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Abstract Increased α-synuclein levels and mutations in
mitochondria-associated proteins both cause familial
Parkinson’s disease (PD), and synuclein and mitochondria
also play central, but poorly understood, roles in the patho-
genesis of idiopathic PD. A fraction of synuclein interacts
with mitochondria, and synuclein can produce mitochondri-
al fragmentation and impair mitochondrial complex I activ-
ity. However, the consequences of these mitochondrial
changes for bioenergetic and other mitochondrial functions
remain poorly defined, as does the role of synuclein–mito-
chondria interactions in the normal and pathologic effects of
synuclein. Understanding the functional consequences of
synuclein’s interactions with mitochondria is likely to pro-
vide important insights into disease pathophysiology, and
may also reveal therapeutic strategies.

Keywords Mitochondria . Synuclein . Mitochondrial
dynamics . Dynamin related protein 1 (Drp1) .
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Introduction

Parkinson’s disease (PD) is a common and debilitating
neurodegenerative disorder involving the relatively selective
degeneration of dopamine neurons in the substantia nigra
[1]. Although dopamine replacement therapy ameliorates

the motor symptoms of PD, it does not modify the underly-
ing pathogenic mechanisms, and consequently loses effica-
cy as the disease progresses [2, 3]. The development of
disease-modifying therapies will probably require a better
understanding of disease pathophysiology. What is clear is
that both α-synuclein and mitochondria are central to this
disease process, as changes in either can cause familial
forms of PD. Mutations or overexpression of wildtype α-
synuclein produce rare autosomal dominant forms of the
disease [4–7], while mutations in the mitochondrial kinase
PINK1 or the mitochondrial-binding protein Parkin cause
autosomal recessive PD [8–10]. There is also considerable
evidence that both synuclein and mitochondria play central
roles in idiopathic PD. First, α-synuclein accumulates in
Lewy bodies and dystrophic neurites of essentially all pa-
tients with sporadic PD [11]. In PD, there are also selective
impairments in mitochondrial complex I activity in the
substantia nigra [12], and somatic mutations also accumu-
late with age and PD progression in the mitochondrial DNA
of substantia nigra neurons [13]. Early in PD there is de-
creased expression of PGC1α and PGC1α-regulated genes
that encode subunits of the electron transport chain and
proteins involved in mitochondrial biogenesis and glucose
metabolism [14]. These changes are suggestive of broad
deficits in bioenergetic function in nigrostriatal dopamine
(DA) neurons. These neurons are also particularly vulnera-
ble to mitochondrial toxins, including 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) and rotenone, which are
widely used to model PD.

Considering the central roles played by both synuclein
and mitochondria, it seems likely that they impact dis-
ease pathogenesis through a convergent mechanism. In
this review I discuss what we know about the interaction
between synuclein and mitochondria, the impact of this
interaction on mitochondria, and potential consequences of
these changes on the functions of mitochondria, synuclein,
and neuronal survival.
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Co-localization of Synuclein and Mitochondria

Under basal conditions, both endogenous and heterologous-
ly expressed synuclein is primarily cytosolic, with no obvi-
ous enrichment on mitochondrial membranes [15–18].
Nonetheless, it is clear from ultrastructural studies that a
fraction of synuclein normally associates with mitochondria,
including in DA neurons in transgenic animals and humans
[19–21]. Interestingly, the extent to which synuclein and
mitochondria associate appears quite dynamic and can be
increased markedly by a range of stressors, such as de-
creased cytosolic pH [18]. Notably, mitochondria isolated
from PD patients also have a much higher content of
synuclein that those from age-matched controls [20].

Curiously, the subcellular localization of synuclein in mito-
chondria varies across a range of in vitro and in vivo paradigms.
Indeed, synuclein can be localized primarily to the outer mito-
chondrial membranes [18, 21–23], while, at other times, a
substantial fraction is also present on the inner membranes
[20, 23–25]. In some cases, localization to the inner membranes
is associated with higher expression levels of synuclein [23],
suggesting that the effects of synuclein on mitochondrial shape
or function may contribute to the site of localization. Notably,
in PD, a substantial fraction of synuclein localizes to inner
membranes in mitochondria [20]. However, other undefined
factors, including species and cell type, may also contribute to
these discrepant findings.

