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ABSTRACT

Heating, ventilation and air conditioning (HVAC) is a mechanical system
that provides thermal comfort and accepted indoor air quality often instrumented
for large-scale buildings. The HVAC system takes a dominant portion of overall
building energy consumption and accounts for 50% of the energy used in the U.S.
commercial and residential buildings in 2012. The performance and energy saving
of building HVAC systems can be significantly improved by the implementation of
better and smarter control strategies. Therefore, it is of great benefits to developing
automatic, intelligent, optimal and consistent model and control tools to ensure the
normal operations of HVAC systems and increase the building energy efficiency.

Motivated by these goals, this thesis presents a parametric modeling approach
and a system-level control design for HVAC systems. For the modeling, we establish
dynamical models for return air for the air-handling-unit (AHU) of HVAC systems.
The models include temperature and air flow rate models. These models follow
the structure of the finite impulse response (FIR) model, and explicitly include
the control variables from the AHU, the dynamical states, and the disturbances.
Therefore, it is easy to apply this model to control design. Also, the model is
flexible with prediction horizon and control horizon with a stability of the accuracy.
In data processing, a convolution-based low-pass digital filter, Savitzky-Golay filter,
and the Butterworth low-pass filter are used for data smoothing. As a result, the
return air flow rate model becomes more feasible with the smoothed data.

Secondly, this thesis study develops a model predictive control (MPC) algo-
rithm with the application of the dynamical models for AHU optimization problems.
This control strategy optimizes the energy consumption of the AHU, and tracks the
set points the room temperatures, supply air flow and return air flow rate of the
building. The strategy provides physical-based inherent connection between compo-
nents in AHU by applying damper positions, supply air temperature and outside air
flow rate as manipulated variables. The control inputs are explicitly implemented
into both the models and objective functions and the optimization structure is com-
putationally efficient. The optimal results show an energy saving average percentage
over 27.8% and track the supply air flow rate and set point of room temperatures
in the building effectively. The thermal load, supply air flow rate set points are cal-
culated from thirty-two VAVs, that ensures the internal cooling demand, the static
pressure, and the ventilation level of the building.
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In this thesis, all the data processing and modeling, model validation and
implementation of the control algorithm are based on extensive data measurements
collected from an office building on the campus of the University of California, at
Merced. The control strategy is implemented into the online building automation
system (BAS) of the building and can be easily incorporated with other BAS as well
because of the explicit formulation.
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Chapter 1

INTRODUCTION

1.1 Background

1.1.1 Building HVAC

Heating, ventilation, and air conditioning (HVAC) is a technology of indoor
environmental comfort. HVAC is implemented for both residential and commercial
buildings to maintain acceptable thermal comfort within reasonable installation,
operation and maintenance costs.

Ever since the invention of its components during the industrial revolution,
HVAC has gradually evolved into a highly interdisciplinary and complex system.
Numerous new components, advanced sensing technologies, advanced control algo-
rithms, and artificial intelligence have been introduced into HVAC to meet oper-
ational objectives in different types of buildings worldwide. Consequently, HVAC
systems have been extensively deployed in both developed and developing countries.
In the United States alone, HVAC systems condition a total area of nearly 3.1 billion
square feet in buildings [1].

Due to increasing global population growth and civilization, more and more
large-scale buildings are being built all over the world. Buildings have become one
of the fastest growing energy consuming facilities on the earth. According to the
U.S. Department of Energy’s 2011 Building Energy Databook, buildings use 74%
of the nation’s electricity, and 40.33% of the nation’s total energy consumption
which is valued at $431.1 billion [2–4]. HVAC systems make up almost 50% of the
energy used in U.S. commercial and residential buildings [5]. Both organizations and
governments put their efforts to reduce the energy consumption of HVAC systems.
For example, the primary professional organization for regulation and standard of
HVAC industry in the U.S., the American Society of Heating, Refrigerating and
Air-Conditioning Engineers (ASHRAE), has published ASHRAE Standard 90.1 [6]
to provide minimum requirements for energy efficient design for buildings including
the HVAC part. And the application of the California Energy Commission’s energy
efficiency standards code title 24 has saved Californians more than $74 billion in
reduced electricity since 1977 [7]. As such, bettering the efficiency of HVAC systems
can significantly reduce the amount of electricity and energy buildings consume.
The performance and energy saving of building HVAC systems can be significantly
improved by the implementation of better and smarter control strategies.
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1.1.2 Control of HVAC

As people’s requirements of thermal comfort and energy efficiency increase,
the development and implementation of effective control techniques for HVAC sys-
tems plays a major role in building energy management. Over the last decade, the
cost of data processing, storage, and communication has decreased while the inte-
gration of building automation systems (BAS) has become more and more effective.
It provides more possibilities for the design and implementation of state-of-the-art
control techniques. Some conventional controllers, such as the on-off control and the
proportional-integral-derivative (PID) control, are still commonly used in local H-
VAC system units [8,9] or single small building sections [10]. Although on-off control
is the easiest to implement, its ability to control moving processes with nonlinear and
time-delay dynamics is limited. In comparison, the PID control is effective but the
parameter tuning is tedious. In order to track time-varying set points in HVAC sys-
tems, most research is focused on optimal tuning and auto-tuning approaches [11];
both can be time-consuming and disturb the normal operation [12].

“Hard control” is a controller design based on control theory, that has noth-
ing to do with the word “hardware” [13]. It includes also PID control, nonlinear
control, robust control, optimal control, adaptive control and MPC. For nonlinear
controller design, typical approaches used are feedback linearization and adaptive
control. He and Asada introduced feedback linearization to compensate for the
nonlinearity of the evaporate dynamic system and implemented it in a PI controller
design; although they found large estimation errors but they experienced successful
results [14]. Moradi, Saffar-Avval and Bakhtiari-Nejad applied both gain-scheduling
and feedback linearization techniques to manipulate the air-side and water-side valve
position for better performance of indoor temperature and relative humidity on an
air-handling-unit (AHU) [15], the same multi-input, multi-ouput (MIMO) unit con-
sidered by our approach. Since HVAC systems always have time-varying distur-
bances and tunable parameters, robust controllers are designed to fit these cum-
bersome properties. Wang and Xu developed a control strategy for AHU that uses
freezing, gain scheduling, I-term reset, and linear transition control in combination
with demand controlled ventilation and economizer control, thus solving instability
problems in transitioning between different control modes and ensuring both indoor
air quality (IAQ) and energy efficiency [16].

For HVAC systems, desired goals are to minimize energy consumption while
optimizing thermal comfort. Therefore, researchers use optimal control to solve H-
VAC systems problems, which are treated as optimization problems to minimize a
certain cost function. A system-level approach for optimizing multi-zone building
systems is proposed by House and Smith [17]; it considers the interactive nature
and parameters of HVAC systems in an effort to minimize system commissioning
cost and energy consumption without sacrificing thermal comfort. Wang and Jin
developed a supervisory controller using a search heuristic, Genetic Algorithm (GA)
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optimization that mimics the natural selection, which led to considerable energy re-
duction in winter while improving IAQ in summer [18]. This strategy was based on
predictions made using HVAC system dynamic models. Other evolutionary opti-
mization algorithms like the particle swarm optimization algorithm (PSO), are also
implemented in HVAC systems’ prediction controls [19]. Among hard control ap-
proaches, model predictive control (MPC) is advantageous for HVAC systems since
it works well with time-varing disturbance, nonlinear constraints, and slow-moving
dynamics.

In contrast to hard control, the use of soft control has accelerated in recent
years due to the development of digital control techniques and machine computation
abilities. For example, fuzzy logic controllers use the if-then-else statement and
follow intelligent rules; they are then incorporated into the auto-tuning of PID
controller gains or considered with the trade-off between conflicted objectives, such
as high demand for thermal comfort and reduction in energy consumption [20]. Also,
the neural network (NN) is stimulated from biological neurons that connect input
and output actions as a massively parallel distributed network, called the artificial
neural network (ANN) [21]. This method is based on real data from the system and
fits the nonlinearity of its dynamics, resulting in a black box modeling technique that
eliminates the need to fully understand the underlying physics theory of the system
process. The NN control design is often conducted by software-based simulation like
TRNSYS [22, 23], Simulink and GenOpt. An example of NN control is a thermal
comfort controller for AHU designed to the objective of predicted mean vote (PMV)
by Liang and Du, considering six manipulated variables [24].

Additionally, the fusion of hard control and soft control results in hybrid
controllers whose design implements soft control strategy at the higher levels of
the system for a global mission and hard control techniques at the lower levels for
accuracy and stability. A successful combination of these two control strategies
can solve a problem which might not be fixed by one control applied individually.
The fuzzy logic PID controller is a widely used application of hybrid control. A
comparison between non-adaptive fuzzy PID, adaptive fuzzy PID, and conventional
on-off control was proposed by Kolokotsa et al. The fuzzy controllers showed better
satisfaction of thermal comfort and IAQ [25].

1.1.3 MPC for HVAC

The implementation of MPC into HVAC systems will be discussed in detail
since the main control strategy considered in this thesis is MPC. MPC develops a
system model to predict certain steps of the system’s future state, and generates a
corresponding control vector that minimizes the cost function within the prediction
horizon. These systems might experience disturbances, which could be outside air
temperature, unexpected overloaded occupancy thermal demand, constraints that
might be caused by the rate and range limit of mechanical components, and physical
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bound of manipulated variables. The first step of the computed control vector is
applied to the plant while the remaining are discarded. This is repeated in the next
time instant.

Since improvements in computers have lessened framework computational
demands, MPC directs more and more attention to the building automation system
(BAS). The number of papers devoted to MPC in the journals Energy and Building,
Building and Environment, and Applied Energy has increased 100% in last twelve
years [26]. Previous reviews have been done by Naidu and Rieger [13, 27], as well
as Afram and Janabi-Sharifi [28]. Researchers design MPC using different objective
functions to evaluate the performance of controllers. Samuel et al. combined a
building thermal model with a weather-based control to maintain thermal comfort
while minimizing energy consumption [29]. Maasoumy and Sangiovanni-Vincenteli
focused on peak energy reduction by implementing an on-off controller and an MPC
controller [30]. Morosan et al. considered temperature regulation, which reduced
fluctuations from room set points [31]. Moreover, IAQ [32], energy performance in
transient state [33], step response improvement [34], computation load reduction [31]
and robustness of controlled system with disturbance [35] are also considered as
objective functions in MPC design of HVAC problems.

Exciting results were found from both simulation and experimental sides of
MPC application. The temperature regulation behavior and computational demand
of decentralized, centralized and distributed MPC approaches are compared also
with on-off and PI controls on a large-scale building with SIMBAD, a building and
HVAC simulation toolbox for MATLAB and Simulink [31]. Maasoumy simulated
the tracking and disturbance rejection results of MPC to a P controller, a tracking
LQR control, and a modified LQR controller using Dymola, a commercial simulation
interface of Modelica [36]. Experimental results also suggest the advantages in
the use of MPC for HVAC system control. An experiment applying MPC to a
building heating system was carried out on a real building in Prague, Czech Republic
which showed an energy savings potential greater than 15% [29]. Rehrl and Horm
compared the simulation and experimental results of both exact linearization and
MPC, and the latter controller showed better tracking to future reference signal [37].

Details of MPC framework are discussed in Chapter 2.

1.1.4 Thermal Modeling

Mathematical models of HVAC components are used for detecting and diag-
nosing fault (fault detection and diagnosis, FDD), upgrading control strategies, and
improving commissioning. A feasible model of HVAC systems can provide 20% to
30% energy savings [38]. Consequently, thermal modeling has been a very active
field, attracting many researchers for the past two decades. Among all applications
mentioned, models for controller design have been particular popularly since it is
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difficult but valuable to have an accurate model fits the HVAC dynamic behavior
to improve the control performance.

