Title
ψ(2S)→π⁺π⁻ J/ψ decay distributions

Permalink
https://escholarship.org/uc/item/79q244c8

Journal
Physical Review D, 62(3)

ISSN
0556-2821

Authors
Bai, JZ
Ban, Y
Bian, JG
et al.

Publication Date
2000-12-01

License
https://creativecommons.org/licenses/by/4.0/ 4.0

Peer reviewed
\(\psi(2S) \rightarrow \pi^+ \pi^- J/\psi \) decay distributions

(BES Collaboration)

1Institute of High Energy Physics, Beijing 100039, People’s Republic of China
2California Institute of Technology, Pasadena, California 91125
3Colorado State University, Fort Collins, Colorado 80523
4Hanyang University, Hanyang 310028, People’s Republic of China
5Peking University, Beijing 100871, People’s Republic of China
6Shandong University, Jinan 250100, People’s Republic of China
7Shanghai Jiaotong University, Shanghai 200030, People’s Republic of China
8Stanford Linear Accelerator Center, Stanford, California 94309
9University of Hawaii, Honolulu, Hawaii 96822
10University of California at Irvine, Irvine, California 92717
11University of Science and Technology of China, Hefei 230026, People’s Republic of China
12University of Texas at Dallas, Richardson, Texas 75083-0688

Using a sample of 3.8 M \(\psi(2S) \) events accumulated with the BES detector, the process \(\psi(2S) \rightarrow \pi^+ \pi^- J/\psi \) is studied. The angular distributions are compared with the general decay amplitude analysis of Cahm. We find that the dipion system requires some \(D \) wave amplitude, as well as the \(S \) wave. On the other hand, the \(J/\psi \) \((\pi^- \pi^+) \) relative angular momentum is consistent with being pure \(S \) wave. The decay distributions are found to be fit to heavy quarkonium models, including the Novikov-Shifman model. The model, which is written in terms of the parameter \(\kappa \), predicts that \(D \) wave pions should be present. We determine \(\kappa = 0.183 \pm 0.002 \pm 0.003 \) based on the joint mass distribution. The fraction of \(D \) wave amplitude as a function of \(m_{\pi\pi} \) is found to decrease with increasing \(m_{\pi\pi} \), in agreement with the model. We have also fit the Mannel-Yan model, which is another model that allows \(D \) wave pions.

PACS number(s): 13.20.Gd, 12.38.Qk, 13.25.Gv

I. INTRODUCTION

Transitions between bound \(c\bar{c} \) states as well as between \(b\bar{b} \) states provide an excellent laboratory for studying heavy quark-antiquark dynamics at short distances. Here we study the process \(\psi(2S) \rightarrow \pi^+ \pi^- J/\psi \), which is the largest decay mode of the \(\psi(2S) \) [1]. The dynamics of this process can be investigated using very clean exclusive \(\psi(2S) \rightarrow \pi^+ \pi^- J/\psi \rightarrow l^+l^- \) events, where \(l \) signifies either \(e \) or \(\mu \).

Early investigation of this decay by Mark I [2] found that the \(\pi^- \pi^+ \) mass distribution was strongly peaked towards higher mass values, in contrast with what was expected from phase space. Further, angular distributions strongly favored \(S \)-wave production of \(\pi \pi J/\psi \), as well as an \(S \)-wave decay of
In this paper, we will study the decay distributions of the \(\psi(2S) \rightarrow \pi^+ \pi^- J/\psi \) process and use them to test models. The events come from a data sample of \(3.8 \times 10^6 \psi(2S) \) decays taken with the BES detector.

II. THE BES DETECTOR

The Beijing Spectrometer, BES, is a conventional cylindrical magnetic detector that is coaxial with the BEPC colliding \(e^+ e^- \) beams. It is described in detail in Ref. [11]. A four-layer central drift chamber (CDC) surrounding the beampipe provides trigger information. Outside the CDC, the 40-layer main drift chamber (MDC) provides tracking and energy-loss \((dE/dx) \) information on charged tracks over 85% of the total solid angle. The momentum resolution is \(\sigma_p/p = 1.7\% \sqrt{1+p^2} \) (\(p \) in GeV/c), and the \(dE/dx \) resolution for hadron tracks for this data sample is \(\sim 9\% \). An array of 48 scintillation counters surrounding the MDC provides measurements of the time-of-flight (TOF) of charged tracks with a resolution of \(\sim 450 \) ps for hadrons. Outside the TOF system, a 12 radiation length lead-gas barrel shower counter (BSC), operating in self-quenching streamer mode, measures the energies of electrons and photons over 80% of the total solid angle. The energy resolution is \(\sigma_E/E = 22\%/\sqrt{E} \) (\(E \) in GeV). Surrounding the BSC is a solenoidal magnet that provides a 0.4 T magnetic field in the central tracking region of the detector. Three double layers of proportional chambers instrument the magnet flux return (MUID) and are used to identify muons of momentum greater than 0.5 GeV/c.

III. EVENT SELECTION

In order to study the process \(\psi(2S) \rightarrow \pi^+ \pi^- J/\psi \), we use the very clean \(\psi(2S) \rightarrow \pi^+ \pi^- J/\psi, J/\psi \rightarrow l^+ l^- \) sample. The initial event selection is the same as in Ref. [12]. We require four tracks total with the sum of the charge equal zero.

A. Pion selection

We require a pair of oppositely charged candidate pion tracks with good helix fits that satisfy the following.

