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A COMPRE~ON TECHNIQUE FOR LARGE STATISl1CAL DATABASESl 

by Susan J. Eggers, Frank Olken and Arie Shoshani 

Computer Science and Mathematics Department 
Lawrence Berkeley Laboratory, University of California 

Berkeley. California 94720 

Abstract 

In this paper we explore the compression of large statistical databases and 
propose techniques for organizing the compressed data. such that the time 
required to access the data is logarithmic. The techniques exploit special 
characteristics of statistical databases. namely. variation in the space required 
for the natural encoding of integer attributes. a prevalence of a few repeating 
values or constants. and the clustering of both data of the same length and con­
stants in long. separate series. Our techniques are variations of run-length 
encoding. in which modified run-lengths for the series are extracted from the 
data stream and stored in a header. which is used to form the base level of a B­
tree index into the database. The run-lengths are cumulative. and therefore the 
access time of the data is logarithmic in the size of the header. We discuss the 
details of the compression scheme and its implementation. present several spe­
cial cases and give an analysis of the relative performance of the various ver­
sions. 

I This work was supported by the Applied Mathematical Sciences Research Program of the Office 
of Energy Research. U. S, Department of Energy. under contract DE-AC03-76SF00098. 



1. Introduction 

The storage of very large databases may constitute a significant portion of 

the cost of managing them. The compression of data therefore becomes impor­

tant as the amount of data grows. In addition, data management systems need 

to provide efficient access to the compressed data. In this paper we explore the 

compression of large statistical databases, and propose techniques for organiz­

ing the compressed data such that the access time required is logarithmic. 

The term, statistical databases, is used here as a generic name for numeric 

databases which are amenable to statistical analysis. Examples are demo­

graphic databases, such as the U.S. census, business trend data and results of 

laboratory experiments. They have three important characteristics which we 

have exploited in the design of the compression algorithm. The first is the dis­

tribution of integer values over a large range, for attributes such as population 

counts. As a result, the space required for the natural encoding of these attri­

butes varies (one to four bytes depending on the size of the value). In addition, 

the distribution of values is often skewed towards the lower end, making smaller 

values more likely. Several schemes have been proposed which compress or 

encode data to their minimum byte /bit length. but require serial decoding for 

data access [ALSB75, GOTT75 , HUFF52]. Under the compression scheme 

presented in this paper the data are compressed to a minimum byte size (by 

suppressing leading zeros) but accessed in logarithmic time. 

The second characteristic is the prevalence of a small set of data values, 

typically zero or a missing data indicator. These values represent a large por­

tion of the database. In such cases it is advantageous to remove the repeating 

values, which we refer to as constants, from the data stream. Here again, many 

schemes which do so require a sequential decoding of the database in order to 

search and access the data [ARON77, HAHN74, KNUT73]. Tarjan and Yao 
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[TARJ79] have developed a row displacement scheme in which access is loga­

rithmic, but the database is not fully compressed. Our approach removes multi­

ple types of constants from the data stream with the same technique which was 

used for compressing multiple length data. 

The third characteristic is the clustered distribution of data values 

throughout the database. Data of a similar subrange of values, and therefore of 

a potentially equal length, and data with identical values, Le., constants, tend to 

cluster in separate series in the database. Clustering is likely in statistical data­

bases because of the nature of ordering and collecting the data. For example, 

seismic monitoring data consists of long periods of low activity (generating small 

numbers or zeros), followed by short periods of high activity. In our compres­

sion scheme the clusters form the basic unit for compression. 

We have exploited these characteristics of statistical· databases to con­

struct a compression method along the lines of run-length encoding. Modified 

run-lengths are extracted from the data stream and stored in a header, which is 

used to form the base level of a B-tree index into the database. The run-lengths 

are cumulative, and therefore the access time is logarithmic in the size of the 

header. This scheme is a generalization of the specialized compression tech­

nique presented in [EGGEBO). 

