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Robust, fully-automated assessment of cerebral perivascular
spaces and white matter lesions: a multicentre MRI
longitudinal study of their evolution and association with risk
of dementia and accelerated brain atrophy
Giuseppe Barisano,a,∗ Michael Iv,b Jeiran Choupan,c,d and Melanie Hayden-Gephart,a on behalf of the Alzheimer’s Disease Neuroimaging Initiativee

aDepartment of Neurosurgery, Stanford University, Stanford, CA, USA
bDepartment of Radiology, Stanford University, Stanford, CA, USA
cLaboratory of Neuro Imaging, University of Southern California, Los Angeles, CA, USA
dNeuroScope Inc., New York, NY, USA

Summary
Background Perivascular spaces (PVS) on brain MRI are surrogates for small parenchymal blood vessels and their
perivascular compartment, and may relate to brain health. However, it is unknown whether PVS can predict de-
mentia risk and brain atrophy trajectories in participants without dementia, as longitudinal studies on PVS are scarce
and current methods for PVS assessment lack robustness and inter-scanner reproducibility.

Methods We developed a robust algorithm to automatically assess PVS count and size on clinical MRI, and inves-
tigated 1) their relationship with dementia risk and brain atrophy in participants without dementia, 2) their longi-
tudinal evolution, and 3) their potential use as a screening tool in simulated clinical trials. We analysed 46,478 clinical
measurements of cognitive functioning and 20,845 brain MRI scans from 10,004 participants (71.1 ± 9.7 years-old,
56.6% women) from three publicly available observational studies on ageing and dementia (the Alzheimer’s Disease
Neuroimaging Initiative, the National Alzheimer’s Coordinating Centre database, and the Open Access Series of
Imaging Studies). Clinical and MRI data collected between 2004 and 2022 were analysed with consistent methods,
controlling for confounding factors, and combined using mixed-effects models.

Findings Our fully-automated method for PVS assessment showed excellent inter-scanner reproducibility (intraclass
correlation coefficients >0.8). Fewer PVS and larger PVS diameter at baseline predicted higher dementia risk and
accelerated brain atrophy. Longitudinal trajectories of PVS markers differed significantly in participants without
dementia who converted to dementia compared with non-converters. In simulated placebo-controlled trials for
treatments targeting cognitive decline, screening out participants at low risk of dementia based on our PVS
markers enhanced the power of the trial independently of Alzheimer’s disease biomarkers.

Interpretation These robust cerebrovascular markers predict dementia risk and brain atrophy and may improve risk-
stratification of patients, potentially reducing cost and increasing throughput of clinical trials to combat dementia.

Funding US National Institutes of Health.

Copyright © 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Perivascular spaces; White matter lesions; Small vessel disease; Dementia; Alzheimer’s disease;
Glymphatic system
Introduction
Cerebral small vessel disease, the most common
vascular disease affecting the blood vessels within the
brain parenchyma, is considered a significant and
*Corresponding author. Department of Neurosurgery, Stanford University, 1
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potentially reversible contributor to cognitive decline
and dementia.1,2 Ex vivo studies have shown an inde-
pendent association of cerebral small vessel neuropa-
thology with cognitive function and many subtypes of
201 Welch Rd., Stanford, CA 94305, USA.
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Research in context

Evidence before this study
We searched PubMed, Google Scholar, and Web of Science for
articles published up to April, 2024, with the terms
(“Perivascular spaces” OR “PVS” OR “EPVS” OR “Virchow-
Robin spaces” OR “VRS”) AND (“Dementia” OR “Alzheimer”
OR “Cognitive impairment”) AND “longitudinal” without any
language restriction. This search yielded 51 results. Abstracts
and titles were reviewed. Only five research articles (two of
which were also included in three meta-analyses) reported
data on perivascular spaces (PVS) and incident dementia risk.
The results are conflicting and the relationship between PVS
and dementia risk remains unclear. Importantly, all these
studies performed only a manual visual assessment of PVS,
which has critical limitations related to inter- and intra-rater
variability, low sensitivity, and lack of granularity. Moreover,
the models in these studies inconsistently controlled for
confounding factors and did not include Alzheimer’s
biomarkers amyloid-β or tau. None of these studies
performed a quantitative assessment of PVS. Neither the
relationship between PVS and brain atrophy trajectories nor
the longitudinal evolution of PVS were explored. Our search
therefore suggested that little is known about the
longitudinal evolution of PVS and their relation to dementia
risk and brain atrophy.
The increasing evidence that vascular pathology contributes
to cognitive dysfunction highlights the critical need for the
development of robust MRI markers of cerebral small vessel
disease and PVS that could be used in hospitals, research, and
clinical trials to disentangle their contributions to cognitive
impairment and dementia. We searched PubMed, Google
Scholar, and Web of Science for articles published up to April,
2024, with the terms (“Perivascular spaces” OR “PVS” OR
“EPVS” OR “Virchow-Robin spaces” OR “VRS”) AND
(“Comput*” OR “Segmentation” OR “Quantif*” OR
“Algorithm*” OR “Automat*” OR “Semi-auto*” OR
“Semiauto*”). We identified 45 articles describing methods
for the segmentation and/or quantification of vascular and
perivascular structural properties. None of these methods
could be considered fully-automated, as they include steps
requiring a human intervention (e.g., selection of thresholds
for filtering techniques) and/or human-based training
datasets for artificial intelligence algorithms. Importantly, the
inter-scanner reproducibility of these methods was also not
described or weak.

Added value of this study
Here we present a fully-automated algorithm which segments
PVS from clinical T1-weighted images and provides robust
estimates of PVS count and size with excellent inter-scanner
reproducibility and test-retest repeatability (intraclass
correlation coefficients > 0.8). These characteristics allowed us
to employ this technique to quantitatively assess PVS on
20,845 brain MRI scans of 10,004 participants whose data
were pooled from three publicly available studies performed
in the United States and Canada. Our results show that fewer
PVS and larger PVS diameter at baseline predicted higher
dementia risk and accelerated brain atrophy. Longitudinal
trajectories of PVS markers differed significantly in
participants without dementia who converted to dementia
compared with non-converters. These results were
independent of APOE genotype, vascular risk factors, and, for
most cases, amyloid-β and tau status. Our data add important
information to current knowledge of vascular contributions
to dementia and brain atrophy. Moreover, we show that our
PVS markers may enhance the power of clinical trials for
treatments targeting cognitive decline and support risk-
stratification of elderly participants without dementia
independently of Alzheimer’s disease biomarkers.

Implications of all the available evidence
The simplicity and efficiency of our algorithm in robustly and
automatically assessing PVS on clinical MRI facilitate its easy
implementation in hospitals, clinical trials, and even
retrospectively for MRI data already acquired. The early
identification of people at increased risk of dementia and
accelerated brain atrophy according to our PVS markers has
several clinically relevant implications, including: 1) enabling
healthcare professionals to inform patients about their
specific risk and to implement preventive measures and
timely support; 2) enhancing the power of clinical trials
targeting cognitive decline; 3) enhancing clinical trials
targeting Alzheimer disease hallmark pathology (i.e., amyloid-
β and/or tau) for a more homogenous cohort of preclinical
Alzheimer disease by excluding participants with high-risk
PVS markers; 4) opening new opportunities to robustly
investigate perivascular spaces in vivo in a variety of
neurological conditions and treatment paradigms, allowing to
gain new insights on the physiology, pathophysiology, and
treatments related to the human brain vasculature and
glymphatics.
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dementia.3–7 Given the known association with demen-
tia, it is important to identify robust radiographic
markers of cerebral small vessel disease, to properly
risk-stratify patients, monitor disease, and assess the
impact of treatment.

In vivo evaluation of cerebral small vessel disease
relies on magnetic resonance imaging (MRI) and in-
cludes different signs of brain parenchymal damage
(e.g., white matter lesions, lacunes, subcortical infarcts,
cerebral microbleeds, and enlargement of perivascular
spaces).8 Yet these MRI findings may not be detectable
in the healthy population, are traditionally assessed with
visual qualitative scales which have lower sensitivity
compared with quantitative measures,8,9 require specific
MRI sequences, or are labour intensive to process.1,2

Using the perivascular spaces (PVS) as detected on
www.thelancet.com Vol 111 January, 2025
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MRI to non-invasively evaluate cerebral small vessel health
requires only an unenhanced 3-dimensional T1-weighted
images,9 a nearly universal brain MRI sequence. Current
techniques of PVS estimation10–15 though suffer from user-
dependency, and weak or unknown robustness and inter-
scanner reproducibility.1,9,16–18 These limitations prevent
generalised, widespread use in the hospital, clinical trials,
and multi-centre longitudinal studies. New, robust tools,
therefore, are needed to investigate the temporality and
nonspurious dose-response relationship between PVS (as
a surrogate of cerebral small vessels) and dementia.

To meet this critical need, we developed and vali-
dated a fully automated approach to robustly assess PVS
in the white matter (WM-PVS) and basal ganglia
(BG-PVS) requiring as input only unenhanced 3-D
T1-weighted images. Despite some possible limitations
in PVS visual detection compared with T2-weighted
images,8 3-D T1-weighted images are more commonly
included in brain MRI protocols,19 whereas 3-D T2-
weighted images are less common in hospital and
research settings, partly because they generally require
longer acquisition times than T1-weighted images and
some MRI scanners might not have a 3-D T2-weighted
sequence implemented in their standard imaging pro-
tocols. Indeed, this was the case for the MRI data
gathered in this study, which included 3-D T2-weighted
images in less than 10% of the MRI sessions and only
from one of the three assessed cohorts [Open Access
Series of Imaging Studies (OASIS-3)]. Therefore, we
considered the identification of PVS structural proper-
ties with clinical significance derived from 3-D T1-
weighted images rather than T2-weighted images
would be more widely applicable both in clinical and
research settings.

We employed our method to investigate the
following clinical questions which currently remain
unsolved: the longitudinal evolution of PVS and the
association of baseline PVS with the risk of developing
dementia and with the brain atrophy trajectory in par-
ticipants without dementia. We focused on two PVS
properties: the total number of PVS (regardless of their
enlargement status) on T1-weighted image (hereinafter
referred to as PVS count), and PVS mean diameter. We
also included in our analyses the (log-transformed) vol-
ume of white matter lesions (WML) in the periven-
tricular area (P-WML) and deep white matter (D-WML),
since they can similarly be measured on T1-weighted
images and are considered closely related to PVS.8

Furthermore, given that the inclusion of participants
with low risk of cognitive decline reduces the power of
clinical trials evaluating a treatment effect on cognitive
impairment,20 we evaluated the potential benefit of our
PVS markers as a screening tool to enrich for partici-
pants likely to develop dementia and compared their
performance with that of standard WML and atrophy
markers assessed on T1-weighted images. In summary,
here we aim to investigate: 1) the relationship of our
www.thelancet.com Vol 111 January, 2025
PVS markers with dementia risk and brain atrophy in
participants without dementia, 2) their longitudinal
evolution, and 3) their potential use as a screening tool
in simulated clinical trials.

