}livl(5> and its corresponding

value function V;(s).

Similar to Sup-Lin-UCB-Var (Vial et al., [2022)), our algorithm has several conditions
starting from Line [7] to determine whether to stop at the current phase or to eliminate the

actions and proceed to the next phase [ + 1, which are listed in the following conditions.

e Condition 1: In Line[7] if the current phase [ is greater than the maximum phase L,

we directly stop at that phase and take the greedy policy on previous phase 75 (s) =

ﬂ-;il—l(s)‘

e Condition 2: In Line |§|, if there exists an action whose uncertainty |¢(s, a)\|ﬁ§l_1 is
greater than the threshold 271%—1’ our algorithm will perform exploration by selecting

that action.

e Condition 3: In Line , we compare the value of the pessimistic value function ‘v/h’fl(s)
and the optimistic value function Vh’fl(s) which will be assigned in Line (14| and Line ,
if the pessimistic estimation will be greater than the optimistic estimation, we will stop
at that phase and take the greedy policy on previous phase 7¥(s) = W,’j’l_l(s). Only in
this case, the Algorithm (13| outputs flag f#(s) = 0, which means this observation will

not be used in Line [I5] in Algorithm [12]

e Condition 4: In the default case in Line[I6] the algorithm proceeds to the next phase

after eliminating actions.

Notably, in Condition 4, since the expected estimation precision in the [-th phase is

about O (271), our algorithm can eliminate the actions whose state-action value is significantly
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less than others, i.e., less than 5(2_l), while retaining the remaining actions for the next

phase.

Specially, our algorithm differs from that in |Vial et al. (2022) in terms of Condition 3
to certify the performance of the estimation. In particular, a well-behaved estimation should
always guarantee that the optimistic estimation is greater than the pessimistic estimation.
According to Line[I4]and Line[I5] this is equivalent to the confidence region for [-th phase has
intersection of the previous confidence region [‘746,171(3)7 ‘7,1’“’171(3)]. Otherwise, we hypothesis
the estimation on [-th phase is corrupted by either misspecification or bad concentration

event, thus will stop the algorithm. We will revisit the detail of this design later.

It’s important to highlight that our algorithms provide unique approaches when compared
with previous works. In particular, He et al.| (2021b)) does not eliminate actions and combines
estimations from all layers by considering the minimum estimated optimistic value function.
This characteristic prevents their algorithm from achieving a uniform PAC guarantee in the
presence of misspecification. For a more detailed comparison with He et al.| (2021b)), please
refer to Section [5.8.1] Additionally, Lykouris et al| (2021); [Wei et al| (2022) focus on a
model-selection regime where a set of base learners are employed in the algorithms, whereas
we adopt a multi-phase approach similar with SupLinUCB rather than conducting model

selection over base learners.

5.5 Constant Regret Guarantee

We present the regret analysis in this section.

Theorem 5.5.1. Under Assumption let v = 5(1 + 20 + [log(ld)|)dH+/log(161dH /)

for some fixed 0 < § < 1/4. With probability at least 1 — 44, if the minimal suboptimality
gap A satisfies A > fl(\/EH 2(’), then for all K € Nt the regret of Algorithm [12[is upper
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bounded by
Regret(K) < 5(d3H5A’1 log(1/9)).
This regret bound is constant w.r.t. the episode K.

Theorem demonstrates a constant regret bound with respect to number of episodes
K. Compared with Papini et al. (2021a)), our regret bound does not require any prior
assumption on the feature mapping ¢, such as the UniSOFT assumption made in [Papini
et al.| (2021a)). In addition, compared with the previous logarithmic regret bound He et al.
(2021a) in the well-specified setting, our constant regret bound removes the log K factor,
indicating the cumulative regret no longer grows w.r.t. the number of episode K, with high

probability.

Remark 5.5.2. As discussed in |Zhang et al. (2023c) in the misspecified linear bandits, Our
high probability constant regret bound does not violate the lower bound proved in Papini
et al.| (2021a)), which says that certain diversity condition on the contexts is necessary to
achieve an ezpected constant regret bound. When extending this high probability constant

regret bound to the expected regret bound, we have
E[Regret(K)] < O(d*H A 1og(1/4)) - (1 — §) + IK,

which depends on the number of episodes k. To obtain a sub-linear expected regret, we can
choose 0 = 1/K, which yields a logarithmic expected regret (5(d3H ®A~1llog K) and does not

violate the lower bound in |[Papini et al.| (2021a).

Remark 5.5.3. Du et al. (2019)) provide a lower bound showing the interplay between the
misspecification level ( and suboptimality gap A in a weaker setting, which we discuss in
detail in Section . Along with the result from |Du et al. (2019), our results suggests
that ignoring the dependence on H, ( = (5(A/\/&) plays an important seperation for if a
misspeficied model can be efficiently learned. This result is also aligned with the positive

result and negative result for linear bandits (Lattimore et al., |2020; [Zhang et al., 2023c).
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5.6 Highlight of Proof Techniques

In this section, we highlight several major challenges in obtaining the constant regret under
misspecified linear MDP assumption and how our method, especially the certified estimator,

tackles these challenges.

5.6.1 Technical challenges

Challenge 1. Achieving layer-wise local estimation error. In the analysis of the
value function under misspecified linear MDPs, we need to follow the multi-phase estimation
strategy (Vial et al.,2022) to eliminate suboptimal actions and improve the robustness of the
next phase estimation. Similar approaches have been observed in [Zhang et al.| (2023c); |Chu
et al. (2011) within the framework of (misspecified) linear bandits. However, unlike linear
bandits, when constructing the empirical value function \A/h for stage h in linear MDPs, |Jin
et al.| (2020b)) requires a covering statement on value functions to ensure the convergence of

the regression, which is written by: (see Lemma D.4 in Jin et al.| (2020b) for details)

|Seect [V (57) ~ BT (7], < On (y/dlog(lCl) +log(VE,11/8) + V), (5.61)

where we employ notation Oy to obscure the dependence on H to simplify the presentation.
We use the notation VF, | to denote as an s-covering for the value functions XA/th. Takemura,
et al. (2021); [Vial et al.| (2022) used quantification instead of the covering number, but this
approach still encounters the issue of taking the union bound across the set of value functions,

thereby incorporating the dependency on the cardinality of this set.

In the multi-phase algorithm, the regression employs a distinct set C = Cﬁl for each
phase [. However, all these regressions use the overall empirical value function thﬂ from the
subsequent stage h + 1, which is formulated using all pairs of parameters {Wf’w Ulfi,ﬁ} ,in L
phases. Consequently, the covering number log |V 1] is directly proportional to the number

of phases L = O(log K).
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Therefore, when analyzing any single phase [, prior analysis cannot eliminate the log K
term from to achieve a local estimation error independent that is independent of the
logarithmic number of global episodes log K. Furthermore, due to the algorithm design of
previous methods (Vial et al.; [2022)), additional log K terms may be introduced, induced by
global quantification (i.e., ey = d/vVK).

Challenge 2. Achieving constant regret from local estimation error In misspeci-
fied linear bandits, [Zhang et al.| (2023c) concludes their proof by controlling Y’,” | 1[V;*(s}) —
Vi (s¥) = APl Although it is trivial showing that rounds with instantaneous regret V;*(s%) —
VI (s¥) < A is optimal in bandits (i.e., V{*(s¥) = V[7(s¥)), previous works fail to reach a sim-
ilar result for RL settings. This difficulty arises from the randomness inherent in MDPs:
Consider a policy 7w that is optimal at the initial stage h = 1. After the initial state and
action, the MDP may transition to a state s, with a small probability p where the policy =
is no longer optimal, or to another state s; where 7 remains optimal until the end. In this
context, the gap between V|*(s1) and V["(s;1) can be arbitrarily small, given a sufficiently

small p > 0:

Vit(s1) = V(s1) = p(V5'(s) — V57 (s5)) + (1 = p) (V5" (s2) — V' (s2)) = p(V'(s5) — V5" (s5)).

Therefore, one cannot easily draw a constant regret conclusion simply by controlling the
summation >~ 1[Vi*(s¥) — Vi(s¥) = A] since the gap between V;*(s¥) — V" (sF) needs to
be further fine-grained controlled. In short, the existence of A describing the minimal gap

between V*(s) — Q*(s, a) cannot be easily applied to controlling regret V*(s) — V7™ (s).

5.6.2 A novel approach: Cert-LinUCB

We introduce the technical details in designing our new subroutine, Cert-LinUCB, to tackle

Challenge 1. In the addition of using ‘local quantification” which ensure the quantification

2We employ the RL notations and set h = 1 for the ease of comparison.
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error of each phase [ depend on the local phase O (1) instead of the global parameter log K,

Algorithm [13| eliminates the log K dependence from log |V| by employing certified estimator.

Considering the concentration term we need to control for each phase I:

Sy BV GT) — B (0)]]|

)

(Ul )1

as discussed in Challenge 1, the function class ]7}? 1 2 XA/th involves L = O(log K') parame-
ters, leading to a log K dependence in the results when using traditional routines. The idea
of certified estimator is to get rid of this by not directly controlling log [VF_,|. Instead, certi-
fied estimator establishes a covering statement for the value function class Vi, 3 ‘A/th,H,
where XA/,L’LZFU+ is the value function that only incorporates the first [, phases of parameters

{wa, UZ,E} ;- Under this framework, the covering statement becomes:

Lemma 5.6.1 (Lemma [5.9.4] informal). Let XA/thJJr be the output of Algorithm (13| termi-

nated at phase L = [, then with probability is at least 1 — 20,

et GV () = EIVE L O < g, = 5L dH/log(161dH /5).

(Uﬁ D7t

To apply Lemma [5.6.1] it is essential to bound the distance between YA/h"erl+ and Vh’fﬂ.

For this purpose, we maintain a monotonic sequence of the optimistic value function th+1 !

and the pessimistic value function ‘v/h"jru, ensuring that

th+1,1<5) < th+1,2( ) < Vh+1zk( )— (3)
< th+1( ) = Vh+1lk(s) (8) << Vh+1,2(5) S th+1,1(3)' (5.6.2)

This monotonicity is guaranteed according to Line[11]in Cert-LinUCB, where the process is
terminated once ([5.6.2)) is violated. As a result, we can control the distance between XA/,Z’“H’H

and ‘A/hkﬂ as the following lemma.

Lemma 5.6.2 (Lemma [5.9.2] informal). There is a faithful extension of ‘7hk+1,l+ to every

I € N* that [V(s) — V¥, (s)] <627+ always holds.
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Following these results, combining Lemma [5.6.2] and Lemma [5.6.1] together obtains a
local concentration bound for each phase [ that is independent of log K' when choosing

I, =1+ Olog(ld)).

Lemma 5.6.3 (Lemma informal). With probability at least 1 — 26, for any (k, h,l) €
[K] x [H] x N*:

< 11’)/1

(U271)71

HZTec;jjll ér, ([ththrl] (shan) — th+1(32+1>) H

As a result of our improved concentration analysis, we can achieve a local estimation

error for the estimated value function in each phase [:

Lemma 5.6.4 (Lemma/|5.9.6| informal). With high probability, for any (k, h, s) € [K]|x[H]x
S.Le [lf(s) — fE(s)], a € Af (s), we have |QF (s, a) — [Bhl/}hﬁl](s, a)| <227+ O(VdH().

