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ABSTRACT: Gastric cancer (GC) is one of the most common
and lethal types of cancer affecting over one million people, leading
to 768,793 deaths globally in 2020 alone. The key for improving
the survival rate lies in reliable screening and early diagnosis.
Existing techniques including barium-meal gastric photofluorog-
raphy and upper endoscopy can be costly and time-consuming and
are thus impractical for population screening. We look instead for
small extracellular vesicles (sEVs, currently also referred as
exosomes) sized ⌀ 30−150 nm as a candidate. sEVs have attracted
a significantly higher level of attention during the past decade or
two because of their potentials in disease diagnoses and
therapeutics. Here, we report that the composition information
of the collective Raman-active bonds inside sEVs of human donors obtained by surface-enhanced Raman spectroscopy (SERS) holds
the potential for non-invasive GC detection. SERS was triggered by the substrate of gold nanopyramid arrays we developed
previously. A machine learning-based spectral feature analysis algorithm was developed for objectively distinguishing the cancer-
derived sEVs from those of the non-cancer sub-population. sEVs from the tissue, blood, and saliva of GC patients and non-GC
participants were collected (n = 15 each) and analyzed. The algorithm prediction accuracies were reportedly 90, 85, and 72%.
“Leave-a-pair-of-samples out” validation was further performed to test the clinical potential. The area under the curve of each
receiver operating characteristic curve was 0.96, 0.91, and 0.65 in tissue, blood, and saliva, respectively. In addition, by comparing the
SERS fingerprints of individual vesicles, we provided a possible way of tracing the biogenesis pathways of patient-specific sEVs from
tissue to blood to saliva. The methodology involved in this study is expected to be amenable for non-invasive detection of diseases
other than GC.
KEYWORDS: surface-enhanced Raman spectroscopy (SERS), small extracellular vesicle, machine learning, liquid biopsy,
non-invasive cancer detection, gastric cancer

■ INTRODUCTION
Gastric cancer (GC) is the fifth most popular type of malignant
tumor and the fourth most deadly worldwide with over one
million new cases, leading to 768,793 deaths in 2020.1

Although the occurrence and mortality of GC have been on
the decline, the five-year survival rate continues to be low.2

However, for patients diagnosed with GC at early stages, five-
year survival rates of 95% or higher have been observed,3,4

demonstrating the overwhelming importance of early diagnosis
and population screening. Early GC diagnosis requires reliable,
cheap, and easy-to-operate screening methods that are yet to
be available.5 Currently used screening methods such as
barium-meal gastric photofluorography and upper endoscopy
followed by biopsy can be costly and time-consuming.6,7 These
procedures have also been shown to be associated with false
negative rates, risks related with the rather invasive procedures,
and other side effects.8−10 Recently, extracellular vesicles,

especially sEVs, have become potential sources of biomarkers
for cancer detection with easy access and minimal invasive-
ness.11−14

sEVs play crucial roles in cell-to-cell communications via the
encapsulated cargos, which also reflect their parental cells.15−18

The stable existences in bodily fluids grant the potentials for
them to be biomarkers for cancer liquid biopsy.19−21 By
detecting these sEVs, opportunities exist for non-invasive
cancer detection.22,23 For cancer patients, there co-exist sEVs
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from both normal and cancerous cells, each with their own
characteristic biochemical cargo contents, forming different
subtypes.24,25 One key challenge faced is that the vesicular
liquid biopsy is a technique capable of examining individual
sEVs, thereby distinguishing the sub-populations that belong
uniquely to abnormal cells26−28

Techniques characterizing the physical properties of the
sEVs include nanoparticle tracking analysis (NTA), dynamic
light scattering,29−31 transmission electron microscopy (TEM),
and scanning electron microscopy (SEM).32 Additionally,
methodologies are employed for sEV content analysis.
Flow cytometry detects surface proteins on individual sEVs.

Specific labels are normally required for desired specific-
ities.33−35 Conventionally, it has a resolution around 100−300
nm.36 Despite the great efforts made toward lowering the
detection threshold, requiring the known targets for labeling
limits the capability of revealing the comprehensive bio-
chemical information from sEVs.37−39

Western blot holds the gold standard for analyzing proteins
in biological samples.40 It is a bulk detection method, which
requires over 106 sEVs during the process, thus losing the
distinctive features from individual sEVs.41 Polymerase chain
reaction (PCR) is widely used for genomic analysis of sEVs.
DNA primers or templates are employed to initiate the
process. sEVs normally need to be lysed before PCR.42,43

Recently, single-vesicle sequencing with the assistance of the
DNA barcodes for detecting surface markers has been
published that does not require the lysis of extracellular
vesicles.44