We hypothesised that: 1) our robust PVS markers
may predict dementia risk and accelerated brain atrophy
in an elderly population without dementia, 2) their
longitudinal trajectories would be significantly different
in participants without dementia who converted to de-
mentia compared with those who did not convert, and 3)
they could be used to increase the power of clinical trials
for treatments targeting cognitive decline by enriching
the sample size for participants more likely to experi-
ence cognitive dysfunction over time.
Methods
Study population
We combined data from three observational studies: the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)21

(MRI data downloaded on March 2023), the National
Alzheimer’s Coordinating Centre (NACC) database22

(December 2022 data freeze), and the Open Access Se-
ries of Imaging Studies (OASIS-3)23 (Data release 2.0,
July 2022). Data were collected in the United States and
Canada from 2004 to 2022. Enrolled participants include
both cognitively unimpaired individuals and patients
with cognitive impairment and dementia. All partici-
pants undergo standardised clinical and neuropsycho-
logical examination. In our analysis, “sex” indicates
biological sex as was recorded in the clinical examina-
tion and “race” was reported by the participant as one or
more of the following categories: “White”, “Black”,
“American Indian”, and “Asian”.

We included in our analysis all participants who
underwent 1) at least one clinical visit with cognitive
assessment data available and 2) a brain MRI scan
including an unenhanced 3-dimensional T1-weighted
sequence within 12 months from the baseline clinical
visit. In the analysis investigating the risk of dementia,
and in the simulated clinical trials, only baseline par-
ticipants without dementia with at least 1 follow-up
clinical visit were included (definition of dementia is
described in the following section). In the analysis of
PVS and brain atrophy trajectories assessed with MRI,
only baseline participants without dementia with at least
1 follow-up MRI scan were included (Fig. 1).

ADNI
ADNI is a longitudinal multicentre study conducted in
the United States and Canada to develop clinical, im-
aging, genetic, and biochemical biomarkers for the early
detection and tracking of Alzheimer’s disease. ADNI
began in 2004 and enrol participants with or without
cognitive impairment between 55 and 90 years of age
(inclusive) along with a study partner to provide an in-
dependent evaluation of functioning.24 All participants
3
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Fig. 1: Flowchart diagram depicting study design. Further information about the participants clinical and demographic information can be
found in Table 2 and Supplementary Tables S5 and S7.
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could not have any medical contraindications to MRI,
could not be enrolled in other trials or studies concur-
rently, and could not take any medication that could
affect cognitive function.24 All participants had to have
Hachinski Ischemic Score of less than or equal to 425;
permitted medications stable for 4 weeks prior to
screening; a Geriatric Depression Scale score of less
than 626; a study partner with 10 or more hours per week
of contact either in person or on the telephone and who
could accompany the participant to the clinical visits;
visual and auditory acuity adequate for neuropsycho-
logical testing; good general health with no diseases
precluding enrolment; 6 grades of education or work
history equivalent; and ability to speak English or
Spanish fluently. Women had to be sterile or 2 years
past childbearing potential.

At the screening visit, all participants were required
to provide informed consent as compatible with the
local sites (Institutional Review Board regulations). In
addition, all participants provided demographics, family
history, and medical history. All participants were given
a physical examination and a neurologic examination,
and vital signs were recorded. The haplotype of apoli-
poprotein E (APOE) gene was assessed on blood
www.thelancet.com Vol 111 January, 2025
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samples. Cerebrospinal fluid samples were collected in a
subgroup of the participants: Amyloid-β1-42, total Tau,
and phosphorylated Tau181 measurements were
completed using the Roche Elecsys Cobas E601 fully
automated immunoassay platform at the ADNI
biomarker core (University of Pennsylvania) and were
available for 61.3%, 61.2%, and 61.2% of the partici-
pants included in our analysis, respectively.

Data on amyloid tracers uptake on Positron Emission
Tomography (PET), including florbetapir (AV-45), flor-
betaben (FBB), and Pittsburgh compound B (PiB), were
available in 66.7% of participants. Quantitative mea-
surements of standardised uptake value ratio (SUVR)
were provided by the ADNI PET core (University of
California, Berkeley) following protocols described in
the ADNI website (https://adni.loni.usc.edu/methods/
pet-analysis-method/).

Participants were classified as amyloid-positive based
on abnormal amyloid level detected on cerebrospinal
fluid (<1098 pg/ml)27 or PET (thresholds recommended
in the ADNI PET core documentation: AV-45 > 1.11,28

FBB > 1.08,29 PiB > 1.530), and as tau-positive based on
abnormal level of total tau (>242 pg/ml) or phosphory-
lated tau (>19.2) on cerebrospinal fluid.27

Perfusion measurements from Arterial Spin
Labelling MRI were available in a subsample of 1199
scans acquired on 455 participants, and were per-
formed by the University of California, San Francisco,
following protocols described in the ADNI website.
The Arterial Spin Labelling techniques included 227
3D pseudo-continuous arterial spin labelling (pCASL)
and 972 pulsed arterial spin labelling (PASL, 959 2D
and 13 3D).

NACC
The NACC database comprises data collected from the
Alzheimer’s Disease Centres in the United States fun-
ded by the National Institute on Ageing. From 2005 to
the present, these centres have been contributing data to
the Uniform Data Set using a prospective, standardised,
and longitudinal clinical evaluation of the enrolled par-
ticipants, including both participants without any
cognitive impairment and participants with cognitive
impairment and dementia. Participants are enrolled on
a referral or volunteer basis and undergo a complete
examination yielding demographic data, neuropsycho-
logical testing scores, and clinical diagnosis. The
haplotype of APOE is run independently by each Alz-
heimer’s Disease Centre and reported in the NACC
database. Cerebrospinal fluid samples were collected in
a subsample of the participants: Amyloid-β1-42, total Tau,
and phosphorylated Tau181 measurements were avail-
able in 363 (including 206 obtained through enzyme-
linked immunosorbent assay, ELISA, and 157 through
Luminex), 355 (including 193 ELISA and 162 Luminex),
and 349 (including 192 ELISA and 157 Luminex) par-
ticipants, respectively. A clinical report of abnormal level
www.thelancet.com Vol 111 January, 2025
of amyloid and tau in cerebrospinal fluid was also
available in 96 and 91 participants, respectively. Amyloid
PET scans were available in 206 participants (111 AV-45
and 95 FBB) and were visually assessed for amyloid
positivity by an experienced physician-scientist. A clin-
ical report of abnormal uptake of amyloid and tau
tracers in PET were also available in 432 and 26 par-
ticipants, respectively. Participants were classified as
amyloid-positive based on abnormal amyloid level
detected on cerebrospinal fluid (<570 pg/ml for ELISA31

or <192 pg/ml for Luminex32) or on PET (visually) or as
indicated in the clinical report, and as tau-positive based
on abnormal level of total tau (>412 pg/ml for ELISA31

and >93 pg/ml for Luminex32) or phosphorylated tau
(>78 pg/ml for ELISA31 and >23 pg/ml for Luminex32)
on cerebrospinal fluid or as indicated in the clinical
report.

Perfusion measurements from Arterial Spin Label-
ling MRI were available in a subsample of 439 partici-
pants, and were performed with an automated pipeline33

with partial volume correction.34 The Arterial Spin
Labelling techniques included 409 3D pCASL and 30
PASL (22 3D and 8 2D).

OASIS
OASIS-3 is a retrospective compilation of data collected
over the course of 15 years as part of research studies at
Washington University in St. Louis.23 All procedures
were approved by the Institutional Review Board of
Washington University School of Medicine. Participants
were recruited from the community via flyers, word of
mouth, and community engagements.23 Enrolled par-
ticipants were considered generally healthy or without
medical conditions that precluded longitudinal partici-
pation or contraindications to study procedures, such as
MRI and lumbar puncture.23 Participants underwent
clinical assessments which comprised collection of
medical and family history, physical examination, and
neuropsychological evaluation.23 No cerebrospinal fluid
data were available for the participants included in our
analysis. Data on amyloid and tau tracers uptake on PET
were available in 73.3% and 31.2% of participants,
respectively. Amyloid tracers included AV-45 in 336 cases
and PiB in 656 cases, whereas the employed tau tracer
was Flortaucipir (18F-AV-1451). Quantitative measure-
ments of the tracer uptake were provided in OASIS-3.
The acquisition and processing protocols are fully
described in the OASIS-3 documentation (https://www.
oasis-brains.org/files/OASIS-3_Imaging_Data_Dictionary_
v2.3.pdf). We used the cutoff values recommended in the
OASIS-3 documentation to classify participants as
amyloid-positive (Centiloid AV-45 > 20.6 or Centiloid PiB
> 16.4) and as tau-positive (AV-1451 Tauopathy > 1.22).

Perfusion measurements from Arterial Spin Label-
ling MRI (2D PASL) were available in a subsample of
595 participants, and were performed with an auto-
mated pipeline33 with partial volume correction.34
5
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Ethics
All participants gave written informed consent prior to
participation. All studies were approved by study sites’
respective regional ethics committees.

The Ethics committees/institutional review boards
that approved the ADNI study are: Albany Medical
Centre Committee on Research Involving Human
Subjects Institutional Review Board, Boston University
Medical Campus and Boston Medical Centre Institu-
tional Review Board, Butler Hospital Institutional Re-
view Board, Cleveland Clinic Institutional Review
Board, Columbia University Medical Centre Institu-
tional Review Board, Duke University Health System
Institutional Review Board, Emory Institutional Review
Board, Georgetown University Institutional Review
Board, Health Sciences Institutional Review Board,
Houston Methodist Institutional Review Board, Howard
University Office of Regulatory Research Compliance,
Icahn School of Medicine at Mount Sinai Program for
the Protection of Human Subjects, Indiana University
Institutional Review Board, Institutional Review Board
of Baylor College of Medicine, Jewish General Hospital
Research Ethics Board, Johns Hopkins Medicine Insti-
tutional Review Board, Lifespan—Rhode Island Hospi-
tal Institutional Review Board, Mayo Clinic Institutional
Review Board, Mount Sinai Medical Centre Institutional
Review Board, Nathan Kline Institute for Psychiatric
Research & Rockland Psychiatric Centre Institutional
Review Board, New York University Langone Medical
Centre School of Medicine Institutional Review Board,
Northwestern University Institutional Review Board,
Oregon Health and Science University Institutional
Review Board, Partners Human Research Committee
Research Ethics, Board Sunnybrook Health Sciences
Centre, Roper St. Francis Healthcare Institutional Review
Board, Rush University Medical Centre Institutional Re-
view Board, St. Joseph’s Phoenix Institutional Review
Board, Stanford Institutional Review Board, The Ohio
State University Institutional Review Board, University
Hospitals Cleveland Medical Centre Institutional Review
Board, University of Alabama Office of the IRB, Uni-
versity of British Columbia Research Ethics Board, Uni-
versity of California Davis Institutional Review Board
Administration, University of California Los Angeles
Office of the Human Research Protection Program,
University of California San Diego Human Research
Protections Program, University of California San Fran-
cisco Human Research Protection Program, University
of Iowa Institutional Review Board, University of Kansas
Medical Centre Human Subjects Committee, University
of Kentucky Medical Institutional Review Board,
University of Michigan Medical School Institutional Re-
view Board, University of Pennsylvania Institutional
Review Board, University of Pittsburgh Institutional Re-
view Board, University of Rochester Research Subjects
Review Board, University of South Florida Institutional
Review Board, University of Southern California
Institutional Review Board, University of Texas South-
western Institution Review Board, VA Long Beach
Healthcare System Institutional Review Board, Vander-
bilt University Medical Centre Institutional Review
Board, Wake Forest School of Medicine Institutional
Review Board, Washington University School of Medi-
cine Institutional Review Board, Western Institutional
Review Board, Western University Health Sciences
Research Ethics Board, and Yale University Institutional
Review Board.