An HVAC system consists of different functional mechanical units, directly
connects building sections, and works in conjunction with other building construc-
tion systems. Each part of the HVAC system (room, dehumidifier, heater, cooler,
mixing chamber, fan and ductwork) can be described with mass and energy balance,
and thermodynamic differential equations [39]. Otherwise, temperature models, es-
pecially room temperature models, are used as they characterize IAQ and thermal
comfort, as is the case in the PMV model [40, 41], the ASHRAE Standard 55 [42],
and the ISO Standard 7730 [43].

By generalization method, the thermal modeling can also be classified as
physical-based models and data-driven models. Physical models are derived from
the thermal and mechanical process. Model parameters can be fixed by manufac-
turer documentation and application of parameter estimation from measurement.
Since thermal process is usually represented by first-order dynamic equations, anal-
ogous electrical RC network models are widely used. Wang and Xu developed and
validated the lumped internal thermal parameters of building thermal network mod-
el using the genetic algorithm estimator using real data from site monitoring [44].
Thosar et al. implemented a zone temperature model to a feedback linearization
VAV control developed from the energy transient equation [45], that achieved the
desired performance even with large disturbances and changes in setpoints.

With the rapid development of data computation and storage abilities, data-
driven models are more and more involved in prediction of HVAC system outputs
(also called black box methods). Data-driven models work for both for linear and
nonlinear mathematical functions to measure data. Examples of data-driven mod-
els include statistical models, for instance, auto-regressive (AR). Rı́os-Moreno et al.
demonstrated that the auto-regressive with exogenous (ARX) model can be adopted
to predict classroom indoor air temperature with very high coefficients of determina-
tion. [46]. Yiu and Wang studied system identification of a multiple-input, multiple-
output (MIMO) auto-regressive moving average exogenous (ARMAX) model to fore-
cast the performance of an air conditioning system of an office building in Kowloon,
Hong Kong [47]. Despite the above statistical methods, Mustafaraj et al. also com-
pared other numerical models of room temperature in an office like output error
(OE) and Box-Jenkins (BJ) model, and made a conclusion that the latter outper-
forms ARX and ARMAX [48]. For control application, researchers also use time
delay models to represent HVAC system process. Bi et al. exploited relay plus step
test determine the parameters of second order plus time delay model of air pressure
loops and first order plus time delay model of air temperature loops and designed an
auto-tuning PID controller for them. Other data-driven models, such as ANN [19],
FL, support vector machine (SVM) [49] also come up with high accuracy but suffer
from generalization capabilities [28].
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It is natural to consider combining the strength of the physical-based model
and the data-driven numerical approach. Wu and Sun proposed different multi-
stage regression, physical-based linear parametric (mpbARMAX) models of room
temperature and PMV index to take the advantage of both analytical and numerical
modeling approaches. The multi-stage regression structure also reveals the relation-
ship between the building thermal performance and the building parameters [50–53].

For MPC, the choice of thermal modeling also plays a key role in the whole
control process. A detailed building model from building structure, mechanical
components and material, might work effectively for subsystems by computer-aided
modeling tools, i.e. TRNSYS [22] and EnergyPlus [54], and simulates and tracks
the building system behavior. However, the implicity and complexity of the models
reduce its possibility to implement with MPC strategy [26].

1.1.5 Air Economizer Control of AHU

The control problems in HVAC systems can also be classified from the struc-
ture side rather than methodology side. Over the last decade, there have been
considerable research and development on model-based and optimal control algo-
rithms for both HVAC equipments at the component level and system level. A
complex HVAC system of a commercial building consists of cooling towers, chillers,
AHUs, and zones with VAV units. Research on optimal control for cooling towers
and chillers can be found in the work by Chow et al. [55] and Jin et al. [56] respec-
tively. Within VAV, MPC approach by Huang [35] and GA optimization by Wang
and Jin [18] are implemented.

Unlike other units, the AHU is multi-functional and nexus between central
plant and building level of HVAC systems. An AHU is used to regulate, distribute,
and recirculate air of an HVAC system. It includes different types of components,
such as air dampers, fans, heating or cooling coils, humidifier, filters and mixing
chamber. If an AHU uses 100% outside air and doesn’t recirculate air, it is called
a makeup air unit (MAU). Also, an AHU designed for outdoor use, usually on
roofs, is known as a packaged unit (PU) or rooftop unit (RTU). Building Energy
Systems Group of the Pacific Northwest National Laboratory (PNNL) estimated the
energy and cost savings for RTUs from different control strategies individually and
in combination using EnergyPlus for four building types in 16 locations covering
all 15 climate zones in the U.S. [57]. Four control options, economizer control, fan
speed control, cooling capacity control, and demand-controlled ventilation (DCV)
were compared. The result showed that simply adding multi-speed fan control and
DCV individually contribute the most to energy and cost saving for PUs.

As for typical AHUs, similar as control types mentioned from PNNL’s work,
fan control, cooling coil control, and air economizer control are applied. Bai et
al. built a second-order plus dead-time plant representing the dynamics from the
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supply fan variable speed drive to the supply air pressure, then implemented an auto-
tuning PID controller on it [11]. The results demonstrated the superior performance
of the auto-tuner over the manually tuned PID controller. With regard to cooling
coil control, Wang et al. derived a simplified model from energy balance and heat
transfer principles followed by parameter identification by either linear and nonlinear
least square method [58]. The model is easy to apply to real-time cooling coil
control since it contains the set points from the air side and the water side, and can
serve as constraints in energy consumption optimization. Fong et al. implement
an evolutionary programming technique in cooling coil control by optimizing both
the set points of chilled water and supply air temperatures on a monthly basis, and
achieved 7% saving potential compared to the one with the existing settings [59].

Last but not least, the air economizer takes in outside air to reduce mechan-
ical cooling energy consumption and can be controlled easily by adjusting outside
air damper, exhaust air damper, and recirculation air damper positions. The per-
formance of an air economizer directly impacts on the electricity consumption of
fans and cooling coil. Therefore, it has a great potential in energy and cost sav-
ing, and draws attention from researchers over the last two decades. Engineers in
Johnson Controls presented a damper control system considering damper geometry,
dynamic losses and pressure drop to prevent outside air entering the AHU through
the exhaust duct [60]. Wang and Liu considered humidity control during an air
economizer cycle to achieve IAQ requirements with a less energy price [61]. Yuan
and Perez introduced MPC to the air economizer control with supply air temper-
ature and outside air flow rate as control variables, that showed a cost effective
performance compared to tradition PI controller [62]. Nassif and Moujaes devel-
oped a split-signal damper control theory [63]. The new operation strategy showed
an annual energy saving and better fan performance compared to the conventional
two-couple and three-coupled damper tuning approaches [64]. Seem and House sim-
ulated the model-based and the optimization-based control strategies to minimize
cooling load by adjusting outside air fraction [65]. Wang and Song talked about
derivative-based supply air flow rate and supply air temperature optimal control
during an air economizer cycle in the case of MAU [66].

1.2 Our Approach

The pursuit of building energy efficiency and thermal comfort provides mo-
tivation for us to achieve a system-level modeling and control of HVAC system.

For the modeling, a parametric ARMAX model is presented for return air
temperature and return air flow rate in an AHU. The resulting models take advan-
tages of data-driven technique and are easy for control design implementation. As
a result, the models fit the measurements pretty well and serve as the plant model
in MPC algorithm with a flexibility of prediction horizon length.
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For the control, a system-level MPC is designed for an HVAC system. By
modeling the dynamics inside AHU and applying objectives and constraints from
the lower level HVAC units, this control strategy links different levels of the HVAC
system with a focus on energy consumption. Also, the computation load is low since
the models and objective functions are explicit and the gradient inside this optimal
control follows a fine structure. This control strategy reduces energy consumption
meanwhile secure the enough cooling load, pressure balance, and thermal comfort
of the building.

The rest of this thesis consists of four chapters. Chapter 2 presents the
introduction of MPC, mathematical models commonly used in MPC, and a special
MPC approach with Lagrangian Multiplier. Chapter 3 implements the ARMAX
model of HVAC dynamics and MPC control with Lagrangian Multiplier to an HVAC
system. Chapter 4 demonstrates the model validation and control simulation results
based on data collected from a building on the campus of University of California
(UC) at Merced. Finally, Chapter 5 summarize this thesis and take a look at the
future work.
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Chapter 2

REVIEW OF MPC

2.1 Introduction

In Chapter 1, we have discussed the application of MPC to HVAC systems.
This chapter provides a review of mathematical principles and industrial applications
of different MPC strategies and after that it focuses on the numerical method to solve
the optimization problem arising from MPC, which is the Lagrangian approach.

Motivated by practical need from chemistry industries, the development of
MPC has drawn a lot of attention from the control area academic community [67,68].
MPC is a thinking of control methodology rather than a specific control algorith-
m [69]. MPC predicts the future input and state from a dynamical model and
optimization with respect to an objective function..

The basic methodology of MPC can be described as follows, and is shown in
Figure 2.1:

1. The future predicted outputs yp(k + n | k), n = 1, 2, . . . , P are determined
by the measurement information ym(k) up to the instant k and future control
inputs u(k+n | k), n = 0, 1, . . . , P − 1. The horizon P is called the prediction
horizon. The expression yp(k + n | k) means the value is expected with the
available information at instant k.

2. The set of future control inputs is calculated by an optimization based on
an objective function. The criterion of the function usually takes the form
of a quadratic function of the errors between the predicted outputs and the
reference trajectory yr(k). For some specific MPC algorithms, like Model
Algorithmic Control (MAC), the measurement value ym(k) is also taken into
consideration to the tracking error. Constraints, linear or nonlinear, might be
applied during the optimization.

3. The control input u(k | k) is sent to the process while the remaining control
signals in this series are discarded. At that time, the next sampling instant
ym(k + 1) is already known since the input has been updated. Then u(k + 1 |
k + 1) will be computed since the information at instant k + 1 is available.
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Figure 2.1: Example of elements in model predictive control: reference trajectory
yref (k+n), predicted output yp(k+n | k), measured output ym(k+n),
and control input u(k + n | k). yp(k + n | k) and u(k + n | k) are
expected values based on the information at instant k.
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Figure 2.2: A typical diagram of MPC with measurement.

A basic structure of MPC is shown in Figure 2.2 with the current measure-
ment correction included. A model is utilized to predict the future plant outputs
based on past and current measurements of inputs and outputs. Considering the
above information, the future control actions will be calculated by an optimizer
with the cost function and constraints taken into account. From this figure, we can
find out that the model plays a key role in MPC. Precision of the model is needed
to mimic and predict the dynamical behavior of the real plant. In Section 2.2, we
will introduce some candidates of process models of MPC in both academia and
industry.

2.2 Process Models

The process model is one of the most basic elements in MPC. A compre-
hensive model should capture the process dynamics and assure the precision of
prediction. Thus, it’s important to choose the right models for various systems.
Moreover, most MPC schemes were implemented with the development of digital
computation. In our approach, the ARMAX model is used as the plant model of
our MPC algorithm.

ARMAX models, used in statistical analysis of time series, are described in
terms of three polynomials: an autoregressive (AR) part, a moving average (MA)
part, and a series of exogenous (X) inputs:

y(k) =

NP∑
i=0

a(i)y(k − i) +

NC∑
i=0

b(i)u(k − i) +

ND∑
i=0

c(i)w(k − i). (2.1)
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where y(k− i) is the output sequence, u(k− i) is the external inputs, and w(k− i) is
the disturbance. This model contains the states order NP , the controls inputs order
NC , and the disturbance inputs order NC , and coefficients a(i), b(i), c(i) respectively.
Typically they must be obtained by fitting the model to plant data. Obviously,
a(0) = b(0) = c(0) = 0.

