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Phospholipid Levels at Seroconversion Are Associated
With Resolution of Persistent Islet Autoimmunity: The
Diabetes Autoimmunity Study in the Young
Patrick M. Carry,1 Lauren A. Vanderlinden,1 Randi K. Johnson,2 Teresa Buckner,1 Oliver Fiehn,4

Andrea K. Steck,3 Katerina Kechris,5 Ivana Yang,6 Tasha E. Fingerlin,1,5,7 Marian Rewers,3 and
Jill M. Norris1,3

Diabetes 2021;70:1592–1601 | https://doi.org/10.2337/db20-1251

Reversion of islet autoimmunity (IA) may point to mecha-
nisms that prevent IA progression. We followed 199
individuals who developed IA during the Diabetes Autoim-
munity Study in the Young. Untargeted metabolomics
was performed in serum samples following IA. Cox pro-
portional hazards models were used to test whether the
metabolites (2,487) predicted IA reversion: two or more
consecutive visits negative for all autoantibodies. We con-
ducted a principal components analysis (PCA) of the top
metabolites; |hazard ratio (HR) >1.25| and nominal P <

0.01. Phosphatidylcholine (16:0_18:1(9Z)) was the stron-
gest individual metabolite (HR per 1 SD 2.16, false discov-
ery rate (FDR)-adjusted P 5 0.0037). Enrichment analysis
identified four clusters (FDR P< 0.10) characterized by an
overabundance of sphingomyelin (d40:0), phosphatidyl-
choline (16:0_18:1(9Z)), phosphatidylcholine (30:0), and L-
decanoylcarnitine. Overall, 63 metabolites met the criteria
for inclusion in the PCA. PC1 (HR 1.4, P< 0.0001), PC2 (HR
0.85, P 5 0.0185), and PC4 (HR 1.28, P 5 0.0103) were as-
sociatedwith IA reversion. Given the potential influence of
diet on the metabolome, we investigated whether nu-
trients were correlated with PCs. We identified 20 nu-
trients that were correlated with the PCs (P < 0.05). Total
sugar intakewas the top nutrient. Overall, we identified an
association between phosphatidylcholine, sphingomyelin,
and carnitine levels and reversion of IA.

Type 1 diabetes (T1D) is an autoimmune disorder with
a strong underlying genetic component (1). However,
the incidence of T1D has increased (2,3) at a rate that
suggests nongenetic factors such as environmental or
lifestyle factors may play a relevant role in the patho-
genesis of the disease (4). International birth cohort
studies have yielded a long list of potential causative
risk factors related to nutrients/dietary factors (5–7),
exposure to viruses (8), and changes in body dimen-
sions (9). However, many of the risk factors have not
been consistently replicated across studies. This dem-
onstrates the need for novel methods for understand-
ing the complex etiology of T1D.

The presence of autoantibodies, termed islet autoim-
munity (IA), is the best marker of T1D risk as well as the
underlying autoimmune disease process (10). However,
progression from IA to T1D is variable. A subset of indi-
viduals with persistent IA revert to an autoantibody-nega-
tive state (11). Among 596 individuals enrolled in The
Environmental Determinants of Diabetes in the Young
(TEDDY), risk of T1D in individuals who no longer pro-
duced autoantibodies was markedly reduced relative to
risk in individuals who continued to produce autoantibod-
ies (hazard ratio [HR] 0.14, 95% CI 0.04–0.59) (11).
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Reversion of IA is appealing as a potential marker of
reduced T1D risk. Understanding mechanisms associat-
ed with reversion may help guide development of inter-
ventions that can slow or even prevent progression of
the critical islet autoimmune phase of the T1D disease
process. Previous analyses have focused on association
between reversion and nonmodifiable factors such as
demographics. Biomarkers associated with IA reversion
may provide a more complete understanding of mecha-
nisms underlying the autoimmune process and, more
importantly, may highlight modifiable risk factors. Me-
tabolites represent biomarkers of exogenous and en-
dogenous biological processes that can inform our
understanding of complex diseases (12). Previous me-
tabolomics studies in the area of T1D have focused on
early life metabolites and subsequent onset of autoim-
munity or T1D (13–18). The influence of metabolite
levels at or after seroconversion to IA has not been well
studied. Johnson et al. (19) examined metabolites at
seroconversion associated with progression to T1D in
order to develop nutrient patterns associated with pro-
gression. However, no previous studies have tested the
association between metabolite levels and reversion of
IA. The purpose of this study was to test the associa-
tion between metabolomic markers and IA reversion.
We also aimed to explore the association between me-
tabolites and nutrient intake in order to understand
potential dietary factors that influence the metabolite
patterns.