The Ethics committees/institutional review boards
that approved the data collection for NACC database are:
University of Alabama Office of the IRB, Arizona State
University Institutional Review Board, Banner Health
Institutional Review Board, Barrow Neurological Insti-
tute Institutional Review Board, the University of Ari-
zona Human Subjects Protection Program, Stanford
Institutional Review Board, University of California
Davis Institutional Review Board Administration, Uni-
versity of California Los Angeles Office of the Human
Research Protection Program, University of California
San Diego Human Research Protections Program,
University of California San Francisco Human Research
Protection Program, University of California Irvine Of-
fice of Research Human Research Protections, Univer-
sity of Southern California Institutional Review Board,
Yale University Institutional Review Board, Mayo Clinic
Institutional Review Board, University of Florida Insti-
tutional Review Boards, Emory Institutional Review
Board, Northwestern University Institutional Review
Board, Rush University Medical Centre Institutional
Review Board, Indiana University Institutional Review
Board, University of Kansas Medical Centre Human
Subjects Committee, University of Kentucky Medical
Institutional Review Board, Johns Hopkins Medicine
Institutional Review Board, Boston University Medical
Campus and Boston Medical Centre Institutional Re-
view Board, the Human Research Protection Program at
Mass General Brigham, Michigan Medical School
Institutional Review Board, Washington University
School of Medicine Institutional Review Board,
Columbia University Medical Centre Institutional Review
Board, Icahn School of Medicine at Mount Sinai Program
for the Protection of Human Subjects, the University of
Nex Mexico Institutional Review Board, New York Uni-
versity Langone Medical Centre School of Medicine
Institutional Review Board, Duke University Health Sys-
tem Institutional Review Board, Wake Forest School
of Medicine Institutional Review Board, Cleveland
Clinic Institutional Review Board, University Hospitals
Cleveland Medical Centre Institutional Review Board,
Oregon Health and Science University Institutional Re-
view Board, University of Pennsylvania Institutional Re-
view Board, University of Pittsburgh Institutional Review
Board, Vanderbilt University Medical Centre Institutional
Review Board, University of Texas Health Science Centre
at San Antonio Office of the Institutional Review Board,
www.thelancet.com Vol 111 January, 2025
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the University of Washington Office of Research Human
Subject Division, the University of Wisconsin–Madison
Human Research Protection Program.

For OASIS, all procedures were approved by the
Institutional Review Board of Washington University
School of Medicine.

Assessment of cognitive status and dementia
In all three cohorts, the Clinical Dementia Rating (CDR)
assessment35 was performed through standardised inter-
view with the participant and a knowledgeable informant.
Six categories of cognitive functioning (memory, orien-
tation, judgment and problem solving, community af-
fairs, home and hobbies, and personal care) were
assessed. We used the standard CDR global score cutoff
value of 1 to classify participants as with dementia (1 and
above) or without dementia. The Mini-Mental Status
Examination36 (MMSE) scores were available in a sub-
group of 7046 participants and were used only in sensi-
tivity analyses. MMSE evaluates orientation, memory,
attention, concentration, naming, repetition, compre-
hension, and ability to create a sentence and to copy 2
overlapping pentagons.36 The clinical diagnoses followed
the criteria established by the National Institute of
Neurological and Communicative Disorders and Stroke
(NINCDS) and the Alzheimer’s Disease and Related
Disorders Association (ADRDA),37,38 as recommended in
the National Alzheimer’s Coordinating Centre’s Uniform
Data Set. For this study, we did not categorise partici-
pants based on the clinical diagnosis when available due
to the variable availability of biomarkers useful for the
diagnosis in each participant, the revision of the
NINCDS/ADRDA criteria occurred during the study
period, and the variability in the diagnostic process
within and across the studies, which could be performed
by either a consensus panel or a single physician
depending on a given centre practice.

MRI data processing
MRI data were acquired with a variety of 1.5- and 3-T MRI
scanners and sequences (Table 1). All T1-weighted images
were processed using the recon-all module of the freely
available FreeSurfer software package (v7.4),39 which
resampled all the images to 1 mm isotropic resolution and
performed an atlas-based brain parcellation. The longitu-
dinal processing scheme was used for estimating brain
atrophy (grey and white matter volumes, and cortical
thickness) longitudinally.40 White matter lesions were
segmented with a previously validated approach on T1-
weighted images.41 We classified as periventricular WML
the clusters of WML adjacent to the lateral ventricles; the
remaining clusters of WML were classified as deep WML.

Robust PVS segmentation method development
and validation
PVS were segmented using a novel approach that ad-
vances previous techniques10–15 being fully-automated
www.thelancet.com Vol 111 January, 2025
and showing excellent inter-scanner reproducibility
(Fig. 2). We employed the filter developed by Frangi
et al.16 to enhance tubular, vessel-like structures on T1-
weighted images and generate “vesselness maps” as
previously described.17,42 Briefly, the Frangi filter en-
hances tubular, vessel-like structures on a grey-scale
image and assigns a “vesselness” value to each voxel
V (s) from eigenvectors λ of the Hessian matrix H of
the image as:

V (s) =
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if λ2 > 0 or λ3 > 0,

(1 − exp(− R 2
A

2α2
))exp(− R 2

B

2β2
)(1 − exp(− S 2

2c2
))

Where, R A = |λ1|
|λ2|, R B = |λ1|̅̅̅̅̅̅̅̅|λ2λ3 |

√ , S = ‖H ‖.
We and others previously implemented and validated

this filter for the segmentation of MRI-visible vascular
and perivascular spaces on T1-weighted images using
the default, recommended parameters of α = 0.5,
β = 0.5, and c set to half the value of the maximum
Hessian norm.12,13,42 This approach requires the user to
identify a threshold on the vessel map generated by the
filter to define the vessel-like structures: values above
that threshold (i.e., with high “vesselness” values) are
considered vascular and perivascular spaces, and values
below are excluded. However, since the scale of the
“vesselness” values generated by the filter differs from
image to image (Fig. 2a) depending on the signal in-
tensity values of the input image,16 and since the signal
intensity values on T1-weighted images are represented
in arbitrary units which may vary depending on the MRI
machine and its calibration, this approach lacks inter-
scanner reproducibility1,9,16–18 (Fig. 2b) and is poten-
tially biased even in longitudinal studies. To overcome
this issue, we developed and validated a novel approach
for the segmentation of PVS applicable to virtually any
type of T1-weighted image.

The MRI data used for this method development and
validation were acquired as part of the Biomarkers
Consortium for Vascular Contributions to Cognitive
Impairment and Dementia (MarkVCID),43 ADNI,21 and
the Human Connectome Project (HCP development,44

young adults,45 and ageing46), and included:

a) the MarkVCID inter-scanner reproducibility
dataset: 19 participants who underwent four
brain MRI scans within an interval of 3–90 days
on four different 3-T MRI scanners (General
Electric system 750 W, Philips Achieva dStream,
Siemens Prisma, and Siemens TIM Trio) from
MarkVCID;

b) the inter-field-strength reproducibility dataset: 299
MRI sessions from 115 ADNI participants who
underwent in each session two brain MRI scans on
the same day with a 1.5- and a 3-T scanner;
7
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FS
(T)

Manuf. Model TR (sec) TE (sec) TI (sec) FA
(◦)

Native
voxel
vol.
(mm3)

Overall
(N = 20,845)
N (%)

ADNI
(N = 10,977)
N (%)

NACC
(N = 7819)
N (%)

OASIS
(N = 2049)
N (%)