Mechanism of Synuclein–Mitochondria Interactions

Although synuclein may interact with different membrane
surfaces within cells, synuclein appears to have a preferen-
tial affinity for mitochondria over other organelles (Fig. 1).
Indeed, we showed in fluorescence resonance energy trans-
fer (FRET) reporter and biochemical assays that synuclein
interacts preferentially with mitochondrial membranes over
other native membranes, including endoplasmic reticulum,
and synaptic plasma membrane and vesicle fractions [17].
The underlying mechanism remains unproven, but likely
involves a direct interaction between synuclein and
cardiolipin, which is enriched on both the outer and, espe-
cially, inner mitochondrial membranes [26–29]. Indeed, α-
synuclein has a high affinity for cardiolipin, binding equally
well to artificial membranes enriched in cardiolipin as to
those enriched in phosphatidic acid [17]. In vitro, the inter-
action of synuclein with mitochondria can be blocked by the
dye nonyl acridine orange, which binds cardiolipin with
high affinity. Although this molecule has been criticized
for nonspecific binding, nonyl acridine orange also blocks
the binding of synuclein to liposomes enriched in
cardiolipin without significantly affecting binding to those
enriched in phosphatidic acid [18].

The role of mitochondrial membrane potential in synuclein–
mitochondria binding is also unclear. Using synuclein FRET
reporters to monitor synuclein binding to isolated brain mito-
chondria, we found that mitochondrial membrane depolariza-
tion did not affect synuclein binding, suggesting that the
functional state of mitochondria is less important than other
factors such as lipid composition [17]. However, these assays
did not assess subcellular localization and contrast with studies
by Devi et al. [20], which found that normal mitochondrial
membrane potential was required for synuclein import into
isolated rat liver mitochondria. These seemingly discrepant
findings require clarification, but may have resulted from dif-
ferences in the source of mitochondria and/or dose of carbonyl
cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) used to
depolarize mitochondria [17, 20]. Alternatively, it is possible
that the membrane potential-independent affinity of synuclein
for cardiolipin acts in conjunction with a membrane potential-
dependent process involving the outer membrane translocase
(Tom) complex to import synuclein into the mitochondria. In
support of this assertion, the amino terminus of synuclein has
been proposed to contain a cryptic mitochondrial-binding se-
quence, and synuclein transport into isolated mitochondria was
shown to be blocked by antibodies against Tom40, an outer
mitochondrial membrane import channel [20].

Effects of Synuclein on Mitochondrial Dynamics

What are the consequences of synuclein’s interactions with
mitochondria? First, numerous studies have reported that
supra-physiologic levels of synuclein disrupt mitochondrial
morphology (Fig. 1). In cultured cells, increased synuclein
levels produce fragmented mitochondria with a decreased
length/width ratio [22, 23, 30–32]. Synuclein also alters
mitochondrial morphology in vivo, including in midbrain
DA neurons; however, the specific morphologic changes
vary, sometimes including frank disruption versus remod-
eling of the mitochondrial membranes [19, 23, 33].
Determining the effects of synuclein on mitochondrial
morphology in brain sections is also complicated by the
ischemia that occurs during perfusion and fixation, which is
certain to influence mitochondrial morphology. Nonetheless,
it seems probable that the morphologic changes observed in
vitro and in vivo represent the same process.

In addition, although moderate levels of synuclein are
required to produce robust fragmentation [23], the effect does
have some specificity for the α-synuclein homologue. Indeed,
equivalent levels of β- and especially γ-synuclein produce
little, if any, effect on fragmentation [23]. In addition, mito-
chondrial fragmentation develops in the absence of visible
morphologic effects on other organelles, changes in respira-
tion, or overt cell death—all of which might produce frag-
mentation through secondary mechanisms [22, 23].
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An important open question is whether physiologic levels
of synuclein also affect mitochondrial dynamics. This pos-
sibility is supported by a report from Kamp et al. [22] who
used small interfering RNA to show that endogenous
synuclein could produce fragmentation; whether this occurs
in neurons in vivo remains unclear. Although we did not
observe overt differences in mitochondrial morphology
within the cell bodies of synuclein triple knock-out mice
(lacking α- β- and γ- synuclein) [23], it is likely that in vivo
studies of mitochondrial morphology lack the sensitivity to
discern these changes for the reasons described above.

