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ABSTRACT OF THE THESIS 

Optical Properties of Graphene from the THz to the Visible Spectral Region 

 

by 

 

I-Tan Lin 

Master of Science in Electrical Engineering 

University of California, Los Angeles, 2012 

Professor Jia-Ming Liu, Chair 

In this thesis, two models are developed to describe the optical properties of graphene from the 

THz to the visible spectral region. We show that the optical conductivity is mainly contributed 

by interband carrier transitions in the visible region and by intraband carrier scattering in the 

THz range. Optical properties such as refractive index and transmittance can be calculated 

theoretically from the model in the optical range. In the THz range, the Fermi energy and the 

scattering rate are two important parameters in the determination of the optical conductivity. One 

can use these physical quantities as fitting parameters and find their values by fitting the THz 

model to the experimental data. The fitted results are consistent with the data and one can predict 

the optical conductivity and refractive index at the frequency higher than the bandwidth of our 

experiments. Other physical properties such as the carrier density and the mobility can also be 

obtained from the fitted parameters. The resultant mobilities of monolayer graphene and bilayer 

graphene are consistent with the results of other groups.  
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Chapter 1 

Introduction 
 

 Since Kostya Novoselov et al. introduced the micromechanical cleavage method that 

produced graphene in relatively high quality in 2004 [1-2], graphene has become a subject of 

intense interest in the research community. Tremendous efforts have been made on the 

investigation on both electronic and optical properties. Graphene is a one-atom-thick 2D system 

with extraordinary optical and electrical properties that can be utilized in many potential 

applications [3-4]. The outstanding property of graphene comes from its unique crystal structure. 

Graphene can be considered as two triangular sublattices with two carbon atoms per unit cell. In 

such a structure, the energy dispersion is linear without a band gap. The linear dispersion implies 

a zero effective mass and ultrafast carrier dynamics. The absence of band gap makes graphene a 

semi-metal, distinguishing itself from other semiconductor material. These unique properties of 

graphene may be utilized in future electronic and optoelectronic devices. Graphene also provides 

a test ground for many fundamental concepts in theoretical physics. 

In this thesis, I will look into the optical property of graphene in the visible and THz spectral 

region in Chapters 2 and 3 respectively. The model for the visible spectral region will be 
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developed using time-dependent first-order perturbation theory. I will theoretically show that 

graphene has a broad and constant absorption range in the visible spectral region in Chapter 2. In 

Chapter 3, I investigate the THz property of graphene both theoretically and experimentally. The 

THz experiment was conducted by Shi-Kai Yao, a student of Professor Kuang-Hsiung Wu’s 

group in Taiwan National Chiao Tung University. The basic physical properties of graphene, 

such as the electron density, the carrier mobility, the scattering rate and the conductivity, can be 

obtained by fitting the model with the experiment data. The conclusion is drawn in Chapter 4. 

Future research directions and possible applications of the models are also discussed at the end. 
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Chapter 2 

Optical Properties  

in the Visible Spectral Region 
 

2.1 Band Structure 

The band structure of graphene can be approximated using tight-binding model considering 

only the nearest neighbor hopping energy (γ) [5]. As shown in Figure 1, the first Brillouin zone is 

a hexagon with a unit cell of two atoms. The conduction band and the valance band touch at 

corners of the hexagon (Figure 2), which is called the Dirac point. For an intrinsic or lightly 

doped graphene, the Fermi level is around the Dirac point, where charge carriers only experience 

a linear dispersion. This linear dispersion is called the Dirac cone since it is described by the 

relativistic Dirac equation. To calculate optical properties of graphene in the visible range, one 

can consider only the Dirac cone if the photon frequency is low compared to the resonance 

frequency and the Fermi energy is near the Dirac point. Since the resonance energy is about 6 eV 

(2γ) [6], which is larger than the photon energy in the visible range, for intrinsic graphene we can 
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approximate the optical properties within visible range assuming linear energy dispersion. One 

can anticipate the approximation will fail if the Fermi level is well above γ by electric gating or 

impurity doping. The assumption is also not valid if photon energies are beyond the visible range. 

  

Figure 1. The first Brillouin zone of graphene. The 

solid line marks the boundary of the first Brillouin 

zone, which is in a shape of hexagon. Colors 

represent relative energy levels. The colormap is 

shown in Figure 2. 