Lemma bounds the estimation error for any state s by the phase [§(s) where IF(s)
indicates the layer at which Algorithm [13] terminates. As the early phases cannot provide

sufficient accuracy due to a lack of data, we also need to analyze the conditions under which

Line [T1] is triggered in Algorithm [T3]

Lemma 5.6.5 (Lemma [5.9.8] informal). With probability at least 1 — 24, for any (k,h) €
[K] x [H], Line |11|in Algorithm |13| can only be triggered on phase [ > ﬁ(log(l/()).

Lemma [5.6.5] delivers a clear message: the trigger of Line [T1] is related to the misspecifi-
cation level . In the well-specified setting, Line [11| will never be triggered (I = ). When
the misspecification level is large, then Line [I1] will be more likely triggered, indicating it’s

harder to get higher precise estimation via higher I¥(s), according to Lemma m

In order to bound the number of suboptimality gap taken by Cert-LSVI-UCB, we start

with the following standard decomposition
* wk % i =5 ok
Vi (si)=Vir (si) = (Vi () = Vis(sh)) + (Vis(sk) = Vi ()

= (Vh*(séi) - th(sﬁ)) + Zgzh <th'(5’fy> - [Bhvh]7+1] (Slfua Wﬁ/@ﬁ/))) + Zgzhni"
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= 7rk > ’R'k .
where nf = [Pr(ViF, = Vi D1 (sk, mf(s5)) — (VE L (shy) = Vim (sF,)) is a zero-mean random
variable induced by the transition kernel. We can bound each of the factors using standard

regret analysis on the basis created by combining Lemma [5.6.4] and Lemma [5.6.5}

1. Global underestimation error V;*(sF) — Vh’“(sﬁ) (see Lemma |5.9.25))

2. Local overestimation error 17,5“(32) - []B%h‘/}hkﬂ](sﬁ/, 77 (sy)). (see Lemma [5.9.26

3. Transition noise 7. (see Lemma [5.9.28)

In general, we can reach the following results, which provide an local regret upper bound for

arbitrary index subsets which is independent from the number of total episodes.

Lemma 5.6.6 (Lemma [5.9.29 Informal). With high probability, for any index set K and

any ¢ that is comparably large against (, it satisfies that
S (ViE(sh) = Vi (sf)) < 049K e + O(PH*e" + \/H3[K]).

Note that for index set K = [k : V;#(sf) — Vi (sk) = e], the regret enjoys a trivial lower
bound that Y, . (Vi*(sf) — Vh’rk(sﬁ)) > |Kle. We thus can reach the following result.

Lemma 5.6.7 (Lemma [5.9.12] Informal). With high probability, for any ¢ > 52(\/3H2C)
and h € [H], Cert-LSVI-UCB ensures Y~ | 1 [V;*(sf) — Vi (sh) = e] < (’3(d3H46*2).

Remark 5.6.8. [He et al.| (2021b) achieved a uniform-PAC bound for (well-specified) linear
MDP, which states as

w.hop., Ve > 0,30 A[ViF(sh) — Vi (sh) = €] < O(dBHPe2), (5.6.3)

comparing (5.6.3)) with Lemma on well-specified setting where ( = 0, one can find that
our result is better than |[He et al. (2021b) under stronger condition: Lemmaensures this
uniform-PAC result under all stage h € [H] while He et al. (2021b)) only ensure the initial

statement. Due to the randomness of MDP discussed in Challenge 2, the guarantee for
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h = 1 cannot be easily generated to any h € [H]. Second, our result O(d*H*¢2) improves
He et al| (2021b)) by a factor H. This is because a more efficient data selection strategy

which we will discuss in detail in Section B.8.11

5.6.3 Settling the gap between V* — V™ and V* — Q*

According to Challenge 2, the regret in episodes where Vi*(sk) — V7 (s¥) < A is non-
zero since the minimal suboptimality gap assumption A only guarantees AF = V*(sF) —
Q; sk, (sy)) ¢ (0,A) but put no restrictions on Vj*(sf) — Vi (sh).

Notice that the regret Vi*(s,) — Vi (s;) in episode k is the expectation of cumulative
suboptimality gap Zle A¥ taking over trajectory {sf}L . In addition, the variance of the

random variable can be self-bounded according to
H k H % 2 H k 2 (/% ( ok 7k ok
Var [Zh:lAh] < E[(Zh:lAh> ] <H E[Zh:lAh] = H (Vl (st) = Vi (31))-
As Freedman inequality (Lemma [5.9.30) implies Y1, Var['] < aC and 3! Var[r] < vC
only happens with small probability for every C' with proper constant a and v, together with

a union bound statement C, we can reach the following statement indicates the cumulative

regret can be upper bounded using the cumulative suboptimality gap:

Lemma 5.6.9 (Lemma [5.9.14] Informal). The following statement holds with high proba-
bility:
ZkK=1 (Vh*<sh) - Vhﬂk(sh)) < O<Z£<=IZII7,{=1AI;L + H2>~
In addition, since the loss on the state-value function V;*(sf) — V™ (sF) is a upper bound

for the sub-optimality gap AF, we are able to show that the cumulative suboptimality

gap is constantly bounded when the minimal suboptimality gap is sufficiently large as in

Lemma [5.9.13k
PINDIARFLED I Il (A 1 [AZ = A] + SZ 1 [Ai = 5] d€>

< S S (A 1 [Vreh) Vi b = Al + [V - Vi) = ¢ de).
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Note that the final summation can be upper bounded by O (d*H°A~?) using Lemma W
Together with Lemma [5.6.9] we reach the desired statement that Cert-LSVI-UCB achieves
a constant regret bound when the misspecification is sufficiently small against the minimal

suboptimality gap.

5.7 Conclusion

In this chapter, we proposed a new algorithm, called certified estimator, for reinforcement
learning with a misspecified linear function approximation. Our algorithm is parameter-free
and does not require prior knowledge of misspecification level { or the suboptimality A.
Our algorithm is based on a novel certified estimator and provides the first constant regret
guarantee for misspecified linear MDPs and (well-specified) linear MDPs. There are still
some future works resulting from current algorithm. First, it is still an open question that
whether the dependence on the planning horizon and dimension d, H is optimal for instance-
dependent regret bound, as in the well-specified case, the regret lower bound is Q(d\/ﬁ )
(Zhou et al., [2021b]), which has been recently attained by He et al. (2022a)); Agarwal et al.
(2022). Second, our work propose a new open question that if it possible to fill the gap
between the positive result in our work and the negative result in Du et al| (2019)). We
believe it’s important in both theory and practice to understand how much misspecification

level can be tolerated to efficiently learn the algorithm.

5.8 Additional Discussions

5.8.1 Comparison with He et al. (2021b)

It is worth comparing our algorithm with [He et al.| (2021b)), which also provides a uniform
PAC bound for linear MDPs. Both our algorithm and theirs utilize a multi-phase structure

that maintains multiple regression-based value function estimators at different phases. De-
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spite this similarity, there are several major differences between our algorithm and that in

He et al| (2021b)), which are highlighted as follows:

1. In Line[7]of Algorithm [I2] when calculating the regression-based estimator, for different
phase [, we use the same regression target ‘A/hkﬂ, while their algorithm uses different

V¥, 1, for different phase .

2. When aggregating the regression estimators over all different L, phases, we follow
the arm elimination method as in [Chu et al.| (2011), while He et al.| (2021b) simply

take the point-wise minimum of all estimated state-action functions, i.e., Q(s,a) =
minge(z,) Q4 (5, @)

3. When calculating the phase IF(sf) for a trajectory sV, sk, --- sk [He et al| (2021b)

require that the phase [ (sF) to be monotonically decreasing with respect to the stage
h, ie., I8(sF) < IF [ (sf_|) (see line 19 in Algorithm 2 in [He et al.| (2021b)). Such a
requirement will lead to a poor estimation for later stages and thus increase the sample
complexity. In contrast, we do not have this requirement or any other requirements

related to IF(sF) and IF_ (sF_,).

As a result, by , He et al|(2021b) have to sacrifice some sample complexity to make their
algorithm work for different target value functions Vi, ;. As a comparison, since we use the
same regression target for different phase I, we do not have to make such a sacrifice in [3
Moreover, by [2| |He et al.| (2021b]) cannot deal with linear MDPs with misspecification, while

our algorithm can handle misspecification as in [Vial et al.| (2022]).

5.8.2 Discussion on Lower Bounds of Sample Complexity

We present a lower bound from Du et al.| (2019) to better illustrate the interplay between

the misspecification level ¢ and the suboptimality gap A.
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Assumption 5.8.1 (Assumption 4.3, Du et al.|2019, (-Approximate Linear MDP). There
exists ¢ > 0, 0, € R and py, : S — R? for each stage h € [H| such that for any (s,a,s’) €
S x A x 8, we have |Py(s]s,a) — (@(s,a), pa(s'))] < ¢ and |r(s,a) — ($(s,a), 0| <

Theorem 5.8.2 (Theorem 4.2, Du et al.2019). There exists a family of hard-to-learn linear
MDPs with action space |A| = 2 and a feature mapping (s, a) satisfying Assumption m,

such that for any algorithm that returns a 1/2-optimal policy with probability 0.9 needs to
sample at least Q(min{|S|, 27, exp(d(?/16)}) episodes.

Remark 5.8.3. As claimed in Du et al|(2019), Theorem suggests that when misspec-
ification in the ¢, norm satisfies ¢ = Q(A\/TM), the agent needs an exponential number
of episodes to find a near-optimal policy, where A = 1/2 in their setting. It is worth noting
that Assumption is a {4 approximation for the transition matrix. Such a ¢, guarantee
(] - oo < ¢) is weaker than the ¢; guarantee (| - |1 < ¢) provided in Assumption [5.3.1 So
it’s natural to observe a positive result when making a stronger assumption and a negative
result when making a weaker assumption. In addition, despite of this difference, one could
find that ¢ ~ A/+/d plays a vital role in determining if the task can be efficiently learned.
Similar positive and negative results are also provided in |Lattimore et al.| (2020); |Zhang et al.

(2023c) in the linear contextual bandit setting (a special case of linear MDP with H = 1).

5.9 Proofs

5.9.1 Constant Regret Guarantees for Cert-LSVI-UCB

In this section, we present the proof of Theorem To begin with, we recap the notations
used in the algorithm and introduce several shorthand notations that would be employed for
the simplicity of latter proof. The notation table is presented in Table 5.2l Any proofs not

included in this section are deferred to Section [5.9.2
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Notation Meaning
¢ Misspecification level of feature map ¢y. (see Definition [5.3.1
A Minimal suboptimality gap among Aj,. (see Definition |5.3.3
sﬁ, aﬁ States and actions introduced in the episode k by the policy 7.

Q7 (s,a),Vi7(s)
Qh(s,a), Vi (s)
Ap(s,a)
Py, Bp,

K

A
g17 g27 g3

Ground-truth state-action value function and state value function of policy .

The optimal ground-truth state-action value function and state value function.

Suboptimal gap with respect to the optimal policy 7*. (see Definition [5.3.3

The ground-truth transition kernel and the Bellman operator.