The technologies mentioned are promising for analyzing
sEVs from specific aspects with limitations. Among the
alternative technologies, Raman spectroscopy has the potential
to fulfill some of the unmet needs.
Raman spectroscopy provides structural “fingerprints” of

different molecules and is thus capable of detecting and
identifying biomedical substances by extracting the vibrational
information of molecules.45,46 Raman spectra are correlated
directly to the allowed phonon bands and are molecule-
specific. However, the probability of Raman scattering events is
extremely low (roughly 10−6).47 To boost the Raman spectral
signal, metallic nanostructures can trigger surface-enhanced
Raman spectroscopy (SERS).48 The spots on the surface
where the electromagnetic field is intensified are referred to as
“hotspots”, and the effective range of one hotspot is typically
∼200 nm.49 Two of the current major strategies of SERS for
detecting diseases are as follows: first, SERS tagging for specific
biomarker detection, and second, comparing spectral feature
differences between the diseased and the control group,
showing potentials in specific cases.50−54 Previously, we
designed a SERS platform based on gold nanopyramids with
single-molecule sensitivity.55 Furthermore, as a proof-of-
concept, we applied this platform for testing sEVs, showing
that sEVs from different cells of origin could be distin-
guished.56 For further interpreting SERS spectra with an
objective spectral feature distinguishability, a data analysis
mechanism is required. Machine learning has shown
tremendous promise in meeting this challenge.
Machine learning has been introduced to assist diagnosis

and analysis of big data in biomedical practices. The developed
algorithm will first “learn” from the samples with known
diagnoses via procedures to form a model/classifier.57 Such a
model/classifier would then be used for diagnosing new
patients.58 Despite the promising potential, one of the major

hurdles faced during the “learning” process is mislabeling.59,60

Given the co-existence of sEVs from both normal cells and
cancerous cells inside patients’ bodily fluids, the accuracy of
machine learning-based sEV diagnostics will be negatively
affected if all the vesicles from patients are labeled as the
“patient group”.
Here, we applied our SERS gold nanopyramid platform to

detect sEVs for non-invasive GC detection. Instead of using
disease-specific SERS tags or focusing on particular spectral
feature comparisons, the biochemical compositions of the
collective Raman-active bonds were extracted from individual
vesicles directly in the form of SERS spectra. We aimed to
examine if these SERS spectra can be used as the sEV
“fingerprints” for GC detection. For machine learning, we
customized an algorithm to help correct the mislabeling issue
in the clinical samples by sub-fractioning the measured sEVs.
Leveraging the capabilities from both single-molecule SERS
and machine learning, we proposed the technique as “SERS
identification of molecules or SIM”. The results from SIM
analysis of cell line-derived sEVs illustrated the existences of
sEVs that were common to both the GC and the normal
stomach tissues in addition to the characteristic ones. For
clinical samples, vesicles were isolated from the tissue, blood,
and saliva of donors from the GC patient group and the non-
GC control group using an acoustofluidic platform (AFS)
developed previously at the Duke University laboratory.61 The
unique capabilities of the AFS including high efficiency and
low processing time enable a better vesicle recovery rate and
quality.61 The accuracies in identifying GC versus control were
90, 85, and 72% in tissue, blood, and saliva, respectively.
“Leave-a-pair-of-samples out” analysis was performed to mimic
the potential clinic applications of the platform. The result
showed receiver operating characteristics (ROCs) with the
area under the curves (AUCs) being 0.96, 0.91, and 0.65 in
tissue, blood, and saliva cases, respectively. Additionally, nine
patients’ unique sEV types were found to be existing across all
three sample environments, opening a possibility for tracing
the biogenesis of the GC patient-specific sEVs. The method-
ology involved in this study is amenable for non-invasive
detection of diseases other than GC with further validation.

■ MATERIALS AND METHODS
Cell Cultures. Three cell-lines, AGS (ATCC, CRL-1739), NCI-

N87 (ATCC, CRL-5822), Hs 738.St/Int (ATCC, CRL-7869), were
used in this study. The detailed protocol and the materials used in this
study for the cell cultures is included in the supplementary Supporting
Information.