Figure 2. The band structure of graphene. The unit 

of energy is normalized to the nearest neighbor 

hopping energy γ. Six Dirac cones are shown in the 

vicinity of E=0 (Dirac point).  

 

The direct result of the linear electronic dispersion of Dirac cone is effective massless fermions. 

The energy dispersion can be written as [7] 

 fE v  k  (1) 

where is the reduced Plank’s constant, fv is the electronic group velocity or Fermi velocity, 

and k is the 2D wave vector measured from the Dirac point. The positive sign and negative sign 

on the right-hand side of the equation correspond to the upper part of the Dirac cone (the 

conduction band) and the lower part of the Dirac cone (the valance band), respectively. This 
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equation accounts for the electronic and optical phenomena within the visible spectral region. I 

will use it frequently as I develop the models for the visible and THz range.  

2.2 The Model 

In the visible range, photons can create electron-hole pairs by exciting electrons from the 

valance band to the conduction band. When the excitation happens, the photon energy is 

transferred to the electron. The net loss of the photon energy can be related to the imaginary part 

of the permittivity or the real part of the optical conductivity of graphene. Since the electrons are 

confined in the graphene layer, the optical conductivity is zero when the electric field is 

perpendicular to the graphene layer. Here we want to develop a model for the in-plane optical 

conductivity of graphene in the visible range. Using this model, we can also calculate the 

permittivity as well as the transmittance and reflectance of graphene in the visible range. 

The approach I adopt here is time-dependent first-order perturbation theory using density 

matrix. We can first write the perturbation Hamiltonian as 

 ˆ'( ) ( ), ( ) Re i t

xH t t t e x      μ  (2) 

where μ is the electric dipole moment. Without loss of generality, we assume the electric field is 

polarized along x direction with a single frequency ω. We can ignore the momentum of photons 

since it is small compared with the electron crystal momentum. We can write dipole matrix 

elements as 

 , cve c x v e x 
 

k k
k k  (3) 

where denotes eigenstates of unperturbed Hamiltonian oH . c, v and k are quantum numbers 
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that represent the conduction band, the valance band and wave vectors respectively. Then by 

rotating wave approximation, we can express the perturbation Hamiltonian in the interaction 

picture as 

  '( ) '( ) . .
2

o oH H
i t i t

i tx
cv

e
H t e H t e x e c v h c



  k k  (4) 

where , ,( ) /c vE E   
k k , ,nE

k
 is eigenenergy of state nk , h.c. means Hermitian 

conjugate of the preceding term, and tilde sign denotes the function in the interaction picture. 

According to the Liouville-Von Neumann equation 

  
i

( ) ( ), ( )
d

t H t t
dt
    (5) 

where 0( ) ( )H t H H t   and ( )t is the density matrix. It is easy to show that (5) can be 

translated into the interaction picture as 

 
i

( ) ( ), ( )
d

t H t t
dt
       (6) 

The time evolution of the off-diagonal elements of the density matrix is 

 

 

i
( ) ( ) ( ) ( ) ( ) ( )

i
( )

2

cv cv vv cc cv

i tx
cv vv cc

d d
t c t v H t t t H t

dt dt

e
x e 

   

 

     
 

  

k k

 (7) 

Keeping in mind that it also dependents on the quantum number k , which is eliminated from the 

symbol as subscript for simplicity. Integrating (7) over time, we can get 

 
( )

( )
2

i tx cv vv cc
cv

e x
t e  




 
   

 
 (8) 

Now calculate electric current 
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  , ,( ) Tr[ ( ) ] ( ) ( )xx x cv x vc vc x cv

e e
j t t v t v t v

A A
      

k

 (9) 

where Tr stands for trace and A is the cross-section area. The velocity operator xv along the x 

direction can be related to the position operator x by the equation of motion. For the off-diagonal 

element, 

 
, 0

i i i
[ , ] [ , ] [ ( ), ]x vcv H x c H x c H t x c     k k k k k k  (10) 

The second term on the right-hand side is of the order of Ex , which in turn gives (9) a quadratic 

term in Ex. Since we are dealing with a linear system, we shall drop it. Therefore 