RESEARCH DESIGN AND METHODS

Study Population
Subjects were identified from the Diabetes Autoimmunity
Study in the Young (DAISY) cohort of 2,547 children at
risk, which has previously been described (20,21). A total
of 231 individuals developed IA and/or T1D between Feb-
ruary 1994 and February 2019. Radioimmunoassays were
used to test serum samples for autoantibodies to insulin
(IAA), GAD65 (GADA), and IA-2 (IA-2A). Prior to 2010,
GADA and IA-2A were tested with a combined radioassay.
The National Institute of Diabetes and Digestive and Kid-
ney Diseases harmonized assay was used to test for
GADA and IA-2A after 2010 (22). Serum samples from in-
dividuals positive for GADA, IAA, or IA-2A were tested
for zinc transporter 8 (ZnT8) autoantibodies following de-
velopment and implementation of the ZnT8 assay (23).

IA was defined as the presence of one or more auto-
antibodies on at least two consecutive visits 3–6
months apart. Autoantibody levels were then tested
every 3–6 months. Drawing from Vehik et al. (11), we
defined reversion as two or more consecutive autoanti-
body-negative visits that occur after two or more con-
secutive autoantibody-positive visits. The date of
reversion was defined as the first visit among two or
more consecutive visits where the individual tested
negative for all autoantibodies. In order to ensure that

reversion was possible in all individuals included in
the study, we queried the DAISY database to identify
all subjects who underwent autoantibody testing on
two or more consecutive visits and developed IA
(n 5 211). We excluded subjects who did not have au-
toantibody testing data available prior to the onset of
IA (n 5 12) as well as subjects missing metabolomics
data available at the onset of IA (n 5 32). Although
rare (11), reversion is possible in subjects who present
with multiple autoantibodies at the onset of IA. There-
fore, we included all individuals who developed IA and
underwent autoantibody testing during multiple con-
secutive study visits following their seroconversion
visit. The Colorado Multiple Institutional Review
Board approved all DAISY protocols (COMIRB 92-
080). Informed consent and assent, if appropriate,
were obtained from the parents/legal guardians of all
children prior to participation in any research-
related activities.

Metabolomics
The National Institutes of Health West Coast Metabolo-
mics Center at the University of California, Davis, per-
formed the metabolomics analysis in nonfasting plasma
samples, measuring untargeted hydrophilic interaction
liquid chromatography (HILIC), gas chromatography time
of flight (GCTOF), and lipid panels. The blood samples
were obtained from the first DAISY visit after the onset
of IA (i.e., at the first visit at which autoantibodies were
detected). Serum (30 mL) was extracted from frozen sam-
ples (�80�C) with custom modifications to established
protocols (24). Internal standards were added for quality
control assessments and retention time correction (25).
Following extraction, the aqueous phase was split, dried,
and resuspended in 1:1 acetonitrile:water. HILIC–quadru-
pole time of flight (QTOF) tandem mass spectrometry
(MS/MS) (26) was used to analyze one polar aliquot,
while GCTOF–mass spectrometry (MS) (27) was used to
analyze the second aliquot. CSH-QTOF MS/MS was used
to identify and quantify (relative) complex lipids and free
fatty acids (25). BinBase (28) was used to process and an-
notate the GCTOF-MS data. MS-DIAL (29) was used to
process and annotate the liquid chromatography, CSH-
QTOF-MS, and HILIC-QTOF-MS data. LipidBlast (30) and
MassBank of North America were also used to annotate
the complex lipids (https://mona.fiehnlab.ucdavis.edu/).
In the liquid chromatography data sets, MS-FLO was used
to remove erroneous peaks (31). After data were collected,
annotated, and postprocessed, they were normalized us-
ing the systematic error removal using random forest
(SERRF) algorithm (32). A high number of metabolites es-
timated to be zero in samples (>25) was considered low
abundance (n 5 2), and these samples were excluded
from analyses.

We Box-Cox transformed all metabolites that passed
the initial quality control checks. We filtered the
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transformed data based on the coefficient of variation
(CV). For each panel, we dropped metabolites if the CV
for individual metabolite was ±2 median absolute devia-
tions away from the median panel-specific CV. For the
GCTOF panel, we removed metabolites with a CV <9.51
or >27.07 (77). For the lipid panel, we removed metabo-
lites with a CV >36.32 (123). For the HILIC panel, we re-
moved metabolites with a CV >32.3 or <0.38 (144). In
order to maximize sample size, we excluded metabolites
that were missing in one or more subjects.

