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RESEARCH Open Access

Centrilobular emphysema and coronary
artery calcification: mediation analysis in
the SPIROMICS cohort
Surya P. Bhatt1,2* , Hrudaya P. Nath2,3, Young-il Kim1,4, Rekha Ramachandran4, Jubal R. Watts3, Nina L. J. Terry3,
Sushil Sonavane3, Swati P. Deshmane3, Prescott G. Woodruff5, Elizabeth C. Oelsner7, Sandeep Bodduluri1,2,
MeiLan K. Han8, Wassim W. Labaki8, J. Michael Wells1,2,6, Fernando J. Martinez9, R. Graham Barr7,
and Mark T. Dransfield1,2,6 for the SPIROMICS investigators

Abstract

Background: Chronic obstructive pulmonary disease (COPD) is associated with a two-to-five fold increase in the
risk of coronary artery disease independent of shared risk factors. This association is hypothesized to be mediated
by systemic inflammation but this link has not been established.

Methods: We included 300 participants enrolled in the SPIROMICS cohort, 75 each of lifetime non-smokers,
smokers without airflow obstruction, mild-moderate COPD, and severe-very severe COPD. We quantified
emphysema and airway disease on computed tomography, characterized visual emphysema subtypes (centrilobular
and paraseptal) and airway disease, and used the Weston visual score to quantify coronary artery calcification (CAC).
We used the Sobel test to determine whether markers of systemic inflammation mediated a link between
spirometric and radiographic features of COPD and CAC.

Results: FEV1/FVC but not quantitative emphysema or airway wall thickening was associated with CAC (p = 0.036),
after adjustment for demographics, diabetes mellitus, hypertension, statin use, and CT scanner type. To explain this
discordance, we examined visual subtypes of emphysema and airway disease, and found that centrilobular emphysema
but not paraseptal emphysema or bronchial thickening was independently associated with CAC (p = 0.019). MMP3,
VCAM1, CXCL5 and CXCL9 mediated 8, 8, 7 and 16% of the association between FEV1/FVC and CAC, respectively. Similar
biomarkers partially mediated the association between centrilobular emphysema and CAC.

Conclusions: The association between airflow obstruction and coronary calcification is driven primarily by the
centrilobular subtype of emphysema, and is linked through bioactive molecules implicated in the pathogenesis of
atherosclerosis.

Trial Registration: ClinicalTrials.gov: Identifier: NCT01969344.
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Introduction
Chronic obstructive pulmonary disease (COPD) is associ-
ated with a two-to-five fold increase in the risk of coronary
artery disease [1, 2] and epidemiologic studies indicate that
this relationship is independent of shared risk factors such
as age and cigarette smoking [1, 2]. The magnitude of risk
of cardiac disease associated with low lung function is
similar to the population-attributable risk conferred by
well-established cardiac risk factors such as hyperten-
sion and diabetes mellitus, suggesting that COPD is a
proatherogenic condition [3]. Multiple studies have
shown associations between low lung function and CT
emphysema with measures of endothelial dysfunction
and atherosclerosis including brachial flow-mediated dila-
tion, [4] carotid intima-medial thickness, [5] arterial stiff-
ness, [6, 7] and coronary artery calcium (CAC) [8, 9] and
though some have also suggested a dose-response relation-
ship [10, 11] the underlying mechanistic links are not clear.
The most accepted hypothesis for the link between

COPD and atherosclerosis is that chronic inflammation in
the lungs results in systemic inflammation and contributes
to an atherogenic milieu [12]. The systemic inflammation
observed in other chronic diseases is associated with ath-
erosclerosis, [13] and it is plausible that it is the prime
driver of coronary artery disease in COPD. However, stud-
ies examining the link between poor lung function and
systemic inflammation have demonstrated conflicting
results or weak to modest correlations [6, 7, 10, 14–16].
No single study has assessed a three-way link between
airflow obstruction, systemic inflammation and coronary
artery disease in COPD, and no specific mediators of these
associations have been identified. COPD includes both
emphysema and airway disease, and it is not known if
these structural phenotypes are differentially associated
with systemic inflammation and atherosclerosis, and
whether this underlies the poor correlations reported.
We analyzed data from the Subpopulations and inter-

mediate outcome measures in COPD study (SPIROMICS)
and hypothesized that the severity of airflow obstruction
would be directly associated with coronary artery disease
as assessed by CAC. We also hypothesized that emphy-
sema subtypes and airway disease are differentially associ-
ated with markers of systemic inflammation which would
mediate the link with coronary artery disease.

