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Abstract 

Morphology of the skeletal muscle is highly indicative of its function and health. In diseases like 

Duchenne muscular dystrophy (DMD), fibrosis develops within the muscles and the morphology 

of the muscle changes considerably. Histology is the gold standard for assessing the morphology 

of the muscles in both research and clinical settings. Whole muscles can be composed of 

thousands of fibers in parallel making quantification of parameters like number and size of 

muscle fibers difficult by manual methods. We present SMASH 2.0 as a tool for automated 

analysis of histological muscle images that makes use of machine learning algorithms. The 

classifier trained to distinguish muscle fibers in the images was able to identify muscle fibers 

with 99.5% sensitivity and 98.4% specificity. The data output by SMASH was not found to be 

significantly different from manual analysis. 

Skeletal muscle is also a heterogeneous tissue containing many types of cells in addition to 

muscle cells. Among these are satellite cells, a population of stem cells that reside at the 

periphery of muscle fibers and are the primary mediators of the muscle’s regenerative 

capabilities. Satellite cells that migrate through fibrotic tissue have been shown to have DNA 

damage and impaired differentiation. Methods of imaging satellite cell migration through 

constrictions are limited. We present two microfluidic devices, one with pores of a defined size 

and one that accommodates tunable collagen matrices, which are optimized for real time imaging 

of myoblast migration through small constrictions. 

These tools will help elucidate the link between constricted migration and impaired regeneration 

seen in DMD and can provide a method for assessing the efficacy of therapeutic treatments for 

muscle fibrosis. 
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Chapter 1. Background 

 

Skeletal muscle tissue is important for overall health and constitutes a large portion of a typical 

adult’s body mass. Skeletal muscles are primarily composed of contractile, multinucleated 

muscle fibers where morphology is closely linked to the function and health of the muscle. The 

number and cross-sectional area of the fibers are indicative of the number of sarcomeres in 

parallel and the contractile properties of the fibers. Skeletal muscle is a highly adaptable tissue 

and is capable of robust regeneration following damage. Regeneration of the muscle fibers is 

apparent as a shift of myonuclei from the periphery of the fibers toward the center [1]. Fibrosis 

also becomes evident as a buildup of extracellular matrix (ECM) within the muscle’s interstitial 

space [2]. These metrics are routinely assessed using histology. Histochemical stains such as 

Figure 1. Representative immunofluorescent image of a mouse extensor digitorum longus muscle 

cross section. Red shows muscle fiber outlines; Green show myosin heavy chain IIa; Blue shows 

myonuclei. Scale bar 100 μm. 
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hematoxylin and eosin and Masson’s trichrome are common for analyzing the overall 

morphology of the muscle. Sirius red stain is used to selectively stain collagen, the main 

component of the muscle extracellular matrix. Immunofluorescent techniques can also be used to 

label specific structures within the muscle. Antibodies against laminin or dystrophin can be used 

to visualize the borders of muscle fibers and antibodies against specific myosin heavy chain 

isoforms can be used to identify muscle fiber type [3]. Muscle fiber type is defined by the 

myosin ATPase activity of the fiber and can be broadly classified as type I slow fibers or type II 

fast fibers. 

Duchenne muscular dystrophy (DMD) is a notable example of a disease state where both the 

function and morphology of the muscles change dramatically. As the disease progresses, 

contractile muscle tissue is lost and replaced with fibrotic ECM and fat tissue [4]. Muscle fibers 

in DMD undergo continual cycles of damage and regeneration due to a mutation in the 

dystrophin gene. Dystrophin is a component of a protein complex that links the actin 

cytoskeleton of the muscle fibers to the extracellular matrix. The absence of dystrophin 

destabilizes plasma membrane of the muscle fiber leading to increased oxidative stress and 

damage to the fiber. These fibers also have predominantly centrally located nuclei which are a 

marker for regeneration. These morphological changes are easily visualized but are difficult to 

quantify and would benefit from automated histological analysis. 