 
, 0 , ,

ixi
[ , ] ( ) ixvc

x vc v c vcv H x c E E     k kk k  (11) 

 , ixx cv vcv   (12) 

 
2 2 2

, , | |x x vc x cvv v v x     (13) 

where we have assumed the resonance as we did in (4); therefore, the energy difference between 

two levels is the photon energy as shown in (11). Translating (11) and (12) into the interaction 

picture and plugging them as well as (8) into (9) we have 

  
2

2( ) | |
2

i t i tx vv cc
xx

i e
j t e e x

A

   



 
   

k

 (14) 

since 

 
 †1

( ) Re[ ( ) ] ( ) ( )
2

( ) ( ) ( )

i t i t i t

xx xx xx xx

xx

j t j e j e j e

j E

    

   

   



 (15) 

Utilizing (13), we have  
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2

2

, ,

( )
( )

vv cc
x

c v

ie
v

A E E i

 
 

  


 

  


k k k

 (16) 

Here we restore  and we add an infinitesimal i  in the frequency term so that the perturbation  

( )'( ) Re[ ]i i t

x xH t e      is turned off when the time is negative infinity. In order to obtain an 

analytical form of (16), we can apply the Dirac cone approximation where we assume the 

conductivity is only contributed by the carriers on the Dirac cone (1). The Dirac cone 

approximation is only valid if the Fermi energy and the photon energy is within the visible range. 

Beyond that, the energy dispersion is not linear and we can no longer adopt the approximation. 

In this case, a more sophisticated method has to be used. The result can be found in [8]. Here we 

are only interested in the visible range. Since graphene is isotropic in x and y directions, we can 

replace the average velocity 2

xv
 
with 

2 / 2fv where fv again is the electronic group velocity of 

carriers on the Dirac band. Using energy dispersion in (1), replacing summation with integration 

in (16) 

 

 

 

 

2 2

, ,

0

2 2

, ,

0

2

2

0

2

( ) 2 ( )
2 4

( ) ( ) ( )

( ) ( ) (2 )

( ) ( )
4 2 2

f

vv cc c k v k

f

v c c k v k

e v g
k dk E E

e v
k dk f E f E E E

e
E dE f E f E E

e
f f

      
 

 


 


 







   

   

   

 
   

 







 (17) 

where the identity 
1

0
lim( ) ( )x i i x


  


  has been used and we have dropped the imaginary part 

since it is relatively small in the visible spectral region [9]. g is the degeneracy of graphene 

which is 4 (spin plus valley degeneracy) and  is replaced by the Fermi-Dirac distribution f. If 
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we write the Fermi-Dirac distribution in terms of hyperbolic functions, (17) can be written in 

another form as 

 
2 sinh

2
( )

4
cosh cosh

2

f

e kT

E

kT kT



 


 
 
 

   
   

  

 (18) 

where fE is the Fermi energy, k is the Boltzmann constant and T is the temperature. Equation 

(18) is the model for the optical conductivity of graphene in the visible range. One can use the 

Kubo formula and ignore many-body effect to obtain the same result [10-11]. According to (18), 

optical conductivities of different Fermi levels and temperatures are drawn in Figure 3. When the 

Fermi level is located at the Dirac point, the whole conduction band is empty while the valance 

band is full. There is always an electron-hole pair that can be excited by an incident photon with 

corresponding energy. The result is a broad absorption range for photon energy across the whole 

spectrum up to visible range, as the blue line shown in Figure 3. However, as the Fermi level 

increases, lower energy states in the conduction band will be filled gradually. Therefore, the 

possibility of the absorption of photon energies lower than the Fermi level will decrease because 

of the Pauli block. However, for graphene prepared by chemical vapor deposition (CVD), the 

initial doping or substrate-induced doping is on the order of 10
12

 cm
-2

 [12-13], which 

corresponds to a Fermi energy on the order of 100meV, far below the visible range. Therefore, 

when  and kT are of the same order and fE is much larger than  and kT , the interband 

optical conductivity is approximately a constant 2

0( / 4 )e  in the visible range.
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Figure 3. The optical conductivity of graphene considering only the interband carrier transition. The 

conductivity of different temperatures and Fermi levels are plotted together for comparison. 

We can also use this constant 0 to estimate the permittivity of graphene in the visible range. 