Methods
Participants
We included participants from SPIROMICS, a well charac-
terized cohort of normal subjects (stratum 1), current and
former smokers at risk for COPD (stratum 2), with
mild-to-moderate COPD as defined by the Global Initiative
for Chronic Obstructive Lung Disease (GOLD) recommen-
dations (stratum 3), and with severe-to-very-severe COPD
(stratum 4) [17]. The study was approved by the institutional

review boards of all eleven participating centers, and all
participants provided written informed consent. The
first 75 participants who enrolled in each stratum with
a full set of biomarker data were included. All partici-
pants underwent pre and post bronchodilator spirom-
etry at enrollment according to the American Thoracic
Society guidelines. Computed tomography (CT) scans
were performed at end inspiration. Physician diagnosed
self-reported hypertension, diabetes mellitus, and cor-
onary artery disease (CAD) were recorded. Statin use
was defined by patient-reported use of statins in the 3
months prior to enrollment. We used CAC as a surro-
gate for clinical and subclinical CAD. Compared to car-
diovascular risk scores, CAC is a robust measure of
early and subclinical CAD and is also an independent
predictor of incident adverse cardiovascular events [18].

Measurement of lung disease
Airflow obstruction was quantified by the ratio of the post
bronchodilator forced expiratory volume in the first second
(FEV1) to the forced vital capacity (FVC), and the severity
of airflow obstruction quantified by FEV1%predicted [19].
We measured overall emphysema quantitatively using 3D
Slicer software (https://www.slicer.org/) on inspiratory CT
with a density mask analysis after segmentation and exclu-
sion of large and medium sized airways, such that voxels <
− 950 HU in density were classified as emphysematous
[20]. Airway wall thickness was quantified by the Pi10, de-
fined by the square root of the wall area of a theoretical cir-
cular cross section of an airway with 10mm lumenal
perimeter, using an automated algorithm based on the
using the optimal surface algorithm (Apollo Software, Vida
Diagnostics Inc) [21, 22]. Five readers (4 radiologists and 1
pulmonologist) visually scored emphysema subtypes and
airway disease on lung windows according to the Fleisch-
ner Society criteria [23]. Briefly, emphysema subtypes were
classified as centrilobular emphysema or CLE (none, trace,
mild, moderate, confluent and advanced destructive) and
paraseptal emphysema or PSE (none, mild, substantial).
The presence of any moderate, confluent or advanced de-
structive CLE was deemed clinically substantial. The pres-
ence or absence of airway wall thickening was noted and
when present, severity classified as borderline or definite.
Definite airway wall thickening was considered clinically
significant.

Measurement of potential plasma mediators
Ten plasma mediators of the link between COPD and CAC
were selected a priori representing pathways previously im-
plicated as potential drivers of either disease. Based on
plausible biologic pathways, the mediators included were
acute phase reactants and cytokines involved in systemic
inflammation [C-reactive protein (CRP), fibrinogen, tumor
necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6)],
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chemokines involved in neutrophil activation [C-X-C Motif
Chemokine Ligand 5 (CXCL5)], T-cell chemoattractant
[C-X-C Motif Chemokine Ligand 9 (CXCL9)], adhesion
molecules important in the leucocyte-endothelial inter-
action [intercellular (ICAM-1) and vascular cell (VCAM-1)
adhesion molecules], and matrix metalloproteinases im-
portant in emphysema and coronary plaque pathogen-
esis [MMP3 and MMP9]. Although we had access to a
number of additional plasma biomarkers, we did not
include these in the analysis to avoid multiple compari-
sons and false discovery. All plasma mediators were
measured using commercially available Myriad RBM
“Human InflammationMAP” multiplex assay [24].