1.5 GE GENESIS SIGNA 0.009–0.035 0.002–0.008 0.45–1 8–60 1.2 1641 (7.9) 271 (2.5) 1370 (17.5) 0

1.5 GE SIGNA 0.018 0.002–0.003 NA 25 1.8 50 (0.2) 0 50 (0.6) 0

1.5 GE SIGNA EXCITE 0.008–0.029 0.002–0.004 0.5–1 8–25 1.1 999 (4.8) 909 (8.3) 90 (1.2) 0

1.5 GE SIGNA HDx 0.009–0.011 0.004 0.5–1 8–10 1.1 587 (2.8) 425 (3.9) 162 (2.1) 0

1.5 GE Signa HDxt 0.009–0.02 0.004–0.007 0.45–1 8–30 1.1 572 (2.7) 303 (2.8) 269 (3.4) 0

1.5 Hitachi OASIS NA NA NA NA 0.2 1 (0.0) 0 1 (0.0) 0

1.5 Philips Achieva 0.009 0.004 1 8 1.1 70 (0.3) 70 (0.6) 0 0

1.5 Philips Eclipse 1.5T 0.009 0.002 NA 15 1.5 74 (0.4) 0 74 (0.9) 0

1.5 Philips Gyroscan Intera 0.008–0.009 0.004 0.761–1 8 1.1 13 (0.1) 12 (0.1) 1 (0.0) 0

1.5 Philips Gyroscan NT 0.009 0.004 1 8 1 19 (0.1) 19 (0.2) 0 0

1.5 Philips Intera 0.008–0.01 0.003–0.004 1–1.076 8 1.1 359 (1.7) 352 (3.2) 7 (0.1) 0

1.5 Philips Intera Achieva 0.009 0.004 1 8 1.1 6 (0.0) 6 (0.1) 0 0

1.5 Siemens Aera NA NA 0.8 NA 1 7 (0.0) 0 7 (0.1) 0

1.5 Siemens Avanto 1.7–2.4 0.002–0.004 1–1.1 8–15 1.9 452 (2.2) 443 (4.0) 7 (0.1) 2 (0.1)

1.5 Siemens Espree 0.011–2.4 0.003–0.006 1–1.1 8–25 1.8 36 (0.2) 24 (0.2) 12 (0.2) 0

1.5 Siemens Magnetom VISION NA NA 0.3 NA 1.8 2 (0.0) 0 2 (0.0) 0

1.5 Siemens Magnetom
ESSENZA

1.85 0.003 1.1 9 1 1 (0.0) 0 1 (0.0) 0

1.5 Siemens NUMARIS/4 2.4 0.004 1 8 1.9 2 (0.0) 2 (0.0) 0 0

1.5 Siemens Sonata 1.9–3 0.003–0.005 0.93–1.1 8–20 1.8 498 (2.4) 376 (3.4) 88 (1.1) 34 (1.7)

1.5 Siemens Sonata Vision 2.4–3 0.004 1 8 1.9 40 (0.2) 40 (0.4) 0 0

1.5 Siemens Symphony 2–3 0.003–0.004 1–1.1 8–15 1.9 681 (3.3) 594 (5.4) 87 (1.1) 0

1.5 Siemens Symphony Tim 2.4–3 0.002–0.004 1 8 1.9 126 (0.6) 124 (1.1) 2 (0.0) 0

1.5 Siemens Vision 9.7 4 NA 10 1.3 172 (0.8) 0 0 172 (8.4)

3 GE Discovery MR750 0.006–0.009 0.002–0.003 0.4–1.06 8–12 1.1 2990 (14.3) 958 (8.7) 2032 (26.0) 0

3 GE Discovery MR750w 0.008 0.003 0.4 11 1.1 132 (0.6) 132 (1.2) 0 0

3 GE GENESIS SIGNA 0.007 0.003 0.9 8 1.2 18 (0.1) 18 (0.2) 0 0

3 GE SIGNA EXCITE 0.007–0.008 0.003 0.45–0.9 8–15 1.2 50 (0.2) 44 (0.4) 6 (0.1) 0

3 GE SIGNA HDx 0.007 0.003 0.4–0.9 8–11 1.3 53 (0.3) 53 (0.5) 0 0

3 GE Signa HDxt 0.005–0.02 0.002–0.004 0.4–0.9 8–27 1.2 658 (3.2) 427 (3.9) 231 (3.0) 0

3 GE Signa MR360 2.1 0.003 0.9 8 1 1 (0.0) 0 1 (0.0) 0

3 GE SIGNA PET/MR 0.008 0.003 0.4 11 1.3 77 (0.4) 0 77 (1.0) 0

3 GE SIGNA Premier 0.007 0.003 0.4–0.45 11–12 1 89 (0.4) 56 (0.5) 33 (0.4) 0

3 GE SIGNA UHP 0.007–2.077 0.003 0.4–0.9 8–11 1 10 (0.0) 7 (0.1) 3 (0.0) 0

3 Philips Achieva 0.006–0.007 0.003 0.805–0.9 8–9 1.2 889 (4.3) 597 (5.4) 292 (3.7) 0

3 Philips Achieva dStream 0.006–0.007 0.003 NA 8–9 1 186 (0.9) 138 (1.3) 48 (0.6) 0

3 Philips GEMINI 0.007 0.003 NA 9 1.2 44 (0.2) 35 (0.3) 9 (0.1) 0

3 Philips Ingenia 0.007 0.003 0.9 9 1.1 209 (1.0) 209 (1.9) 0 0

3 Philips Ingenia Elition X 0.007 0.003 NA 9 1 14 (0.1) 14 (0.1) 0 0

3 Philips Ingenuity 0.007 0.003 NA 9 1.3 19 (0.1) 16 (0.1) 3 (0.0) 0

3 Philips Intera 0.007 0.003 0.845–0.869 8–9 1.2 273 (1.3) 273 (2.5) 0 0

3 Philips Intera Achieva 0.007 0.003 0.855 8 1.2 1 (0.0) 1 (0.0) 0 0

3 Siemens Allegra 2.3–2.5 0.003–0.004 0.9–1.1 8–9 1.1 136 (0.7) 108 (1.0) 28 (0.4) 0

3 Siemens Biograph mMR 2.3–2.4 0.002–0.003 0.9–1 8–9 1.3 584 (2.8) 26 (0.2) 5 (0.1) 553 (27.0)

3 Siemens Magnetom Prisma
Fit

2.3 0.003 0.9 9 1 12 (0.1) 12 (0.1) 0 0

3 Siemens Magnetom Vida 2.3–2.4 0.003 0.9 8–9 1.2 219 (1.1) 3 (0.0) 1 (0.0) 215 (10.5)

3 Siemens Prisma 2.3–2.4 0.002–0.003 0.9–1.06 8–9 1 957 (4.6) 255 (2.3) 702 (9.0) 0

3 Siemens Prisma fit 1.8–2.4 0.002–0.005 0.9–1 8–10 1 810 (3.9) 663 (6.0) 146 (1.9) 1 (0.0)

3 Siemens Skyra 1.8–2.3 0.002–0.003 0.649–0.962 8–10 1.1 1696 (8.1) 489 (4.5) 1207 (15.4) 0

3 Siemens Skyra fit 2.3 0.003 0.9 9 1 26 (0.1) 26 (0.2) 0 0

3 Siemens Trio 1.62–2.5 0.002–0.004 0.9–1.1 7–15 1.2 144 (0.7) 121 (1.1) 23 (0.3) 0

(Table 1 continues on next page)
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Manuf. Model TR (sec) TE (sec) TI (sec) FA
(◦)
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voxel
vol.
(mm3)

Overall
(N = 20,845)
N (%)

ADNI
(N = 10,977)
N (%)

NACC
(N = 7819)
N (%)

OASIS
(N = 2049)
N (%)

(Continued from previous page)

3 Siemens TrioTim 1.31–3.2 0.002–0.455 0.9–1.2 7–120 1.1 3098 (14.9) 1547 (14.1) 479 (6.1) 1072 (52.3)

3 Siemens Verio 1.7–2.3 0.002–0.004 0.9 8–9 1.2 805 (3.9) 767 (7.0) 38 (0.5) 0

Not available/unknown 0.007–2.3 0.002–0.005 0.4–0.9 8–60 1 237 (1.1) 12 (0.1) 225 (2.9) 0

FA: Flip Angle (degree, ◦); FS: Field Strength (Tesla, T); TE: Time to Echo (seconds); TI: Inversion Time (seconds); TR: Repetition Time (seconds). Native voxel volume is the volume of a single voxel in the
original image.

Table 1: Overview of the MRI scanners and parameters employed to acquire the T1-weighted images analysed in the study.
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c) the MarkVCID test-retest dataset: 39 participants
from MarkVCID who underwent two brain MRI
scans on the same MRI scanner using the same
protocol within an interval of 1–14 days;

d) the biological validation dataset: 2163 healthy partic-
ipants from the HCP whose MRI-visible vascular and
perivascular spaces have been studied extensively,47–49
a b

c d

ig. 2: Comparison between the original approach and our novel appr
ertical dashed line in panel a, in this case equal to 10−4), and to use this
pproach lacks inter-scanner reproducibility, because the scale of the vesse
ay differ among MRI scanners and protocols. In fact, in this example the
essel-like masks from Siemens scanner will have approximately 12.5
espectively (Panel b). In our novel approach, we set specific thresholds t
mage, green for the Philips-derived image, and blue for the Siemens-deriv
ercentile (black horizontal solid line) of the total number of non-zero vox
VS masks (Panel d) and robust metrics derived from the PVS masks (S
ifferences and accuracy (Supplementary Figs. S3d–f and S4). Panels b a
f the same participant obtained with 3 different MRI scanners with fixed t
panel d). The small brain icon on the top left of each panel indicates th

ww.thelancet.com Vol 111 January, 2025
providing a reference for verifying established
associations.

Supplementary Tables S17 and S18 include the de-
tails for the baseline characteristics of the analysed
participants and the MRI protocols employed in each of
the above datasets, respectively.
oach. The original approach requires to set a single threshold (black
threshold to segment vessel-like structures (Panel a). However, this

lness maps depends on the signal intensity of the input image, which
threshold would lead to very different number of segmented voxels:
and 25% more voxels than those from Philips and GE scanners,
o the individual images (vertical dashed lines, red for the GE-derived
ed image) based on the value of the voxel corresponding to the 85th
els of the vesselness map (Panel c). This approach leads to consistent
upplementary Figs. S3a–c and S5), while preserving inter-individual
nd d report the 3D representations of the PVS segmentation masks
hreshold approach (panel b) and our novel percentile-based approach
e orientation of the PVS masks.

9

http://www.thelancet.com


Articles

10
Our novel approach is based on the observation that
the total number of voxels with non-zero vesselness
value obtained from the Frangi filter applied on T1-
weighted images is:

1) Consistent across brain images of the same partic-
ipant acquired with different MRI scanners (inter-
scanner and inter-field-strength reproducibility,
Supplementary Fig. S1a and b, respectively);

2) Consistent across brain images of the same partic-
ipant acquired on two different MRI sessions with
the same MRI scanner and protocol (test-retest
repeatability, Supplementary Fig. S1c);

3) Significantly associated with age, sex, and body
mass index (Supplementary Fig. S1d–f) as previ-
ously described for PVS.47–49

Therefore, we hypothesised that the value of the
voxel corresponding to a single, specific percentile of the
total number of voxels with non-zero “vesselness” values
could be used as a threshold for consistently and
robustly segmenting MRI-visible vessel-like structures
across different types of T1-weighted images (Fig. 2c
and d). We identified this percentile to be 85% in the
white matter, based on the average ratio between the
number of voxels that we previously segmented as
vascular and perivascular spaces in the HCP dataset47,48

and the corresponding total number of voxels with
non-zero vesselness value.

In each individual vesselness map generated by the
Frangi filter, the vesselness value corresponding to the
85th percentile of the total number of non-zero voxels
was automatically computed: the voxels with vessel-
ness value above this threshold were retained and
binarised to make the PVS mask, whereas those below
or equal to the threshold were excluded. To improve
the specificity of the PVS segmentation,17,42 the Frangi
filter was applied on FreeSurfer’s white matter mask
with the following modifications: the voxels labelled as
corpus callosum by FreeSurfer were excluded; peri-
ventricular areas were excluded by subtracting Free-
Surfer’s lateral ventricle binary mask enlarged by
3 units from the white matter binary mask; WML were
also excluded. Finally, we used MATLAB’s region-
props3 function with the default 26-connected neigh-
borhood definition to compute PVS count and mean
diameter across all PVS clusters with in-plane size of
at least 2 voxels detected in the modified white matter
mask of each image.

Accuracy of the PVS segmentation was assessed via
visual inspection and quantified with the Dice similarity
coefficient using as a reference the PVS masks obtained
with an established and previously validated technique
applied on the HCP dataset.12,13,17,49 The Dice similarity
coefficient ranges from 0, indicating no spatial overlap
between two sets of binary segmentation masks, to 1,
indicating complete overlap.
The robustness of the PVS metrics assessed in our
study (i.e., PVS count and PVS mean diameter) across
different MRI scanners (inter-scanner and inter-field-
strength reproducibility) and sessions (test-retest
repeatability) was assessed with the intraclass correla-
tion coefficients, ranging from 0 to 1, where a higher
value indicates higher agreement between the compared
modalities. Similar evaluations were also performed for
WML metrics.