The quantification precision in the phase [. (see Algorithm

The confidence radius in the phase I. (see Theorem |5.5.1
Index sets during phase [ in the episode k. (see Algorithm

Empirical weights and covariance matrix in the phase I. (see Algorithm
Quantified version of wj ; and Uy ;. (see Algorithm

The overall optimistic state value function. (see Algorithm

Empirical state-action value function in phase [. (see Algorithm

Empirical state value function in phase . (see Algorithm |13

Optimistic state value function in phase [. (see Definition [5.9.1

Pessimistic state value function in phase [. (see Algorithm |EI)
Policy played in the episode k. (see Algorithm

Policy induced at state s during phase [ of episode k. (see Algorithm

The index of the phase at which state s stops in episode k. (see Algorithm
The feature vector observed in the episode k. (see Algorithm

Function family of all optimistic state function \A/,fl (see Definition [5.9.1

The confidence radius with covering on phase I,.. (see Definition |5.9.3

The phase offsets for the covering statement. (see Lemma |5.9.5

The inflation on misspecification. (see Lemma |5.9.6

The deepest phase that tolerance ¢ misspecification. (see Lemma |5.9.8]).

The shallowest phase that guarantees ¢ accuracy. (see Lemma [5.9.9).

The sub-optimaility gap of played policy W,’j at state sﬁ (see Lemma [5.9.13
The event defined in Definition [5.9.3] Definition [5.9.27| and Definition [5.9.10

Table 5.2: Notations used in algorithm and proof
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5.9.1.1 Quantized State Value Function set V,’;l

To begin our proof, we first extend the definition of ‘A/h’fl to arbitrary [ and give a formal
definition of the state value function class Vf, as we skip the detail of this definition in

Section [5.61

Definition 5.9.1. We extend the definition of state value function th,z to any tuple (k, h,l) €
[K] x [H] x Nt by

Vi1, = Cert-LinUCB(s; {W} o}y, {UR7 }o1s 1)
We also define the state value function family Vy, be the set of all possible ‘A/h"fl.
V}’il — {ﬁh’fl ‘ \7h’fl, = Cert—LinUCB(s; {Wf7g}é:1, {ﬁ::g_l i1; l)}
where {vaj’g}le:1 and {ﬁ::;l}ézl are referring to any possible parameters generated by Line

in Algorithm

It is worth noting that one can check the definition of XA/h’fl here is consistent with those
computed in Algorithm [13| with [ < [¥(s). Therefore, we will not distinguish between the

notations in the remainder of the proof.

The following lemma controls the distance between ‘A/h’“(s) and \A/h’fl(s) for any phase (.

Lemma 5.9.2. For any (k, h,s) € [K]| x [H] x 8,1 € [I¥(s) — 1], it holds that

~

th,l(s) < Vi(s) < h’fl(s), ViF(s) — th,z(S)| <6271

Moreover, for any tuple (k, h,s,ly) € [K] x [H] x § x N*| the difference |‘7hk(s) - ‘7,{% (s)|
is bounded by 6 - 27!+, following the extension of the definition scope of th,u as outlined in

Definition £.9.11

Lemma [5.9.2| suggests that given any phase [, th,l is close to ?hk . This enables us to

construct covering on V/ using the covering on V}F¥,.
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5.9.1.2 Concentration of State Value Function ‘A/hk(s)

In this subsection, we provide a new analysis for bounding the self-normalized concentration

of H > (;b;([IPhXA/hk](s,Tl, ap) — ‘A/hk(s,cﬂ)) HU_I to get rid of the log k factor in [Vial et al.| (2022).

To facilitate our proof, we define the filtration list FF = {{sz, al fif;l, sk al :;1}.

It is easy to verify that s, af are both Ff-measurable. Also, for any function V built on

Fr [PRV(sk,af) — V(sk ;) is FF, -measurable and it is also a zero-mean random variable

conditioned on F7.

The first lemma we provide is similar with Vial et al. (2022), which shows the self-

normalized concentration property for each phase [ and any function V' € V}f?l.

Definition 5.9.3. For some fixed mapping [ — [, = [ ({) that I, > [, we define the bad

> %,u}-
(Up )t

The good event is defined by Gi = M, N, N ﬂVev’;l Bt (k,h,1,V) where we define
Ay
Y, = dlidHA/log(161dH /§) = (’) (IdH log(671)).

Lemma 5.9.4. The good event G; defined in Definition happens with probability at

event as

2 ¢h [PnV](sh, an) — V(5;+1))

k—1
TGChJ

Bi(k, b1, V) = {

least 1 — 2§.

Lemma [5.9.4] establishes the concentration bounds for any given phase [. However, the
total number of phases for the state value function V;¥(s) can be bounded only trivially
byl = O(log K), resulting in log K dependence. To address this issue, the following lemma,

as we sketched in Section [5.6.2] proposes a method to eliminate this logarithmic factor:

Lemma 5.9.5. Under event G, for any (k, h,l) € [K] x [H] x N*,

< 1.1y (5.9.1)
(U} )L

S dn([PuViE (s, ah) = Vi (s740))

k—1
TGChJ

where we set v, = 7;,;, with [y =1+ 20 + [log(ld)].
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Then Lemmal5.9.5immediately yields the following lemma regarding the estimation error

of the state-action value function le:

Lemma 5.9.6. Under event Gy, for any (k, h,s) € [K] x [H] x 8,1 € [IF(s) — fF(s)],a; €
Ai,l(‘S)?
[k u(s,0) = [BaViiil(s,0)] < 227+ xVIC (5.9.2)
where we define y = 12¢/dH.
Lemma build an estimation error for any [ € [I¥(s) — 1]. As we mentioned in
the algorithm design, a larger [ here will lead to more precise estimation (a smaller 27!
term in (5.9.2))) but will suffer from a larger covering number (a larger 7; term in (5.9.2))).

Following a similar proof sketch from |Vial et al.| (2022), the next lemma shows that any

action that is not eliminated has a low regret,

Lemma 5.9.7. Fix some arbitrary Ly > 1 and let y = 12v/dH. Under event G;, for any
(k,h,s) € [K] x [H] x S, 1€ [min{Lo, lj(s) — fy(s)}], a1 € A 111 (s),

%%[Bh‘?hk—&—l](‘g? a) — [BaVif1(s, 1) <8-27" + 20 xv/LoC.

5.9.1.3 The Impact of Misspecification Level (

Next, we are ready to show the criteria where Line [11] in Algorithm [13| will be triggered,

which shows the impact of misspecification on this multi-phased estimation.

Lemma 5.9.8. Under event G, for any (k,h) € [K]| x [H] such that fF(s¥) = 0, we have
IF(s¥) > L¢ where L is the maximal integer satisfying 27%¢ > xL¢¢ for x = 12VdH, i.e.,
L¢ = Q(log(1/¢)).

Equipped with Lemma [5.9.8] the following lemma suggests that how much estimation

precision € can be achieved by accumulating the error 2-11(%) that occurred in Lemma m
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Lemma 5.9.9. Under event G; and for all ¢ > 0, define L. to be the minimal integer
satisfying 277 < 0.01e/H, ie., L. = [—1og(0.01e/H)]. When L. < L, then for any
K < [K],he [H],

D12 < 0.01|K] - e/H + 22 L.dHA} e

kel

The relationship between L. < L¢ can be translated to the relationship between € and (.

We characterize this condition as follows:

Definition 5.9.10. Condition G. is defined for a given ¢, and is satisfied if L > L. where
L. is the minimal integer satisfying 27" < 0.01e/H and L, is the maximal integer satisfying

271 = xLEC.
Lemma 5.9.11. If ¢ > Q(vdH?(log*(1/¢)), then G. is satisfied.
Proof. If ¢ > Q(\/gHZClogQ(l/C)), we have

27" > 0.005e/H > 2xLy°¢ = 277

where the first inequality is given by the definition of L., the last inequality is given by the
definition of L¢, and the second inequality holds since HxL{® < O(VdH?log*(1/¢)), and
the last inequality is given by the definition of L. and L, respectively. Since 27! decreases

as [ increases, we can conclude that L. < L. O

The above analysis of the interplay between misspecification level ¢ and precision ¢ yields

the following important lemma in our proof, showing a local decision error across all h € [H]:

Lemma 5.9.12. Under Assumption [5.3.1} let v, = 5(1 + 20 + [log(ld)|)dH~/log(161dH /5),
for some fixed 0 < 0 < 1/3. With probability at least 1—30, for any ¢ > Q(\/&Hzglog2(1/§“))

and h € [H], we have

Z 1 [Vh*(s]fb) — V7 (sh) > 5] < O(dPH'e?log*(dHe ") log(67 1)),
k=1
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where ¢ refers to some polynomial of loglog(dHe=*§~1). This can also be written as

Pr [35 > 0, h e [H], i 1 [vh*(s’g) V™ (sh) > 5] > f(e, 5)] <.

k=1

with g9 = Q(VdH2¢) and f(e,8) = O(d*H*21og(671)).

5.9.1.4 From Local Step-wise Decision Error to Constant Regret

The next lemma shows that the total incurred suboptimality gap is constant if the minimal

suboptimality gap A satisfies A > &.

Lemma 5.9.13. Suppose an RL algorithm Alg. satisfies

0

Pr [35 > e, he [H] Y1 [vh*(s’g) VT (sh) > 5] > f(e, 5)] <5,

k=1
such that f(g,0) = (5(01/5 + Cy/e?) where C},Cy > 0 are constant in €, but may depend on
other quantities such as d, H,log(6~!). If the minimal suboptimality gap A satisfies A > &,

then

iiA < O(CLH/A + C1H)

k=1h=1
where AF = A, (sﬁ, WZ(SZ)) = V¥ (sf) — Q; (sﬁ,wﬁ(sﬁ)) is the suboptimality gap suffered in

stage h of episode k.

The following Lemma is a refined version of Lemma 6.1 in He et al.| (2021a) that removes

the dependence between regret and number of episodes K.

Lemma 5.9.14. For each MDP M(S, A, H, {r;}, {Ps}) and any § > 0, with probability at

least 1 — 0, we have

Regret(K (i le] + H?log 1/5)>

We are now ready to prove Theorem [5.5.1}

Proof of Theorem |5.5.1. By plugging in Lemma(5.9.12Jand Lemma|5.9.13|into Lemma|5.9.14)

we can reach the desired statement. O
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5.9.2 Proof of Lemmas in Section [5.9.1]

In this section, we prove lemmas outlined in Section [5.9.1 Any proofs not included in this

section are deferred to Section [5.9.3]

5.9.2.1 Proof of Lemma [5.9.2

Proof of Lemma[5.9.9. According to the criteria for Line , we have Iv/h’fl(s) < Ah’fl(s) for
any [ € [I¥(s) — 1]. From the definition of ‘v/h’fl(s) and ‘A/h’fl(s), they are monotonic in [ that

‘7,1'“7171(3) < \A/h’fl(s) and \A/h’fl(s) < \A/h’flfl(s) hold. Combining with ‘A/hkﬂ(s) = ‘/}h]flfl(s)—l’ we have
VL€ [I5(s) — 10, Viu(s) < Vi(s) < Vo) (5.9.3)

From the definition of 17h’fl(5) and ‘v/h’fl(s), we have
0< ‘7hk,l(s) - ‘7hk,l(3) < (‘Zfil(s> - th,l(s)) + (th,z(s) - ‘v/h]fz(s)) <6-27". (5.9.4)

Plugging into , we conclude that for any phase | € [I¥(s) — 1], it holds that
’vhk(s) - ‘7hk,l(5)‘ <6-27".

