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Weak Convergence to Equilibrium of Statistical Ensembles in Integrable
Hamiltonian Systems

Chad Mitchell∗

Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA

(Dated: June 7, 2018)

This article explores the long-time behavior of the bounded orbits associated with an ensemble of
initial conditions in a nondegenerate integrable Hamiltonian system. Such systems are inherently
nonlinear and subject to highly regular phase space filamentation that can drive the ensemble of
orbits toward a stationary state. Describing the statistical ensemble by a probability density on
a neighborhood of a family of invariant tori, it is proved that the probability density describing
the ensemble at time t converges weakly to an invariant density as t → ∞. More generally, we
provide sufficient conditions for convergence to equilibrium of a multiphase system in action-angle
form. These ideas are applied to an illustrative exactly-soluble example. This work is relevant for
understanding the statistical mechanics of integrable and near-integrable Hamiltonian systems.

I. INTRODUCTION

Establishing the precise conditions needed to ensure that a statistical ensemble of orbits relaxes asymptot-
ically under a smooth flow (or map iteration) to an invariant steady-state is a central problem of ergodic
theory and nonequilibrium statistical mechanics. In the case of Hamiltonian flows, an ergodic condition
such as strong mixing [1]-[2] is needed to prove that an ensemble of orbits of fixed energy E relaxes (in an
appropriate weak or coarse-grained sense) to the usual microcanonical ensemble of equilibrium statistical
mechanics. In this case, the statistical behavior of orbits becomes asymptotically simple, as orbits are equally
likely to be found anywhere on the level set of energy E.

At the other extreme, integrable Hamiltonian flows possess a large number of conserved quantities, resulting
in highly regular orbits that are confined to lower-dimensional manifolds that foliate the system phase space.
The study of integrable Hamiltonian systems is a rich area of mathematical research [3]-[6] that has recently
found new applications to the physics of quantum statistical mechanics [7]-[9] and charged-particle dynamics
in particle accelerators [10]-[11]. When the Hamiltonian is nondegenerate, an ensemble of orbits in such a
system is subject to a process of filamentation or phase mixing, that drives the statistical system toward an
invariant steady-state. Due to the presence of conserved quantities, the ensemble may relax into one of a
large number of possible steady-states, depending on the detailed initial conditions of the ensemble.

The purpose of this article is to provide complete proofs of theorems regarding the long time behavior (as
t → ∞) of an ensemble of initial conditions evolving under the flow of such a system. More precisely, we
consider the following random initial value problem in action-angle form:

d~I

dt
= 0,

d~φ

dt
= ω(~I), ~I(0) = ~I0, ~φ(0) = ~φ0, (1)

where ~I ∈ Ω ⊂ RM , Ω open, ~φ ∈ TN , ω : Ω → TN , and the random initial condition (~I0, ~φ0) ∈ Ω × TN

is described by a probability density f0 = f0(~I0, ~φ0). Given a continuous observable G, we give conditions
for the convergence as t → ∞ of the expected value of G along the orbit (1). Likewise, letting ft denote
the probability density describing the orbit (1) at time t, we give conditions for weak convergence of the
associated probability measures Pt as t→∞.

∗ ChadMitchell@lbl.gov
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The proofs make use of mathematical tools in harmonic analysis (Parseval’s theorem, properties of multiple
Fourier series, etc.) and measure-based integration (dominated convergence, Fubini’s theorem), together
with some basic results from functional analysis and probability, for which we use [12]-[15] as references.
Some background in Hamiltonian mechanics [16]-[18] is beneficial, but no ergodic theory is used. We make
no claim that the proofs given here are the simplest possible, but we have tried to include as many technical
details as possible.

Section 2 provides basic results regarding the random initial value problem (1). In Section 3, we provide
conditions sufficient to guarantee convergence as t → ∞ of the expected values of the observables of such
a system (Theorems 1-4). In Section 4, we demonstrate weak convergence as t → ∞ of the one-parameter
family of probability measures Pt ⇒ Peq describing the system at time t (Theorem 5). Section 5 provides a
detailed and exactly-soluble numerical example. In Section 6, we conclude with a brief summary. Appendix A
contains a summary of notation, while Appendix B provides useful background from the theory of integrable
Hamiltonian systems.

II. PRELIMINARIES

A Hamiltonian dynamical system on a phase space of dimension 2N is said to be completely integrable if there
exist N functionally independent integrals of motion H = f1, . . . , fN with {fj , fk} = 0 for i, j = 1, . . . , N ,
where {·, ·} denotes the Poisson bracket. In such a system, the dynamics can locally be described in a
particularly simple action-angle form. (See Appendix B for a precise statement.) As a result, it is sufficient
to consider a problem of the following form.

Suppose M and N are positive integers. Let Ω ⊂ RM be nonempty and open, and consider a map ω : Ω→
RN , where we assume ω ∈ C2(Ω,RN ). In this paper, we will consider the dynamical system on Ω×TN given
by M +N equations of the form:

d~I

dt
= 0,

d~φ

dt
= ω(~I), (~I ∈ Ω, ~φ ∈ TN ). (2)

In the special case that M = N , the coordinates (~I, ~φ) could play the role of local action-angle variables for
an integrable Hamiltonian system. However, in the results that follow, nothing is lost by considering the
more general system just described, which is of related interest [19].

We refer to the map ω : Ω → RN as the frequency map of the system (2). A point ~I ∈ Ω is said to be a

regular point of ω if the Jacobian matrix Dω has rank N at ~I. This is equivalent to the condition that the

set {Dω1(~I), . . . , DωN (~I)} is linearly independent in RM . Otherwise, ~I ∈ Ω is said to be a critical point of
ω.

The system of equations (2) defines a corresponding flow on Ω × TN given by the one-parameter family of

maps Ψt(~I, ~φ) = (~I, ~φ+ tω(~I)), t ∈ R. Note that the Jacobian matrix of Ψt satisfies:

DΨt =

(
1M 0
tDω 1N

)
, det(DΨt) = 1, (3)

where 1M denotes the M × M identity matrix, with a similar definition for 1N . Thus, the flow Ψt is
volume-preserving.