If there is no disturbance included, the model can be represented as

y(k) =

NP∑
i=0

a(i)y(k − i) +

NC∑
i=0

b(i)u(k − i). (2.2)

This model is also called the Infinite Impulse Response (IIR) filter since it has an
internal feedback to continue the impulse infinitely. Compared to Finite Impulse
Response (FIR) filter, IIR filter meets a given set of specifications with a much lower
filter order than a corresponding FIR filter. Moreover, the IIR filter contains the
history of state error, which makes it trackable to the measurement noise, but needs
to update online with a steep adaptation.

The IIR filter model is equivalent to different models, such as state space
models and transfer functions [70]. Given the concept of state space in linear control
theory, the model can be rewritten as a state space model

x(k) = Ax(k − 1) +Bu(k − 1), (2.3)

y(k) = Cx(k).

Similarly, if the time delay of control input is considered, the transfer function
model can be shown as

y(z) =
z−mB(z−1)

A(z−1)
u(z), (2.4)

where A(z−1) and B(z−1) are polynomials of z-transform variable, m is the time de-
lay. If m = 0, this model is equivalent to Equations 2.2 and 2.3. The parameter can
be determined by experimental identification. However, to build this model, some
prior knowledge should be considered such as the order of A(z−1) and B(z−1) [69].
This model is often used in Generalized Predictive Control (GPC), Unified Predic-
tive Control (UPC) and Extended Prediction Self-Adaptive Control (EPSAC).

Moreover, if a(i) = 0, i = 1, . . . , NP and c(i) = 0, i = 1, . . . , ND, the model
can be described as the impulse response model, also called the finite convolution
model. It represents the output by a weighted sequence of previous inputs at differ-
ent time intervals. It appears in MAC. The relationship between output and input
is given by

y(k) =
k∑
i=0

g(i)u(k − i). (2.5)
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This model is also known as the FIR filter. The response of an FIR filter to an
impulse ultimately settles to zero because there is no feedback in the filter. The
FIR filter can be written as the step response model

y(k) =
k∑
i=0

β(i)∆u(k − i), (2.6)

where the parameter β(i) known as the process step-response function; and ∆u(k−
i) = u(k− i)−u(k− i− 1). The step response model is commonly used in Dynamic
Matrix Control (DMC) and its variants. It’s easy to find its similarity to the impulse
response model. They are equivalent [67] and connected as

g(i) = β(i)− β(i− 1), (2.7)

β(i) =
i∑

j=1

g(j). (2.8)

To conclude, ARMAX model consists of the previous states, the control in-
puts and also disturbance. The properties ensure its ability to be adopted to MPC
algorithm. Its equivalence to other models also provides the possibility to rebuild
the model in different MPC strategy application and for different controller design
objectives.

2.3 Lagrangian Solution Methods for Nonlinear MPC

The concept of Lagrangian Multiplier Methods stems from mathematical
optimization for finding the local minima and maxima of a function subject to
some equality constraints. The minimization of the optimization problem can be
expressed as:

min
x∈D

f(x, y), (2.9)

g(x, y) = c, (2.10)

where f(x, y) is the function needs optimization, subject to the constraint g(x, y) =
c.

If f(x, y) and g(x, y) are continuous and first partial derivable, we can in-
troduce a new variable λ as the Lagrangian Multiplier. The new objective is the
Lagrange function defined by

L(x, y, λ) = f(x, y) + λ(g(x, y)− c), (2.11)

The gradients of Lagrange function respective to x, y, λ can be derived as:
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∂L
∂x

= ∂f
∂x

+ λ ∂g
∂x
,

∂L
∂y

= ∂f
∂y

+ λ∂g
∂y
,

∂L
∂λ

= g(x, y).

(2.12)

The extremum is found by solving the 3 equations in 3 unknowns x, y, and the
Lagrangian Multiplier λ. From Equation 2.12 it is easy to find that the gradient vec-
tors of f(x, y) and g(x, y) are parallel, although their magnitudes are unequal. Note
that the case λ = 0 is also a solution regardless of g(x, y). If an extremum exists,
the method of Lagrangian Multipliers yields a necessary and sufficient condition for
optimality in this constrained problem [71]. This method is widely used in optimiza-
tion problem equality constraints, but if Lagrangian Multipliers are nonnegative it
also works for inequality constraints, which are also called as Karush-Kuhn-Tucker
conditions (KKT) [72].

In control theory, the Lagrange Multiplier Method is often applied to form
optimal controllers due to its flexibility to solve both lower and higher dimension
constrained problems [73, 74]. A typical MPC scheme tries to solve a constrained
optimization problem at discrete time steps whose decision variables are given as
a control input sequence. The objective function is often in the formulation of lin-
ear quadratic regulation (LQR), which is easy to implement in Lagrange functions.
Thus, an interactive way to compute the optimal manipulated variables is to use
the Lagrangian Multipliers framework. A receding horizon, open-loop optimal MPC
control law using Lagrangian Multipliers was introduced by Muske et al. [75]. The
optimization problem is a nonlinear model with an equality constraint and an in-
equality constraint. Tøndel et al. converted a constrained linear MPC problem to a
multi-parameter quadratic programming (QP) solver and found explicit MPC solu-
tion by applying KKT conditions [76]. Hovd utilized the calculation of 1-norm and
infinite-norm of Lagrangian Multipliers of QP problems to design penalty functions
for soft constraints in MPC [77]. Richter et al. discussed the certification of a fast
gradient method obtained from the Lagrangian Multipliers Method and applied the
certification procedure to a constrained MPC problem under KKT conditions [78].
Nedelcu and Necoara developed an approximate dual gradients method to update
Lagrangian Multipliers and improved the number of iterations in a quadratic M-
PC problem [79]. All of these studies demonstrate that the Lagrangian Multiplier
Method can be a good fit to solve MPC problems, especially for linear models, and
satisfies both equality and inequality constraints.

The formulation of MPC with Lagrange Multipliers can be expressed as fol-
lows. In discrete time, a deterministic process control is

x(k + 1) = f(x(k), u(k)), (2.13)

y(k) = g(x(k)).
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These states x(k) controls u(k) and outputs y(k) are vectors.
For a conventional MPC formulation, the objective can be written as

J =
N∑
j=0

(Φ(y(k + j | k)) +Qj |yr(k + j)− y(k + j | k)|2) (2.14)

+
N−1∑
j=0

Rj |∆u(k + j | k)|2 .

This objective function contains a nonlinear objective term, the quadratic
function of the tracking error to reference trajectory, the penalty of the control
effort, where Qj, Rj > 0 are the weights of each term. It should be noted that the
objective function is calculated based on the prediction horizon and follows the form
of summation. After introducing Lagrange Multiplier, the objective function can be
expressed as

J∗ = J +
N∑
j=1

λj(x(k + j | k)− f(x(k + j − 1 | k), u(k + j − 1 | k))). (2.15)

Compared to the original equation 2.14, the Lagrangian term is added, where
λj is the Lagrange Multiplier.

Therefore, the predictive controller solves at each time step the following
optimization problem:

min
x,y,u

J∗(x,y,u, λ) (2.16)

s.t.x(k + j | k)− f(x(k + j − 1 | k), u(k + j − 1 | k)), j = 1, . . . , N, (2.17a)

y(k + j | k) = g(x(k + j | k)), j = 0, . . . , N − 1, (2.17b)

u(k + j | k) ∈ U, k = 0, . . . , N − 1, (2.17c)

x(k + j | k) ∈ X, j = 1, . . . , N, (2.17d)

where U and X imply the bounds and constraints of control inputs and states. If
the objective function is explicit to partial differentiation, we can find the gradient
of J respect to all the variables:
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∇J∗ =



∂J∗

∂x(k+N |k)
∂J∗

∂x(k+N−1|k)
...

∂J∗

∂x(k+1|k)
∂J∗

∂u(k+N−1|k)
...

∂J∗

∂u(k|k)
∂J∗

∂λN
...

∂J∗

∂λ1



= 0, (2.18)

X = [x(k +N | k), x(k +N − 1 | k)...x(k + 1 | k),

u(k +N − 1 | k), . . . u(k | k), λN . . . λ1]T . (2.19)

After solving 2.19 from the gradient 2.18, the optimal combination of future
states, control inputs and Lagrange Multipliers can be found. The computational
load is decided by the length of prediction horizon. The highlight of this method is
introducing the dynamics of the system as a constraint inside the objective function,
as the formulation of Lagrange Multiplier. Then the objective function turns to a
Lagrange function.

Moreover, the structure of ∇J is also computational-friendly. For example,
if Φ(y) = 0, y(k) = x(k), we rewrite ∇J∗ = 0 as AX = b,

 2QN 0 IN
0 R −BT

IN B 0





x(k +N | k)
x(k +N − 1 | k)

...
x(k + 1 | k)

u(k +N − 1 | k)
...

u(k | k)
λN
...
λ1


= b, (2.20)
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where the penalty matrix

R =


RN−1 −RN−1

RN−2

. . .

R0 R0

 , (2.21)

and the N − 1 by N partial derivative matrix B with respect to control variables

B =


∂f(x(k+N |k),u(k+N−1|k))

∂u(k+N−1|k)

. . .
∂ 6f(x(k+1|k),u(k|k))

∂u(k|k)

 . (2.22)

After solving the linear system 2.20, the future control input array U =
[u(k | k), . . . , u(k +N − 1 | k)]T can be calculated.

For controls for HVAC systems, the Lagrange Multiplier is often used with
physical-based and analytical models. Knabe and Felsmann designed an optimal
operation schedule of HVAC systems based on Lagrange Multiplier method, and
expressed the difficulties of its application in the technical field [80]. Marletta com-
pared Lagrange Multipliers Method with the Monte Carlo method and Szargut-
Tsatsaronis method, and discussed the possibility to use Lagrange Multipliers as
sensitivity coefficients for HVAC systems’ performance [81]. Chang chose the co-
efficient of performance (COP) of a chiller as the objective function, and adopted
Lagrange Multiplier with the balance equation of the chiller’s cooling load [82]; the
experiment results on two building in Taipei showed a lower energy cost compared to
the conventional control. As for the utilization of Lagrange Multiplier in the MPC
strategy for HVAC systems, Kelman and Borrelli designed an MPC controller based
on a dynamical model of AHUs with a strong assumption of thermal load in the
building zone and outside air temperature [83]. In our approach, the Lagrange Mul-
tiplier is combined with the data-driven dynamical model in the objective function,
which will be discussed in Chapter 3.
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Chapter 3

MODELING AND CONTROL OF HVAC

3.1 Building Description

Extensive past and current measurements of the HVAC system in the Science
and Engineering 1 (SE1) building of UC Merced are available to us. The network of
sensors and controls for the HVAC system in SE1 building obeys the communica-
tion protocol for building automation and control networks (BACnet) by ASHRAE,
ANSI and ISO standard [84]. The database and direct digital control (DDC) are
accessible by an online building automation system, WebCTRL R© [85], offered by
Automated Logic. Such a highly instrumented building serves as an ideal living
laboratory to support the research on energy efficiency.

For building geometry, the SE1 building is a four-floor, southwest orientation,
19, 666 gross square meter building with the primary use as office and laboratory.
Two heating and cooling water bridges, nine unit heaters (UH), and ten air handling
units (AHU) work together with sixty-one variable air volumes (VAV) to control and
regulate 374 rooms and spaces in this building.