Now consider the extended state value function \A/h’fbr with an arbitrary [, € NT. For every
s where I, < I¥(s) — 1, we have |V} (s) — Vi1, (s)] < 6-27"+ as reasoned above. For the other
s € 8 where I, > IF(s), we have 17h’fl(s) = XA/hk(s) following the procedure of Algorithm .
This suggest that |V (s) — ‘A/h’fl+(5)] < 6271 always holds. O

5.9.2.2 Proof of Lemma [5.9.4]

The following Lemma shows the rounding only cast bounded effects on the recovered param-

eters.

Lemma 5.9.15. For any (k,h,s) € [K] x [H] x S, € [Ij(s) — fi(s)],a € A} (s), it holds
that

‘<¢(Sa CL), vV;CL,I> - <¢(57 CL), Wllz,l>‘ < 0.01- 274[7 H¢(57 CL)H(U;“LJ)*1 - Hd)(sv a)”fjﬁlfl‘ <0.1- 2721.
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The following lemma shows the number of episodes that are taken into regression |C,’f7l|

is bounded independently from the number of episodes k.

Lemma 5.9.16. For any tuple (k,h,l) € [K] x [H] x N*, we have |C}; | < 161 - 4'v/d.

The following lemma shows the number of possible state value functions |V}, | is bounded

independently from the number of episodes k.

Lemma 5.9.17. For any tuple (k,h,1) € [K] x [H] x N*, we have [Vf | < (22d°H*)"4.
Now we are ready to prove Lemma [5.9.4]

Proof of Lemma|5.9.4. Recall in Definition the good event defined by the union of

each single bad event:
K H
=N ) Bitk.htV),
k=Lh=11=1vevk,
where each single bad event is given by

> e ([PuVI(sh, ap) = Vishi))

7'6(3]C 1

Bi(k,h,1,V) = {

> %},
up )t

Consider some fixed (h,1) € [H] x N*, V € Y} . Arrange elements of Cj; in ascend-

in which [P,V](s,a) = Egp, (|s,a0)V (5).

ing order as {7;};. Since the environment sample s;',, according to P,(-|s}’,a;’), we have

[Py V](sy, aff) — V(s},,) is Fyi-measurable with E[[P,V](s}', af') — V(s;', )| Fri] = 0. Since
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0 < V(s;,) < H, we have |[P,V](s;',a;') — V(s;i,)| < H. This further leads to

> e ([PuVI(s, ap) = Vsiy))

k—1
TGChJ

(gt

¢ [P, V] Sh.7aiTLi) _V(S;—Li-‘rl))

(UED7!

H\/Zdln 1+ [CE|/(dN) +2In(I2H|VE, |/6)

< H\/len(l +1-42) + zln(52H(222d6H4)z3d2/5)

< Vs

where the first inequality holds following from the good event of probability 1—6/(I*H|V, |)

defined in Lemma over filtration {F;'};, the second inequality is derived from combining

Lemma/5.9.16|and Lemma5.9.17] and the last inequality is given by Lemma [5.9.39. Accord-

ing to Lemma we have the bad event Uszl Bi(k, h,1, V) happens with probability at

most §/(I>H[V),_ |). Taking union bound over all (h,l) € [H] x N*, V' e V[, | we have the

bad event happens with probability at most

gi]sgz 3 Pr[UBMch,l,V]éZZ 3 Z2H|Vhl| < 2,

Vevffhr h=11=1 Vevfbr

where the last inequality holds due to >}, _, n™> = 7*/6. This completes our proof.

5.9.2.3 Proof of Lemma [5.9.5|

Proof of Lemma [5.9.5. Denote the martingale difference between ‘A/hk,u — ‘A/hk as:

M’fL,z = [Ph(vhlfu - th—&-l)](S];mWZ(sh)) (th (Sh+1) th+1(3£+1))-
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By triangle inequality:

2 (Ib;([PthkH](SZa ap) — th+1(52+1))
rechy! (Ut )1
< Z ¢E([thhk,z+](5£a ar) — Vh’fu(sﬁﬂ)) + Z Dhlth, (5.9.5)
reCy ! Uk )t reCy ! Uk )t
According to the definition of event G;, we can upper bound the first term by
Z Qb;t([Pth’fzJ,](S;a ap) — Vhlfu (32+1)) < Ny =N (5.9.6)
TECZ;l

(UI:L,L)_l

According to Lemma [5.9.2) we have |\A/h’fl+(s) - \A/hk+1(s)| < 6-27% for any s € S. Thus, the

difference can be bounded by | uﬁ}l+| < 6-27%. Consequently, we can bound the second term

by

Y. Drkha, <6-27/Ich)|
reCy Uk !
< 6-2714 /161 - 4ly2d
= 24 27y /1d, (5.9.7)

where the first inequality is provided by Lemma [4.9.10, utilizing the condition |N2,l+| <
6 - 27+, the second inequality is from Lemma [5.9.16| By plugging in the definition of I, , we
can further bound the final term of (5.9.7)) by

<2427 y/1d <24 - 27204, < 0.1, (5.9.8)
(Uﬁyl)_l

Z ¢£u2,l+

k—1
TECh’l

Plugging (5.9.6) and (5.9.8]) into ((5.9.5)) yields the desired statement such that

Z (bz([Pthkﬁ-l](S;m a;) - th+1(32+1)) < 1.1’)11,
Teclgil (Uﬁ,z)_l
which concludes our proof. 0
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5.9.2.4 Proof of Lemma [5.9.6]

The following lemma shows the state-action value function Qﬁ}l(s, a) is always well estimated.

Lemma 5.9.18. Under event Gy, for any (k, h,l,s,a) € [K] x [H] x N* x S8 x A,
Q¥ (s,a) — [BuVE (s, a)| < (1.2 + 8VIH - 2'O) v (s, a)|up -+ +0.01-274 + 2H(.
Equipped with Lemma [5.9.15/ and Lemma [5.9.18, we are ready to prove Lemma |5.9.6

Proof of Lemma[5.9.6 In case that [ < [}(s) — f(s), for any a € Ay (s), we have that

”¢(S7 a’)H(UfLJ)*l < H¢(87 CL)HﬁI:L;I + ’H(,b(S, a)H(UlfL’l)*l - ”¢(S7 a’)”ﬁ’;l’1’

< 2—[[_)/[—1 + 01 . 2—2l < 1.1- 2_1,-)/l_1’ (599)

where the first inequality holds due to triangle inequality, and in the second inequality, the
first term is satisfied since state s passes the criterion in Line [J] in phase [ and the second

term follows from Lemma [5.9.15] and the last inequality is given by Lemma [5.9.38| which

implies 2! > ;. Plugging (5.9.9) into Lemma [5.9.18| gives

Q¥ (s5.a) — [BuVE ](s,a)] < 0.01- 27 +1.32 - 27! + 8.8VIdH( + 2HC¢

<2-27' 4+ 12VIdHC,

which proves the desired statement. O

5.9.2.5 Proof of Lemma

Equipped with Lemmal[5.9.6] we are able to show several properties of the state value function
Vh’fl through the arm-elimination process. The first lemma suggests that for any action
a; € Aj (s), there is at least one action ajy € Af, (s) close to g; in terms of the Bellman

operator [IB%thkH](s, a) after the elimination.
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Lemma 5.9.19. Under event Gy, for any (k,h,s) € [K] x [H] x 8,1 € [min{Ly, [}(s) —
fr(s)}], ar € A (s), there exists a;4q € Af(s) that

[Bh‘/}hk-i-l](‘g?al) [Bhvh+1:| S al+1 2X'\/ C

where ¥ = 12+/dH for arbitrary Ly > 1.

Then the following lemma shows that by induction on stage h € [H], we can show the

elimination process keep at least one near-optimal action ;41 € A, (s).

Lemma 5.9.20. Under event Gy, for any (k, h,s) € [K]x[H]| xS, € [min{Lo, I¥(s)— fr(s)}],

there exists aj1 € Ay, (s) that,

max[B;, V1] (s, a) — [BrVF 1 ](s, are1) < 20 xv/Lo.

aeA

where x = 12+/dH for arbitrary Ly = 1.

The following two lemmas indicate that the state value function th,l (s) on stage h is a good

estimation for the value function given by Bellman operator V (s) = max,ec4 [Bh‘/}hkﬂ](s, a).
Lemma 5.9.21. Under event Gy, for any (k, h, s) € [K]x[H]| xS, € [min{Lo, I§(s)— fr(s)}],
max(By Vi, 11(s.a) — Vify(s) <227+ (20 = Dxv/LoC.

where xy = 12+/dH for arbitrary Ly = 1.

Lemma 5.9.22. Under event Gy, for any (k, h,s) € [K]|x[H] xS, € [min{Lg, IF(s)— fF(s)}],
Vii(s) — ?E@{([Bhf/hkﬂ](sv a) <227 + xv/Lo,

where x = 12+/dH for arbitrary Ly > 1.

Now we are ready to show any actions remaining in the elimination process are near-

optimal.
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Proof of Lemma[5.9.7]. First, according to Lemma [5.9.2T] we can write
Iglea}[mah\?hkﬂ](s, a) — VF(s) <2271 + (20 = 1)x\/LoC. (5.9.10)
Any action a;4q € .Af;l +1(8) passes the elimination process will satisfy:
Qh (s, ai41) = Vi (s) —4-27" (5.9.11)

According to Lemma [5.9.6| with the condition that | < Ly, we have that the empirical
state-action value function Qj (s,-) is a good estimation for [IEBhlA/th](s, -) among every

ajy1 € AF(s) under event Gi:

’[Bh‘/}thrl](sa ae1) — Qh (s, ai1)| <2270+ X/ LoC. (5.9.12)

Combining (5.9.10)), (5.9.11)), and (5.9.12) gives

max (B Vi, 1](s,a) = [BuVli ] (s, i)
= (max[By Ul )(s,a) = Vili(s)) + (Via(s) = @ (s, arpn)
+ (Qhi(s ain) = BV (s i)
< (227 4+ (20— DxVLoQ) +4-27" + (2- 27+ xv/Lo¢)
=827 420 x\/Lo,

which proves the desired statement. O

5.9.2.6 Proof of Lemma [5.9.8

The following two lemmas demonstrate that, at stage h, both the optimistic state value
function, ‘A/h’fl(s), and the pessimistic state value function, lv/h’fl(s), exhibit a gap relative to the

state value function determined by the Bellman operator as V' (s) = max,e A[Bhr/hkﬂ](s, a).

Lemma 5.9.23. Under event Gy, for any (k, h,s) € [K]x[H]| xS, € [min{Lo, [¥(s)— f(s)}],
min {Viy(s) + 3270Vl ()} — max[B Vil ](s,a) = 27 — (20 = Dxv/LoC,
’ ’ ae
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where y = 12v/dH for arbitrary Lo > 1. In case that [ < If(s)—1, the inequality is equivalent

to

Vii(s) = max[By Ul 11(s,0) > 270 — (20— Dxv/LoC.

