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ABSTRACT 
 
  Fox et al. (1998) carried out a logistic regression analysis with discrete covariates in 

which one of the covariates was missing for a substantial percentage of respondents.  The 

missing data problem was addressed using the “approximate Bayesian bootstrap.”  We return to 

this missing data problem to provide a form of case study.  Using the Fox et al. (1998) data for 

expository purposes we carry out a comparative analysis of eight of the most commonly used 

techniques for dealing with missing data.  We then report on two sets of simulations based on 

the original data.  These suggest, for patterns of missingness we consider realistic, that case 

deletion and weighted case deletion are inferior techniques, and that common simple 

alternatives are better.  In addition, the simulations do not affirm the theoretical superiority of 

Bayesian Multiple Imputation.  The apparent explanation is that the imputation model, which is 

the fully saturated interaction model recommended in the literature, was too detailed for the 

data.  This result is cautionary.  Even when the analyst of a single body of data is using a 

missingness technique with desirable theoretical properties, and the missingness mechanism 

and imputation model are supposedly correctly specified, the technique can still produce biased 

estimates.  This is in addition to the generic problem posed by missing data, which is that 

usually analysts do not know the missingness mechanism or which among many alternative 

imputation models is correct.
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1. Introduction 

The problem of missing data in the sense of item nonresponse is known to most 

quantitatively oriented social scientists.  Although it has long been common to drop cases with 

missing values on the subset of variables of greatest interest in a given research setting, few data 

analysts would be able to provide a justification, apart from expediency, for doing so.  Indeed, 

probably most researchers in the social sciences are unaware of the numerous techniques for 

dealing with missing data that have accumulated over the past 50 years or so, and thus are 

unaware of reasons for preferring one strategy over another.  Influential statistics textbooks used 

for graduate instruction in the social sciences either do not address the problem of missing data  

(e.g., Fox 1997) or present limited discussions with little instructional specificity relative to other 

topics (e.g., Greene 2000).  There are good reasons for this.  First, the vocabulary, notation, 

acronyms, implicit understandings, and mathematical level of much of the missing data technical 

literature combine to form a barrier to understanding by all but professional statisticians and 

specialists in the development of missing data methodology.  Translations are scarce.  Second, 

overwhelming consensus on the one best general method that can be applied to samples of 

essentially arbitrary size (small as well as large) and complexity has yet to coalesce, and may 

never do so.  Third, easy to use “black box” software that reliably produces technically correct 

solutions to missing data problems across a broad range of circumstances does not exist.1 

Whatever the method for dealing with missing data, substantive researchers (“users”) 

demand specific instructions, and the assurance that there are well documented reasons for 

accepting them, from technical contributors.  Absent these, researchers typically revert to case 

deletion to extract the complete data arrays essential for application and interpretation of most 

                                                 
1 Horton and Lipsitz (2001) review software for multiple imputation; Allison (2001) lists packages for multiple 
imputation and maximum likelihood. 
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multivariate analytic approaches (e.g., multiway cross-tabulations, the generalized linear model).  

For, despite its potential to undermine conclusions, the missing data problem is far less important 

to substantive researchers than the research problems that lead to the creation and use of data. 

 This paper developed from a missing data problem:  Twenty-eight percent of responses to 

a household income question were missing in a survey to whose design we contributed (Fox et 

al. 1998).  Since economic well-being was thought to be important for the topic that was the 

focus of the survey—compliance with guidelines for regular mammography screening among 

women in the United States—there were grounds for concern with the quantity of missing 

responses to the household income question.  Fox et al. (1998) estimated screening guideline 

compliance as a function of household income and other covariates using the “approximate 

Bayesian bootstrap” (Rubin and Schenker 1986, 1991) to compensate for missingness on 

household income.  With that head start, we originally intended only to exposit several of the 

more frequently employed strategies for dealing with missingness, using the missing household 

income problem for illustration.  Of course, application of different missingness techniques to 

the same data can not be used to demonstrate the superiority of one technique over another.  For 

this reason as well as others, we then decided to carry out simulations of missing household 

income, in order to illustrate the superiority of Bayesian stochastic multiple imputation and the 

approximate Bayesian bootstrap.  This, we thought, would stimulate the use of multiple 

imputation.  The simulations, however, did not demonstrate the superiority of multiple 

imputation.  In addition, the performance of case deletion was not in accord with our 

expectations.  For reasons that will become clear, we conducted new simulations, again based on 

the original data.  This second round also failed to demonstrate the superiority of multiple 

imputation, and again the performance of case deletion was not in accord with our expectations.  
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The source of these discrepancies is known to us only through speculation informed by the 

pattern of performance failures in the simulations.  If our interpretation is correct, the promise of 

these techniques in actual practice may be kept far less frequently than has been supposed. Thus, 

to the original goal of pedagogical exposition we add that of illustrating pitfalls in the application 

of missingness techniques that await even the wary. 2 

 In Section 2 of this paper we describe the data and core analysis that motivate our study 

of missingness.  Sections 3 and 4 review key points about mechanisms of missingness and 

techniques for handling the problem.  Section 5 presents results based on the application of 

alternative missing data methods to our data.  Section 6 describes the two sets of simulations 

based on the data.  Sections 7 and 8 review and discuss findings.   Appendix I contains a 

technical result.  Appendix II details the simulation process.  Appendix III provides Stata code 

for the implementation of the missingness techniques.  Upon acceptance for publication, 

Appendices II and III will be placed on a website, to which the link will be provided in lieu of 

this statement. 

2.  Data and Core Analysis 

 Breast cancer is the most commonly diagnosed cancer of older women.  Mammography 

is the most effective procedure for breast cancer screening and early detection.  The National 

Cancer Institute (NCI) recommends that women aged 40 and over receive screening 

mammograms every one or two years.3  Many women do not adhere to this recommendation.  To 

test possible solutions to the under-screening problem, the Los Angeles Mammography 

                                                 
2 The technical literature on missing data is voluminous.   The major monographs are by Little and Rubin (2002), 
Rubin (1987), and Schafer (1997).  Literature reviews include articles by Anderson et al. (1983), Brick and Kalton 
(1996), and Nordholt (1998).  Schafer (1999) and Allison (2001) offer helpful didactic expositions of multiple 
imputation.  
 
3 The lower age limit has varied over time.  Currently it is age 40.  Our data set uses a minimum of age 50, which 
was in conformance with an earlier guideline. 
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Promotion in Churches Program (LAMP) began in 1994 (Fox et al. 1998).   The study sampled 

women aged 50-80, all of whom were members of churches selected in a stratified random 

sample at the church level.  In the study, each church was randomly assigned to one of three 

interventions.4  The primary analytic outcome, measured at the individual level, was compliance 

with the NCI mammography screening recommendation.  In this study we use data from the 

baseline survey (N = 1,477), that is, data collected prior to the interventions that were the focus 

of the LAMP project.5  Our substantive model concerns the extent and nature of the dependence 

of mammography screening compliance on characteristics of women and their doctors, prior to 

LAMP intervention. 

 In our empirical specification, all variables are discrete and most, including the response, 

are dichotomous.  Estimation is carried out with logistic regression.  A respondent is considered 

“compliant” if she had a mammogram within the 24 months prior to the baseline interview and 

another within the 24 months prior to that most recent mammogram, and is considered 

“noncompliant” otherwise.  Our list of regressors6 consists of dummy variables (coded one in the 

presence of the stated condition and zero otherwise) for whether the respondent is (1) Hispanic; 

(2) has medical insurance of any kind; (3) is married or living with a partner; (4) has been seeing 

the same doctor for a year or more; (5) is a high school graduate; (6) lives in a household with 

annual income greater than $10,000 per year; (7) has a doctor she regards as enthusiastic about 

mammography; and a trichotomous dummy variable classification for (8)  whether the 

                                                 
4 This design, known as “multilevel” in the social sciences, is regarded in biomedical and epidemiological research 
as an instance of a “group-randomized trial” (Murray 1998). 
5 From a realized sample size of 1,517 individuals we dropped four churches, each with 10 respondents, prior to the 
analyses reported here and in Fox et al. (1998).  This reduced the sample to 1,477 individuals before exclusions due 
to missingness on any variable in the regression model other than household income.  The churches in question were 
dropped from the LAMP panel due to administrative inefficiencies associated with their small sample size and low 
participation rates. 
 
6 See Fox et al. (1998) for details and Breen and Kessler (1994) and Fox et al. (1994) for additional justification. 
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respondent's doctor is Asian, Hispanic, or belongs to another race/ethnicity group (the reference 

category in our regressions).  Prior research and theory (Breen and Kessler 1994) suggest that 

those of higher socioeconomic status should be more likely to be in compliance, as should those 

whose doctors are enthusiastic about mammography, have a regular doctor, are married or have a 

partner, and have some form of medical insurance.  Similarly, there are a priori grounds for 

expecting women with Asian or Hispanic doctors to be less likely than those with doctors of 

other races/ethnicities to be in compliance, and for expecting Hispanic women to be less likely 

than others to be in compliance (Fox et al. 1998; Zambrana et al. 1999). 

 Deletion of a respondent if information is missing on any variable in the model, including 

the response variable, reduces the sample size to 857 cases, or 56 percent of the total sample.  

This is the result of a great deal of missingness on a single covariate, and the cumulation of a low 

degree of missingness on the response and remaining covariates. As noted earlier, 28 percent of 

respondents refused to disclose their household annual income—by far the highest level of 

missingness in the data set.7  The next highest level of missingness (seven percent) occurs for the 

response variable, mammography screening compliance.  A number of respondents could not 

recall their mammography history in detail sufficient to allow discernment of their compliance 

status. 