There are two major types of rooms, i.e., the faculty office and the conference
room. The geometrical dimensions of the faculty office and the conference room are
3.2004×4.4714×3.0480 (length×width×height) cubic meters, and 9.6012×5.1816×
3.0480 cubic meters, respectively. Figure 3.1 shows the third floor map of the SE1
building with detailed distribution of VAV units. Table 3.1 presents the geometries
of the rooms regulated by VAVs under AHU9 (A9), which are responsible for the
office space of the long wing side of the SE1 building. It should be noted that the
volumes are calculated based on the room heights measured from the floor to the
suspended ceiling. Some rooms have no surface exposed to the outside.

Merced, located in the San Joaquin Valley of California, is in the Mediter-
ranean Steppe eco-region. Its climate exhibits rich variations during a given year.
The summer is hot and dry from June to August, and the winter is cold and rainy
from November to April. The measurements of the HVAC system have rich dynam-
ics.

As for the central plant of the HVAC system on campus is a chilling plant
containing a lead-lag-standby setup of three chillers, and the heating plant consists
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Figure 3.1: The distribution of VAVs on the third floor of the SE building on UC
Merced’s campus.

Table 3.1: The geometries of the rooms or spaces controlled by VAVs of AHU 9.

VAV Swa (m2) Swd (m2) V (m3) VAV Swa (m2) Swd (m2) V (m3)

V 301 0.4 46.8 170.0 V 201 0.4 46.8 170.0
V 302 4.8 24.5 167.4 V 202 4.8 24.5 167.4
V 303 8.8 30.4 124.9 V 203 8.8 30.4 124.9
V 354 19.0 10.2 131.0 V 204 19.0 10.2 131.0
V 305 19.0 10.2 131.0 V 205 19.0 10.2 131.0
V 306 19.3 52.1 315.2 V 206 8.6 39.3 230.0
V 307 19.0 10.2 131.0 V 207 19.0 10.2 131.0
V 308 19.0 10.2 131.0 V 208 19.0 10.2 131.0
V 309 19.0 10.2 141.3 V 209 19.0 10.2 141.3
V 310 19.3 52.1 431.4 V 210 6.3 39.3 305.1
V 311 19.0 10.2 131.0 V 211 19.0 10.2 131.0
V 312 12.7 6.8 87.3 V 212 12.7 6.8 87.3
V 313 6.4 3.4 75.5 V 213 6.4 3.4 75.5
V 314 12.7 6.8 87.3 V 214 12.7 6.8 87.3
V 315 12.7 6.8 90.4 V 215 12.7 6.8 90.4
V 316 20.8 94.18 989.0 V 216 6.3 94.18 618.1
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of three, dual fuel boilers. The pump speeds of both plants are modulated by
PID controls to maintain differential pressures at discharge. To building level sub-
systems, the AHU units apply logic and PID controls to regulate the supply fan
variable-frequency drive (VFD), return fan VFD, adjust the damper position of
chilling water and supply air temperature. These control loops maintain the duct
pressure, return fan discharge pressure, and supply air temperature according to the
set point. The VAV units implement two separate control loops, i.e., the cooling
loop and the heating loop, to keep the temperature at set point. Both of the loops
apply PI controls with three operational modes: heating, cooling, and deadband.
In summer, the heating loop is barely used and the cooling valve is always open.

The PID controls are localized and are actually involved in one another by
thermodynamics. However, the relationship of the inputs, outputs, parameters, and
disturbance of each control loop are not explicit from WebCTRL R©. Thus, for a
more global and intelligent control strategy, we need to build dynamical models for
this HVAC process.

3.2 Mathematical Model

3.2.1 Introduction

Commercial buildings in the education sector, like the SE1 building, need
commissioning all the year round. Figure 3.2 shows the schematic diagram of an
AHU in the SE1 building. It’s a single duct AHU which means the supply air uses
only one duct for supply air (SA) under both cooling and heating mode. The AHU
has two inputs, the outside air (OA) and the return air (RA), and two outputs,
the supply air and the exhaust air (EA). The supply fan and return fan modulate
the variable frequency drive (VFD) to provide the pressure difference and three
dampers (outside air damper, exhaust air damper, and recirculation air damper)
control the air flow rates between the AHU and outdoors. The chiller in the supply
duct maintains the supply air temperature set point. All the components, chiller,
dampers, fans, and VFDs are controlled to achieve the goal, providing cooling load
to the office space of SE1 building.

3.2.2 Return Air Dynamical Model

The process can be expressed by Figure 3.3. This loop can be divided by the
following procedure:

1. AHU mixing and cooling

In the AHU process, part of the return air from the building is mixed with out-
side air in the mixing chamber. After that, the mixed air (MA) goes through
filters driven by supply fan. The temperature of the air will be typically cooled
to 55 F (13◦C) and supplied to the VAVs. The ratio of the return air recycled
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Figure 3.2: A typical single duct air handling unit.

Figure 3.3: The air recirculation loop of AHU9.
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can be determined by the damper position of the exhaust air damper and the
return air damper, which is

β =
DRA

DEA +DRA

. (3.1)

2. Duct distribution to VAVs

The VAVs distribute the supply air to different building zones. Reheating
might be included in the VAVs during fall and winter time. Passing duct work
and diffusers, the temperature of discharge air (DA) to different rooms varies
from each other and the supply temperature.

3. Room thermal loading and air returning duct work

After serving the rooms, the HVAC system also collects room air from office
space to recirculate, keep ventilation, and meet thermal comfort. The real
time room air from V AV 201−216 and V AV 301−316 will be collected by the
return fan of AHU9 from return air duct in each room. Then the return air
will participate in the recirculation loop of the next time span. This process
can be mathematically represented by

TRA =
32∑
i=1

ρiTz,i, (3.2)

ρi =
Vz,i

32∑
i=1

Vz,i

.

where Tz,i is the zone temperature served by the ith VAV, Vz,i is the volume of each

room, and ρi is the relative weight of each room. Obviously,
32∑
i=1

ρi = 1.

Therefore, the top-down level of the HVAC system in the SE1 building is
connected by this air recirculation loop. From the process, we can find that the
return air can be considered as an output as well as the feedback of this loop. Hence,
the return air temperature and return air flow rate can be used as two states of our
mathematical model. Both of them are affected by the recirculation air damper
ratio β, supply air temperature TSA, outside air flow rate ṁOA, outside temperature
TOA, the states of themselves before, and the discharge flow rate, as well as the
room temperature setpoint of each room. Details will be provided in Section 3.3
From Equation (3.2) we can find that return air temperature is a reference of the
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Figure 3.4: Mathematically equivalent measurements show a very high correlation
between the calculated air from the VAVs and the return air temper-
ature measurements from AHU9.

room temperature measurements. To confirm that, the calculated TRA from room
temperature measurements of V AV 201−216 and V AV 301−316 are compared with
the return air temperature of AHU9. The data is collected from 7 days of May,
2014. Figure 3.4 show that they track each other very well. A further correlation
analysis shows that the correlation coefficient between them is 0.9478.

As for the return air flow rate, it is proportional to the supply air flow rate
to the office space to maintain both the thermal and ventilation balance. The
ratio changes with the time partition but is steady in a certain time span. An
equivalent connection also needs to build across the top-down hierarchy. We also
provide a validation example for this relative reference. We track the measurements
of discharge air flow of each VAV units and the return air flow rate of AHU9 during
the same time as the validation of return air temperature. Figure 3.5 shows the
mathematical equivalence of the summation of the discharge flow rate and the supply
air of AHU9 with a correlation coefficient of 0.9561. That means AHU9 adjusts
the supply air flow rate according to the demand of the office space.

23



18 20 22 24 26
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
x 10

4

Days (May)

A
ir

F
lo
w

R
at
e
(c
fm

)

˙mSA

˙mDisch from VAVs
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rate measurements from AHU9
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Now we can try to derive the mathematical model from the HVAC back-
ground. Typically a first order plus time delay (FOPTD) is used to represent an
HVAC process [86] such as

G(s) =
X(s)

U(s)
=

K

Ts+ 1
exp(−Ls), (3.3)

where K is the process gain and L represents the time-delay. The input and output
logged until the process enters a new steady state gain. The parameter identification
of this model is easy but might be sensitive to measurement noise and determined by
complex manipulated variables. Additionally, FOPTD works better for components
rather than a multi-agent process. For multiple control inputs and state variables,
and systems with disturbance, we consider the ARMAX model

x(n+ 1) =

NP∑
i=0

a(i)x(n− i) +

NC∑
i=0

b(i)u(n− i) + cw(n), (3.4)

where x(n) is the state variable,u(n) is the control input and w(n) is the disturbance.
The model is explicit for control design. Take the return air temperature model as
an example:

TRA(n+ 1) =

NP∑
i=0

at(i)TRA(n− i) +

NC∑
i=0

(bt,1(i)β(n− i) + bt,2(i)TSA(n− i) (3.5)

+ bt,3(i)ṁOA(n− i)) + ctTOA(n).

This model is easy to implement into a controller design. TRA is the state
being observed, β, TSA(n−i) and ṁOA are manipulated variables, and TOA represents
the real time climate treated as a disturbance since it cannot be controlled. Large
scale of measurements from AHU, VAVs, and outside air condition are available to
determine the model parameters. This results in a collection of coefficients at, bt,1,
bt,2 ,bt,3 and ct. It should be noted that when the length of the prediction horizion
is 1 or 2, the order of this ARMAX model is consistent with the thermodynamic
laws.

3.2.3 Energy Model

The energy consumption of an AHU in Figure 3.2 consists mainly of the
cooling load of the water chiller and electricity usage of both the supply fan and the
return fan.

EnAHU = EnCW +WF t, (3.6)

WF = WSF +WRF .
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The water coil needs to cover the energy required to cool down mixed air to
the set point of the supply air temperature. It is assumed and so it is in Merced
that the outside air is very dry, where the dew point is less than 55 F (13C). That
means no latent heat is lost and only the sensible cooling load is considered during
the cooling process. In the continuity condition, ṁMA = ṁSA, therefore the energy
consumption of the water chiller can be expressed as

EnCW = cpṁSA(TMA − TSA). (3.7)

Before passing through the supply fan, the mixed air temperature is fixed by
the combination of outside air and recirculated air in the mixing chamber. If TMA

is above saturation line, the moisture in the air won’t condensate, and the flow rate
and temperature balance during an air economizer cycle is

ṁSA = ṁOA + βṁRA, (3.8)

cpṁOATOA + βcpṁRATRA = cpṁSATMA. (3.9)

Combining Equation (3.7), (3.8) and (3.9), the cooling load can be expressed
as

EnCW = cpṁSATMA − cpṁSATSA, (3.10)

= cpṁOATOA + βcpṁRATRA − cp(ṁOA + βṁRA)TSA,

= cpṁOA(TOA − TSA) + βcpṁRA(TRA − TSA).

Otherwise, the power usage of the supply and return fans follows the affinity
law. P is proportional to the third power of the flow rate ṁ, as shown in Equation
(3.11).

WF = WSF +WRF , (3.11)

= WSF,ref (
ṁSA

ṁSA,ref

)3 +WRF , ref(
ṁRA

ṁRA,ref

)3.

The reference power and flow rate are calculated from real operation of HVAC
system in the SE1 building.

