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Abstract 
Grapheme-color synesthetes experience linguistic symbols as 
having a consistent color (e.g., “The letter R is burgundy.”). 
Intriguingly, certain letters tend to be associated with certain 
colors, and these biases are not random: numerous properties 
of letters influence which letter is associated with which color. 
These influences, called “Regulatory Factors” (RFs), each 
explain some fraction of the variation in observed associations. 
No comprehensive model of the influences on grapheme-color 
associations exists: RFs have only been measured in isolation, 
are not always operationalized consistently, and often make 
competing predictions that cannot be accounted for in a 
univariate model. Here, we describe a statistical framework 
that integrates the predictions of all RFs into a single model, 
and thus yields a unified account of their influence on 
grapheme-color associations. Our model also links these 
predictions to measurable properties of language, offering a 
window into the multifactorial contributions to letter 
representation in the brain.  

Keywords: synesthesia, predictive model, grapheme-color 
association, letter representation  

Introduction 
Grapheme-color synesthetes experience linguistic symbols 
(e.g., letters of the alphabet) as having a consistent color (e.g., 
“The letter R is burgundy”). Synesthesia is not a “disease” 
(indeed, synesthetes typically find their experiences pleasant 
and useful); it is instead a perceptual phenomenon with 
objectively measurable behavioral, electrophysiological, and 
neural characteristics (for a review, see Lovelace, 2013).  

Synesthetes’ specific grapheme-color associations (which 
letter is which color) are highly consistent over time: a 
synesthete will pick the same color for each grapheme even 
when re-tested after months or years (Asher et al., 2006). In 
addition, although the associations of any two synesthetes 
often differ (for one synesthete, “R is burgundy”; for another, 
“R is lime green”), studies of the associations of large groups 
of synesthetes reveals systematic biases in grapheme-color 
associations: certain graphemes are more frequently 
associated with certain colors (e.g. Simner et al., 2005; for a 
review see Simner, 2013). Intriguingly, similar biases in 
grapheme-color associations are observed if non-synesthetes 
are forced to choose colors for letters (Simner et al., 2005), 
suggesting that these biases are not caused by synesthesia per 
se, but might instead reflect underlying processes in all of us. 

Why are certain letters likelier to be associated with certain 
colors? Numerous studies have reported correlations between 

synesthetic colors and various properties of letters, such as 
ordinal position, frequency in the language, and even 
pronunciation (for a review, see Simner, 2013). These 
influences, called “Regulatory Factors” (RFs; Asano & 
Yokosawa 2013; Root et al., In Review), each explain some 
fraction of the variation in observed associations.  

Understanding why certain grapheme-color combinations 
are more frequent than others has implications beyond the 
field of synesthesia research: the fact that many RFs are 
linguistic in nature suggests that grapheme-color associations 
reflect language representation in the brain, and the fact that 
non-synesthetes seem to share similar (but non-conscious) 
grapheme-color associations suggests that the difference 
between synesthetes and non-synesthetes is in their conscious 
experience of color, rather than in their underlying letter 
representations. Synesthetes’ conscious, specific, consistent 
associations are very easy to measure, and thus offer an 
extraordinary opportunity to study these representations. 

Most published research on synesthetic RFs has examined 
only one RF, and different RFs are often studied by different 
researchers. As a result, RFs have been operationalized and 
analyzed in very different ways, and this methodological 
variation makes it difficult or impossible to quantitatively 
compare RFs. For example, the “Color Term” RF (e.g., 
Simner et al., 2005) predicts that color terms influence the 
colors associated with the initial letters (“Y is yellow”, etc.), 
whereas the “Letter Frequency” RF (e.g., Beeli et al., 2007) 
predicts that more frequent letters are associated with 
brighter, more saturated colors. The Color Term RF yields an 
effect size measure of risk ratio in a categorical color space 
(e.g., 𝑃(𝑦𝑒𝑙𝑙𝑜𝑤 ∣∣ "Y" ) 𝑃( 𝑦𝑒𝑙𝑙𝑜𝑤 ∣∣ ! "Y" )⁄ ), whereas the 
Letter Frequency RF yields an effect size measure of 𝑟! in a 
continuous color space. Furthermore, univariate estimates of 
RF effect size may be confounded by other RFs. For example, 
the Color Term RF predicts that “Y” is associated with 
yellow (a bright color), whereas the Letter Frequency RF 
predicts that “Y” (a low-frequency letter) is associated with a 
dark color. If both RFs “compete” to influence the color of 
“Y”, a multivariate model that can account for the interaction 
between the RFs will yield estimates of RF effect size that are 
more accurate than the estimates of a univariate model.  