Muscles of DMD patients also have an impaired ability to regenerate efficiently. This 

regeneration is mediated by a population of muscle stem cells termed satellite cells. These cells 

become activated following myofiber damage then proliferate and migrate toward the site of 

damage to differentiate into mature muscle fibers [5]. Recent evidence suggests that satellite cell 

migration through fibrotic ECM imparts damage to the cells that impairs differentiation and 
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muscle repair. Current methods of imaging myoblasts as they migrate through small 

constrictions are limited as they do not allow the visualization of the entire process. Microfluidic 

devices have the capability to overcome these limitations and allow for precise control over the 

cell migration microenvironment. 

In this thesis, we present three tools to improve the investigation of muscle pathologies, one 

software tool for assessing muscle morphology in vivo and two microfluidic devices for real-time 

observation of myoblast migration.    

 

Chapter 2. SMASH 2.0: Machine Learning-Based Muscle Histology Analysis 

Introduction 

Histology is an important tool for qualitatively assessing the morphology of skeletal muscle as 

well as for quantifying various measures of muscle health. One of the most used metrics is the 

cross-sectional area of muscle fibers which can be an indicator of the muscle response to external 

stimuli. Muscle fiber hypertrophy can occur as a result of resistance training [6] and muscle fiber 

atrophy can occur from factors such as injury or disuse [7]. These measurements have 

traditionally been done by manually measuring muscle fiber outlines; however, this often makes 

analysis of muscle cross-sections time consuming and can introduce bias and variability between 

users. 

Other metrics of interest include position of the myonuclei. Muscle fiber nuclei are typically 

found at the periphery of the muscle fibers while a nucleus near the center of the fiber is 

indicative of a regenerating fiber [1]. Muscle fiber type is also of interest as the distribution of 

muscle fiber type and the size of different muscle fiber types can change considerably in 

response to nerve activity, mechanical loading, and hormones [8]. Myosin heavy chain isoforms 
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are usually used as a marker for muscle fiber type and are easily visualized with immunostaining 

but are difficult to classify manually [3].  

Several software tools have been introduced recently [9,10,11] to automate this analysis, but 

these tools currently do not address all of these metrics and still require a significant amount of 

user input in order to achieve an optimal result. Some of these tools are also closed source and 

are not free to use [12]. We have previously introduced SMASH [13], a semi-automatic, 

MATLAB-based app for this purpose. The goal of this study is to improve the performance of 

SMASH by inclusion of machine learning classifiers and a more user-friendly interface.  

Implementation 

Code development 

SMASH app code and GUI were written and designed with MATLAB r2020a App Designer, 

Image Processing, and Curve Fitting Toolboxes (Mathworks, MA, USA). Machine learning 

classifiers were trained using MATLAB r2020a Machine Learning Toolbox. Training and test 

datasets were generated using a modified version of a previously published edition of SMASH. 

61,335 data points were allocated to the training dataset and a further 50,771 data points were 

withheld for the validation dataset. Each data point represents either a manually labelled muscle 

fiber or a nonfiber object following image segmentation.  

Mice/staining 

Images associated with previous studies on muscle histology were used to train and test the 

machine learning classifiers [14]. Briefly, soleus, extensor digitorum longus, and tibialis anterior 

muscles were dissected from wildtype C57Bl/6 mice or from mdx mice. The muscles were 

sectioned and immunostained for laminin and either myosin heavy chain I or IIb and 

counterstained with DAPI to label nuclei (Fig. 1). 
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Statistical Analysis 

Statistical tests were performed using Graphpad Prism 9. A two-tailed, paired t-test or one-way 

ANOVA with Tukey’s multiple comparisons test was used. 

Image segmentation 

Once an image is selected, the user is prompted to segment the image as described previously 

using watershed transform (Fig. 2A). Differences in image brightness and imperfections in 

staining necessitate the use of an h-minima transform to suppress local minima in the intensity 

profile. In the prior version of SMASH, the user must manually input a pixel depth, below 

which, minima will be suppressed. To automate this process, a machine learning regression 

model based on a Gaussian support vector machine was trained using 24 sample images with a 

manually chosen segmentation value. The predictor variables used by this model are the average 

pixel intensity of the whole image, the average intensity of pixels forming part of the fiber 

borders, and the average intensity of background pixels. From these predictors, the model can 

discern the differences between pixels that are part of the background and pixels that are part of 

the fiber outlines and predict a segmentation value. A comparison of manually chosen 

segmentation values and predicted values did not produce significantly different results (Fig. 3). 