In summary, the energy consumption of AHU can be expressed as

EnAHU = cpṁOA(TOA − TSA) + βcpṁRA(TRA − TSA) (3.12)

+WSF,ref (
ṁSA

ṁSA,ref

)3 +WRF,ref (
ṁRA

ṁRA,ref

)3.
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3.3 Control Formulation

3.3.1 HVAC Background

A stereotype AHU is multi-functional. The primary purposes include distri-
bution of supply air to the building zone at a set point value, keeping the building in
static pressure. As described in Section 3.2.2, AHU9 in the SE1 building is running
in an enconomizer cycle, and the transient time is short compared to the steady
state of each time span. For dampers, the outside air flow rate, and the supply air
temperature, local PID control is applied to every single component with only a sim-
ple link to each other [12]. However, to minimize energy consumption and optimize
thermal comfort, the traditional control might not yield the optimal solution. In this
section, an energy efficient and multi-objective MPC control strategy that considers
ventilation and thermal load is introduced based on the same control variables in
the original local PID control. The advantages of applying MPC include:

• A physical-based inherent connection between components in the AHU, and
considers cross-level constraints in the whole HVAC system of the SE1
building.

• The controller is designed to be online, receding state prediction and
future optimal control inputs calculation.

• The impact of measurement noise and nonlinearities is reduced by data
regression and time domain integration.

• The algorithm is based on WebCTRL R©, and is easily implemented into
building automation systems.

3.3.2 Model Predictive Control

For comparison, the same manipulated variables are chosen as the original
local PID control: the recirculation air damper ratio β, the supply air temperature
TSA and the outside air flow rate ṁOA. The model of AHU9 in the SE1 building
includes the control inputs and can be represented by the model proposed in Section
3.2.2. For simplicity, the prediction horizon is set to be N and the control horizon
is used as N − 1:

x(k + 1) =
N∑
i=0

A(i)x(k − i) +
N−1∑
i=0

B(i)u(k − i) + Cw(k), (3.13)

where x(k) = [TRA(k), ṁRA(k)]T , u(k) = [β(k), TSA(k), ṁOA(k)]T , w(k) = TOA(k).
Note that ∆u(k) = [∆β(k),∆TSA(k),∆ṁOA(k)]T , rather than u(k), is commonly
calculated in realistic computation, and ∆u(k) = u(k)− u(k − 1).

Then the objective function can be expressed at every sample time k:
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J =
N∑
j=0

(Q1j |TRA,ref (k + j)− TRA(k + j | k)|2 (3.14)

+Q2j |ṁRA,ref (k + j)− ṁRA(k + j | k)|2)

+
N−1∑
j=0

(EnAHU(k + j | k) +Q3j |ṁSA,ref (k + j)− ṁSA(k + j | k)|2

+R1j |∆β(k + j | k)|2 +R2j |∆TSA(k + j | k)|2

+R3j |∆ṁOA(k + j | k)|2),

where EnAHU(k) follows the structure of Equation (3.12), TRA,ref (k) and ṁRA,ref (k)
is the designed set point from historic data as reference of zone temperature and
ventilation level of SE1 building It should be noted that the supply air flow rate
ṁSA,ref (k) is also an observable variable. It indicates the demands of fresh air
amount. Also, its product multiplying to TRA,ref (k), the reference of the room
temperatures set point, can present cooling load demand of the building. The supply
air flow rate ṁSA,ref (k) can be represented as Equation (3.8).

To find optimal control inputs, the gradient-based Lagrangian solution method
are introduced to the objective function. The mathematical models of the states
TRA(k) and ṁRA(k) serve as constraints of the dynamical behavior of HVAC sys-
tem. They are linked to the original objective function with Lagrangian Multipliers.
Thus, the updated objective function can be defined as:

J∗ = J +
N∑
j=1

λj(TRA(k + j | k)− f(TRA(k + j − 1 | k),∆u(k + j − 1 | k))) (3.15)

+ µj(ṁRA(k + j | k)− g(ṁRA(k + j − 1 | k),∆u(k + j − 1 | k))).

where f(TRA(k+j−1 | k),∆u(k+j−1 | k)) and g(ṁRA(k+j−1 | k),∆u(k+j−1 | k))
are referred to the ARMAX models in Equation 3.13.

The optimization problem is shown from Equations (3.16) to (3.17g):

min
∆u

J∗(x,∆u, λ, µ), (3.16)

subject to the following constraints:
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βmin ≤ β(k + j | k) ≤ βmax, (3.17a)

TSA,min ≤ TSA(k + j | k) ≤ TSA,max, (3.17b)

ṁOA,min ≤ ṁOA(k + j | k) ≤ ṁOA,max, (3.17c)

∆βmin ≤ ∆β(k + j | k) ≤ ∆βmax, (3.17d)

∆TSA,min ≤ ∆TSA(k + j | k) ≤ ∆TSA,max, (3.17e)

∆ṁOA,min ≤ ∆ṁOA(k + j | k) ≤ ∆ṁOA,max, (3.17f)

TRA(k + j | k) = f(TRA(k + j − 1 | k),∆u(k + j − 1 | k)), (3.17g)

ṁRA(k + j | k) = g(ṁRA(k + j − 1 | k),∆u(k + j − 1 | k)). (3.17h)

The control inputs in this study have different physical meanings. β is the
recirculation air damper ratio; it is easy to find if the return air damper is fully open
(DRA = 1) and the exhaust air damper is fully closed (DEA = 0) at the same time.
When this occurs β = 1, which means all the return air is recycled for the next time
span of air supply. Otherwise, when the return air damper is fully closed (DRA = 0)
and the exhaust air damper is fully open (DEA = 1), β = 0. In this situation, the
return air is all relieved and the supply air is provided by fresh air. However, to
keep the building static pressure’s balanced and make sure there is enough fresh air
for supply, these two extreme cases would not happen. The physical lower bound
of DEA and DRA is set to 15% and 12% respectively. The upper bounds are both
100%, fully open. Therefore the range of β can be shown as:

βmin =
DRA,min

DEA,max +DRA,min

≈ 11%, (3.18)

βmax =
DRA,max

DEA,min +DRA,max

≈ 87%.

To determine the bounds of TSA, the designed supply air temperature TSA,d of
55 F (13 C) is used as the lower bound TSA,min. This is a conventional temperature
for supply air in HVAC systems. However, if the dew point of the outside air is
below 55 F, the latent cooling load would not exist. In this case, no saturated steam
will condensate [66]. Therefore the TSA can be not limited and higher set point
can be used for reducing the AHU’s energy consumption. It should be noted that
TSA,max is cooling load demand generated by occupants and devices in the building
zone area.

For the outside air flow rate ṁOA, the minimum outside air flow rate is 3000
cubic feet per minute (cfm), which is determined by the BAS of the SE1 building.
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This number is set according to the requirement of the outdoor air needed per person
in office buildings from ASHRAE Standard 62.1 [87]. The upper bound value of the
outside air flow rate cannot exceed that of the supply air flow rate. The limitations
of ṁOA can be shown as:

ṁOA,min = 3000 cfm, (3.19)

ṁOA,max = ṁSA,d.

In addition, the reference trajectory in this approach, TRA,ref , ṁRA,ref and
ṁSA,ref need to be determined for the objective function. As mentioned in Section
3.2.2, the return air temperature of AHU9 is a weighted average from room tem-
perature in the office space of the SE1 building. Thus, the set point of each room
temperature can be a reference for the state of return air temperature, that is,

TRA,ref =
32∑
i=1

ρiTset,i, (3.20)

where Tset,i is the set point of room temperature in each zone and ρi is the weight
of each zone. Similarly, the reference of supply air reference can be expressed as the
summation of the set point of discharge air flow rate in each zone,

ṁSA,ref =
32∑
i=1

ṁset,i (3.21)

And the return air flow rate reference is proportional to the supply air reference,

ṁRA,ref = αṁSA,ref (3.22)

The ratio α is calculated from the designed set point and the historic data from
summer 2014. Since we use historic air flow rates as reference, the effect of fan
powers can be neglected according to the affinity law.

After the parameter identification, now we can apply the gradient to the
objective function. Take prediction horizon p = 2, control horizon m = p − 1 = 1
as an example: 

∂J∗

∂x1(k+2|k)
∂J∗

∂x2(k+2|k)
∂J∗

∂∆u1(k|k)
∂J∗

∂∆u2(k|k)
∂J∗

∂∆u3(k|k)
∂J∗

∂λ(k+2)
∂J∗

∂µ(k+2)


=



∂J∗

∂TRA(k+2|k)
∂J∗

∂ṁRA(k+2|k)
∂J∗

∂∆β(k|k)
∂J∗

∂∆TSA(k|k)
∂J∗

∂∆ṁOA(k|k)
∂J∗

∂λ(k+2)
∂J∗

∂µ(k+2)


= 0, (3.23)
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where

∂J∗

∂TRA(k + 2 | k)
= 2Q1(TRA(k + 2 | k)− TRA,ref (k + 2)) + λ(k + 2), (3.24)

∂J∗

∂ṁRA(k + 2 | k)
= 2Q2(ṁRA(k + 2 | k)− ṁRA,ref (k + 2)) + µ(k + 2), (3.25)

∂J∗

∂∆β(k | k)
= cpṁRA(k + 1 | k)(TRA(k + 1 | k)− TSA(k)−∆TSA(k | k)) (3.26)

+ 2Q3ṁRA(k + 1 | k)(ṁRA(k + 1 | k)(β(k) + ∆β(k | k))

+ (ṁOA(k) + ∆ṁOA(k | k))− ṁSA,ref (k + 1))

+ 2R1∆β(k | k)− bt,1λ(k + 2)− bf,1µ(k + 2),

∂J∗

∂∆TSA(k | k)
= −cp(ṁOA(k) + ∆ṁOA(k | k) (3.27)

+ (β(k) + ∆β(k | k))ṁRA(k + 1 | k))

+ 2R2∆TSA(k | k)− bt,2λ(k + 2)− bf,2µ(k + 2),

∂J∗

∂∆ṁOA(k | k)
= cp(Toa(k + 1)− (TSA(k) + ∆TSA(k | k)) (3.28)

+ 2Q3(ṁOA(k) + ∆ṁOA(k | k)

+ (β(k) + ∆β(k | k))ṁRA(k + 1 | k))

+ 2R3∆ṁOA(k | k)− bt,3λ(k + 2)− bf,3µ(k + 2),

∂J∗

∂λ(k + 2)
= TRA(k + 2 | k)− (atTRA(k + 1 | k) + bt,1(β(k) + ∆β(k | k))

+ bt,2(TSA(k) + ∆TSA(k | k)) + bt,3(ṁOA(k) + ∆ṁOA(k | k)) (3.29)

+ ctToa(k + 1)),

∂J∗

∂µ(k + 2)
= ṁRA(k + 2 | k)− (afṁRA(k + 1 | k) + bf,1(β(k) + ∆β(k | k))

+ bf,2(TSA(k) + ∆TSA(k | k)) + bf,3(ṁOA(k) + ∆ṁOA(k | k)) (3.30)

+ cfToa(k + 1)),

Actually Equations (3.29) and (3.30) are the state equations that predict the value
of the sates at the time interval k + 2. They serve as the dynamical constraints
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inside the optimization problem. If we put all the constants on the right-hand-side,
the equations can be represented in the matrix form

 Q 0 I2

0 R BT

I2 B 0




TRA(k + 2 | k)
ṁRA(k + 2 | k)

∆β(k | k)
∆TSA(k | k)
∆ṁOA(k | k)

λ
µ


= d, (3.31)

where

Q = 2

[
Q1 0
0 Q2

]
, (3.32)

R =

 −2δṁ2
RA(k + 1 | k)− 2R1 cpṁRA(k + 1 | k) −2Q3ṁRA(k + 1 | k)

−cpṁRA(k + 1 | k) −2R2 cp
−2Q3ṁRA(k + 1 | k) cp −2δ − 2R3

 ,
(3.33)

B =

[
bt,1 bt,2 bt,3
bf,1 bf,2 bf,3

]
. (3.34)

And the right-hand-side is a vector of constant, which is

d = [d1, d2, d3, d4, d5, d6, d7]T , (3.35)

where
d1 = Q1TRA,ref (k + 2), (3.36)

d2 = Q2ṁRA,ref (k + 2) (3.37)

d3 = cpṁRA(k + 1 | k)TRA(k + 1 | k) (3.38)

+ 2Q3ṁRA(k + 1 | k)(ṁOA(k | k) + β(k | k)ṁRA(k + 1 | k)

− ṁSA,ref (k + 1)),

d4 = −cp(ṁOA(k | k) + β(k | k)ṁRA(k + 1 | k)), (3.39)

d5 = cp(Toa(k + 1)− TSA(k | k)) (3.40)

+ 2Q3(ṁOA(k | k) + β(k | k)ṁRA(k + 1 | k)

− ṁSA,ref (k + 1)),

d6 = atTRA(k + 1 | k) + bt,1β(k | k) + bt,2TSA(k | k) + bt,3ṁOA(k | k) (3.41)

+ ctToa(k + 1),
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Figure 3.6: The MPC structure of the HVAC system of the SE1 building.

d7 = afṁRA(k + 1 | k) + bf,1β(k | k) + bf,2TSA(k | k) + bf,3ṁOA(k | k) (3.42)

+ cfToa(k + 1).