Since typically FLAIR and T2-weighted images are
considered more sensitive to WML and PVS, respec-
tively,8,9 due to a higher contrast between the cerebral
parenchyma and the WML/PVS, we also evaluated the
suitability of assessing WML and PVS with only the T1-
weighted images in two ways: 1) we measured the cor-
relation between the number of WML/PVS voxels
measured on T1-weighted versus FLAIR/T2-weighted
images, to determine the strength and direction of
their relationship; 2) to confirm the spatial agreement of
the WML/PVS voxels across the two modalities, we
measured the overlap of the WML/PVS voxels identified
on T1-weighted images with the WML/PVS voxels (and
the adjacent 3 voxels to account for any residual
misalignment between the imaging modalities) identi-
fied from FLAIR/T2-weighted images rigidly registered
to the corresponding T1-weighted images.

Statistics
All the models and simulations described below were
adjusted for intracranial volume and the following
baseline factors (as reported on the documented clinical
assessment and participant health history): age, sex,
educational level, race, body mass index, CDR global
score, family history of dementia (positive if any of the
participants’ parents were reported to have dementia),
and history of hypertension, dyslipidaemia, diabetes,
and cardio-/cerebro-vascular disease (i.e., any of the
following: heart failure, angina, cardiac arrest, stent
placement, coronary artery bypass, pacemaker, defibril-
lator, heart valve replacement or repair, stroke, transient
ischemic attack). Potential confounders were selected
based on the modified disjunctive cause criterion,50

identifying demographic and clinical variables that
have an association with the exposure and/or the
outcome, as supported by findings from the scientific
literature. Data for these factors were all available for
more than 97% participants. The proportion of partici-
pants with at least one variable with missing value was
7.4% of the total sample size (5.4% in ADNI, 8.7% in
NACC, and 9.8% in OASIS). We used missing in-
dicators for handling missing values in the covariates.
For the main analyses, we also employed multivariate
imputation by chained equations with 5 imputations
and predictive mean matching51 and verified the con-
sistency of the results.

The associations of our PVS markers with cognitive
status (non-dementia versus dementia) and the other
www.thelancet.com Vol 111 January, 2025
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covariates at the baseline visit were assessed with gen-
eral linear models stratified according to study. The as-
sociation of our PVS markers at the baseline with
subsequent risk of developing dementia was assessed in
each study independently with Cox proportional-hazards
models and the results were integrated using a random-
effects meta-analysis with the Hartung-Knapp-Sidik-
Jonkman method52 to account for potential differences
among the studies (two-stage pooled analysis). Inter-
study heterogeneity was assessed statistically with the
I2. Person-time was calculated in each participant from
the baseline clinical visit (origin and start times) until
the visit where the dementia was documented or the last
clinical visit, whichever occurred first (end time). The
proportional-hazards assumptions were verified by
assessing the relationship between Schoenfeld residuals
and time.53 Additionally, we analysed these associations
by combining in the same model all the participant-level
data (simple pooled analysis), stratified according to
study and adjusted for the same covariates, and used
penalised splines to assess their deviation from line-
arity.54 We used the P-spline method55 as implemented
by Therenau and Grambsch.56 The basis functions were
3rd degree polynomials (cubic splines). We chose 4
degrees of freedom and the number of basis functions
(knots) was set equal to 10.56–58 This way the spline
model can include enough basis functions to capture
relevant data patterns without being excessively com-
plex. Knots included 2 boundary knots corresponding to
the minimal and maximal value of the vascular marker,
and 8 equidistant interior knots (12.5th, 25th, 37.5th,
50th, 62.5th, 75th, and 87.5th percentiles). A penalty
term was applied to prevent overfitting, and the amount
of penalization was controlled by a tuning parameter
(smoothness level λ). Here we used the second differ-
ences of the spline coefficients as penalty term, and λ
was calculated iteratively until a fit with the requested
degrees of freedom was achieved.55,56 Linearity of the
association was then assessed with the chi-square
testing for zero slope in a regression of the spline co-
efficients on the centres of the basis functions.56 In
addition to the covariates used in all the other models,
the linear models and Cox-regression models above
were also controlled for the time interval between the
MRI scan and the clinical visit of the cognitive assess-
ment at the baseline.

Linear mixed-effects models with random intercepts
and slopes for each participant were used to estimate the
longitudinal trajectories of grey matter volume, cortical
thickness, and white matter volume according to base-
line PVS count or mean diameter. In addition to the
covariates used in all the other models, the linear mixed-
effects models were also adjusted for the value of the
dependent variable at baseline, and the following char-
acteristics of the MRI scanner that may influence the
longitudinal estimation of brain atrophy: field strength,
manufacturer, and intra-individual consistency of the
www.thelancet.com Vol 111 January, 2025
protocol used for the longitudinal MRI acquisitions
(consistent versus non-consistent protocol). Interaction
terms between time and all predictors were included as
well to estimate the marginal per-year effects of each
predictor. Linear mixed-effects models with random
intercepts and slopes for each participant were also used
to estimate and compare the longitudinal trajectories of
PVS and WML markers in participants without de-
mentia who converted to dementia versus non-
converters. In all linear mixed-effects models, the
random effects were assumed to follow a bivariate
normal distribution.

For all the general linear models and linear mixed-
effects models, normality of residuals was assessed
with quantile–quantile plots, homoscedasticity of re-
siduals was assessed visually by plotting residuals and
fitted values, and linearity of quantitative predictors was
assessed visually by plotting residuals and quantitative
predictors.

Sensitivity analyses for all the models above
included: 1) the individual assessment of other potential
confounding factors available only in a subsample of the
participants (92.6% history of tobacco smoking, 90.0%
Apolipoprotein E alleles, 39.0% amyloid-β and 24.7%
tau status as assessed on cerebrospinal fluid and/or
Positron-Emission Tomography); 2) the use of MMSE
rather than CDR for the cognitive evaluation (available
in 70.3% of the participants); 3) the assessment of MRI
acquisition artifacts or factors that could have influenced
the estimation of the vascular markers. In sensitivity
analyses, hazard ratios were estimated from Cox models
with stratification according to study cohort (simple
pooled analysis) owing to smaller sample sizes in the
individual studies.

To evaluate the potential utility of PVS markers as a
screening tool in clinical trials, we computed the sample
size needed to detect improvements in cognitive decline
trajectories when restricting the sample based on the
baseline values of the marker, and compared it to the
sample size requested without any restriction. The
clinical trials were simulated with 1:1 allocation of active
treatment and placebo, assuming a 30% treatment effect
on cognition over time, and three different trial dura-
tions: 48 months, 24 months, or 12 months, with
cognitive testing every 12 months, 6 months, or 3
months, respectively. 500 simulations were generated
with non-parametric bootstrap iteration and results were
summarised with mean and standard error. Addition-
ally, we used binomial logistic regression (controlling
for the same covariates used in all the other models) to
estimate the probability that participants in the higher
risk tertiles for our markers were also positive for am-
yloid-β or tau. The linearity assumption for quantitative
predictors was assessed with the Box–Tidwell test.59

The robustness of the PVS and WML metrics ana-
lysed in our study across different MRI scanners (inter-
scanner and inter-field-strength reproducibility) and
11

http://www.thelancet.com


Articles

12
sessions (test-retest repeatability) was assessed with the
intraclass correlation coefficients [ICC(2,k), two-way
random, average score], ranging from 0 to 1, where a
higher value indicates higher agreement between the
compared modalities. Correlations were assessed with
the Spearman rank-order correlation coefficient. Dif-
ferences between groups were assessed with the Wil-
coxon rank-sum test.

All the analyses were based on a priori hypotheses,
but to account for two variables of interest (PVS count
and mean diameter), we present P values that were
corrected for multiple comparisons with the use of the
Holm–Bonferroni procedure.60 In brain regional ana-
lyses, the correction for multiple comparisons was per-
formed across all the analysed regions. All statistical
analyses were performed in R v4.3.3. The following R
packages were used for the statistical analyses and
generation of the plots: survival was used for fitting the
Cox proportional-hazards models;56 meta was used for
the meta-analysis;61 lmer4 was used for fitting the non-
linear mixed models;62 ggeffects was used for estimating
the marginal effects in the non-linear mixed models;63

longpower was used for the simulation of clinical tri-
als;64 ggseg was used for generating the plots with the
brain statistics;65 ggplot2 was used for generating all the
other plots.66

Role of funders
The funders had no role in the design of this analysis,
data analysis, interpretation of data, or writing of the
report.
Results
Technical validation of PVS markers
The spatial overlap between the PVS masks obtained with
our fully-automated approach and those obtained with a
previously validated semi-automated technique12,13,17 was
very high (Dice similarity coefficient: 0.95 ± 0.0001) and
the numbers of PVS voxels identified with the two
methods were strongly correlated (Supplementary
Fig. S2a). Consistently, PVS measured with our method
also showed a strong positive association with age, male
sex, and body mass index in the Human Connectome
Project dataset (Supplementary Fig. S2b–d), replicating
results previously published with the validated semi-
automated techniques.47–49 These data support the reli-
ability and accuracy of our PVS masks. While previous
methods are user-dependent (i.e., the user needs to
identify a threshold for each type of T1-weighted image)
and lack inter-scanner reproducibility of PVS
markers1,9,16–18 (Fig. 2a and b), our technique is able to
provide measurements of PVS count and diameter in a
fully automated and robust way (Fig. 2c and d). Indeed,
both metrics showed excellent intraclass correlation
coefficients (≥0.9 for WM-PVS and ≥0.8 for BG-PVS)
for inter-scanner reproducibility, inter-field-strength
reproducibility, and test-retest repeatability
(Supplementary Fig. S3). We also observed a strong
correlation between the numbers of PVS voxels inde-
pendently identified by our algorithm on the T1- and T2-
weighted images (Supplementary Fig. S4a), with an
average of 87.3 ± 5.7% of PVS voxels detected on T1-
weighted images that overlapped with PVS voxels on
T2-weighted images. Overall, these data show that our
method can accurately segment PVS on T1-weighted
images and that T1-weighted images are suitable to reli-
ably assess PVS morphological metrics and inter-
participant differences. In contrast with previous
methods,10–15 our new approach for PVS segmentation is
fully automated, requires only T1-weighted images, and
provides robust metrics across different scanners and
protocols (Supplementary Fig. S3).

Excellent results were also obtained for WML. WML
voxels segmented on T1-weighted images were strongly
correlated with WML voxels segmented on FLAIR
(Supplementary Fig. S4b), with an average of 83.0 ± 0.4%
of WML voxels detected on T1-weighted images that
overlapped with WML voxels on FLAIR. Moreover, WML
volume showed excellent intraclass correlation coefficients
(>0.9 for P-WML and >0.8 for D-WML) for inter-scanner
reproducibility, inter-field-strength reproducibility, and
test-retest repeatability (Supplementary Fig. S5).

Study population
The baseline characteristics of the 10,004 participants
stratified by study cohort are reported in Table 2. There
were 8867 participants without dementia and 1137 pa-
tients with dementia, including 996 clinically diagnosed
with probable or possible Alzheimer’s dementia,
51 Lewy body dementia, 38 frontotemporal dementia,
1 vascular dementia, and 51 other or uncertain type of
dementia. Accuracy of the PVS masks were visually
verified for all the cases in a blinded fashion by an expert
physician-scientist according to established criteria.8 We
also developed an interactive website that allows the
readers to visualise our PVS segmentations and inde-
pendently verify their accuracy: https://gbarisano.
shinyapps.io/pvs-dementia.