The permittivity and the optical conductivity of graphene in the visible range is related by 

 0
0( ) 5.5 i

d


  


   (19) 

where 0 is the permittivity of vacuum and d is the thickness of graphene which is about 3.8Å  

[14]. 05.5 is the background permittivity [6, 15-16]. For the wavelength of green light (546nm), 

the calculated relative permittivity is 5.5+5.84i, which gives the refractive index of 2.6+1.12i. 

The value of the refractive index of graphene is still in a debate. Different values ranging from 

2+1.1i to 2.69+1.6i have been obtained from different experiments [14, 17-20]. This is due to the 

difficulty of simultaneously determination of the refractive index and the thickness of graphene. 

However, our result quantitatively matches the results from the experimental data. 

The constant transmittance of 97.7% [21] can also be explained by the constant conductivity 

across the visible range. The transmittance of graphene in the air at normal incidence is given by  
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 2

0 0(1 / 2 )T c     (20) 

which can be obtained straightforwardly by solving the Maxwell equation with appropriate 

boundary conditions. By replacing 0  
with 

2 / 4e
 
in (20), we obtain 

 2 2 2

0(1 / 8 ) (1 / 2) 1T e c          (21) 

where 2

0/ 4e c  is the fine structure constant and c is the speed of light. The absorption is 

thus 2.3%  , the same as the experiment result [21]. 

In this chapter, I have shown that the optical conductivity of graphene in the visible range is 

mainly contributed by interband carrier transition. By applying the Dirac cone approximation, 

the optical conductivity is a constant across the visible range. One can use this constant to obtain 

the theoretical refractive index and transmittance in the visible range. The result quantitatively 

matches the results from the experiment data. However, as photon energy decrease, one cannot 

ignore the contribution from intraband scattering anymore. In the next chapter, I will derive a 

model for the optical conductivity in the THz range considering intraband carrier scattering. 
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Chapter 3 

Optical Properties 

in the THz Spectral Region 
 

3.1 Introduction 

Recent terahertz technology achievements, such as THz time-domain spectroscopy and high 

power THz generation, have opened the door to many exciting applications in biology science, 

communication and sensing technology, etc [22]. Graphene is considered a promising candidate 

for THz detection and generation devices for many reasons. For example, the frequency of 

graphene plasmon and the bandgap of graphene nanoribbon are in the range of terahertz [23-24]. 

People have already proposed many exciting applications utilizing THz properties of graphene 

[4, 25-26]. In this chapter, I investigate the basic optical properties of graphene in the THz range. 
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3.2 The Model 

Contrast to the case in the visible range, the Fermi energy is usually much larger than the 

photon energy in THz frequency due to the substrate-induced doping or impurity. Therefore, 

because of the Pauli block, the interband excitation is usually negligible in the THz case; we only 

have to consider the intraband interaction when building the model for the THz frequency range. 

Considering constant electric field polarizing in the x direction ˆ
x x , under the relaxation 

time approximation, the Boltzmann equation tells us that the carrier distribution function is 

 
0

0

( ) (
( )

( )) ) (x xvf
E

f q
f

 



k k

k
k k  (22) 

where 
0 ( )f k is the Fermi distribution function without the influence of the electric field, q is the 

carrier charge, ( ) k is the relaxation time between collisions with the impurity ions, phonons, 

etc., and ( )xv k is the carrier velocity in the x direction. Using (22), the electric current can be 

expressed as 

 
02

2( )
( )

( ) ( ) ( )x
x x x

qq
j f k v

A A

f
v

E






 

k k

k
k k k  (23) 

where A is the cross-section area. The summation of the first term of (22) is zero since there is no 

current in the absence of the electric field. Again we apply the Dirac cone approximation. The 

group velocity is the same across the Dirac cone. We replace 2 ( )xv k with
2 / 2fv as we did in (16).  

Noting that 
0( ) /f E k is very small unless in the vicinity of the Fermi level, the integration is 

mainly contributed by wave vectors near the Fermi energy. Therefore, we can further simplify it 
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by putting ( ) k out of the integration so it represents the relaxation time near the Fermi energy. 