Measurement of coronary artery calcification
High resolution CT scans were performed in all partici-
pants and inspiratory scans were used for the visual
measurement of CAC. Two readers who were blinded to
clinical and quantitative CT metrics visually analyzed
the coronary arteries using mediastinal soft tissue win-
dow settings to calculate the Weston visual score for
CAC [25]. The Weston score ranges from 0 to 3 for each
of the left main, left circumflex, anterior descending and
the right coronary arteries as follows: No visually detected
calcium= 0, Only a single high density pixel detected = 1,
Calcium dense enough to cause a blooming artifact =3,
and Calcium intermediate and between 1 and 3 = 2. The
total score ranges from 0 to 12. The Weston score on
non-gated scans correlates well with Agatston scores mea-
sured on electrocardiographically gated CT scans [26]. We
excluded participants who had undergone coronary artery
bypass grafting.

Statistical analyses
Distributions of continuous variables were tested and log
transformations were performed for emphysema, CAC
and plasma mediators. Pearson’s correlation was used to
test correlations between FEV1/FVC, Pi10, log emphy-
sema, the log of plasma mediators and log CAC. A sam-
ple size of 300 patients was considered adequate to
achieve 88% power to detect indirect effect size of 0.04
or larger when direct effect is 0.1 and total effect is 0.14
at significance level of alpha = 0.05. The power of the
test of the indirect effect was prepared by using the joint
test of significance [27]. Intra- and inter-rater agreement
were calculated for continuous and categorical CT pa-
rameters using intra-class correlation coefficient and
multi-rater kappa, respectively. Univariate and multivari-
able associations between airflow obstruction (post
bronchodilator FEV1/FVC) and log CAC were tested
with adjustment for age, gender, race, body-mass-index
(BMI), pack-years of smoking, current smoking status,
diabetes mellitus, hypertension, statin use, and CT scan-
ner type using generalized linear regression models.

Similarly, multivariable associations between quantitative
log emphysema and log CAC were tested with adjust-
ment for age, gender, race, body-mass-index (BMI), post-
bronchodilator FEV1, pack-years of smoking, current
smoking status, diabetes mellitus, hypertension, statin
use, and CT scanner type. Similar calculations were re-
peated for Pi10, emphysema subtypes and the presence
of bronchial wall thickening in separate models.

Mediation analysis
To test whether any of the preselected plasma bio-
markers were important in the link between emphysema
and CAC, we performed mediation analysis by using
three way regression models. The Sobel test was used to
determine whether any specific biomarker fully or par-
tially mediated the relationship between FEV1/FVC and
log CAC (Additional file 1: Figure S1). The following cri-
teria had to be met for three way regression models for
mediation analysis: there existed a significant association
between the independent and dependent variable; sig-
nificant association between the independent variable
and the mediator; significant association between the
mediator and the dependent variable; and the association
between the independent and dependent variables is
attenuated when the mediator is added to the regression
model. The indirect and direct effects of FEV1/FVC on
log CAC were evaluated based on correlation coeffi-
cients of FEV1/FVC estimated from three way regression
models. Sobel test was used to determine if the indirect
effect of FEV1/FVC was statistically significant. Mediated
proportions of the total effect of FEV1/FVC were calcu-
lated and presented. As the Sobel test assumes normality
of variables and that there are no measurement errors,
percentile bootstrap confidence intervals were used to
test the indirect effect. The accelerated bias-corrected
bootstrap estimates correction for a bias in the average
estimate and the standard deviation across potential
values of the indirect coefficient [28]. Similar analyses
were repeated for the association between structural lung
disease significantly associated with log CAC on multivari-
able analysis (centrilobular emphysema) and log CAC.
All analyses were performed using IBM SPSS Statistics

24.0 and SAS 9.4 (SAS Institute, Cary, NC). A two-sided
alpha level of 0.05 was considered statistically significant
for all analyses.