Section 2 of this paper describes the general header compression scheme 

for compressing multiple types of constants and multiple length data. Aspects 

of the implementation which improve upon the degree of compression and the 

access are presented in section 3. In section 4. we consider two Simplified ver­

sions of the general scheme which can be used on special types of databases to 

achieve better compression, and in some cases, better performance. The first is 

the basic header scheme for compressing a single constant and single length 

data [EGGEBO], and the second involves the compression of multiple constants 
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and single length data. Section 5 summarizes a comparative analysis of the 

three schemes. 

2. The General Double-Count Header Compression Scheme (OCHJ for Multiple 

Constants and Multiple-iength Data (MCML) 

A "constant" is defined here to be any value which recurs consecutively a 

sufficient number of times, so that the space required for its compressed 

representation is less than that needed for explicitly storing the sequence. The 

decision to compress a sequence of constants can be made while the data is 

being compressed by applying a breakeven calculation between the two amounts 

of storage. By the above definition, any number of different constants can occur 

in a database. Multiple length data arise because each data item is stored in the 

ininimum number of bytes necessary to contain its value in its natural encoding. 

The general form of the header compression scheme presented in this paper, 

which we shall call the double-count header scheme ~DCHL is capable of 

compressing both multiple types of constants and multiple length data (MCML). 

In order to access data on databases which have been compressed, map­

pings are necessary between the uncompressed, logical database and the 

compressed, stored database. In order to execute the mappings, both forms of 

the data must be represented. The compressed form is, of course, explicitly 

stored. But the logical form must be computable, because the uncompressed 

location of the data values must be determined during query processing. 

In the double-count header compression scheme the logical. uncompressed 

form of a database is thought of as consisting of consecutive series of data 

values. Some of the series are different types of constants which will be 

compressed in entirety when the stored form of the database is created. Others 

contain data which can be compressed to a common minimum data length. 

Both the logical and stored forms are vertically partitioned, i.e., stored by 
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attribute. rather than tuple or row [BAT079. EGGE80. HAMM79]. so that the 

lengths of the series are maximized. Usually the partitioning is complete. i.e .. a 

single attribute in each partition. in order to take advantage of the natural con-

centration of constants for a single measured attribute. 

2.1. Description of the Header 

In the double-count header compression scheme the relationship between 

the logical and physical forms of a database is represented by a double-count 

header. which consists of entries for each of the various types of series in the 

logical form. Each double-count entry contains two accumulations: a "logical" 

count of the number of values in the logical form of the database and a "physi-

cal" count of data lengths in bytes in the stored form.2 Each type of count (logi­

cal and physical) is taken at the termination of each series of constants or equal 

length data values in the logical form. 

A database which has been compressed according to the double-count 

header compression scheme is depicted in Figure 1. LF and SF are the logical 

and stored forms of the database. respectively. In this example. different sized 

series are represented by F for four-byte values and I for two-byte values: 2 and 

3 are the constants. 3 In the double-count header. H(DCH). the double-count 

entries are represented by dci.. where i is the ordinal position of a double-count. 

The first component of each entry is a bit tag whose purpose is explained below. 

The second component is a logical'count of data values in the logical form. and 

the third is a physical count of data lengths in the stored form. 

The one bit tag indicates whether a particular series contains constants or 

stored data of a uniform length. We have arb-itrarily chosen the set bits to indi-

2 Bytes. rather than bits. were chosen as the unit of compression. because the smaller unit 
would have broken up the series and required more complicated processing for accessing the data. 

3 Constants may of course be of different byte lengths as well. but for simplicity we have not 
shown this in the example. 
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LF: F 1 F 2 F 3 II 12 2 2 2 3 3 3 3 13 14 I:; 2 2 2 F 4 F :; Fe F., leI., 3 3 

H(DCH): de 1 dC2 

del = 1:3:12 
de 2 = 1:5:16 
de 3 = 0:8:17 
de 4; = 0:12:18 
de 5 = 1:15:24 
dee = 0:18:25 
de., = 1:22:41 
de a = 1:24:45 
de g = 0:26:46 

Figure 1 

cate multiple length data and the cleared bits to indicate the constants. A sin-

gle occurrence of a constant for each constant series is actually retained in the 

stored form of the database to identify the value of the compressed series. 