We can obtain the conductivity as 

 

22 2 20 0

2mono

0

( ) ( )

2
2

2

f fv vf f k

A E E

qq
dk k








   
 

 
 

k

k
 (24) 

where the subscript “mono” denotes the conductivity of monolayer graphene and k is k the 

absolute value of wave vectors. We have used the density of states of graphene in k space as 

24 / (2 )A  (degeneracy of graphene is 4 [5]) . Now we want to translate it into energy space so 

that we can relate it to the photon energy. We can use linear dispersion relationship in (1). 

However, since for each value of k, there are one corresponding energy level on the conduction 

band and one on the valance band as shown by (1). The integration include two parts: 

 

02

mono

0 0

2

0

2

0

2

2

2

( ) ( )

2 ln 2cosh

( )

2

f

q
EdE Ed

f E f E

E E

f E

E

E

q
E dE

Ee
kT

kT














 





  
 

  
  



  
   

 








 

  (25) 

where q is replaced with the electron charge -e. fE is the Fermi energy, k is the Boltzmann 

constant and T is the temperature. Equation (25) is the model for the optical conductivity of 

graphene in the THz range. It can be reduced further if we assume fE kT , which is usually 

the case even at the room temperature. Then (25) becomes 

 
2

2mono f

e
E




  (26) 

In fact the relaxation time  can be a function of temperature, impurity density or charge carrier 

density depending on the scattering mechanism. It is widely accepted that both short-range 
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scattering and long-range scattering contribute to the scattering time of monolayer graphene [27-

28]. For short-range scattering, the scattering rate is proportional to fE ; for long-range 

scattering, however, the scattering rate is inversely proportional to fE . Therefore, the 

dependence on fE  is not linear as seen in (26) if both scattering mechanisms are present. We 

can also see that (26) is a real number, implying the ohmic loss due to the carrier scattering 

mechanism. 

We can rewrite Boltzmann equation (22) in the case of oscillating field with frequency ω. The 

result is in the similar form of (25) but with ω dependence: 

 
2

2

mono 1

2
( ) ln 2cosh

2

fe

kTi

EkT

 
 

 

  
   

  
 (27) 

If we set 0  , (27) is identical to (25). Notice that in the absence of scattering 
1( 0)   , (27) 

is a purely imaginary number, signifying no dissipation of electric energy within graphene. 

However this is unlikely to happen due to the inevitable phonon scattering and finite impurity 

doping. Equation (27) can be further simplified as the way we did for (25) assuming  fE kT  

 
2

mono 2 1
( )

fe

i

E
 

   
  (28) 

It is clear that (26) and (28) are just the Drude model for the graphene case. 

It can be shown that for N layers of graphene, there are multiple subbands near the Dirac point 

[29]. For the Bernal (AB) stacking arrangement, if the number of layer N is an even number, 

there will be N/2 number of subbands that are parabolic with different effective masses. We call 

it bilayer-type subbands since the energy band is parabolic in bilayer graphene. For odd number 

layers, there is always one subband that is the same as the one in the monolayer graphene. We 
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name it monolayer-type subband. The rest (N-1)/2 subbands are bilayer-type. Therefore, the 

conductivity of N layers graphene is contributed by the sum of the carriers on different subbands, 

either monolayer-type or bilayer-type. I have shown that the optical conductivity for monolayer-

type subband is that in (27). I am going to show that the conductivity contributed by bilayer-type 

subband is just double the value in (27). We shall ignore the interband transition between 

subbands since the band gaps between subbands are much larger than the photon energy in the 

THz range [29-30]. We will also ignore the band overlapping or band gap opening due to 

couplings between different lattice sites since they are small (several meV) compared to the 

Fermi energy [5, 29]. 

For a bilayer-type subband with 2D carrier density of n and effective mass m*, the optical 

conductivity can be written in the form of the Drude model: 

 
2

bi * 1
( )

e n

m i
 

 



 (29) 

where the subscript “bi” denotes the conductivity contributed by a bilayer subband. Since both 

electrons on the conduction band and holes on the valance band can contribute to the 

conductivity, we should express the carrier density as two integrals 

   
2

0

bi 2D 2D* 1 0

1
( ) ( ) 1 ( )

e
g f E dE g f E dE

m i
 

 



 
  

    (30) 

where ( )f E is the Fermi distribution and 2Dg  is the 2D density of states given by 

