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Abstract

Quadratic majorizations for real-valued functions of a real variable are an-

alyzed, and the concept of sharp majorization is introduced and studied.

Applications to logistic and robust loss functions are discussed.
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1 Introduction

Majorization algorithms, including the EM algorithm, are used for more and

more computational tasks in statistics [De Leeuw, 1994; Heiser, 1995; Hunter

and Lange, 2004; Lange et al., 2000]. The basic idea is simple. A function

g majorizes a function f at a point y if g ≥ f and g(y) = f(y). If we are

minimizing a complicated objective function f iteratively, then we construct

a majorizing function at the current best solution x(k). We then find a new

solution x(k+1) by minimizing the majorization function. Then we construct

a new majorizing function at x(k+1), and so on.

Majorization algorithms are worth considering if the majorizing functions

can be chosen to be much easier to minimize than the original objective func-

tion, for instance linear or quadratic. In this paper we will look in more detail

at majorization with quadratic functions. We restrict ourselves to functions

of a single real variable. This is not as restrictive as it seems, because many

functions F (x1, · · · , xn) in optimization and statistics are separable in the

sense that

F (x1, · · · , xn) =
n∑

i=1

fi(xi),

and majorization of the univariate functions fi automatically gives a ma-

jorization of F .

Many of our results generalize without much trouble to real-valued func-

tions on Rn and to constrained minimization over subsets of Rn. The uni-

variate context suffices to explain most of the basic ideas.

2 Majorization

2.1 Definitions

We formalize the definition of majorization at a point.
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Definition 2.1 Suppose f and g are real-valued functions on Rn. We say

that g majorizes f at y if

• g(x) ≥ f(x) for all x,

• g(y) = f(y).

If the first condition can be replaced by

• g(x) > f(x) for all x 6= y,

we say that majorization is strict.

Thus g majorizes f at y if d = g − f has a minimum, equal to zero, at y.

And majorization is strict if this minimum is unique. If g majorizes f at y,

then f minorizes g at y. Alternatively we also say that f supports g at y.

It is also useful to have a global definition, which says that f can be

majorized at all y.

Definition 2.2 Suppose f is a real-valued functions on Rn and g is a real-

valued function on Rn ⊗ Rn. We say that g majorizes f if

• g(x, y) ≥ f(x) for all x and all y,

• g(x, x) = f(x) for all x.

Majorization is strict if the first condition is

• g(x, y) > f(x) for all x 6= y.

2.2 Majorization Algorithms

The basic idea of majorization algorithms is simple. Suppose our current best

approximation to the minimum of f is x(k), and we have a g that majorizes
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f in x(k). If x(k) already minimizes g we stop, otherwise we update x(k) to

x(k+1) by minimizing g. If we do not stop, we have the sandwich inequality

f(x(k+1)) ≤ g(x(k+1)) < g(x(k)) = f(x(k)),

and in the case of strict majorization

f(x(k+1)) < g(x(k+1)) < g(x(k)) = f(x(k)).

Repeating these steps produces a decreasing sequence of function values,

and appropriate additional compactness and continuity conditions guaran-

tee convergence of the algorithm. In fact, it is not necessary to actually

minimize the majorization function; it is sufficient to have a continuous up-

date function h such that g[h(y)] < g(y) for all y. In that case the sandwich

inequality still applies with x(k+1) = h(x(k)).

2.3 Majorizing Differentiable Functions

We first show that majorization functions must have certain properties at

the point where they touch the target.

Theorem 2.1 Suppose f and g are differentiable at y. If g majorizes f at

y, then

• g(y) = f(y),

• g′(y) = f ′(y).

If f and g are twice differentiable at y, then in addition

• g′′(y) ≥ f ′′(y).

Proof: If g majorizes f at y then d = g−f has a minimum at y. Now use the

familiar necessary conditions for the minimum of a differentiable function,
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which say the derivative at the minimum is zero and the second derivative

is non-negative.