Mechanism of Morphologic Changes

The effects of synuclein on mitochondrial morphology ap-
pear to result from direct interactions between synuclein and
mitochondrial membranes. Consistent with this, approaches
that target synuclein binding away from mitochondria or
mutations that disrupt the binding of synuclein to mem-
branes both block the effects of synuclein on fragmentation
[23]. In addition to direct interactions, it remains possible
that synuclein also influences mitochondrial dynamics
through indirect mechanisms that are independent of its
interaction with mitochondrial membranes. For instance,
although synuclein can produce mitochondrial fragmenta-
tion in the absence of Drp1, the dominant mitochondrial
fission protein [23], synuclein can also increase Drp1 trans-
location to mitochondria [31], and this could also contribute
to synuclein-dependent fission. Indeed, the overall level of
mitochondrial fragmentation reflects the combined effects of

synuclein and Drp1 [23, 31]. In addition, levels of
mitofusins 1 and 2 are increased in the spinal cord of mice
overexpressing A53T mutant synuclein [33], suggesting that
synuclein might also affect morphology through effects on
mitochondrial fusion proteins. However, synuclein does not
affect mitofusin levels in vitro [22, 33], and increased
mitofusin levels do not block the effects of synuclein on
mitochondrial morphology [22], indicating that mitofusins
are not required for fragmentation by synuclein. Lastly,
synuclein may also affect more general aspects of mitochon-
drial function. For instance, under conditions of oxidative
stress, an increased fraction of synuclein localizes to the
nucleus and binds to the PGC1α promoter, and a conse-
quent down-regulation in PGC1α-target genes could con-
tribute indirectly to changes in mitochondrial morphology
and/or function [34].

Synuclein might produce fragmentation by increasing
the rate of mitochondrial fission or decreasing the rate of
fusion. Surprisingly, these possibilities can be very diffi-
cult to distinguish experimentally. Although standard poly-
ethylene glycol-based and photoactivation assays can
distinguish decreased mitochondrial fusion from normal
dynamics, it is unclear if they can accurately resolve de-
creased fusion from increased fission. In addition, although
it is clear in vitro that recombinant synuclein can remodel
liposomes enriched in acidic phospholipids, such as
cardiolipin, synuclein’s specific effects on these mem-
branes can resemble either tubulation or fission, presum-
ably depending on the specific experimental conditions
and preparations of synuclein used [22, 23, 35].

Fig. 1 Hypothetical schema of synuclein interactions with mitochon-
dria normally and in Parkinson’s disease (PD). Under normal condi-
tions, most synuclein is cytosolic in transiently “closed”
conformations. However, a fraction of synuclein binds to mitochondria
and is stabilized in a relatively “open” conformation [17]. In PD,

synuclein levels are increased and a higher proportion of synuclein
may exist in an oligomeric conformation, which also interacts with
mitochondria [25, 48]. Increased synuclein monomers and/or oligo-
mers drive increased mitochondrial fission, leading to more fragmented
mitochondrial morphology. ER=endoplasmic reticulum
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Interestingly, other PD proteins including PINK1, parkin,
DJ1, and LRRK2 have also been found to influence mito-
chondrial dynamics [36–39]. Although the mechanisms
have not been defined fully, they appear to involve effects
on the levels and/or function of previously-defined compo-
nents of the fusion and fission machinery [38, 40, 41], rather
than direct effects on mitochondrial membranes, as appears
to occur with synuclein. Interestingly, co-expression of
wildtype, but not mutant, PINK1, Parkin or DJ-1 can all
block mitochondrial fragmentation by synuclein, although
the mechanisms remain unclear [22].