Thus, when the tag indicates a series of constants. the physical count associated 

with that tag is increased by the length in bytes of only one constant. The logi-

cal count, however, still reflects the total number of constants in the logical 

form. 

2.2. The Mapping Algorithm. 

Both the logical and physical counts in the double-count header are cumu-

lative from the beginning of the database. Therefore a binary search can be util-
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ized in the mapping algorithm. and access to the stored data is achieved in loga-

rithmic time. 

Let the double-count header be represented as the sequence. To:Lo:Po. 

L's are logical counts of data values and the P's are the physical counts of data 

lengths. Let LP and SP be the ordinal positions in the logical and stored forms of 

the database, LF and SF. 

When mapping from a position in the logical form of the database to the 

corresponding position in the stored form, the binary search for a given LP is 

done on the logical counts, Lt. The corresponding physical count of data lengths 

is then used to determine the relative starting byte of the data in the stored 

form. If the tag in the ith double-count entry, Ti.' indicates that the series is one 

of stored values, the starting' byte position, SP, is calculated as follows: 4 

Pi - Pi - 1 
SP l = L;, _ Lt-l - (LP - L;,-1 - 1) + Pi - 1 + 1. 

If the tag indicates that the series contains constants, the representative 

constant kept in the stored form of the databilse can be reached by applying a 

similar form of the same calculation. Since only one constant is stored, rather 

than the Lt - L;, -1 constants which appear in the logical form. the formula is 

simplified to the following: 

SPo = Pi.-I + 1. 

In principle. the stored to logical mapping is also logarithmic, and would be 

done by a search on the physical counts. In practice. however, the search for LP 

is subsumed in the query processing which precedes the mapping. Assuming 

that there is no index on the stored data. locating a desired value requires a 

Pi. -Pi.-l 
4 In this formula 4 _ .4.-1 = the number of bytes per element of the series; 

LP - 4.-1 - 1 = the number of positions that LP is from the beginning of the series; and 
Pi-I + 1 = the physical position at the beginning of the series. 
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sequential search of the data. Since the stored data is of different lengths, the 

header is needed in or:der to determine data boundaries and to correctly group 

the bytes into values. A linear scanning of the header is therefore also required 

before stored to logical mapping is done. As the stored values are checked, i is 

appropriately increased. When a qualifying value is found, its LP can be calcu­

lated in constant time. (In section 4 we discuss two other schemes in which 

stored to logical mapping is done in logarithmic time.) 

2.3. Load-time Compression Decisions 

One would like a compression scheme to have the facility to determine 

which series of values should be compressed, either entirely, as in the case of 

constants, or to their minimum byte length, as in the case of multiple length 

data. It is desirable that the decision to compress be made in one pass during 

data loading, and be based on the length of the series, rather than pre-selected 

for the entire database by a database manager. The compression scheme can 

therefore take advantage of locality in the clustering of certain values or of data 

of a particular length. 

The compression decision is based on a comparison of the savings in space 

in the stored form of the database versus the storage overhead incurred in addi-

tional header space. A typical local decision rule would compare any series with 

the series immediately preceding it. For the compression of multiple length 

data the breakeven point occurs when the header storage overhead of 

compressing a series, i.e., the size of one double-count entry, (Tt :4:P-;'), is less 

than the additional space required to store the series in the units of the previ-

. :i' ous senes, l.e., 

5 In this formula the additi0?91 ~oM~~ per value is calculated by subtracting the number of 

bytes per value of the series at i, L;, _ 1;, _[ , from the number of bytes per value of the series at i-

I, 2=: = i=:· This quantity is then multiplied by the number of values in the logical form, 
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For example. assuming four byte counts. it is better to do minimum byte 

compression if it will eliminate more than eight bytes from the stored form. For 

the compression of constants the breakeven point occurs when the extra 

storage incurred in the header plus the identifying constant is less than the 

storage of the series of constants. 4. ~ (size of the constant). Again. allowing 

four byte counts and two byte constants. space would be saved by compressing 

constant series of five or longer. 