 Discarding respondents who are missing on mammography compliance or any covariate 

in the logistic regression model except household income results in a data set of 1,119 

individuals, or 76 percent of the total sample.  For present purposes we define this subsample of 

1,119 individuals to be the working sample of interest.  In the working sample, 23 percent (262 

respondents out of 1,119) refused or were unable to answer the household income question.  We 

                                                 
7 Respondents were given 10 household income intervals with a top code of”$25,000 or more” from which to select.  
In the computations presented here, we treat “don't know” and “refused” as missing. 



What should we do about missing data? Page 6 of 60 

 

miss_pap_final_24oct03.doc Last revised 10/24/03 

 

choose to focus on this missingness problem, so defined, because of its potential importance for 

substantive conclusions based on the LAMP study and because restriction of our attention to 

nonresponse on a single variable holds the promise of greatest clarity in comparisons across 

techniques for the treatment of missingness. 

We suspect that household income was not reported largely because the item was 

perceived as invasive, not because it was unknown to the respondent.  The desire to keep 

household income private seems likely to be related to income itself or to other measured 

characteristics—possibly those included in the mammography compliance regression.  If so, 

failure to take into account missingness on household income could not only lead to bias in the 

household income coefficient but also propagate bias in the coefficients of other covariates in the 

mammography compliance regression (David et al. 1986).  Missingness on household income 

thus provides the point of departure into our exploration of techniques for dealing with 

missingness.  Our initial calculations on the actual LAMP data demonstrate the effects on the 

logistic regression for mammography compliance of various treatments of missing household 

income.  The closely related simulated data enable examination of the performance of different 

missingness techniques across various assumptions about the nature of the missingness process. 

3.  Missingness and Models 

 Three types of models are inherent to all missing data problems:  a model of missingness, 

an imputation model, and a substantive model.   A missingness model literally predicts whether 

an observation is missing.  For a single variable with missing data, the missingness model might 

be a binary (e.g., logistic) regression model in which the response variable is whether or not an 

observation is missing.  This type of model is discussed more precisely in the next section.  In 

that discussion, we also categorize types of missingness models. 
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 An imputation model is a rule, or set of rules, for treatment of missing data.  Imputation 

models can often be expressed as estimable (generalized) regression specifications based on the 

observed values of variables in the data set.  The purpose of such a regression is to produce a 

value to replace missingness for each missing observation on a given variable. 

 A substantive model is a model of interest to the research inquiry.  In general, our 

concern is with the nature and extent to which a method for modeling missing data affects the 

estimated parameters of the substantive model, and with the conditions under which the impact 

of a method varies. 

 Missingness models and imputation models do not differ in any meaningful way from 

substantive models—they are not themselves “substantive” models simply because they are 

defined relative to a concern with missingness in some other process of greater interest, that is, in 

some other model.  In actual substantive research, researchers generally do not know the correct 

model of missingness or the correct imputation model (much less the correct substantive model).  

This lack of knowledge is not a license to ignore missingness.  To do so is equivalent to 

assuming that missingness is completely random, and this can and should be checked.  

Moreover, the development of missingness and imputation models with reference to a given 

missing data problem is neither more nor less demanding than the development of the 

substantive model.  From this we conclude:  (i) For any substantive research project, missingness 

and imputation models can and should be developed; (ii) the process of arriving at reasoned 

missingness and imputation models is no more subject to automation than is the development of 

the substantive model.  Given these models, we ask which techniques excel unambiguously, and 

whether any achieve a balance of practicality and performance given current technology. 
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4. Missingness Techniques and Mechanisms  

Techniques for dealing with missingness can be evaluated for the extent to which they 

induce coefficient (b) and standard error (SE(b)) bias, and for the extent to which they reshape 

coefficient distributions to have inaccurate variances (Var(b)), where “bias” and “inaccuracy” are 

specified relative to samples with no missing data.  The performance of a missingness technique 

as defined by these three characteristics depends on the mechanism of missingness present in a 

given body of data.  Note that the use of the “bias” concept assumes that the substantive model is 

perfectly specified.8  In actual research practice, data analysts are unlikely to know whether a 

substantive model is perfectly specified, and it strains credulity to suggest that most are.  

Although we believe the model used for the example in this paper is plausible, we do not know if 

it is perfectly specified, and our simulation analyses reveal that probably it is not. 

Table 1 summarizes the received performance of missingness techniques conditional on 

mechanisms of missingness.  The distillation of the technical literature represented by Table 1  

assumes that the substantive model is perfectly specified.  As can be seen, the technique by 

mechanism interaction precludes a simple summary.   However, the two Bayesian techniques 

appear to have the best expected performance on the three criteria we have listed. 

Insert Table 1 Here  

 The mechanism assumed to underlie missingness on a particular variable in a given data 

set ideally has a role to play in broadly determining the type of technique to be used to 

compensate for the missingness.  Our summary in Section 3.1 of the missingness mechanisms 

used in Table 1 is based on Rubin's typology (Little and Rubin, 2002; Rubin 1987), expressed in 

                                                 
8 For the case considered in this paper—missingness on a single regressor—when we assert that a substantive 
regression is perfectly specified, we mean that it has the correct error distribution and functional form; that it 
excludes no relevant regressors (whether in the data or not); that it includes all necessary interactions between 
regressors; and that it contains no regressor with measurement error. 
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the development of Bayesian stochastic multiple imputation.  Of the eight missingness 

techniques we consider, six are based on the imputation of missing values.9  In the case of the 

LAMP data, imputation means that each respondent who did not supply an answer to the 

household income question would be assigned one or more estimated values.  All of the 

imputation techniques we consider use the assumption that a substantive model of interest can be 

estimated independently from—without reference to—both the underlying model for 

missingness (which might be no more than implicit) and the imputation model.  The mechanisms 

of missingness typology clarifies a necessary condition under which missingness is consistent 

with separation of substantive modeling from missingness and imputation modeling.  We next 

review the mechanisms listed in Table 1, and subsequently describe the techniques. 

4.1 Mechanisms of Missingness 

 All of the missingness or item nonresponse we are concerned with has a random 

component.  In the LAMP survey, women under the age of 50 are excluded by design.  Hence all 

responses of women less than age 50 are necessarily “missing.” This nonstochastic missingness 

is of no interest to us.  We begin with this obvious point because the following brief summary of 

mechanisms of missingness introduces jargon that uses the term “random” in a way not 

commonly seen elsewhere. 

Let Y denote the response variable for mammography compliance.  Let X denote the 

dichotomy for household income, and let Z denote not only the covariates in the logistic 

regression model, but all variables (and recodes, combinations, and transformations thereof) in 

the LAMP data other than Y and X.  Mechanisms of missingness can be defined with reference to 

                                                 
9 We do not consider the “maximum likelihood” technique, largely because it does not appear to be widely used by 
researchers, and because it does not seem to have received the attention accorded to Bayesian multiple imputation.  
Allison (2001) provides a helpful introduction to the maximum likelihood technique for missing data; Schafer 
(1997) and Little and Rubin (2002) provide technical expositions. 
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a missingness model—a model for the probability that a respondent is missing on X.  Let iR = 1 

if the ith respondent is missing on X, and let iR = 0 if the ith respondent provides a valid response 

on X.  Three mechanisms of missingness are: 

1. The probability that iR = 1 is independent of Y, Z, and X itself; 

2. The probability that iR = 1 is independent of X, but not of (some subset of) Y and Z; 

3. The probability that iR = 1 depends on X and (some subset of) Y and Z. 

The first missingness mechanism is known as m issing completely at random (MCAR). If 

household income is MCAR, then the observed values are a random sample of all values 

(observed and unobserved). Equivalently, an appropriate model we construct for predicting R 

will have only an intercept—all covariates in the prediction model, including the actual values of 

X (which will be unobserved for some respondents) will have coefficients equal to zero.  If 

missingness is MCAR, then the observed sample yields unbiased estimates of all quantities of 

interest.  The estimates have inflated variance compared to what would be found if there were no 

missing data. 

 The second missingness mechanism is known as m issing at random (MAR).  

Missingness on household income is MAR if it depends on (some subset of) mammography 

compliance and the remaining variables in the LAMP data, but does not depend on the actual 

value (even if unobserved) of household income itself once the variables that nonresponse does 

depend on have been taken into account.  Equivalently, in the population from which the LAMP 

sample has been drawn, there is a value of household income for each potential respondent, some 

of whom are missing on household income in the sample.  Under the MAR assumption, an 

appropriate prediction model for missingness defined on the population from which the LAMP 

sample was drawn will have a coefficient equal to zero for household income itself; at least one 
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coefficient for another variable in the LAMP data will not be zero.  If missingness is MAR, then 

the observed sample does not in general yield unbiased estimates of all quantities of interest. 

 Missing completely at random is a special case of missing at random.  With MAR, 

missingness has both a systematic component that depends on variables in the data set but no t on 

the actual values of the variable with missingness, and a purely random component.  With 

MCAR, the missingness has only a purely random component. 