1. \(|\cos \theta_\pi| < 0.75 \), where \(\theta_\pi \) is the polar angle of the \(\pi \) in the laboratory system.
2. \(p_\pi < 0.5 \) GeV/c, where \(p_\pi \) is the pion momentum.
3. \(px \pi > 0.1 \) GeV/c, where \(px \pi \) is the momentum of the pion transverse to the beam direction. This removes tracks that circle in the main drift chamber.
4. \(\cos \theta_\pi \pi < 0.9 \), where \(\theta_\pi \pi \) is the laboratory angle between the \(\pi^+ \) and \(\pi^- \). This cut is used to eliminate contamination from misidentified \(e^+ e^- \) pairs from \(\gamma \) conversions.
5. \(3.0 < m_{\text{recoil}} < 3.2 \) GeV/c\(^2 \), where \(m_{\text{recoil}} \) is the mass recoiling against the dipion system.
6. \(|\chi_\pi| < 3 \), \(\chi_\pi = (dE/dx)_{\text{meas}} - (dE/dx)_{\text{exp}}/\sigma \), where \((dE/dx)_{\text{meas}} \) and \((dE/dx)_{\text{exp}} \) are the measured and expected \(dE/dx \) energy losses for pions, respectively, and \(\sigma \) is the experimental \(dE/dx \) resolution.

FIG. 1. Diagram of \(\psi(2S) \rightarrow \pi^+ \pi^- J/\psi \) decay process, showing it as a two-step process with the emission of two gluons followed by hadronization to pion pairs.

The challenge of describing the mass spectrum has attracted considerable theoretical interest. Brown and Cahn [3] and Voloshin [4] used chiral symmetry arguments and partially conserved axial vector currents (PCAC) to derive a matrix element. Assuming chiral symmetry breaking to be small, Brown and Cahn showed the decay amplitude for this process involves three parameters, which are the coefficients of three different momentum-dependent terms. If two of the parameters vanish, then the remaining term would give a peak at high invariant mass along with the isotropic \(S \)-wave behavior. In a more general analysis, Cahn [5] calculated the angular distributions in terms of partial-wave amplitudes diagonal in orbital and spin angular momentum.

These transitions are thought to occur in a two step process by the emission of two gluons followed by hadronization to pion pairs, as indicated in Fig. 1. Because of the small mass difference involved, the gluons are soft and cannot be handled by perturbative QCD. However, Gottfried [6] suggested that the gluon emission can be described by a multipole expansion with the gluon fields being expanded in a multipole series similar to electromagnetic transitions. Including the leading chromoelectric \(E1E1 \) transition, T. M. Yan [7] determined that one of the terms that Brown and Cahn took to be zero should have a small but nonzero value. Voloshin and Zakharov [8] and later, in a revised analysis, Novikov and Shifman [9] worked out the second step, the pion hadronization matrix element using current algebra, PCAC, (partial conservation of axial vector current), and gauge invariance. They were able to derive an amplitude for this process from “first principles.” Interestingly, Ref. [9] predicts that while the decay should be predominantly \(S \)-wave, a small \(D \) wave component should be present in the dipion system.

All models predict the spectrum to peak at high mass as it does in \(\psi(2S) \rightarrow \pi^+ \pi^- J/\psi \) and \(Y(2S) \rightarrow \pi \pi Y(1S) \). However, \(Y(3S) \rightarrow \pi^+ \pi^- Y(1S) \) [10] has a peak at low mass, as well as a peak at high mass, that disagrees with these predictions. See Ref. [10] for a list of theory papers that attempt to deal with this problem.
m IMD and muons in the MUID system.

respectively. This cut ensures that electrons are contained in the laboratory polar angles of the electron and muon, respectively. This cut reduces background.

The shoulder above the recoil mass of the candidate lepton track.

m recoil of the two leptons.

FIG. 2b shows the m recoil distribution using all cuts except the additional m recoil cut (additional cut number 2). A total of 22.8 K events remains after all cuts, and the background remaining is estimated to be less than 0.3%.

IV. MONTE CARLO PROGRAM

The process is considered to take place via sequential two-body decays: \(\psi(2S) \rightarrow X + J/\psi \), \(X \rightarrow \pi^+ \pi^- \), and \(J/\psi \rightarrow l^+l^- \). The Monte Carlo program assumes the following.

(1) The mass of the dipion system is empirically given by

\[
\frac{d\sigma}{dm_{\pi\pi}^{\text{recoil}}} \propto \left(\frac{\text{phase space}}{m_{\pi\pi}^{\text{recoil}}} \right) \times \left(m_{\pi\pi}^2 - 4m_{\pi}^2 \right)^2.
\]

(2) The orbital angular momentum between the dipion system and the J/\psi and between the \(\pi^+ \) in the \(\pi^+ \pi^- \) system is 0.

(3) The X and the J/\psi are uniformly distributed in cosine of the angle between the beam direction and the positive lepton in the J/\psi rest frame.

(4) The \(\pi^+ \) and \(\pi^- \) are uniformly distributed in cosine of the angle between the J/\psi direction and the \(\pi^+ \) in the X rest frame.

(5) Leptons have a 1 + \(\cos^2 \theta_{\pi} \) distribution, where \(\theta_{\pi} \) is the angle between the beam direction and the positive lepton in the J/\psi rest frame.

(6) The J/\psi decay has an order \(\alpha^3 \) final-state radiative correction in the rest frame of the J/\psi.

A total of 570 000 Monte Carlo events are generated each for the \(\psi(2S) \rightarrow \pi^+ \pi^- J/\psi \), \(J/\psi \rightarrow e^+e^- \) and \(\psi(2S) \rightarrow \pi^+ \pi^- J/\psi \rightarrow \mu^+\mu^- \) samples.

In order to compare with theoretical models, the experimental distributions must be corrected for detection efficiency. To determine this correction, Monte Carlo data is run through the same analysis program as the data. A bin-by-bin efficiency correction is then determined for each distribution of interest using the generated and detected Monte Carlo data. This efficiency is then used to correct each bin of the data distributions [13].