3. Implementation Considerations 

The double-count header compression scheme is currently being imple-

mented in C under the UN:rxe operating system. The implementation differs 

from the description given in the previous section of this paper in several 

respects. In all cases the aim of the difference is to achieve either greater 

efficiency in access or less header storage overhead. 

3.1. Page B-tree for the Header 

For large databases each header can take up hundreds. even thousands of 

pages. To avoid doing the binary search of the mapping algorithm on disk 

blocks. a B-tree has been imposed upon the header. The B-tree effectively 

increases the radix of the logarithmic search. thereby greatly reducing the 

number of disk accesses needed to locate a particular logical pOSition in the 

header. The binary search is done only on counts within a particular page of a 

tree or header. 

Since under the double-count version of the header compression scheme. 

the binary search is used only when mapping from the logical to the stored 

(4. - £;'-1)' 
6 UNIX is a trademark of Bell Laboratories. 
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forms of a database, each node of the tree contains only the logical counts of the 

double-count header. When the logical counts are accumulated by page (cf. sec­

tion 3.2 below), the tree can be stored as a heap, eliminating the need for page 

pointers. 

3.2. Header Accumulations by Page 

Both the logical and physical counts in the header, and consequently the 

logical counts in each level of the B-tree, accumulate values only within each 

page, rather than throughout the entire file. An example is illustrated in Figure 

2. H(DC) represents the double-count header. where for simplicity the tags and 

physical counts have been removed and only the logical counts are depicted. 

The two lines above H(DC) are the tree for the header. Each grouping, in both 

the header and the B-tree, represents a page. In each page of the header the 

logical count accumulation is restarted. For example, the second logical count 

on the second page of the header, ! 1 4 81, represents the fourth logical value for 

that header page, but the twelfth logical value for the entire file. Each entry in a 

page of the B-tree contains the maximum logical count accumulation of its own 

subtree and all the subtrees of its left siblings. For example, the accumulated 

logical count, 12, in the !7 12 23l page of the tree is the maximum accumulation 

in its own subtree, !2 3 51, plus that of the subtree of its left sibling, ! 1 3 71. And 

the value, 56, in the root of the tree, !20 43 56j, is the accumulation over the 

entire header. The overall structure of the B-tree is similar to the partial sum 

hierarchy used by Bennett and Kruskal [BENN75] in their LRU stack processing 

algorithm. 
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20 43 56 

8 1620 7 12 23 7 13 

H(DC): 3 4 8 1 4 8 2 3 4 1 3 7 2 3 5 3 8 11 3 6 7 1 5 6 

Figure 2 

When descending the B-tree. the value of the logical position which is 

sought. L;,. must be adjusted at each level to reflect the per page accumulation. 

Each intra-page binary search terminates at a particular logical count. i. L;. is 

then decreased by the accumulation in its left sibling. 4.-1' This latter value 

represents the total accumulation in the subtree headed by the logical count at 

i-l. The search for the adjusted logical position then continues on the next level 

of the B-tree. 

For most pages of a header. the maximum accumulation on a page is small 

enough so that the size of each count. and therefore the size of the entire 

header, is halved. Despite the added storage of the B-tree, the storage savings it 

produces in a header results in a reduction in the total storage overhead 

incurred by the header compression scheme. 

4. Simplified Versions of the Double-COunt Header Compression Scheme 

The double-count header compression scheme presented in the second sec­

tion applies to databases in which stored data is compressed to their minimum 

byte length and multiple types of constants are entirely compressed. For many 

databases such generality is not needed, and simplified versions of the header 
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compression scheme can be employed which require less storage overhead and 

occasionally have faster access. There are a number of special cases, the 

differences between them relating to whether the length of the stored data is 

fixed or variable and to the number of types of constants. These can be handled 

with two variations of the double-count header compression scheme. The first 

treats the basic case in which a single constant is compressed from a database 

of single length data, The other is a more flexible variation in which multiple 

types of constants are compressed, but the stored data is still of a fixed length. 