Lemma 5.9.24. Under event Gy, for any (k, h,s) € [K]x[H] xS, € [min{Ly, IF(s)— fF(s)}],

maj([Bh‘/}hkﬂ](& a) — max {th,l(5> -3 2717 ‘7;1’?171(5)} =27 - XV LoG,
where y = 12v/dH for arbitrary Lo > 1. In case that [ < [f(s)—1, the inequality is equivalent

to
Iileaj([Bh‘A/hkﬂ](Saa) th —X\/ oG-

Proof of Lemma[5.9.8. Set Ly = L¢ be the maximal integer satisfying 27%¢ — yL}°¢ = 0

Combining Lemma [5.9.24| and Lemma [5.9.23| for any [ € [min{Lg, F(s) — fF(s)}], we have
that

min { V¥ (s) +3- 27, VF_ (5)} — max {VF,(s) = 3- 27, ViF_ (s)}
= (Vii(s) — max[B, V1 )(s,0)) + (max[Bi Vi, 1(s. 0) = V()
> (27" = (20 = Dxv/Lo¢) + (27" — xV/LoC)
=227 =20 /Lo

>2.2710 _ oy L3¢ >0

where the second inequality holds since 27! decreases as [ increases and the last inequality

holds according to the selection of Ly.

When fF(s) = 0, consider [ = [¥(s). The above reasoning indicates the criterion in

Line 11| can never satisfied. Thus fF(s) = 0 can only happen if If(s) > Ly = L. O

5.9.2.7 Proof of Lemma [5.9.9

By partitioning [K| based on whether Algorithm |13| stops before phase L., we can prove
Lemma [5.9.9] Specifically, Lemma [5.9.16] bounds the number of episodes in which Algo-
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rithm [I3] stops before phase L.. This allows us to establish an upper bound for the desired
summation over these episodes. Furthermore, for episodes that stop after phase L., the

contribution of 2_15(315)712- (s 18 small according to the definition of L.

Proof of Lemmal5.9.9. Denote C,ﬁ = [K] - LE ! Cffl In this sense, we have

L.—1

ZQ—l’fL(s]Z): Z o~ lk(sk) 4 Z Z o~ (sh) (5.9.13)

kek kekKnCE I=1 keKnC,

From the construction of Cff;, we have [ji(sy) = [ for any k € Cf;. Fix some k € C¥,. If
fR(sF) = 0, we have I}(sF) > L, > L. where the first inequality is given by Lemma m
and the second inequality is given by the assignment of L.. Otherwise, we have IF(sF) > L.
according to the definition of Cf;. This indicates Iji(sj) = L. holds for any k € Cf,. This
allow is to bound the first term by

Yoot < 3 27 < 001K ¢/, (5.9.14)
keKnCl | keKCl
where the first inequality holds since If(s¥) > L. and the second inequality holds from both
27" < 0.01e/H and |[K n C | < |K].

Furthermore, we can bound the second term by

L:.—1 Le—1
MY ol <Z|ICmChl| 27!
=1 keICmCK

Le—1

< ) 161 4ly7d -2

< 16L.d-2"~; <2Y%L.dH~; e " (5.9.15)

where the second inequality is given by Lemma [5.9.16, and the last inequality holds due to
0.005¢/H < 27%= which is because L. is a minimal integer such that 2% < 0.01e/H.

Finally, plugging (5.9.14)) and (5.9.15)) into ([5.9.13|) gives

D127 < 0.01K] - e/ H + 22 LedHA} e
kel
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5.9.2.8 Proof of Lemma [5.9.12

The following lemma provides an upper bound for the underestimation error of the empirical

state value function YA/,Z’“ with respect to the optimal state value function V*.

Lemma 5.9.25. Under event G; and for all ¢ > 0 that G. is satisfied, for any (k,h,s) €
[K] x [H] xS,

Vi*(s) — ViF(s) < 0.07e.

As \A/hk represents an empirical state value function with potentially optimal policy 7F(s),
the following lemma provides an upper bound for the overestimation error of Vh’“ with respect

to deploying the policy 77(s) on the ground-truth transition kernel.

Lemma 5.9.26. Under event G; and for all € > 0 that G. is satisfied, for any (k,h,s) €
[K] x [H] xS,

VE(s) = [BuVF 1(s, b (s)) <20 - 27%6) 4 0.16¢/H.

To start with, we define a good event according to:

Definition 5.9.27. For some ¢ > 0, let K5 = {k € [K] : V}*(sF) — V™" (sF) = ¢}. We define

the bad event as

Ba(h.e) = { DI 4¢H3|iczrlog<4H|/cz|log<e—1>/6>}.

keKs h'=h
=5 ok = 7k .
where nf = [Py(ViFy — Vim)](sk, mi(sE)) — (ViFa(shy) — Vima(sii1)). The good event is

defined as Go = (), =1 B5(h, 27Y).

The following lemma provides the concentration property such that the cumulative sam-

ple error is small with high probability.

Lemma 5.9.28. Event G, happens with probability at least 1 — ¢.
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Using the above results, we can bound the instantaneous regret of any subsets once the

misspecification level is appropriately controlled,

Lemma 5.9.29. Under event G;, G, and for all € > 0 that G. is satisfied, for any K < [K]
and h € [H], it satisfies that

Z (ViE(sF) — Vi (sF)) < 0.49|Ke + 21 L.dH?~? e + 4+/H3|K|log(4H|K|log (1) /9).
kel

With all lemmas stated above, we can show Cert-LSVI-UCB achieves constant step-
wise decision error. The following lemma gives a sufficient condition that G. defined in

Definition [5.9.10] is satisfied.

Now, we are ready to prove Lemma [5.9.12

Proof of Lemma[5.9.13. We focus on the case where the good event G; N Go N G. occurs.
By the union bound statement over Lemma [5.9.4] and Lemma [5.9.28, and Lemma [5.9.17]
this good event happens with a probability of at least 1 — 30 and with the condition that
e = Q(CVdH? log*(dH(™)). W.lo.g, consider K5, for some h e [H] and & = 27! where [ > 0
is an integer. On the one hand, we have

2(Vi(sh) = Vi () = K5 e (5.9.16)

keks,

On the other hand, Lemma [5.9.29 gives

D (Vir(sh) = Vi (sh)) < 0.49|K5 e + 2" L.dH?y} ™

keks,

+ 4y /9K log (4H IG5 | og (1) /6). (5.9.17)

Combining (5.9.16)) and ((5.9.17)) gives

0,51k e < 27 LedH?3 e + 4/ HP|KC | log(4H| K log(=1)/9).

Plugging the value of v,_, we have

0.51]K¢|e < 222 L.(L. + log(2°dH))*d* H*s* 1og(16 L.d/§)

+ 3K log (4H] K5 log (1) /8). (5.9.18)
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According to Lemma [5.9.40] (5.9.18]) implies

IKs| < O(Lo(L. + log(dH))?d* H*s 2 log(L.d) log(d~*)1),

where ¢ refers to a polynomial of loglog(dHe16~1). With the definition of L., we conclude
that

K5 | < O(d*H*e?log* (dHe ") log(6)1).

5.9.2.9 Proof of Lemma [5.9.13

Proof of Lemma[5.9.13. From the definition of suboptimality gap, we have

A]fz = Vh*<si) - [Bth*H](SZﬂTﬁ(Sﬁ)) < Vh*(sﬁ) [Bhvh+1](3;€w7ri]i(sh)> Vi (Sh) VhWk(Sﬁ)-
(5.9.19)

According to the assumption,
K
C1 | Gy Cy | Gy
D v ez e < (T e (T )
holds for every e > e, with probability at least 1 — 4, replacing the V;*(s%) — V™" (sF) with
its lower bound A¥ yields for every & > &,

iﬂ[A’;>s}<<ﬁ+%)bg“(%+%>.

k=1

In addition, according to the definition of minimal suboptimality gap A in Definition [5.3.3]
we have AF is either 0 or no less than A. Since for any = € {0} u [A, H], it holds that
r<A-1[x = Al + Sﬁ 1[x = ¢] de, we decompose the total suboptimality incurred in stage
h by

iAZéi(A-ﬂ[A§>A]+JH1[A§>5]d5>

k=1 k=1 A
K H K

a1 [A’; > A] + f M1 [A’; > e] de. (5.9.20)
k=1 A k=1
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In case that g < A, the first term in (5.9.20)) can be bounded by

i BRENE A(il + ZZ) log® (% + %) (5.9.21)
We can further bound the second term by
f v1 (s5) — \/f’“(slf)>s]de<f <%+S22>10 (%+%) de
<l (3 + ) (g +3)

< (Crlog H + Cy/A) - polylog(Cy, Cy, A™Y). (5.9.22)

Plugging (5.9.21)) and (5.9.22)) into (5.9.20]) with summation over h € [H], we conclude that

the total suboptimality incurred in stage h is bounded by
K
MN A< H - (Cr+ Co/A+ Crlog H + Cy/A) - polylog(Cy, Co, A7)

< O(CLH/A + C,H).

5.9.2.10 Proof of Lemma [5.9.14]

We first introduce the Freedman inequality:

Lemma 5.9.30 (Freedman inequality, Cesa-Bianchi and Lugosi (2006)). Let {n*}, be a
martingale difference sequence with respect to a filtration {F*}X | satisfying |n*| < M for
some constant M > 0 and 7* is F**l-measurable with |E[n*|F*]| = 0. Then for some fixed

ke |[K],a>0and v > 0, we have

2

Pr(Zn aZVarn|J—"T]<v)\e p<ﬁ2}w/3>.

We are now ready to present the proof of Lemma [5.9.14]

213



Proof of Lemma[5.9.1]. For a given policy m and any state s, € S, we have

Vi (sn) = Vi (sn)
= (V¥ (sn) = [BRVi 11 (sno ma(sn)) + ([BaViia] (s, mn(sn)) — [BaViy 1 (sn, ma(sn)))
= Ap(sn, mr(sn)) + [Pa(Viia — Vi) (sn, mn(sn),

where the second equality is given by the definition of suboptimality gap Ay(-,-) in Def-
inition [5.3.3] Taking expectation on both sides with respect to the randomness of state-

transition and taking telescoping sum over all h € [H]| gives

V() = V(o) = E[éwm(sm}

Hk—1

where sj,.1 ~ Py (-|sn, mn(sn)). Let the filtration list be F* = {{sz, 7 S

} , we have

E[iAi(ﬂ} =V (sh) = Vi ().

Denote random variable n* = (Vj*(s}) — V7 (31)) — ST AE We can see 7 is Fiii-

measurable with [E[n*|F*]| = 0. Furthermore, for the variance of n*, we have

Var[n®|F*] < [(Z Ak> ‘.7-"]"}
< HQE[Z Azjf’f]
:HQ(Vl*(Sl) Vi ( 1))

where the first inequality holds due to Var[X] < E[(X — ¢)?] for any fixed ¢, the second
inequality follows 0 < AF < H. As a result, the total variance of the random variables {n*}

can be bounded by

N

K
> Var[n*| F¥] < Z (Vi#(s%) = Vi (%)) = H?Regret(K).

k=1 k=1
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K K
= Pr [( Z nk> > F(Regret(K)), 1 < Regret(K Z r[n*| F*] < H2Regret(K)]

k=1 k=1

K
(Z nk> F(Regret(K)), 2" < Regret(K) < 2,

K
Z Var[n*|F¥] < HZRegret(K)]

=1

i ) i 1 F < 2Z'H2]

—F( 2Z >
21 H?2 + 2F(29)H?/3

e

(5.9.23)

2P (
(

where the last inequality follows Lemma [5.9.30, Plugging F(z) = +/2xH?log(xz/0) +
H?log(x/d) back into (5.9.23)) yields

Pr [( Z nk> > +/2Regret(K)H?log(Regret(K)/6) + H*log(Regret(K)/6),1 < Regret(K)]

k=1

< iex —log(2/6)) 25/2’ = 0.
i=1

Therefore, whenever Regret(K) > 1, with probability at least 1 — §, we have

Z n* < A/2Regret(K)H?log(Regret(K)/0) + H*log(Regret(K)/d).