 
*

2D 22

v sg g m
g


  (31) 

where vg and sg are the valley and spin degeneracy respectively. They both have the value of 2 

[5]. Plugging (31) into (30), we can obtain 
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    
2

/ /

bi 2 1

2

mono2 1

2
( ) ln 1 ln 1

4
ln 2cosh 2 ( )

2

f fE kT E kT

f

e kT
e e

i

Ee kT

i kT

 
  

 
  







   


  
   

   

 (32) 

Therefore it shows that (29) is just double the value of (27). For N layers graphene, if N is even, 

the conductivity is (N/2)×2σmono(ω)=Nσmono(ω). If N is odd, the conductivity is still 

σmono(ω)+(N-1)/2×2σmono(ω)=Nσmono(ω). Therefore, in the THz range, the optical conductivity is 

proportional to the number of layer N. It is not surprising since we have ignored the band 

overlapping and interband transition between subbands due to the low photon energy in the THz 

range. Therefore, multilayer graphene is essentially decoupled N layers graphene. 

3.3 Experiment 

The experiment setup and data measurement is done by Shi-Kai Yao in Taiwan at National 

Chiao Tung University. THz time-domain spectroscopy (THz-TDS) is used to measure the 

transmission of graphene in the THz range. Here I briefly explain the experiment configuration, 

which is similar to Ref. [31] with both pump beam and probe beam focused on graphene sample. 

Laser pulses are generated by mode locked Ti-sapphire laser with pulse width of 30 fs and 

central wavelength of 800 nm. The repetition rate is 80 MHz and the average power is about 500 

mW. The laser beam is split into two beams. One is used as probe beam and another is used to 

pump the THz emitter (Semi-insulating InP) to generate THz pulses with a bandwidth of 0.3-2.5 

THz. THz pulses are subsequently focused on the graphene sample and the transmitted signal is 

captured by an electro-optic THz detector (ZnTe crystal). Because of Pockels effect, the THz 

beam changes the refractive index of ZnTe crystal anisotropically. We can extract the 

transmission by measuring the intensity of the probe beam that passes through the ZnTe crystal 
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and polarizer beam splitter. By delaying the pump beam with respect to the probe beam, we can 

get the time-dependent transmission. The complex transmission data is in turn obtained by 

Fourier transforming the time domain data.  

To better see the optical response of graphene, we first measure the transmission of the bare 

sapphire substrate Tsub(ω) without graphene sample on it. Next we measure the transmission of 

graphene on the substrate Tgra (ω) and normalize it to Tsub(ω) 

 
gra ( )

sub

( )
( )

( )

i
T

e
T

 


 


  (33) 

where all the phase information is in the function ( )  and thus ( )  is a real number.  Tgra and 

Tsub are schematically illustrated in Figure 4. One of the major advantages of THz-TDS is the 

simultaneous determination and measurement of the phase and the amplitude information. 

 

Figure 4. The schematic illustration of the THz incident light on the substrate and the graphene. d is the 

thickness of graphene. graT  and subT are the transmission of graphene on the substrate and the 

transmission of the bare substrate respectively. 

 

 



19 

 

3.4 Data Analysis 

By solving the Maxwell equation with suitable boundary conditions, one can show [32] 

 
0

( ) 1

( ) 1 N ( ) /

gra

sub

T n

T n c



   




 
 (34) 

where n  is the refractive index of the sapphire substrate, which is approximately a constant 

number of 3.07 within our interest THz range. We ignore its imaginary part since it is 

comparatively small. ( )  is the optical conductivity of monolayer graphene in (27). We drop 

the subscript “mono” for simplicity. c and 0 are the speed of light and the permittivity of 

vacuum respectively. N is the number of graphene layer. I have shown that the optical 

conductivity of N layers graphene is just N times the conductivity of monolayer graphene in the 

last section. Therefore, we can write N ( )   as the surface conductivity of the sample with N 

layers. Equate (33) to  (34) for the imaginary part and the real part. We can obtain two equations: 

 0 (1 )cos( )
( ) 1

( ) N

c n
 

 

  
   

 
 (35) 

 0sin( )(1 )
( )

( )N

n c 
 

 


    (36) 

where ( )  and ( )  are the real part and the imaginary part of the optical conductivity 

respectively ( ( ) ( ) ( ))i        . Therefore, from the experimentally obtained ( )  and 