There are several biophysical mechanisms by which
synuclein–mitochondria interactions could lead to fragmen-
tation. For instance, insertion of synuclein’s N-terminal
amphipathic helix into the lipid bilayer [42] and/or
synuclein-induced clustering of acidic phospholipids could
promote and stabilize mitochondrial membrane curvature
[43]. Fission could also be promoted by energy-driven con-
formational changes in which synuclein transitions from an
extended alpha-helical conformation—as observed upon
binding to large liposomes and mitochondria [23, 44]—to
a broken helix conformation, as found on small-diameter
micelles [45]. Yet another interesting possibility is that
synuclein may polymerize on mitochondrial membranes
[46] and drive membrane remodeling [47]. Interestingly,
the conformation and monomeric/oligomeric structure of
synuclein that produces fragmentation is unclear (Fig. 1).
Although both monomeric and oligomeric synuclein can
associate with mitochondria [25, 48], only small synuclein
oligomers—not monomers or aggregates—remodel lipo-
somes enriched in acidic phospohlipids, such as cardiolipin
[23, 49], suggesting that oligomers may be the active spe-
cies. Notably, the prevalence of monomeric versus oligo-
meric synuclein in living cells under physiologic or
pathologic conditions is also unclear [50–52], and remains
an area of considerable controversy that cannot be resolved
definitively with current approaches, which require either
disruption of the cell membrane [50–52] or the use of
fluorescent tags that disrupt synuclein’s properties [17].

Other Effects of Synuclein on Mitochondria

Complex I Activity

Several groups have found that increased synuclein protein
levels can inhibit mitochondrial complex I activity. Indeed,
wildtype or mutant A53T synuclein selectively inhibits
complex I in purified mitochondria from cell lines and
transgenic mouse brain [20, 24, 48, 53], although one group
did not see this following acute incubation of isolated mito-
chondria with recombinant synuclein [54]. The level of
synuclein in mitochondrial fractions from the substantia

nigra of PD patients also correlates with decreased complex
I activity in PD patients [20].

Interestingly, loss of synuclein expression can also ad-
versely affect the function of respiratory enzymes by
compromising electron flux between complex I and III,
but not within complex I itself; these effects have been
observed both in human dopaminergic neuronal cells by
small interfering RNA [20] and synuclein knockout mice
[55]. The mechanism of how synuclein interrupts complex I
function is not clear, but may involve a direct interaction.
Indeed, synuclein can reach the inner mitochondrial mem-
brane and interact directly with complex I [20].

The temporal relationship between synuclein’s effects on
complex I activity and mitochondrial dynamics are also not
clear. Fragmentation precedes respiratory dysfunction in cell
lines [23], but this relationship in neurons in vivo is un-
known. Furthermore, mild complex I inhibition may also
precede—and contribute to—synuclein-induced respiratory
dysfunction. Interestingly, Loeb et al. [53] found that ex-
pression of A53T-synuclein compromised complex I activ-
ity in brain mitochondria isolated from 4–6-week-old mice
prior to any evidence of cell toxicity, with the extent of the
decrease being independent of mouse age. However, anoth-
er study found no effect of A53T-synuclein on complex I
activity or complex I-dependent respiration of dopaminergic
synaptosomes isolated from the striata of high- versus low-
expressing 4-month-old animals, but did find significant
decreases in both parameters in high-expressing mice at
1 year of age [48]. Therefore, the relationship between
synuclein expression level, age, complex I activity, and
respiration remains to be clarified.

Turnover

Overexpression of A53T mutant synuclein increases Parkin-
dependent mitophagy in cortical neurons [30] and increases
the number of mitochondria in autophagosomes in midbrain
DA neurons [48]. The precipitating event may be a
synuclein-dependent decrease in mitochondrial size, as stud-
ies have shown that mitophagy is blocked when mitochon-
drial shape is restored by overexpressing mitofusin 2 to
increase fusion or by expressing the dominant-negative var-
iant Drp1 to decrease fission [30]. The authors hypothesized
that excessive mitophagy may remove functional mitochon-
dria, thereby decreasing mitochondrial mass and producing
bioenergetic failure. Consistent with this, blocking
synuclein-mediated mitophagy in yeast protects against the
toxicity of elevated synuclein [56]. However, the role of
mitophagy in PD pathogenesis remains unclear: both in-
creased and decreased mitophagy have been proposed to
drive neuronal death under certain circumstances [30, 57].
Yet another possibility is that changes in mitophagy do not
directly influence neural death; for instance, if mitophagy is
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up-regulated to remove mitochondria that are poorly func-
tioning, but not otherwise contributing to neural death.