Theorem 2.1 can be generalized in many directions if differentiability

fails. If f has a left and right derivatives in y, for instance, and g is differ-

entiable, then

f ′R(y) ≤ g′(y) ≤ f ′L(y).

If f is convex, then f ′L(y) ≤ f ′R(y), and f ′(y) must exist in order for a

differentiable g to majorize f at y. In this case g′(y) = f ′(y). For noncon-

vex f more general differential inclusions are possible using the four Dini

derivatives of f at y.

3 Quadratic Majorizers

As we said, it is desirable that the subproblems in which we minimize the

majorization function are simple. One way to guarantee this is to try to find

a convex quadratic majorizer. We limit ourselves to convex quadratic ma-

jorizers because concave ones have no minima and are useless for algorithmic

purposes.

The first result, which has been widely applied, applies to functions with

a continuous and uniformly bounded second derivative [Böhning and Lind-

say, 1988].

Theorem 3.1 If f is twice differentiable and there is an B > 0 such that

f ′′(x) ≤ B for all x, then for each y the convex quadratic function

g(x) = f(y) + f ′(y)(x− y) +
1
2
B(x− y)2.

majorizes f at y.
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Proof: Use Taylor’s theorem in the form

f(x) = f(y) + f ′(y)(x− y) +
1
2
f ′′(ξ)(x− y)2,

with ξ on the line connecting x and y. Because f ′′(ξ) ≤ B, this implies

f(x) ≤ g(x), where g is defined above.

This result is very useful, but it has some limitations. In the first place

we would like a similar result for functions that are not everywhere twice

differentiable, or even those that are not everywhere differentiable. Second,

the bound does take into account that we only need to bound the second

derivative on the interval between x and y, and not on the whole line. This

may result in a bound which is not sharp.

Why do we want the bounds on the second derivative to be sharp? The

majorization algorithm corresponding to this result is

x(k+1) = x(k) − 1
B

f ′(x(k)),

which converges linearly, say to y, with rate 1 − 1
B f ′′(y). The smaller we

choose B, the faster our convergence.

Example 3.1 If a quadratic g majorizes a twice-differentiable convex func-

tion f at y, then g is convex. This follows from g′′(y) ≥ f ′′(y) ≥ 0.

Example 3.2 If a concave quadratic g majorizes a twice-differentiable func-

tion f at y, then f is concave at y. This follows from 0 ≥ g′′(y) ≥ f ′′(y).

Example 3.3 Quadratic majorizers can be concave. Take f(x) = −x2 and

g(x) = −x2 + 1
2(x− y)2.

Example 3.4 Quadratic majorizers may not exist anywhere. Suppose, for

example, that f is a cubic. If g is quadratic, then d = g − f is a cubic, and

d(x) is negative for at least one value of x.
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Example 3.5 Quadratic majorizers may exist almost everywhere, but not

everywhere. Suppose, for example, that f(x) = |x|. Then f has a quadratic

majorizer at each y except y = 0. If y 6= 0 we can use, following Heiser

[1986], the arithmetic mean-geometric mean inequality in the form√
x2y2 ≤ 1

2
(x2 + y2),

and find

|x| ≤ 1
2|y|

x2 +
1
2
|y|.

If g majorizes |x| at 0, then we must have ax2+bx ≥ |x| for all x 6= 0, and thus

a|x|+b sign(x) ≥ 1 for all x 6= 0. But for |x| < 1+|b|
a and sign(x) = − sign(b),

we have a|x|+ b sign(x) < 1.

Example 3.6 For a nice regular example we use the celebrated functions

φ(x) =
1√
2π

e−z2/2,

Φ(x) =
∫ x

−∞
φ(z) dz.

Then

Φ′(x) = φ(x),

Φ′′(x) = φ′(x) = −xφ(x),

Φ′′′(x) = φ′′(x) = −(1− x2)φ(x),

Φ′′′′(x) = φ′′′(x) = −x(x2 − 3)φ(x).