( )  , we can acquire the measured optical conductivity of the graphene sample. In the model 

(27), the conductivity is completely determined by two parameters, the Fermi level ( )fE  and the 

scattering rate 
1( ) 

. For different graphene samples, the values of fE and those of 1  will vary 
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because of the different imperfection and impurity densities of different samples. Take fE and 

1  as fitting parameters. By least mean square fitting of the model (27) to the experimental data 

(35), fE and 1  can be extracted for any graphene sample concerned. The real part of the optical 

conductivity obtained from the experimental data (35) and that from the model (27) with fitted 

parameters, fE and 1  , are shown in Figure 5-8 for samples of different numbers of layers. We 

normalized the 2D optical conductivity (Ω-1
) to the thickness of the sample so that it is in the unit 

of Ω-1
m

-1
. All the experiments are performed under the temperature of 294 K. The fitted results 

along with other calculated results are summarized in Table 1. As can be seen, with appropriate 

fitting numbers, the experimental data can be well described by the model. 

 

 

Figure 5. The measured optical conductivity and the theoretical conductivity with fitted parameters for 

single layer graphene. The experimental curve is best fitted with the Fermi energy ( )
f

E of 89.8meV and 

the scattering rate
1

( )


of 14.3×10
12

 s
-1

.
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Figure 6. The measured optical conductivity and the theoretical conductivity with fitted parameters for 

biayer graphene. The experimental curve is best fitted with the Fermi energy ( )
f

E of 192.1meV and the 

scattering rate
1

( )


of 25.4×10
12

 s
-1

.
 

 

Figure 7. The measured optical conductivity and the theoretical conductivity with fitted parameters for 5 

layer graphene. The experimental curve is best fitted with the Fermi energy ( )
f

E of 77.3meV and the 

scattering rate
1

( )


of 21.0×10
12

 s
-1

.
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Figure 8.The measured optical conductivity and the theoretical conductivity with fitted parameters for 7 

layer graphene. The experimental curve is best fitted with the Fermi energy ( )
f

E of 115.6meV and the 

scattering rate
1

( )


of 25.8×10
12

 s
-1

. 

 

In fact, the Fermi energy can also be negative of equal fitting value and the resultant fitting 

curve is still the same since the optical conductivity is independent of the sign of Fermi level as 

shown in the model (27). To determine the sign of it, further experiment has to be done to check 

if it is positively doped or negatively doped. However, due to the symmetrical band structure, the 

mobility of electrons and holes are the same. Therefore, we don’t have to know whether the 

majority carriers are electrons or holes in the sample to calculate the mobility. Here we assume 

the conductivity is contributed mostly by electrons and thus the sign of Fermi energy is chosen to 

be positive. With the knowledge of Fermi energy, we can now obtain the mobility of carriers by 

numerically calculating the density of electrons. For odd layers graphene 
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2D2

0

2
( )

( )f

E
n dE g f E

v

  
   

 
  (37) 

where the first term in the brackets is the density of states of monolayer-type subband. The 

second term 2Dg  is the total density of states contributed by bilayer-type subbands. 2Dg  can be 

calculated from (31) by replacing the effective mass with the sum of different effective masses of 

all the bilayer-type subbands. The value of effective masses can be found in [29]. In the case of 

even number graphene layers, the first term in the brackets is not presented. Once we have the 

electron density, the electron mobility of different samples can be calculated 

from N (0) / ne  , where (0) is given by (25) or by (27) setting 0  . The results are 

shown in Table 1. As can be seen, the Fermi level is relatively high for the bilayer graphene 

sample. One possible explanation is that instead of AB stacking, our bilayer graphene is actually 

AA stacking. AA stacking bilayer is semimetal with band overlap about 0.5-0.8 eV [33-34], 

which gives a high conductivity even when the Fermi level is low. Investigation on AA stacking 

will be our future research. The mobilities calculated for monolayer graphene and bilayer 

graphene are similar to the results obtained in the paper [35]. 

Table 1. The fitted results for the Fermi level ( )fE  and the scattering rate 
1( ) 

of samples with 

different number of layers. The samples are assumed to be doped with electrons. 2D density of 

electrons (n) and electron mobility can be calculated from fE and 
1 
. 