Nutrient Data
Diet was assessed with a validated semiquantitative food-
frequency questionnaire (FFQ) (33–35). Prior to the age
of 10 years, the FFQ is completed by the parent. After 10
years of age, adolescent subjects complete the Youth/Ado-
lescent Questionnaire (YAQ). Both instruments are used
to assess food intake during the previous calendar year. A
high level of concordance between the two instruments
has previously been observed within the DAISY popula-
tion (34). The Channing Laboratory, Harvard, MA, calcu-
lated average daily nutrient intake values based on the
dietary data reported on the FFQ and YAQ in the current
study. Nutrients were reported in accordance with the
USDA National Nutrient Database for Standard Refer-
ence. Subjects reporting unreasonable total calories
(>5,000 kcal, n 5 1) were excluded from the analysis.
The nutrient data set includes 270 nutrients with com-
plete annotation data. We excluded nutrients for the fol-
lowing reasons: nutrient not available for all subjects
(n 5 106 nutrients) and nutrient value coded as zero in
>25% of subjects (n 5 16 nutrients). We Box-Cox trans-
formed all nutrients (n 5 148) meeting the inclusion cri-
teria. We used linear regression models to adjust all
nutrients for total caloric intake and age. The age- and
calorie-adjusted nutrients (residuals from the linear mod-
els) were used in subsequent analyses.

Statistical Analysis
Metabolites that passed the filtering criteria included me-
tabolites from the HILIC (1,032 metabolites), lipid (1,163
metabolites), and GCTOF (286 metabolites) panels. Given
that individuals with IA who develop T1D are no longer
at risk for IA reversion, we modeled T1D onset as a com-
peting risk. Cause-specific Cox proportional hazards re-
gression analyses were used to test the association
between each metabolite and the hazard of reversion. In
the base (no metabolites) univariate analysis, we tested
the association between subject demographics at the on-
set of IA and hazard of reversion. The following variables
were adjusted for in subsequent models as potential con-
founding variables and/or significant precision variables:
multiple autoantibodies at the seroconversion visit, high-
risk HLA (DR3/4) genotype, non-Hispanic White
ethnicity, age at initial seroconversion, and family history
of T1D. Metabolites from all panels were standardized to

facilitate a consistent interpretation of the effect size as
the change in hazard of reversion per 1-SD increase in
metabolite levels. False discovery rate (FDR)-adjusted P
values were calculated for all individual metabolites ac-
cording to methods described by Benjamini and Hochberg
(36). Due to the overlapping nature of the untargeted
panels, FDR-adjusted P values were calculated separately
for each platform. Metabolites were considered significant
individual predictors of reversion if the FDR-adjusted P
value was <0.10. R, version 4.0.1, and SAS, version 9.4,
were used for all statistical analyses.

Metabolite Set Enrichment Analysis
We also performed an enrichment analysis using Chem-
RICH (37). This online tool developed by the Fiehn
Laboratory performs an enrichment analysis based on
chemical structural similarity and chemical ontology.
ChemRICH does not require a background database, al-
lowing for identification of novel clusters of molecules
that may not be annotated in existing databases. We in-
put effect sizes (HRs), P values, chemical names, Simpli-
fied Molecular-Input Line-Entry System (SMILES) codes,
and PubChem identifiers for all compounds with a known
InChIKey identifier (423 metabolites). Based on the broad
metabolomics coverage in our study, it was possible for
known compounds to be measured on multiple platforms.
Among duplicate InChIKeys, we selected the metabolites
with the largest effect size for enrichment. We translated
the InChIKeys into PubChem identifiers and SMILES co-
des using The Chemical Translation Service (CTS)
(https://cts.fiehnlab.ucdavis.edu/) and PubChem Identifier
Exchange Service (https://pubchem.ncbi.nlm.nih.gov/
idexchange), respectively.

Metabolite Signatures
Metabolites from the individual metabolite analysis were
considered candidates for a subsequent principal compo-
nents analysis (PCA) if the nominal P value was <0.01
and the absolute value of the HR was >1.25. A PCA was
then applied to the metabolite candidates. Elbow plots
and corresponding proportion of variance explained by
each PC were used to select PCs for subsequent analyses.

Metabolite PC and Nutrient Correlation
We tested the association between the top metabolite prin-
cipal components (PCs) significantly associated with hazard
of reversion and the nutrients (adjusted for age and calo-
ries) using multivariable linear regression models in a sub-
set of the population with complete metabolite and
nutrient data (n 5 132). In these models, each calorie- and
age-adjusted nutrient was modeled as the outcome variable
and the PCs were modeled as the explanatory variables.
Model fit was assessed based on the R2 statistic. Next, we
tested whether the top 20 nutrient candidates that were
significantly correlated with PC1 or PC2 were associated
with reversion of IA, adjusting for multiple autoantibodies
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at the seroconversion visit, high-risk HLA (DR3/4) geno-
type, non-Hispanic White ethnicity, age at initial serocon-
version, and family history of T1D. Nutrients were
considered significant individual predictors of reversion if
the FDR-adjusted P value was <0.10.