It follows, by setting various derivatives to zero and checking for maxima

and minima, that

0 ≤ Φ′(x) = φ(x) ≤ φ(0),

−φ(1) ≤ Φ′′(x) = φ′(x) ≤ φ(1),

−φ(0) ≤ Φ′′′(x) = φ′′(x) ≤ 2φ(
√

3).
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Thus we have the quadratic majorizers

Φ(x) ≤ Φ(y) + φ(y)(x− y) +
1
2
φ(1)(x− y)2,

and

φ(x) ≤ φ(y)− yφ(y)(x− y) + φ(
√

3)(x− y)2.

This is illustrated for both Φ and φ at the points y = 0 and y = −3 in

Figures 1 and 2.
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Figure 1: Quadratic majorization of cumulative normal
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Figure 2: Quadratic majorization of normal density8



4 Sharp Quadratic Majorization

We now drop the assumption that the objective function is twice differen-

tiable, even locally, and we try to improve our bound estimates at the same

time.

4.1 Differentiable Case

Let us first deal with the case in which f is differentiable in y. Consider all

a > 0 for which

f(x) ≤ f(y) + f ′(y)(x− y) +
1
2
a(x− y)2

for a fixed y and for all x. Equivalently, we must have

a ≥ f(x)− f(y)− f ′(y)(x− y)
1
2(x− y)2

. (1)

Define the function

δ(x, y) =
f(x)− f(y)− f ′(y)(x− y)

1
2(x− y)2

for all x 6= y. The inequalities (1) have a solution if and only if

A(y) = sup
x

δ(x, y) < ∞.

If this is the case, then any a ≥ A(y) will satisfy (1). Because we want a to

be as small as possible, we will usually prefer to choose a = A(y). This is

what we mean by the sharp quadratic majorization. If the second derivative

is uniformly bounded by B, we have A(y) ≤ B, and thus our bound improves

on the uniform bound considered before.

The function δ has some interesting properties. If f is convex we have

δ(x, y) ≥ 0 and for a concave f we have δ(x, y) ≤ 0. For strictly convex and

concave f these inequalities are strict. If δ(x, y) ≤ 0 for all x and y, then f
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must be concave. Consequently A(y) ≤ 0 only if f is concave, and without

loss of generality we can exclude this case from consideration.

Clearly δ(x, y) is closely related to the second derivative at or near y. If

f is twice differentiable at y, then

lim
x→y

δ(x, y) = f ′′(y). (2)

If f is three times differentiable, this can be sharpened to

lim
x→y

δ(x, y)− f ′′(y)
x− y

=
1
6
f ′′′(y).

Moreover, in the twice differentiable case, the mean value theorem implies

there is a ξ in the interval extending from x to y with δ(x, y) = f ′′(ξ). We

can also derive an integral representation of δ(x, y) and its first derivative

with respect to x [Tom Ferguson, Personal Communication, 03/12/04].

Lemma 4.1 δ(x, y) can written as the expectation

δ(x, y) = E{f ′′[V y + (1− V )x]},

where the random variable V follows a β(2, 1) distribution. Likewise

δ′(x, y) =
1
3

E{f ′′′[Wy + (1−W )x]},

where the random variable W follows a β(2, 2) distribution. Thus δ(x, y)

and δ′(x, y) can be interpreted as smoothed versions of f ′′ and f ′′′.

Proof: The first representation follows from the second-order Taylor’s ex-

pansion

f(x) = f(y) + f ′(y)(x− y) + (x− y)2
∫ 1

0
f ′′[vy + (1− v)x]v dv

with integral remainder [Lange, 2004]. This form of the remainder can be

deduced by integration by parts. Differentiation under the integral sign

yields the second representation.