Due to the subjective nature of the segmentation process, it is difficult to assess the accuracy of 
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Figure 2. Functions of SMASH segmentation and output masks. (A) The SMASH user interface showing 

the segmentation function and the image to be segmented. Laminin stain is shown in red while white lines 

indicate detected fiber outlines based on watershed transform. (B) Mask containing segments following 

initial segmentation. Colors are randomly assigned to distinguish segments. (C) Final mask following 

filtering out of segments that do not represent muscle fibers. Scale bars 100 μm. 
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the model, but implementation of this model presents a significant improvement in the 

segmentation step as it eliminates the initial guess that is required in the previous edition of 

SMASH. If the user is not satisfied with the predicted segmentation value, they may quickly 

adjust the value at their discretion until the image is segmented adequately. 

 

Muscle fiber prediction 

Following image segmentation, segments representing muscle fibers must be filtered from 

segments that do not represent muscle fibers (Fig. 2B, C). To facilitate this step, several machine 

learning classifiers were trained using properties of 61,335 manually labelled image segments 

representing either muscle fibers or nonfiber objects. Of the classifiers trained, a medium 

decision tree classifier with 7 branch points was chosen as it resulted in a preliminary prediction 

accuracy of 99.5% as well as the fastest time to predict at 25 milliseconds which minimizes the 

need for powerful computer hardware and increases the accessibility of SMASH to a wide range 

of users. The kernel naïve Bayes classifier also produced a high true positive rate but had much 

Figure 3. Comparison of manually chosen segmentation 

values and values predicted using the regression model. 

Values were not significantly different.  
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slower prediction speed at 62 seconds to predict. Gaussian support vector machine and k-nearest 

neighbors classifiers produced lower true positive rates than any of the decision tree classifiers. 

Additionally, the ensemble methods of bagging and boosting decision trees did not improve the 

accuracy and slowed the time to predict (Fig. 4). The decision tree classifier’s 7 branch points 

give the model sufficient specificity to accurately distinguish muscle fibers from nonfiber objects 

while avoiding overfitting to the training dataset (Fig. 6). Five predictor variables were selected 

for the model: cross sectional area, eccentricity, circularity, convexity, and extent of the 

segments. Eccentricity is calculated as the length between the center and one of the foci of an 

ellipse that approximates the segment divided by the length of its semi-major axis (Fig. 5B). 

Convexity is measured as the fraction of pixels within the segment that are also within the 

segment’s convex hull (Fig. 5C). Similarly, extent is the fraction of pixels in the segment that are 

Figure 4. Classifier model performance measured by true positive predictive rate and time to make predictions 

on a test dataset.  
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also within the segment’s bounding box (Fig. 5D). These predictors were chosen under the 

assumption that muscle fibers are generally found to be within a certain range of cross-sectional 

area. Muscle fibers also generally have a grossly circular appearance and have a high convexity. 

This is contrasted with interstitial spaces which contain many concavities from the presence of 

surrounding muscle fibers and often take on a stellate appearance.  

 

Figure 5. Illustration of the predictor variables used to classify the segments. (A) Cross sectional area of the 

segment shown in yellow. (B) Eccentricity of an ellipse approximating the segment shown in blue. (C) Convexity of 

the segment is represented as the fraction of pixels in the segment shown in yellow that are also within the 

segment’s convex hull shown in blue. (D) Extent of the segment is shown as the fraction of the pixels in the segment 

shown in yellow that are also within the segment’s bounding box shown in blue. 

 

Results 

Classifier validation 

Following segmentation, a mask is generated containing all the segments and the five predictor 

variables are quantified for each segment formed in the image and passed to the classifier to 

predict if the segment represents a muscle fiber or a nonfiber object. Once a classification is 

assigned to each segment, a new mask is generated keeping only those segments that represent 

muscle fibers. To assess the performance of the classifier in its ability to accurately predict 

muscle fibers, data from a validation dataset containing 50,771 segments was fed into the 

classifier and the predicted class for each segment was compared to its known classification. The 
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classifier was found to have a true positive predictive value of 99.5% and a true negative 

predictive value of 98.4% (Fig. 7). 