Data and Resource Availability
The data sets generated during and/or analyzed during
the current study are available from the corresponding
author upon reasonable request.

RESULTS

Metabolites and Hazard of Reversion
Among the 199 subjects (see Table 1) meeting the inclu-
sion criteria, 37% reverted to an autoantibody negative
state. With stratification by first appearing autoantibody
(Supplementary Table 1), reversion was most common
among individuals who developed an IAA autoantibody at
their first positive visit, followed by GADA, ZnT8 autoan-
tibodies, and IA-2A. Reversion was least common among
individuals who presented with multiple autoantibodies
(Table 1 and Supplementary Table 1). After adjustment
for multiple autoantibodies at the seroconversion visit,
high-risk HLA (DR3/4) genotype, non-Hispanic White
ethnicity, age at initial seroconversion, and family history
of T1D, phosphatidylcholine (16:0_18:1(9Z)) (PubChem
compound identifier [CID] 5497103) was the only known
metabolite significant at an FDR-adjusted P value <0.10
(Table 2). We also identified six unknown metabolites
that were significant based on the FDR-adjusted P value
<0.10 (Supplementary Tables 2 and 3).

A total of 63 metabolites were identified as candidates
in the preliminary analysis (P < 0.01 and exp(|Ln(HR)|)
> 1.25) (Fig. 1); 12 represented known compounds (Table
2). Among candidate metabolites, 10 came from the
GCTOF panel (10 of 286 [3.5% of metabolites on the pan-
el]), 27 came from the HILIC panel (27 of 1,032 [2.6%]),
and 26 came from the lipid panel (26 of 1,163 [2.2%]).

Enrichment Analysis
Individual metabolites tend to group together based on
chemical similarity and ontology, allowing for a more
complete biological interpretation of the metabolites (37).

We used the ChemRICH algorithm to identify clusters
of similar metabolites that were overrepresented in indi-
viduals who reverted. We input effect sizes (HRs), P val-
ues, and chemical identifiers for all known metabolites.
We identified four clusters significantly (FDR-adjusted
P value <0.10) enriched for compounds associated with
hazard of reversion (Table 3). The top cluster of metabo-
lites represents a novel grouping of metabolites that clus-
tered together based chemical similarity. It is not named
because it is not included in existing Medical Subject
Heading (MeSH) databases.

Metabolite Signatures
Individual metabolite results are difficult to interpret be-
cause multiple metabolites are often interrelated. It may
be more meaningful to consider patterns of multiple me-
tabolites than any single metabolite. Therefore, we used a
data reduction technique, PCA, to obtain metabolite sig-
natures that represent all of the top 63 individual metab-
olites, known and unknown. The first four PCs were
selected for subsequent testing based on the elbow plot
and proportion of variance explained by the first four PCs
(36%). In the Cox proportional hazards model, PC1, PC2,
and PC4 were significantly associated with hazard of re-
version, whereas PC3 was not (Table 2).

Metabolites Nutrient Correlation
With the PCA we identified three metabolite signatures
related to reversion. The inclusion of known and un-
known metabolites in these PC signatures makes the
identification of potentially modifiable aspects of these
signatures challenging. Diet, as represented by nutrients,
is a strong potential environmental influence of metabo-
lite levels that can be directly modified through dietary in-
tervention. Therefore, we tested the association between
nutrients, after adjusting for age and calories, and the
three metabolite PCs (PC1, PC2, and PC4) that were sig-
nificantly associated with the hazard of reversion. We
identified 20 nutrients that were correlated with PC1
and/or PC2 (nominal model P value <0.05) (Table 4). To-
tal sugar intake, positively associated with PC2, was the
nutrient intake that was most strongly correlated with
the metabolite PCs (nominal P 5 0.0065, R2 5 0.06).
Figure 2 provides a visual representation of the

Table 1—Demographics and association with hazard of reversion
Ever reverted, n 5 74 Never reverted, n 5 125 HR Lower CI Upper CI P