A comparison of some distributions with the Monte Carlo distributions is shown in Fig. 3. Fig. 3(a) indicates that the \(m_{\pi\pi} \) distribution agrees qualitatively with the assumed empirical distribution [14]. Figure 3(b) indicates agreement with the assumed 1 + \(\cos^2 \theta_{\pi} \) distribution for leptons in \(\psi(2S) \rightarrow \pi^+ \pi^- J/\psi \), \(J/\psi \rightarrow l^+l^- \) events. The flat distribution in Fig. 3(c) is related to the assumption that the relative angular momentum between the dipion system and the J/\psi is zero. However, in Fig. 3(d), which is the \(\cos^2 \theta_{\pi} \) distribution, we find a disagreement with the Monte Carlo data, indicating
FIG. 3. Various distributions (corrected for detection efficiency) for $\psi(2S) \rightarrow \pi^+ \pi^- J/\psi$, $J/\psi \rightarrow l^+ l^-$ decays. (a) $m_{\pi^+ \pi^-}$ distribution. The distribution is in reasonable agreement with the assumed empirical distribution. (b) $\cos \theta^*_\rho$ distribution. The assumed distribution is a $1 + \cos^2 \theta^*_\rho$ distribution. This angle is the angle between the beam direction and the l^+ in the rest frame of the J/ψ. (c) $\cos \theta^*_L$ distribution. This is the cosine of the angle of the dipion system with respect to the e^+e^- direction in the incoming e^+e^- c.m. system. The distribution for Monte Carlo data is flat because of the S-wave assumption for the relative angular momentum of the dipion system and the J/ψ. (d) $\cos \theta^*_C$ distribution. This is the cosine of the angle of the π^+ with respect to the J/ψ direction in the dipion rest frame. The Monte Carlo distribution is flat because of the assumption that the relative angular momentum of the π’s is S wave. The data agree well with the Monte Carlo except in (d).

that the relative angular momentum of the two π^+’s is inconsistent with being purely S wave.

Figure 4 shows the ϕ angle distributions for the l^+ in the lab; the J/ψ in the lab; the π^+ in the rest frame of the dipion system, ϕ_{π^+}; and the angle between the normals to the $\mu\mu$ plane and the $\pi\pi$ plane.

$$\phi_{\pi^+} = \arctan \left(\frac{\hat{X} \times \hat{z} \times \hat{X}}{(\hat{X} \times \hat{z}) \cdot \hat{p}_{\pi^+}} \right).$$

All distributions are uniform in angle, consistent with the Monte Carlo distributions.

Since Fig. 3(d) indicates an inadequacy with the Monte Carlo, it is necessary to correct our bin-by-bin efficiency determination in our following studies. We use the Novikov-

\begin{equation}
\frac{d\Gamma}{d\Omega_{\mu\psi}} \propto |M_{001}|^2 + |M_{201}|^2 + \frac{1}{4} |M_{021}|^2 (5 - 3 \cos^2 \theta^*_\rho) + \frac{1}{\sqrt{2}} \Re[M_{021}M_{001}^*(3 \cos^2 \theta^*_\rho - 1)],
\end{equation}

FIG. 4. Azimuthal angle distributions (corrected for detection efficiency) for $\psi(2S) \rightarrow \pi^+ \pi^- J/\psi$, $J/\psi \rightarrow l^+ l^-$ decays. (a) The ϕ angle distribution for the l^+ in the lab. (b) The ϕ angle distribution for X in the lab. (c) The ϕ angle distribution for the π^+ in the dipion rest frame. (d) The distribution of the angle between the normals to the $\mu\mu$ plane and the $\pi\pi$ plane.

Shifman model (discussed below), which gives a reasonable approximation to the data, to determine a weighting for Monte Carlo events so that the proper efficiency is determined as a function of $\cos \theta^*_\pi$ and $m_{\pi\pi}$.

V. ANGULAR DISTRIBUTIONS AND PARTIAL WAVE ANALYSIS

In this section, we fit our angular distributions using the general decay amplitude analysis of Cahn [5]. The $\psi(2S)$ and J/ψ have $J^P = 1^-$ and $J^{G^C} = 0^-$, while the dipion system has $J^{G^C} = 0^+$. At an e^+e^- machine, the $\psi(2S)$ is produced with polarization transverse to the beam. The decay of $\psi(2S)$ can be described by the quantum numbers: \tilde{l} is the $\pi\pi$ angular momentum, \tilde{L} is the J/ψ X angular momentum, \hat{s} is the spin of the J/ψ, \hat{s}' is the spin of the $\psi(2S)$. Defining $\tilde{S} = \hat{s} + \tilde{l}$, called the channel spin, then $\hat{s}' = \tilde{S} + \tilde{L} = \hat{s} + \tilde{l} + \tilde{L}$. An eigenstate of $J^z = s'\frac{1}{2}$, L^z, S^z, and J_z may be constructed. Parity conservation and charge conjugation invariance require both L and l to be even.

The decay can be described in terms of partial-wave amplitudes, $M_{l,l',s}$, and the partial waves can be truncated after a few terms. Considering only M_{001}, M_{201}, and M_{021} [15]:

\begin{equation}
\frac{d\Gamma}{d\Omega_{\mu\psi}} \propto |M_{001}|^2 + |M_{201}|^2 + \frac{1}{4} |M_{021}|^2 (5 - 3 \cos^2 \theta^*_\rho) + \frac{1}{\sqrt{2}} \Re[M_{021}M_{001}^*(3 \cos^2 \theta^*_\rho - 1)],
\end{equation}
The dV's are measured in their respective rest frames. It is understood that the $M_{l,L,S}$ are functions of $m_{ππ}$. The combined $θ_{π^-}{θ_{J/ψ}}$ distribution is given by

$$
\frac{dΓ}{dΩ_π} \propto |M_{001}|^2 + \frac{1}{4}|M_{201}|^2(5 - 3 \cos^2 θ_{π}^*) + |M_{021}|^2 + \frac{1}{\sqrt{2}} \Im\{M_{201}M_{001}^*\}(3 \cos^2 θ_{π}^* - 1),
$$

(2)

$$
\frac{dΓ}{dΩ_μ} \propto |M_{001}|^2(1 + \cos^2 θ_{π}^*) + \frac{1}{10}(|M_{201}|^2 + |M_{021}|^2)(13 + \cos^2 θ_{π}^*).
$$