10



In view of Lemma 4.1, δ(x, y) is jointly continuous in x and y when

f ′′(x) is continuous. Furthermore, if f ′′(x) tends to ∞ as x tends to −∞

or +∞, then δ(x, y) is unbounded in x for each fixed y. Thus, quadratic

majorizations do not exist for any y if the second derivative grows unbound-

edly. It also follows from Lemma 4.1 that the best quadratic majorization

does not exist if the third derivative f ′′′ is always positive (or always nega-

tive). This happens, for instance, if the first derivative f ′ is strictly convex

or strictly concave. Thus as mentioned earlier, cubics do not have quadratic

majorizations.

Example 4.1 Majorization may be possible at all points y without the

function A(y) being bounded. Suppose the graph of f ′′(x) is 0 except for an

isosceles triangle centered at each integer n ≥ 2. If we let the base of the

triangle be 2n−3 and the height of the triangle be n, then the area under the

triangle is n−2. The formulas

f ′(x) =
∫ x

0
f ′′(y) dy, f(x) =

∫ x

0
f ′(y) dy

define a nonnegative convex function f(x) satisfying

f ′(x) ≤
∞∑

n=2

1
n2

< ∞.

To prove the A(y) is finite for every y, recall the limit (2) and observe that

δ(x, y) =
f ′(w)(x− y)− f ′(y)(x− y)

1
2(x− y)2

=
f ′(w)− f ′(y)

1
2(x− y)

for some w between x and y. It follows that δ(x, y) tends to 0 as |x| tends

to ∞. Because A(n) ≥ f ′′(n) = n, it is clear that A(y) is unbounded.

4.2 Computing the Sharp Quadratic Majorization

Let us study the case in which the supremum of δ(x, y) over x 6= y is attained

at, say, z 6= y. In our earlier notation A(y) = δ(z, y). Differentiating δ(x, y)

11



with respect to x gives

δ′(x, y) =
1
2(x− y)2[f ′(x) + f ′(y)]− (x− y)[f(x)− f(y)]

1
4(x− y)4

,

and

f(z)− f(y)
z − y

=
1
2
[f ′(z) + f ′(y)] (3)

is a necessary and sufficient condition for δ′(z, y) to vanish. At the optimal

z we have

A(y) = δ(z, y) =
f ′(z)− f ′(y)

z − y
. (4)

It is interesting that the fundamental theorem of calculus allows us to recast

equations (3) and (4) as

1
2
[f ′(z) + f ′(y)] =

∫ 1

0
f ′[z + t(y − z)] dt

A(y) =
∫ 1

0
f ′′[z + t(y − z)] dt.

When f is convex, A(y) ≥ 0. For the second derivative at z, we have

δ′′(z, y) =
(z − y)2f ′′(z)− [f ′(z)− f ′(y)](z − y)

1
2(z − y)4

.

At a maximum we must have δ′′(z, y) ≤ 0, which is equivalent to

f ′′(z) ≤ f ′(z)− f ′(y)
z − y

= A(y). (5)

We can achieve more clarity by viewing these questions from a different

angle. If the quadratic g majorizes f at y, then it satisfies

g(x) = f(y) + f ′(y)(x− y) +
1
2
a(x− y)2

for some a. If z is a second support point, then g not only intersects f at z,

but it also majorizes f at z. The condition g′(z) = f ′(z) yields

a =
f ′(z)− f ′(y)

z − y
.
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If we match this value with the requirement δ(z, y) = a, then we recover the

second equality in (4). Conversely, if a point z satisfies the second equality

in (4), then it is a second support point. In this case, one can easily check

condition (3) guaranteeing that z is a stationary point of δ(x, y).

4.3 Optimality with Two Support Points

Building on earlier work by Groenen et al. [2003], Van Ruitenburg [2005]

proves that a quadratic function g majorizing a differentiable function f at

two points must be a sharp majorizer. We now summarize in our language

Van Ruitenburg’s [2005] lovely proof of this fact.