Age at IA 7.4 ± 4.5 6.4 ± 4.9 1.05 1.01 1.10 0.0499

BMI z scores at onset of IA 0.2 ± 0.9 0.1 ± 1.1 1.05 0.82 1.34 0.6901

Multiple autoantibodies at IA 2 (2.7) 37 (29.6) 0.09 0.02 0.37 0.0008

DR3/4 high-risk genotype 16 (21.6) 52 (41.6) 0.50 0.29 0.87 0.0135

Non-Hispanic White 52 (70.3) 104 (83.2) 0.55 0.33 0.91 0.0196

First-degree relative with T1D 40 (54.1) 83 (66.4) 0.73 0.46 1.15 0.7280

Female sex 37 (50.0) 64 (51.2) 1.02 0.65 1.61 0.9234

Data are means ± SD or n (%) unless otherwise indicated.

diabetes.diabetesjournals.org Carry and Associates 1595

https://doi.org/10.2337/figshare.14414342
https://doi.org/10.2337/figshare.14414342
https://doi.org/10.2337/figshare.14414342


correlation between each nutrient (y-axis) and the three
PCs (x-axis) significantly associated with reversion. We
also tested whether the nutrient candidates were associat-
ed with hazard of reversion. Increasing zinc intake and in-
creasing palmitic acid intake were significantly (FDR-
adjusted P < 0.10) associated with increased hazard of re-
version (Table 4).

DISCUSSION

IA is a dynamic predisease state. In this study of individu-
als who developed persistent IA during the prospective
DAISY, 37% reverted to an autoantibody-negative state.
We aimed to test the association between metabolite lev-
els measured at the onset of IA and hazard of reversion.
We identified 63 unique metabolite candidates measured
at the onset of IA that were associated with subsequent
reversion. Enrichment analysis of known compounds re-
vealed four clusters of metabolites that collectively were
different in subjects who did versus did not revert. Using
a PCA of the known and unknown metabolite candidate
metabolites, we identified three metabolite signatures as-
sociated with reversion.

Phosphatidylcholine (16:0_18:1(9Z)) (PubChem CID
5497103), positively associated with reversion, was the
strongest individual candidate in our analysis. Three
additional phosphatidylcholine candidates [phosphati-
dylcholine (16:0_20:4), PubChem CID 10747814; phos-
phatidylcholine (16:0_16:1), PubChem CID 6443788;
and phosphatidylcholine (30:0), PubChem CID 129657]
were also positively associated with reversion. We also
identified two metabolite clusters enriched for

compounds structurally related to phosphatidylcholines
that tended to be increased in individuals who reverted.
Choline, the first molecule in the phosphatidylcholine
biosynthetic pathway was negatively associated with re-
version. Therefore, it is possible that the reduced syn-
thesis of phosphatidylcholine from choline may explain
direction of association between choline and reversion
(negative) relative to the phosphatidylcholine (positive)
and reversion—a hypothesis that should be investigat-
ed in subsequent research.

Phosphatidylcholines represent the most abundant
class of phospholipid, having numerous biological func-
tions including anti-inflammatory (38) properties. In-
creased levels of phosphatidylcholines in plasma are
associated with decreased likelihood of type 2 diabetes
(39), an effect that may be mediated by insulin regulatory
pathways due to the known inverse association between
glycerophospholipids and both dysglycemia and insulin re-
sistance (40). Inhibition of phosphatidylcholine synthesis
has also been shown to lead to endoplasmic reticulum
stress (41), a cellular response implicated in b-cell dys-
function and, subsequently, T1D onset (42). Together, the
anti-inflammatory effects, endoplasmic reticulum stress-
related properties, and insulin modulatory influence of
phosphatidylcholine provide a potential mechanistic connec-
tion between phosphatidylcholine levels and IA reversion.

The leading metabolite from the top cluster was a
sphingomyelin, sphingomyelin (d40:0) (CID 44260132).
Sphingomyelins represent a type of sphingolipid, a class
of molecules associated with pathologies including inflam-
matory and metabolic disorders (43). Sphingolipids have
direct relevance to the T1D disease process based on the

Table 2—Known metabolites identified as candidates in reversion hazard analysis*
Metabolite PubChem CID HR† Lower CI Upper CI Nominal P FDR-adjusted P