Tissue, Plasma, and Saliva Samples. For each donor, tissue,
plasma, and saliva samples were collected respectively at the Samsung
Medical Center in Korea. Tissue samples were collected from surgical
resection during operation (GC patients) or tissue biopsy during
endoscopic examination (non-GC control individuals). The collected
tissues were stored at −80 °C until use. Plasma samples were
collected using EDTA (ethylenediaminetetraacetic acid) tubes
following the conventional clinical practice and stored at −80 °C
until use.62,63 Unstimulated whole saliva collection was performed as
described previously.64 From each subject, 5 mL of whole saliva was
collected and centrifuged at 2,600g for 15 min at 4 °C. The
SUPERase-In RNase inhibitor was added to the supernatant at 20 U/
mL to stabilize salivary exRNA. The cell-free saliva supernatants were
stored at −80 °C until use.

SERS Substrate Fabrication. The recipe of the SERS platform
used in this study was developed previously with the schematic and
characterization results being provided.55 Basically, a single layer of
self-assembled polystyrene (PS) balls (⌀ 500 nm) was generated with
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Langmuir−Blodgett patterning. The layer was transferred to a 4″
(001) silicon wafer with a layer of 50 nm SiO2 deposited on top. After
further deposition of 50 nm Cr, the PS balls were removed using
chloroform. After the SiO2 was exposed using reactive-ion etching, the
silicon was etched using KOH. Inverted nanopyramids with sidewalls
at 57.5° angles were created because of different etching rates along
the [001] and [111] directions of silicon. Next, a 200 nm film of gold
was deposited on the pitted surface using electron beam deposition
and bonded to a carrier wafer using epoxy before lifting off.

Ultracentrifugation. Cell culture supernatants were first
centrifuged at 300g at 4 °C for 10 min and then at 2000g at 4 °C
for 15 min to remove contaminating cells and apoptotic bodies,
respectively. The supernatants were then further centrifuged at
12,000g at 4 °C for 45 min to remove cell debris. The clear
supernatant was then filtered using 0.22 μm-pore filters, followed by
ultracentrifugation at 110,000g at 4 °C for 70 min. The resulting
pellets were re-suspended in pre-chilled PBS and again ultra-
centrifuged at 110,000g and 4 °C for 70 min. The final pellet of
sEVs was re-suspended in 50−100 μL of PBS for NTA measurement.

AFS sEV Isolations. The detailed protocol of sEV isolation
through an AFS in this study has been described in the previous
publications.61,65

Nanoparticle Tracking Analysis. The sample and PBS (Thermo
Fisher, USA) sheath flow were independently controlled using a
syringe pump (neMESYS, CETONI GmbH, Germany). Powered by a
variable DC power supply (TP1505D, Tekpower, USA), a Peltier
cooling system (TEC1-12730, Hebei IT, China) was used for
avoiding excessive heat generation from the SAW device during sEV
separation. An upright microscope (BX51WI, Olympus, Japan)
combined with a CCD camera (CoolSNAP HQ2, Photometrics,
USA) was used for monitoring the separation process. The sEV
separation SAW device was powered by a function generator
(E4422B, Agilent, USA) and an amplifier (100A250A, Amplifier
Research, USA). After separation, the collected samples were analyzed
by a NTA (Nanosight LM10, Malvern, England) system for getting
the size distribution data.

TEM. TEM validation follows our previous procedure.65 4%
paraformaldehyde (Sigma-Aldrich, St. Louis, MO) was used for fixing
the isolated samples. 100 μL droplets of the fixed sample were
covered with a 300-mesh copper grid support film (Electron
Microscopy Sciences, Hatfield, PA) for absorption. The grids were
washed with distilled water and then stained using uranyl acetate
solution (Electron Microscopy Sciences). The grids were washed with
distilled water again and dried at room temperature. An electron
microscope (FEI, Hillsboro, OR) was used for observation.

SEM. SEM was used to characterize the SERS substrate. Imaging
was performed using Nova 230 with an accelerating voltage of 10 kV.
The detector used was in the “through the lens” mode to detect

secondary electrons, and the images were magnified at ×50,000 to
×55,000.

Raman Spectroscopy. Before the Raman test, 5 μL of each sEV
sample solution was deposited on the SERS substrate and dried.
Raman measurements were performed using a Reinshaw inVia Raman
spectrometer at room temperature. The laser excitation wavelength
was 785 nm. The power used was 5 mW. Before measuring sEVs, the
system was calibrated using the 520 cm−1 peak of silicon. Rough
mapping was first performed at a step width of 2 μm to scout for the
sEV locations. The exposure time was 0.2 s to avoid sample
overheating. After an sEV was spotted, fine mapping was performed at
a step width of 0.1 μm to collect characteristic spectra from the sEV
sample. Again, the exposure time was 0.2 s to avoid sample
overheating.