Lemma 4.2 Suppose two quadratic functions g1 6= g2 both majorize the

differentiable function f at y. Then either g1 strictly majorizes g2 at y or

g1 strictly majorizes g2 at y.

Proof: We have

g1(x) = f(y) + f ′(y)(x− y) +
1
2
a1(x− y)2, (6)

g2(x) = f(y) + f ′(y)(x− y) +
1
2
a2(x− y)2, (7)

with a1 6= a2. Subtracting (6) and(7) proves the theorem.

Lemma 4.3 Suppose the quadratic function g1 majorizes a differentiable

function f at y and z1 6= y and that the quadratic function g2 majorizes f

at y and z2 6= y. Then g1 = g2.

Proof Suppose g1 6= g2. Since both g1 and g2 majorize f at y, Lemma

4.2 applies. If g2 strictly majorizes g1 at y, then g1(z2) < g2(z2) = f(z2),

and g1 does not majorize f . If g1 strictly majorizes g2 at y, then similarly

13



g2(z1) < g1(z1) = f(z1), and g2 does not majorize f . Unless g1 = g2, we

reach a contradiction.

We now come to Van Ruitenburg’s main result.

Theorem 4.4 Suppose a quadratic function g1 majorizes a differentiable

function f at y and at z 6= y, and suppose g2 6= g1 majorizes f at y. Then

g2 strictly majorizes g1 at y.

Proof: Suppose g1 strictly majorizes g2. Then g2(z) < g1(z) = f(z) and

thus g2 does not majorize f . The result now follows from Lemma 4.2.

−10 −5 0 5 10

0
20

40
60

80
10

0

x

f(
x)

Figure 3: Many support points.
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Example 4.2 It is not true, by the way, that a quadratic majorizer can have

at most two support points. There can even be an infinite number of them.

Consider the function h(x) = c sin2(x) for some c > 0. Clearly h(x) ≥ 0 and

h(x) = 0 for all integer multiples of π. Now define f(x) = x2 − h(x) and

g(x) = x2. Then g is a quadratic majorizer of f at all integer multiples of

π. This is plotted in Figure 3 for c = 10.

Example 4.3 There is no guarantee that a second support point z 6= y

exists. Consider the continuously differentiable convex function

f(x) =
{

x2 x ≤ 1
2x− 1 x > 1,

and fix y > 1. For x > 1

δ(x, y) =
2x− 1− 2y + 1− 2(x− y)

1
2(x− y)2

= 0.

For x ≤ 1

δ(x, y) =
x2 − 2y + 1− 2(x− y)

1
2(x− y)2

=
(x− 1)2
1
2(x− y)2

.

It follows that limx→−∞ δ(x, y) = 2. On the other hand, one can easily

demonstrate that δ(x, y) < 2 whenever x ≤ 1. Hence, A(y) = 2, but

δ(x, y) < 2 for all x 6= y.

4.4 Even Functions

Assuming that f(x) is even simplifies the construction of quadratic majoriz-

ers. If an even quadratic g satisfies g(y) = f(y) and g′(y) = f ′(y), then it

also satisfies g(−y) = f(−y) and g′(−y) = f ′(−y). If in addition g majorizes

f at either y or −y, then it majorizes fat both y and −y, and Theorem 4.4

implies that it is the best possible majorization at both points. This means

we only need an extra condition to guarantee that g majorizes f . The next
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theorem, essentially proved in the references [Groenen et al., 2003; Jaakkola

and Jordan, 2000; Hunter and Li, 2005] by other techniques, highlights an

important sufficient condition.

Theorem 4.5 Suppose f(x) is an even, differentiable function on R such

that the ratio f ′(x)/x is decreasing on (0,∞). Then the even quadratic

g(x) =
f ′(y)
2y

(x2 − y2) + f(y)

is the best majorizer of f(x) at the point y.