Phosphatidylcholine (16:0_18:1(9Z)) 5497103 2.16 1.56 2.98 <0.0001 0.0037

Sphingomyelin (d18:1_22:1) 52931203 0.54 0.38 0.77 0.0006 0.1223

Phosphatidylcholine (16:0_20:4) 10747814 1.75 1.27 2.41 0.0006 0.1223

Phosphatidylcholine (16:0_16:1) 6443788 1.65 1.23 2.20 0.0007 0.1848

Choline 305 0.60 0.44 0.81 0.0010 0.1917

(3S)-3-azaniumyl-4-hydroxy-4-oxobutanoate 44367445 1.80 1.24 2.60 0.0019 0.2270

Phosphatidylcholine (30:0) 129657 1.58 1.18 2.11 0.0020 0.2093

Sphingomyelin (d40:0) 44260132 1.64 1.16 2.31 0.0050 0.1223

Creatinine 588 1.47 1.11 1.96 0.0077 0.2652

Hydroxycarbamic acid 16639161 0.69 0.52 0.91 0.0084 0.2652

L-decanoylcarnitine 11953821 1.48 1.11 1.97 0.0080 0.3302

Decanoic acid 2969 0.69 0.52 0.92 0.0100 0.4148

Metabolite signatures
PC1 1.40 1.24 1.59 <0.0001
PC2 0.85 0.75 0.97 0.0178
PC3 1.10 0.96 1.26 0.1696
PC4 1.28 1.06 1.56 0.0103

*All models are adjusted for multiple autoantibodies at the seroconversion visit, high-risk HLA (DR3/4) genotype, non-Hispanic
White ethnicity, age at initial seroconversion, and family history of T1D. †HR for individual metabolites represents change in hazard
per 1-SD increase in metabolite levels.
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role of sphingolipid metabolism in regulation of proinsu-
lin folding, insulin secretion, b-cell apoptosis, and the de-
velopment of the diabetic inflammatory state (43). In a
clinical study, sulfatide levels (an important sphingolipid)
in pancreatic islet cells of individuals with newly diag-
nosed T1D were 23% lower than sulfatide levels in con-
trol participants (44). Sphingolipids likely act through
several mechanisms. In mouse and rat models, sphingoli-
pid levels were both increased (sphingosine-1-phosphate)
and decreased (nervonic acid containing ceramide, sphin-
gomyelin, and cerebrosides) in cases relative to control

animals (45). This heterogeneity in effect was also present
in our study, as these compounds were both positively
[sphingomyelin (d40:0)] and negatively [sphingomyelin
(d18:1_22:1)] associated with hazard of reversion.

Carnitine and related compounds were also identified in
the enrichment analysis. L-carnitine plays an essential role in
fatty acid oxidation by transporting fatty acids to the mito-
chondria (46). Acylcarnitine has been implicated in type 2
diabetes based on its association with insulin resistance
(47). In a mouse model, dietary L-carnitine administration
has been shown to have immunosuppressive effects on both

Table 3—Chemical set enrichment analysis (ChemRICH) summary of significantly enriched clusters

Cluster name
Cluster
size

Nominal
P

FDR-
adjusted P Key compound, CID

Altered
metabolites

Metabolites
that are
increased

Metabolites
that are

decreased

New cluster 5 0.0002 0.0076 Sphingomyelin
(d40:0), 44260132

3 3 0

Unsaturated
phosphatidylcholines

81 0.0044 0.0840 Phosphatidylcholine
(16:0_18:1(9Z)), 5497103

12 9 3

Saturated
phosphatidylcholines

7 0.0060 0.0840 Phosphatidylcholine
(30:0), 129657

2 2 0

Carnitine 5 0.00920 0.0960 L-decanoylcarnitine,
11953821

3 3 0

Figure 1—Volcano plot from individual metabolite analysis representing association between each metabolite and reversion. Presentation
of log HRs (x-axis), representing the association between metabolite levels and hazard of reversion, and corresponding nominal P values
(y-axis). All metabolites were standardized to facilitate interpretation. HRs represent the change in hazard of reversion per 1-SD increase
in the level of the metabolite. The absolute values for all log hazard ratios were exponentiated (HR). Metabolites were considered hits if the
hazard ratio was >1.25 (�0.2235 > x-axis > 0.2235) and the nominal P value <0.01 (y-axis >2). Hits are highlighted in red. Annotations
are provided for all known hits (Table 2).
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the innate and adaptive immune systems in the context of
another chronic autoimmune disorder, Crohn’s disease (48).

Overall, the known metabolite results in the current
study, overabundance of phospholipids and reversion,
support previous associations between lipid metabolism
and T1D etiology. Based on umbilical cord samples, La
Torre et al. (16) observed an association between onset of
T1D prior to 4 years of age and decreased levels of phos-
pholipids (including phosphatidylcholine). Studies from
another birth cohort study, the Finnish Type 1 Diabetes
Prevention and Prediction Study (DIPP), confirmed the
association between decreased phosphatidylcholine and
sphingomyelin levels and T1D onset (13,15). Using longi-
tudinal metabolite biomarkers in the TEDDY cohort, in-
vestigators found that decreased levels of the phospholipid
phosphatidylethanolamine were present among individuals
who become positive for IAA and GADA prior to seroconver-
sion (18). Johnson et al. (19) also reported a significant in-
verse association between phosphatidylcholine levels in
infancy and onset of multiple autoantibodies. la Marca et al.