Results
We included 300 participants, 75 from each stratum
with a full set of biomarkers and complete spirometry
and CT data. The mean (SD) age was 62.0 (9.6) years,
with 36.7 (28.3) pack-years smoking history. 209 (69.7%)
were male, 91 (30.3%) were African American, and 94
(31.3%) were current smokers. Kappa values for
intra-observer agreement for detecting substantial CLE,
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substantial PSE, and definite airway wall thickening were
0.88 ± SE0.09, 0.54 ± 0.23, and 0.53 ± 0.24, respectively,
and for inter-observer agreement were 0.81 ± 0.08, 0.37
± 0.08, and 0.33 ± 0.08, respectively. There was excellent
agreement between readers for CAC, with intra-class
correlation coefficient for within and between observers
of 0.98 (95% CI 0.97 to 0.98; p < 0.001), and 0.96 (95%
CI 0.92 to 0.98; p < 0.001), respectively. Table 1 shows a
comparison of baseline characteristics of these partici-
pants. Participants with COPD had a greater frequency
of CAD than those without COPD (11.3% vs. 2.0%; p =
0.002), and those with COPD had a greater CAC score
than those without COPD (median 6.0, IQR25–75 3.0 to
10.0 vs. 2.0, IQR25–75 0 to 5.0; p < 0.001). 137 (45.7%)
had hypertension, 43 (14.3%) had diabetes mellitus,
and 121 (40.3%) were on statins. With progressive air-
flow obstruction across strata, there was greater em-
physema as expected, as well as increasing CAC
(Jonckheere’s trend test p < 0.001).

Spirometric airflow obstruction
There was a significant association between airflow ob-
struction (FEV1/FVC) and log CAC after multivariable
adjustments (Table 2). On univariate analysis, the severity
of airflow obstruction (FEV1%predicted) was also associ-
ated with log CAC (crude β = − 0.004 ± 0.001; p < 0.001),
and this relationship remained significant after multivari-
able adjustment (adjusted β = − 0.001 ± 0.001; p = 0.009).

Quantitative emphysema and airway disease
On univariate analysis, there was a significant associ-
ation between log emphysema and log CAC (crude
regression coefficient β = 0.348 ± 0.064; p < 0.001). However,
after adjustment for age, gender, race, BMI, pack-years of
smoking, current smoking status, FEV1, diabetes mel-
litus, hypertension, statin use, and CT scanner type,
this association was no longer significant, adjusted regres-
sion coefficient β = − 0.074 ± 0.077; p = 0.340 (Table 2).
Pi10 was significantly associated with log CAC on

Table 1 Comparison of Demographics and Computed Tomography Characteristics of Participants

Stratum 1 (n = 75) Stratum 2 (n = 75) Stratum 3 (n = 75) Stratum 4 (n = 75)

Age (years) 54.3 (9.5) 59.8 (9.3) 64.8 (8.5) 64.8 (6.7)

Sex, Male (%) 32 (42.7%) 56 (74.7%) 64 (85.3%) 57 (76.0%)

Race, White (%) 49 (65.3%) 50 (66.7%) 66 (88.0%) 63 (84.0%)

BMI (kg/m2) 28.4 (5.5) 28.3 (4.6) 27.8 (4.0) 26.6 (4.8)

Smoking Pack-years 0 (0) 40.6 (17.5) 49.8 (22.4) 56.5 (21.9)

Hypertension (%) 24 (32%) 31 (41.3%) 42 (56%) 40 (53.3%)

Diabetes mellitus (%) 4 (5.3%) 10 (13.3%) 19 (25.3%) 10 (13.3%)

FEV1 (L) 3.06 (0.69) 3.24 (0.71) 2.79 (0.62) 1.23 (0.26)

FEV1% pred 102.2 (12.1) 101.1 (11.2) 87.0 (15.8) 39.8 (8.1)

FVC (L) 3.76 (0.90) 4.18 (0.92) 4.46 (0.90) 3.20 (0.76)

FVC %pred 97.8 (11.1) 99.9 (11.1) 104.9 (15.6) 77.5 (14.4)

FEV1/FVC 0.82 (0.05) 0.78 (0.05) 0.62 (0.06) 0.39 (0.09)

Percentage Emphysema 1.6 (1.7) 2.0 (1.8) 5.2 (5.1) 17.6 (11.4)

Pi10 3.67 (0.09) 3.68 (0.07) 3.70 (0.08) 3.74 (0.08)

CAC 2.0 (2.8) 3.6 (3.5) 6.5 (4.2) 6.5 (4.0)

Statinsa (%) 19 (25.3%) 25 (33.3%) 45 (60.0%) 32 (42.7%)

Centrilobular Emphysema (%)

Mild (yes/no) (%) 3 (4%) 13 (17.3%) 20 (26.7%) 8 (10.7%)

Moderate (yes/no) (%) 0 (0%) 4 (5.3%) 21 (28%) 22 (29.3%)