Combining with the fact that Regret(K) = S n* + S S AF we have

Regret(K Z Z AF + \/2Regret(K)H? log(Regret(K) /) + H?log(Regret(K)/d),

=1h=1

whenever Regret(K) > 1. Since z < a + vbx implies < 2a + 2b, absorbing the case
Regret(K) < 1 into the O(-) factor yields

K H
Regret(K <Z Z AF + H?log 1/5))

k=1h=1
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5.9.3 Proof of Lemmas in Section [5.9.2

In this section, we prove lemmas outlined in Section [5.9.2 Any proofs not included in this

section are deferred to Section [5.9.4]

5.9.3.1 Proof of Lemma [5.9.15

We first introduce the claim from |Vial et al.| (2022)) controlling the rounding error:

Lemma 5.9.31 (Claim 1, Vial et al.|2022, restate). For any (k,h,l,s,a) € [K]x[H]xN* x
S x A, we have

b(s.a) (why — W) < Vs, [[d(s,a) s )1 — |6(s, a)lge| < Ve,
where £ is used to quantify the vector wj ; and inverse matrix (U}, ;)"
Proof of Lemma|5.9.15 From Lemma we have
Kqﬁ(s, a), W;’;l> — <q§(s, a), v~v,’jl>‘ < Vdk; <0.01-274

where the first inequality is due to Lemma [5.9.31], and the second inequality is valid due to

;= 0.01 - 274, Similarly, we have

(s, @)l — (s, @)l g 1| < Vi <0127

5.9.3.2 Proof of Lemma [5.9.16

Proof of Lemma[5.9.16, First, both Ij(s;) = and f;(s;) = 1 held for any 7 € Cy;. This
implies that the criteria for either Line [7] or Line [J holds as [ = [ (s}). For 7 that satisfies
the first criterion, we have [} (s}) > L,. Note that L, = max{[log,(7/d)],0}, so this only

happens for 7 < 4!d. For other 7 that satisfies the second criterion, we have that
|67 Iz > 6711 — [187loz — [6Flog 1] > 27— 01277 = 0927,
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where the first inequality holds due to the triangle inequality. In the second inequality, the

first term HQ’)ZHG;,;I is bounded by criterion in Line |§| while the second term ’Hq&ﬂ\ﬁ;?l -

Hfﬁﬁ”(uh)—l‘ follows from Lemma |5.9.15,

Arrange elements of C,’f’l in ascending order as {7;};. According to the above reasoning,
the number of elements 7 € Cj;; that | |ur )+ = 0.9- 271" s at least |CF | — 4'd. This
gives

ch
>, min{L, [ lfuy -1} = (0.9- 27712 (ICy,| — 4'd). (5.9.24)

i=1
On the other hand, Lemma [2.8.15| upper bounds the LHS of (5.9.24) by

ck |
Z min{1, |7 oy -1} < 2dIn (1 + |G, 1/ (dN)). (5.9.25)
i=1

Combining ([5.9.24)) and (5.9.25|) gives

0.81-47"y2(|Cx | — 4'd) < 2d1In (1 + [CF | /(16d)). (5.9.26)

From algebra analysis in Lemma [5.9.37 a necessary condition for (5.9.26) is |CF | < 16l
41y2d. O

5.9.3.3 Proof of Lemma

We first present a claim from |[Vial et al.[(2022)) controlling the infinite norm of coefficient w

Lemma 5.9.32 (Claim 10, Vial et al.2022). For any (k,h,l) € [K] x [H] x N, we have
HW;CLJHOO HWth2 (2ldH)

Proof of Lemma[5.9.17, Denote X, as the set of all W ¢ and Jy as the set of all ﬁﬁzl From

the definition of Vy,, we have that [V}| < I, (]| - |Yel). From Lemma [5.9.32] we have

Wy oo < (2°dH)*. Note that wj , € R, we have the number of different W} , controlled by
Xy < (1+2-(2%dH)* k) < (2- (28dH)* - 26744q)d < 2(T+80d g>d prad
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In addition, we have H(Uﬁ,l)_luoo < 1/A =1/16. So we can bound the number of fjizl by
|yé| < (1 +2- 1/(16/10) (2 22+4Zd> <2 3+4g)d2dd2

As a result, we can conclude that

l l
|V}]:,l| H |X€ |yz|) < H (2(7+85)dd5dH4d . 2(3+4e)d2dd2) < (222d5H4)12d2.
=1

(=1

5.9.3.4 Proof of Lemma [5.9.18

Proof of Lemma[5.9.18 According to Proposition [5.3.2] there exists a parameter w; such
that for any (s,a) € S x A, it holds that [(¢(s,a), ws) — [IB%h\/}th](s, a)| < 2H( . Denoting
= (&7, Wiy — [BiVi1](sh, af) and e = (Vi1 (s.0) — [BaVi1](sh, af)), we have

Uiy =wa) = 3 ¢i(ri + Vi) = (AT+ Y i(e0) )w

TEC:;I TEC’;;l
= —Aw;, + i (17 + VE(sher) — (&h W)
h w\"h h+1\Sh41 hs Wh
TECZJI
ik

= —Awy, + 2 Py, (7"2 + Vi1 (Shi1) — [Bhvhﬂ Sh ) ) Z P
rec}’jjl TGC,E,ZI

= —AW}L + Z ¢h€h + Z ¢hnh7 (5927)
Tec’}f,l ! TEC}I:,Z !

where the first equality holds due to the definition of U}, ;, wy ;, the second equality holds by
rearranging the terms, the third equality holds according the definition of 77, and the last

equality holds from the relationship that [IB%th"”H] (sp,,ap) =17+ [Ph‘/}h’fﬂ](s;, a},). Therefore,
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for any vector ¢ € R?, it holds that
’<¢, WfL,l - Wh>‘ = |¢T (Ui,l)_lUﬁ,z(Wﬁ,l - Wh)!

o (UE) (—Awh+ . b+ D cmeZ)

k—1 k—1
TECh’l TECh’l

— AW+ D BrEn+ D, bR

k—1 k—1
rech’l rech,l

. (5.9.28)

(Ut

< @l wt )

where the second equality follows (5.9.27) and the inequality holds from Cauchy-Schwarz

inequality (i.e., |x"Uy| < |x|lu]|y|u). From the triangle inequality, we have

H—AWML N et Y. e

k—1 k—1
TGChJ TECh’l

(Ui D~!

> ieh

k—1
TECh’l

+
(U}}iyl)_l

> o

k—1
TEChyl

(5.9.29)

< >\HW}L H(Ulﬁ,l)71 +
(Uﬁyl)_l

There are three terms which we will bound respectively. For the first term, we have
)\HWhH(Uﬁl)—l < 2VdAH < 0.17;, (5.9.30)

where the first inequality holds due to the fact that |wy |, < 2H+/d as of Proposition m
and the fact that U}, = AL Under the good event G; and Lemma W, the second term
can be bounded by the following:

>, ieh

k—1
Tech‘l

< Lly. (5.9.31)
(Uﬁyl)_l

And the last term can be bounded by:

> o < 2H(4/|CF,| < 2H(AJ161 - Ayd = 8VIdH - 21y, (5.9.32)

k—1 E y—1
TECh’l (Uh,l)

where the first inequality is due to Lemma [£.9.10] and the second inequality follows from

Lemma [5.9.16] Plugging (5.9.29)), (5.9.30), (5.9.31)), and (5.9.32)) into (5.9.28) gives

Kb, Wity = wi)| < (129 + 8VIdH - 29C) | wt -+ (5.9.33)
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So for any (s,a) € S x A, we have

|QF i(s.a) — [BLVEL (s, )] = [((s,a), WE > — By, ](s,0)|
< |<¢<S7 a), V’?/fl’l - Wﬁ,l>‘ + ’<¢(87 CL), WfL,l - Wh>| + |<¢<S7 CL), Wh> - [Bh‘/}hk+1] (87 CL)‘

< 0.01- 27" + (1.2 4+ 8VIdH - 2'Q)qp(s, @)y -+ + 2HC. (5.9.34)

where the first inequality holds from the triangle inequality, and there are three terms in

the second inequality which we will bound them respectively: the first term is given by
Lemma [5.9.15] the second term follows (5.9.33|), and the third term holds from the definition

of wy,. O

5.9.3.5 Proof of Lemma [5.9.19

Proof of Lemma[5.9.19. We prove by doing case analysis. In case that action a; € Aj, (s),

we can assign a1 = a; € Ay, (s) so that
(B Vit 1] (5. a0) = [BaVii)(s, i) = 0. (5.9.35)

On the other hand, in the case that a; ¢ A}, (s), the action q, is eliminated with Qj ,(s, a;) <

Viii(s) —4-27". Note in this case, there exists ;41 = 7 (s) € Ay, (s) such that
Qhi(s,a) +4-270 < Vi¥i(s) = Q (s, a141). (5.9.36)

According to Lemma [5.9.6| and the condition that [ < Lg, we have that empirical state-value

function Qj ,(s,-) is a good estimation for [IB%hf}th](s, -) on actions a;, a;41 € AF(s) under

event Gy:
BV (s, a0) — QF y(s.ar)] <2 27" + xA/LoC (5.9.37)
[BAViE (s, a0i1) — QF (s, ar1)| < 2270+ x\/LoC. (5.9.38)

220



Moreover,

[BLVi 1 1(s, @) — [BaVE I(s, aren)
= ([BLVE (s, 1) — QF (5, 1))
+ (@5, @) = Qs @) + (QRa(s a) — BV (s, i)
<2 (227 + xy/Lo¢) —4- 27
= 2x\/LoC. (5.9.39)

where the first inequality is derived from combining (5.9.36)), (5.9.37), and (5.9.38). So from

(5-9:35) and (5.9.39), we have that [B,V/¥,,](s, @) — [BaV/,](s,ai11) < 2xv/LoC holds in
both cases. O

5.9.3.6 Proof of Lemma [5.9.20]

Proof of Lemma |5.9.20L. We prove by induction on [. The induction basis holds at | =
0 by selecting a; = argmaxaeA[IB%thkH](s,a) € A which ensures maxaeA[Bh‘/}th](s,a) -
[IB%hXA/th](s, a;) = 0. Additionally, if the induction hypothesis holds for I — 1, we have that

max[By Vil (s, @) — [BrVili 1(s, ae)

= (max[B, V1 1(s,0) = [BaVi'l(s, ) + ([BaViial(s ar) = [BrVii](s, aii))

< 2(1 = 1)x/ LoC + 2x+/ LoC

=2l XV LOC:

where the first inequality term is due to combining induction hypothesis with Lemma [5.9.19]

We can then reach desired statement holds for all [ in the range by induction. O
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5.9.3.7 Proof of Lemma [5.9.27]

Proof of Lemma[5.9.21, According to Lemma [5.9.20} there exists some action a; € Af (s)
that

félea}[BthH](S a) — [BrViE,,1(s,a1) < 2(1 — 1)xv/LoC. (5.9.40)

Moreover, we have

BV 1(s, @) — Vifu(s) < BrViiil(s, ) = Qf (s, 1) <227+ xa/Lo¢,  (5.9.41)

where the first inequality comes from the definition V;\,(s) = max,, AE Qj (s, a) and the

second inequality holds according to Lemma with [ < L. Adding up (5.9.40) and

(5.9.41)) leads to
max[By Vi, ] (s, @) = Vil < 227+ (2 = Dxv/Loc.
a€e ’