Proof: It is obvious that g(x) is even and satisfies the tangency conditions

g(y) = f(y) and g′(y) = f ′(y). For the case 0 ≤ x ≤ y, we have

f(y)− f(x) =
∫ y

x
f ′(z) dz

=
∫ y

x

f ′(z)
z

z dz

≥ f ′(y)
y

∫ y

x
z dz

=
f ′(y)

y

1
2
(y2 − x2)

= f(y)− g(x).

It follows that g(x) ≥ f(x). The case 0 ≤ y ≤ x is proved in similar fashion,

and all other cases reduce to these two cases given that f(x) and g(x) are

even.

There is an condition equivalent to the sufficient condition of Theorem

4.5 that is sometimes easier to check.

Theorem 4.6 The ratio f ′(x)/x is decreasing on (0,∞) if and only f(
√

x)

is concave. The set of functions satisfying this condition is a closed under

the formation of (a) positive multiples, (b) convex combinations, (c) limits,

and (d) composition with a concave increasing function g(x).
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Proof: Suppose f(
√

x) is concave and x > y. Then the two inequalities

f(
√

x) ≤ f(
√

y) +
f ′(
√

y)
2
√

y
(x− y)

f(
√

y) ≤ f(
√

x) +
f ′(
√

x)
2
√

x
(y − x)

are valid. Adding these, subtracting the common sum f(
√

x) + f(
√

y) from

both sides, and rearranging give

f ′(
√

x)
2
√

x
(x− y) ≤

f ′(
√

y)
2
√

y
(x− y).

Dividing by (x− y)/2 yields the desired result

f ′(
√

x)√
x

≤
f ′(
√

y)
√

y
.

Conversely, suppose the ratio is decreasing and x > y. Then the mean value

expansion

f(
√

x) = f(
√

y) +
f ′(
√

z)
2
√

z
(x− y)

for z ∈ (y, x) leads to the concavity inequality.

f(
√

x) ≤ f(
√

y) +
f ′(
√

y)
2
√

y
(x− y).

The asserted closure properties are all easy to check.

As examples of property (d) of Theorem 4.6, note that the functions

g(x) = lnx and g(x) =
√

x are concave and increasing. Hence, if f(
√

x) is

concave, then ln f(
√

x) and f(
√

x)1/2 are concave as well.

The above discussion suggests that we look at more general transforma-

tions of the argument of f . If we define f̃(x) = f(α + βx) for an arbitrary

function f(x), then a brief calculation shows that

Ã(y) = β2A(α + βy)

z̃(y) =
z(α + βy)− α

β
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using the identity δ̃(x, y) = β2δ(α + βx, α + βy). An even function f(x)

satisfies f̃(x) = f(x) for α = 0 and β = −1.

4.5 Non-Differentiable Functions

If f is not differentiable at y, then we must find a and b such that

f(x) ≤ f(y) + b(x− y) +
1
2
a(x− y)2.

for all x. This is an infinite system of linear inequalities in a and b, which

means that the solution set is a closed convex subset of the plane.

Analogous to the differentiable case we define

δ(x, y, b) =
f(x)− f(y)− b(x− y)

1
2(x− y)2

,

as well as

A(y, b) = sup
x

δ(x, y, b).

If A(y, b) < +∞, we have the sharpest quadratic majorization for given y

and b. The sharpest quadratic majorization at y is given by

A(y) = inf
b

A(y, b).

5 Examples

5.1 Logistic

Our first example is the negative logarithm of the logistic cdf

Ψ(x) =
1

1 + e−x
.

Thus

f(x) = log(1 + e−x).
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Clearly

f ′(x) = − e−x

1 + e−x
= Ψ(x)− 1,

and

f ′′(x) =
e−x

(1 + e−x)2
= Ψ(x)[1−Ψ(x)].

This shows that f(x) is strictly convex. Since f ′′(x) ≤ 1/4, a uniform bound

is readily available.

The symmetry relations

f(−x) = x + f(x),

f ′(−x) = −[1 + f ′(x)] = −Ψ(x),

f ′′(−x) = f ′′(x).

demonstrate that z = −y satisfies equation (3) and hence maximizes δ(x, y).