Once the segments are classified, a prediction score is also assigned to the segment representing 

the probability that the segment belongs to a certain class. The SMASH interface allows the user 

to specify a threshold value for the prediction score, in which each segment must exceed to be 

classified as a fiber. Each segment that has a prediction score below the threshold is sequentially 

presented to the user to be manually classified. In this way, the user is able to decide the degree 

to which they would like to automate the analysis or manually filter the segments. The original 

image as well as a color-coded mask is presented to the user to aid in this process. The mask 

colors segments cyan when the segment was predicted to be a fiber but has a prediction score 

below the specified threshold. Segments are colored magenta when they were predicted to be 

nonfiber objects and had a prediction score below the threshold. Green and red segments are 

those that were predicted to be fibers and nonfibers, respectively, and have a prediction score 

above the threshold (Fig. 8).   
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Figure 6. Schematic of the decision tree classifier used in the muscle fiber 

prediction function. The predictor values for each segment are compared 

against the values at each branch point until and endpoint is reached, and a 

classification is assigned. 
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Data output validation 

After a mask containing only muscle fibers is generated, data about the muscle fibers can be 

output. This includes the number of muscle fibers in the image, the size distribution of the 

muscle fibers, the type of muscle fiber type, and the position of the nucleus. To assess the 

performance of SMASH, a series of test images were analyzed manually, using SMASH, and 

using Myosight, a recently published muscle analysis tool for ImageJ [9]. No significant 

differences in muscle fiber number were observed between images analyzed with SMASH 

compared to manual analysis or to Myosight analysis (Fig. 9A). The mean cross-sectional area of 

muscle fibers measured with SMASH was not significantly different from manual analysis, but 

Figure 7. Confusion matrix showing the results of model performance testing. Model 

predictions on a validation dataset resulted in a true positive rate of 99.5% and a true negative 

rate of 98.4%. 
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the same fibers analyzed with Myosight were measured to be significantly smaller than both 

SMASH and manual analysis (Fig. 9B). Similarly, the minimum Feret diameter of muscle fibers 

was not significantly different between fibers analyzed with SMASH and fibers analyzed 

manually, but the same fibers were measured to have a significantly smaller minimum Feret 

diameter when analyzed with Myosight (Fig. 9C). 

SMASH is also capable of analyzing specific fiber types if a muscle fiber specific stain is 

present. Additionally, SMASH can determine whether muscle fibers are centrally nucleated if a 

nuclei stain is present in the image. To validate the performance of these functions, a series of 

test images were analyzed using the fiber typing and central nuclei function in SMASH as well 

Figure 8. SMASH manual sorting user interface. The left image shows the segments color-coded by prediction. 

Green indicates a segment is predicted as a fiber and is above the specified threshold. Red is predicted as a nonfiber 

above the threshold. Magenta and cyan indicate segments predicted as nonfiber and fiber, respectively, that are 

below the threshold. The right image shows the original image with the segment in question marked with an 

asterisk. 
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as in Myosight. There was not a significant difference in the number of MHC2Bb positive fibers 

detected by SMASH and Myosight, but the mean cross-sectional area of those fibers was 

significantly smaller when measured with Myosight compared to SMASH (Fig. 10A, B). The 

fraction of centrally nucleated muscle fibers was not significantly different when measured with 

SMASH or Myosight (Fig. 10C). 

Discussion 

SMASH 2.0 is a complete software package that enables more rapid analysis of muscle cross 

section images. By passing the image segmentation and fiber prediction steps to machine 

learning algorithms, less user input is required to achieve robust muscle fiber detection with 

minimal user bias. The detection is also more consistent and repeatable than manual analysis. 

The data output by SMASH, including number and cross-sectional area of muscle fibers, number 
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and cross-sectional area of specific muscle fiber types, and central nucleation, is consistent with 

manual analysis as well as with other available muscle analysis tools.  