Advanced/Confluent (yes/no) (%) 0 (0%) 4 (5.3%) 17 (22.7%) 42 (56%)

Substantial Paraseptal Emphysema (yes/no) (%) 0 (0%) 10 (13.3.%) 16 (21.3%) 13 (17.3%)

Definite Bronchial Wall Thickening (yes/no) (%) 0 (0%) 5 (6.7%) 17 (22.7%) 29 (38.7%)

All values shown as mean (standard deviation) unless otherwise stated
FEV1 Forced expiratory volume in the first second, FVC Forced vital capacity, CAC Coronary artery calcification, Pi10 Square root of the wall area of a theoretical
circular cross section of an airway with 10 mm lumenal perimeter
Stratum 1 = Lifetime non-smokers
Stratum 2 = Smokers without airflow obstruction. FEV1/FVC ≥0.70
Stratum 3 =Mild to moderate airflow obstruction. FEV1/FVC < 0.70, FEV1 ≥ 50%predicted
Stratum 4 = Severe to very severe airflow obstruction. FEV1/FVC < 0.70, FEV1 < 50%predicted
aMedication data displayed for usage in the three months prior to enrollment
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univariate analysis, but this association was no longer sig-
nificant after multivariable adjustments (Table 2).

Visual analysis of COPD subtypes
We found a significant association between log CAC and
substantial CLE (adjusted β = 0.084 ± 0.036; p = 0.019) but
not paraseptal emphysema on multivariable analysis
(Table 2). Although there was a significant association
between definite airway wall thickening and log CAC on
univariate association, this association was no longer sig-
nificant after multivariable adjustment (Table 2).

Plasma biomarkers
Additional file 1: Table S1 shows the mean (SD) values
for the ten preselected biomarkers across the range of
normal and disease severity. Most of the selected bio-
markers increased with severity of lung disease, except
CXCL5 which was lower in those with more severe air-
flow obstruction. Additional file 1: Table S2 shows that
multiple plasma mediators correlated significantly with

both CAC and emphysema (CRP, fibrinogen, MMP3,
CXCL9 and VCAM1). CXCL5 correlated inversely with
both CAC and emphysema. Additional file 1: Table S3
shows comparisons of biomarkers between those with
and without each visual subtype of COPD. Multiple bio-
markers were substantially higher in those with substan-
tial CLE than in those without CLE, whereas there were
no differences in biomarkers by substantial PSE status.

Mediation analysis
Table 3 shows the results of mediation analyses. We
found a partial mediation effect for MMP3, VCAM1,
CXCL5 and CXCL9 for the association between FEV1/FVC
and log CAC, and these biomarkers partially mediated
approximately 8, 8, 7 and 16% of the effect, respectively. As
log CAC was associated with substantial centrilobular
emphysema, but not airway wall thickening, paraseptal
emphysema, or overall quantitative emphysema, we re-
peated mediation analysis for the link between substan-
tial CLE and log CAC. We found a partial mediation

Table 2 Associations of Chronic Obstructive Pulmonary Disease with Coronary Artery Calciuma

Univariate Multivariableb

β estimate ±SE p value β estimate ±SE p value

FEV1/FVC −0.723 ± 0.006 < 0.001 −0.192 ± 0.093 0.039

Log Emphysemac 0.348 ± 0.064 < 0.001 −0.075 ± 0.076 0.326

Pi10 0.841 ± 0.207 < 0.001 0.049 ± 0.214 0.819

Centrilobular Emphysema 0.245 ± 0.034 < 0.001 0.073 ± 0.036 0.042

Paraseptal Emphysema 0.102 ± 0.052 0.050 0.031 ± 0.039 0.429

Airway Wall Thickening 0.195 ± 0.046 < 0.001 0.059 ± 0.037 0.112

FEV1 Forced expiratory volume in the first second, FVC Forced vital capacity. Pi10 Square root of the wall area of a theoretical circular cross section of an airway
with 10 mm lumenal perimeter
aCoronary artery calcification log transformed. Separate models run for association between CAC and each subtype of chronic obstructive pulmonary disease
bModel adjusted for age, sex, race, BMI, smoking status, pack-years, FEV1, hypertension, diabetes mellitus, statin use, and CT scanner type, except model for
FEV1/FVC where FEV1 was not included
cAssessed by percentage of low attenuation areas <-950HU on quantitative CT using density mask analysis