4.1. Th.e Single-COunt Header Compression Scheme ~ SCHJ for the Case of a 

Single Constant and Single Length Data [SCSL] 

There are numerous applications for compression schemes in which only 

one type of constant is suppressed and the data which are stored are all the 

same length. A large number of statistical databases have a prevalence of the 

constant zero, with the remaining data stored in floating point format. An exam­

ple is county cancer mortality rates. Other statistical databases are ordered by 

composite keys? whose values constitute an extremely incomplete cross product 

[EGGEBO, SVEN80J. In these databases, (for example, the results of laboratory 

experiments), the tuples of the incomplete cross product are stored, and the 

tuples with invalid composite key values are considered the constant and are 

compressed. For applications of this type, the constant is chosen before the 

time of data compression. In the latter application, in particular, the size of the 

"constant" which is compressed, i.e., a tuple, is sufficiently large in most statist­

ical databases that the calculation of a breakeven point for storage savings is 

~:uperfluous. 

7 Keys which are made up of several attributes. 
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4.1.1. Description of the Single-Count Header Compression Scheme lSCHI 

In [EGGE80] a constant suppression scheme was presented in which all 

occurrences of one pre-selected constant are eliminated from the database, and 

the values which are stored are of a single length. Under this scheme, called 

single-count header compression ~SCm, the consecutive series in the logical 

form of the database alternate between series of the stored data values and 

series of the one type of constant. The header which depicts them is composed 

of alternating entries for the two series. In this scheme the double-count in 

each entry is reduced to a Single-count by keeping separate logical accumula­

tions for each type of series. The counts reflect the number of values of a par­

ticular type (either constant or stored) at each point at which the series alter­

nate. 

As in the double-count scheme, the counts for each type accumulate from 

the beginning of the database, and a binary search is utilized in the mapping 

algorithm. The access of the data is therefore still a logarithmic function. The 

sum of any two adjacent counts is the logical position at the end of the series 

associated with the second count in the pair. Thus, when mapping from the logi­

cal to the stored form of the database, the search for a given logical position can 

be done on the sums of adjacent counts. When mapping in the other direction, 

the search for a given stored position is done only on the counts of stored data. 

A more detailed description and analysis is given in [EGGE80]. 

4.1. 2. Comparison of the Single-count ~ SCH~ and Double-count t DCH~ Header 

Compression Schemes 

For applications in which only one type of constant is compressed and the 

stored data are all of a single length, the double-count header compression 

scheme requires two and a half times the storage overhead of the single-count 

scheme. The data length information which was explicitly represented by 
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physical counts in the double-count version is not needed in the single-count 

scheme because of the fixed length of and the separate logical count for the 

stored data. Assuming that both logical and physical counts are the same size, 

the header itself is half as large. In addition, since there is only one constant, 

there is no need to explicitly identify its value for each constant series, and no 

constants need be stored in the database. 

Let N be the number of counts in the single-count header, L be the size of a 

logical or physical count and C be the size of a constant. The size of the single­

count header is then HSCH = LN.. The double-count header is 

HDCH = 2LN + ~ C. B Since it reasonable to assume that the size of a constant 

and the size of a header count are identical, the ratio of the two headers is 

2LN + N2 L 
HncH = 
HSCH --LN--...,;-=----= 2.5. 

As explained in section 2, when searching databases with multiple length 

data, the double-count header must be sequentially scanned, prior to perform-

ing stored to logical mapping. When the stored data are all the same length, 

however, the header is not needed to determine data boundaries, and the map­

ping can be done by a binary search on the physical counts. As before, when 

mapping from the logical to the stored form of the database, the logical counts 

are used. In order to minimize each search, i.e., minimize the height of the B-

tree and therefore the number of disk accesses, a separate B-tree is used for 

each type of count. In the single-count scheme the nodes of the B-tree contain 

pairs of logical counts. The number of internal nodes in its B-tree and the B-tree 

fan-out are both half that of the double-count tree. As shown below, the storage 

of the double-count B-tree approaches two times that of the single-count 

6 Since both iogical and physical counts are stored in the double-count header, the total number 
of counts is 2N; since the s'jJies of constants and stored values alternate, the number of constants 

which are stored as tags is 2" 
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version, as the size of the headers increase. 