(3)

The $dΩ$'s are measured in their respective rest frames. It is understood that the $M_{l,L,S}$ are functions of $m_{ππ}$. The combined $θ_{π^-}{θ_{J/ψ}}$ distribution is given by

$$
\frac{dΓ}{dΩ_πdΩ_{J/ψ}} \propto |M_{001}|^2 + |M_{201}|^2\left[\frac{5}{4} - \frac{3}{4} \cos^2 θ_{π}^*\right] + |M_{021}|^2\left[\frac{5}{4} - \frac{3}{4} \cos^2 θ_{J/ψ}^*\right] + 2 \Im\{M_{201}M_{001}^*\}\left[\frac{1}{\sqrt{2}} + \frac{3}{2} \cos^2 θ_{π}^* - \frac{1}{2}\right] + 2 \Im\{M_{021}M_{001}^*\}\left[\frac{9}{16} \sin^2 θ_{π}^* \sin^2 θ_{J/ψ}^* \cos(φ_{π}^* - φ_{J/ψ}^*)\right] + 1\right]
$$

(4)

A. Fits to one-dimensional (1D) angular distributions

There are three complex numbers to be obtained. According to Cahn, if the $ψ(2S)$ and $J/ψ$ are regarded as inert, then the usual final-state argument gives $M_{l,L,S} = e^{iδ_l(m_{ππ})}|M_{l,L,S}|$, where $δ_l(m_{ππ})$ is the isoscalar phase shift for quantum number l. The phase angles are functions of $m_{ππ}$. If we interpolate the S wave, isoscalar phase-shift data found in Ref. [16], we find $δ_{0}^{0} = 45°$. Also $δ_{2}^{0}$ is supposed to be $≈ 0$. Using these values as input, we obtain the combined fit to Eqs. (1)–(3), shown in Fig. 5 [17], and the results given in Table I. Also given in Table I are the ratios $|M_{201}|/|M_{001}|$ and $|M_{021}|/|M_{001}|$. The fit yields a

032002-5
nonzero result for $|M_{201}|$, indicating that the dipion system contains some D wave component. The amplitude $|M_{021}|$ is very small, indicating that the $J/\psi\gamma$ angular momentum is consistent with zero.

Cahn points out that one of the advantages of the process $\psi(2S) \rightarrow \pi^+\pi^-\psi$ is that it may allow us to obtain δ_0^3, which is not well measured in this mass range. However, we are unable to obtain a good fit allowing δ_0^3 as an additional parameter [18].

B. Fits to the 2D distribution

By integrating Eq. (4) over the ϕ angles, we obtain an expression that depends only on $\cos \theta^P_\pi$ and $\cos \theta^P_{\mu\mu}$:

$$
\frac{d\Gamma}{d \cos \theta^P_\pi d \cos \theta^P_{\mu\mu}} \propto |M_{001}|^2 + |M_{201}|^2 \left(\frac{5}{4} - \frac{3}{4} \cos^2 \theta^P_\pi \right) + \frac{1}{2} |M_{021}|^2 \left(\frac{3}{2} \cos^2 \theta^P_{\mu\mu} - \frac{3}{2} \right) + 2 \Re \{M_{021} M_{001}^* \} \left(\frac{3}{2} \cos^2 \theta^P_{\mu\mu} - \frac{3}{2} \right) + \Re \{M_{021} M_{201}^* \} \left(\frac{3}{2} \cos^2 \theta^P_{\mu\mu} - \frac{3}{2} \right).
$$

The 2D distribution of $\cos \theta^P_\pi$ versus $\cos \theta^P_{\mu\mu}$ is fit using this equation. We assume $\delta_0^3 = 45^\circ$ and $\delta_2^5 = 0^\circ$, as was done previously. Using these values, we obtain the fit values shown in Table II. If we try to obtain δ_0^3, we are unable to get a good fit [18].

Fits for different $m_{\pi\pi}$ intervals are made assuming $\delta_0^3 = 0^\circ$ and using values of δ_0^3 that depend on the $m_{\pi\pi}$ interval [19]. The results are shown in Table III, along with the values of δ_0^3 used. The ratios $|M_{201}|/|M_{001}|$ and $|M_{021}|/|M_{001}|$ do not show large variations between the three intervals, and $|M_{201}|/|M_{001}|$ is inconsistent with zero for all intervals.

In comparing the results from Tables I–III, we see that $|M_{201}|/|M_{001}|$ varies between 0.12 and 0.18 and is at least two σ from zero. On the other hand, $|M_{021}|/|M_{001}|$ varies between -0.04 and 0.06 and is, in all cases, consistent with zero.

VI. SYSTEMATIC ERRORS

The systematic errors quoted throughout this paper are determined from the changes in the calculated results due to variations in cuts, binning changes in the fitting procedures, and changes due to making an additional cut to eliminate background. Cut variations include changing the $\cos \theta^P_\pi$ selection from 0.75 to 0.8, the $p_{x,y,\pi}$ cut from 0.1 to 0.08 MeV/c, the $\cos \theta_\mu$ cut from 0.6 to 0.65, the $\cos \phi_\mu$ cut from 0.75 to 0.7, the m_{recoll} cut to 3.05 $< m_{\text{recoll}} < 3.14$, and requiring that both muons be identified by MUID.

Fitted results are sensitive to the region of the histogram used in the fitting procedure. The changes obtained with reasonable variations in the number of bins used were included in the systematic error.

In addition, the events were fitted kinematically, and a χ^2 cut was made on the fitted events. Changing the m_{recoll} cut and cutting on the kinematic fit χ^2 determines the contribution to the systematic errors due to backgrounds remaining in the event sample. For example, the individual contributions to the systematic errors for the 2D likelihood fit to $\cos \theta^P_\pi$ versus $\cos \theta^P_{\mu\mu}$ results shown in Table II are given in Table IV.