In the present work, we describe a novel unified model of 
synesthetic RFs. In our framework, the predictions of all RFs 
are transformed into the same color space, and all RFs are 
modeled simultaneously, yielding effect size estimates that 
can be quantitatively compared. We demonstrate how our 
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model can be used to compare RF effect sizes across different 
operationalizations of the same RF, across different RFs, and 
even across synesthetes with different native languages. 

A Unifying Model of Synesthetic RFs 
Below, we describe a unifying model of synesthetic RFs that 
outputs the predicted distribution of color associations for 
each grapheme. We construct our model as follows. 

Model Inputs 
We are given: 
• A set 𝐆 consisting of a finite number 𝑁𝐆 of distinct 

graphemes 𝐆 = {𝐺#, 𝐺!, 𝐺$, … , 𝐺%𝐆} 
• A set 𝐂 consisting of a finite number 𝑁𝐂 of “colors” 𝐂 =

{𝐶#, 𝐶!, 𝐶$, … , 𝐶%𝐂}, which are nonempty pairwise 
disjoint subsets of color space. 

• A set 𝐒 consisting of a finite number 𝑁𝐒 of distinct test 
subjects 𝐒 = {𝑆#, 𝑆!, 𝑆$, … , 𝑆%𝐒}. 

• A dataset 𝐗 consisting of a finite number 𝑁𝐗 of 
“associations” 𝑿 = {𝑋#, 𝑋!, 𝑋$, … , 𝑋%$} , each of which 
is an ordered triple of the form 𝑋) = (𝑔#, 𝑐) , 𝑠)) where 
𝑔) ∈ 𝐆 , 𝑐) ∈ 𝐂 , and 𝑠) ∈ 𝐒. Note that 𝑁𝐗 ≤ 𝑁𝐒𝑁𝐆 : each 
subject associates colors with at most 𝑁𝐆 graphemes, but 
can also associate no color for some grapheme(s). 

• A set 𝐊 consisting of a finite number 𝑁𝐊 of RFs 
(“regulatory factors”) 𝐊 = {𝐾#, 𝐾!, 𝐾$, … , 𝐾%𝐊} 

• For each RF 𝑘 ∈ 𝐊 , grapheme 𝑔 ∈ 𝐆 , and color 𝑐 ∈ 𝐂 , 
and subject 𝑠 ∈ 𝐒 : the predicted probability π+,-,.,/ that 
subject s associates grapheme 𝑔 is with color 𝑐 if the 
color of 𝑔 is due entirely to the influence of RF 𝑘. All 
such probabilities are derived theoretically or 
determined by observation/experiment using subjects 
not in 𝐒. Note that ∑ π+,-,.,/.∈𝐂  need not equal 1, because 
not all RFs cause the association of some color with 
every grapheme for every subject. 

Model Definition 
From the above, it follows that for each RF 𝑘 ∈ 𝐊 , grapheme 
𝑔 ∈ 𝐆 , and subject 𝑠 ∈ 𝐒 , the probability 𝛾+,-,/ that subject 
s associates grapheme 𝑔 with any color 𝑐 ∈ 𝐂 if the color of 
𝑔 is due entirely to the influence of RF 𝑘 is given by:  
 

𝛾+,-,/ =J𝜋+,-,.,/
.∈𝐂

(1) 

Likewise, it follows that for each RF 𝑘 ∈ 𝐊 , grapheme 𝑔 ∈
𝐆 , color 𝑐	 ∈ 𝐂, and subject 𝑠 ∈ 𝐒, the conditional probability 
𝜃+,-,.,/ that subject s associates grapheme 𝑔 with a particular 
color 𝑐 – given that the color of the grapheme 𝑔 is due entirely 
to the influence of RF 𝑘 – is given by: 

𝜃+,-,.,/ = O
𝜋+,-,.,/
𝛾+,-,/

				𝑖𝑓		𝛾+,-,/ ≠ 0

0															𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(2) 

so	that			𝜋+,-,.,/ = 𝛾+,-,/𝜃+,-,.,/	  

\𝑛𝑜𝑡𝑒:		J𝜃+,-,.,/
.∈𝐂

= 1_ (2) 

We associate a “relative strength” 𝛽) ≥ 0 with each RF 
𝐾) ∈ 𝐊 (e.g., 𝛽$ = 2 and 𝛽1 = 6 would imply that if 
𝛾+2$,-,/ = 𝛾+21,-,/ for all graphemes 𝑔 ∈ 𝐆 and subjects 𝑠 ∈
𝐒, RF 𝐾1 is three times more influential in causing color 
associations than RF 𝐾$); and then define, for each RF 𝑘 ∈ 𝐊 
, each grapheme 𝑔 ∈ 𝐆 , each subject 𝑠 ∈ 𝐒, and each vector 
𝛽 = 〈𝛽#, 𝛽!, 𝛽$, … , 𝛽%𝐊〉 of relative RF strengths: 