We treat (2) as a random initial value problem. Suppose that the initial condition of (2) is modeled as a pair
of (generally) dependent random vectors described by a joint probability density f0 ∈ L1(Ω × TN ). Then

the point Ψt(~I0, ~φ0) at time t ∈ R is described by the following probability density ft ∈ L1(Ω× TN ):

ft(~I, ~φ) = f0(Ψ−1
t (~I, ~φ)) = f0(~I, ~φ− tω(~I)), (~I ∈ Ω, ~φ ∈ TN ). (4)
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This follows from the fact that Ψt is volume-preserving. By an observable, we mean a time-dependent random
variable of the form:

G(Ψt(~I0, ~φ0)), G ∈ C(Ω× TN ). (5)

The expected value of G at any time t ∈ R is given by:

〈G〉t =

∫
Ω×TN

G(Ψt(~I0, ~φ0))f0(~I0, ~φ0)d~I0d~φ0 =

∫
Ω×TN

G(~I0, ~φ0 + tω(~I0))f0(~I0, ~φ0)d~I0d~φ0, (6)

provided this integral exists. In Section 4, we will consider the probability measures Pt (t ∈ R) defined by:

Pt(A) =

∫
A

ft(~I, ~φ)d~Id~φ, A ⊂ Ω× TN , (7)

giving the probability that the orbit Ψt(~I0, ~φ0) falls within the Borel set A at time t.

III. EXPECTED VALUES OF OBSERVABLES

In this section, we study observables of the random initial value problem (2). Given G ∈ C(Ω × TN ), we
define the angle average Ḡ of G by:

Ḡ(~I) =
1

(2π)N

∫
TN

G(~I, ~φ)d~φ, ~I ∈ Ω. (8)

We give sufficient conditions for the following long time convergence of the expected value of G:

lim
t→∞
〈G〉t = 〈Ḡ〉0. (9)

The main convergence result appears in Theorem 4, which we approach in a series of steps.

Theorem 1: In the system (2), suppose ω ∈ C2(Ω,RN ) has no critical points. Suppose the initial condition
is described by a probability density f0 ∈ Cc(Ω×TN ), continuous with compact support. For any continuous
function G ∈ C(Ω× TN ), the expected value of the observable G exists and is bounded for all t ∈ R, and

lim
t→∞
〈G〉t = 〈Ḡ〉0. (10)

The key to the proof of this result is the following theorem regarding the asymptotic behavior of oscillatory
integrals [14], which is a generalization of the Riemann-Lebesgue lemma. The proof is rather standard, but
details have been included here for completeness.

Lemma 0: Let Ω ⊂ RM be open. Suppose that a ∈ L1(Ω), and that φ ∈ C2(Ω) is real-valued with ∇φ 6= 0.
Then for λ ∈ R,

I(λ) =

∫
Ω

a(x)eiλφ(x)dx→ 0 as |λ| → ∞. (11)

Proof: We prove this result first for the special case that a ∈ C∞c (Ω), and the general result will follow by a
density argument. For any λ 6= 0 we have on Ω that:

eiλφ =
1

iλ

∇φ
|∇φ|2

· ∇eiλφ. (12)
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Using this result in (11) gives

I(λ) =
1

iλ

∫
Ω

a(x)
∇φ(x)

|∇φ(x)|2
· ∇eiλφ(x)dx (13)

= − 1

iλ

∫
Ω

∇ ·
(
a(x)

∇φ(x)

|∇φ(x)|2

)
eiλφ(x)dx (14)

=: − 1

iλ

∫
Ω

u(x)eiλφ(x)dx, (15)

where the second equality follows by an application of integration by parts, since a vanishes on the boundary
of Ω. It follows from the smoothness conditions on a and φ that u is continuous. Letting K ⊂ Ω denote the
compact support of a, it follows that:

|I(λ)| ≤ 1

|λ|

∫
Ω

|u(x)|dx ≤ 1

|λ|
max
x∈K
|u(x)|m(K), (16)

where m denotes Lebesgue measure on RN . The limit (11) now follows.

Now suppose that a ∈ L1(Ω). Since C∞c (Ω) is dense in L1(Ω), there exists a sequence an ∈ C∞c (Ω)
(n = 1, 2, . . .) such that

||a− an||1 → 0 as n→∞. (17)

Put

I(λ) =

∫
Ω

a(x)eiλφ(x)dx, In(λ) =

∫
Ω

an(x)eiλφ(x)dx. (18)

Fix ε > 0. By (17), there exists an integer n0 > 0 such that ||a − an0
||1 < ε. The first part of the proof

shows that In0
(λ) goes to zero for large λ. Thus, there exists λ0 > 0 such that |In0

(λ)| < ε for all |λ| > λ0.
The triangle inequality and (18) together now imply that for all |λ| > λ0,

|I(λ)| ≤ |In0
(λ)|+ |I(λ)− In0

(λ)| ≤ |In0
(λ)|+ ||a− an0

||1 < 2ε. (19)

This proves the limit (11). �

The following two technical lemmas are needed to ensure that limiting operations can be exchanged freely,
and that the above lemma can be applied to our specific case.

Lemma 1: Let Ω ⊂ RM be open, let G ∈ C(Ω× TN ), and define the function Ĝ : Ω× ZN → C by:

Ĝ(~I, ~n) =
1

(2π)N

∫
TN

G(~I, ~φ)e−i~n·
~φd~φ, (~I ∈ Ω, ~n ∈ ZN ). (20)

Then for each ~n ∈ ZN the function Ĝ(·, ~n) lies in C(Ω).

Proof: Fix ~I0 ∈ Ω, and let B be an open ball centered at ~I0 whose closure B̄ satisfies B̄ ⊂ Ω. Since B̄ × TN
is compact and G is continuous, for all ~I ∈ B̄, ~φ ∈ TN we have:

|G(~I, ~φ)| ≤ max
B̄×TN

|G| <∞. (21)

Suppose {~Im} is any sequence in Ω such that ~Im → ~I0 as m → ∞. By choosing a tail of the sequence if

necessary, we may assume that {~Im} lies in B̄. It then follows from (21) and the dominated convergence
theorem that

lim
m→∞

Ĝ(~Im, ~n) =
1

(2π)N

∫
TN

lim
m→∞

G(~Im, ~φ)e−i~n·
~φd~φ = Ĝ(~I0, ~n), (22)
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so Ĝ(·, ~n) is continuous at ~I0. Since the same argument applies for any ~I0 ∈ Ω, we have shown that

Ĝ(·, ~n) ∈ C(Ω). �

Lemma 2: Suppose G ∈ C(Ω× TN ) and f0 ∈ Cc(Ω× TN ). Then∫
Ω

d~I
∑
~n∈ZN

|Ĝ(~I, ~n)f̂0(~I,−~n)| <∞, (23)

where Ĝ and f̂0 are defined as in Lemma 1.