VII. COMPARISON WITH HEAVY QUARKONIUM MODELS

A. Novikov-Shifman model

A model that predicts some D wave amplitude is the Novikov-Shifman [9] model, which is based on the color-field multipole expansion to describe the two-gluon emission and uses chiral symmetry, current algebra, PCAC, and gauge invariance to obtain the matrix element. In this model the transition is dominated by $E1E1$ gluon radiation, so the

TABLE I. Results of simultaneous χ^2 fits to the 3D distributions of $\cos \theta^P_\pi$, $\cos \theta^P_{\mu\mu}$, and $\cos \theta^P_{\mu\mu}$ shown in Fig. 5. The phase shifts used are $\delta_0^3 = 45^\circ$ and $\delta_2^5 = 0^\circ$. The amplitude normalizations are arbitrary. Two other fit parameters (not shown) are the normalizations of the second and third distributions relative to the first.

| $|M_{001}|$ | $|M_{201}|$ | $|M_{021}|$ | $|M_{021}|/|M_{001}|$ | $|M_{021}|/|M_{001}|$ | χ^2/DOF |
|----------|----------|----------|-------------------|-------------------|------------|
| 41.6 ± 0.4 ± 0.9 | 7.5 ± 1.4 ± 1.9 | -0.56 ± 0.60 ± 0.64 | 0.18 ± 0.03 ± 0.05 | -0.013 ± 0.014 ± 0.015 | 89/111 |

TABLE II. Results of the 2D likelihood fit to $\cos \theta^P_\pi$ versus $\cos \theta^P_{\mu\mu}$ using Eq. (5). The phase shifts used are $\delta_0^3 = 45^\circ$ and $\delta_2^5 = 0^\circ$. The amplitude normalizations are arbitrary.

| $|M_{001}|$ | $|M_{201}|$ | $|M_{021}|$ | $|M_{021}|/|M_{001}|$ | $|M_{021}|/|M_{001}|$ | χ^2/DOF |
|----------|----------|----------|-------------------|-------------------|------------|
| 13.6 ± 0.5 ± 0.26 | 2.3 ± 0.3 ± 0.5 | 0.05 ± 0.16 ± 0.22 | 0.17 ± 0.02 ± 0.04 | 0.004 ± 0.01 ± 0.02 | 457/437 |
\(\psi(2S) \rightarrow \pi^+ \pi^- J/\psi \) DECAY DISTRIBUTIONS

Physical Review D 62 032002

Table III. Results of the 2D likelihood fits to \(\cos \theta^* \) versus \(\cos \theta^*_\psi \) using Eq. (5) for different \(m_{\pi \pi} \) intervals. The amplitude normalization is arbitrary. Here the value of \(\delta^0_1 \) used depends on the \(m_{\pi \pi} \) interval. \(\delta^0_2 = 0 \).

<table>
<thead>
<tr>
<th>(m_{\pi \pi}) Range (GeV/c^2)</th>
<th>0.36–0.5</th>
<th>0.5–0.54</th>
<th>0.54–0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta^0_1) used in as</td>
<td>27°</td>
<td>42°</td>
<td>51°</td>
</tr>
<tr>
<td>(</td>
<td>M_{001}</td>
<td>)</td>
<td>8.36±0.04±0.23</td>
</tr>
<tr>
<td>(</td>
<td>M_{201}</td>
<td>)</td>
<td>1.19±0.20±0.57</td>
</tr>
<tr>
<td>(</td>
<td>M_{012}</td>
<td>/</td>
<td>M_{001}</td>
</tr>
<tr>
<td>(</td>
<td>M_{201}</td>
<td>/</td>
<td>M_{001}</td>
</tr>
<tr>
<td>(\chi^2/DOF)</td>
<td>514/437</td>
<td>608/437</td>
<td>545/437</td>
</tr>
<tr>
<td>Events</td>
<td>6186</td>
<td>7075</td>
<td>9362</td>
</tr>
</tbody>
</table>

The cos angular momentum of the \(c \bar{c} \) system is not expected to change during the decay and the polarization of the \(\psi(2S) \) should be the same as the \(J/\psi \). The model gives the amplitude

\[
A \propto \left[q^2 - \kappa (\Delta M)^2 \left(1 + \frac{2m_{\pi \pi}^2}{q^2} \right) + \frac{3}{2} \kappa (\Delta M)^2 - q^2 \right] \\
\times \left(1 - \frac{4m_{\pi \pi}^2}{q^2} \right) \left(\cos^2 \theta^*_\psi - \frac{1}{3} \right),
\]

(6)

where \(q \) is the four momentum of the dipion system and \(\Delta M = M_{\psi(2S)} - M_{J/\psi} \). The parameter \(\kappa \) is given by

\[
\kappa = (b/6\pi) \alpha_s(\mu) \rho^G(\mu),
\]

(7)

where \(b = 9 \) is the first expansion coefficient of the Gell-Mann-Low function, \(\rho^G \) is the gluon fraction of the \(\pi^* \)’s momentum, which is about 0.4, and \(\kappa \) is predicted to be \(\approx 0.15 \) to 0.2 [20]. From Eq. (7), it can be seen that \(\kappa \) is expected to be different for \(\psi(2S) \) decays and the decays of other charmonia, because of the running of \(\alpha_s \). The first terms in the amplitude are the \(S \)-wave contribution, and the last term is the \(D \)-wave contribution. Note that parity and charge conjugation invariance require that the spin be even. If \(\kappa \) is non-zero, it is predicted that there should be some \(D \) wave pions. However, since \(\kappa \) is expected to be small, the process should be predominantly \(S \) wave.