During one time interval, both control inputs β(k), TSA(k) and ṁOA(k),
as well as the states TRA(k) and ṁRA(k) at kth step. Furthermore, the states
TRA(k + 1 | k), and ṁRA(k + 1 | k) at next step can be computed according to
the state equation (3.13). Therefore they can be considered as constants. In this
problem, there are 7 unknowns and 7 equations. This system can be solved explicitly
if there exists a unique solution.

It should be noted that this problem follows the form of “Ax = b” and the
“A” matrix here is even a symmetric matrix. This property makes this gradient
based optimization problem easy to solve and implement in programming. For a
symmetric indefinite matrix like this, LDLT decomposition [88] can be used to solve
the linear system.

The control formulation can be visualized as Figure 3.6. For every time inter-
val, the data is read from sensors of the HVAC system in SE1 to the computer. The
gradient based optimal control is computed and future states and control variables
are computed. After that the future control variables are communicated from the
online control system to the AHU. After that, the steps repeat in the next time
span.
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Chapter 4

NUMERICAL RESULTS

4.1 Mathematical Model Evaluation

4.1.1 Data Preprocessing

Measurements from thirty VAVs and AHU9 are available for the development
of the ARMAX model. From May 1 to July 31, 2014, measurements of temperature
TOA, TMA, TSA and TRA; air flow rates ṁOA, ṁRA, and ṁSA; damper positions DOA,
DRA and DEA; fan power WSF and WRF from AHU9, room temperature Trm and its
set point of Trm,sp, the discharge air flow rate ṁdis and its demand set point ṁdis,sp

from each affiliated VAV have been collected over 26 days with a sampling interval
of fifteen minutes, resulting in 2, 496 samples. The BAS of the SE1 building applies
a different operation strategy during the day from 7:30am to 1am, and during the
night from 1am to 7:30am. During the day time, the HVAC system shows a diverse
dynamics and more control efforts are imposed since the internal thermal load is
higher. It’s called occupied mode for WebCTRL R©. The operation mode in the
night is called unoccupied mode. Most of the occupants work during the day. The
difference in occupancy between weekdays and weekends is insignificant. We divide
the data by day and night with the same time partition and focus on the data that
falls under occupied mode.

4.1.2 Data Smoothing

The measurements from HVAC systems have noise. In the SE1 building,
the measurements are read from sensors and then linked to the BAS. Noise is also
part of the sensor readings and not good for the parameter identification of linear
regression. The sensor location, and lack of routine maintenance affect the accuracy
of the measurements. Sensor noise in HVAC systems are regarded as white random
noise [89]. However, the estimation of bias is sensitive to the measurements scale
[90]. The real bias is not easy to find. Thus, a smoothing method, the Savitzky-
Golay filter [91], is used for denoising in flow rate measurements of the SE1 building
Typical filters, like the plain FIR filter, might remove useful high-frequency signals
in measurements [92]. Savitzky-Golay filter, also known as a polynomial smoothing,
or least-squares smoothing filter can preserve better high-frequency information.
The polynomial fitting is equivalent to discrete convolution across a moving window
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on the time domain. It is a low-pass filter that maintains the shape and height
of waveform peaks [93]. These properties are beneficial to the HVAC system’s
measurements noise reduction. For flow rate measurements, the peaks represent
the high demand of the cooling load of the building. Also, the HVAC system’s
dynamic is relatively slow compared to the sampling interval and the measurements
are periodic in shape day by day. The preservation of the peak and shapes can help
us save the useful content for modeling while reducing noise.

Consider a measurement x in a group with M sampling numbers. The data
x(n) at the center of a moving window is set as n = 0. It is the target filter data.
All the points of x(n) in this zone can be approximated with a polynomial as

p(n) =
N∑
k=0

akn
k, (4.1)

where k is the order of each term and N is the highest order of the polynomial. The
smoothed output value y(0) is obtained by evaluating p(n) at n = 0, which is

y(0) = p(0) = a0. (4.2)

That means, the value of smoothed data is equal to the 0th order polynomial value.
To find a0, the optimal coefficients need to be calculated. The optimal coefficients
can be found by minimizing the mean squared error (MSE) of Equation (4.1). for
the points in the zone,

εN =

M−1
2∑

n=−M−1
2

(p(n)− x(n))2

=

M−1
2∑

n=−M−1
2

(
N∑
k=0

akn
k − x(n))2. (4.3)

Thus, differentiation is applied to εN in Equation (4.3) with respect to each sample
of the N+1 unknown coefficients and setting the corresponding derivatives equal to
0. Thus, for i = 0, 1, . . . , n,

∂εN
∂ai

=

M−1
2∑

n=−M−1
2

2ni(
N∑
k=0

akn
k − x(n)),

which can be rewritten as

N∑
k=0

(

M−1
2∑

n=−M−1
2

nk+i)ak =

M−1
2∑

n=−M−1
2

nix(n). (4.4)
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To solve Equation (4.4), a M by N + 1 matrix A can be defined as A = {ni}
for i = 0, 1, . . . , n, and a N + 1 by N + 1 symmetric matrix B = ATA. Thus
Equation 4.4 can be represented as

Ba = ATAa = ATx, (4.5)

where a = [a0, a1, . . . , aN ]T , and x = [x(−M−1
2

), . . . , x(−1), x(0), x(1), . . . , x(M−1
2

)].
Therefore, the solution of the polynomial coefficient can be written as

a = (ATA)−1ATx = Hx. (4.6)

Recall that from the output of Equation (4.2) only a0 is need for approximation.
Thus, only the first row of H matrix is needed to compute a0. Using h0,m to denote
the elements of the first row of the H matrix, the smoothed data can be represented
as

y(0) = a0 =

M−1
2∑

m=−M−1
2

h0,mx(m), (4.7)

where it is obvious that all the data in the zone is used to smooth the value target
point.

In the design of Savitzky-Golay filter, the selection of M and N affects the
result of the smoothed data. A too large N close to M can lead to a badly condi-
tioned H matrix. A huge window size of M can result in excessive information from
the past and future. For our problem, M is chosen as 5 since it only contains the
content of points from n − 2 to n + 2 for the nth measurement. This is consistent
with the length of the prediction horizon of our approach. The highest polynomial
order N is set to 3. Therefore, the smoothed data at the nth step can be represented
as

y(n) =
1

35
(−3x(n− 2) + 12x(n− 1) + 17x(n) + 12x(n+ 1)− 3x(n+ 2)), (4.8)

where the coefficients are calculated from the first row of the 4 by 5 H matrix.
Figure 4.1 shows the smoothing effect of the Savitzky-Golay filter on the

return air flow rate of AHU9 in the SE1 building. The data is sampled during 26
days in May, 2014. The high-frequency oscillation of the original data is reduced.
Meanwhile, the shape and peaks of the data are preserved. The average value of
the smoothed data remains the same as the raw data, 7, 362 cubic meter per minute
(cfm). This proves it is feasible to obtain smoothed data for modeling and control.
The comparison of the model validation with both the raw data and the smoothed
data will be provided in Section 4.1.4.

However, the Savitzky-Golay filter cannot be implemented to real time since
it needs future measurements. A low-pass filter, such as the Butterworth filter [94] is
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Figure 4.1: Comparison of the raw data (upper subplot) with the smoothed data
by the Savitzky-Golay filter (lower subplot) in May, 2014.
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used in real time data smoothing here. This filter has a property of a maximally flat
magnitude in the passband [95]. The design of Butterworth filter can be specified
by two parameters, the order of filter n and the cutoff frequency ωc [96].

The Butterworth filter is widely used for data smoothing in different fields,
such as handwriting movement [97], inertia navigation system [98] and biomechanics
[99]. It has a sufficient accuracy with a low programming effort. However, in digital
implementation, the phase delay introduced by this filter has to be considered. The
dynamics of the HVAC system is slow. A small time delay is acceptable. An order
of filter n = 2 and a normalized cutoff frequency ωc = 0.5 are selected. The resulting
digital filter brings one step time delay. It should be noted that the second order is
also consistent to the prediction horizon as well as the order of the Savitzky-Golay
filter considered earlier.

The transfer function of a second order Butterworth filter can be written as

H(s) =
1

( s
ωc

)2 + 1.4142 s
ωc

+ 1
. (4.9)

The bilinear transform is used to convert it to digital time domain

s ≈ 2

T

1− z−1

1 + z−1
, (4.10)

where T is the sample period. We define K , 2
T

. This results in the digital
Butterworth filter form as

Hd(z) =
1 + 2z−1 + z−2

((K
ωc

)2 + 1.4142K
ωc

+ 1) + (2− 2(K
ωc

)2)z−1 + ((K
ωc

)2 − 1.4142K
ωc

+ 1)z−2

≈ 0.2929 + 0.5858z−1 + 0.2929z−2

1 + 0.1716z−2
. (4.11)

The difference equation of the smoothed data y(n) at the nth step from raw mea-
surement x(n) can be represented as

y(n) = 0.2929x(n) + 0.5858x(n− 1) + 0.2929x(n− 2)− 0.1716y(n− 2). (4.12)

The example of the Butterworth data smoothing is shown in Figure 4.2. The
high frequency noise has been reduced, meanwhile the phase delay is reasonably
small.

4.1.3 Model Validation

We identify the collection of coefficients a, b1, b2 ,b3 and c with the method
of least squares by using Equation (3.13). The least square solution of those three
parameters is obtained by using the backslash operator in MATLAB [100]. The
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Figure 4.2: Comparison of the raw data (upper subplot) with the smoothed data
by the Butterworth filter (lower subplot) in May, 2014.
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method to numerically determine the optimal number of samples for parameter
identification has been discussed in the previous work of our group [50,53].

To validate the model, we first select a metric for evaluating the accuracy
of prediction. In literature regarding data analysis of time series [101–105], it is
common to use the mean absolute error (MAE), MSE, the root mean squared error
(RMSE), coefficient of determination (r2) and maximum absolute error (MaxAE).
These are defined as

MAE =
1

m

m∑
i=1

|Xi −X∗i | , (4.13)

MSE =
1

m

m∑
i=1

(Xi −X∗i )2, (4.14)

RMSE = [
1

m

m∑
i=1

(Xi −X∗i )2]1/2, (4.15)

r2 =
(m
∑
XiX

∗
i − (

∑
Xi)(

∑
X∗i ))2

(m(
∑
X2
i )− (

∑
Xi)2)(m(

∑
X∗2i )− (

∑
X∗i )2)

, (4.16)

MaxAE = max
i
|Xi −X∗i | , (4.17)

where Xi, and X∗i are the estimated values and measurements of a particular at-
tribute in the time domain, respectively, and m is the total number of measurements.