Machine Learning Analysis. Approximately 50 to 70 different
sEVs were obtained for each sample to produce spectra, which have
1023 Raman shifts in the range from 553 to 1581 cm−1 (biological
information-rich region). Preprocessing steps were applied to alleviate
the spectral signature fluctuations caused by sample variations, SERS
platform heterogeneity, and instrument fluctuation. Particularly,
fluorescence background subtraction and noise reduction were
performed by batch processing based on asymmetric least square
fitting and Savitzky−Golay filtering, followed by min−max normal-
ization that proportionally compresses the original intensity range to
[0, 1]. No initial feature selections or dimension reduction was
performed prior to classification. To reveal the spectral differences
among the three cell line groups, linear discriminant analysis (LDA)
was used to reduce the dimensionality for visualization. For machine
learning model development, predictive model establishment by
supervised learning or classification is the core for the proposed
technology. It requires appropriate complexity of the classifier to
prevent both underfitting and overfitting for the purpose of
generalizing the characteristic signature effectively. We use the
conventional but powerful algorithm support vector machine
(SVM) for classification tasks. Unsupervised learning or clustering
analysis is performed by hierarchical clustering analysis with
customized distance metrics; it investigates the intrinsic similarities
among the analyte SERS signatures and serves as an auxiliary to
classification. Randomly, 80% spectra from each of the groups
(patient vs control) were selected for the model training and the rest
20% spectra were left out for cross-validation. 20 rounds of cross-
validation were performed, with each round running independently to
avoid overfitting. The prediction accuracy is the ratio between the
number of correct predictions and the total number of predictions,
following the equation eq 1. All the analyses are realized with Python.

Figure 1. Schematic of SERS and machine learning for analyzing sEVs isolated from human samples.

ACS Applied Nano Materials www.acsanm.org Article

https://doi.org/10.1021/acsanm.2c01986
ACS Appl. Nano Mater. 2022, 5, 12506−12517

12508

https://pubs.acs.org/doi/10.1021/acsanm.2c01986?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.2c01986?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.2c01986?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.2c01986?fig=fig1&ref=pdf
www.acsanm.org?ref=pdf
https://doi.org/10.1021/acsanm.2c01986?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


=
+

+ + +

Accuracy
true positive true negative

true positive true negative false positive false negative
(1)

■ RESULTS AND DISCUSSION
Experimental Process Flow. The experimental process

flow shown in Figure 1. Briefly, the experimental process can
be described as three categories, sEV isolation followed by
SERS spectra collections and data analysis. To begin with,
sEVs were extracted from three types of samples (tissue, blood,
and saliva) from human donors using an AFS. After isolation,
the sEV analytes were dispersed on SERS substrates for
measurements. Each sample droplet was 5 μL. After collecting
SERS fingerprints, the machine learning algorithm (SVM) was
employed to establish the distinguishability. Randomly selected
80% spectral data from each of the groups were used as the
training set for building up the machine learning model, and
the rest 20% spectra in each group were left out for testing the
model’s predictability on cancer/control. The prediction
results obtained from the testing phase were then compared
with the true sample identification to calculate the accuracy.
“Leave-a-pair-of-samples out” validation was performed to test
the clinical applicability. Additionally, the SERS fingerprints
from the patients’ unique sEVs were extracted from tissue,
blood, and saliva followed by a cross-comparison for studying
the possibility of tracing the vesicles through their SERS
signatures.

Overview of the sEV Samples and the Gold Nano-
pyramids. Figure 2a shows the SEM image of the SERS gold
nanopyramid substrate. The isolated sEV samples were
characterized using NTA and TEM for verifications. Figure
2b shows the interaction between the sEV samples and the
SERS substrate after the sample droplet had been introduced,
suggesting intact vesicles lying in between the nano-pyramids.
Figure 2c exhibits the TEM image of the sEV samples, where
the sizes fall into the category of sEVs, and Figure 2d shows the
NTA result of the size distribution of the vesicle samples. The
substrate itself was Raman-inactive (SERS spectrum of the bare
substrate is shown in Figure S1), and SERS spectra were
collected from the areas with Raman spectral responses on a
gold nano-pyramid array. Since the sEVs were ⌀ 30−150 nm
in size, it was impossible to observe these vesicles directly
under an optical microscope equipped on a conventional
Raman spectroscopy system (shown in Figures S2 and S3). To
verify, we performed SERS mapping with a super-fine grid on
the said areas. The step width for each point in the mapping
was set to be 100 nm, the minimal step width in a practical
setup. Since the Raman laser is a Gaussian beam, a heat
mapping based on the particular peak intensity fluctuations
across a small area could be generated using such fine grid
mapping. Three Raman intensity heat maps were plotted with
respect to the Raman peak positions, representing phospho-
lipids (1270 cm−1), nucleic acid (1341 cm−1), and protein
(1123 cm−1). As shown in Figure 2e, the three heat maps were
spherical, the shape of a vesicle, with the comparable sizes,
suggesting the co-existing of the three substances essential to a
vesicle. The three SERS intensity maps in Figure 2e show the