SMASH only differed significantly from Myosight in muscle fiber area measurements which are 

likely due to differences in image segmentation methods. Myosight uses a thresholding approach 

which detects the muscle fibers as the inner edge of the fiber outline stain while SMASH uses 

the watershed transform and detects muscle fibers as the center of the fiber outline stain. Both 

approaches work well for the task, but results output by Myosight could be confounded by the 

brightness of the input images and the number of saturated pixels in the fiber outlines. Using 

watershed segmentation would avoid this and could lead to more consistent and reproducible 

results. On the other hand, SMASH and the watershed transform might underperform in cases 

Figure 9. SMASH output validation. (A) number of muscle fibers detected in images was not significantly different 

between SMASH and other methods. (B) The mean cross-sectional area of muscle fibers measured with SMASH 

was not significantly different from measurements made manually but was significantly different from 

measurements made with Myosight. (C) Minimum Feret diameter measurements made with SMASH were not 

significantly different from measurements made manually but were significantly different from measurements made 

with Myosight. * p < 0.05, ** p < 0.01 
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where the endomysium that surrounds individual muscle fibers is exceptionally thick. In these 

cases, muscle fiber size would be overestimated. 

Currently, SMASH uses segmentation methods that rely on the contrast afforded by fluorescence 

and as a result, only immunofluorescent images in TIFF format are compatible with SMASH. 

Further improvements are necessary to make SMASH compatible with other image formats and 

stacks as well as with muscle images stained with other non-fluorescent histology stains. 

Additionally, the machine learning classifiers that SMASH uses were trained exclusively using 

images of mouse muscle. While human muscle fibers have dimensions similar to mice, 

generating a decision tree for human muscle would likely be required for optimal results. 

Overall, SMASH 2.0 presents a convenient software package for automatic analysis of muscle 

histology images and provides outputs including muscle fiber number, cross sectional area, fiber 

type, nuclei positioning, and nonfiber objects including capillaries and muscle stem cells. The 

incorporation of machine learning algorithms allows for robust automation with the potential for 

Figure 10. SMASH function validation. (A) The number of MHC2b positive myofibers detected by SMASH did not 

differ significantly from the number detected by Myosight. (B) The cross-sectional area of MHC2b myofibers was 

significantly larger when measured with SMASH compared to Myosight. (C) The percentage of centrally nucleated 

myofibers detected did not differ significantly when measured with SMASH compared to Myosight. * p < 0.05 
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the classifiers to evolve as more training data becomes available. With better model training, 

SMASH could distinguish muscle fibers with greater confidence, particularly in disease states 

where muscle morphology is more irregular.  

 

Chapter 3. Constricted Migration 

Introduction 

Skeletal muscle tissue is highly dynamic and is able to undergo robust regeneration of damaged 

muscle fibers following injury. This repair process is mediated by satellite cells, a population of 

stem cells that exist at the periphery of muscle fibers beneath the basal lamina, but outside the 

sarcolemma. Upon damage to a muscle fiber, satellite cells become activated and emerge from 

the basal lamina before migrating along the muscle fiber to the site of damage where the cells 

differentiate down a myogenic lineage and fuse with the damaged muscle fiber [1]. During the 

migration process, the satellite cells encounter the extracellular matrix surrounding individual 

muscle fibers, termed the endomysium, which is largely composed of type I and type III collagen 

fibers. Cross linking between collagen fibers can create a porous network that constricts the 

satellite cells as they migrate through [15]. This leads to impeded cell motility and constriction of 

the cell’s nucleus. 

Fibrosis is a pathological buildup of ECM in the muscle following injury and is a hallmark of 

muscular dystrophy in which the muscles continually undergo cycles of damage and regeneration 

[4]. The increased density and cross-linking of collagen fibers in fibrotic ECM create smaller 

pores through which satellite cells must migrate during regeneration. Fibrotic muscles also show 

an impaired ability to regenerate efficiently and myoblasts from dystrophic patients and animal 

models have been shown to have excessive DNA damage [16]. We have previously shown that 
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myoblasts migrated through small transwell membrane pores, but not larger pores, show 

impaired differentiation and fusion into myotubes [17]. The nuclei of these cells also show 

nuclear blebbing and DNA damage providing a potential link between constricted myoblast 

migration, DNA damage, and impaired differentiation. 