The differential cross section is obtained by squaring the amplitude and multiplying by the phase space:

\[
\frac{d\Gamma}{dm_{\pi \pi} d \cos \theta^*_\psi} \propto (PS) \times A^2,
\]

(8)

where

\[
PS = \sqrt{\frac{(m_{\pi \pi}^2 - 4m_{\pi}^2)(M_{J/\psi}^4 + M_{\psi(2S)}^4 + m_{\pi \pi}^4 - 2M_{J/\psi}^2m_{\pi \pi}^2 + M_{\psi(2S)}^2m_{\pi \pi}^2 + M_{J/\psi}^2M_{\psi(2S)}^2)}{4M_{\psi(2S)}^4}}.
\]

By integrating over one variable at a time, it is possible to obtain the following 1D equations for the \(m_{\pi \pi} \) invariant mass spectrum and the \(\cos \theta^*_\psi \) distribution:

\[
\frac{d\sigma}{dm_{\pi \pi}} \propto q \sqrt{(q^2 - 4m_{\pi}^2)} \left[q^2 - \kappa (\Delta M)^2 \left(1 + \frac{2m_{\pi \pi}^2}{q^2} \right) \right]^{-2} \left[q^2 - \kappa (\Delta M)^2 \left(1 + \frac{2m_{\pi \pi}^2}{q^2} \right) \right]^{-2} \\
+ 0.2 \kappa^2 (\Delta M)^2 - q^2 \left(1 - \frac{4m_{\pi \pi}^2}{q^2} \right)^2, \quad (9)
\]

The \(m_{\pi \pi} \) distribution is fit using Eq. (9), as shown in Fig. 6. The fit yields \(\kappa = 0.186 \pm 0.003 \) with a \(\chi^2/DOF = 55/45. \)
Fitting the cosine distribution in the region \(-0.8 < \cos \theta^p_x < 0.8\) using Eq. (10) [21], we obtain the results shown in Fig. 7. The fit yields \(\kappa = 0.210 \pm 0.027\) with a \(\chi^2/\text{DOF} = 26/40\).

We have also fit the joint cosine \(\cos \theta^p_x\) and \(m_{\pi\pi}\) distribution [Eq. (8)]. This approach does not require integrating over one of the variables and is sensitive to any \(\cos \theta^p_x - m_{\pi\pi}\) correlation. Using this approach, we obtain a \(\kappa = 0.183 \pm 0.002\) and a \(\chi^2/\text{DOF} = 1618/1482\). The results of the different fits are in good agreement and are summarized in Table V.

Using Eqs. (6) and (8), where we write Eq. (6) in terms of \(S\)-wave and \(D\)-wave parts: \(A = A_S + A_D\), the ratio of the \(D\)-wave transition rate to the total rate can be obtained

\[
R_D = \frac{\int dq^2 \int_{-1}^{1} d \cos \theta(PS) |A_D|^2}{\int dq^2 \int_{-1}^{1} d \cos \theta(PS) |A_S + A_D|^2}.
\]

The limits of the \(q^2\) integration are \(q_{\text{min}}^2 = 4m^2_{\pi}\) and \(q_{\text{max}}^2 = (M_{\phi(2S)} - M_{J/\psi})^2\). For the value of \(\kappa\) obtained from the joint \(\cos \theta^p_x - m_{\pi\pi}\) fit, we obtain \(R_D = 0.184\%\).

The amount of \(D\) wave as a function of \(m_{\pi\pi}\) has been fit using

![FIG. 6. Fits to the \(m_{\pi\pi}\) distribution. The points are the data corrected for efficiency, and the curves are the fit results. The smooth curve is the Novikov-Shifman model [Eq. (9)]. The long-dashed and short-dashed curves are the T. M. Yan model with and without higher-order corrections, and the dash-dot curve is the Voloshin-Zakharov model [Eq. (13)]. Three of the models are nearly indistinguishable. The T. M. Yan model without higher-order corrections is slightly different. The results are given in Tables V and VII.](032002-8)

![FIG. 7. Fits to \(\cos \theta^p_x\) distribution. The results are given in Tables V and VII. The points are the data corrected for efficiency, and the curve is the fit result using Eq. (10).](032002-8)
The last term corresponds to the amount of D wave, while the middle term corresponds to the interference term \(\psi \). The results are shown in Fig. 8 and in Table VI. The behavior of \(D/S \) as a function of \(m_{\pi\pi} \) is shown in Fig. 9, along with the prediction of the Novikov-Shiftman model.

B. The T. M. Yan and Voloshin-Zakharov models

Other models which describe the \(m_{\pi\pi} \) invariant mass spectrum are the T. M. Yan model [7] and the Voloshin-Zakharov model [8]. These models are also based on the color-field multiple expansion. Yan suggests that the decay can be written as

\[
N(\cos \theta) \times 1.0 + 2 \left(\frac{D}{S} \right) \left(\cos^2 \theta - \frac{1}{3} \right) + \left(\frac{D}{S} \right)^2 \left(\cos^2 \theta - \frac{1}{3} \right)^2 .
\]

(11)

where

\[
\frac{d\sigma}{dm_{\pi\pi}} \times (PS) \times \left(\frac{m^2_{\pi\pi} - 2m^2_{\pi\pi}}{3A} \right) + \left(\frac{B}{A^2} \right) + \left(\frac{m^2_{\pi\pi}}{2m_{\pi\pi}} \right) .
\]

(12)

where

\[
K = \frac{M_{\psi(2S)}^2 - M_{J/\psi}^2}{2m_{\pi\pi}}.
\]

The ratio \(B/A \) is taken to be a free parameter. The term \(O(B^2/A^2) \) refers to higher-order (HO) terms.

The \(m_{\pi\pi} \) invariant mass spectrum has been fit with these models, as shown in Fig. 6. As can be seen, the Novikov-Shiftman and the Voloshin-Zakharov models give nearly identical fits. The T. M. Yan model, neglecting higher-order terms does not agree as well with the data. Including the higher-order terms [7], however, gives a fit result which is nearly identical to the other two models, as seen in Fig. 6. All the results are summarized in Table VII, along with the \(\psi(2S) \) results from Argus [23], which used \(\psi(2S) \) data from Mark II. Argus did not fit the T. M. Yan model with the HO corrections, but the agreement is good for the fits they did.