Figure 2. (a) SEM image of the SERS gold nanopyramids platform and (b) SEM image of the SERS substrate after sample solution introduction.
(c) TEM image of isolated sEVs suspended in PBS, (d) NTA result of the isolated vesicles, and (e) SERS intensity maps generated with respect to
nucleic acid, lipid, and protein from the same data spot.
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raw shape of a single sEV. However, their sizes are larger than
that of the actual vesicle. This is a result of convolution
between a tightly focused laser beam of ∼1 μm diameter and a
much smaller (∼100 nm) hotspot (the source of the Raman
signal).55,66 The resulting diameter of the heatmap is limited
by the larger of the two, in this case that of the excitation laser
beam for Raman excitation of 1 μm. Nonetheless, the three
SERS intensity maps show the shape of an sEV with
comparable sizes consistently, suggesting the co-existence of
the three substances, improving the rigor of the result. SERS
mapping shows that the average spacing between sEVs is larger
than 5 μm, much larger than the size of sEVs and the laser spot
size. It needs to be pointed out that because of the
instrumentational limitation, specifically the Raman laser spot
size being larger than the sEV diameters, it is challenging to
precisely map the morphology of an individual sEV. However,
SERS signal intensity is quadratically dependent on the local
electromagnetic field intensity, making the signal from one
single plasmonic hotspot dominant.67,68 When utilizing our
SERS platform, the hotspot size matches the size range of sEVs
(∼100 nm).55,56,66 Such a feature allows the SERS signal from
single sEVs to be collected one at a time. With the
concentrations of the vesicles in study and the observation
that the spectra indicating the existences of vesicles distributed
randomly across the SERS mapping, the detection of sEVs in
this study was single-vesicle-based from the statistical
perspective. It should be noted that although the majority of
the SERS spectra were derived from single sEVs statistically,
there is a non-zero probability that occasional ones could be
derived from more than one sEVs.

SIM Analysis of sEVs from Cell Lines. Before working on
the patient samples, we first used cell line-derived sEVs by
ultracentrifugation to establish the capability of SIM to detect
and analyze single sEVs. More importantly, analyzing sEVs
from cell lines provides the information of single-sEV
heterogeneities, given the purest forms of parental cells. Such
knowledge laid the foundation and set the expectations for the
further studies with clinical samples. Two GC cell lines (CRL-

1739 and CRL-5822) and one normal stomach tissue cell line
(CRL-7869) were involved. SEVs from each of the cell lines
were isolated from the culture medium using ultracentrifuga-
tion before being dropped onto the gold nano-pyramid
substrate. Within each sample, SERS measured sEVs one at
a time, generating one spectrum per vesicle. For CRL-1739-,
CRL-5822-, and CRL-7869- derived sEVs, 115, 106, and 86
vesicles were measured by SERS, respectively. After spectral
collection, LDA was applied first to study the distinguishability
of SIM in the three groups. Figure 3a showed that the SERS
spectra from the three groups could be distinguished, with a
variety of sEVs within each of the sample groups revealed by
SIM. Inherently, LDA is a technique used to separate different
groups of data. In order to directly and objectively compare the
SERS fingerprints of individual sEVs for determining the
common and characteristic vesicles among the three groups, a
machine learning-based (SVM) SERS spectral feature compar-
ison mechanism was introduced. Figure 3b exhibits the results
of comparing the SERS fingerprints of individual vesicles
across the three cell line groups. SERS spectra of the common
vesicles could be found among different sample groups in the
cell line-derived sEV groups, shown in Figures S4−S7. Internal
spectral variations existed within each of the sEV types, but the
spectral differences across different vesicle types outweighed
the internal spectral variations as measured from the Euclidean
distance between the nearest neighbors. The results of
analyzing the three cell lines illustrated the existences of sEV
populations common to both GC tissue and the normal
stomach tissue released groups even in the cell line forms. Such
observation further indicated the existences of sEV populations
common to both GC/non-GC groups in the clinical bodily
fluids. When analyzing single vesicles, it is necessary to sort out
the common populations before an accurate detection could
possibly be made.