The transwell assay, however, does not allow for real-time imaging of cell migration through the 

pores. Microfluidic devices are well suited for this purpose as the direction of cell migration can 

be shifted to a single focal plane. Microfluidic channel geometry can also be designed to create 

constrictions of a defined size. PDMS is also suitable for extended live-cell imaging experiments 

due to its gas permeability and optical clarity. Here we present two microfluidic devices for live 

cell imaging of constricted myoblast migration, one with channels of a defined size and one 

which facilitates migration through a tunable collagen matrix.  

 

Methods 

Microfluidic Device Design 

 

Figure 11. Images of the microfluidic devices. (A)  Constricted migration device. (B) ECM device. Blue dye used to 

visualize channels. 
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All devices were designed using Autodesk AutoCAD software. The constricted migration device 

was designed as a modification of a previously described device [18]. The device consists of a 

series of posts that create several constriction channels in parallel with three sets of constriction 

channels in series. The spacing between these posts was set to 1.4 μm and 10 μm. These channel 

widths combined with a channel height of 5 μm create a cross-sectional area identical to the 3 

μm and 8 μm diameter transwell membrane pores used previously [17]. The device contains two 

regions on either side of the constriction area with a channel height of 250 μm for cell culture 

media and cell loading.  

The ECM device was designed using elements of a previously described device, notably, the 

inclusion of two parallel rows of trapezoidal posts flanking the central channel [19]. These posts 

were designed to contain a collagen solution within the channel while allowing cells to penetrate 

the gel once the solution has polymerized or to allow for observation of cells suspended within 

the collagen gel and the use of chemoattractants on one or both sides of the gel. 

 

Microfluidic Device Fabrication 

Microfluidic device molds were fabricated using standard photolithography techniques in the UC 

Davis Center for Nano-Micro Manufacturing (CNM2) cleanroom facilities. 100 mm-diameter 

silicon wafers (University Wafer, MA, USA) were dehydrated at 200°C for 15 minutes. SUEX 

dry film resist (DJ Microlaminates, MA, USA) with a thickness of 250 μm was applied to wafers 

using a Sky 335R6 laminator. Wafers were aligned with a soda lime photomask (HTA 

Enterprises, CA, USA) on an EVG620 contact photomask aligner (EV Group, AZ, USA). 

Wafers were exposed with a UV dose of 1,500 mJ/cm2 followed by a post exposure bake at 85°C 

for 40 minutes. Wafers were developed using SU-8 developer (Kayaku Advanced Materials, 



 

20 

 

MA, USA) for 75 minutes. Wafers were hard baked at 150°C for 30 minutes. The constricted 

migration device mold was fabricated by Ravata Solutions as a two layer process. The first layer 

containing the posts forming the migration channels was etched into a silicon wafer to a depth of 

5 μm. The second layer containing the cell inlets, media reservoirs and bypass channel was 

fabricated with 250 μm SUEX as described above. 

Microfluidic chips were fabricated via polydimethylsiloxane (PDMS) soft lithography. Sylgard 

184 (Dow Corning, MI, USA) monomer was mixed with curing agent at a 10 to 1 ratio by mass 

and placed in a vacuum desiccator to remove air bubbles introduced during mixing. The PDMS 

was cast over the silicon molds and placed on a hotplate to cure at 100°C for 1 hour then allowed 

to cool to room temperature. The cured PDMS was removed from the mold then cut into 

individual chips and holes were punched for cell seeding ports using a 1 mm biopsy punch while 

media reservoirs were cut using a 5 mm biopsy punch. PDMS chips and glass slides were treated 

with oxygen plasma for 90 seconds at a power of 18 W using a plasma cleaner (Harrick Plasma, 

NY, USA) then bonded to each other. Chips were placed on a hot plate at 90°C for 1 hour to 

improve bonding strength. 

 

Cell Culture 

All experiments were performed using immortalized human myoblasts isolated from muscle 

biopsies originating from healthy donors [20]. Cells were cultured in a growth medium 

containing Medium 199 and DMEM in a 1 to 4 ratio supplemented with 20% fetal bovine serum, 

25 μg/mL fetuin, 5 ng/ml human epidermal growth factor, 0.5 ng/mL basic fibroblast growth 

factor, 5 μg/mL insulin, 0.2 μg/mL dexamethasone, and 1% penicillin/streptomycin. Cells were 
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maintained at 37°C and 5% carbon dioxide. Cells were made to express either tdTomato or 

53BP1-mCherry by lentiviral transduction [25]. 