(49) reported that carnitine and acylcarnitine levels, essen-
tial for fatty acid metabolism, were significantly decreased
among infants who developed T1D early in life. Decreased
total and free carnitine levels have also been reported
among individuals with T1D relative to controls (50). Lipid
metabolic pathways have also been evaluated as a potential
therapeutic target for treating and/or preventing T1D. In
the NOD mice model, Holm et al. (44) demonstrated that
intervention with fenofibrate, a drug that activates sulfatide
biosynthesis, prevented diabetes and in diabetic mice re-
versed the disease process in 50% of the animals.

Our analysis of known metabolites highlights the
importance of phosphatidylcholines, sphingomyelins,
and carnitine levels in etiology of reversion. However,
many metabolite candidates in the current study represent
unknown compounds (see Supplementary Tables 2–4). We
used a PCA to develop metabolite signatures representative
of all the metabolite candidates. PC1, PC2, and PC4 were
significantly associated with hazard of reversion. However,
PCs lack a direct biologically accessible interpretation.

Table 4—Nutrient candidates correlated with one or more of the candidate metabolite PCs as well as association between
nutrient candidates and hazard of reversion

Nutrient vs. metabolite PCA Nutrient vs. reversion analysis

Nutrient candidate Category Model R2 PC b P HR
FDR-

adjusted P

Total sugars, g CHO 0.06 2 0.215 0.0065 0.85 0.4944

Lauric fatty acid, g Fat 0.05 1 0.022 0.0171 1.13 0.5805

Zinc (wo), mg Minerals 0.05 1 0.008 0.0197 1.54 0.0650

Saturated fat, g Fat 0.05 1 0.035 0.0204 1.45 0.1187

Myristic fatty acid, g Fat 0.04 1 0.037 0.0222 1.24 0.4823

Fructose, g CHO 0.05 2 0.082 0.0246 0.74 0.2268

Animal fat, g Fat 0.05 1 0.082 0.0269 1.42 0.1870

Folate, mg Vitamins 0.05 2 �0.049 0.0272 1.01 0.9647

Capric fatty acid, g Fat 0.04 1 0.019 0.0275 1.16 0.5635

Caproic fatty acid, g Fat 0.04 1 0.020 0.0307 1.12 0.6544

Manganese, mg Minerals 0.04 1 �0.017 0.0310 0.82 0.4823

Palmitic fatty acid, g Fat 0.05 1 0.013 0.0333 1.53 0.0650

Butyric fatty acid, g Fat 0.03 1 0.022 0.0368 1.15 0.5635

Myricetin, mg Flavonoids 0.04 2 0.062 0.0377 1.01 0.9647

Eicosenoic fatty acid, g Fat 0.03 2 �0.035 0.0377 1.16 0.5635

Vitamin C (wo), mg Vitamins 0.05 2 0.061 0.0391 0.91 0.6556

Caprylic fatty acid, g Fat 0.04 1 0.024 0.0425 1.11 0.6556

b-Cryptoxanthin, mg Carotenoids 0.03 2 �0.327 0.0432 0.93 0.6958

Niacin, mg Vitamins 0.03 2 �0.005 0.0467 1.05 0.8129

Sucrose, g CHO 0.04 2 0.014 0.0484 0.79 0.2857

Table shows the direct association between the nutrient candidates and hazard of reversion in a subset of subjects with nutrient
and metabolite data (n 5 132). Model R2: represents multiple correlations between calorie- and age-adjusted nutrient levels (as the
outcome) and PC1, PC2, and PC4. PC: metabolite candidate PCs that the nutrient is most strongly associated with. b: PC-specific
slope representing strength of association between nutrient and PC; describes direction of association. P: PC-specific P value
(nominal P value). HR: represents change in hazard of reversion per 1-SD increase in the nutrient, with adjustment for multiple
autoantibodies at the seroconversion visit, high-risk HLA (DR3/4) genotype, non-Hispanic White ethnicity, age at initial seroconver-
sion, and family history of T1D. FDR-adjusted P: FDR-adjusted P value for nutrient hazard of reversion association, with adjustment
for number of nutrient candidates tested (20 nutrients). CHO, carbohydrates; vitamin C (wo), vitamin C nutrient intake that excludes
vitamins and supplements; zinc (wo), zinc nutrient intake that excludes vitamins and supplements.
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Therefore, we used correlation between PCs and nutrient
data, a potential environmental influence of metabolite lev-
els, to aid in the interpretation of our results. Nutrients
are also appealing because they may be more directly modi-
fiable than metabolites. We identified 20 nutrients that
were correlated with PC1 or PC2 (model P value <0.05).
Total sugar intake, positively associated with PC2, was the nu-
trient intake that was most strongly correlated with the me-
tabolite PCs.