Figure 4.3 presents a three-day return air temperature prediction of AHU9
in July. The data from July 1 to July 6 is used for linear regression to determine
the coefficients, and the model is implemented into July 7 to July 9 for prediction.
The prediction horizon is set to be 2. It is observed that the prediction matches well
with the measured Tra. The MSE is 0.0059. The prediction captures the abrupt
fluctuations under the occupied mode.

Modeling and prediction are conducted to data from 62 days in May, June
and July during summer 2014. For May and June, the same number of prediction
days are considered; 7 is used as a relatively long time prediction and the numbers
of training days are 19 and 22 respectively. A shorter training length of 6 days is
applied to data from July, followed by a three-day prediction. The results of the
return air model are shown in Table 4.1. It can be seen that the error doesn’t
change with different months during the summer time. Additionally, the order of
magnitude of the error remains small for both short and long term modeling and
prediction.

Since our model is flexible to variable prediction lengths, we can investigate
the relationship between the prediction error and prediction horizon. Table 4.2 shows
the return air model validation results for AHU9 of the SE1 building. From the
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Figure 4.3: The three-day return air temperature prediction of AHU9 with the
FIR model. The prediction tracks the measured temperature on the
slope well and captures the oscillation at peaks.

Table 4.1: The errors of the return air temperature prediction of multiple months.

Month Training Days Prediction Days MAE MSE RMSE r2 MaxAE

May 19 7 0.0579 0.0059 0.0769 0.9743 0.3631
June 22 7 0.0592 0.0056 0.0750 0.9647 0.2333
July 6 3 0.0515 0.0055 0.0741 0.9724 0.6395
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table, we can find that the prediction errors drop slightly and gradually the highest
order the model increases. For further consideration and comparison, Figure 4.4
gives a plot of coefficient of determination to different lengths of prediction horizons
respect to models of the return air temperature and return air flow. Compare with
the return air flow rate model, the return air temperature is more accurate to the
measurements. In a recent work [48], ARMAX type models have been claimed to be
very effective to model room temperature with relatively small prediction errors in
the summer. According to Section 3.2.2, the return air of AHU9 can be considered
as a weighted average of office zone temperatures in the SE1 building. Therefore, the
accuracy of this model is also valid. From the figure we can find that the coefficient
of determination of the return air model remains stable when the length of the
prediction horizon increases. For the flow rate model, because of high-frequency
noise and unacceptable fluctuation during each trend cycle, the accuracy is limited
for an ARMAX model. The filter used here for air flow rate data smoothing is the
Butterworth filter.

However, when a higher order is involved in the model, the coefficient of
determination rises. From Figure 4.4, we can also find that the slope of increasing
of r2 becomes flat with a longer prediction horizon. In addition, in ARMAX and
MPC, a huge prediction horizon will significantly burden the computation load. It
cannot be neglected that the coefficient of determination of the return air model
slightly drops when the prediction length becomes larger. For the modeling of
temperature, it is reasonable to sample during a shorter moving window. This
is because the return air temperature here has peaks during the day time under
occupied mode. If the data of the current time interval is located in transition area,
a larger order model involved too many points before will affect the linear regression
result. Therefore, there is a trade-off between the prediction length, the accuracy of
both models and the complexity of the computation. In the simulation, a prediction
length p = 2 is used in our control algorithm.

It should be noted that the model (3.5) can be regarded as a discrete form of
a first order ordinary differential equation (ODE) when it p = 1 since the coefficient
of TRA(n − i) is 0.9722, nearly 1. This value follows the form a forward difference
equation.

4.1.4 Comparison with Raw Data Model

In Section 4.1.2 data smoothing by the Savitzky-Golay filter and the Butter-
worth filter is implemented into the raw data of return air flow rate measurements
to make it more feasible for linear regression results of the ARMAX model. The
comparison between the raw data, and smoothed data by the Savitzky-Golay filter
and the Butterworth filter has been provided in Figure 4.1 and 4.2 respectively. Now
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Table 4.2: The return air temperature prediction error over different prediction
horizons.

Prediction Horizon MAE MSE RMSE r2 MaxAE

1 0.0579 0.0059 0.0769 0.9743 0.3631
2 0.0543 0.0054 0.0733 0.9769 0.3630
3 0.0553 0.0052 0.0720 0.9777 0.3604
4 0.0556 0.0052 0.0720 0.9776 0.3541
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Figure 4.4: The coefficient of determination vs. the length of the prediction hori-
zon during the summer.
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Table 4.3: The return air flow rate modeling error with respect to raw data and
smoothed data.

Data Type MAE MSE RMSE r2 MaxAE

Raw Data 0.3371 0.1756 0.4191 0.6195 1.5902
Savitzky-Golay filter 0.1879 0.0553 0.2352 0.8452 0.8424

Butterworth filter 0.1710 0.0513 0.2264 0.8516 0.9220

we can study the difference from the model side. The same ARMAX modeling is
applied to both the raw data and smoothed data, and the model validation result
from May is shown in Table 4.1.4. Significant improvement can be observed from
the modeling error after data smoothing. The result shows that the smoothed data
are easier to work with using the ARMAX model. In addition, the modeling accu-
racy of smoothed data by the second order Butterworth filter with half normalized
cutoff frequency is better than the seconder order Savitzky-Golay filter. It reduces
more high-frequency oscillations. The plots of modeling with respect to these three
types of data are also provided in Figure 4.5. It should be noted that the modeling
to smooth data has better performance on fluctuation pattern and adds consistency
to the slopes of the data shape.

In summary, the return air flow rate model with smoothed data and the
return air temperature model are feasible to serve as the plant model for control
design in this problem.

4.2 Control Simulation Results

The performance of the original local PID control and Lagrangian Multiplier
based MPC control algorithm are compared through simulations. Simulations are
conducted using MATLAB. The data is from May, June and July, 2014, consistent
with that in our numerical modeling. The control strategies are applied to the office
zone of the SE1 building, from 7:30am to 1am. All the figures in this section are
generated with smoothed data by the second order Butterworth filter.

The results are evaluated from different angles. We both observe the results
with different time spans. A daily energy track can be found in Figure 4.6 during
8am to 12am from July 1st, 2014. A peak of both energy consumption trends can be
found between 4pm to 6pm can be found. This is actually the outside temperature
peak hours in Merced as well. When outside air is hot, it takes more power from
AHU9 to cool the mixing air down. This proves the feasibility of our energy flow
model and the peak cost reduction can also be found from this figure.
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Figure 4.5: Comparison of three-days modeling trends in May with the raw data
and smoothed data by two different low-pass filter. A better curve
fitting can be observed from the smoothed data by Butterworth filter.
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Figure 4.6: The energy flow of AHU9 by MPC and original control strategies
under occupied mode during July 1st, 2014. The energy savings is
obvious while the optimized energy flow has more oscillation due to a
wider usage of dampers.
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Figure 4.7: Energy consumption trends of AHU9 by MPC and original control
strategies under occupied mode during the first 9 days in July, 2014.
The average energy saving percentage is 25.7%.

4.7 shows the comparison of energy consumption of AHU9 with MPC for ten
days in July. An obvious energy saving both at peaks and in total can be observed.
Similar results can be also found from May and June, 2014. Compared to the energy
flow of the existing control strategy, that from MPC has more oscillation since a
wider usage of dampers. The time interval for our control approach is 15 minutes,
that is enough for dampers to adjust to the new positions. In the objective function
3.15, the tracking error to references of room temperature set points, supply air flow
rate and return air flow rate is also an evaluation of the simulation results.

To compare the control variables including the return air ratio β, Figure 4.8
is provided with hard bounds on both sides for a monthly evaluation. From the
sub-plot of β, a larger range can be found, which increases the possibilities of a new
combination of the outside air flow and the recirculation air flow even with the same
supply air flow rate demand. As for supply air temperature TSA, since the outside
air in Merced is very dry, a higher supply air temperature set point can be used here
to reduce the mechanical cooling load of water coil in AHU9. The average supply
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Figure 4.8: The control variables comparison between MPC and existing control
in 26 days from May, 2014. A wider range of damper position, higher
set point of supply air temperature and outside air flow rate can be
observed.

air temperature set point before in 26 days of May is 55.68 F and that of MPC is
60.57 F. In addition, the third control variable, the outside air flow rate ṁOA, is
slightly larger than that of original control strategy. As far as we know that under
the occupied mode the average outside air temperature is already higher than that
of return air during May. Absorbing more outside air may draw the potential to add
the cooling load of the AHU. However, with a right combination with an optimal
return air ratio β, and an optimal supply air temperature TSA, an energy saving is
achieved while higher outside air flow rate applied. It’s good to have more outside
air since the thermal comfort for office building requires enough fresh air.

To further investigate the air enconomizer behavior under two control strate-
gies, the distribution and constitution of supply air flow rate is taken into account.
The supply air flow includes the outside air flow and the recirculation air flow from
the return air. From Figure 4.9 similarity in structure can be found under two
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Figure 4.9: The distribution of the outside air flow rate and the recirculation air
flow rate under the two control strategies follow the same structure.

control strategies. The color represents the value of the normalized energy and op-
timized energy consumption. The normalized values are obtained by dividing the
absolute values of energy and optimized energy consumption by the maximum en-
ergy consumption under the existing control laws. Both if the results follow the
similar structure, and it costs more when the summation of the outside air flow
and the recirculation air flow becomes larger. Compared to the upper scatter, the
lower figure shows a lower average and a strict bound for minimum outside air flow
rate. It should be noted that the lowest energy cost on the northwest of both figures
shows the case at the beginning and end of each occupied mode cycle. During those
hours, the outside air temperature is relatively low so that the AHU absorbs a lot
of outside air flow and the energy consumption is efficient.

The simulation results tell us that the outside air temperature is a dominant
component in this problem. To further prove that, the relationship between out-
side air temperature and energy reduction is evaluated from two kinds of analysis,
the daily analysis, and the hourly analysis. The correlation between daily average
outside air temperature and the daily energy saving potential from the proposed
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Figure 4.10: A negative correlation between outside air temperature and energy
saving percentage in 20 days from June, 2014.

approach is shown in Figure 4.10. The dates with lower average outside air tem-
perature have a better performance in energy saving. The correlation coefficient is
0.59. Note that the percentage cannot completely represent the actual saving. If
the original energy cost is huge, even the energy saving percentage is small it is also
huge beneficial to apply the proposed control algorithm.

Secondly, the hourly analysis is applied from different aspects. Figure 4.11
shows the average trends of the supply air and the outside air temperatures un-
der occupied mode during 64 days of 2014 summer. The supply air temperature’s
change is related to that of the outside air temperature and thermal demands from
occupants. During the peak hours of the outside air temperature, from 12pm to
8pm, the supply air remains 55 F for the entire time span. Thus, the difference
between these two temperature reaches a maximum value at 5pm. During these
hours, the HVAC system of the SE1 building needs to be fully operated to serve
occupants enough cooling load although the outside air temperature is high.