 1 layer 2 layers 5 layers 7 layers 

fE (meV) 89.8 192.1 77.3 115.6 

1 
(10

12 
s

-1
) 14.3 25.4 21.0 25.8 

n (cm
-2

) 6.2×10
11

 5.8×10
12

 7.4×10
12

 1.6×10
13

 

μ (cm
2
 V

-1
 s

-1
) 7380 1870 1639 1360 
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We can relate the conductivity to the refractive index by 

 
0

( )
( ) 2.5r i

d

 
 

 
   (38) 

 ( ) ( ) ( )rn in       (39) 

where ( )n   and ( )n  are the real part and the imaginary part of refractive index respectively. 

The conductivity ( )   can be obtained experimentally from (35) and (36) or theoretically from 

(27). Equation (38) is essentially the same as (19). The difference is that in (19) the conductivity 

is independent of frequency in the visible range. The resultant ( )n   and ( )n  are plotted in the 

Figure 9 and 10, respectively. As can be seen, the theoretical ( )n   and ( )n  with appropriate 

fitting numbers matches the experimental data very well. It shows that the Drude model can 

describe the optical conductivity of graphene up to 7 layers within our THz bandwidth. 
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Figure 9. Refractive indexes of (a) monolayer graphene and (b) bilayer graphene. Dash lines and solid 

lines represent the imaginary part (k) and the real part (n) of the refractive index respectively. Red lines 

are calculated from the conductivity measured. Black lines are calculated from the model (27). The fitted 

Fermi energy and the scattering rate are 89.8meV and 14.3×10
12

 s
-1

 in (a); 192.1meV  and 25.4×10
12

 s
-1

 in 

(b) respectively.
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Figure 10. Refractive indexes of (a) 5 layers graphene and (b) 7 layers graphene. Dash lines and solid 

lines represent the imaginary part (k) and the real part (n) of the refractive index respectively. Red lines 

are calculated from the conductivity measured. Black lines are calculated from the model (27). The fitted 

Fermi energy and the scattering rate are 77.3meV and 21.0×10
12

 s
-1

 in (a); 115.6meV  and 25.8×10
12

 s
-1

 in 

(b) respectively. 
 

 

(a) 5 layers graphene 

(b) 7 layers graphene 

Model 

Model 

Experimenal 

Experimenal 

n

n

n

n









 

Model 

Model 

Experimenal 

Experimenal 

n

n

n

n









 

Model 

Model 

Experimenal 

Experimenal 

n

n

n

n









 

Model 

Model 

Experimenal 

Experimenal 

n

n

n

n









 



27 

 

 

 

 

 

 

Chapter 4 

Conclusion 
 

To develop any graphene-based optoelectronic device, it is of great importance to understand 

the basic optical properties of graphene. I have derived models for optical conductivity in both 

visible and THz range. In the visible range, the optical conductivity is mainly contributed by 

interband carrier transitions. For the cases of intrinsic or lightly doped graphene, the optical 

conductivity is nearly constant, which gives a frequency independent absorption of 2.3% in the 

visible range. I also showed that the obtained refractive index quantitatively matches the 

experiment data from other groups. The optical conductivity of multilayer graphene in the THz 

range, in contrast, is contributed dominantly by the intraband scattering. I showed that the optical 

conductivity can be described by the model up to 7 layers. The Fermi energy and the scattering 

rate of graphene samples can be found by fitting the theoretical model to the experimental data. 

It showed that with appropriate fitting values, the conductivity as well as the refractive index is 

well described by the model. One can thus predict those physical quantities at the frequency 

higher than the bandwidth of the THz pulses used in the experiment. 
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Future work will be focused on applications of the optical conductivity models. For example, 

we can investigate plasmon propagation on the surface of graphene. If the optical conductivity of 

graphene is known, with appropriate boundary conditions, energy dispersion of plasmon can be 

obtained. We can also explore the possibilities of other applications such as photodetectors and 

optical modulators which highly rely on the understanding of the optical conductivity. Another 

possible direction for our future research is to derive a more comprehensive theoretical model for 

the optical conductivity. We can further consider the existence of finite bandgap due to 

symmetry breaking or many-body effects, such as electron-electron interaction and excitons.  
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