In multivariable analyses, all PVS and WML markers
were significantly associated with age, sex, body mass
index, cognitive scores, and history of hypertension
(Supplementary Table S1). History of diabetes was
associated with all PVS markers except BG-PVS diam-
eter; history of cardiovascular disease was associated
with BG-PVS diameter. In the subgroup analysis
(Supplementary Table S2), WM-PVS count was not
significantly associated with APOE genotype, amyloid-β
or tau status, and BG-PVS count was negatively associ-
ated with amyloid-β status and APOE-ε4ε4-carrier sta-
tus. WM-PVS diameter, P-WML and D-WML volume
were associated with positive amyloid-β and APOE-ε4ε4-
carrier status. BG-PVS diameter was associated with
positive tau and APOE-ε4ε4-carrier status.
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Characteristic Overall (N = 10,004) ADNI (N = 2621) NACC (N = 6029) OASIS (N = 1354)

Age at baseline—yr 71.1 ± 9.7 72.9 ± 7.5 70.6 ± 10.5 70.2 ± 9.2

Sex—N (%)

Female 5667 (56.6) 1353 (51.6) 3657 (60.7) 742 (54.8)

Male 4337 (43.4) 1268 (48.4) 2372 (39.3) 612 (45.2)

Education – yr 15.7 ± 3.1 16.1 ± 2.7 15.5 ± 3.2 15.8 ± 2.7

Race – %

White 8474 (84.7) 2302 (87.8) 5041 (83.6) 1131 (83.5)

Black 1163 (11.6) 203 (7.7) 755 (12.5) 205 (15.1)

American Indians 76 (0.8) 6 (0.2) 70 (1.2) 0 (0)

Asian 176 (1.8) 61 (2.3) 107 (1.8) 8 (0.6)

More than one reported 37 (0.4) 34 (1.3) 0 3 (0.2)

Body Mass Index – kg/m2 27.2 ± 5.2 27.1 ± 5.1 27.1 ± 5.2 27.8 ± 5.4

Dyslipidaemia – N (%) 5274 (52.7) 1387 (52.9) 3242 (53.8) 645 (47.6)

Hypertension – N (%) 4748 (47.5) 1247 (47.6) 2863 (47.5) 638 (47.1)

Diabetes – N (%) 1226 (12.3) 271 (10.3) 811 (13.5) 144 (10.6)

History of cardio-/cerebro-vascular disease – N (%) 2802 (28) 895 (34.1) 1567 (26) 340 (25.1)

Family history of dementia – N (%) 5122 (51.2) 1375 (52.5) 3001 (49.8) 746 (55.1)

History of tobacco smokinga – N (%) 3496 (34.9) 637 (24.3) 2273 (37.7) 586 (43.3)

APOEa – N (%)

ε2ε2 29 (0.3) 6 (0.2) 15 (0.2) 8 (0.6)

ε2ε3 807 (8.1) 176 (6.7) 488 (8.1) 143 (10.6)

ε2ε4 213 (2.1) 49 (1.9) 120 (2.0) 44 (3.2)

ε3ε3 4283 (42.8) 1111 (42.4) 2536 (42.1) 636 (47.0)

ε3ε4 2777 (27.8) 809 (30.9) 1532 (25.4) 436 (32.2)

ε4ε4 627 (6.3) 224 (8.5) 325 (5.4) 78 (5.8)

A-beta positivitya – N (%) 1957 (50.1) 1277 (62.7) 356 (40.6) 324 (32.7)

Tau positivitya – N (%) 1461 (59.2) 1039 (64.7) 232 (53.1) 190 (45.0)

WM-PVS count 441.23 ± 143.63 399.98 ± 130.19 459.77 ± 147.22 438.49 ± 135.31

BG-PVS count 139.69 ± 45.30 122.53 ± 49.72 147.98 ± 43.02 136.02 ± 35.38

WM-PVS mean diameter – mm 1.98 ± 0.14 2.05 ± 0.16 1.95 ± 0.12 1.97 ± 0.12

BG-PVS mean diameter – mm 1.58 ± 0.09 1.63 ± 0.11 1.56 ± 0.08 1.58 ± 0.07

P-WML volume – mm3 330 (0–1613) 597 (46–1990) 230 (0–1406) 257 (0–1675)

D-WML volume – mm3 16 (1–72) 34 (7–104) 8 (0–53) 24 (4–90)

Plus–minus values are means ± standard deviations for variables with normal distribution, entries with parentheses are medians (interquartile range) for variables with non-
normal distribution. Data on education were missing for 16 (0.16%) participants, on race for 78 (0.8%), on body mass index for 265 (2.6%), on dyslipidaemia for 124
(1.2%), on hypertension for 68 (0.7%), on diabetes for 69 (0.7%), on history of cardio-/cerebro-vascular disease for 46 (0.5%), on family history for dementia for 275 (2.7%).
Data from three studies — the Alzheimer’s Disease Neuroimaging Initiative (ADNI), the National Alzheimer’s Coordinating Centre (NACC), and the Open Access Series of
Imaging Studies (OASIS) — are shown. Race was reported by the participant. aTotal number of subjects with available history of tobacco smoking, Apolipoprotein E (APOE)
genotype, amyloid-beta status and tau status were 9267, 8599, 3906, and 2466, respectively.

Table 2: Baseline characteristics of the study population.
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After controlling for study cohort, demographic, and
clinical variables, patients with dementia showed
significantly lower WM- and BG-PVS count, higher
WM- and BG-PVS diameter, and higher P-WML volume
compared with participants without dementia
(Supplementary Table S3). Consistent results for PVS
count and P-WML were obtained in sensitivity analyses
(Supplementary Table S4), indicating that their differ-
ences are independent of APOE, amyloid-β, or tau
status.

PVS markers and risk of dementia
Among 7518 participants without dementia with at least
1 follow-up visit (Supplementary Table S5), 1493
www.thelancet.com Vol 111 January, 2025
participants developed dementia during a median
follow-up of 4.1 years (interquartile range, 2.3–7.1),
including 1306 clinically diagnosed with probable or
possible Alzheimer’s dementia, 43 Lewy body dementia,
29 frontotemporal dementia, 16 vascular dementia, and
99 other or uncertain type of dementia. In 6025 cases,
conversion to dementia did not occur at the last available
clinical visit performed in the study (censoring propor-
tion: 80.1%). In the fully adjusted models of the two-
stage pooled analysis, each additional 100 WM-PVS
and 10 BG-PVS were significantly associated with 20%
[95% CI: 13, 26; P = 0.0079, random-effects meta-anal-
ysis of Cox proportional-hazards models] and 8% [95%
CI: 4, 11; P = 0.011, random-effects meta-analysis of Cox
13
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proportional-hazards models] decreased dementia risk,
respectively, and each additional 0.1-mm increase in
WM-PVS and BG-PVS mean diameter were signifi-
cantly associated with 8% [95% CI: 3, 14; P = 0.018,
random-effects meta-analysis of Cox proportional-
hazards models] and 15% [95% CI: 10, 20; P = 0.0051,
random-effects meta-analysis of Cox proportional-
hazards models] increased dementia risk, respectively
(Fig. 3a–d). P-WML, but not D-WML, was also signifi-
cantly associated with 13% [95% CI: 6, 20; P = 0.013,
random-effects meta-analysis of Cox proportional-
hazards models] increased dementia risk (Fig. 3e and
f). The spline analysis with pooled data supported a
significant linear association over the range of the PVS
and P-WML markers measured in this population
(Fig. 3g–k) and identified critical threshold values of
PVS markers indicating increased risk or protection for
dementia: having more than 435 WM-PVS and 135 BG-
PVS is significantly associated with lower risk of de-
mentia, whereas WM-PVS and BG-PVS counts below
those values are associated with increased dementia risk
(Fig. 3g and h); WM- and BG-PVS mean diameters
below 1.97 and 1.6 mm, respectively, are significantly
associated with lower risk of dementia, while diameters
above those values are significantly associated with
increased dementia risk (Fig. 3i and j). Similar results
were obtained when employing multiple imputation for
missing data (Supplementary Fig. S6). Sensitivity ana-
lyses showed substantially unchanged results, suggest-
ing that these effects are independent of other potential
confounding factors, including the positivity status for
amyloid-β or tau biomarkers (Supplementary Fig. S7
and Table S6). The association of WM-PVS diameter
with dementia risk lost statistical significance after
adding amyloid-β status in the model.

Based on previous results from preclinical
studies,67,68 we hypothesised that one potential mecha-
nism linking PVS with increased risk of dementia could
be alterations in cerebral blood flow. Indeed, in most of
the brain regions we observed a significant correlation
of the regional PVS count and diameter with the cor-
responding regional cerebral blood flow as assessed
in vivo with arterial spin labelling MRI (Supplementary
Fig. S8). However, after including the mean cortical
perfusion as additional covariate in our model, the re-
sults remained unchanged for WM-PVS and BG-PVS
count and WM-PVS diameter (Supplementary Fig. S7
and Table S6), suggesting that their effect on the risk
of dementia is independent of cerebral perfusion.

PVS markers and brain atrophy
Among 3389 participants without dementia with at least
2 MRI scans (Table S7), we investigated the association
of PVS and WML markers measured at the baseline
MRI with the trajectory of brain atrophy estimated over
a total of 14,229 MRI scans (average of 4 scans available
per participant) during a median follow-up time of 3.1
years (interquartile range 2.0–5.6 years). In the multi-
variable mixed-effect models, PVS and WML markers
were significantly associated with the longitudinal tra-
jectory of grey matter and cortical thickness atrophy
(Fig. 4a and b top rows). Specifically, accelerated atrophy
was observed in participants with lower WM-PVS and
BG-PVS count and in those with higher WM-PVS and
BG-PVS diameter. Each additional 100 WM-PVS and 10
BG-PVS at the baseline was associated with additional
709 [95% CI: 513, 905; P < 0.0001, linear mixed-effects
model] and 187 [95% CI: 122, 252; P < 0.0001, linear
mixed-effects model] mm3 of total grey matter preserved
per year, respectively; whereas, each additional 0.1 mm
increase in WM-PVS and BG-PVS diameter were asso-
ciated with additional 382 [95% CI: 217, 546; P < 0.0001,
linear mixed-effects model] and 576 [95% CI: 308, 844,
P < 0.0001, linear mixed-effects model] mm3 of total
grey matter preserved per year. Participants with higher
P-WML and D-WML volume at baseline also presented
accelerated brain atrophy (Supplementary Table S8).
Most of these effects were observed in the temporal
lobes, bilaterally, for all PVS markers (Fig. 4a and b
bottom rows; Supplementary Tables S9–S11). For white
matter volume, only WM-PVS count, BG-PVS count and
BG-PVS diameter were significantly associated with
accelerated atrophy (Fig. 4c, Supplementary Table S8).
Consistent results were obtained when employing
multiple imputation for missing data (Supplementary
Fig. S9 and Table S8). These effects and their spatial
patterns remained significant for most markers in all
sensitivity analyses, indicating that the link between
these markers and accelerated atrophy is independent of
other potential confounding factors, including the pos-
itivity status for amyloid-β or tau biomarkers
(Supplementary Figs. S10–S12 and Table S12). Excep-
tions included WM-PVS and BG-PVS diameter, which
became not significant after adding tau status in the
model for grey matter volume (Supplementary Fig. S10
and Table S12), but remained significant for cortical
thickness (Supplementary Fig. S11 and Table S12); BG-
PVS diameter became not significant after adding am-
yloid-β status in the model for white matter volume
(Supplementary Fig. S12 and Table S12). Overall, these
data showed that fewer WM-PVS and BG-PVS were
associated with accelerated brain atrophy. This effect
was stronger on the grey matter volume and cortical
thickness of the temporal lobes, irrespective of amyloid-
β and tau positivity status. Similar associations were
found for WM-PVS and BG-PVS diameter, although
they were generally less robust when considering amy-
loid-β and/or tau status in the model.