![Fig. 8](image.png)

FIG. 8. Fits of \(\cos \theta^p \) using Eq. (11) as a function of \(m_{\pi\pi} \). The fit results are shown in Table VI. (a) \(0.34 < m_{\pi\pi} < 0.45 \) GeV/c^2, (b) \(0.45 < m_{\pi\pi} < 0.48 \) GeV/c^2, (c) \(0.48 < m_{\pi\pi} < 0.51 \) GeV/c^2, (d) \(0.51 < m_{\pi\pi} < 0.54 \) GeV/c^2, (e) \(0.54 < m_{\pi\pi} < 0.57 \) GeV/c^2, and (f) \(0.57 < m_{\pi\pi} < 0.60 \) GeV/c^2.

![Fig. 9](image.png)

FIG. 9. Plot of the interference term \(D/S \), from Eq. (11) versus \(m_{\pi\pi} \). The smooth curve is the prediction of the Novikov-Shiftman model for \(\kappa = 0.183 \).
TABLE VII. Fit results for the $m_{\pi\pi}$ distribution.

<table>
<thead>
<tr>
<th>Model</th>
<th>BES</th>
<th>Argus-MKII [23]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novikov-</td>
<td>$\kappa=0.186\pm0.003\pm0.006$</td>
<td>0.194 ± 0.010</td>
</tr>
<tr>
<td>Shifman [9]</td>
<td>χ^2/DOF=55/45</td>
<td>38/24</td>
</tr>
<tr>
<td>T. M. Yan [7]</td>
<td>$B/A=-0.225\pm0.004\pm0.028$</td>
<td>-0.21 ± 0.01</td>
</tr>
<tr>
<td>T. M. Yan [7]</td>
<td>χ^2/DOF=84/45</td>
<td></td>
</tr>
<tr>
<td>(HO)</td>
<td>χ^2/DOF=60/45</td>
<td></td>
</tr>
<tr>
<td>Voloshin-</td>
<td>$\lambda=4.35\pm0.06\pm0.17$</td>
<td></td>
</tr>
<tr>
<td>Zakharov [8]</td>
<td>χ^2/DOF=69/45</td>
<td></td>
</tr>
</tbody>
</table>

C. The Mannel-M. L. Yan model

Mannel has constructed an effective Lagrangian using chiral symmetry arguments to describe the decay of heavy excited S-wave spin-1 quarkonium into a lower S-wave spin-1 state [25]. Using total rates, as well as the invariant mass spectrum from Mark II via ARGUS [23], the parameters of this theory have been obtained. More recently, M. L. Yan et al. [26] have pointed out that this model allows D wave pions, like the Novikov-Shifman model. In this model, the amplitude can be written [26]

$$A \propto q^2 - c_1(q^2 + |q|^2) \left(1 + \frac{2m_{\pi}^2}{q^2}\right) + c_2m_{\pi}^2 + \frac{3}{2}c_1|q|^2$$

$$\times \left(1 - \frac{4m_{\pi}^2}{q^2}\right) \left(\cos^2\theta_{up}^* - \frac{1}{3}\right),$$

where

$$c_1 = -\frac{g_1}{3g} \left(1 + \frac{g_1}{6g}\right)^{-1}$$

$$c_2 = 2\left(\frac{g_3}{g} - \frac{g_1}{3g} - 1\right) \left(1 + \frac{g_1}{6g}\right)^{-1}$$

and

$$|q|^2 = \frac{1}{2m_{\phi(2S)}^2} \left[\left(m_{\phi(2S)}^2 - (m_{\pi\pi} + m_{J/\psi})^2\right) \times \left(m_{\phi(2S)}^2 - (m_{\pi\pi} - m_{J/\psi})^2\right)\right]^{1/2},$$

$$q^2 = m_{\pi\pi}^2.$$

The first term in Eq. (14) is the S-wave term, and the second is the D-wave term. Note that another constant in the effective Lagrangian, g_2, has been taken to be zero since it is suppressed by the chiral symmetry breaking scale. This amplitude is similar to Eq. (6) but contains an extra term proportional to m_{π}^2.

We have fit the joint $\cos\theta_{up}^* - m_{\pi\pi}$ distribution using the amplitude of Eq. (14) [24], as shown in Fig. 10. We obtain

$$\frac{g_1}{g} = -0.49\pm0.06\pm0.13,$$

$$\frac{g_3}{g} = 0.54\pm0.23\pm0.42$$

with a χ^2/DOF=1632/1481.

In the chiral limit, $g_3=0$. If we fit with this value for g_3, we obtain

$$\frac{g_1}{g} = -0.347\pm0.006\pm0.007$$

with a χ^2/DOF=1632/1482. The results for both cases are given in Table VIII, along with the results from Ref. [25] which are based on ARGUS-Mark II [23]. The results agree well for the $g_3=0$ case. The agreement is not as good for the $g_3\neq0$ case, but Ref. [25] used only the $m_{\pi\pi}$ distribution in

TABLE VIII. Fit results using Eq. (14). In the second fit, g_3 is set to zero.

<table>
<thead>
<tr>
<th></th>
<th>g_1/g</th>
<th>g_3/g</th>
<th>χ^2/DOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>This Exp.</td>
<td>$-0.49\pm0.06\pm0.13$</td>
<td>$0.54\pm0.23\pm0.42$</td>
<td>1632/1481</td>
</tr>
<tr>
<td>Ref. [25]</td>
<td>-1.55 ± 0.51</td>
<td>4.07 ± 1.56</td>
<td>0.87</td>
</tr>
<tr>
<td>This Exp.</td>
<td>$-0.347\pm0.006\pm0.007$</td>
<td>0</td>
<td>1632/1482</td>
</tr>
<tr>
<td>Ref. [25]</td>
<td>-0.35 ± 0.03</td>
<td>0</td>
<td>1.05</td>
</tr>
</tbody>
</table>
their fit. In both cases, the \(\chi^2/\text{DOF} \) is large, and there is no reason to prefer one fit over the other.