Table 3 Plasma Mediators of the Association between Chronic Obstructive Pulmonary Disease and Coronary Artery Calcification

Mediatora Indirect Effect Bootstrap Bias Corrected 95% CI
for Indirect Effect

Direct Effect % Effect Mediated Sobel p-value

A. Airflow obstruction (FEV1/FVC) and CAC

MMP3 (ng/mL) −0.061 −0.126 to − 0.022 −0.662 8.5 0.015

VCAM1 (ng/mL) −0.057 −0.134 to − 0.020 −0.666 7.9 0.019

CXCL9 (pg/mL) −0.114 −0.194 to − 0.057 −0.609 15.8 < 0.001

CXCL5 (ng/mL) −0.049 −0.102 to − 0.015 −0.673 6.8 0.040

B. Centrilobular Emphysema and CAC

MMP3 (ng/mL) 0.019 0.006 to 0.042 0.226 7.9 0.033

VCAM1 (ng/mL) 0.018 0.004 to 0.041 0.227 7.3 0.041

CXCL9 (pg/mL) 0.042 0.022 to 0.074 0.203 17.0 0.001

CAC Coronary artery calcification, FEV1 Forced expiratory volume in the first second, FVC Forced vital capacity, MMP3 Matrix metalloproteinase 3. VCAM1 = Vascular
cell adhesion molecule 1. CXCL = C-X-C Motif Chemokine Ligand
aAll mediators were log transformed prior to analysis
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effect for three of the same plasma biomarkers import-
ant in the association between FEV1/FVC and log CAC:
MMP3, VCAM1 and CXCL9, for the association be-
tween substantial CLE and log CAC. Approximately 8,
7 and 17% of the total effect of substantial CLE on log
CAC was partially mediated by MMP3, VCAM1 and
CXCL9, respectively. As the association between airway
wall thickening and log CAC approached statistical sig-
nificance, we repeated mediation models for this associ-
ation. None of the plasma biomarkers mediated this
association.

Discussion
In a cohort of healthy non-smokers and COPD patients
with a range of disease severity, we found a significant
relationship between airflow obstruction and the severity
of coronary artery calcification but no association with
structural correlates on quantitative CT imaging. The
association between airflow obstruction and coronary
calcification appears to be driven primarily by the centri-
lobular subtype of emphysema, and is linked through
the same mediators, common bioactive molecules impli-
cated in the pathogenesis of atherosclerosis.
There is growing awareness that COPD is a pro-athero-

sclerotic condition with an attributable risk comparable to
other chronic inflammatory conditions such as rheuma-
toid arthritis, as well as other traditional cardiac risk fac-
tors such as diabetes mellitus and hypertension [1, 2,
29]. We found that airflow obstruction is associated
with the severity of CAC, a finding that supports previ-
ous epidemiologic studies showing a higher frequency
of coronary artery disease and greater burden of coron-
ary calcification in COPD [8, 9, 30, 31]. Although there
appears to be a dose-response relationship between air-
flow obstruction and cardiac disease, previous studies
such as the Evaluation of COPD Longitudinally to Identify
Predictive Surrogate End-points (ECLIPSE) and the
Multi-Ethnic Study of Atherosclerosis (MESA) have not
found a relationship between the structural correlates of
COPD such as emphysema and coronary calcification [32,
33]. We found a similar discordance with a relationship
between airflow obstruction and CAC, but not between
quantitative measures of structural lung disease and CAC.
This has been a perplexing finding given the known rela-
tionship between airflow obstruction and CAC. There is
however significant disagreement between quantitative
emphysema and visual emphysema subtypes and visual
subtypes offer prognostic additional information over
quantitative measures [34]. We extend the literature
by reporting that although overall emphysema and air-
way disease are not associated with CAC, the centri-
lobular subtype of emphysema, but not paraseptal
emphysema or airway wall thickness, is independently
associated with CAC.