SIM Analysis of Clinical Samples for GC Detection.
Next, we applied the SIM platform to analyze the tissue-,
blood-, and saliva- derived sEVs from GC patients and non-GC
controls (n = 15 for each of the groups). To address the low-

Figure 3. (a) LDA result distinguishing the SERS spectra of the sEVs derived from cell lines as three groups and (b) statistical results of SERS
signature comparisons among individual vesicles.
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vesicle concentration issue, the AFS that was developed
previously at the Duke University laboratory was employed for
better sEV recoveries during the isolation from the human
samples to avoid the well-known vesicle loss during the
ultracentrifugation isolation.65 On average, 60 different data
spots were measured by SERS for each of the sample droplets.
Compared to cell lines as the sEV-extracting sources, we
expected two key factors that could increase the complexities
when studying vesicles from the human bodies. First, samples
from human bodies, especially the bodily fluids, have lower
vesicle concentrations compared to those of cell culture media.
Second, the populations of the vesicles that are common to
both patients and the control group are expected to be more in
the bodily fluids because the normal cells inside a patient’s
body secrete the same/similar types of vesicles as the ones
inside a non-cancer control person, leading to the mislabeling
problem in machine learning and further damaging the
detection accuracy. The LDA results of the clinical samples
are shown in Figure 4. The y axes are LD1 scores, and the
Gaussian-like curves record the spectral distributions according
to the LD1 scores. We observed that sEV samples in saliva and
blood showed overlapping between the GC and the non-GC
groups from LD1 equals −2 to 2. On the other hand, such
overlapping was hardly observed in the tissue sEV samples.
Such results indicated that some of the sEVs in saliva and
blood shared similar/common SERS spectral features between
GC and non-GC, further inferring the existences of normal
sEVs inside patients’ bloods and saliva. Such observations
verified our hypothesis, given that the biochemical composi-
tions of the sEVs could reflect their parental cells. In addition,
the LDA results suggested that the mislabeling issue was
inevitable, thus requiring relabeling before the SVM classi-
fication model training, especially in blood and saliva samples.
To address the mislabeling problem in machine learning, a

relabeling process was involved before training through sub-
fractioning of individual sEVs from patients based on their
biochemical compositions reflected in the SERS fingerprints.

As shown in Figure S8, we first compared the SERS
fingerprints of individual sEVs between the patient and the
control group, extracting the sEV types that uniquely existed in
the patient group (PP). Such a process was carried out by
cross-comparing the spectral features of the individual spectra
between the GC and the non-GC group. The spectra in the
GC group that shared common spectral features with the ones
in the non-GC group were related to the normal sEVs inside
the patients’ bodies, given that the sEVs could reflect their
parental cells. They were further separated from the spectra
found only in the GC group (PP). Then, only the SERS
signatures from the PP group were labeled as “GC” and others
were labeled as “control” for the machine learning model
training. Such a process was referred as “relabeling” and helped
correcting the mislabeling issue mentioned previously. Cross-
validation of randomly selected 20% SERS spectra of sEVs
from each of the two groups was carried out to study the
detection accuracy. The selected 20% was intentionally left out
during the training to avoid the information leak during the
training, improving the rigor. For analyzing the SERS
fingerprints collected from sEVs of tissue, blood, and saliva,
both non-relabeling and relabeling methods were involved, and
the detection accuracies are exhibited in Table 1. Each of the
results was an average of 20 rounds of cross-validation (σ2 ≤
0.000541). In general, tissue-derived sEVs held the highest
accuracy of distinguishing, followed by the blood-derived and
saliva-derived vesicles. With relabeling, the detection accuracies
were improved for sEVs collected from blood and saliva but
not significantly changed for the samples from tissue. For the
machine learning model training and cross-validation, the
training data set and the validation data set selected have no
overlap. Such procedure avoids the pitfall of information leak,
that is, the machine learning program has been given some clue
about the identity of the samples used for cross-validation,
leading to a falsely high accuracy of detection. The relabeling
helps correcting the mislabeling issue due to the inevitable
existence of normal vesicles in the samples of the cancer

Figure 4. LDA results comparing the SERS spectra of sEVs in tissue, blood, and saliva.