We further assessed the relationship between the
WM-PVS marker measured in a specific lobe and the
corresponding atrophy in that lobe. The spatial patterns
for regional WM-PVS count (Supplementary Fig. S13a–c)
were consistent with those observed in the main model
with global WM-PVS count (Fig. 4). Less consistency was
www.thelancet.com Vol 111 January, 2025
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observed for regional WM-PVS diameter (Supplementary
Fig. S13d–f). This suggests a spatial relationship between
the atrophy trajectory of a specific brain region and the
corresponding WM-PVS count in that region at baseline.

The relatively low sample size of participants with
cerebral blood flow data available at the baseline
(N = 318) prevented us from building reliable linear
mixed-effects models evaluating the relative contribu-
tion of cerebral blood flow and PVS to the brain atrophy
trajectory while accounting for the relevant clinical and
demographic covariates included in all our models.

Longitudinal evolution of PVS markers
We estimated the longitudinal trajectory of the PVS and
WML markers in participants without dementia who
converted to dementia and compared it with those who
did not convert. The WM and BG regions where PVS
were measured were spatially-registered and kept
consistent across the intra-individual timepoints. All
WML voxels at any timepoint were excluded from the
PVS analysis in all timepoints. This means that, for each
participant, PVS were analysed in the exact same WM
and BG voxels across timepoints and none of these voxels
included WML in any timepoint. The baseline values and
longitudinal trajectories of PVS count and mean diameter
significantly differed between converters and non-
converters, both in WM and in BG: PVS count at the
baseline MRI was significantly lower in converters
compared with non-converters (Supplementary
Table S13), and further decreased by 3 unit [95% CI: 2,
4; P < 0.0001, linear mixed-effects model] per year. PVS
count remained stable in non-converters (Fig. 5a–c). On
the other hand, baseline WM-PVS and BG-PVS mean
diameter were significantly larger in converters compared
with non-converters (Supplementary Table S13), and
remained steadily larger over time (Fig. 5b–d). WM-PVS
and BG-PVS diameter decreased in non-converters by 2
[95% CI: 1, 4; P = 0.018, linear mixed-effects model] and 3
Fig. 3: Forest plots and spline plots for the associations of PVS and W
combined individual-participant data from three studies (Panels a–f), eac
associated with 20% and 8% decrease in dementia risk, each additional
diameter were associated with 8% and 15% increase in dementia risk, and
was associated with 13% increase in dementia risk. Log-transformed D-W
graph, the size of the squares indicates the weight given to the study, and
the overall association estimate. Between-study heterogeneity was statis
(Panels g–l) supported a linear association over the range of WM-PVS coun
2.5th–97.5th percentile, 71–244), WM-PVS diameter (Panel i; 2.5th–97.5t
percentile, 1.44–1.79) and P-WMH volume (Panel k; 2.5th–97.5th percen
confidence intervals, and the red line at 1.0 indicates the reference. Box pl
The vertical bar indicates the median, and the ends of the box the interqu
the interquartile range (which may be past the graphed area). P indicate P
for linearity (panels g–l). See also Supplementary Fig. S6 and Table S6 for
Neuroimaging Initiative (ADNI), the Open Access Series of Imaging Studies
are shown. Hazard ratios were estimated from Cox models stratified accordi
body mass index, CDR global score at the baseline, history of diabetes, card
of dementia, intracranial volume and the time interval between the MRI s
[95% CI: 2, 5; P < 0.0001, linear mixed-effects model] μm
per year. Similar results were obtained when employing
multiple imputation for missing data (Supplementary
Fig. S14 and Table S14) and in sensitivity analyses
(Supplementary Fig. S15 and Table S14), indicating that
the different trajectories for these markers in converters
versus non-converters were independent of other poten-
tial confounding factors such as amyloid-β and tau status.
In WM-PVS markers, the differences between converters
and non-converters involved mostly the left hemisphere,
especially the frontal and parietal lobes (Fig. 5a and b).
Significant increases over time in P-WML volume were
also found, which were more prominent in converters
compared with non-converters (Fig. 5e, Supplementary
Table S14). No significant sex-related differences in the
trajectories of PVS/WMLmarkers were observed. Overall,
these data suggest that changes in PVS count and
diameter precede the occurrence of dementia and follow
different longitudinal trajectories in dementia converters
versus non-converters: in converters, larger baseline PVS
remain enlarged, and lower baseline PVS count continue
decreasing.

PVS markers in simulated clinical trials
In 48-month placebo-controlled trials simulated with
40,703 cognitive assessments in 7518 participants
without dementia, the sample size required to detect a
30% slowing in cognitive decline (assessed with the
CDR) with 80% power was lower when selectively
screening out participants based on the PVS or the WML
markers’ tertiles (Supplementary Table S16): sample size
reductions were 13–37% when enrolling participants in
the medium- and high-risk tertiles, and 28–63% when
enrolling participants in the high-risk tertile only (Fig. 6).
The performance was comparable to that observed for the
atrophy markers cortical thickness and grey matter vol-
ume (respectively 53% and 37% reductions when
including participants in the high-risk tertile). Similar
ML markers with dementia risk. In two-stage pooled analyses that
h additional 100 WM-PVS (Panel a) and 10 BG-PVS (Panel b) were
0.1 mm increase in mean WM-PVS (Panel c) and BG-PVS (Panel d)
each unit increase of the log-transformed P-WML volume (Panel e)
ML volume (Panel f) was not associated with dementia risk. In each
the width of the diamond indicates the 95% confidence interval for

tically assessed with the use of I2. The spline analysis of pooled data
t (Panel g; 2.5th–97.5th percentile, 206–762), BG-PVS count (Panel h;
h percentile, 1.77–2.30 mm), BG-PVS diameter (Panel j; 2.5th–97.5th
tile, 0–9.1) within the overall population. Shaded areas indicate 95%
ots at the bottom of the graphs show the distributions of the marker.
artile range; the whiskers extend to values no farther than 1.5 times
-values from the Cox models (panels a–f) and from the chi-square test
sensitivity analysis. Data from three studies — the Alzheimer’s Disease
(OASIS), and the National Alzheimer’s Coordinating Centre (NACC) —
ng to study cohort with adjustment for age, sex, race, educational level,
io-/cerebro-vascular disease, hypertension, dyslipidaemia, family history
can and the clinical visit of the cognitive assessment at the baseline.
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Fig. 4: Plots for the estimated trajectories of brain atrophy in relation to PVS and WML markers. Top rows in each panel depict the effect
of baseline PVS and WML markers on the trajectories of grey matter volume, cortical thickness, and white matter volume (Panels a–c,
respectively). For each marker, equally spaced values from the low-risk (red), medium-risk (blue), and high-risk (yellow) tertile are shown
(tertile limits in Supplementary Table S16). Shaded areas indicate 95% confidence intervals. P indicates adjusted significance value of the
interaction term “marker” by “time” in linear mixed-effects models. The estimated volume or thickness preserved/lost per year for each
additional unit increase in the marker are reported in Supplementary Table S8. The regional analysis (bottom rows in each panel) across cortical
parcellations according to the Desikan-Killiany atlas reports the estimated volume or thickness preserved (positive values in red) or lost (negative
values in blue) per year for each additional unit increase in the vascular marker. Only estimated values for regions that remained statistically
significant after correction for multiple comparisons (68 comparisons) are shown; non-significant regions are greyed out. Coefficients for
individual regions are reported in Supplementary Tables S9–S11 for grey matter volume, cortical thickness, and white matter volume,
respectively. Estimates and corrected significance obtained from multivariable linear mixed-effects models with random intercepts and slopes
for each individual participant (N = 3389 and 14,229 timepoints MRI scans). All models were adjusted for age, sex, race, educational level, body
mass index, CDR global score at the baseline, history of diabetes, cardio-/cerebro-vascular disease, hypertension, dyslipidaemia, family history of
dementia, intracranial volume, the baseline value of the dependent variable (grey matter volume, cortical thickness, or white matter volume),
field strength, manufacturer, and intra-individual consistency of the protocol used for the longitudinal MRI acquisitions (consistent versus non-
consistent protocol). See also Supplementary Figs. S10–S12 and Table S12 for sensitivity analysis.
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results were obtained when the cognitive decline was
assessed with MMSE (Supplementary Fig. S16) and
when the trial length was set at 12- and 24-month
(Supplementary Fig. S17a and b, respectively).
www.thelancet.com Vol 111 January, 2025
In multivariable models, medium- and high-risk ter-
tiles for PVS markers were not significantly associated
with amyloid-β or tau positive status (Supplementary
Table S15), suggesting that screening participants
17
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Fig. 5: Plots for the estimated longitudinal trajectories of PVS or WML markers according to conversion to dementia status. Estimated
longitudinal trajectories of WM-PVS (a–b), BG-PVS (c–d), and WML (e) markers for participants without dementia who converted to dementia
(converters, red) and those that did not convert to dementia (non-converters, cyan). Trajectories are estimated from fully adjusted linear mixed-
effect models; the adjusted P-values (P) indicate whether the trajectories are significantly different between converters and non-converters
(interaction term “cognitive status” by “time” in linear mixed-effects models) after correction for multiple comparisons. Shaded areas indi-
cate 95% confidence intervals. For WM-PVS markers (panels a–b), we estimated in each lobe of the left (L) and right (R) hemispheres the group-
effect (expressed as T-value) for the longitudinal trajectories of the corresponding marker: positive values in red indicate significantly higher (i.e.,
less negative) slopes for non-converters versus converters, whereas negative values in blue indicate significantly lower (i.e., more negative)
slopes for non-converters versus converters. Lobes where the longitudinal trajectories were not significantly different between converters and
non-converters after correction for multiple comparisons are greyed-out. Estimates and corrected significance obtained from multivariable linear
mixed-effects models with random intercepts and slopes for each individual participant (N = 3389 and 14,229 timepoints MRI scans). See also
Supplementary Fig. S17 for sensitivity analysis.
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without dementia according to our PVS markers is not
linked to Alzheimer disease biomarkers. On the other
hand, medium- and high-risk tertiles for P-WML volume,
cortical thickness, and grey matter volume were associated
with amyloid-β positive status (Supplementary Table S15).
Discussion
We developed a fully automated, robust algorithm to
obtain unbiased, quantitative metrics of PVS from
clinical brain MRI T1-weighted images. We demon-
strated that our method provides accurate segmenta-
tions with high inter-scanner reproducibility. These
characteristics allowed us to apply this algorithm to the
brain MRI scans of 10,004 participants whose data were
pooled from three publicly available studies performed
in the United States and Canada. We found that after
controlling for demographic and clinical covariates,
lower PVS count and higher mean PVS diameter were
significantly associated with a dose–response higher risk
www.thelancet.com Vol 111 January, 2025
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Fig. 6: Error-bar plot for the relative sample size in simulated clinical trials enriched using PVS or WML markers. Relative sample sizes for
simulated clinical trials in participants without dementia pooled from three studies (the Alzheimer’s Disease Neuroimaging Initiative, the Open
Access Series of Imaging Studies, and the National Alzheimer’s Coordinating Centre). The simulations had statistical power of 80% at α = 0.05
and assumed a 30% treatment effect for slopes in cognitive decline, 1:1 allocation of treatment, total trial length of 48 months, and outcome
measures every 12 months. All available longitudinal cognitive data (40,307 cognitive assessments from 7518 participants without dementia)
were used in these multivariable models. Mean relative sample sizes and the corresponding standard errors of the mean are across 500
bootstrap iterations. The reference model (without enrichment and with 100% inclusion) included all the tertiles. In the two enrichment models
for each marker (“medium-risk + high-risk tertiles”, red bars; “high-risk only tertile”, blue bars), only participants in the indicated tertiles were
included. Tertile limits for each marker are reported in Supplementary Table S16. See also Supplementary Figs. S18 and S19 for additional
simulations.
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of developing dementia, and with accelerated brain at-
rophy. The robustness and reliability of these results is
related to the large sample size, the use of participant-
level data and consistent approaches for covariate ad-
justments and modelling, and the consistency across
multiple sensitivity analyses. These data show that PVS
may represent a predictor of dementia.