Proof: Note that by the Cauchy-Schwarz inequality we have for each fixed ~I ∈ Ω that:

∑
~n∈ZN

|Ĝ(~I, ~n)f̂0(~I,−~n)| ≤

( ∑
~n∈ZN

|Ĝ(~I, ~n)|2
)1/2( ∑

~n∈ZN

|f̂0(~I,−~n)|2
)1/2

. (24)

Since the function G(~I, ·) is continuous for fixed ~I ∈ Ω and therefore lies in L2(TN ), we may apply Parseval’s
theorem to get: ∑

~n∈ZN

|Ĝ(~I, ~n)|2 =
1

(2π)N

∫
TN

|G(~I, ~φ)|2d~φ ≡ ||G(~I, ·)||22 <∞. (25)

An identical argument applies to the sum involving f̂0, so we have shown that for fixed ~I ∈ Ω:∑
~n∈ZN

|Ĝ(~I, ~n)f̂0(~I,−~n)| ≤ ||G(~I, ·)||2||f0(~I, ·)||2 <∞. (26)

Consider the functions g1, g2 : Ω → R defined by g1(~I) = ||G(~I, ·)||2 and g2(~I) = ||f0(~I, ·)||2 for all ~I ∈ Ω.
Since g1 and g2 are defined by integrals of the form (25), an argument using the dominated convergence
theorem (similar to Lemma 1) shows that g1 and g2 are each continuous on Ω. Since we have assumed that
f0 has compact support contained in Ω × TN , it follows that g2 has compact support K contained in Ω.
Since g1 and g2 each attain finite maxima on K, we have:∫

Ω

d~I
∑
~n∈ZN

|Ĝ(~I, ~n)f̂0(~I,−~n)| ≤
∫
K

g1(~I)g2(~I)d~I ≤ m(K) max
K
|g1g2| <∞, (27)

where m denotes Lebesgue measure on RN . This proves the Lemma. �

Proof of Theorem 1: From (6),

〈G〉t =

∫
Ω×TN

G(~I, ~φ+ t~ω(~I))f0(~I, ~φ)d~Id~φ. (28)

Define functions Ĝ : Ω×ZN → C and f̂0 : Ω×ZN → C describing the (action-dependent) Fourier coefficients
of G and f0:

Ĝ(~I, ~n) =
1

(2π)N

∫
TN

G(~I, ~φ)e−i~n·
~φd~φ, f̂0(~I, ~n) =

1

(2π)N

∫
TN

f0(~I, ~φ)e−i~n·
~φd~φ. (29)

Since the functions G(~I, ·) and f0(~I, ·) are continuous on TN and therefore lie in L1(TN ), the above integrals

are defined for all ~I ∈ Ω. Furthermore, the Fourier coefficients of the function on TN defined by ~φ 7→
G(~I, ~φ+ t~ω(~I)) for fixed ~I are given by:

1

(2π)N

∫
TN

G(~I, ~φ+ t~ω(~I))e−i~n·
~φd~φ = Ĝ(~I, ~n)eit~n·~ω(~I). (30)



6

Since the functions ~φ 7→ G(~I, ~φ+ t~ω(~I)) and f0(~I, ·) lie in L2(TN ) for fixed ~I ∈ Ω, Parseval’s theorem implies

that for each ~I ∈ Ω:

1

(2π)N

∫
TN

G(~I, ~φ+ t~ω(~I))f∗0 (~I, ~φ)d~φ =
∑
~n∈ZN

Ĝ(~I, ~n)f̂∗0 (~I, ~n)eit~n·~ω(~I). (31)

Here the ∗ denotes complex conjugation. Using this result, together with the fact that f0 is real, to evaluate

(28) gives (noting that f̂∗0 (~I, ~n) = f̂0(~I,−~n)):

〈G〉t = (2π)N
∫

Ω

∑
~n∈ZN

Ĝ(~I, ~n)f̂0(~I,−~n)eit~n·~ω(~I)d~I. (32)

It follows from Lemma 2 that

|〈G〉t| ≤ (2π)N
∫

Ω

∑
~n∈ZN

∣∣∣Ĝ(~I, ~n)f̂0(~I,−~n)
∣∣∣ d~I <∞, (33)

so 〈G〉t exists and is bounded for all t ∈ R. It also follows from (33) that we may apply Fubini’s theorem to
interchange the summation and integral in (32), so that

〈G〉t = (2π)N
∑
~n∈ZN

∫
Ω

Ĝ(~I, ~n)f̂0(~I,−~n)eit~n·~ω(~I)d~I. (34)

Again by (33), we may apply the dominated convergence theorem to conclude that:

lim
t→∞
〈G〉t = (2π)N

∑
~n∈ZN

lim
t→∞

∫
Ω

Ĝ(~I, ~n)f̂0(~I,−~n)eit~n·~ω(~I)d~I, (35)

provided the limits appearing on the right-hand side of (35) exist for each ~n ∈ ZN . It therefore remains to
study the asymptotic behavior as t→∞ of the integrals∫

Ω

Ĝ(~I, ~n)f̂0(~I,−~n)eit~n·~ω(~I)d~I. (36)

By Lemma 1, the function Ĝ(·, ~n)f̂0(·,−~n) appearing in (36) is continuous on Ω. Furthermore, since f0 has
compact support in Ω× TN , this function has compact support in Ω, and therefore lies in L1(Ω). Consider
the exponent appearing in (36) for a single ~n 6= 0. We have:

D(~n · ~ω(~I)) = n1Dω1(~I) + . . .+ nNDωN (~I). (37)

Since {Dω1(~I), . . . , DωN (~I)} is linearly independent by hypothesis, it follows that D(~n · ~ω(~I)) 6= 0. It then
follows from Lemma 0 that the integral (36) must vanish as t → ∞ when ~n 6= 0. Thus, only the ~n = 0
contribution survives in this limit and (35) gives:

lim
t→∞
〈G〉t = (2π)N

∫
Ω

Ĝ(~I, 0)f̂0(~I, 0)d~I. (38)

But

Ĝ(~I, 0) =
1

(2π)N

∫
Ω

G(~I, ~φ)d~φ = Ḡ(~I), (39)

so

lim
t→∞
〈G〉t = (2π)N

∫
Ω

Ḡ(~I)f̂0(~I, 0)d~I =

∫
Ω

Ḡ(~I)f0(~I, ~φ)d~φd~I = 〈Ḡ〉0, (40)

which gives (10). This proves the theorem. �
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The hypotheses f0 ∈ Cc(Ω × TN ) and G ∈ C(Ω × TN ) stated in the previous theorem can be relaxed in
various ways. The following formulation will play a central role in the following section.