 

Microfluidic Device Imaging 

Microfluidic devices were imaged using a Leica DMI8 microscope fitted with a CO2 incubation 

system at 37° C and 5% CO2. Devices were imaged for a total of 16 hours with a frame captured 

every 10 minutes using either a 20x or 40x objective lens. 

 

Results 

Constricted Migration Device 

To investigate migration through defined constrictions a device was developed with channel 

geometry similar to the transwell membrane pores used previously. To validate the functionality 

of the constricted migration device, the inner surfaces of the device channels were functionalized 

with collagen solution at a concentration of 50 µg per mL. 30,000 human skeletal myoblasts 

constitutively expressing tdTomato were seeded on one side of the device with 200 µL of cell 



 

22 

 

culture media. Devices were imaged every 15 minutes for a total of 16 hours and maintained at 

37°C and 5% CO2 for the duration of the experiment. 

Devices were also validated with human myoblasts transfected with mCherry conjugated 53BP1, 

a protein that promotes nonhomologous end joining following double stranded DNA breaks. 

These cells normally show weak nuclear fluorescence and display bright foci when 53BP1 is 

recruited to the site of DNA breaks. In this way, these cells function as a reporter of DNA 

damage following constricted migration [25]. Human 53BP1 myoblasts were suspended in 

myoblast growth medium with fetal bovine serum concentration reduced to 10% at a 

concentration of 5 million cells per mL. A total of 30,000 cells were seeded into constricted 

Figure 12. Cells migrate through constriction device channels spontaneously. Human 

myoblasts expressing tdTomato were observed to migrate through both the 10 μm and 

1.4 μm width channels without the use of a chemoattractant. 
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migration devices and 200 μL of normal myoblast growth medium containing 20% fetal bovine 

serum was placed in the opposite media reservoir to generate a chemotactic gradient. Cells were 

observed to migrate through constriction channels toward the high serum medium.  

 

Figure 13. Constricted migration induces double stranded DNA breaks. (A) The nucleus of a 53BP1-mCherry 

expressing myoblast passing through a constriction during cell migration through the device. (B) The same nucleus 

showing a bright focus, indicating DNA damage. Scale bar 10 um 

 

ECM Device 

To investigate the migration through native ECM substrates a device was designed to 

accommodate polymerization of a collagen gel while allowing cells access to migrate through. 

To validate the design of the ECM device, fluid flow through the central channel was simulated 

with ANSYS Fluent software before fabrication of a silicon master. Fluid density and viscosity 

were assumed to be 1 g/mL and 1 centipoise, respectively, and flow velocity was set at 0.25 

m/sec. Simulation results showed that the fluid was retained within the channel with a minimal 

amount of fluid escaping between the posts (Fig. 14).  
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Following fabrication of the ECM device master mold using a similar process as the constricted 

migration device, devices were fabricated using PDMS soft lithography and devices were tested 

for their ability to contain a collagen solution as simulated and to polymerize the collagen within 

the device. A 4.5 mg/mL concentration bovine collagen solution was slowly flowed through the 

central channel. The solution was retained within the channel as modelled and remained for 

several minutes. At this point, the collagen was allowed to polymerize at 37°C for two hours. 

After this time, fibrillar structures indicative of a polymerized collagen gel were apparent (Fig. 

15). An initial test of the device was performed by seeding 30,000 human 53BP1-mCherry 

myoblasts onto one side of the polymerized collagen gel and allowing the cells to migrate 

through the gel. High serum growth medium was used as a chemoattractant in the reservoir 

opposite the port the cells were seeded into. Cells were observed to migrate in the device, 

however, they appeared to migrate under the gel rather than through it indicating poor adhesion 

between the collagen and the device. 