𝛼+,-,/g𝛽⃗h =
𝛽+𝛾+,-,/

∑ 𝛽++∈𝐊 𝛾+,-,/
(3) 

	\note:		J𝛼+,-,/g𝛽h
+∈𝐊

= 1_ 

We can now model the influence of regulatory factors on 
grapheme-color associations as a classical mixture model of 
categorical probability distributions θ, with βn⃗  and γ as 
hyperparameters on the mixture weights α. That is, for any 
grapheme 𝑔 ∈ 𝐆 and subject 𝑠 ∈ 𝑆, the probability that 
subject 𝑠 will associate grapheme 𝑔 with color 𝑐 ∈ 𝐂 is: 

 

J𝛼+,-,/g𝛽⃗h𝜃+,-,.,/
+∈𝐊

(4) 

This model is called a “mixture model” because it 
considers the dataset 𝐗 of grapheme-color associations to be 
a “mixture” (union) of disjoint subgroups, one subgroup for 
each of the 𝑁𝐊 different possible values of 𝑘 ∈ 𝐊 , the 
(unobservable) latent variable “regulatory factor”. The 
“mixture weight” 𝛼+,-,/g𝛽⃗h is the probability that a 
grapheme-color association (𝑔, 𝑐, 𝑠) ∈ 𝐗  belongs to the 
subgroup associated with regulatory factor 𝑘 ∈ 𝐊 (i.e., the 
probability that the association is due entirely to the influence 
of regulatory factor 𝑘). The conditional probability 𝜃+,-,.,/ is 
the probability that a grapheme-color association 
(𝑔, 𝑐, 𝑠) ∈ 𝐗  that belongs to the subgroup associated with 
regulatory factor 𝑘 ∈ 𝐊 has the color 𝑐 ∈ 𝐂 .  

Model Estimation 
From (3) above, it follows that all values of 𝛼+,-,/g𝛽⃗h are 
completely determined by the values of 𝛽 and 𝛾 . From (2) 
above, it follows that all values of 𝜃+,-,.,/ are completely 
determined by the values of 𝜋 and 𝛾. From (1) above, it 
follows that all values of 𝛾 are completely determined by the 
values of 𝜋. Recall that in this model, all values of 𝜋 – and 
thus, all values of 𝛾 and 𝜃 – are known a priori (having been 
either derived theoretically or determined experimentally). 

Therefore, the only unknown parameters in our model are 
the values of 𝛽, and to complete the model requires only that 
we determine, by maximum likelihood estimation, a best 
estimate 𝛽r  for the vector 𝛽⃗ of relative RF strengths: 
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							𝛽r = arg	max	
3455⃗ 7

ℒg𝛽 ∣∣ 𝐗 h																																									 (5)	

				𝛽r = arg	max
3455⃗ 7

y 		J𝛼+,-,/g𝛽h𝜃+,-,.,/
+∈𝐊(-,.,/)∈𝐗	

 

Finally, note that for any vector 𝛽⃗ of relative RF strengths 
and any positive real constant 𝑧 it follows from (3) above that 
ℒg𝛽 ∣∣ 𝐗 h = ℒg 𝑧𝛽 ∣∣ 𝐗 h. This fact reflects our earlier 
observation that it is the ratios 𝛽) 𝛽;⁄  of components of 𝛽, 
rather than their individual magnitudes, that are meaningful.  

While any one of the infinitely many estimates 𝑧𝛽⃗ for 𝛽 
therefore yields a “correct” model, it is useful (for example, 
in comparing regulatory factor strength profiles across 
different datasets, different subsets of regulatory factors, or 
even different languages) to specify a canonical first 
regulatory factor 𝐾# which is always assigned the relative 
strength 𝛽# = 1. For this “reference” or “baseline” regulatory 
factor we choose the grapheme-independent (and thus, non-
linguistic) probability distribution of colors (the “synesthetic 
palette”; Rouw & Root, 2019), defining corresponding values  
𝛽# = 1, 𝛾#,-,/ = 1 for every grapheme 𝑔 ∈ 𝐆 and subject 𝑠 ∈
𝐒, and 𝜃#,-,.,/ = |𝐗.| |𝐗|⁄  for every grapheme 𝑔 ∈ 𝐆 , color 
𝑐	 ∈ 𝐂, and subject 𝑠 ∈ 𝐒,  where |𝐗.| denotes the cardinality 
of the set of all associations 𝑥 ∈ 𝐗 in which some grapheme 
is associated with the color c. Choosing a specific value for 
𝛽# effectively identifies a unique canonical estimate from the 
infinite set of equivalent correct estimates 𝑧𝛽, resolving any 
model identifiability issue and completing our model. 