Table 1. SVM Model Prediction Accuracies in Cross-Validation

tissue sEVs blood sEVs Saliva sEVs

non-relabel relabel non-relabel relabel non-relabel relabel

accuracy (% of correct predictions) 90% 89% 72% 85% 58% 72%
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patients. To further explore the potential of our analysis in the
clinical applications, we performed “leave-a-pair-of-samples
out” validation using the relabeled spectra. In such validation,
SERS spectra from a randomly selected GC patient and a
randomly selected control individual were intentionally
excluded from the training set and used as the test set. The
random pairing and “leaving out” continued but did not
include samples that had been selected before. One round
ended when every sample had been “left -out” once. To test
statistical fluctuations, we performed 10 rounds for each of the
tissue, blood, and saliva samples. Figure 5 shows the resulting
ROCs. The averaged AUCs were reported to be 0.96, 0.91, and
0.65 in tissue, blood, and saliva, respectively. It needs to be
pointed out that “leave-a-pair-of-samples out” cannot com-
pletely substitute the actual clinical blind test. However, to our
understanding, such validation offers a chance to test the
platform’s clinical applicability by providing a scenario closer
to the blind test than normal cross-validation. The result
suggests that apart from tissue samples, blood holds a greater
potential than saliva as a source for sEV-based GC liquid
biopsy by involving the minimal invasiveness of puncture.
Our GC/non-GC distinction results show that there existed

improvements in detection accuracies with relabeling in saliva
and blood samples but no significant change in the tissue
samples. This observation could be explained as the reflection
of the different relative population of the GC-specific sEVs.

The sEV populations derived from the patients’ tissues contain
the highest concentration of the patient-characteristic vesicles.
Such concentration drops when these sEVs circulate in the
bodily fluids, where they are joined by vesicles released by
other (non-GC) organs. We acknowledge that such a single-
sEV detection mechanism has its fundamental limitation on
the throughput, which is inversely proportional to the required
number of sEVs to be examined per patient sample in order to
perform accurate diagnosis. Nonetheless, our study reveals the
feasibility of non-invasive GC detection/screening by analyzing
the composition information of the collective Raman-active
bonds inside single sEVs isolated from blood and saliva using
SIM. SERS measurements provided molecular fingerprints
from single vesicles, and the machine learning algorithm
offered the ability to distinguish among the various sub-
fractions of the sEVs with objectivity and rigor. Despite the
complexity of the microenvironments inside human bodies, the
SIM platform has been shown to be capable of reaching the
detection accuracy of 90, 85, and 72.0% with the reported
AUCs of 0.96, 0.91, and 0.65 in the “leave-a-pair-of-samples
out” validation in tissue, blood, and saliva, respectively. The
difference in detection accuracy makes intuitive sense,
considering the difference in the relative concentration of
GC-specific sEVs in these three sources. Needless to say, blood
and saliva are the more non-invasive sources of sEVs and thus
have higher promise in clinical practice. Effort is in progress to

Figure 5. ROC curves of the “leave-a-pair-of-samples out” validation for tissue sEVs (a) blood sEVs (b) and saliva sEVs (c).
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further optimize the machine learning algorithm with the goal
of improving the detection accuracy.
With the development of the field, promising studies related

to the innovations and the applications of SERS substrates for
cancer detection via extracellular vesicles have been published.
Shin et al. (2020) reported a combination of SERS and deep
learning for early-stage lung cancer detection via sEVs derived
from blood with AUC >0.9.51 To achieve such detection,
spectral features from the test set were classified based on the
degrees of similarities to the training set.51 In our present
study, we observed a comparable AUC in “leave-a-pair-of-
samples out” validation with the blood sample, but such scores
dropped with the saliva samples. From the clinical and practical
perspectives, the observation of detection accuracy discrep-
ancies in blood and saliva could serve as an indication for
biofluid selections in the liquid biopsy-based GC detections.
Dong et al. (2020) focused on one specific content and
reported that the variations of the SERS signal intensity of
protein phosphorylation inside sEVs between the control and
patients could serve as the indicator for detecting prostate,
liver, lung, and colon cancers.69 Carmicheal et al. (2019)
utilized SERS gold nanoparticles and machine learning for
pancreatic cancer detection.70 SEVs from serum were
measured by SERS from 20 (n = 10 for from cancer/control)
individuals, and machine learning algorithm prediction results
indicated the diagnostic potential and the bio-variability
dragging the effectiveness due to the diverse origins of the
serum sEVs.70 Rojalin et al. (2020) reported a porous scaffold
SERS platform that could prevent vesicles from drying during
the SERS measurements with PCA, indicating clear separations
of the SERS spectra of extracellular vesicles (sEV and larger
ones) collected from two control individuals, two ovarian
cancer patients, and two endometrial cancer patients.71 In

addition, the dragging of detection accuracy by trypsinization
of clinical vesicles was illustrated.71 Apart from analyzing the
spectral features directly, the modified SERS substrate for
vesicle immobilization allows quantitative analysis of the
captured sEV populations between the cancer and the control
group through the comparison of intensities of the SERS
indicator as demonstrated by Banaei et al. (2021).72 In our
present study, the single-vesicle-based analysis enables
identification and discrimination among different subtypes of
sEVs within the same sample group. The relabeling process for
enhancing the detection accuracy cannot be carried out
without the signatures from each of the individual vesicles.
In addition, the identification of single vesicle offers the
feasibility of tracing the trafficking pathways of the patients’
sEVs from the cancer tissues to the bodily fluids based on their
SERS fingerprints. It opens a new possibility for the further
understanding of the sEV biogenesis, specifically the pathway
of sEV trafficking from the point of secretion to entering body
fluids.