 

Discussion 

Following modification of constricted migration microfluidic device design and fabrication of 

master molds, devices were successfully validated using tdTomato transfected human skeletal 

myoblasts. Cells were observed to migrate through both the 1.4 μm and 10 μm diameter 

constrictions spontaneously without any chemoattractant present (Fig. 12). Cells also remained 

viable for the full duration of the experiments indicating that devices may be imaged for longer 

periods of time. Cells expressing fluorescent 53BP1 also showed robust migration through 

constriction channels. Figure 13 shows one example of a cell nucleus undergoing constricted 

migration over a period of 180 minutes from the first point that the nucleus appears constricted to 
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when the nucleus exits the channel. The same nucleus shows a bright focus 550 minutes after the 

nucleus first entered the constriction indicating the presence of a double stranded DNA break 

following constricted migration.  

The 53BP1 myoblasts are just one possible reporter of nuclear damage. Other reporters that may 

be used include NLS-tagged fluorescent proteins which allow visualization of nuclear contents 

[21]. Loss of nuclear integrity is easily visualized as a leakage of fluorescent protein from the 

nucleus into the cytosol. Upon entry of DNA into the cytoplasm, cyclic GMP-AMP synthase 

(cGAS) is recruited to the site where it acts as a cytosolic DNA sensor [21]. Fluorescently 

labelled cGAS can be used as a reporter of chromatin protrusion into the cytosol following 

nuclear rupture. 

The ECM gel device design was also designed and validated successfully with computational 

modeling. Devices also performed as modeled and were able to contain a collagen solution 

within the confines of the central channel with the solution able to polymerize within 2 hours. 

Figure 14. Computational fluid dynamics simulation shows the ECM device can retain collagen 

solution within the confines of the central channel. Colors represent a volume fraction of fluid where 

red is the collagen solution and blue is air. 
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Cells seeded into devices with a polymerized collagen gel were viable for at least 24 hours 

indicating that the devices are suitable for long duration time lapse experiments. The collagen gel 

showed poor adhesion to the device channel. Optimization of the device will require treatment of 

glass and PDMS to improve adhesion of collagen gels to the device. We have previously used a 

treatment of 2% aminopropyltriethoxysilane followed by 0.1% glutaraldehyde for adhering 

collagen to glass [22] and others have shown that a similar process is also suitable for PDMS 

[23,24]. 

Future work consists of a larger scale study using both devices to elucidate the link between 

constricted myoblast migration and poor myogenic differentiation. The constricted migration 

device is well optimized to visualize constricted migration through constrictions of a defined size 

while the ECM device allows for visualization of genetically labeled myoblast migration through 

pores formed by a more physiologically relevant matrix. Collagen gel pore size can be 

modulated through changes in collagen concentration, polymerization temperature, and 

alignment. 

Figure 15. Collagen gel can polymerize in ECM microfluidic device. Microscopic image of the ECM device with 

fibrillar structure indicative of a polymerized collagen gel retained within the central channel. Scale bar 200 um. 
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Chapter 4. Conclusions 

In this thesis, we present several tools for muscle analysis at the whole muscle and single cell 

levels. SMASH allows for rapid, automated analysis of immunofluorescent muscle cross 

sections. The inclusion of machine learning classifiers produces results comparable to manual 

measurements. SMASH also incorporates multiple functions into one user-friendly app 

eliminating the need for multiple pieces of software to obtain data about fiber type, myonuclei 

positioning, and nonfiber objects separately. Ultimately, SMASH will allow the muscle research 

community to conduct research more efficiently. 

The two microfluidic devices allow for observation of the entire myoblast migration process and 

will help elucidate a causal link between constricted migration and impaired myogenic 

differentiation. Future large-scale studies can include different readouts for DNA damage and 

different cell types to recapitulate the heterogeneity of skeletal muscle tissue.  

In addition, these tools could have applications in evaluation of therapies for DMD. SMASH can 

be used to evaluate morphological changes in the muscle in response to therapeutic treatment. 

Specifically, whether a treatment is able to prevent muscle fiber atrophy or reduce the prevalence 

of centrally nucleated muscle fibers that are characteristic of DMD. The microfluidic devices 

allow for single cell assessment of the efficacy of therapeutics that seek to prevent nuclear 

rupture or to protect satellite cells from the DNA damage that results from constricted migration. 

In short, these tools can allow researchers to conduct more informed research and develop more 

effective antifibrotic therapies. 
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