Theorem 2: In the system (2), suppose ω ∈ C2(Ω,RN ) has no critical points. Suppose the initial condition
is described by a probability density f0 ∈ L1(Ω×TN ). For any bounded continuous function G ∈ Cb(Ω×TN ),
the limit (10) holds.

Proof: This follows directly from Theorem 1 by a density argument. Suppose f0 ∈ L1(Ω × TN ). Since

Cc(Ω× TN ) is dense in L1(Ω× TN ), there exists a sequence {f (n)
0 } ⊂ Cc(Ω× TN ) such that

||f0 − f (n)
0 ||1 → 0 as n→∞. (41)

Put

I(t) =

∫
Ω×TN

[
G(~I, ~φ)− Ḡ(~I)

]
ft(~I, ~φ)d~Id~φ, In(t) =

∫
Ω×TN

[
G(~I, ~φ)− Ḡ(~I)

]
f

(n)
t (~I, ~φ)d~Id~φ. (42)

Suppose |G(~I, ~φ)| ≤ K for some K > 0. Using the triangle inequality, we see for each (~I, ~φ) ∈ Ω× TN that

|G(~I, ~φ)− Ḡ(~I)| ≤ |G(~I, ~φ)|+ |Ḡ(~I)| ≤ 2K. (43)

Fix ε > 0. By (41), there exists n0 > 0 such that

||f0 − f (n0)
0 ||1 < ε. (44)

Since Theorem 1 applies using G and f
(n0)
0 , we have:

lim
t→∞

In0
(t) = 0. (45)

Thus, there exists t0 > 0 such that for all t > t0, |In0
(t)| < ε. Combining the triangle inequality with (42-43)

gives:

|I(t)| ≤ |In0
(t)|+ |I(t)− In0

(t)| ≤ |In0
(t)|+ 2K

(
||ft − f (n0)

t ||1
)
. (46)

A change of variables using the map Ψt shows that

||ft − f (n0)
t ||1 = ||f0 − f (n0)

0 ||1 < ε. (47)

Therefore, it follows from (46) that:

|I(t)| < ε(1 + 2K). (48)

This proves that I(t)→ 0 as t→∞, and the conclusion of Theorem 1 holds. This proves the theorem. �

When the domain Ω is unbounded, it is useful to consider observables G that may be unbounded. In this
case, convergence can be proved by imposing sufficient decay and growth conditions on the functions f0 and
G, respectively. As an example, the following result follows easily from Theorem 2.

Theorem 3: In the system (2), suppose ω ∈ C2(Ω,RN ) has no critical points. Suppose the initial condition
is described by a probability density f0 ∈ L1(Ω × TN ), and let G ∈ C(Ω × TN ). If there exists h ∈ C(Ω)
such that:

〈h〉0 <∞, |G(~I, ~φ)| < h(~I), (~I ∈ Ω, ~φ ∈ TN ) (49)

then the limit (10) holds.
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Proof: It follows from (49) that h > 0. Put R = 〈h〉0 > 0. Define the two functions:

f ′0 =
hf0

R
, G′ =

G

h
. (50)

Since h is continuous and nonvanishing, it follows from (49) that G′ ∈ Cb(Ω× TN ). Note that f ′0 ≥ 0 and∫
Ω×TN

f ′0(~I, ~φ)d~Id~φ =
1

R

∫
Ω×TN

h(~I)f0(~I, ~φ)d~Id~φ = 〈h〉0/R = 1, (51)

so f ′0 ∈ L1(Ω× TN ) defines a probability density. Note that we have:

〈G〉t =

∫
Ω×TN

G(~I, ~φ+ tω(~I))f0(~I, ~φ)d~Id~φ = R

∫
Ω×TN

G′(~I, ~φ+ tω(~I))f ′0(~I, ~φ)d~Id~φ. (52)

Applying Theorem 2 to the rightmost integral of (52) and noting that Ḡ′ = Ḡ/h gives:

lim
t→∞
〈G〉t = R

∫
Ω×TN

h(~I)−1Ḡ(~I)f ′0(~I, ~φ)d~Id~φ =

∫
Ω×T

Ḡ(~I, ~φ)f0(~I, ~φ)d~Id~φ, (53)

as claimed. �

For example, suppose G has the growth bound |G| ≤ K||~I||m for constants m, K > 0, where || · || denotes

the Euclidean norm on RM . Then it is sufficient to consider the majorizing function h(~I) = 1 +K||~I||m.

We now consider the role played by the critical points of the frequency map ω : Ω → RN . The following
theorem shows that the set of critical points poses no difficulty if this set is sufficiently small.

Theorem 4: In the random initial value problem (2), let ω ∈ C2(Ω,RN ) and suppose that the set of critical
points of ω has Lebesgue measure zero in RM . Suppose that the pair (f0, G) satisfies the hypotheses of any
of Theorems 1-3. Then the limit (10) holds.

Proof: Let ΩR and ΩC denote the set of regular points and the set of critical points of the map ω, respectively.
Then for all t ∈ R we have:

〈G〉t =

∫
ΩR×TN

ft(~I, ~φ)G(~I, ~φ)d~Id~φ+

∫
ΩC×TN

ft(~I, ~φ)G(~I, ~φ)d~Id~φ. (54)

Since m(ΩC) = 0 by hypothesis, we have:

m(ΩC × TN ) = m(ΩC)m(TN ) = 0. (55)

It follows from (55) that the rightmost integral in (54) vanishes for all t ∈ R. Now define the map J : Ω→ R
by:

J(~I) = det
[
(Dω(~I))T (Dω(~I))

]
(~I ∈ Ω). (56)

Note that ~I ∈ Ω is a critical point of the map ω if and only if J(~I) = 0. Since J is continuous, it follows
that ΩR is open in RM . We may therefore apply Theorems 1-3 to the functions f0 and G restricted to the
smaller domain ΩR × TN ⊂ Ω× RN to conclude that

lim
t→∞

∫
ΩR×TN

ft(~I, ~φ)G(~I, ~φ)d~Id~φ =

∫
ΩR×TN

f0(~I, ~φ)Ḡ(~I)d~Id~φ, (57)

where Ḡ is the angle average of G, defined by (8). Combining (54) and (57), it follows that

lim
t→∞
〈G〉t =

∫
ΩR×TN

f0(~I, ~φ)Ḡ(~I)d~Id~φ =

∫
Ω×TN

f0(~I, ~φ)Ḡ(~I)d~Id~φ, (58)
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where the second equality follows by again applying (55). This proves the theorem. �

The following two examples illustrate that the conclusion (10) guaranteed in Theorems 1-4 may fail if the
set of critical points of the frequency map ω : Ω→ RN is too large. In the simplest case, suppose that ω is
constant, with

ω(~I) = ~ν, (~I ∈ Ω, ~ν ∈ RN ). (59)

Then Dω = 0, and so every point ~p ∈ Ω is a critical point of ω. Suppose f0 ∈ L1(Ω × TN ), and take

G(~I, ~φ) = ei~n·
~φ for some nonzero ~n ∈ ZN . Then G ∈ Cb(Ω× TN ) and Ḡ = 0, but:

〈G〉t = 〈G ◦Ψt〉0 = 〈ei~n·(~φ+t~ν)〉0 = eit~n·~ν〈G〉0. (60)

For any initial density f0 chosen with:

〈G〉0 =

∫
Ω×TN

f0(~I, ~φ)ei~n·
~φd~Id~φ 6= 0, (61)

it follows that limt→∞〈G〉t does not exist unless ~ν = 0, in which case:

lim
t→∞
〈G〉t = 〈G〉0 6= 0 = 〈Ḡ〉0, (62)

and the conclusion (10) fails. This can also occur for nonconstant ω. To see this, put M = 1, N = 2, Ω = R
and

ω1(I) = ω2(I) = I, (I ∈ R). (63)

Then Dω = (1, 1)T , so rank(Dω) = 1 < 2, and every point of R is a critical point of ω. Put G(I, ~φ) = ei~n·
~φ

with ~n = (1,−1)T . Then G ∈ Cb(Ω× TN ) and Ḡ = 0, but since ~n · ω(I) = (n1 + n2)I = 0 we have:

〈G〉t = 〈G ◦Ψt〉0 = 〈ei~n·(~φ+tω(I))〉0 = 〈ei~n·~φ〉0 = 〈G〉0. (64)

For any initial density f0 satisfying (61), we again have (62), and the conclusion (10) fails.

IV. WEAK CONVERGENCE TO EQUILIBRIUM

In this section, we study the behavior as t→∞ of the probability density ft describing the orbit Ψt(~I0, ~φ0)

of the initial value problem (2) with random initial condition (~I0, ~φ0) ∈ Ω×TN . Our main result appears as
Theorem 5, which is most naturally expressed in terms of the corresponding probability measure Pt defined
in (6).

Given a probability density f0 ∈ L1(Ω× TN ), we define the angle average of f0 by:

f̄0(~I, ~φ) =
1

(2π)N

∫
TN

f0(~I, ~φ′)d~φ′ ~I ∈ Ω, ~φ ∈ TN . (65)

Note that f̄0 defines a probability density on Ω× TN since f̄0 ≥ 0 and by Fubini’s theorem:∫
Ω×TN

f̄0(~I, ~φ)d~Id~φ =
1

(2π)N

∫
TN

(∫
Ω×TN

f0(~I, ~φ′)d~Id~φ′
)
d~φ = 1. (66)

In addition, f̄0 is invariant under the flow Ψt associated with the system (2): for all t ∈ R,

f̄0 ◦Ψ−1
t = f̄0. (67)
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If f0 ∈ Cc(Ω× TN ), Theorem 1 implies that for every G ∈ C(Ω× TN ):

lim
t→∞

∫
Ω×TN

G(~I, ~φ)ft(~I, ~φ)d~Id~φ = 〈Ḡ〉0 =

∫
Ω×TN

G(~I, ~φ)f̄0(~I, ~φ)d~Id~φ. (68)

This suggests that f̄0 approximates ft when t is large. We explore in what sense, if any, we have:

ft → f̄0 as t→∞. (69)

First, we give a counterexample to demonstrate that (69) does not hold pointwise or in any of the standard
Lp spaces.

Consider the following example for M = N = 1, with Ω = R:

ω(I) = I, f0(I, φ) =
1

π
cos2(φ)B(I), (I, φ) ∈ R× T (70)

where B is any continuous, nonnegative function with compact support on R, normalized so that:∫ ∞
−∞

B(I)dI = 1. (71)

Then f0 ∈ Cc(R× T) defines a probability density on R× T, and

ft(I, φ) = f0(I, φ− tI) =
1

π
cos2(φ− tI)B(I), f̄0(I, φ) =

1

2π
B(I). (72)

Clearly, at any point (I, φ) ∈ R× T with I 6= 0 and B(I) 6= 0 we have that:

ft(I, φ) 9 f̄0(I, φ) as t→∞. (73)

In addition, this convergence fails to hold in every Lp(R× T), 1 ≤ p ≤ ∞. In fact, we have:

ft(I, φ)− f̄0(I, φ) = cos(2φ− 2tI)f̄0(I, φ), (74)

so that for every t ∈ R, using the fact that f̄0 is independent of the angle φ:

||ft − f̄0||∞ = sup
(I,φ)∈R×T

|cos(2φ− 2tI)| f̄0(I, φ) = ||f̄0||∞ > 0. (75)

Likewise, since ∫ 2π

0

|cos(2φ− 2tI)|p dφ = 8

∫ π/4

0

cosp(2φ)dφ = 2π (Mp)
p

(76)

for constants Mp > 0 (p = 1, 2, . . .), independent of t, we have

||ft − f̄0||p =

(∫ ∞
−∞

dI
∣∣f̄0(I, φ)

∣∣p ∫ 2π

0

dφ

2π
|cos(2φ− 2tI)|p

)1/p

= Mp||f̄0||p > 0. (77)

Both (75) and (77) hold independently of t, so convergence fails in every Lp(R× T).

Below is the central result that we wish to prove regarding the behavior of the probability density ft as
t→∞. We first recall the following definitions [15].

Definitions:



11

• Let X be a metric space, and let B(X) denote the σ-algebra of Borel subsets of X. A sequence {Pn}
of probability measures defined on the measurable space (X,B(X)) is said to converge weakly to a
probability measure P , also defined on (X,B(X)), if for any g ∈ Cb(X) we have:

lim
n→∞

∫
X

gdPn =

∫
X

gdP. (78)

In this case, we write Pn ⇒ P .

• Let P be a probability measure on (X,B(X)). A P−continuity set is a set A ∈ B(X) such that
P (∂A) = 0, where ∂A denotes the boundary of A.

If a weak limit exists, it is unique: a sequence of probability measures cannot converge weakly to two distinct
limits.