Let A be the number of pairs of alternating counts in the single-count 

header9 TSCH be the total number of internal nodes of a full single-count B-tree 

of height h, and b be the number of nodes per page in the single-count B-tree, 

Le., the degree of the tree. Using a bottom-up approach for building the tree, 

\=,1 A 1 A 
TSCH = ~ _. -1-' = -., 

i=O b b b 1 --1 
b 

A 
For large A and b, TSCH ~ b _ l' In the double-count header each node contains 

only one count, rather than pairs of counts. The number of nodes per page is 

2b, and the number of counts in the header is 2A. The number of internal nodes 

of both double-count B-trees is 

TnCH ~ 2 ., 2b2~ 1 = 7"b-:..:.;.A"":'o--=.5:-:· 

As A -- 00, the double-count B-trees approach twice the size of the single-count 

B-tree. 

Despite the savings in storage of the single-count scheme, the usual tradeoff 

in access time does not occur. The access time between the two schemes is, in 

fact, quite comparable. Each mapping, regardless of direction or compression 

scheme, requires one descent of a B-tree. The access for both versions approxi-

mates 10gb A, where A is either the number of pairs of logical counts in the 

single-count scheme or the number of logical or physical counts in the double-

count scheme. 

The approximation can be derived as follows: In the single-count scheme the 

access for stored data is AsCH = logbA + 2. Since the constant. is known, the 

access for a constant value is one less. In the double-count scheme one con-

stant per series is stored. and the access time for both data and constants is 

9 In the terms used above, A "" N 12. 
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identical, ADCH = lOg2b 2A + 2. For large b, lOg2b 2A + 2 RJ 10gb A + 2. 

4.2. The Two Header Compression Scheme lTH~ for Multiple Constants and 

Single Length Data [MCSL] 

In many statistical databases attributes can have a range of values which is 

still fairly restricted, and all the data is therefore of a single length. However, 

the databases do include several types of constants. The compression require­

ments for these databases lie between those met by the double-count and 

single-count schemes presented above. The capability for handling multiple 

length data in the double-count scheme is not needed, but some facility for 

differentiating between the different types of constants is required. 

4.2.1. Description of the Two Header Scheme lTHJ 

To handle databases of the type described above, the single-count header 

scheme can be enhanced to provide a facility for compressing multiple types of 

constants. The single-count header is modified so that it contains alternating 

logical counts of stored values and series of constants of multiple types. A 

second header, known as the constant header, is also created to differentiate 

between the various types of constants. Such a database is depicted in Figure 3, 

in which L is the logical. uncompressed form of the database, containing values 

which will be stored (v) and several constants which will be compressed (0, 1. 2). 

The stored database, containing only the v's is depicted by S; and the single­

count header of the two header scheme by H(SCH). As in the single-count 

header compression scheme, the odd-positioned counts in H(SCH) accumulate 

stored values. However, rather than accumulating one particular type of con­

stant, the even pOSitioned counts in H(SCH) accumulate all types of constants in 

the logical fonn. 
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H(SCH): 2 3 4 5 7 10 9 17 

CS: 0 0 0 1 1 0 0 2 2 2 2 2 2 2 2 0 0 

H(CH): TO:3 T1:5 TO:7 T2:15 TO:1? 

Figure 3 

The constant header is based on a logical view of the compressed constants 

as consecutive series of different types of constants. Each logical count in this 

header has two components: a tag which indicates which constant has been 

suppressed, and an accumulation of all constants up to that point in the data-

base. IO In Figure 3 above H(CH) is the constant header: TO, T1 and T2 are the 

constant tags, and the numbers succeeding them are the logical counts of con-

stants. The logical form of compressed constants on which H(CH) is based is 

represented by CS. (Of course, there is no stored data associated with the con­

stant header, H(CH), since CS contains suppressed constants.) 