This completes the proof. n

5.9.3.8 Proof of Lemma [5.9.22]

Proof of Lemma[5.9.23. The statement holds by simply checking:

Vhlfz(s) - fg}éaj([Bh‘A/hkﬂ](sa a) < th,l(s) - [Bh‘/}hk-i-l](sﬂri]i,l(s))
= QZ,Z(Saﬂ-ili,l(S)) - [Bh‘/}hk-&-l](sa W}E,Z(S))

<2270+ v/ LoC,

where the first inequality holds from max,ec4 [Bhl//\'hkﬂ](s, a) = [Bth "1 1(s, 7 (s)), the equal-
ity is from the definition V}",(s) = Qj ,(s, 7 ,(s)), and the last inequality holds according to
Lemma [5.9.6| with the condition [ < L. O
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5.9.3.9 Proof of Lemma [5.9.23

Proof of Lemma |5.9.25. The statement holds by checking
min {V,(s) +3- 27" Vhl 1(s)} — Tglea}[Bh‘A/hkﬂ](S» a)
= min{Vfy(s) + 32 ~ max[B, T, )5, 0)
> min{3 27 — (227 + (20— 1)xy/LoC))
=27 — (2 = )xv/ Lo,

where the first equality holds due to ‘A/h’fl(s) = minézl{Vh’fZ(s) + 3 - 27}, the inequality holds
according to Lemma [5.9.21], and the last equality holds since 27! decreases as [ increases. [

5.9.3.10 Proof of Lemma [5.9.24]

Proof of Lemma[5.9.2/. The statement holds by checking

maX[BthkH](S, a) — max {th,z(s) -3 2_l7 th,z—1(3)}

aceA

! _
= maX[IB%thH](s a) — I?Bf({vh’fe(s) ~3.279

acA
! ~
= rnin { maX[IB%thkH](s, a) — Vi (s) +3-27"}
r;nn{ (2-27"+ xv/Lo¢) +3-27%
=27 /I,

where the first equality holds due to the design of Algorithm [13| which would guarantee that

lv/h’fl(s) = maxj_,{V}5,(s) — 3-27*}, the inequality holds according to Lemma [5.9.22, and the

last equality holds since 27 decreases as [ increases. O

5.9.3.11 Proof of Lemma [5.9.25]

We prove Lemma [5.9.25[in this subsection. The first lemma which we introduce establishes

an upper bound on the underestimation of the state value function XA/hk for every action and
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every state through a categorised discussion based on whether Algorithm [I3] reaches phase
L. for state s. Specifically, if the process does not reach phase L., we can substantiate the
statement by applying Lemma to phase [F(s) — 1. Conversely, if the process reaches
phase L., the statement can be proven by applying Lemma to phase L..

Lemma 5.9.33. Under event G; and for all € > 0 that G. is satisfied, for any (k,h,s) €
[K] x [H] xS,

m%[Bthk+1](s, a) — VF(s) < 0.07¢/H.

ae

Now we are ready to prove Lemma [5.9.25| by induction.

Proof of Lemma[5.9.25. We prove by induction on stage h € [H]. It is sufficient to show for
any h e [H],s€ S,

Vi (s) — ViF(s) <0.07e - (H + 1 — h)/H. (5.9.42)
We use induction on h from H + 1 to 1 to prove the statement. The induction basis holds

from the definition that Vjj ,(s) = 1% +1(s) = 0. Assume the induction hypothesis ((5.9.42))
holds for h + 1, we have

mas(B V7, 1](s,a) — max[BaVE (s, 0) < maxBu(Viry — Vi)](s, )

< max (Vi (s') = Vi ()
<0.07¢e-(H — h)/H. (5.9.43)
So for level A, it holds that
Vi (s) — th(s)
= (max[By Vi, 1(s, @) — max[BuVil, (s, 0)) + (max[B Vi ](s,a) — Vi(s)

<0.07¢ - (H — h)/H + 0.07e/H < 0.07= - (H + 1 — h)/H,

where the first inequality holds by combining (5.9.43|) with Lemma |5.9.33] This proves the
induction statement ([5.9.42)) for h, which leads to the desired statement. O
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5.9.3.12 Proof of Lemma [5.9.26

We prove Lemma [5.9.26] in this subsection, the first lemma we use establishes an upper
bound on the overestimation of the state value function ‘A/h"“‘ for the executed policy 7F(s)

across all states.
Lemma 5.9.34. Under event G; and for all € > 0 that G. is satisfied, for any (k,h,s) €
[K] x [H] xS,

m%i([]BthkH](s, a) — [BuVF, 1(s, k() < 16 - 275 4+ 0.10¢/H.
ae

Then the following lemma establishes an upper bound on the decision error induced by
the arm-elimination process with respect to the state-action value function given by the

ground-truth transform.

Lemma 5.9.35. Under event G; and for all ¢ > 0 that G. is satisfied, for any (k,h,s) €
[K] x [H] xS,

VE(s) — r&%[ﬁhﬁh’“ﬂ](s, a) <10 -27%%) 4+ 0.06¢/H.
Proof of Lemma |5.9.26. We can directly reach the desired result by taking summation on
Lemma [5.9.34 and Lemma [5.9.35
Vii(s) — [Bhvhkﬂ](saﬂlﬁ(s))
< (max[B, T ) (s, a) — (BT (5. 7E(5)) + (F() — max(B, T 1 ](s. )
< (1627 +0.10¢/H) + (10 - 275 4 0.06¢/H)

= 26-27%0) +0.16¢/H.

5.9.3.13 Proof of Lemma [5.9.28]

We can prove the statement by applying a union bound to the concentration event, as given

by the Azuma-Hoeffding inequality.
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Proof of Lemma[5.9.28, Consider some fixed h € [H] and ¢ = 27! > 0. List the episodes
index k such that V;*(s¥) — V" (sk) > ¢ holds in ascending order as {7;};. Recall that

ny = []P)h(vh+1 Vh+1)](52ia7rgi(5;i)) - (VhTil(S;i+1) Vh+1( h+1))

Since the environment sample s}, , according to Py (s, ap)), ny is Fpi,-measurable with
E[nh, Fyi] = 0. Since both 0 < VhT,iH(S;Tf}H) < H and 0 < V77, (spi,,) < H hold, we have
< 2H. According to Lemma [2.8.16| over filtration

LTl c Tl c c Tl c T2 c T2 c c T2 c c T c
h )l-‘rl T H h h+1 e H e h/l e

for some fixed S = |K5|, the good event that

K5l H

3 Z i < 2H/2H S 10g(RHS?/5) = 4/ H3|KC5 | log(4H || log(= ) /0)

i=1 h'=

happens with probability at least 1 — §/(4HS?%1?). By the union bound statement over all
(h,S,1) € [H] x [K] x NT, we have the bad event happens with probability at most

H K o

H 0
§]<};;Z r[By(h, 27 \;Z 2, 4H82l2\5’

where the last inequality holds from Y, _, n~? = 7®/6, which reach the desired statement. [J

5.9.3.14 Proof of Lemma [5.9.29]

We first provide the following instantaneous regret upper bound by combining Lemma [5.9.25

and Lemma [5.9.26]

Lemma 5.9.36. Under event G; and for all ¢ > 0 that G. is satisfied, for any (k,h) €
[K] x [H],

H H
Vi(sh) — Vi (sf) < 0.23 +26 ) 27wlon) + 3 gl
h'=h h'=h
> 7k > ok .
where 1y = [P (Vi — Vi) (s, 7 (sh)) — (th+1(51fcb+1) - Vh+1($§+1)> is a Fjy, -measurable

random variable that E[nf|FF] = 0 and |n}| < H
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Together with Lemma [5.9.9]and the definition of Gy, we can provide an upper bound for

arbitrary subsets.

Proof of Lemma[5.9.29 Taking summation on result given by Lemma [5.9.30] to all k£ € K

gives

H H
D (Vir(sh) = Vi (sh) < 0-23[KCle +26 ) 7 27wE) 37 3 gl (5.9.44)

kek kel h'=h kel h'=h

We can bound the second term according to Lemma [5.9.9)

26" Z 27 < 0.26|/Cle + 2V L.dH?2 71 (5.9.45)
kel h'=

Under event Gs, the third term satisfies that

> Z nk, < 4y/H3|K|log(4H|K|log(s~1)/d). (5.9.46)

keK h/=

Plugging (5.9.45)) and ((5.9.46|) into (5.9.44) gives

D (Vir(sh) = VT “(s5)) < 0.49|Ke + 2 L.dH?y? et + 44/ H?|K|log(4H|K|log(c71)/9).
kelC

(5.9.47)
0

5.9.4 Proof of Lemmas in Section [5.9.3l
5.9.4.1 Proof of Lemma [5.9.33
Proof of Lemma[5.9.33, We start the proof by discussing different cases. First, if I¥(s) < L.,
we have [¥(s) — 1 < min{L., I}(s) — 1}, according to the definition of Vh’fl(s),
max (BT, (s, 0) — V¥ (5) = maax[Bu T (5, 0) — Vh’flk(s),1<s>

aceA acA

< —27BE-D L 2(15(s) — 1)xA/LeC
<0+ 2yL¢

< 0.02¢/H, (5.9.48)
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where the first inequality holds from Lemma [5.9.23] and the last inequality holds due to
xL15¢ <27% < 0.01e/H given by G..

On the other hand, when [¥(s) > L., we have L. < min{L,,¥(s) — 1} and thus
ViE(s) = VE, (s) = VF, (s) —3- 271 (5.9.49)

where the first inequality is due to Lemma [5.9.2] and the second inequality holds due to the
definition of WL (s). Therefore, L. < min{L.,I¥(s) — 1} yields

m%[Bthkﬂ](Sa a) — ‘A/hk(s) S me}i([Bh‘A/th](s’ a) = Viip (s) +3-27"%
ae e

ae

<5275 4+ (2L, — 1)xv/LC
< 0.05¢/H + 0.02¢/H = 0.07¢/H, (5.9.50)

where the first inequality is given by ([5.9.49)), the second inequality is given by Lemma|5.9.21}
and the last inequality holds from YL!?¢ < 271 < 0.01le/H given by G.. So considering
both (5.9.48|) and ([5.9.50|), we have the first statement

majc[IBﬁthH](s a) — ViF(s) < 0.07¢/H
ae
always holds under event G;. O

5.9.4.2 Proof of Lemma [5.9.34]

We prove Lemma |5.9.34| by applying Lemma, on phase min{L., [¥(s) — 1}, in this sub-

section.