Applications of the RF Model 
Below, we describe three examples that illustrate how our 
model can be applied to improve our understanding of how 
grapheme-color associations are influenced by RFs. We 
demonstrate that our model can be used to (1) disentangle the 
effects of RFs that make congruent and incongruent 
predictions about the same graphemes; (2) directly and 
quantitatively compare the effect sizes of different RFs using 
the same statistical analysis; and (3) test for language-
dependence of RFs by quantitatively comparing RF strength 
profiles across synesthetes with different native languages. 

Ex. 1: Disentangle Confounded RF Predictions 
Univariate analysis of RFs will overestimate effect size when 
RFs make congruent predictions, and underestimate effect 
size when RFs make incongruent predictions. For example, 
the prelinguistic “Basic Shape” RF uses shape-color 
associations in infants to predict Z to be black (Spector and 
Maurer, 2011), and the “Index Route” RF also predicts Z to 
be black via semantic associations (“Z is for zebra and zebras 
are black or white”; Mankin & Simner, 2017). When each RF 
is modelled separately, each black Z will be “double 
counted”, potentially inflating estimates of effect size. Here, 
we simultaneously model the influence of the Basic Shape, 
Index Route, and Color Term RFs to associations on 

synesthetic associations. We chose these RFs (rather than 
letter frequency, refrigerator magnets, etc.) not because they 
are uniquely suited for our model, but because they are 
straightforward to explain and to operationalize. Our model 
can include any RF that can be specified as a set of probability 
distributions of predicted color for each grapheme. 

Dataset We use the database of synesthete and non-
synesthete associations in English and Dutch speakers from 
Rouw and Root (2019), which is publicly available 
(https://doi.org/10.6084/m9.figshare.9830816.v1). For the 
following analyses, only data from English-speaking 
synesthetes is analyzed. The data are from 54 synesthetes  
𝐒 = {𝒔𝟏, 𝒔𝟐, 𝒔𝟑, … , 𝒔𝟓𝟒}, who were recruited in university 
classrooms and using posted advertisements at the University 
of California San Diego (see Rouw and Root, 2019 for further 
details). The set of synesthetic grapheme-color associations 
X for subjects 𝒔 ∈ 𝐒 and the English graphemes 𝐆 =
{A, B, C, … , Z} was collected using the Eagleman Synesthesia 
Battery (Eagleman et al., 2007), and synesthesia status was 
confirmed using the test-retest consistency threshold in 
Rothen et al. (2013). RGB color data from the Eagleman 
Battery were transformed into a set of colors 𝐂 by using a 
lookup table (Jraissati and Douven, 2018) to convert RGB 
values into the 11 Basic Color Terms (Berlin and Kay, 1991): 

𝐂 = �
𝑏𝑙𝑎𝑐𝑘,𝑤ℎ𝑖𝑡𝑒, 𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑦𝑒𝑙𝑙𝑜𝑤, 𝑏𝑙𝑢𝑒,
𝑜𝑟𝑎𝑛𝑔𝑒, 𝑏𝑟𝑜𝑤𝑛, 𝑝𝑢𝑟𝑝𝑙𝑒, 𝑝𝑖𝑛𝑘, 𝑔𝑟𝑒𝑦 � 

Regulatory Factors The Basic Shape RF was 
operationalized as follows: for all subjects 𝒔 ∈ 𝐒, 

𝜋+2"Basic	Color",-,.,/ = O
1	if	𝑔 ∈ {𝐼, 𝑂}	and	𝑐 = 𝑤ℎ𝑖𝑡𝑒
1	if	𝑔 ∈ {𝑋, 𝑍}	and	𝑐 = 𝑏𝑙𝑎𝑐𝑘
0	otherwise																															

 

Note that the Basic Shape RF only makes predictions about 
a small subset of letters (four). We include it here not only 
because of its importance to synesthetic associations (it is 
perhaps the only true language-independent RF; Root et al., 
In Review), but also to illustrate the capability of our model 
to calculate unbiased RF strength values for RFs that make 
predictions about subsets of graphemes. Indeed, many RFs in 
the synesthesia literature only make predictions about a 
subset of graphemes (e.g., vowels), so is a critical feature of 
any model that seeks to account for RFs. This is also the 
feature of our model that distinguishes it from a typical 
categorical mixture model: in the calculation of 𝛼+,-,/g𝛽⃗h 
(Eq. 4), 𝛾+,-,/ is zero when an RF makes no prediction about 
a grapheme, and thus 𝛽r  estimates the strength of each RF 
based only on the graphemes for which it makes a prediction. 