 That the probability of missingness does not depend on the level of the variable with 

missingness in the MAR and MCAR cases implies that missingness is independent of variables 

that are not in the data set.  When this major, double-barreled, assumption is combined with the 

technical assumption of “parameter distinctness” (Schafer 1997a p. 11; Little and Rub in 2002; 

Rubin 1987), the missingness mechanism is termed “ignorable.”  The ignorability assumption is 

a necessary condition for modeling substantive relationships in the data set separately from 

modeling missingness per se, or imputing missing values.10 

 The third missingness mechanism is known as m issing not at random (MNAR), also 

referred to as “nonignorable” in much published research.  If missingness on household income 

is MNAR, it depends on the actual level of household income (and by implication, variables not 

in the data) as well as potentially other variables in the data.  Note that MNAR does not mean 

that missingness lacks a random component, only that its systematic component is a function of 

the actual values of the variable with missingness.11 

 It is in general difficult to know whether missingness is ignorable, especially with cross-

sectional data, and it seems a plausible conjecture that some degree of nonignorability in 

                                                 
10 For other conditions, see Schafer (1997:10). 
11 When MNAR is considered by the analyst to be the overriding feature of missingness for a specific variable, the 
difficulty is generally viewed as a sample selection problem, in which case the missingness model and the 
substantive model are inseparable (e.g., Heckman 1976, 1979).  The complexities engendered by solutions to 
missingness under nonignorability are beyond the scope of this  paper. 



What should we do about missing data? Page 12 of 60 

 

miss_pap_final_24oct03.doc Last revised 10/24/03 

 

missingness processes is common. 12  Here, as in many other situations, a continuum is probably 

more realistic than an “all or none” typology, and a little nonignorability differs from a lot.  The 

assumption of nonignorability in the missingness model parallels the assumption that in the 

substantive model the covariates and disturbance are orthogonal.  Most researchers (implicitly) 

argue that if the orthogonality assumption is not perfectly satisfied by their substantive model, 

then the distortion caused by nonorthogonality is not so great as to obscure the pattern of interest.  

For this reason, in the simulations introduced in later sections we allow for differing degrees of 

nonignorability. 

4.2 Missingness Techniques 

4.2.1 Casewise deletion 

 The standard treatment of missing data in most statistical packages—and hence the 

default treatment for most analysts—is the deletion of any case containing missing data on one 

or more of the variables used in the analysis.  Called “casewise” or “listwise” deletion, this 

method is simple to implement.  Use of this approach assumes that either (a) the missingness and 

imputation models have no covariates (missingness is MCAR) or (b) that the substantive model 

is perfectly specified, and that the missingness mechanism is a special case of MAR in which Y 

is not a covariate in the missingness model (equivalently, Y is uncorrelated with missingness on 

X).13  If either of these assumptions are satisfied, then unbiased coefficient estimates may be 

obtained without imputation.  Also, the coefficient standard errors will be valid for a sample of 

reduced size. 

 Casewise deletion uses less of the available data than the other methods, because 

observations that are missing on even a single variable (so-called “partially observed records”) 

                                                 
12 Groves et al. (2000) document an instance of nonignorability using a two-wave panel study. 
13 The discussion of theorem 2.1 in Jones (1996) provides the basis for this assertion; see also Allison (2001:6). 
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are dropped.  In addition, it can lead to biased coefficient estimates if any of the above 

assumptions are violated. 

 For the LAMP data and our simulation study, casewise deletion on household income 

reduces the sample size to 857 out of a possible 1119 observations, which is a 23 percent 

reduction. 

4.2.2 Weighted casewise deletion 

 Weighted casewise deletion extends the range of MAR models under which unbiased 

coefficient estimation in the substantive model can be achieved.14  Specifically, if the substantive 

model is perfectly specified, and if missing data are MAR, and if missingness is correlated with 

Y, then weighted casewise deletion can result in unbiased coefficient estimation of the 

substantive model (Brick and Kalton 1996).  Nonresponse weighting increases the weight of 

complete cases to represent the entire sample irrespective of missingness.  Typically, complete 

cases are stratified by covariates thought to explain systematic differences between complete and 

incomplete cases.  Within each stratum, the complete cases are given the weight of both the 

complete and the incomplete cases.  For example, in the LAMP data, approximately 56 percent 

of Hispanic respondents were missing household income, compared with 16 percent of African 

Americans and 15 percent of non-Hispanic white respondents.  Stratifying by race/ethnicity and 

restricting attention to complete cases, Hispanics would be weighted by 1 + (proportion 

reporting/proportion missing), which is 1 + .56/.44 = 2.27.  African Americans would be 

weighted by 1.19 and whites by 1.18. 

 Although weighted casewise deletion can reduce coefficient bias, the technique is 

inefficient because the exclusion of observed data from partially complete observations reduces 

                                                 
14 Other names for weighted casewise deletion are casewise re-weighting and nonresponse weighting. 
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sample size.15   In addition, unequal weights can increase the variability of the estimates 

(Cochran 1977). 

 Care in the application of weights is required if valid standard errors are to be obtained.   

Fortunately, several software packages provide valid standard errors for nonresponse 

weighting. 16   Successful application of weighted casewise deletion depends not only on 

sufficiently accurate and deep substantive knowledge and familiarity with the data but also on 

satisfying the MAR assumption to some degree. 

 To apply weighted casewise deletion to the LAMP data, we created 12 weighting classes 

based on respondent race/ethnicity; health insurance status; and responses to a question 

concerning general household financial well-being without actual dollar amounts.17  Cases 

missing on household income in each weighting class were counted and then dropped.  Cases 

remaining in each weighting class were weighted by the ratio of the total number of cases in the 

class to the number of cases in the class with household income data, so that the aggregate 

weight in each class is equal to the total number of cases in each class before deletions.  

Appendix I, section 2 contains the Stata code we used to implement weighted casewise deletion. 

4.2.3 Mean imputation 

 In mean imputation each missing value for a given variable is replaced (imputed) by the 

observed mean for that variable.   This approach requires only a single calculation (of the mean) 

and a single data management step (replacement of missing values with that mean).  As with 

casewise deletion, the missingness and imputation models have no covariates, by assumption. 

                                                 
15 Note, however, that according to Robins et al. (1994), weighted casewise deletion can be fully semi-parametric 
efficient, which is less than fully model efficient. 
16 For example, SAS proc reg and Stata with analysis weights do not provide valid standard errors with nonresponse 
weights, although coefficients are correctly estimated.  However, Stata’s “pweight” option will provide valid 
standard errors.  Cohen (1997) discusses weighting in various statistical packages . 
17 Information about general household financial well-being was provided by a large proportion of those who were 
unwilling or unable to provide household income. 
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 Mean imputation is well known to produce biased coefficient estimates in linear 

regression models even when observations are missing completely at random (Little 1992).  

Standard errors also tend to be too small, giving confidence intervals that are too narrow or tests 

that reject the null hypothesis more frequently than the nominal value would suggest. 

 To apply mean imputation to the LAMP data, for those respondents missing on 

household income we replaced the missing value code with the mean of the dichotomized 

household income variable (0.84).  Appendix I, section 3 contains the Stata code we used to 

implement mean imputation. 

4.2.4 Mean imputation with a dummy 

 Mean imputation with a dummy is a simple extension of mean imputation (Anderson et 

al. 1983).  In this method missingness is again imputed by the observed mean value for the 

variable with missing data, but now the covariate list of the (generalized) regression is extended 

to include a dummy variable D = 1 if a case is missing on some X, and D = 0 otherwise.  If the re 

are several variables with missing observations, then a dummy variable corresponding to 

missingness on each of these variables is included in the (generalized) regression.  This is a 

common approach to missingness in multivariate regression analyses, because the missingness 

dummy can be used as a diagnostic tool for testing the hypothesis that the missing data are 

missing completely at random:  If the dummy coefficient is significant, then the data are not 

MCAR. 

 Mean imputation with a dummy has properties similar to those for mean imputation 

without a dummy.  Even with the dummy, coefficient estimates can still be biased (Jones 1996).  

Implementation is simple.  The technique does, however, leave the analyst with an additional 

coefficient to interpret for each variable with missingness.  The advantage of the technique 
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probably resides in its potential to provide improved predictions.  We do not address this aspect 

of the technique in our simulations. 

 For the LAMP data we imputed mean household income (0.84) as in mean imputation 

and included an imputation dummy variable in the list of covariates of the core regression model.  

Appendix I, section 4 contains the Stata code we used to implement mean imputation with a 

dummy. 

4.2.5 Conditional mean imputation 

 In conditional mean imputation, missing values for some variable X are replaced by 

means of X conditional on other variables in the data set.  Typically these means are the 

predicted values from a regression of X on other covariates in the substantive model, although 

this restriction is not required.  However, if Y is included, results will be biased because of “over 

fitting” (Little 1992). We shall return to this point in the discussion of the approximate Bayesian 

bootstrap and Bayesian multiple imputation, both of which use Y in the imputation model. 

 Conditional mean imputation can also be implemented using fully observed covariates to 

stratify the data into a small number of imputation classes, such as the classes used for casewise 

reweighting.  A missing value on X for a given individual is then replaced by the observed 

conditional mean on X for the imputation class to which the individual belongs.  Predicted values 

from a regression will be the same as the observed conditional means of imputation classes when 

the regression covariates are discrete and fully interacted, and the imputation classes correspond 

to the cells of the saturated interaction defined by the regression model.18 

 For data on which conditional mean imputation has been used, linear regression 

coefficients in the substantive model are biased but consistent (Little 1992).  If Y in the 

                                                 
18 If X is dichotomous and coded 1 or 0, the imputed values are nonetheless fitted proportions.  For a given 
imputation class, this is equivalent to imputing the correct proportion of 1's and 0's. 
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substantive model is binary, and logistic regression is used, then the coefficient of the covariate 

containing imputed values tends to be attenuated regardless of sample size (see Appendix II for 

the outline of a proof).  In addition, estimated substantive models in which missing values have 

been filled in by conditional mean imputation will tend to under-estimate the standard errors of 

the regression coefficients, because the standard errors do not account for uncertainty in the 

imputed values. 