Perivascular spaces represent a critical component of
the glymphatic system, a system thought to be respon-
sible for brain clearance of toxic and waste metabolites.69

PVS are normally visible on MRI in all participants
across the human lifespan,47–49,70 including neonates,71

and therefore they are not considered pathological
markers per se.9 However, changes to PVS structural and
morphological features may be indicators of vascular-
related pathology in the brain. A larger perivascular
diameter for example might indicate alterations in the
glymphatic flow and impairment of the clearance pro-
cess, with subsequent accumulation of neurotoxic pro-
tein aggregates in the brain.67,72,73 In our study, a larger
PVS diameter at baseline predicted higher dementia
risk and accelerated brain atrophy. Interestingly, PVS
diameter remained larger over time in participants
www.thelancet.com Vol 111 January, 2025
without dementia who developed dementia, indicating
that the PVS enlargement occurs before the dementia
status and that it may not increase indefinitely having
reached a plateau. On the other hand, PVS diameter
decreased with time in participants without dementia
who remained dementia-free (non-converters), which
could be related to a reduced cerebrospinal fluid pro-
duction observed in healthy ageing.74 In agreement with
preclinical studies showing a relationship between
glymphatic system and blood flow,67,68 we found that
PVS diameter was inversely correlated with cerebral
blood flow. On the other hand, PVS count was positively
correlated with brain perfusion, with a higher PVS
count also associated with lower risk of dementia and
slower brain atrophy. Since the PVS count obtained with
our method included any MRI-visible PVS, regardless of
whether they could be considered enlarged or not, we
speculate that PVS count may be linked more to brain
perfusion rather than to glymphatic dysfunction. A low
PVS count might indicate cerebral hypoperfusion, a
factor found associated with cognitive decline and brain
atrophy.75–78 Further studies specifically focused on ce-
rebral perfusion are needed to better understand the
19
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relationship between blood flow and PVS as well as
their relative contribution to neurodegeneration and
dementia.

The mechanisms underlying the pathophysiological
alterations to the structure and function of PVS in the
human brain remain poorly understood. Based on pre-
clinical studies, it has been proposed that blood–brain
barrier breakdown could result in the perivascular
accumulation of blood-derived proteins/debris and
subsequent dilation of the PVS.79 Since the PVS visi-
bility on MRI depends on the presence of cerebrospinal/
interstitial fluid within the PVS,9,79 the lower PVS count
detected in participants at increased risk of dementia
may arise from an early occlusion and/or obstruction of
the PVS, resulting in loss of fluid signal and decreased
detectability of PVS on MRI. Similarly, impaired clear-
ance of brain metabolic waste products, including but
not limited to amyloid-β, may also lead to their accu-
mulation in the PVS,79 with subsequent obstruction to
the PVS fluid and loss of its signal on MRI (hence, lower
PVS count). Finally, as previous studies showed that the
fluid flow in PVS is driven by arterial pulsatility and
vasomotion,67,72,73,80–82 it is possible that arteriolosclerosis,
which is typically observed in small vessel disease and is
characterised by vessel wall rigidity, might reduce the
fluid flow through PVS, with a subsequent redistribu-
tion of the PVS fluid resulting in: 1) enlargement of PVS
where the stagnant fluid accumulated, and 2) lower
amount of fluid in other PVS, which become less
visible. Further studies are needed to better understand
the pathophysiology of PVS structural alterations in the
human brain.

Previous studies evaluating PVS and incident de-
mentia performed manual visual assessment of peri-
vascular spaces, a significant impediment for large
studies and clinical trials, with serious concerns
regarding inter- and intra-rater variability. This has led
to mixed conclusions on the relationship between PVS
and dementia. For example, previous meta-analyses
investigated the relationship between WM-PVS and
risk of dementia, but the results were conflicting, with
significant heterogeneity between studies, variability in
methods, and inconsistent adjustment for confounding
factors.1,83,84 Other studies in smaller cohorts also re-
ported diverging results: some showed an association
between perivascular space enlargement and higher risk
of dementia,85,86 while others found no increased risk87

or increased risk of vascular dementia only.88 Impor-
tantly, in all these studies the manual visual assessment
included only the PVS that are more easily discernible to
the human eye, i.e., those that are apparently enlarged,
and prevented a quantitative analysis of the blood ves-
sels with small/non-enlarged perivascular spaces, a
limitation eliminated by our algorithm. Moreover, visual
readings typically do not consider in their assessment
the total intracranial volume, a factor strongly associated
with PVS9 and that we controlled for in all our models.
It should be noted that the PVS count assessed with
our algorithm does not correspond to the PVS scores
usually reported with traditional visual rating scales,
because our algorithm 1) counts all PVS structures,
regardless of their enlargement status, and 2) assesses
PVS throughout the whole white matter and basal
ganglia; visual scores instead are based only on a single
slice and typically consider only enlarged PVS visible to
the reader. On the other hand, the PVS mean diameter
measured by our algorithm is a quantitative estimate of
the degree of PVS enlargement overall.

Our MRI PVS markers required only a commonly
acquired volumetric T1-weighted sequence, were
computed in a fully-automated fashion, and showed
excellent inter-scanner and test-retest reproducibility.
These features may allow for our PVS markers to be
readily implemented in clinical practice, as well as
retrospective analyses of currently available brain MRI
data. As we showed in our clinical trial simulations,
their use may reduce the cost and duration of clinical
trials for dementia prevention and treatment by facili-
tating the identification and enrolment of participants
with increased risk of cognitive decline. Indeed, we
found that after screening out participants based on our
PVS markers, there was a substantial reduction in the
minimal number of participants required for detecting
the intervention effect, suggesting an increase in the
power of the trial. Importantly, medium and high-risk
tertiles of our PVS markers were not linked to positive
amyloid-β and tau status, in contrast with WML and
atrophy markers, indicating that the selection of partic-
ipants based on our PVS markers is independent of
Alzheimer disease biomarker status. In the case of trials
for treatments specifically targeting Alzheimer disease
hallmark pathology such as amyloid-β and tau (i.e.,
enrolling participants positive for amyloid-β and/or tau),
these PVS markers would allow to identify and exclude
people at high risk of vascular/perivascular co-
pathology, enhancing the trial for a more homogenous
cohort of preclinical Alzheimer disease. Early detection
of an increased risk of dementia could also motivate
patients to adopt healthy lifestyle modifications,
encouraging healthcare professionals to implement
preventive measures and initiate timely treatments and
support, thereby improving patient and family member
quality of life. Finally, these MRI markers open new
opportunities to robustly investigate perivascular spaces
in vivo in a variety of other neurological conditions and
treatment paradigms, allowing to potentially identify
subtle cerebrovascular damages and to gain new in-
sights on the human brain vasculature and glymphatics.

We acknowledge the following limitations in our
study. First, our analytic approach allowed us to reduce
the degree of heterogeneity across studies, but some
heterogeneity remained, intrinsic to the original study
design, such as the health profile of participants and
availability and type of information on covariates.
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Despite the excellent inter-scanner reproducibility of our
PVS markers, we cannot exclude that differences in the
MRI scanner and acquisition protocols might still in
part influence the estimation of PVS/WML markers.
Importantly, the inter-study heterogeneity estimation
may be inaccurate due to the low number of studies
assessed in the meta-analysis. Another important limi-
tation is the inability to assess the potential role of re-
sidual unmeasured confounding factors, such as diet
and socioeconomic status, which were not available in
the analysed databases. Third, the built-in selection bias
in the hazard ratios89 may lead to inaccurate estimation
of the risk and distorted inferences. Fourth, as we were
restricted to populations recruited by the original
studies, our cohort comprised mainly white participants,
and increased representation of other racial and ethnic
groups would be critical to generalization. Fifth, we
cannot exclude that small lesions with vascular shape
may be included in our PVS segmentation masks.
Nevertheless, the influence of these potential lesions to
our statistical analyses may be considered negligible,
since even a few lesions in a single participant would
represent a very small proportion of the total PVS count
estimated in that participant (interquartile range of WM-
PVS and BG-PVS per participant in our study were
339–530 and 106–166, respectively). Finally, we could
not discriminate whether our PVS metrics refer to
periarteriolar or perivenous compartment. However,
previous studies have shown that the majority of the
MRI-visible PVS overlap with arterioles,90–93 therefore it
is reasonable to assume that the PVS metrics in our
analysis refer mostly to arterioles and their periarteriolar
compartment.

In conclusion, using our fully-automated, robust al-
gorithm for assessing perivascular spaces in the cerebral
white matter and basal ganglia, we found a significant
linear association of low PVS count and high PVS
diameter with increased risk of dementia and acceler-
ated brain atrophy. Baseline values and longitudinal
trajectories of PVS metrics were significantly different
in participants without dementia who converted to de-
mentia compared with non-converters. These results
support a link between PVS and cognitive impairment,
opening new opportunities to risk-stratify participants
for clinical trial enrolment, early healthcare in-
terventions to combat dementia, and accelerated
research in human brain glymphatics.
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