Previous research from DAISY has reported an as-
sociation between increased sugar intake, both indi-
vidually (HR 1.75 per SD of sugar) (6) and in
combination with other nutrients (HR 3.17 per SD of
nutrient pattern) (51), and increased risk of progres-
sion to T1D. However, sugar was not directly associ-
ated with reversion. Increased levels of zinc,
commonly found in oysters, red meat, poultry,
beans, and whole grains (52), were associated with
increased likelihood of reversion. Previous ecological
studies have identified some evidence of an associa-
tion between decreased zinc levels in drinking water
and increased incidence of T1D (53,54). Palmitic
acid intake, a common saturated fatty acid found in
palm oil, meat, and dairy products (55), was also

positively associated with hazard of reversion. Al-
though palmitic acid and a high-fat diet is typically
associated with negative health effects (55) and
poor glycemic control among individuals with T1D
(56), endogenously formed branched fatty acid es-
ters of hydroxy acids including palmitic acid 9 hy-
droxy stearic acid (9-PAHSA) have been shown to
have positive effects on insulin sensitivity and glu-
cose tolerance in a mouse model (57). However, it is
not known whether 9-PAHSA plays a role in humans
or whether dietary intake of palmitic acid is associ-
ated with 9-PAHSA. Overall, the associations be-
tween nutrients and reversion were modest. The
metabolite PCs suggest that there is a more complex
relationship between metabolite patterns and reversion
that should be explored in subsequent studies.

Limitations
Metabolomics profiling was performed in nonfasting sam-
ples, which could influence metabolite levels. A subset of
individuals who reverted (26%), including one of the two
individuals who presented with multiple autoantibodies
at the onset of IA, subsequently reseroconverted. Howev-
er, <3% of individuals who reverted developed T1D.

Figure 2—Heat maps representing correlation between PCs from PCA of known and unknown metabolite candidates and all nutrients;
heat maps for each metabolite PC (x-axis) that was significantly associated with reversion. Each nutrient that passed the quality control
filters is represented on the y-axis. Positive correlation is represented by the color red, and negative correlation is represented by the col-
or blue. The top nutrient within each nutrient category in Table 4 is annotated based on the PC with which the nutrient is most strongly
correlated. CHO, carbohydrates; Zinc (wo), zinc nutrient intake that excludes vitamins and supplements.
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Secondary seroconversion events were not included in the
analysis because metabolomics data were not collected
from all study visits. T1D and reversion are inherently re-
lated. Individuals who revert are at a lower risk for T1D,
raising concerns that reversion may not be a unique out-
come. Using a similar data set, Johnson et al. (51) identi-
fied 13 metabolite hits related to progression from IA to
T1D. Only 3 of the 13 hits in the work of Johnson et al.
(51) (<25%) were identified as hits in our reversion anal-
ysis, providing evidence that reversion is a novel end
point. More importantly, reversion is more common and
occurs earlier after IA onset relative to T1D, providing an
alternative, novel end point for understanding the T1D
disease process. The nutrient data were meant to aug-
ment the interpretation of the metabolite signatures. The
model R2 representing association between nutrients and
metabolite PCs in the current study was small, <0.07, in-
dicating that nutrients account for a small proportion of
variance in metabolites. Although best in class, survey-
based dietary data represent average nutrient intake,
whereas metabolites represent a specific cross section in
time. Temporal variability in metabolite levels may con-
tribute to the low correlation between nutrient intake
and metabolite levels. Additional research is needed to
pursue other potentially stronger predictors of metabolite
levels including underlying genetics, toxin exposure, medi-
cation usage, and ambient environmental factors.

Conclusion
T1D etiologic studies have predominantly focused on indi-
viduals who develop IA and/or T1D. Identifying the mech-
anisms that lead to IA reversion may guide development
of novel interventions and may aid in the identification
of individuals more amenable to intervention. The current
study builds on previous literature by identifying an asso-
ciation between reversion of persistent IA and phos
pholipid, sphingomyelin, and carnitine—candidates and
pathways implicated in inflammation, endoplasmic reticu-
lum stress, and insulin secretion. Metabolite patterns
may have greater biological significance than single mole-
cules. PCs from a PCA of all metabolite hits were strongly
associated with reversion. This signature was correlated
with sugar and fat intake. Additional work is needed to
understand contribution of this signature to biological
mechanisms underlying IA reversion and, more impor-
tantly, to identify modifiable environmental factors that
drive this metabolite profile.
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