In the special case that X = Ω× RN , if Pn and P have densities fn and f , respectively, then the condition
(78) is that Pn ⇒ P if and only if:

lim
n→∞

∫
Ω×TN

g(~I, ~φ)fn(~I, ~φ)d~Id~φ =

∫
Ω×TN

g(~I, ~φ)f(~I, ~φ)d~Id~φ for all g ∈ Cb(Ω× RN ). (79)

Theorem 5: In the system (2), let ω ∈ C2(Ω,RN ) and suppose that the set of critical points of ω has
Lebesgue measure zero in RM . Suppose that the random initial condition is described by a probability
density f0 ∈ L1(Ω× TN ), and let ft and f̄0 denote the probability densities defined in (4) and (65). Define
corresponding measures Pt and Peq, given by:

Pt(A) =

∫
A

ft(~I, ~φ)d~Id~φ, Peq(A) =

∫
A

f̄0(~I, ~φ)d~Id~φ, A ∈ B(Ω× RN ). (80)

Then Pt ⇒ Peq as t→∞.

Proof: If G ∈ Cb(Ω× TN ), then Theorem 3 implies that as t→∞:∫
Ω×TN

G(~I, ~φ)ft(~I, ~φ)d~Id~φ = 〈G〉t → 〈Ḡ〉0. (81)

It then follows from Fubini’s theorem that:

〈Ḡ〉0 =

∫
Ω×TN

Ḡ(~I)f0(~I, ~φ)d~Id~φ =

∫
Ω×TN

G(~I, ~φ)f̄0(~I, ~φ)d~Id~φ. (82)

Since this convergence holds for arbitrary G ∈ Cb(Ω × TN ), it follows that the probability measures Pt
converge weakly to the probability measure Peq as t→∞, as claimed. �

Corollary: Suppose that the hypotheses of Theorem 5 hold. Consider any set A ∈ B(Ω × TN ) whose
boundary has measure zero, m(∂A) = 0. Then:

lim
t→∞

Pt(A) = Peq(A). (83)

Proof: By Theorem 5, Pt ⇒ Peq. Since Peq is described by the density f̄0 ∈ L1(Ω × TN ), it follows that
Peq(∂A) = 0, so A is a Peq−continuity set. The conclusion now follows by the Portmanteau theorem
(Theorem 2.1 of [15]).

Informally, (83) states that for all sufficiently large t, the probability that the orbit Ψt(~I0, ~φ0) lies in the set
A ⊂ Ω× TN is well-approximated by the quantity:

Peq(A) =

∫
A

f̄0(~I, ~φ)d~Id~φ. (84)
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We have assumed that our random initial condition is modeled by a probability measure P0 represented by
a density on Ω×TN . (That is, P0 is absolutely continuous with respect to the natural measure on Ω×TN .)
If this is not the case, then the conclusion of Theorem 4 may fail. For example, let M = N = 1, Ω = R
and let ω : R → R be the frequency map of (70). Let δ(I0,φ0) denote the unit mass concentrated at a point

(I0, φ0) ∈ Ω× T1, and let P0 denote the probability measure on Ω× T1 given by:

P0 = δ(I0,φ0), (I0 6= 0). (85)

The probability that the orbit at time t ∈ R lies in a set A is modeled by the pushforward of P0 under the
flow Ψt of (2), defined in general by:

Pt(A) = P0(Ψ−1
t (A)), A ∈ B(Ω× TN ). (86)

For this example, Pt is given explicitly by:

Pt = δ(I0,φ0+tI0), (87)

and for the function G ∈ Cb(Ω× T1) given by G(I, φ) = eiφ we have:

〈G〉t =

∫
Ω×T1

GdPt = ei(φ0+tI0). (88)

Since I0 6= 0, (88) fails to converge as t → ∞. It follows that Pt does not converge weakly to any limiting
probability measure Peq.

V. A NUMERICAL EXAMPLE

In this section, we consider an exactly-soluble example in one degree of freedom (M = N = 1) that illustrates
the ideas previously described. Let our symplectic manifold beM = R2 with the standard coordinates (q, p)
and the standard symplectic form Λ = dq ∧ dp, and consider the Hamiltonian given by:

HM(q, p) = ψg +
1

2
αg2, g =

1

2
(q2 + p2), (ψ > 0, α > 0). (89)

Then HM has one stable equilibrium point at the origin, where dHM = 0 (see footnote [21]), and the level
sets defined by HM = h are circles centered at the origin for all h > 0. Consider an initial probability
density on M of the form:

fM0 (q, p) =
1

2πε0
exp

(
− (q − q0)2 + p2

2ε0

)
, (ε0 > 0, q0 > 0). (90)

Figure 1 illustrates a set of 100K initial conditions randomly sampled from the density (90), together with
the evolution of these initial conditions under the flow of (89). The visible filamentation of the density with
increasing t is characteristic of nonlinear Hamiltonian flows, and we are interested in the limiting behavior
of the ensemble of orbits as t→∞.

Let Ω = {x ∈ R : x > 0}. A canonical transformation to action-angle variables χ : R2 \ {0} → Ω × T1 is
given by χ(q, p) = (I, φ), with:

q + ip =
√

2Ie−iφ, ( so dq ∧ dp = dφ ∧ dI ). (91)

The Hamiltonian (89) and the initial density (90) take the following forms in action-angle variables, for
(I, φ) ∈ Ω× T1:

H(I) = ψI +
1

2
αI2, f0(I, φ) =

1

2πε0
e−I/ε0e−q

2
0/2ε0 exp

(
q0

ε0

√
2I cosφ

)
. (92)
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FIG. 1. An ensemble of 100K initial conditions sampled from the density (90) for parameters ε0=0.01, q0 = 0.5
is tracked under the Hamiltonian flow of (89) with ψ=0.3, α=0.1. The dashed circle illustrates the invariant torus
defined by the level set where HM = 49/1280.