 Even in statistical packages that do not specifically implement conditional mean 

imputation, the technique can be straightforward to implement, requiring only a modeling step 

and an imputation step prior to “complete case” analysis.19  For the LAMP data we fit a logistic 

regression of the dichotomized household income variable on respondent's race/ethnicity, 

insurance status, general financial well-being (which does not refer to exact dollar amounts), and 

education.  (Apart from education, these covariates were used to create the weighting classes for 

our weighted casewise deletion analyses.)  Since by subsample selection (see Section 2), 

individuals missing on household income were not missing on the covariates, we then applied 

the coefficients to the covariate values for these individuals in order to generate predicted 

household income values.  Appendix I, section 5 contains the Stata code we used to implement 

conditional mean imputation. 

4.2.6  Hotdeck imputation 

 Mean imputation, with or without a dummy, produces a single imputed value that is an 

estimate of the expected values of the missing observations for a given X.  Similarly, conditional 

mean imputation produces imputed values that are estimates of the expected values of the 

missing data given the values of observed covariates.  If we actually observed any given missing 

data point it would tend to be close to its imputed value, but not exactly equal to it.  Hence, 
                                                 
19 Stata 8 implements conditional mean imputation via multiple regression in its “impute” command. 
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imputed values capture only a portion of the variability that would be observed were all the data 

present.  This complete data variability can be captured in the imputed values by using a 

technique that randomly selects between likely values, or through the addition of random errors 

to the (conditional) mean imputations.  Techniques that introduce a random component to 

imputation are said to be stochastic.  We discuss three:  hotdeck; Bayesian multiple imputation; 

and the approximate Bayesian bootstrap (ABB).  Typically, hotdeck imputation uses only a 

single random imputation for each missing observation.  The Bayesian and ABB approaches use 

multiple random draws to impute multiple possible values for each missing observation. 

 Hotdeck imputation (Brick and Kalton 1996) uses a random draw from an imputation 

class to fill in each missing datum.  Within each imputation class a missing observation on X is 

replaced by randomly sampling a single observed value of X (with replacement) from that class.  

Imputation classes for hotdecking are analogous to the weighting classes discussed for weighted 

casewise deletion and the strata used for conditional mean imputation. 

When macros or dedicated software are not available, the number of imputation classes 

typically is kept relatively small for tractability.  Too few classes will result in coefficient bias in 

the substantive model.  Too many classes will increase coefficient variability.  Little and Rubin 

(2002) suggest that three to five strata will often suffice. 

 When the missingness mechanism is MCAR or MAR and the imputation model is 

correctly specified—the imputation classes are based on all of the observed data for variables 

that correlate with X—hotdecking is thought to yield unbiased coefficient estimates.20  However, 

because only a single draw is made for a given individual missing on X, hotdecking under the 

stated condition is statistically inefficient. 

                                                 
20 Maximum likelihood estimation of a logistic regression model is nearly unbiased even when the data are fully 
observed (McCullagh and Nelder 1989, p. 455-456).  The claim is that under the asserted condition hotdecking does 
not contribute further bias. 
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 Again, as with the other techniques discussed in previous sections, analyzing the 

completed data (observed and imputed) with standard software will result in biased estimates of 

standard errors because the estimates do not take into account that the imputed data are a 

resample of the observed data rather than independently observed.21 

 Hotdecking is not a standard component of the major statistical packages, although 

macros are available for several.  Most packages have readily employed tools for randomization 

and internal sampling, which allow for straightforward programming of the technique. 

 For the LAMP data we performed a single hotdeck draw for each individual missing on 

household income, using the same 12 imputation classes introduced for the casewise re-

weighting example.  Appendix I, section 6 contains our Stata code for the implementation of this 

technique. 

4.2.7 Multiple Imputation 

The purpose of multiple imputations of each missing datum is to incorporate variability 

due to the imputation process into assessments of the precision with which the coefficients of the 

substantive model are estimated.  Rubin (1987) proposed a technique to do this.  The technique 

requires that the missing observations be imputed M times (Rubin (1996) indicates that M = 3 or 

M = 5 often suffices).  This creates M imputed data sets, each with a potentially different value 

for each missing datum on each case with missing data.  Using these M data sets, the analyst 

estimates the substantive model M times, once with each data set.  The final estimate for the kth 

of K regression coefficients in the substantive model is the average of that coefficient over the M 

regressions (Rubin, 1987).  The estimated standard error of that coefficient, however, is not just 

the average of the standard errors from the M models.  The standard error estimate combines the 

                                                 
21 Rao and Shao (1992) propose a variance correction for single stochastic imputation of a mean.  We experimented 
with a generalization of this technique to logistic regression.  While its complexity and difficulty of implementation 
place it beyond the scope of this paper, we found that it increased variance estimates to the expected order. 
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within-replicate uncertainty (averaged across the M regressions) with the between-replicate 

uncertainty (the difference across the M regressions).  More specifically, for 

m = 1,…,M, the standard error of a coefficient is obtained using 

 
2 2( ) ( )1

( )
1

m mSE b b bM
SE b

M M M
−+ = +   − 

∑ ∑  . 

 Simply averaging over the M estimates of a coefficient in the substantive model and 

plugging replications into the above formula for coefficient standard errors does not necessarily 

yield estimates with desirable properties.  Much depends on how the researcher imputes M times.  

A sufficient condition for unbiasedness is that the imputations be “proper” (Rubin 1987 pp. 116-

132).  If they are, then the coefficients averaged over the M imputations are unbiased and the 

above variance formula is accurate.  

The first requirement of proper imputation is that the coefficients of the imputation model 

must be (nearly) unbiased and consistent, and that the specification of the imputation model must 

be consistent with the posited mechanism of missingness.  In practice, this means (i) that the 

imputation model must be a “good” model for predicting missingness, and (ii) that if there is any 

association between the variable with missing data (X) and the outcome variable in the 

substantive model (Y), then Y must be included in the imputation model.22 

The second requirement of proper imputation is that it must capture the variability in the 

estimated parameters of the imputation model.  Repeated hotdeck draws, for example, do not 

constitute “proper” imputation because they do not capture population level uncertainty about the 

missing data, only sample level uncertainty.  A proper imputation model must be structured to 

                                                 
22 As Allison (2001:53) points out, in Bayesian multiple imputation and the approximate Bayesian bootstrap, the 
imputed values are not an exact function of Y and Z.  This stochastic aspect of the imputations removes part if not all 
of the objection to the inclusion of Y in the imputation model. 
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account for the variability in parameter estimates that would come from different samples drawn 

from the population that is implicit in the imputation of the missing data. 

4.2.7.1 Full Bayesian imputation 

Rubin (1987) develops a full Bayesian statistical model for making proper imputations; 

Schafer (1997a) provides a general approach to the computation of imputed values from this 

model.  If there is a consensual gold standard within the statistical profession for the treatment of 

missing data, then full Bayesian multiple imputation would seem to be that standard.23 

To apply this technique to the LAMP data, we used Schafer's (1997b) S-Plus function.  

Briefly, here is what Schafer's algorithm for discrete data did with the LAMP data.  First, it fit a 

saturated (fully interacted) log linear model based on all of the substantive model variables 

(including Y).  Using this model to specify the likelihood and minimally conjugate priors, the 

function explored the posterior distribution of the missing data using data augmentation (Tanner 

and Wong 1987; Schafer 1997a).  This procedure iterates between parameters and missing data 

imputations.  Specifically, in one cycle of the iterative procedure it produces random draws from 

the posterior distribution of the parameters and then, conditional on these parameter draws, 

produces draws for the missing values.  Each cycle depends on the updated data that were the 

result of the last step of the preceding cycle. 

We captured the draws of the missing data at every 100th iteration up to the 1,000th 

iteration.  That is, we saved 10 imputations.  Although three to five imputations can suffice, the 

number of required imputations increases as a function of the amount of missing data.  With 

more than 25 percent of the observations missing on household income, we chose to use 10 

imputations. 

                                                 
23 Western (1999) provides a helpful introduction to Bayesian statistics.  The journal issue in which Western's article 
appears is devoted to substantive examples of Bayesian statistics applied to social scientific research. 
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4.2.7.2 Approximate Bayesian bootstrap 

Full Bayesian multiple imputation is computationally intensive.  The approximate 

Bayesian bootstrap (ABB) is much less so, and can also provide proper multiple imputations 

(Rubin 1987; Rubin and Schenker 1986).24  In ABB imputation, M bootstrap samples of the 

nonmissing cases are created.  A bootstrap sample is a random sample drawn from the original 

sample with replacement that has the same number of observations as the full data set (Efron and 

Tibshirani 1993).  In ABB, the imputation model is estimated for each bootstrap sample, and 

missing values in the mth sample are imputed on the basis of the model estimates for that sample.  

Clearly, the coefficients of the imputation model will vary slightly over the M bootstrap samples.  

Rubin and Schenker (1986) show that under some conditions if the imputation model is “good” 

and includes Y, then ABB imputations are proper.  More generally, we expect that ABB will 

produce better estimates of coefficient standard errors in the substantive model than techniques 

that make no attempt to account for sampling variability in the imputation model, but cannot be 

certain that ABB is always fully proper. 

It is also possible to use ABB in a manner similar to hotdecking.  Suppose M bootstrap 

samples have been drawn.  Within each sample, let W be a (possibly proper) subset of Z, and 

suppose that {W} is a multiway cross-classification over the variables in W.  For multiple 

imputation hotdecking, ABB requires that the imputation classes be defined by {W} × Y.  That is, 

{W} must be stratified by Y.  With imputation classes so defined, and with M bootstrap samples, 

hotdecking becomes an instance of the approximate Bayesian bootstrap. 