The Index Route RF was operationalized following the 
methods of Mankin and Simner (2017), using the data from 
Root et al. (In Review). 65 non-synesthetes typed the first five 
words that “came to mind” for each grapheme 𝑔 ∈ 𝐆. From 
this data, we calculated the frequency 𝑃(𝑤|𝑔) of the three 
most frequently chosen words for each grapheme 𝑔 ∈ 𝐆, 
which we call the “index words” for that grapheme. Next, 47 
non-synesthetes (new subjects) chose the “best” Berlin-Kay 
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color 𝑐 ∈ 𝐂 for each index word. From these data, we 
calculated the probability 𝑃(𝑐|𝑤) that subjects associated 
each color with each index word. From these data, for all 
subjects 𝑠 ∈ 𝑆, 𝜋+2"KLMNO	PQRSN",-,.,/ = ∑ 𝑃(𝑤|𝑔)𝑃(𝑐|𝑤)T . 

The Color Term RF was operationalized for all synesthetes 
𝑠 ∈ 𝐒 using the ease of generation naming data of Battig and 
Montague (1969) for English. First, 𝜃+2"UQVQW	XNWY",-,.,/ was 
calculated as the conditional probability that Battig and 
Montague’s subjects named the color c when prompted to 
name a color, given that they named a color that begins with 
grapheme g. Next, 𝛾+2"UQVQW	XNWY",-,/ was calculated as the 
probability that Battig and Montague’s subjects named any 
color beginning with grapheme g. From this data, it follows 
that 𝜋+,-,.,/ = 𝛾+2"UQVQW	XNWY",-,/𝜃+2"UQVQW	XNWY",-,.,/ . 

 
Results Figure 1 depicts the effect size (relative RF strength 
values 𝜷) for each of the three RFs included in the model. 
 

 
 

Figure 1: β values for Basic Shape, Color Term, and Index 
Route RFs, modelled independently (blue) and together 

(red). Error bars are 95% confidence intervals. 
 

It is clear from these results that the univariate estimate of 
the Index Route RF effect size is much larger than the effect 
size estimate of our full model (although the RF is still 
significantly different from zero). It is likely that previous 
univariate models of the Index Route underestimated the 
effect of the overlap in predictions with other RFs (e.g., the 
Basic Shape and Index Route RFs both predict Z to be black).    
By accounting for the predictions of all three RFs 
simultaneously in the same model, we can disentangle 
confounded RFs and thus obtain uninflated effect size 
estimates for RFs that make overlapping predictions. 

Ex. 2: Compare RF Strength Between RFs 
Since most studies of RFs examine only one RF in isolation, 
the statistical techniques used in the literature vary widely, 
from simple t-tests and correlations (e.g. Simner et al., 2005) 
to multiple regression (e.g. Asano & Yokosawa, 2013) to 
Monte Carlo resampling (e.g. Mankin & Simner, 2017). As a 
result, it is difficult to compare the relative effect sizes of 
different RFs as reported in the literature, because the 
analyses used are so different. For example, Mankin and 

Simner (2017) report the effect size of the Index Route RF as 
the number of matches between the two most common 
synesthetic colors for each grapheme, and the two most 
common index words for each grapheme. In contrast, Simner 
et al. (2005) report the effect size of the Color Term RF as 
the average number of consistent predictions per subject. 

By forcing all RFs to be specified in the same way (as a set 
of predicted probabilities for each grapheme in a shared color 
space), our model yields effect size estimates that can be 
directly compared. For example, from Figure 1 and Table 1, 
the Color Term RF appears stronger than the Basic Shape RF. 

 
 

Table 1: 𝛽 values and standard errors 
 

 
This observation can be quantified using a two sample Z 

test of the difference in β coefficients (the standard error of 
each 𝛽 can be estimated as the square roots of the diagonal 
elements of the inverse Hessian matrix). Table 1 lists the 𝛽 
coefficients and standard errors for each RF. We can test for 
the difference between the effect size of the Color Term and 
Basic Shape RFs (for example) as follows: 

𝑧 =
0.53 − 0.25

√0.083! + 0.054!
= 2.83 

Using this procedure, we find that the Color Term RF is 
significantly stronger than both the Basic Shape RF (𝑧 =
2.83, 𝑝 = 0.005) and the Index Route RF (𝑧 = 3.61, 𝑝 <
0.001), but the Basic Shape RF is not significantly stronger 
than the Index Route RF (𝑧 = 0.95, 𝑝 = 0.34).  

The same general procedure can be used to test if a 𝛽 
coefficient is different from zero – a one sample Z test of the 
alternate hypothesis that 𝛽 > 0. Here, all three 𝛽 coefficients 
are significantly larger than zero (Basic Shape RF: 𝑧 =
4.66, 𝑝 < 0.001; Color Term RF: 𝑧 = 6.37, 𝑝 < 0.001; 
Index Route RF: 𝑧 = 3.75, 𝑝 < 0.001), suggesting that all 
Regulatory Factors explain some variance in our dataset.  