The frequency map ω : Ω→ R is given by ω(I) = ∂H/∂I = ψ+αI. Note that ω has no critical points since:

det(Dω(I)) =
∂ω(I)

∂I
= α 6= 0. (93)

We first explore the evolution of the ensemble centroid, given by the pair of expected values (〈q〉t, 〈p〉t) for
t ∈ R. To do this, we take as our observable the function:

G = q + ip =
√

2Ie−iφ, (I, φ) ∈ Ω× T1. (94)

The angle average Ḡ of the function G is given by:

Ḡ(I) =
1

2π

∫ 2π

0

G(I, φ)dφ =
1

2π

∫ 2π

0

√
2Ie−iφdφ = 0. (95)

We prove that the hypotheses of Theorem 3 hold. To see this, define h : Ω→ R by:

h(I) = 1 +
√

2I, (I ∈ Ω). (96)

Clearly h is continuous on Ω and |G| < h. The expected value of h is given by:

〈h〉0 = 〈1 +
√

2I〉0 = 1 +

∫ 2π

0

∫ ∞
0

√
2If0(I, φ)dIdφ. (97)

It is possible to show that the density in (92) satisfies the bound:

f0(I, φ) ≤ 1

2πε0
exp

(
−q0

ε0

√
2I

)
, (I > 8q2

0 , φ ∈ T1). (98)
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Therefore, ∫ 2π

0

∫ ∞
8q20

√
2If0(I, φ)dIdφ ≤ 1

ε0

∫ ∞
0

√
2I exp

(
−q0

ε0

√
2I

)
dI =

2ε20
q3
0

<∞, (99)

so 〈h〉0 <∞, and the hypotheses of Theorem 3 hold. The expected value of G at t ∈ R is given by:

〈q + ip〉t = 〈G ◦Ψt〉0 =

∫ 2π

0

∫ ∞
0

√
2Ie−i(φ+ω(I)t)f0(I, φ)dIdφ. (100)

Using (92) and evaluating the integral in (100) explicitly gives:

〈q + ip〉t = − q0

(tαε0 − i)2
exp

(
− q2

0tα

2(tαε0 − i)
− itψ

)
. (101)

In the limit α→ 0, the Hamiltonian flow of (89) becomes linear, and (101) takes the simple form of a rotation
q0 exp(−itψ) of angular frequency ψ about the origin. In the general case, this rotation is modulated by a
slowly-varying envelope described by the complex modulus of (101):∣∣∣∣ 〈q + ip〉t

q0

∣∣∣∣ =
1

(1 + τ2)
exp

(
− τ2ν

1 + τ2

)
, τ = tαε0, ν =

q2
0

2ε0
. (102)

Taking the limit of (101) for large t gives:

lim
t→∞
〈G〉t = 0 = 〈Ḡ〉0. (103)

This demonstrates that conclusion (10) of Theorem 3 holds, as expected. Figure 2 illustrates the quantity
(101), together with the modulation envelope (102) and the centroid values obtained numerically from the
ensemble of orbits shown in Fig. 1.

FIG. 2. The evolution of the ensemble centroid (101) is shown together with the modulating envelope (102). The
parameters used are identical to those used to produce Fig. 1. The centroid must decay into the origin since the
angle average of (94) vanishes.

Using the identity [23]

In(z) =
1

π

∫ π

0

ez cos θ cos(nθ)dθ, (z ∈ C, n ∈ Z) (104)

where In denotes the modified Bessel function of order n, one may obtain the angle-averaged probability
density (65) corresponding to the density in (92):

f̄0(I, φ) =
1

2πε0
e−I/ε0e−q

2
0/2ε0I0

(
q0

ε0

√
2I

)
. (105)
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To gain insight into the convergence ft → f̄0, it is convenient to express the density in terms of its Fourier
modes. To see this, define for each t ∈ R the characteristic function of the density ft, given by:

bt(k, n) = 〈einφeikI〉t =

∫ 2π

0

∫ ∞
0

einφeikIft(I, φ)dIdφ (k ∈ R, n ∈ Z). (106)

Clearly, we have the relationship:

bt(k, n) = 〈ein(φ+tω)eikI〉0 = 〈einφeitnψei(k+tnα)I〉0 = eitnψb0(k + tnα, n), (107)

which holds independently of the form of the initial density f0.

Evaluating (106) at t = 0 for the density in (92) gives explicitly:

b0(k, n) =
1

2µ

√
πν

µ
exp

(
ν

2µ
− ν
)[

I|n|/2−1/2

(
ν

2µ

)
+ I|n|/2+1/2

(
ν

2µ

)]
, (108)

where ν was defined in (102) and µ is a complex parameter depending on k given by:

µ = 1− ikε0. (109)

Figure 3 illustrates the complex modulus of the function (108) for the values n = 0, 1, 2, 3, 4. It follows
from (107) that the function bt(·, n), representing the angular Fourier mode of index n, is simply translated
in k to the left at the rate nα as t increases (Fig. 3, right panel). This reflects the fact that the filamented
structure of the density visible in Fig. 1 does not disappear, but is shifted to increasingly shorter wavelengths
as t→∞.

FIG. 3. The complex modulus of the characteristic function bt of the density ft = f0 ◦ Ψ−1
t for f0 given by (92) at

t = 0 (left) and at t = 50 (right) is shown for n = 0, 1, 2, 3, 4. The maxima decrease with increasing index n. The
parameters used are identical to those used to produce Figs. 1-2. The curves corresponding to n 6= 0 are translated
to the left with increasing t. In the weak limit t→∞, only the stationary n = 0 mode survives.

The stationary (n = 0) mode is given explicitly by:

b0(k, 0) =
1

µ
exp

(
ν

µ
− ν
)
, (110)

and one may verify that the characteristic function b̄0 of the angle-averaged density (105) is given by:

b̄0(k, n) = δn,0b0(k, 0) (k ∈ R, n ∈ Z). (111)

Noting from (108) that |b0(k, n)| → 0 as |k| → ∞ for each n ∈ Z, one sees from (107) the pointwise
convergence:

lim
t→∞

bt(k, n) = b̄0(k, n), (k ∈ R, n ∈ Z). (112)
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That is, the weak convergence Pt ⇒ Peq is reflected in the pointwise convergence bt → b̄0 of the Fourier
modes of the probability density ft.

Finally, let us return to the random initial value problem defined by the Hamiltonian flow of (89) on the
original space M = R2, described by the probability density fM0 ∈ L1(R2). Since weak convergence of
probability measures is preserved under continuous mappings, Theorem 5 implies that PMt ⇒ PMeq , where

PMt = Pt ◦ χ and PMeq = Peq ◦ χ. (See footnote [22].) For example, let A ⊂ R2 denote any Borel set
whose boundary has zero measure (e.g., a rectangle). From the Corollary to Theorem 5, it follows that the
probability PMt (A) that an orbit lies in A at time t converges, as t→∞, to the limit:

PMeq (A) = Peq(χ(A)) =

∫
χ(A)

f̄0(I, φ)dIdφ, (113)

where f̄0 is given explicitly by (105). This provides a clear probabilistic picture of the limiting behavior of
the system shown in Fig. 1.