The optimum value is determined by (4) as

A(y) = δ(z, y) =
2Ψ(y)− 1

2y
.

The same result was derived, using quite different methods, by Jordan [2000]

and Groenen et al. [2003].

We plot the function δ(x, y) for y = 1 and y = 8 in Figure 4. Observe

that the uniform bound 1/4 is not improved much for y close to 0, but for

large values of y the improvement is huge. This is because A(y) ≈ (2|y|)−1

for large |y|.

Alternatively, we can majorize f(x) = log(1 + e−x) by writing

log(1 + e−x) = −1
2
x + log(ex/2 + e−x/2)

and majorizing the even function h(x) = log(ex/2 + e−x/2). Straightforward

but tedious differentiation shows that[
h′(x)

x

]′
=

1− e2x + 2xex

2x2(1 + ex)2
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Figure 4: δ for logistic at y = 1 (left) and y = 8 (right).

=
1

2x2(1 + ex)2

∞∑
k=2

[
2x

xk

k!
− (2x)k+1

(k + 1)!

]

=
2

2x2(1 + ex)2

∞∑
k=2

xk+1

k!

[
1− 2k

k + 1

]
≤ 0.

Hence, h′(x)/x is decreasing on (0,∞), and Theorem 4.5 applies.

5.2 The Absolute Value Function

Because |x| is even, Theorem 4.5 yields the majorization

g(x) =
1

2|y|
(x2 − y2) + |y| = 1

2|y|
x2 +

1
2
|y|,

which is just the result given by the arithmetic/geometric mean inequality

in Example 3.5. When y = 0, recall that no quadratic majorization exists.

If we approach majorization of |x| directly, we need to find a > 0 and b

such that

a(x− y)2 + b(x− y) + |y| ≥ |x|
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for all x. Let us compute A(y, b). If y < 0 then b = −1, and thus

A(y,−1) = sup
x 6=y

|x|+ x
1
2(x− y)2

=
1
|y|

.

If y > 0 then b = +1, and again

A(y, +1) = sup
x 6=y

|x| − x
1
2(x− y)2

=
1
|y|

.

In both cases, the best quadratic majorizer can be expressed as

g(x) =
1
2

1
|y|

(x− y)2 + sign(y)(x− y) + |y|

=
1

2|y|
x2 +

1
2
|y|.

5.3 The Huber Function

Majorization for the Huber function, specifically quadratic majorization,

has been studied earlier by Heiser [1987] and Verboon and Heiser [1994]. In

those papers quadratic majorization functions appear more or less out of

the blue, and it is then verified that they are indeed majorization functions.

This is not completely satisfactory. Here we attack the problem by applying

Theorem 4.5. This leads to the sharpest quadratic majorization.

The Huber function is defined by

f(x) =
{

1
2x2 if |x| < c,
c|x| − 1

2c2 otherwise.

Thus we really deal with a family of even functions, one for each c > 0. The

Huber functions are differentiable with derivative

f ′(x) =

 x if |x| < c,
c if x ≥ c,
−c if x ≤ −c.
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Since it is obvious that f ′(x)/x is decreasing (0,∞), Theorem 4.5 immedi-

ately gives the sharpest majorizer

g(x) =


1
2

c
|y|(x− y)2 − cx− 1

2c2 if y ≤ −c,
1
2x2 if |y| < c,
1
2

c
|y|(x− y)2 + cx− 1

2c2 if y ≥ +c.

6 Iterative Computation of A(y)

In general, one must find A(y) numerically. For a convex function f , two

similar iterative algorithms are available. They both depend on minorizing

f by the linear function f(x(k)) + f ′(x(k))(x−x(k)) at the current point x(k)

in the search for the maximum z of δ(x, y). This minorization propels the

further minorization

δ(x, y) ≥ f(x(k)) + f ′(x(k))(x− x(k))− f(y)− f ′(y)(x− y)
1
2(x− y)2

=
[f ′(x(k))− f ′(y)](x− y) + f(x(k)) + f ′(x(k))(y − x(k))− f(y)

1
2(x− y)2

.