To further analyze the operation of AHU9 during the daytime, the supply
flow rate is also considered as a reference. The supply flow rate can be divided
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Figure 4.11: The average supply air and outside air temperatures under occupied
mode from 64 days in 2014 summer.
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ṁCA,mpc

Figure 4.12: The comparison of the supply flow rate with the original and MPC
control strategies.

into two parts, the outside air flow rate, and the recirculation air (CA) flow rate.
Therefore, we compare the value of these two under both the original and MPC
control strategies. Figure 4.12 shows that they also keep the same structure. During
the peak hours of the outside air temperature, the value of supply air flow rate
reaches its maximum. However, in the original control, the usage of outside air flow
is limited during non-peak hours. For the time interval of the morning and the
night, the outside air temperature is relatively low, and the demand of occupants
is not as intensive as working hours. Therefore, more outside air flow and higher
supply air temperature can be utilized to reduce the energy consumption. Under
MPC control strategy, the values of the outside air flow rate are obviously greater
than the original control before 12pm and after 20pm.

The hourly analysis of predictive energy savings percentage is also provided in
Figure 4.13. For every hour, the actual energy reduction is nearly the same. Because
the amount of energy consumption is different during different time interval, the
predictive energy savings are relatively low during the peak hours and reach high
level in the morning and night. The trend of energy saving potential is opposite to
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Figure 4.13: The absolute predictive energy savings remains the same under the
occupied mode. Meanwhile, the energy savings potential percentage
has the opposite trend to the outside air temperature.

the outside air temperature and working hour schedule.
To conclude, the MPC strategy is effective on energy efficiency of the AHU.

The energy saving is achieved during every time span under occupied mode, however,
the predictive energy reduction during the peak hour of the outside air temperature.

Except the energy savings, the control results should also be evaluated from
the tracking error to the references. Figure 4.14 shows take the trends of the opti-
mized return air temperature, the supply air flow rate, and the return air flow rate
of AHU9 tracks the set points closely. To further prove that, the tracking error
is calculated as MAE in Table 4.4. The tracking to the set point of the weighted
average of room temperatures and supply air flow rate shows the cooling demand of
the occupancy in building zones will be covered as the original control. In addition,
the same return air flow rate ensure that the ventilation level and the building static
pressure will not change due to the difference of the air flow exchange by applying
a different control strategy.
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Table 4.4: The tracking MAE of MPC control states to the reference values.

States TRA ṁSA ṁRA

MAE 0.00012 0.0592 0.0228
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Figure 4.14: The optimized return air temperature, the supply air flow rate, and
the return air flow rate track closely to the reference values.
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Chapter 5

SUMMARY AND FUTURE WORK

5.1 Concluding Remarks

To leverage the untapped capabilities of modern building automation and
control systems, we have developed a system-level dynamical model and MPC con-
trol design of HVAC systems. Works in this thesis focus on two functionalities, i.e.,
modeling and control. As for modeling, we have used a return air dynamical model
to link the current temperature and flow rate states of the building and the control
variables, that is accurate for prediction and friendly to control implementation.
With regard to control, based on the model we built serving as a plant, a MPC
algorithm is applied to the HVAC energy management system. This MPC strategy
utilizes different levels of HVAC units in buildings. The control results show a signif-
icant energy saving meanwhile keep the same level of building cooling load, thermal
comfort and static pressure. This algorithm can be applied on system-wide scales
to optimize overall system performance and help achieve the goal of zero energy
consumption.

5.1.1 Model

We have developed a FIR-based return air model from the AHU return air
dynamics for both temperature and air flow rate. The proposed model has prediction
and control horizon flexibility and much few variables compared to a fully numerical
model. Trained with the data over a short and long time frame, the proposed
model is capable of predicting the return air temperature with a high accuracy. For
example, the AHU return air temperature model trained with the data from 2014
summer can predict the return air temperature over one week with mean squared
errors less than 0.006 and coefficients of determination above 0.97 on average. We
have also shown the relationship between prediction steps and the accuracy of the
model. An optimal prediction horizon provides a trade-off between model accuracy
and computation load. With the right choice of prediction horizon, the dynamical
model further improves its prediction performance, and could be a basis for MPC
control design of HVAC systems.

Otherwise, we implement Savitzky-Golay filter during data pre-processing for
data smoothing. Measurements of air flow rate inside HVAC systems is vulnerable

55



to sensor noise and resistant to model parameter identification. Savitzky-Golay filter
takes a moving average of the measurements and serves as a low-pass filter. After
smoothing, the curve fitting performance becomes better and could be used as a
plant of an MPC controller of HVAC systems.

It should be noted that this model could also be used to predict other pa-
rameters of interest in HVAC simulations, e.g., the relative humidity and parts per
million (ppm) of CO2. We are trying to corporate this model with the relative
humidity sensors and CO2 sensors of other latest buildings on UC Merced campus.

5.1.2 Control

We have established a system-level MPC control strategy for building HVAC
systems. Energy description of the AHU and the gradient-based optimization and
the cross-level constraints and objectives are three key elements of the method. The
energy flow model provides the possibilities of variable distribution of outside air
and recirculation air. This energy feature helps energy saving of the HVAC sys-
tem and cover the thermal demand of the building, as well as preserve the same
static pressure and ventilation level. The control strategy uses damper positions,
supply air temperature and outside air flow rate as control variables. They are
explicitly implemented into both the models and objective functions. The strate-
gy provides physical-based inherent connection between components in AHU, and
considers cross-level constraints in the whole HVAC system of SE1 building. For
the optimization procedure, the gradient follows a fine structure due to the types
of objective functions and the involvement of Lagrangian Multiplier. It might be
an indefinite symmetric matrix, thus this linear system can be solved efficiently by
some factorization method such. The optimal results show an energy saving aver-
age percentage over 27.8% and track the supply air flow rate and set point of room
temperatures in the building pretty well. The thermal load, supply air flow rate
set points are calculated from thirty-two VAVs, that ensures the internal cooling
demand, the static pressure, and the ventilation level of the building.

This control strategy is implemented into the WebCTRL R©of the SE1 build-
ing and can be easily incorporated with other BAS as well since the explicit formu-
lation.

5.2 Future Work

5.2.1 MPC of HVAC systems with Humidity and CO2 Control

Due to the scarcity of humidity sensors in SE1 building, the humidity control
cannot be considered in our approach. However, the climate in Merced secures the
possibilities to change supply air temperature without sacrificing the thermal com-
fort from humidity side. We shall implement this MPC algorithm with Lagrangian
Multiplier into other environment conditions, like San Francisco and Miami. Also,
if we want to apply this approach to other types of commercial building, such as
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gyms, lounges, and data centers. the indoor humidity and frequency of air flow
discharging will definitely need to change. Therefore, the enthalpy and humidity
balance need to be involved in the air flow dynamical models and energy balance
model.

The newly built buildings on UC Merced campus, Social Science and Manage-
ment (SSM) Building, Student Service Building (SSB) and Science and Engineering
Building II (SE2) are equipped with intelligent humidity sensors. It should be noted
that CO2 sensors are also available in the HVAC systems of these buildings. The
ppm of CO2 can be an effective index of both ventilation and thermal comfort e-
valuation. Similar patterns can be followed to also implement CO2 control to the
proposed method as that of humidity.

5.2.2 Online Implementation of MPC to Building HVAC Systems

We shall expand and enhance the gradient-based MPC algorithm by applying
fuzzy control laws. We need to restore historic data and group them by seasonal,
monthly, weekly, daily, and hourly time partition. The existing control strategies,
the internal thermal load, and climate can be saved as references to the MPC al-
gorithm. If the predicted energy consumption and thermal comfort level is not as
good as the existing control laws under similar model states, we shall stick to the
original control variable before.

We shall also complete the real-time building HVAC system commissioning
with the proposed control strategy. Figure 5.1 shows the workflow of an online MPC
of building HVAC systems. Specifically, the online receding algorithm can be divided
into several steps. First, an automatic data acquisition and pre-processing module is
needed. For an online user interface BAS, such as WebCTRL R©, data from original
sensor measurements can be collected over the web service by adopting structured
information exchanging implementation, such as the Simple Object Access Protocol
(SOAP). Digital filters, like Savitzky-Golay filter we used in Chapter 4, will be also
designed to reduce the measurement noise. Next, data-driven models can be built
from the stored data, as well as all the past operational records, internal thermal
load of the office zone and climate conditions at that time. Then we apply the
MPC algorithm to the real-time data by choosing right model and compute the
future control input. After that, a evaluation of objective functions, like energy
saving and thermal comfort will be calculated between the existing mode and the
optimal control. A decision will be made to take or not take the computed control
variables. At last, the control result will be recorded and the model will be updated
and imposed on new data in the time domain.

We shall also develop a graphical user interface (GUI) to present the MPC
objective functions and constraints in a user-friendly and informative manner. Thus,
the result can be shown up. According to the real-time data trend, the MPC results
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Figure 5.1: The flow chart of an MPC strategy for HVAC system with a fuzzy
law.
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can be analyzed and the corresponding change to MPC algorithm can be done by
parameter turning on the GUI directly.

The data acquisition and pre-processing part can be realized by the SOAP
module of Python. The newest version of MATLAB supports Python calls so that
the data acquisition, computing, and return can be done simultaneously. For the
GUI part, MATLAB Simulink works for combining desktop computing with the
Internet connectivity. The implementation of the entire control strategy will involve
intensive programming effort of the two language.

5.2.3 Cross-level MPC of HVAC systems

The MPC structure we have developed link VAVs to AHU. The implemen-
tation of the ARMAX model and MPC control law to AHU paves the way for local
model development and control design of VAVs. The VAV is a simple version of
AHU without multi-function and a Single-input, single-output system. Thus, we
can follow the same procedure to build models for each VAV and apply the pro-
posed MPC optimal algorithm to them. For each MPC, local control variables can
be computed according to the room’s thermal condition and occupants’ demand.
Then we can allow the collaboration between the MPC of AHU the lower-level M-
PCs. AS shown in Figure 5.2 we shall build a communication network between MPC
of AHU and the distributed MPCs of VAVs. The local VAVs can send their demand
of the air flow rate and cooling load, then the supply air flow rate and supply air
temperature can be set to serve VAVs. Meanwhile, to keep the ventilation level and
cover the cooling load simultaneously in summer, the MPC of AHU also tracks the
outside air temperature and return air temperature, and determines the distribution
of mixing air flow. With the return air as feedback from VAVs and outside air as
disturbance, the MPC of AHU also influence the set points of discharge air flow
and room temperature. That’s how this cross-level MPC of HVAC systems works.
In this algorithm, both global system and local system performance are taken into
consideration, that is good for the trade-off between energy efficiency and thermal
comfort.

We shall build an entire structure of the cross-level MPC of HVAC system-
s and compare the performance with those of other system-level MPC of HVAC
systems, such as decentralized MPC and centralized MPC.
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Figure 5.2: A future structure of cross-level MPC framework with a communica-
tion network.
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Appendix A

NOMENCLATURE

β recirculation air ratio
ρ Air density (kgm−3)
k Time sequence of measurements
m Control horizon
ṁ Mass flow rate (kgs−1)
p Prediction horizon
λ, µ Lagrange Multipliers
x(k + n | k) Expected value of x(k + n) with measurement up to instant k
AHU Air handling unit
Cp Specific heat capacity of air (kJkg−1K−1)
CW cooling coil
D Damper position (%)
En Energy Consumption (kJ)
H Specific enthalpy (kJkg−1)
HV AC Heating, ventilation, and air conditioning
J Objective function
MPC Model Predictive Control
Q Weighting factor of quadratic functions
R Weighting factor of control penalties
T Temperature (K)
V Volume of room (m3)
V FD Variable frequency drive
W Power of fan (kW )
Φ Nonlinear objective function
X An attribute
V AV Variable air volume unit
Subscripts
EA exhaust air
MA mixing air
OA outside air
RA return air
RF return fan
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SA supply air
SF supply fan
d designed
f air flow rate
t temperature
rm room
sp set point
dis discharge
ref reference
zone building zone
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