A more rigorous test of significance for 𝛽s is a Likelihood 
Ratio Test (LRT): to test the significance of the coefficient 
𝛽+, the likelihood ℒg𝛽 ∣∣ 𝐗 h is compared to the restricted 
model ℒg𝛽Znnnn⃗ ∣∣ 𝐗 h	in which 𝛽+ = 0. The test statistic 
−2	lngℒg𝛽Znnnn⃗ ∣∣ 𝐗 h ℒg 𝛽 ∣∣ 𝐗 h� h is asymptotically (with 
sample size) chi-square distributed with degrees of freedom 
equal to the difference in dimensionality between βn⃗  and βZnnnn⃗  
(Wilks, 1938). In this case, using the Likelihood Ratio Test 
yields identical results to the Wald Test for all three RFs (all  
χ! ≥ 22.31; all 𝑝 < 0.0001), confirming that all three RFs 
explain some variance in our dataset. 

By reparameterizing the model in various ways, the LRT 
can also be used to test other hypotheses. For example, if 

Regulatory Factor Estimate Std. Error 
Basic Shape 0.25 0.054 
Color Term 0.53 0.083 
Index Route 0.19 0.050 
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there are two alternative operationalizations of a single RF, 
both operationalizations can be included as separate RFs in 
the full model, and then two LRTs can be run using two 
different restricted models (in which the coefficient for each 
of the two operationalizations is set to zero); if only one 
operationalization significantly improves the model fit, this 
suggests it is the more accurate operationalization for the RF. 

In sum, our model can be used to compare the relative 
effect sizes of different RFs in the same dataset. This 
procedure enables predictions about the relative strength of 
different RFs to be tested, enables competing hypotheses 
about the best operationalization for an RF to be compared, 
and enables all individual RFs to be tested for significance 
with the same statistical test, thus eliminating confounds that 
make effect sizes in the current literature difficult to compare. 

Ex. 3: Compare RF Strength Between Languages  
Many RFs reported in the literature involve linguistic 
properties (letter frequency, pronunciation, etc.). Despite 
their clear linguistic origin, these RFs are almost always 
studied in English-speaking synesthetes, leaving open the 
question of whether RFs are language-specific or language-
universal. Root et al. (2018) provide evidence for at least one 
potentially-universal RF: across five different languages, 
synesthetes associate the grapheme in the first ordinal 
position (e.g., “A” in English) with red. However, some RFs 
may be language-dependent: Watson et al. (2011) find no 
evidence that pronunciation influences the associations of 
English-speaking synesthetes, but Asano and Yokosawa 
(2013) and Kang et al (2018) find that in Japanese- and 
Korean-speaking synesthetes, respectively, similarly-
pronounced graphemes are associated with similar colors.  

Asano and Yokosawa (2013) suggest that  differences in 
orthographic depth between the two languages may drive the 
Pronunciation RF to be stronger or weaker: English is a deep 
orthography, whereas the Japanese and Korean orthographies 
are transparent. However, although this hypothesis is 
appealing, these three studies are not directly comparable 
because in each study pronunciation was operationalized in 
very different ways. This illustrates a third strength of our 
model: not only can the effect size of different RFs be 
compared, the effect size of a single RF can be compared 
across different datasets (for example, of synesthetes with 
different native languages). Below, we apply our model to a 
dataset of Dutch-speaking synesthetes, using the same three 
RFs as in Example 1, and compare the β coefficients for the 
dataset of Dutch-speaking synesthetes to the 𝛽 coefficients 
for English-speaking synesthetes. 

Dataset The dataset of English-speaking synesthetes was the 
same as used in Example 1, above. The dataset of Dutch-
speaking synesthetes comes from the same database of 
synesthete and non-synesthete associations in English and 
Dutch speakers from Rouw and Root (2019).  The data are 
from 126 synesthetes 𝐒 = {𝟏, 𝟐, 𝟑, … , 𝟏𝟐𝟔}, who were 
recruited from the general public (via television and radio 
interviews) and from the undergraduate subject pool at the 
University of Amsterdam (see Rouw and Root, 2019 for 

further details). The set of grapheme-color associations X for 
subjects 𝒔 ∈ 𝐒 and the Dutch graphemes 𝐆 = {𝑨,𝑩, 𝑪,… , 𝒁} 
was collected, verified, and transformed into the Berlin-Kay 
color space using the same procedure as in Example 1. 