Endoplasmic Reticulum Interactions and Calcium Buffering

Synuclein has also been found to increase co-localization
between the endoplasmic reticulum (ER) and mitochondria,
and is proposed to increase calcium transfer from the ER to the
mitochondria [58]. It will be important to better understand the
consequences of this and other effects of synuclein on the ER
for mitochondrial function and morphology, especially consid-
ering the emerging, but poorly understood, role of ER–mito-
chondria interactions in shaping bioenergetics [59] and
mitochondrial morphology. Indeed, ER tubules have been
found to encircle and constrict mitochondria—a step that
may be required for Drp1-mediated mitochondrial fission [60].

Lipid Content

Synuclein also appears to exert broader effects on mitochon-
drial lipid metabolism and composition, although the mech-
anisms remain to be defined. Indeed, membranes from α-
synuclein KO mice show, roughly, a 20 % decrease in
cardiolipin and its precursor versus other phospholipids
[55, 61], an intriguing finding considering the high affinity
of synuclein for cardiolipin [17, 18], and the central roles of
cardiolipin in electron transport [55] and cell death [62]. The
effect appears to be specific to α-synuclein, as cardiolipin
levels are not altered in γ-synuclein knockout mice [63].

Consequences of Synuclein–Mitochondria Interactions
(in Normal and Disease Conditions)

The effects of synuclein on mitochondria as described ear-
lier may be initiating or early events in disease progression.
These interactions may even be part of a normal physiologic
process that becomes pathologic when in excess. However,
very little is known about the biologic consequences of
these interactions for mitochondrial function, synuclein
function, or neuronal survival (Fig. 2).

Mitochondrial Function

Bioenergetics (Global and Regional)

Synuclein might affect the bioenergetic function of mito-
chondria either globally or regionally. Global dysfunction
might result from intrinsic impairments in respiratory capac-
ity owing to decreased complex I activity and/or from mi-
tochondrial fragmentation [64], or decreased respiratory
capacity due to decreased mitochondrial mass from exces-
sive mitophagy [30]. However, whether impairments in

bioenergetic function actually cross the thresholds required
to produce functionally significant decreases in adenosine
triphosphate (ATP) within intact, living neurons is un-
known. Indeed, although synuclein can cause mitochondrial
depolarization in isolated mitochondria [54], even high
levels of wildtype synuclein fail to affect mitochondrial
membrane potential in intact cells [22, 23]. Initially, there
are also no changes in respiration or ATP [22, 23], although,
ultimately, mild impairments in respiration and decreases in
ATP are observed [23, 30, 53].

Importantly, any effects of synuclein on bioenergetic
function may be more prominent at the nerve terminal, as
synuclein is present at much higher levels in this compart-
ment, both normally and in disease [11, 65]. In addition,
through its effects on mitochondrial morphology and/or
degradation, synuclein might affect the mass and distribu-
tion of mitochondria in axons; in turn, this could result in
regional deficits in ATP levels at the synapse, but not the
cell body. Indeed, in alpha-synuclein-overexpressing mice,
there is an accumulation of small axonal spheroids that are
immunoreactive for alpha-synuclein and are enriched in
autophagosome-like structures and deformed mitochondria
[66]. Consistent with a potential adverse effect of synuclein
on respiration at the nerve terminal, Chinta et al. [48]
observed dose-dependent, selective decreases in complex
I-dependent respiration of dopaminergic synaptosomes, iso-
lated from the striata of synuclein-overexpressing mice.

Fig. 2 Intersecting effects of synuclein and mitochondria on synaptic
transmission and neuronal death? In healthy neurons, synuclein is be-
lieved to regulate neurotransmitter release. A fraction of synuclein also
interacts with mitochondria, but the consequences of this interaction for
mitochondrial function or synaptic transmission are unknown. In
Parkinson’s disease, a greater fraction of synuclein interacts with mito-
chondria, and subsequent impairments in mitochondrial function may
adversely affect synaptic transmission and predispose to neuronal death
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Reactive Oxygen Species

Synuclein could affect reactive oxygen species (ROS) levels
by virtue of its association with mitochondria, which are a
major source of cellular ROS. For instance, this might occur
through synuclein’s effects on the respiratory chain, and a
number of studies have found that wildtype and/or mutant
synuclein can increase ROS accumulation [25, 67–69] and
oxidatively modify mitochondrial proteins [70]. Interestingly,
in yeast, synuclein-induced increases in ROS and toxicity
depend on the presence of mitochondrial DNA [71]. It re-
mains unclear if the ROS are an epiphenomenon that result
from synuclein’s effects on the respiratory chain or if they
represent a key mechanism by which synuclein exerts its
toxicity. Yet another possibility is that mitochondrial-driven
ROS function upstream of synuclein to produce toxicity, for
instance by regulating the rate of formation of toxic oligomer-
ic and/or fibrillar synuclein species [72].