                                                 
24 Schafer and Schenker (2000) propose a technique that is equivalent to what we describe as conditional 

mean imputation in section 4.2.5, with the addition of a variance correction.  We do not consider this technique here, 
because it is effectively an algebraic generalization of ABB that short-cuts some of the calculations. 
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Bayesian bootstrapping requires an algorithm to generate the bootstrap samples (these are 

available either as features or as contributed macros in a number of standard packages).  The 

imputation model is then estimated separately for each sample, and the analyst assembles the 

results from the M replicate analyses as described in section 4.2.7.25  

For the LAMP data we used ABB to generate 10 imputed values for each missing datum, 

again because more than 25 percent of the observations are missing on household income.  Our 

imputation model consisted of an additive logistic regression of dichotomously defined 

household income on ethnicity, insurance status, general household well-being and 

mammography compliance status.  This model was estimated on each of the 10 samples 

bootstrapped from the LAMP data. 

For each case missing on household income, we compared fitted probabilities from the 

regression model with a uniformly distributed random number over the interval 0–1.  If the 

random number was smaller than the fitted probability, missing household income was imputed 

to be 1; otherwise it was imputed to be 0.  Appendix 1, section 7 contains our Stata code for the 

implementation of ABB. 

5.  Application of Missingness Techniques to the LAMP Data 

 We next present the results of applying the eight missingness techniques we have 

described to the LAMP data.  Table 2 presents eight versions of a logistic regression of 

mammography compliance using the LAMP data.  The regressions are identically specified, but 

each is based on a different missingness technique.  No perusal of these regressions can reveal or 

verify the properties of the different techniques.  The data are real; we do not know with 

certainty whether the missingness mechanism is MCAR, MAR, or nonignorable; we do not 

know the true imputation model; nor are we certain that the substantive model is perfectly 
                                                 
25 For users of Stata this process is made more straightforward by Paul's (1998) macro. 
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specified.  The exercise is nonetheless of value for two reasons.  First, it enables us to ask 

whether the choice of missingness technique matters with a genuine data set that has been used 

for policy research.  Second, the exercise reveals important features of the data that can be used 

to construct simulation exercises that are firmly rooted in reality. 

Insert Table 2 Here  

 For the LAMP data, several conclusions are apparent: 

1. How missing data are treated affects substantive conclusions:  In regressions 1–2, for 

case and weighted case deletion, the coefficients for doctor's race/ethnicity and 

respondent's education and marital status are not significant.  In the regressions based 

on the other missingness techniques, these coefficients are significant. 

2. The coefficient for dichotomized household income, the sole variable with 

missingness, is not significant in any regression.  However, this coefficient is similar 

across regressions 5–8, which use conditioned imputation. 

3. When household income is mean imputed (regressions 3–4), its coefficients are 

smaller, which suggests attenuation. 

4. All of the techniques that impute missing data (regressions 3-8) produce similar 

coefficients and standard errors except for household income and the intercept.  

 The results presented in Table 2 will not support the conclusion that any missingness 

technique has performed better than any other.  To emphasize the indeterminacy of this 

examination of the LAMP data, conceivably the case deletion results might be preferable to 

those of the other methods if the missingness mechanism is nonignorable.  Indeed, Allison 

(2001, p. 7) suggests that case deletion may outperform multiple imputation techniques when 
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missingness is nonignorable.  In an attempt to resolve questions of this kind, we turn next to 

simulations based on the LAMP data. 

6.  Simulations  

 We report on two simulation studies.  Both are based on the LAMP data; in that sense the 

simulations are realistic.   In the first series, we generated simulated samples in order to study the 

performance of missingness techniques when dichotomized household income is missing.  In the 

second series, we treated the enthusiasm with which the respondent's doctor supported 

mammography screening as the variable subject to missingness. 

 The simulations based on missing household income developed as an outgrowth of the 

substantive research reported by Fox et al. (1998).    Our primary motivation was to assess the 

extent to which the earlier substantive findings depended on the missingness technique employed 

(ABB was used by Fox et al. 1998).  A secondary motivation was to examine the impact of the 

choice of missingness technique on coefficients of covariates that had no missingness, given an 

X with missingness that is weakly related to Y.  We turn next to the household income 

simulations. 

6.1 Household income simulations  

 To generate a “population” that is similar to the LAMP data, we began with the 1,119 

observations in the LAMP data set that are complete except for household income.  Using the 

857 = 1,119 – 262 complete cases we fit a logistic regression with household income as the 

response, and compliance status; race/ethnicity; insurance status; and general household well-

being as covariates.  For the 262 cases missing on household income, we imputed using a 

procedure analogous to the procedure used in ABB (section 4.2.7.2).  Thus, we imputed by 

comparing random draws over the 0–1 interval with the predicted probabilities from the logistic 
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regression.  If, for a given case, the random draw was greater than or equal to the predicted 

probability, income was imputed to be 1; if less, income was imputed to be 0.  The originally 

nonmissing cases, together with the cases for which household income was imputed, constitute 

the population for the simulation exercise. 

 We generated 1,000 fully observed bootstrap samples from the population defined above.  

Because the within-church intraclass correlation in the original data was quite modest, we did not 

resample within churches.  Thus, we treat each bootstrap sample as though it is a simple random 

sample.  

 For each of the 1,000 fully observed bootstrap samples, we created four samples with 262 

cases of missingness on household income for a random subsample of observations.  The four 

samples correspond to different missingness mechanisms: missing completely at random 

(MCAR); missing at random (MAR); missing not at random (MNAR) with probability of 

nonresponse weakly related to household income; and MNAR with probability of nonresponse 

moderately related to household income.  Appendix III, section 1, supplies further details on the 

realizations of the missingness mechanisms in the data sets.   In essence we used a balanced 

design to which, for a given sample and missingness mechanism, we applied seven missingness 

techniques.  For each of the missingness technique by missingness mechanism combinations we 

estimated the substantive model for mammography compliance using logistic regression. We did 

not apply full Bayesian multiple imputation in the household income missingness simulations for 

data management and programming reasons that are now largely historical.26 

                                                 
26 Although it was feasible to use Schafer's S-Plus function in the one-off analysis of the original data, we carried out 
our simulation studies using Stata.  The use of two statistical systems would have complicated data management of 
the simulations to an unacceptable degree.  For the doctor enthusiasm simulations we wrote our own Stata code for 
full Bayesian multiple imputation.  Because it is not easily generalized, we have not included this code in an 
appendix. 
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 When missingness is MAR, the imputation regression model (or imputation classes) in 

the simulations always includes the variable used to create missing data (whether a respondent is 

Hispanic), as well as other variables.  In this sense the imputation models are comparable, 

although not identical, across missingness techniques.  The same point holds for the 

nonignorability cases, when household income as well as whether a respondent is Hispanic is 

used to create missing data. 

Figure 1 summarizes results based on the 28,000 (4 × 7 × 1,000) regressions in terms of 

absolute bias, where bias is defined relative to the complete data sample for each iteration (what 

you would have found had there been no missingness in your sample), and not the “population” 

without sampling.27  The first column summarizes the performance of each missingness 

technique for each missingness mechanism.  The entries in column one are defined as averaged 

percent bias over all of the coefficients in the regression.  Because bias can be positive for one 

coefficient and negative for another, we use the absolute value of the percent bias for each 

coefficient and present the mean over all coefficients.   

Specifically, let ptb  denote the estimated coefficient for the pth of P covariates (P = 10) 

in the logistic regression fit to the tth of T bootstrap samples (T = 1,000) of the fully observed 

data.  For the jth missing data mechanism and the kth missing data estimation technique, let ptjkb  

denote the estimate of the pth coefficient of the substantive model fit to the jt th subsample with 

missingness (there are four such subsamples for the tth bootstrap sample)  using the kth 

estimation technique.  The percent bias for the coefficient of the pth covariate is then 

( )
100 ptjk ptt
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b b
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b
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27 Because we cannot be certain that the substantive model is perfectly specified, both bias due to specification error 
and bias due to missingness technique may be present in these results. 
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where pjkBB is the coefficient bias for a specific covariate normed as a percentage.  The pjkBB  

are calculated for each covariate and their absolute values are averaged over all P.  Thus, the 

entries in column one are 

(1/ )jk pjkp
BB P BB= ∑ .                                                (1) 

 

 Column two of Figure 1 displays the percent bias in coefficient standard error estimates.  

Because the application of most missingness techniques leads to standard error estimates that are 

too small, we have defined percent bias in the standard errors so that more extreme under-

estimation will result in a larger positive percent bias. 

 For the pth covariate, jth missingness mechanism and kth estimation technique, let pjks  

denote the standard deviation of the ptjkb .  That is,  
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Let ptjkse  denote the estimated standard error for the pth coefficient from the logistic regression 

fit to the tth bootstrap sample subjected to the jth missingness mechanism, using the kth 

missingness technique.  In other words, ptjkse  is the usual standard error based on the 

information matrix of the regression for a given data set.  The percent bias in standard error 

estimates for the pth covariate is 
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where .p j kse  is the average of the estimated standard errors over the T replicates.  The entries in 

column two of Figure 1 are then defined to be 
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. (1/ )jk pjkp
BSE P BSE= ∑ .                                                 (2) 

Column three in Figure 1 displays inflation in the variance of the coefficient estimates 

due to missingness, as a function of the missingness mechanism and the missingness technique.  