Regulatory Factors The Basic Shape RF was identical to 
that used for English in Experiment 1: as this RF is pre-
linguistic, it is identical across languages. The Index Route 
RF was operationalized in an identical manner to the English 
version of the RF in Example 1, using data from the same 
paper (Root et al., In Review). 53 Dutch non-synesthetes 
typed the first five words that “came to mind” for each 
grapheme 𝑔 ∈ G. From this data, we calculated the frequency 
P(𝑤|𝑔) of the three most frequently chosen words for each 
grapheme 𝑔 ∈ G, which we call the “index words” for that 
grapheme. Next, 57 Dutch non-synesthetes (new subjects) 
chose the “best” Berlin-Kay color 𝑐 ∈ C for each index word. 
From these data, we calculated the probability 𝑃(𝑐|𝑤) that 
subjects associated each color with each index word. As in 
Example 1, π+2"[\]^_	`abc^",-,.,/ = ∑ 𝑃(𝑤|𝑔)𝑃(𝑐|𝑤)d . 

The Color Term RF was operationalized in an identical 
manner to the English version of the RF in Example 1. Battig 
and Montague’s (1969) ease of generation experiment was 
replicated in Dutch by Storms (2001), allowing us to use the 
exact same procedure as in Example 1 to derive each value of  
𝜋+2"UQVQW	XNWY",-,.,/ using the Dutch color naming data. 

 
Results Figure 2 depicts the effect size (relative RF strength 
values 𝜷) for each of the three RFs included in the model. 
 

 
 

Figure 2: RF strength values for the Basic Shape, Color 
Term, and Index Route RFs, in English (blue) and Dutch 
(red) datasets. Error bars are 95% confidence intervals. 

 
The Basic Shape and Index Route RFs do not appear to 

differ in strength between Dutch and English. We can 
quantify this observation using the methods from Example 2: 
the 𝛽 coefficients did not significantly differ between English 
and Dutch for the Basic Shape RF (𝑧 = 0.37, 𝑝 = 0.71) or 
the Index Route RF (𝑧 = 0.70, 𝑝 = 0.48), but the Color Term 
RF was significantly stronger in English than in Dutch (𝑧 =
5.90, 𝑝 < 0.0001). Furthermore, the strength of the Color 
Term RF in Dutch was not significantly different from zero 
(Wald Z test, 𝑧 = 1.13, 𝑝 = 0.26) and removing the Color 
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Term RF from the model did not significantly reduce the 
model likelihood (LRT, χ!(1) = 1.44, 𝑝 = 0.23). 

Unlike the incongruent result from Example 1, we would 
not predict a priori that the Color Term RF should be present 
in English and absent in Dutch; indeed, a Color Term RF in 
Dutch has been described several times (e.g. Rouw et al., 
2014; Root et al., 2019). However, previous reports use 
Simner et al.’s (2007) operationalization (number of matches 
between color term and color association for each subject), 
which does not make a prediction about the relative 
likelihood of two colors that share a first initial. Dutch 
synesthetes are four times likelier to associate “B” with 
brown than with blue, whereas our operationalization (using 
the ease of generation data from Storms, 2001) predicts “B” 
to be blue much more often than brown.; this discrepancy 
accounts for our null result here, but does not influence the 
outcome of Simner et al’s (2007) statistical tests. Critically, 
we believe that a fully specified Color Name RF should be 
able to explain what happens when multiple color terms begin 
with the same grapheme, thus our null result here reveals that 
the Color Name RF is not yet fully understood, and alternate 
operationalizations should be explored.  

In sum, our model enables RFs to be fit to data from 
multiple languages, so that RF strength profiles across 
language can be compared. Absent other confounds (e.g. poor 
operationalization), significant differences in RF strength 
between languages suggest that some property of language 
might influence the strength of RFs – in other words, that 
values 𝛽 may themselves reflect linguistic properties.  

Discussion 
We created a unifying model of synesthetic Regulatory 

Factors in grapheme-color synesthesia, that can 
simultaneously model the contribution of all RFs to 
grapheme-color associations. Our model controls for 
confounds in existing univariate models of RFs. For example, 
RFs that make some congruent predictions lead to inflated 
univariate estimates of effect size, but by incorporating both 
RFs into the same model, we can obtain effect size estimates 
that are not confounded by overlapping predictions. In 
addition, our model requires all RFs to be specified in the 
same way, so it is possible to directly and meaningfully 
compare the effect sizes of each RF: we can make statements 
like “The Color Term RF is three times stronger than the 
Index Route RF”. Furthermore, our model can be used to 
compare RF effect sizes across different operationalizations 
of the same RF, refining our knowledge about which precise 
properties influence synesthetic associations, and refining 
our estimates of the relative strength of each RF. Finally, our 
model can be used to compare RF strength profiles in 
synesthetes in different datasets, in synesthetes with different 
native languages, and even in synesthetes vs. control subjects.   