VIII. SUMMARY

In this paper, we have studied the process \(\psi(2S) \rightarrow \pi^+ \pi^- J/\psi \). We find reasonable agreement with a simple Monte Carlo model except for the distribution of \(\cos \theta^p_\pi \), which is the cosine of the angle of the pion with respect to the \(J/\psi \) direction in the rest frame of the \(\pi\pi \) system. Some \(D \) wave component is required in addition to \(S \) wave.

The angular distributions are compared with the general decay amplitude analysis of Cahn. We find that \(|M_{201}|/|M_{001}| \), which measures the \(D \) wave amplitude of the dipion system relative to the \(S \) wave, varies between 0.12 and 0.18 and is at least two \(\sigma \) from zero. On the other hand, \(|M_{021}|/|M_{001}| \), which measures the \(D \) wave amplitude of the \(J/\psi-X \) system relative to the \(S \) wave, varies between \(-0.04\) and 0.06 and is, in all cases, consistent with zero. We are unable to fit for the \(\pi\pi \) phase-shift angle, \(\delta^0_\pi \).

A comparison with heavy quarkonium models shows that the Novikov-Shifman, T. M. Yan (with higher-order corrections), and Voloshin-Zakharov models give very similar fits to the \(m_{\pi\pi} \) distribution. All fits yield a \(\chi^2/\text{DOF} \) larger than one.

In addition, the Novikov-Shifman model, which is written in terms of the parameter \(\kappa \), predicts that \(D \) wave pions should be present if \(\kappa \) is nonzero. Determinations of \(\kappa \) based on the \(\cos \theta^p_\pi \) distribution and the joint \(m_{\pi\pi}-\cos \theta^p_\pi \) distribution agree with the value obtained from the \(m_{\pi\pi} \) distribution. The results agree well with the measurement of Argus using Mark II data.

The \(\cos \theta^p_\pi \) distribution has been fit to determine the \(D \) wave amplitude divided by the \(S \) wave amplitude, \(D/S \), as a function of \(m_{\pi\pi} \). It is found to decrease with increasing \(m_{\pi\pi} \) in agreement with the prediction of the Novikov-Shifman model.

Finally, we have fit our \(m_{\pi\pi}-\cos \theta^p_\pi \) distribution using the Mannel-Yan model, which also allows \(D \) wave pions. We find good agreement with their result obtained in the chiral limit where \(g_s=0 \) using the Mark II data.

ACKNOWLEDGMENTS

We would like to thank the staff of BEPC accelerator and the IHEP Computing Center for their efforts. We also wish to acknowledge useful discussions with R. Cahn, M. Shifman, W.S. Hou, S. Pakvasa, Y. Wei, M. L. Yan, and T. L. Zhuang. Work supported in part by the National Natural Science Foundation of China under Contract No. 19290400 and the Chinese Academy of Sciences under Contract No. H-10 and E-01 (IHEP), and by the Department of Energy under Contract Nos. DE-FG03-92ER40701 (Caltech), DE-FG03-93ER40788 (Colorado State University), DE-AC03-76SF00515 (SLAC), DE-FG03-91ER40679 (UC Irvine), DE-FG03-94ER40833 (U Hawaii), and DE-FG03-95ER40925 (UT Dallas).

\[
O \frac{B^2}{A^2} = \frac{1}{20} B^2 \left[m_{\pi\pi}^2 - 4 m_{\pi}^2 \right] + \frac{4}{3} \left(m_{\pi\pi}^2 - 4 m_{\pi}^2 \right) \frac{V^2}{m_{\pi}} + \frac{8}{3} \left[m_{\pi\pi}^2 + 2 m_{\pi}^2 m_{\pi\pi}^2 + 6 m_{\pi}^4 \right] \frac{K^4}{m_{\pi\pi}^2}.
\]
[13] How the bin-by-bin efficiency is used depends on the type of fit used. When the bin statistics is high, as in the 1D histograms, the data histogram is divided by the efficiency histogram, and the efficiency corrected histogram is compared to theory. When the bin statistics is small, as in the 2D histograms, and Poisson statistics becomes important, the theory distribution is multiplied by the efficiency histogram, and the resulting histogram is compared with the detected events.
[14] The \(m_{\pi\pi} \) mass resolution in this region, determined using Monte Carlo events, is 6.4 MeV/c^2. It should be noted that the bin-by-bin efficiency correction method compensates for the effects of resolution smearing.
[15] Two of the equations in Ref. [5] omitted the interference terms shown in Eqs. (1) and (2).
[17] The range of \(\cos \theta^p_\pi \) in this figure are reduced compared to Fig. 3 because the efficiency correction is less certain near the limits of the plots. However, the full range shown in Fig. 3 is fit and used in the determination of the systematic errors of the fit quantities.
[18] This can be understood by writing Eq. (2) as
\[
\frac{d\Gamma}{d\Omega_{\pi}} = |M_{001}|^2 + \frac{1}{4} |M_{201}|^2 (5 - 3 \cos^2 \theta^p_\pi)|M_{021}|^2 + \frac{1}{2}
\times \cos(\delta_\pi - \delta^0_\pi) |M_{201}||M_{001}||3 \cos^2 \theta^p_\pi - 1|.
\]
While the interference term is sizeable and allows the determination of the product of the cosine of the phase angle times the amplitude, the contribution of the $|M_{201}|^2$ term is too small to allow the determination of the amplitude by itself. Without this, we cannot obtain the phase angle.

[19] We assume that d_0^c changes linearly as a function of $m_{\pi\pi}$.

[21] The fit is limited to this range because the efficiency is less certain near the limits of the plot. However, the full range is used in the determination of the systematic error.

[22] S and D have been treated as real. Treating them as complex numbers would add a cosine of a phase angle multiplying D/S in the interference term.

[23] H. Albrecht et al., Z. Phys. C 35, 283 (1987); for the $\psi(2S)$ result, Mark II data were used.

[24] For this fit, we use a larger ($\times 10$) Monte Carlo sample.