Let ps  denote the standard deviation of the ptb , the estimate of the pth coefficient in the tth 

bootstrap sample of the complete data, that is, 
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The percent inflation of variance for the pth coefficient and the jkth combination of missing data 

mechanism and missing data technique is defined as 
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Large values of pjkVI  indicate that missing data results in substantially more variable parameter 

estimates, conditional on a given combination of mechanism and technique.  The entries in 

column three of Figure 1 contain the average of the absolute values of the pjkVI  over all the 

coefficients in the substantive model for a particular jk combination: 

. (1/ )jk pjkp
VI P VI= ∑ .                                                 (3) 

Insert Figure 1 Here  

 The results for the simulation of missing household income weakly conform, at best, to 

the performance expectations of the different missingness techniques under different missingness 

mechanisms summarized in Table 1.  With respect to coefficient bias, casewise deletion is the 

least adequate performer, except in the MCAR case.  Standard errors for casewise deletion are 
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only moderately biased, but the loss of sample size drives variance inflation to a degree of 

inefficiency matched only by weighted casewise deletion. 

 Coefficient bias for weighted casewise deletion increases with departure from the MCAR 

mechanism, with modestly biased standard errors but highly inflated variances.  Again, the 

smaller sample size due to deletion of cases affects efficiency. 

 The three mean imputation techniques perform roughly identically to each other, and all 

are essentially unaffected by missingness mechanisms.  In contrast, the two stochastic imputation 

mechanisms perform least adequately.  Coefficient bias is greatest for the approximate Bayesian 

bootstrap, especially when missingness is MCAR.  The relatively large average bias in this case 

is due primarily to an unusual degree of bias in the coefficient of the variable for which missing 

values were imputed—dichotomized household income.  The approximate Bayesian bootstrap 

also has the largest standard error bias, although for both stochastic imputation techniques 

variance inflation is nil. 

 In sum, the results of the household income simulations are puzzling, because the 

techniques we expected to provide the best results performed relatively poorly.  We were 

concerned that these results were just a fluke, or were in part a strange artifact of the real 

covariance structure of income with the other variables in the analysis.  To alleviate both these 

fears, we decided to increase the number of simulation iterations, and to simulate missingness on 

doctor's enthusiasm for mammography screening instead of on income.  Fox et al. (1994) note 

that physician enthusiasm for mammography is the single strongest predictor of mammography 

screening compliance.  In our earlier LAMP data analysis (Table 2), this variable has a sizable 

and significant effect regardless of missingness technique, which is not the case for income. 
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6.2  Doctor enthusiasm simulations  

 For the physician enthusiasm missingness simulations we followed the strategy outlined 

for household income missingness, with these differences:  (i) the number of simulations was 

increased to 5,000; (ii) the MNAR cases were increased from two to three—“low,” “medium,” 

and “high;” and (iii) the list of missingness techniques was extended to include full Bayesian 

imputation.  Appendix III, section 2, supplies details specific to the construction of the 

simulations for doctor enthusiasm.  In the balance of this subsection we describe results for 

different missingness techniques, and briefly discuss those for mean imputation with a dummy.  

In the following section, we discuss the results for case deletion and Bayesian multiple 

imputation. 

 Figure 2 summarizes results based on the 200,000 (5×8×5,000) regressions using the 

summary statistics previously described for Figure 1.  In these physician enthusiasm missingness 

simulations, casewise deletion yields unbiased coefficients only in the MCAR case.  For other 

missingness mechanisms, casewise deletion is a poor performer using the criterion of coefficient 

bias.  For all of the missingness mechanisms, casewise deletion is inefficient.  Weighted 

casewise deletion, however, shows virtually no coefficient bias in the MCAR and MAR cases, 

but is also inefficient. 

 With respect to coefficient bias, the major divide for these simulations is between the 

case deletion and imputation techniques.  For all of the imputation techniques, coefficient bias is 

less than for the case deletion techniques as nonignorability increases.  All of the imputation 

techniques have lower variance inflation, because the case deletion techniques are based on 

fewer observations. 



What should we do about missing data? Page 32 of 60 

 

miss_pap_final_24oct03.doc Last revised 10/24/03 

 

 Among the imputation techniques, mean imputation with a dummy performs well under 

most conditions.  It should not (Jones 1996).  That it does is more a reflection of the particular 

details of our setup than it is an indication of the inherent properties of mean imputation with a 

dummy.  Specifically, the result is a consequence of treating X as a binary coded covariate in 

conjunction with the way we induced MNAR in the missingness on X.  As described in 

Appendix III, we increased the degree of nonignorability across the three MNAR conditions 

(low, medium, high) by increasing the odds ratio between X and D (the missingness dummy).  

Doing so increases the concentration of missingness at X=0.    Since X is binary, the impact of 

the way in which we induce increased nonignorability is to impute with increasing accuracy the 

typical missing value of X as nonignorability increases.28  Presumably the result observed here 

for mean imputation with a dummy will occur in other situations in which missingness is 

concentrated at a single value of X, regardless of whether X is discrete or numerically scaled. 

 Among the imputation techniques, conditional mean imputation has coefficient bias on 

par with that of hotdecking and the approximate Bayesian bootstrap, and slightly better than that 

of full Bayesian multiple imputation.  Its standard error bias is also modest and stable across 

missingness mechanisms, and its variance inflation is also quite modest.  Hotdecking also 

performs well, and although its standard error bias is the largest found for the imputation 

techniques, the levels of bias are modest. 

 Of the two multiple imputation techniques, the approximate Bayesian bootstrap is 

essentially on par with full Bayesian imputation.  Both perform well, but with respect to 

coefficient bias, they do not exceed the performance of conditional mean imputation and 

hotdecking. 

                                                 
28 This conclusion hinges on the concentration of missingness at a single value of X.  The particular imputed value of 
“mean imputation with a dummy” is irrelevant.  Any value will do; inclusion of the missingness dummy in the 
substantive regression will compensate for error. 
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7. Discussion of doctor enthusiasm simulations  

7.1  Casewise and weighted casewise deletion 

 Casewise deletion performs as expected for the MCAR case:  There is little or no 

coefficient bias, the coefficient standard errors are large, and variances are inflated.  Under the 

MAR condition, however, casewise deletion performs poorly—worse than any other technique 

considered.  Allison (2001) suggests that under widely occurring MAR conditions casewise 

deletion will perform well.  We had the same expectation, rechecked our work, and found no 

error that could account for the result.  If we were dealing with a linear model problem, it would 

follow that either the MAR mechanism required an association between missingness on X and 

values of Y, or that the substantive model was not perfectly specified (Jones 1996).  Our setup 

involves logistic regression.  To provide at least partial evidence in support of intuition, we ran 

simulations to determine if the same conclusions would hold for the logistic regression case.  In 

these simulations, we found virtually no difference in conclusion between results for ordinary 

least squares and those for logistic regression.  From this we infer, since we controlled the MAR 

mechanism and it did not depend on Y, that the substantive model was imperfectly specified. 

 It will not have escaped notice that we could not have reached this conclusion with the 

original data; the simulations were essential.  The substantive model was plausible and arrived at 

through reasoned consideration and data analysis.  It passed a test of peer review.  This 

substantive model is hardly exceptional, and seems as well specified as many.  From this we 

infer that other substantive models, promulgated by other researchers for other problems and 

other data, are also susceptible to misspecification.  We conjecture that application of case 

deletion will not often lead to favorable results. 
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 Our sense of the “fragility” of casewise deletion is reinforced by further simulations we 

carried out in response to the casewise deletion results summarized in Figure 2.  Specifically, we 

ran simulations based on substantive models that included a variety of interactions involving 

doctor enthusiasm by length of relationship with the respondent; doctor enthusiasm by doctor 

ethnicity; and a number of interactions with respondent ethnicity.  Even with these interactions, 

the coefficient bias for case deletion in the MAR case was virtually identical with that seen 

originally.  We infer that the model misspecification is not the result of omitted interactions, but 

omitted variables.  In the realm of nonexperimental research it is difficult to think of a more 

common misspecification problem than the omission of relevant covariates. 

 Weighted casewise deletion performs well in the MCAR and MAR cases, with respect to 

coefficient bias, as it was expected to.  Recall that the MAR mechanism is not directly 

conditioned on Y.  Thus, the difference in performance of casewise and weighted casewise 

deletion can not be due to the broader range of conditions under which weighted case deletion 

will yield unbiased estimates in the substantive model.  Rather, the results summarized in Figure 

2 lead to the inference that the weights correctly capture the components of the missingness 

model. 

 With increasing MNAR, the performance of weighted casewise deletion deteriorates.  

This should not be surprising.  The weights are less able to capture the distribution of the 

observations without missingness because the weights increasingly diverge from the missingness 

model as X plays an increasingly important role in determining missingness, or in other words, as 

the factors determining missingness are increasingly located outside the data. 
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7.2 Imputation techniques 

 The performance of most imputation techniques when the missingness mechanism is 

MCAR, MAR, or moderately MNAR is unsurprising.  Attempts to impute missing values based 

on an assumed missingness mechanism that is incorrect in a given instance should result in 

coefficient bias.  Similarly, when an imputation model does not perfectly capture the missingness 

mechanism but is close, there should be some residual coefficient bias.  

 We were unprepared for the performance of imputation methods when missingness is 

MNAR, let alone when it is highly MNAR.  Theoretically, none of these techniques is 

appropriate when missingness is MNAR.  To be sure, with the exception of mean imputation 

with a dummy (explained above), coefficient bias increases with increasing MNAR.  Yet, for all 

of the imputation techniques considered here that attempt to model missingness (conditional 

mean imputation, hot decking, Bayesian bootstrap, and full Bayesian multiple imputation), 

coefficient bias increases only a small amount as missingness becomes increasingly MNAR, 

relative to bias under the MAR condition.   Also unexpected is the performance of Bayesian 

multiple imputation.  With respect to coefficient and standard error bias, this technique 

performed no better than the other imputation techniques.  We expected the simulations to 

demonstrate virtually unbiased coefficients and standard errors under the MCAR and MAR 

conditions.   What went wrong?  