It is interesting that RFs explain why synesthetes more 
frequently experience certain grapheme-color combinations; 
the fact that many RFs are linguistic in nature suggests that 
RFs can be used to study language representation in the brain. 
Indeed, grapheme-color synesthesia should be considered a 

psycholinguistic phenomenon as much as a perceptual one 
(Simner, 2007), and the effects of semantic and 
morphological factors on synesthetic color suggest that the 
typically modular reading system of the brain is cognitively 
penetrable to synesthesia, and that synesthesia could thus 
reveal the “specific computations that subserve the reading 
process” (Blazej & Cohen-Goldberg, 2016). The usefulness 
of this line of research critically depends on whether 
linguistic insights to be gained from studying synesthetes 
(~2% prevalence) generalize to the non-synesthetic 
population. Indeed, some RFs influence non-synesthetes 
(Simner et al., 2006), and by comparing RF strength profiles, 
our model could quantitatively determine exactly which RFs 
are specific to synesthetes and which RFs influence 
grapheme-color associations in general.  

Future work can offer a more standardized method for 
translating existing Regulatory Factor predictions into the 
framework of the present model. Some of these translations 
will involve fitting (or theoretically deriving) additional 
hyperparameters: for example, to translate the Letter 
Frequency RF (“more frequent letters are brighter colors”) 
into a set of values of π+,-,.,/	, it is necessary to specify not 
just the expected brightness for a given frequency, but also 
the variance in expected brightness; this additional parameter 
could be fit using a holdout dataset. In many cases, RFs do 
not make precise predictions about the shape of the predicted 
probability distribution of colors, and to include these RFs in 
the model, such precision is necessary. Although this requires 
incorporating many additional assumptions about RFs, we 
actually see this as an advantage of our model: it forces 
researchers to make previously implicit assumptions explicit.  

Another target of future model development is to 
decompose the relative RF strength factor 𝛽 into additional 
hyperparameters that can be predicted rather than fit. In our 
model as currently defined, there is no principled prediction 
of the value of some 𝛽e: its fit is determined entirely by 
maximum likelihood estimation using the dataset of 
observations 𝐗. However, in theory, we may be able to 
predict some amount of variance in each 𝛽, and indeed doing 
so may yield important insights. For example, Asano and 
Yokosawa (2013) find that pronunciation influences 
grapheme-color associations in Japanese but not English, and 
suggest that this difference can be explained by differences 
in orthographic depth between the two languages (English is 
a deep orthography, Japanese is transparent). Orthographic 
depth can be quantified using entropy-based approaches 
(Borleffs et al., 2017), and the value, in each language, of 𝛽+ 
for the Pronunciation RF might be modelled as a function of 
grapheme-phoneme entropy. Such a model would be truly 
explanatory in that it would explain not just how strong the 
effect of each RF is, but also why the effect is weak or strong.   

The framework we develop to model Regulatory Factors in 
synesthesia might also be useful more generally. In 
particular, the novel component of our model is the 
decomposition of the mixture weights α (which can vary 
across graphemes) into strength parameters β (which do not 
vary across graphemes) and the stimulus specific variable γ, 
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which is calculated from inputs rather than fit in the model. 
One advantage of this decomposition is that predictor RFs 
only contribute to the explained variance for the subsets of 
graphemes for which they make predictions. This technique 
could be applicable to model fitting in Pattern Component 
Modeling (PCM), an extension of the venerable 
Representational Similarity Analysis (Kriegeskorte et al., 
2008) in which mixture weights of feature sets are estimated 
rather than pre-specified: “[e.g.,] useful if we hypothesize 
that a region cares about different groups of features (i.e., 
color, size, orientation), but we do not know how strongly 
each feature is represented” (Diedrichsen et al., 2018). PCM 
models take as one of their inputs a set of “feature models”, 
which are analogous to our RFs; formulating the mixture 
model as specified in the present work would enable feature 
models to be fit which do not make predictions about neural 
activity for every stimulus in the dataset. More generally, our 
framework could be applicable to any variance partitioning 
scheme (e.g., de Heer et al., 2017) in which an explanatory 
variable makes predictions for only a subset of the data and 
does not add noise to the predictions of the remaining data. 

Our framework offers a comprehensive, predictive model 
of synesthetic associations, that yields quantitative estimates 
of effect size for each synesthetic Regulatory Factor. This 
brings us closer to one “end goal” of synesthesia research: 
explaining why a particular synesthete experiences a 
particular color for a particular grapheme. Furthermore, by 
linking these predictions to objective, measurable properties 
of letters, we build an explanatory model of synesthetic 
associations that offers a window into the multifactorial 
contributions to letter representation in the brain. 
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