The mapping algorithms for the two header scheme are similar to that for 

the single-count version. Some additional processing is necessary, however, for 

locating constants. For logical to stored mapping, a binary search of the con-

10 Like the double-count header, this header could be considered an accumulated run-length en­
coding scheme. 
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stant header is needed to yie~d the constant type. For stored to logical map­

ping, the single-count header search is performed on the counts of constants, 

rather than on the counts of stored values. 

4.2.2. Comparison of Two Header lTHI and Double-Count PlCHI Header 

Compression Schemes 

For a comparison of the two header and double-count header compression 

schemes, let A be the number of pairs of alternating counts in the Single-count 

header of the ~THl version, Land C be the sizes of counts and constants, respec-

tively, and S be the average number of different series of constants represented 

by any multiple constant count in A. The storage overhead of the two header 

scheme is HSCH = 2AL for the Single-count header plus HCH = AS(L + C) for the 

constant header. When the double-count scheme is used on applications with 

multiple constants and single length data, the storage of its double-count header 

is HDCH = 2L(A + AS): the space for the constants which identify each constant 

series is ASC. Assuming that the counts and constants are of equal size, the 

ratio of the two storage requirements reduces to 

HDCH = 1 + S 
HTH 2(1 + S) . 

As S ~ 00, header storage for the double-count scheme increases from 1.25 to 

1.5 times that of the two header version. Note that S = 1 is the single constant, 

single length data situation (SCSL]. and the single-count header scheme ~SCHl 

should be used to realize the greater savings (2.5 times greater). 

The B-tree storage of the two schemes is comparable. For the two header 

version, the number of internal B-tree nodes for the single-count header is 

A AS 
TSCH ~ b _ 1 and for the constant header, TCH ~ b _ l' Each B-tree for the 

A + AS double-count scheme contains TDC ~ 2b _ 1 nodes. As A ~ 00, the number of 

internal B-tree nodes in both trees approaches A(Sb+ 1) 
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The access time of the two versions differs depending on the direction of 

the mapping (logical to stored or vice versa) and whether the output is a stored 

value or a constant. When mapping from the logical to the stored forms of the 

database, the access time for the two header scheme is 

ATB = 10gb A + 2 

if the output is a stored value and 

ATH = 10gb A + 10gb AS + 2 

if a constant. (The second term is for the search of the constant header.) Logi-

cal to stored access under the double-count scheme involves the descent of a B-

tree whose nodes contain only logical counts. The fan-out of each node is there-

fore twice as large. The access is 

ADCB = log2b (A + AS) + 2 

for both stored data and constants. For large b, the two header version wins 

slightly on access of stored data. The double-count scheme, however, has better 

performance for acceSSing constants: the two header scheme uses approxi-

mately 10gb A more accesses in this case. 

For mapping from the stored to the logical forms of the database, the 

double-count scheme utilizes a B-tree whose nodes contain physical counts, 11 

and the time for that search is identical to the double-count logical to stored 

mapping. If all occurrences of the constants are eliminated from the database, 

the access of the two header scheme is ArB = 10gb A + 1 for both stored data 

and constants. In this case, the scheme betters the time of the double-count 

version. However. if a storage breakeven calculation is used in the compression 

decision, both ~THl headers must be searched, and the general scheme has 

better access. 

11 cr. p. 17, 18. 
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4.3. Variations of the Special Case Schemes, lSCHI and lTIII 

Some statistical databases. especially those which are the results of sur­

veys. contain non-key attributes with very small domains. Often the different 

domain values occur in the database in sufficiently large clusters that they can 

be considered constants. In this case the data values themselves need not be 

explicitly stored. but instead can be represented by either a single-count header 

or a constant header. If the domain of the attribute is two (labeled [2C]. for two 

constants). the alternating logical counts of the single-count header can 

represent the two types of constants. A typical example in many statistical 

databases is the values male and female for the attribute sex. If the domain is 

larger than two (labeled [MC]. for multiple constants). only the constant header 

of the two header scheme need be used to represent the series of different types 

of constants. An example here are the values for the attribute race. 