Maximizing the displayed minorizer drives δ(x, y) uphill. Fortunately, the

minorizer is a function of the form

h(w) =
cw + d

w2
=

c

w
+

d

w2

with w = x− y. The stationary point w = −2d/c furnishes the maximum of

h(w) provided

h′′
(
−2d

d

)
=

2c

w3

∣∣∣
w=−2d/c

+
6d

w4

∣∣∣
w=−2d/c

=
c4

8d3

is negative. If f(x) is strictly convex, then

d = 2
[
f(x(k)) + f ′(x(k))(y − x(k))− f(y)

]
,
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is negative, and the test for a maximum succeeds. The update can be phrased

as

x(k+1) = y − 2
f(x(k)) + f ′(x(k))(y − x(k))− f(y)

f ′(x(k))− f ′(y)
.

A brief calculation based on equations (3) and (4) shows that the iteration

map x(k+1) = g(x(k)) has derivative

g′(z) =
f ′′(z)(z − y)
f ′(z)− f ′(y)

=
f ′′(z)
A(y)

at the optimal point z.

On the other hand, the Dinklebach [1967] maneuver for increasing h(w)

considers the function e(w) = cw + d− h(w(k))w2 with value e(w(k)) = 0. If

we choose

w(k+1) =
c

2h(w(k))

to maximize e(w), then it is obvious that h(w(k+1) ≥ h(w(k)). This gives

the iteration map

xn+1 = y +
1
2 [f ′(x(k))− f ′(y)](x(k) − y)2

f(x(k))− f(y)− f ′(y)(x(k) − y)
= y +

f ′(x(k))− f ′(y)
δ(x(k), y)

with derivative at z equal to f ′′(z)/A(y) by virtue of equations (3) and (4).

Hence, the two algorithms have the same local rate of convergence. We

recommend starting both algorithms near y. In the case of the Dinklebach

algorithm, this entails

h(w) ≈ δ(x, y) ≈ f ′′(y) > 0

for f(x) strictly convex. Positivity of h(w(0)) is required for proper func-

tioning of the algorithm.

In view of the convexity of f(x), it is clear that f ′′(z)/A(y) ≥ 0. The

inequality f ′′(z) ≤ A(y) follows from the condition A(y) = A(z) determined
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by Theorem 4.4 and inequality (5). Ordinarily, strict inequality f ′′(z) < A(y)

prevails, and the two iteration maps just defined are locally contractive.

Globally, the standard convergence theory for iterative majorization (MM

algorithms) suggests that limn→∞ |x(k+1) − x(k)| = 0 and that the limit of

every convergent subsequence must be a stationary point of δ(x, y) [Lange,

2004].

Here is R code implementing the Dinklebach algorithm.

itDelta<-function(xinit,y,f,g,itmax=100,eps=1e-6,verbose=TRUE) {
xold<-xinit; fy<-f(y); gy<-g(y); itel<-1
d<-function(x) (f(x)-fy-gy*(x-y))/(((x-y)^2)/2); dold<-d(xold)
repeat {
xnew<-y+(g(xold)-gy)/dold; dnew<-d(xnew)
if (verbose)
cat("Iteration: ",formatC(itel,digits=6,width=6),
"xold: ",formatC(xold,digits=6,width=12,format="f"),
"xnew: ",formatC(xnew,digits=6,width=12,format="f"),
"dold: ",formatC(dold,digits=6,width=12,format="f"),
"dnew: ",formatC(dnew,digits=6,width=12,format="f"),
"\n")
if ((dnew - dold) < eps) break()
xold<-xnew; dold<-dnew; itel<-itel+1
}
return(list(x=xnew,d=dnew))
}
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