Tracking sEVs Uniquely Belonging to the Patient
Group. After illustrating the GC detectability of SIM by
analyzing the SERS signatures of single sEVs, we further
looked at the vesicles that uniquely belonged to the patients
(PP) in tissue, blood, and saliva. The goal was to study the
feasibility of using SIM to track single sEVs inside the body
based on their SERS fingerprints, given that the published
studies have shown that different vesicle phenotypes exist in
different parts of the human body.73,74 As shown in Figure 6a,
after extracting the PP group from tissue, blood, and saliva,
respectively, as mentioned (PT, PB, and PS), the SERS
spectral comparison was introduced to identify the common
vesicles existing across tissue, blood, and saliva. Nine sEV types
were identified, existing across all three conditions. Figure 6b

Figure 6. (a) Schematic of tracking patients’ unique sEVs and (b) superimposed SERS spectra (red) and the corresponding average spectrum
(blue) of the patients’ unique sEVs existed across tissue, blood, and saliva. Horizontal-axis: Raman shift (ranging from 553 to 1581 cm−1). Vertical-
axis: Normalized intensity 0−1; (c) distribution of all the individual sEVs of the nine types presented in (b).
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exhibits the superimposed SERS spectra together with the
averaged spectrum for each of the sEV type identified, and
Tables S1−S9 contain the tentative Raman peak assignments
for the major peaks of the nine vesicle types. Within the nine
sEV types, the result of studying the source of each individual
vesicles is shown in Figure 6c, suggesting the population of
patient unique sEVs dropping from tissue to blood/saliva,
which is consistent with the current understanding about
cancerous sEV circulation. The results of tracking sEVs
uniquely belonging to the patient group through their SERS
signatures opened a new possibility for tracing vesicle
circulations from the tissue of origin to the bodily fluids. In
addition, our tracking studies shed light on the impact of the
sample of origin on the diagnostic accuracy and practicality:
tissue is the most invasive source but contains the highest
concentration of disease-specific sEVs, whereas saliva is the
least invasive but contains less concentration of the disease-
specific vesicles.
The identification of nine types of the patients’ unique sEVs

existing across tissue, blood, and saliva illustrates the feasibility
of using SIM for tracking patients’ vesicles. However, we did
not observe that one or more of the nine identified sEV types
existed across all patients. The nine types of sEVs not being
shared among all cancer patients could possibly be due to the
small sample (sEV) size, currently limited by our SIM
throughput. Using the commercially available Raman spec-
trometer (InVia by Renishaw) designed for research instead of
medical laboratories, the routinely achievable throughput is
approximately 15−20 sEVs per hour. It should be pointed out
that this throughput is by no means intrinsic to SERS analysis
of biological samples. Several areas of the spectrometer could
be automated to conceivably improve the Raman mapping
throughput by orders of magnitude. With significantly
increased sample size per patient/healthy control, the
probability of mislabeling (identifying an sEV type to be
cancer simply because such an sEV happened to be absent
from a limited size of healthy control samples) will decrease
significantly. Nonetheless, our study has shown a promising
pathway for the development of an evidence-based procedure
factoring in clinical considerations. With necessary clinical
trials for validating, the methodology involved in this study is
amenable for non-invasive detection of diseases other than GC
and further understanding and tracing of the biogenesis
pathway of the sEVs.

■ CONCLUSIONS
In this study, a gold nanopyramid platform was applied for
SERS measurements of sEVs, exploring the feasibility of non-
invasive GC detection. It demonstrates the feasibility of non-
invasive GC detection/screening by analyzing single sEVs
isolated from blood and saliva by SIM, a combination of single
vesicle SERS and machine learning. The data obtained from
sEVs derived from tissues served as the references for the
possible tracking of patient unique vesicles. The distinguishing
accuracy of sEVs between GC patients and non-GC controls is
90, 85, and 72% with the AUC in the “leave-a-pair-of-samples
out” validation to be 0.96, 0.91, 0.65 in tissue, blood, and
saliva, respectively. Nine sEV types were identified, existing
across all three conditions. The methodology developed in this
study has the potential to be applied for the detection of other
cancers using individual sEVs with further studies for
verification.
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