These variations not only offer the savings in storage realized by the single­

count and two header schemes. but also result in a decrease in access time. 

Since the data is entirely represented in a header. the extra access to the 

stored database for the constant is eiirninated. In addition. in the case of the 

two header variation. the single-count header is not needed. and only the con-

. stant header search is required for all data. The access times for the !SCHl and 

~TH! variations are ASCH = 10gb A + 1 and Am = 10gb AS + 1, respectively. The 

former is better than the access of the double-count version. and the latter is 

comparable to tDCHl and improves upon the standard tTHl. 

For completeness. we shall consider the cases of a single constant and mul­

tiple length data [SCML] and multiple length data without constants [ML]. A 

slight modification to suppress the storing of the identifying constant per series 

in the double-count scheme can decrease the storage overhead for these cases 

by ASC and reduce the logical to stored access of constants by one. 
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5. Summary and future Work 

A double-count header compression scheme ~DCHl and two special case 

variations, single-count header ~SCH1 and two header compression ~THL have 

been presented, and it has been shown for which types of statistical databases 

they provide the best storage compression and access performance. Table 1 

summarizes these results., 

Database 
Characteristics 

MCML 
SCML 
ML 
MCSL 
SCSL 
MC 
2C 

x 

Table 1 

x 
x 

x 
X 

Since the most general version. fDCHL is the only technique with the capa­

bility of handling multiple size data (MCML), it clearly should be used for those 

statistical databases in which there is variation in the space needed to store the 

integer attributes. When only one constant is compressed (SCML) or there is no 

constant compression (ML) from a database with multiple size data, a slight 

modification (to suppress the storing of the identifying constant per series) 

decreases the storage overhead of the scheme, and in the (SCML) case, reduces 

the logical to stored access time for constant values. 

Since it offers a header storage savings of 1.25 to 1.5 times that of the 

double-count scheme, the two header scheme should be used for compressing 

databases with single size data and multiple constants (MCSL), However, if the 

database has a preponderance of constants and access time is more critical 
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than storage, the double-count scheme should be used, since its performance in 

accessing constants is better. For databases in which the attribute domains 

contain so few values that all values can be considered constants (MC), the 

single-count header of the two header scheme is not necessary, and the con­

stant header alone can represent the data. 

The greatest benefits in storage occur for statistical databases of the sim­

plest type, those with single size data and only one constant (SCSL) or with attri­

butes with only two values (2C). In these cases the Single-count header scheme 

can be used with a storage savings of 2.5 times that of the double-count scheme, 

but with no loss in access. 

It was our intention to develop a compression scheme which not only 

achieved a high degree of compression, but emphasized fast access. When com­

paring the header compression schemes with other compression techniques, it 

is this later factor which we consider most important. In [EGGEBO] the single­

count scheme was contrasted to two other techniques for compressing con­

stants, run-length encoding and null suppression with bit map. It was found that 

the former achieved a degree of compression similar to that of the single-count 

scheme, and the latter was usually less successful. Both, however, required 

linear access to the data. 

The other two versions of the header compression scheme presented in this 

paper, the two header and double-count schemes, produce similar comparison 

results. They are functionally analogous to standard run-length encoding and 

run-length encoding extended to handle multiple length data. The two header 

scheme requires slightly more storage overhead than its run~length counter­

part; the overhead for the double-count and extended run-length schemes are 

identical. Both run-length variations, however, require linear, rather than loga­

rithmic, access. 
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Ziv and Lempel [ZN77, ZN7B] have proposed a universal serial data 

compression algorithm whose compression efficiency is asymptotically optimal. 

As described, their scheme requires sequential decoding, hence linear access. 

In order to achieve fast random access, additional storage for an index is 

needed. We expect that our scheme will prove competitive in practice on sta-

tistical databases, but detailed empirical and theoretical comparisons remain 

an area for further research. 

To conclude, we have exploited common characteristics of statistical data-

bases to create a simple, effective data compression algorithm which provides 

logarithmic access. 
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