VI. CONCLUSIONS

We have investigated the long time behavior (as t→∞) of the orbits of a dynamical system in the general
action-angle form (1), with random initial conditions sampled from a probability density f0 ∈ L1(Ω× TN ).
Given an observable G, Theorems 1-4 provide sufficient conditions on the triple (f0, ω,G) to guarantee that
the expected value of G converges to the expected value of its angle average Ḡ as t→∞. Likewise, Theorem
5 demonstrates that the probability density ft describing the orbits at time t converges in an appropriate
weak sense to the angle-averaged density f̄0 as t → ∞. The conditions require: 1) that the frequency map
ω : Ω→ TN is of class C2, and 2) that the critical points of ω form a set of measure zero. The exactly-soluble
model in Section 5 provides an illustration of these ideas in the context of an integrable Hamiltonian system.

The results described here can be applied to study the global orbits of an integrable system on a symplectic
manifoldM (Appendix B), with random initial conditions sampled from a probability density f0 ∈ L1(M).
This is straightforward if the density f0 is supported within the domain of a single transformation to local
action-angle variables. If this is not the case, suppose that M is covered almost everywhere by a finite set
{(Vj , χj)}nj=1 of action-angle charts with disjoint open domains Vj (j = 1, . . . , n) and maps χj : Vj → Ωj×TN .

Suppose that the frequency map ω(j) : Ωj → RN within each chart satisfies the hypotheses of Theorem 5.

By applying Theorem 5 to the probability density on Ωj × TN given by f
(j)
0 = f0|Vj

◦ χ−1
j /

∫
Vj
f0dm, we

obtain the desired weak convergence within each chart j = 1, . . . , n.

The weak convergence to equilibrium guaranteed by Theorem 5 can be quantified by using the bounded
Lipschitz metric dBL, a metric characterizing the distance between Borel probability measures on a separable
metric space. (See, for example, Section 11.3 of [24].) In particular, Pn ⇒ P if and only if dBL(Pn, P )→ 0
for a sequence of probability measures {Pn}. It is natural to seek estimates for the rate of convergence
dBL(Pt, Peq) → 0 as t → ∞, expressed in terms of the density f0 and the frequency map ω. This is a
possible topic of future research.
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APPENDIX A: SUMMARY OF NOTATION

For each nonempty open Ω ⊂ RM , we denote by Ck(Ω) the space of real-valued functions on Ω with
continuous partial derivatives up to and including order k. Similarly, Ck(Ω,RN ) will denote the space
of vector-valued functions g : Ω → RN whose N components (g1, . . . , gN ) each lie in Ck(Ω). If M is a
smooth manifold, then C∞(M) will denote the space of smooth real-valued functions onM. C(X), Cb(X),
and Cc(X) denote the sets of complex-valued functions on a topological space X that are continuous,
continuous and bounded, and continuous with compact support, respectively. If A ⊂ X, then Ā and ∂A
denote the closure and boundary of A, respectively. Points on the N -torus TN ∼= RN/2πZN are denoted
~φ = (φ1, . . . , φN ) mod 2π. Integrals on subsets of RN are taken with respect to the standard Lebesgue
measure on RN unless otherwise specified. Integrals on TN are taken with respect to the measure that is
induced by Lebesgue measure on [0, 2π]N so that:∫

TN

g(~φ)d~φ =

∫ 2π

0

. . .

∫ 2π

0

g(φ1, . . . , φN )dφ1 . . . dφN . (114)

By Lp(Ω× TN ) (1 ≤ p <∞) we denote the space of Borel measurable functions g : Ω× TN → C such that
||g||p <∞ with the norm:

||g||p =

(
1

(2π)N

∫
Ω×TN

∣∣∣g(~I, ~φ)
∣∣∣p d~Id~φ)1/p

, (115)

and in the case of L2(Ω× TN ) we define an inner product by:

〈g1, g2〉 =
1

(2π)N

∫
Ω×TN

g1(~I, ~φ)g∗2(~I, ~φ)d~Id~φ, (116)

where ∗ denotes complex conjugation. Similar definitions apply to the spaces Lp(Ω) and Lp(TN ). If X, Y ,
Z are sets and g : X × Y → Z, we let g(·, y) : X → Z denote the function mapping x 7→ g(x, y) for fixed
y ∈ Y , with a similar meaning for g(x, ·). Finally, if G is a random variable depending on a time parameter
t, the notation 〈G〉t will denote the expected value of G taken at time t.

APPENDIX B: INTEGRABLE HAMILTONIAN SYSTEMS

By a completely integrable Hamiltonian system with N degrees of freedom, we mean a symplectic manifold
(M,Λ) of dimension 2N , together with functions H = f1, f2, . . . , fN ∈ C∞(M) such that [16–18]:

1. {fj , fk} = 0 for j, k = 1, . . . , N , where {·, ·} denotes the Poisson bracket on (M,Λ),

2. The set {df1|p , . . . , dfN |p} is linearly independent for almost all p ∈M, with respect to the symplectic
volume measure on M.

The central result concerning such systems is as follows. Consider a single level set of the form:

M~c = {p ∈M : f1(p) = c1, . . . , fN (p) = cN} (~c ∈ RN ). (117)
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If {df1|p , . . . , dfN |p} is linearly independent at each p ∈ M~c, then M~c forms a smooth submanifold of M
invariant under the Hamiltonian flow of H. The theorem of Liouville-Arnold [16–18] states that if M~c is
compact and connected, then M~c is diffeomorphic to the N -torus TN .

Furthermore, given a sufficiently small neighborhood V ⊂M of such an invariant torus, there exists an open
Ω ⊂ RN and a canonical transformation (see footnote [20]) χ : V → Ω× TN to local action-angle variables

(~I, ~φ) ∈ Ω×TN such that the transformed Hamiltonian H is independent of ~φ and the orbits therefore satisfy
[16–18]:

d~I

dt
= −∂H(~I)

∂~φ
= 0,

d~φ

dt
= ω(~I) ≡ ∂H(~I)

∂~I
, (~I ∈ Ω, ~φ ∈ TN ). (118)

It follows from (118) that the Hamiltonian flow on Ω × TN is described by the one-parameter family of

symplectic maps Ψt given by Ψt(~I, ~φ) = (~I, ~φ+ tω(~I)), t ∈ R.

The Hamiltonian H in (118) is said to be nondegenerate if the frequency map ω : Ω→ RN satisfies:

det(Dω) 6= 0, [Dω]jk =
∂ωj
∂Ik

=
∂2H

∂Ij∂Ik
(j, k = 1, . . . , N). (119)

Note that a nondegenerate Hamiltonian must be nonlinear in the action variables ~I.

In particular, the results of this paper apply to systems of the form (118) that satisfy the condition (119) on
Ω, except possibly on a set of Lebesgue measure zero.
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