Synaptic Transmission

Although synuclein’s normal functions are not defined, it is
known that elevated synuclein levels impair synaptic trans-
mission, while decreased synuclein levels can enhance
transmission. The mechanisms and relationship of these
effects to neurodegeneration remain controversial [73–79].
At present, there is no information as to whether the effects
of synuclein on mitochondria contribute to its effects on
synaptic transmission (Fig. 2), for instance by compromis-
ing energy production or leading to other mitochondrial
failure.

Neuronal Death

Understanding how or if the synuclein–mitochondria inter-
action contributes to neuronal death is a challenging, but
critical, issue to resolve. Although both synuclein and mi-
tochondria are clearly altered in idiopathic PD, it is possible
that they promote neuronal death through independent
mechanisms that converge only at the point of downstream
cell death pathways. Alternatively, although changes in ei-
ther can cause familial forms of PD, it is possible that only
one causes idiopathic PD, and changes in the other are
secondary epiphenomena with no functional consequences.
In addition, as idiopathic PD is almost certainly heteroge-
neous, perhaps idiopathic PD is a mix of disorders, some
caused by primary changes in synuclein and others by
changes in mitochondria.

However, despite these other possibilities, it seems more
likely that synuclein and mitochondria act together to pro-
duce disease (Fig. 2). Indeed, several studies found that even
physiologic levels of synuclein sensitize DA neurons to a
range of mitochondrial toxins [80–83], although others have

found conflicting results [84, 85]. Indeed, synuclein has
been found to both promote and protect against the activa-
tion of mitochondrial-dependent apoptotic pathways [69,
85]. Although the reasons for these discrepancies are not
clear, mitochondria do appear to be critical to synuclein
toxicity, as loss of mitochondrial DNA in yeast decreases
ROS and blocks synuclein-induced death [71].

Do synuclein–mitochondria interactions contribute di-
rectly to death in neurons? We showed that synuclein-
induced changes in mitochondrial morphology precede neu-
ronal death from increased synuclein [23], but this does not
establish causation. An important question is whether nor-
malizing mitochondrial morphology by adjusting the levels
of defined fusion/fission proteins (e.g., decreased Drp1 or
increased fusion protein expression) can prevent neuronal
death. This possibility is suggested by recent findings from
Drosophila, in which increased levels of the mitochondrial
chaperone TRAP1 blocked the effects of A53T-synuclein on
mitochondrial fragmentation, complex I-dependent ATP
production, and cell death [32].

With regard to bioenergetics, synuclein can clearly impair
respiration under some circumstances, but it will be important
to know if energy levels are actually compromised within
individual living neurons, and if the magnitude of any such
changes exceeds threshold levels needed to produce neuronal
dysfunction or death. Equally important will be the extension
of these findings into more physiologic systems, although at
present, all animal models of synuclein overexpression and
human neuronal models have important limitations, and it is
unclear which, if any, are most predictive of disease patho-
genesis or therapeutic efficiency in the human condition.

Summary

To summarize, the fraction of synuclein that interacts with
mitochondria can disrupt normal mitochondrial morphology
and function, and enhance susceptibility to mitochondrial
toxins. The central role that both synuclein and mitochon-
dria play in PD pathogenesis suggests that their interaction
may represent an important point of convergence in disease
pathogenesis. However, our current understanding of this
process is limited, especially with regard to the functional
consequences of synuclein–mitochondria interactions on
mitochondrial bioenergetics and other functions, and how
these changes ultimately affect synaptic transmission and
neuronal survival. Addressing these questions will require
new approaches to study mitochondrial functions in neu-
rons in vitro and in vivo, especially at the nerve terminal
where synuclein concentrates. A better understanding of
the mechanisms by which synuclein and mitochondria
contribute to PD should help guide the development of
new therapeutic approaches.
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