 It turns out that the Bayesian multiple imputation model we implemented based on 

Schafer's (1997) algorithm is vulnerable to a problem known as “semi-complete separability.”  

To function, the imputation scheme iteratively forms tables of frequencies of |{ }X Y Z× , where 

there are, for our setup, four possible outcomes for X—high income, low income, missing, or 

empty.  The empty outcomes do not pose a problem; they simply correspond to { }Y Z×   
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combinations for which there are no data.  The problem arises for { }Y Z×  combinations for 

which there are data on X, and for which the data consist of at least one respondent with 

missingness as well as at least one respondent with no missingness, but for whom all instances 

are the same on X (either all high income or all low income in this instance) for a given { }Y Z×  

combination.      

 In the algorithm we used, it is necessary to iteratively compute probabilities for missing 

elements based on the observed frequencies of X in a given cell.  However, in a semi-completely 

separated cell, the observed cell proportion is zero for one of the two possible values for any 

missing elements.  The algorithm chooses a nonzero value for that estimated probability based 

on the cell size and on the minimal conjugate prior specified in the model.  In our simulations, 

that specification results in consistent over-estimation of the probability of the unobserved 

available value appearing in a missing element.  If this happened once or twice the consequences 

would be minimal.  However, the low density of cases over the entire set of covariate 

combinations results in so many semi-completely separated cells that the bias becomes 

noticeable and considerable. 

 This was not an obvious problem to us.  We expected the simulations to demonstrate the 

general superiority of Bayesian multiple imputation.  Before considering alternative explanations 

of the bias, we scrutinized our code, certain that the problem must be due to our error. 

 Had this not been a simulation study in which we had access to the “true” coefficients, we 

would never have suspected a problem.  Further, the solution to the problem is not obvious.  

There would seem to be two possible strategies.    First, one could specify a different set of priors 

that would not induce bias in semi-completely separated cells.  While attractive, this is hard to do 

in practice, and would require unimaginable personal knowledge of the data and the mechanism 
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of missingness, and would certainly preclude use of a generic “black box” multiple imputation 

algorithm such as the one we used.  The second strategy is to eliminate the occurrence of semi-

complete separability.  This could be accomplished by reducing the complexity of the model.  

For example, had we been imputing from a fully interacted log- linear model based on 

|{ *}X Y Z× , where Z* is a judiciously chosen subset of Z,  we probably could have avoided 

semi-complete separability, but to do so we might  have had to use an imputation procedure that 

failed to include all of the covariates in the correct (i.e., “ true” imputation regression) model.    

 To put the problem another way:  We had what was thought to be the “correct” 

imputation model, but it “over-taxed” the data.  To stay within the limits of the data, we would 

have to reduce the imputation model, which might mean that we no longer had the correct model.  

We would not know whether we did.  Further, we would have no obvious means to discern how 

far from “correct” our reduced model was. 

 It is true that if the researcher has a single, real data set, it is possible to observe whether 

the imputation process is encountering semi-complete separability.  It did not occur to us to 

check for this possibility when using our own code, and Schafer’s code does not provide the 

necessary window.  Researchers intent on multiple imputation are advised to be aware of the 

need to check for semi-complete separability.  But even if checking is done, how much semi-

complete separability is too much?  Further, if one decides to simplify the imputation model to 

eliminate semi-complete separability, then it is necessary to enter the realm of model uncertainty.  

Here the question is, how does one know when the imputation regression specification is “good 

enough?” 
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8. Conclusion 

 Based on our simulation analysis we find that casewise deletion is particularly vulnerable 

to imperfections in the substantive model.  Even in cases where missingness is thought to be         

MAR and the assumptions of case deletion appear to be satisfied, imperfections in the 

substantive model that are commonly viewed as minor by substantive researchers can result in 

considerable coefficient bias.   Weighted casewise deletion in our simulations performs well with 

respect to coefficient bias in the MAR case, but performance deteriorates as missingness 

becomes MNAR.  As with casewise deletion, the simulations demonstrate the inefficiency of 

weighted casewise deletion.  Unless there is strong reason to believe that missingness is MCAR 

in a given situation, the simulations suggest that neither form of casewise deletion should be a 

first choice. 

 If the analyst is able to arrive at a defensible imputation model based on other variables 

and using conditional mean imputation; hot decking; the approximate Bayesian bootstrap; or full 

Bayesian multiple imputation, it is possible to obtain results with mild coefficient bias—even, 

surprisingly, when missingness is somewhat MNAR.  Unfortunately, there is a caveat, which is 

that there is a need for a reasonably well-specified model of missingness, and a similarly well-

specified imputation model.  The imputation of missing values is a substantive data analysis 

problem deserving no less attention than the substantive problems that attract analysts to data in 

the first place.  Misspecification of the imputation model can result in a degree of coefficient bias 

that is as bad as, or worse than, that produced by case deletion. 

 This problem of possible imputation model misspecification is not easily solved.  A 

technique which purports to take care of imputation modeling for the analyst by making use of 

all available covariates and their relationships (Bayesian multiple imputation) can exceed the 
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limits of the data  by creating a situation with extensive semi-complete separability.  If the model 

is constrained so that it does not over-tax the data, there is then a risk that the imputation model 

is incorrect. 

 What, then, should we do about missing data?  Our simulation results suggest that there 

are important issues to be resolved in the implementation of the leading technical solution via 

imputation.  These results also suggest that conditional mean imputation is not easily dismissed.  

That we have examined only an extremely limited subset of the potential situations posed by real 

data cannot, in our view, be taken as grounds for ignoring our findings. 
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Table 1.  Apparent Properties of Techniques for Missingness by Mechanisms of Missingness 
  

Mechanism* 
Technique MCAR MAR 
Casewise deletion b: 

SE(b): 
Var(b): 

Unbiased 
Valid for sample of reduced size 
Inflated by sample reduction 

b: 
SE(b): 

Var(b): 

Unbiased under certain conditions 
Valid for sample of reduced size 
Inflated by sample reduction 

Weighted casewise     
deletion 

b: 
SE(b): 

Var(b): 

Unbiased 
Valid for sample of reduced size 
Inflated by sample reduction 

b: 
SE(b): 

Var(b): 

Unbiased 
Valid for sample of reduced size 
Inflated by sample reduction; uneven 
weights can also increase variance 

Mean imputation b: 
SE(b): 

Var(b): 

Biased 
Biased downward 
Deflated 

b: 
SE(b): 

Var(b): 

Biased 
Biased downward 
Deflated 

Mean imputation with 
dummy 

b: 
SE(b): 

Var(b): 

Potentially biased, extra coefficient 
Biased downward 
Deflated 

b: 
SE(b): 

Var(b): 

Potentially biased, extra coefficient 
Biased downward 
Deflated 

Conditional mean 
imputation 

b: 
SE(b): 

Var(b): 

Nearly unbiased 
Biased downward 
Deflated 

b: 
SE(b): 

Var(b): 

Nearly unbiased 
Biased downward 
Deflated 

Hotdeck b: 
SE(b): 

Var(b): 

Unbiased 
Biased downward 
Inflated 

b: 
SE(b): 

Var(b): 

Unbiased 
Biased downward 
Inflated 

Approximate Bayesian 
bootstrap 

b: 
SE(b): 

Var(b): 

Unbiased 
Unbiased 
Accurate 

b: 
SE(b): 

Var(b): 

Unbiased 
Unbiased 
Accurate 

Full Bayesian b: 
SE(b): 

Var(b): 

Unbiased 
Accurate 
Accurate 

b: 
SE(b): 

Var(b): 

Unbiased 
Unbiased 
Accurate 

*Nonignorable missingness mechanism:  All techniques produce biased coefficients when missingness is nonignorable. 
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Table 2. Logistic Regression of Mammography Compliance Status Under Various Treatments of Missing Data for Household Incomea 
 (1) (2) (3) (4) (5) (6) (7) (8) 
  

Case 
Deletion 

Weighted 
Case Deletion 

Mean 
Imputation 

Mean 
Imputation 

with Dummy 

Conditional 
Mean 

Imputation Hot Deck 
Bayesian 
Bootstrap Bayesian 

Constant -.49 
     (-1.92) 

  -.50 
(-1.94) 

-.38 
(-1.49) 

-.38 
     (-1.48) 

 -.49 
(-1.99) 

  -.49 
(-2.07) 

  -.38 
      (-1.55) 

  -.38 
(-1.52) 

MD Enthusiasm   .77 
(4.16) 

   .71 
 (3.23) 

.89 
(6.17) 

 .90 
      (6.22) 

   .89 
 (6.08) 

  .88 
(5.97) 

  .89 
(6.12) 

   .88 
 (6.05) 

HH Income > $10,000                        .26 
      ( 1.22) 

  .39 
 (1.87) 

.15 
(.68) 

.14 
(.67) 

   .29 
 (1.36) 

  .29 
(1.55) 

  .26 
(1.27) 

   .35 
 (1.81) 

High School Graduate          .31 
      (1.25) 

  .32 
 (1.18) 

.53 
(2.39) 

        .54 
     (2.43) 

  .48 
(2.12) 

 .50 
      (2.25) 

.51 
     (2.25) 

  .49 
(2.14) 

MD Asianb          -.26 
      (-1.32) 

  -.31 
 (-1.69) 

-.37 
(-2.17) 

        -.37 
     (-2.16) 

  -.38 
(-2.20) 

  -.37 
(-2.17) 

-.38 
     (-2.18) 

  -.38 
(-2.18) 

MD Hispanicb  -.22 
 (-.71) 

  -.28 
  (-.81) 

-.56 
(-2.56) 

        -.57 
     (-2.57) 

  -.56 
(-2.53) 