Proof of Lemma [5.9.3 Note we have 7% i Gs 1(s) € Al I Gs (s) according to the definition of

A} 141(s). This implies m;(s) € .Ah (s ( ) during the elimination process.
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If I¥(s) < L., we have I}(s) — 1 < min{L_, [F(s) — 1}. Thus,

m%[Bth’“H](s,a) — [BLVE (s, mh(s)) < 8- 277D 9l (s) - xa/LeC
ae
<1627 42y L15¢

<16-27%¢) 4 0.02¢/H, (5.9.51)

where the first inequality follows from Lemma [5.9.7| with 7f(s) € Ah e ( ) and the last

inequality holds due to xL!°¢ < 0.01e/H given by G..
Otherwise, we have L. < min{L.,¥(s) — 1}. In this case, we have
max[B, 0%, 1](s. @) — By D )(s, () < 8- 270 + 2LL%C

< 0.08¢/H + 0.02¢/H = 0.10c/H,  (5.9.52)

where the first inequality follows from Lemma [5.9.7| with 75 (s) € 'Ahlk \(s) = Ap 1 (s)

according to the elimination routine and the final inequality holds due to YL!°¢ < 27 <
0.01e/H given by G.. So by combining (5.9.51)) and (5.9.52)), we have the desired statement
that

max[B, V", | ](s,a) — [BaV}F, ](s, 7F(s)) < 16 - 27 4 0.10¢/H.

aceA

5.9.4.3 Proof of Lemma [5.9.35|

We prove Lemma 5.9.35|in this section by applying Lemmal5.9.22/on phase min{L., I}(s)—1}.

Proof of Lemma[5.9.35 1f I¥(s) < L., we have I¥(s) — 1 < min{L,,I¥(s) — 1}. Firstly, we

have

(5)-1(8) < Vhlflg(s)_l(s) +3. 270, (5.9.53)
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where the first inequality is given by Lemma [5.9.2] and the second inequality follows from

the definition of thzk ,(s). This leads to

th(s) I&%[Bhv}wl](s a) (Vh ( ) Vhlflg(s)_1(5)> + (Vh]fzﬁ(s)_1(5) - I{Lleaj{[Bthk+1](57 a))
<3 9=(()=1) 4 9. 9=Wi(s)=-1) 4 /L
<10-27%0) 4 0.01¢/H, (5.9.54)
where in the second inequality, the first term is given by ([5.9.53) and the second term holds

according to Lemma [5.9.22] and the third inequality holds from x+/L.( < 0.01e/H given by
Ge.

Otherwise, we have L. < min{L.,[}(s) — 1}, this leads to

th(s) rélgf[Bth-&-l](S a) < (th(s) - VhlfLE(S)) + (thng(S) - I&%[Bhvh’:l](sva))
<3-271= 4 2.970 4 \\/LL

< 0.03¢/H + 0.02¢/H + 0.01¢/H = 0.06¢/H, (5.9.55)

where in the second inequality, the first term is given by the definition of \A/hk (s) and the
second term holds according to Lemma[5.9.22] and the third inequality holds from yL!-5¢ <
27k < 0.01e/H given by G.. Combining (5.9.54) and (5.9.55)) gives the desired statement

ViF(s) — mafi([lﬁ%h‘/}hkﬂ](s, a) < 10-27%¢) 4 0.06¢/H.
ae

5.9.4.4 Proof of Lemma [5.9.36

Proof of Lemma[5.9.36, According to the definition in which V™" (sf) = [B, V5, ] (sk, 7k (sF))

and 77;’? + []P)h(vthrl Vh+1)](sha W}’i(sz)) - (thﬂ(szH) - Vhﬂfl(siﬂ)) We can write

= ok E = ok
th(sﬁ) -V (Si) = (th(Sh) [Bhvhﬂ](siﬂrlii(sh))) + 77h (thﬂ(siﬂ) - Vh+1(52+1))'
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By a telescoping statement from / to H with the final terminal value V}; ()= V;}il(-) =0,

we reach

~ i
th(SZ) -V (3’2) =

M=

(VE(sh) — [BrVie 1k, i (sh)) Z%/ (5.9.56)

>
Il

'=h

As a result, we can bound the desired term by

ViE(sh) — Vi (sB) < VE(sE) — V¥ (sk) + 0.07e

H . . H

= > (Vi (sh) = BAVEA (s, 7 (sh)) + D) mfy +0.07e
H

'=h h'=h

>

H
Z 26 - 27w W) 1+ 0.16e/H) + > nf +0.07¢
'=h h'=h

—0235+2622 w +Znh/

h=h b=
where the first inequality is given by Lemma [5.9.25| the first equality is given by ((5.9.56)),
and the final inequality is given by Lemma [5.9.26 O]

5.9.5 Technical Numerical Lemmas
Lemma 5.9.37. If [C} || < 4!d + 2.5 - 4!42d1In (1 + |Cf,|/(16d)), then |CF | < 161 - 4'y7d.
Proof. Denote ¢ = |Cy | /(I - 4'47d). We have that
cl-4'y2d < 4'd + 2.5 - 4'2dIn(1 + cl - 4'47/16).
Dividing both sides by 4!42d, we have that

cl < 1/9% +2.5In(1 + cl - 4'47/16)

< 1/47 +2.5In(4c - 5'47/16) < 1/47 + 4.1 + 2.5In(c).
Since [ > 1 and 7; > 1, we can further conclude that

c<51+25In(c) <5.1+2.5(1+c/6).
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The necessary condition for the above inequality is ¢ < 16, which proves the desired state-

ment. O

Lemma 5.9.38. For any [ > 1, vy,1/v < 1.4.

Proof. Firstly, we have that

[+ 22+ log(l + 1) <l+22+0.2l+2_

< 1.2, 5.9.57
[ +20 + log(l) [+ 20 ( )

where the first inequality holds due to log(z + 1) < 0.2z + 2. In addition, we have

4 +log(l + 1) _ A+ log(l) +1
44+1og(l) —  4-+log(l)

< 1.25, (5.9.58)

where the first inequality holds due to log(z + 1) < log(z) + 1. As a result, we can reach the

desired statement according to

Yo B+ 14120 + log((l + 1)d)|)dH \/log(16(l + 1)dH /5)
o 5(1 + [20 + log(ld)|)dH +/log (161dH /5)

d)  |log(l+ 1)+ log(16dH /o)
log (1) + log(16dH /)

_ [ +22+log(l+ 1)+ log
[ 4+ 20 + log(l) + log(d

~— | —

_ [+ 22+ log(l+ 1) log(l + 1)

[ + 20 + log(1) log(1)
< 1.2v1.25
<14,
where the third inequality holds from plugging both (5.9.57)) and (5.9.58)). n

Lemma 5.9.39.

\/ 2dIn(1 + 1 - 492) + 2In(I2H (22dS HY) 5 /5) < v,
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Proof. By calculation, we have that

H\/2d1n(1 +1-492) + an(l2H(222d6H4)lid2/5)

< Hy/2dIn(1 + 140 14203) + Hy 1212 2 In(241dH /5)

<1 dHA/2In(241dH /§) + 1, dH~/121n(241dH /5)
< 5l+dH\/log(24fyl+ldH/(5)

=M, -

Lemma 5.9.40. If some constant ¢, co > 0 that

IKs| < ey Lo(Le + log(dH))?*d* H*e?log(L.d/§) + 5_1\/02H3|IC;\ log(H |5 | log(e71)/9).
Then, there exists c3 > 0 such that
|K¢| < esLo(Le + log(dH))*d® H*e*log(L.d) log(6 "),
where ¢ is a polynomial of loglog(L.dHd5™1).

Proof. Let x = |K5|/log(|K5]). We have that

z < ¢ Lo(L. + log(dH))?d® H*« 2 log(L.d/§) + e~ *+/co H3x log(H log(¢71)/d).
Since & < a 4+ Vbx implies © < 2a + 2b, so the above inequality implies
x < 2c1L.(L. + log(dH))*d* H*e?log(L.d/§) + 2co H*c?log(H log(™1) /).

Moreover, since y/log(y) < a implies y < 2aloga, we can conclude that there exists c3 > 0

that
|K:| < esLo(Le + log(dH))*d® H*e *log(L.d) log(6 "),

where ¢ is a polynomial of loglog(L.dHe=1671). O
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CHAPTER 6

Conclusions and Future Directions

This dissertation addressed several key concerns in reinforcement learning, including unsu-
pervised exploration in the face of the uncertainty of the environment and model robustness in
the face of the uncertainty of the function approximation, from the perspective of theoretical
analysis. Several practical algorithms were also proposed to achieve competitive performance
with theoretical guarantees. In particular, in the first part of this dissertation, we analyzed
reward-free exploration with linear function approximations then extended the analysis to
general function approximations. We affirmatively answered the question: How to explore
the environment without human supervision by building the connection between reward-free
exploration with unsupervised reinforcement learning from both theoretical and empirical
perspectives. In the second part of this dissertation, we discussed model misspecification
for decision making systems. We answered the question by providing a theoretical threshold
showing How large a model misspecification can be tolerated in order to make good decisions.
We also proposed algorithms in the context of misspecified linear bandits and reinforcement
learning. All of the proposed algorithms will provably only suffer from finite suboptimality
over infinite runs, without additional prior assumptions. To the best of our knowledge, these

are the first constant regret results in the literature.

This dissertation also suggests several open questions for future research. In particular,
the first part of this dissertation assumes that the reward function is provided as an oracle
during the planning phase. However, learning the reward function can be challenging in

practice. One might ask, How would current reward-free exploration methods integrate with
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reward learning processes? For example, it would be valuable to investigate how the reward
learning process, such as fine-tuning (Laskin et al., 2020), RL with human feedback (Peng
et al., 2023; |Christiano et al |2017; Rafailov et al., [2024)), could affect the planning phase in
reward-free exploration. In the second part of this thesis, we have demonstrated a minimax-
optimal separation between model misspecification and the suboptimality gap. However,
several open questions remain unresolved in this context. First, there is a log |D| gap between
the positive and negative results (Lattimore et al) 2020). In RL, this translates into the
difference between misspecifications in the | - |ryv norm and the | - ||, norm, as used in Du
et al. (2019), which can become significant as the number of states increases. Second, the
current multi-phase estimation approach is challenging to implement in practice and suffers
from a large constant, although it is of the same order in 6() notation. It remains an
open question whether this gap between positive and negative results can be closed and
whether a more practical algorithm for this multi-phase estimation regime can be developed.
Such investigations would not only enhance the theoretical understanding of RL but also
enhance confidence in applying RL to critical tasks such as dynamic clinical treatments or

autonomous scientific discoveries.

In addition to the technical open questions highlighted earlier, this dissertation opens
several promising directions for future research. For instance, foundation models, such as dif-
fusion models (Ho et al., [2020; Song et al., [2020) and large language models (LLMs) (Achiam
et al., [2023; Touvron et al., 2023), have shown potential in enhancing our understanding of
linguistic and visual inputs. On one front, reinforcement learning methods are widely used
to finetune these models with online human preferences (Ouyang et al., 2022; Rafailov et al.|
2024)). These applications necessitate a thorough investigation into the robustness and effi-
ciency of these algorithms. For example, a key question to explore is whether RL methods
would exacerbate or mitigate hallucination in LLMs. Furthermore, there is considerable
potential in harnessing the capabilities of existing foundation models to better understand

environmental interactions and enhance decision-making processes (Zhao et al., [2024)). It is
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crucial to develop a framework that specifically analyzes the behavior of these models within

RL agents, moving beyond the use of general function approximators.

Lastly, while the application of RL in gaming has been well explored, extending these
methodologies to more practical fields, such as drug design (Popova et al 2018)) or policy-
making for pandemic control (Kwak et al., [2021)), could be highly beneficial. Integrating
RL with autonomous systems (Sheng et al., |2024) would significantly enhance the efficiency
of these applications. Moreover, establishing performance guarantees for the robustness,
explainability and accountability of RL agents becomes imperative, particularly in critical

domains such as healthcare, science discovery or autonomous laboratory.
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