The mediators of the link between airflow obstruction
and coronary artery disease are not clear, and systemic
inflammation has been commonly implicated in the
pathogenesis of cardiac disease, mostly based on data from
other chronic inflammatory conditions [13]. The correla-
tions reported between inflammatory markers and mea-
sures of atherosclerosis in COPD are either modest or
non-significant [6, 7, 15, 32, 35–37]. These previous stud-
ies were not designed to examine three-way relationships
between COPD, cardiac disease and systemic inflamma-
tion. We identified a number of biomarkers that mediate
the link between airflow obstruction and CAC, and found
that the mediators of the link between centrilobular
emphysema and CAC were mostly similar. Similar to pre-
vious studies showing weak links between CAC and
non-specific markers of inflammation such as CRP and
fibrinogen in COPD, we did not find any mediator effect
for these biomarkers. Matrix metalloproteinases are impli-
cated in the pathogenesis of both emphysema and coron-
ary atherosclerosis. MMP3 is present and enzymatically
active in coronary plaques, and MMP3 polymorphisms
are associated with the initiation and progression of these
plaques, with plaque instability as well as with coronary
calcification [38–40]. Matrix metalloproteinases 1 and 9
are important in the stability of the extracellular matrix in
various tissues including the lung; however the role of
MMP3 in the pathogenesis of emphysema is less clear.
Recent studies have suggested that MMP3 polymorphisms
are also important in the pathogenesis and severity of em-
physema [41, 42]. Soluble adhesion molecules are involved
in recruitment of macrophages and neutrophils, are in-
volved in the transendothelial migration of these inflam-
matory cells, and circulating levels are higher in COPD
patients than in healthy non-smokers [43]. VCAM1 but
not ICAM1 has been implicated in the early pathogenesis
of atherosclerotic plaques, via promotion of monocyte
adhesion and accumulation on vessel walls susceptible to
developing atherosclerosis [44]. Circulating VCAM is
associated with greater CAD risk in other chronic
inflammatory conditions such as type 2 diabetes melli-
tus [45, 46]. CXCL9, a chemokine, is a T-cell chemo-
attractant that is induced by IFN-γ, and levels of
CXCL9 are greater in sputum of COPD patients, and
these levels correlate with disease severity [47]. CXCL9
and other CXCR3 chemokines have been implicated in
the regulation of migration of monocytes and lympho-
cytes and their retention in atherosclerotic lesions, and
serum levels of CXCL9 correlate with severity of coron-
ary narrowing as well as coronary artery calcification
[48, 49]. Although mediation analysis cannot establish
causality, and it is possible that systemic elevation of these
biomarkers may just reflect progressive atherosclerosis, re-
sults of the mediation analyses suggest that they may have
bioactive properties that are important in the pathogenesis
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of cardiovascular disease specifically in COPD. CXCL5
decreased with worsening severity of airflow obstruction.
Recent data show that contrary to the other chemokines,
CXCL5 may facilitate cholesterol efflux from macrophages
and by reducing macrophage foam cell formation, have a
protective role in atherogenesis [50].
Our study has several strengths. Participants in this co-

hort are well characterized with extensive phenotyping
using CT and spirometry and a wide array of biomarkers.
We included normal controls as well as participants with
a wide range of airflow obstruction. The study also has
some limitations. Although we selected ten potential me-
diators based on biologic plausibility and prior evidence,
we may have missed other potential mediators; however,
we did not include all available biomarkers so as to not
overfit the models and to avoid false positive discovery.
The inter-rater agreement for centrilobular emphysema
was excellent and fair for paraseptal emphysema and
bronchial wall thickening; however, we also used Pi10 to
quantify airway disease. These rates of agreement for
bronchial wall thickening are comparable to those ob-
served in previous studies [51, 52]. Our associations are
cross-sectional, and although temporal associations with
acute events are an alternate model, these models would
miss a substantial number of subclinical disease. Informa-
tion on comorbidities such as diabetes mellitus and
hypertension were ascertained from the participants as
self-reported physician diagnoses but not confirmed with
medical records. Although we selected participants ran-
domly, there was a preponderance of male participants in
the study and this may limit the generalizability of our
findings. Finally, although mediation analyses were per-
formed, we do not attribute causality and more research is
needed to confirm these biologic pathways.

Conclusions
Chronic obstructive pulmonary disease is associated with
coronary artery calcification, and the association is mainly
driven by the centrilobular emphysema subtype. We
found that inflammatory biomarkers involved in coronary
atherosclerosis are elevated in those with COPD, espe-
cially with centrilobular emphysema, and mediate the link
between emphysema and coronary artery calcification.
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