  -.57 
(-2.53) 

-.57 
     (-2.55) 

   -.57 
(-2.52) 

Same MD 1+ years    .58 
 (3.14) 

   .49 
 (2.53) 

.49 
(2.66) 

          .49 
(2.66) 

   .49 
(2.62) 

    .49 
  (2.63) 

 .49 
      (2.63) 

    .49 
 (2.62) 

Married    .22 
 (1.60)   

   .25 
  (1.73) 

.30 
(2.54) 

          .30 
(2.54) 

  .28 
(2.39) 

   .29 
 (2.46) 

 .29 
      (2.39) 

   .27 
 (2.29) 

Medical Insurance        1.19 
(3.88) 

  .77 
(2.57) 

.90 
(2.95) 

.90 
     (2.95) 

 .88 
(2.91) 

  .88 
(2.88) 

        .88 
     (2.88) 

 .88 
      (2.88) 

Hispanic    -.27 
  (-.94) 

  -.32 
(-1.11) 

-.45 
(-1.69) 

-.47 
     (-1.71)   

  -.42 
      (-1.54) 

  -.42 
(-1.53) 

        -.42 
     (-1.55) 

  -.41 
 (-1.49) 

Missingness Dummy 
   

          .05 
 (.36)     

N 857 857 1,119 1,119 1,119 1,119 1,119 1,119 
Source:  Los Angeles Mammography Promotion in Churches Program, baseline survey. 
Note:  Numbers in parentheses are ratios of coefficients to standard errors estimated using the sandwich estimator modified to take into account the 
clustered sampling design.  Where multiple imputation is used, application of the modified sandwich estimator takes place separately for each imputed 
data set. 
aThe response variable is defined as Y = 1 if the respondent is in compliance, = 0 otherwise. 
bThe reference category is “MD of other race/ethnicity.” 
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Figure 1. Observed Bias of Estimates from Simulation of Missing Income (N=1000) 
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Figure 2. Observed Bias of Estimates from Simulation of Missing MD Enthusiasm (N=5000) 
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Appendix I:  STATA code for various technique implementations  
 
 
All programs assume that the data are loaded, and the following options are in place: 
#delimit ; 
version 5.0; 
 
For reference, variables in use throughout Appendix I: 
newrace = a race/ethnicity variable, coded white, black, or Hispanic. 
goodhse = indicator whether or not respondent reported “good” or better on a question about the 
general financial well-being of their household without actual dollar amounts. 
noinsur = indicator that respondent had no insurance. 
comply = indicator of mammography compliance status (1=yes, 0=no). 
hispvb_w = indicator, respondent is Hispanic. 
partner = indicator, respondent lives with partner or spouse. 
dr1_more = indicator, respondent has seen same physician for one year or more. 
dr_hisp = respondent's physician is Hispanic. 
dr_asian = respondent's physician is Asian. 
dropout = respondent is a high school dropout. 
inc10 = respondent's household income is > $10,000. 
enthu = respondent's physician is enthusiastic about mammography. 
chid = the church id number assigned to each church; data were sampled within church clusters. 
 
2. Weighted Casewise Deletion 
 
tempfile miss2 miss2x ; 
 
sort newrace goodhse noinsur; 
save `miss2', replace ; 
 
g obser = 1 if inc10 ~=.; 
g miss = 1 if inc10==.; 
 
collapse (sum) obser miss , by (newrace goodhse noinsur); 
 
g cell = 1 + (miss/obser); 
drop obser miss; 
sort newrace goodhse noinsur; 
save `miss2x', replace; 
use `miss2', clear; 
merge newrace goodhse noinsur using `miss2x'; 
 
logit comply hispvb_w noinsur partner dr1_more dr_hisp dr_asian 
dropout inc10 enthu [pweight=cell], cluster(chid)   ; 
 
end; 
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3. Mean Imputation 
 
sum inc10 ; replace inc10 = _result(3) if inc10==.; 
 
logit comply hispvb_w noinsr partner dr1_more dr_hisp dr_asian 
dropout inc10 enthu ,cluster(chid)   ; 
 
end; 
 
 
4.  Mean Imputation with a Dummy 
 
* the dummy will be called “misser”; 
g misser = 0; 
replace misser = 1 if inc10==.; 
 
sum inc10 ; replace inc10 = _result(3) if inc10==.; 
 
logit comply hispvb_w noinsr partner dr1_more dr_hisp dr_asian 
dropout inc10 enthu misser ,cluster(chid) ; 
 
*leaves an extra variable in the regression; 
 
end; 
 
 
5.  Conditional Mean Imputation (Regression) 
 
xi: logit inc10  i.newrace dropout noinsur goodhse  ,cluster(chid)  ; 
 
predict predent; 
 
replace inc10=predent if inc10==. ; 
 
logit comply hispvb_w noinsr partner dr1_more dr_hisp dr_asian 
dropout inc10 enthu ,cluster(chid)     ; 
 
end; 
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6. Hotdeck 
 
* Because we are hotdecking a binary (0,1) variable, we needn't actually draw within strata, just 
calculate the relative frequencies of 0s and 1s in each strata, then randomly assign values based 
on those probabilities (mathematically equivalent to actual hot-deck drawing); 
 
tempfile miss2 miss2x ; 
 
sort newrace goodhse noinsur; 
save `miss2', replace ; 
 
g obser = 1 if inc10 ~=.; 
g inctemp = 1 if inc10==1; 
 
collapse (sum) obser inctemp , by (newrace goodhse noinsur); 
 
g prob = (inctemp/obser); 
drop obser inctemp; 
sort newrace goodhse noinsur; 
save `miss2x', replace; 
use `miss2', clear; 
merge newrace goodhse noinsur using `miss2x'; 
 
qui g shooter = uniform(); 
replace inc10 = 1 if shooter <=prob & inc10==.; 
replace inc10 = 0 if shooter > prob & inc10==.; 
 
logit comply hispvb_w noinsr partner dr1_more dr_hisp dr_asian 
dropout inc10 enthu ,cluster(chid); 
 
end; 
 
7.  Approximate Bayesian Bootstrap 
 
*First  we write a little program that will iterate the imputations.  It needs to be in memory before 
the data are called and the rest of the code is run; 
 
qui program define dogo ; 
version 5.0; 
local I = 1 ; 
while `I' < 10  {; 
use bayes, clear; 
 
bsample ; 
 
xi: logit inc10 i.newrace goodhse noinsur comply, cluster(chid) ; 
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use bayes, clear; 
predict inc10`I'y; 
replace shooter = uniform(); 
replace inc10`I'y = 0 if inc10`I'y <= shooter; 
replace inc10`I'y = 1 if inc10`I'y >  shooter; 
replace inc10_0`I' = inc10`I'y if inc10==.; 
save bayes, replace; 
local I = `I' + 1   }; 
end; 
 
 
*Now that that is ready, we can begin; 
*add appropriate data call here; 
use LAMP.dta, clear; 
 
qui g shooter = uniform(); 
xi: logit inc10 i.newrace goodhse noinsur comply, cluster(chid) ; 
* this initial line primes all the variables for the little program above, which is called in two more 
lines; 
save bayes, replace  ; 
 
qui dogo; 
 
* We would be done imputing at this point, but the 10th iteration requires a special syntax for 
implogit.  If you do fewer than 10 imputations, this wouldn't be necessary.; 
 
use bayes, clear; 
bsample; 
xi: logit inc10 i.newrace goodhse noinsur comply, cluster(chid) ; 
 
use bayes, clear; 
 
predict inc10tp; 
qui replace shooter = uniform(); 
replace inc10tp = 0 if inc10tp <= shooter; 
replace inc10tp = 1 if inc10tp >  shooter; 
replace inc10_10 = inc10tp if inc10==.; 
 
*Now each observation has 10 income variables, inc10_01 through inc10_10.  For fully 
observed cases, all 10 are identical.  For cases where income was missing, they (can) vary across 
the 10.  Since the data are now imputed, all that remains is to run 10 regressions, capture and 
average the coefs, and capture and adjust the errors.  implogit does this for us: ; 
 
implogit comply hispvb_w noinsr partner dr1_more dr_hisp dr_asian 
dropout enthu inc10_01      , impno(10) cluster(chid)   ; 
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*implogit is an .ado file that can be found in Stata Technical Bulletin #45, and which can be 
downloaded from http://www.stata.com ; 
 
end; 
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Appendix II:  Consistency of estimates for  
conditional mean imputation in logistic regression 

 

Consider the special case of a dichotomous outcome Y and two bivariate normal predictors, X1 

and X2.  Assume the logistic regression model, so that  
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Thus, fitting a logistic regression model to X1 and E(X2|X1) will yield an inconsistent estimate of 

β2. 
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Appendix III:  Simulation Details 

1.  Simulations of missingness on income  

 Step 1:  We used the following procedure to generate data that are similar to the LAMP 

data:   

 We began with the 1119 observations of LAMP data that are complete except for income.  

using the 857 (1119-262) complete cases we fit a logistic regression model predicting income 

using compliance status, ethnicity, insurance status, and general household financial well-being.  

This produced a fitted value (fitted probability) prediction ranging from 0-1 for each observation. 

We filled in the missing income data in the LAMP data by drawing a random 0-1 variable and 

then comparing it with the predicted probability from the logistic regression model; if the 

random draw was greater than or equal to the predicted probability, income was imputed to be 

“1”, if less, “0”.  This procedure was analogous to the procedure used to impute values using the 

approximate Bayesian bootstrap draw (see Section 4.2.7.2 in the main text).  For purposes of this 

simulation, we treated this completed LAMP data as “the population”. 

 Step 2:  We generated 1000 fully observed samples by drawing a random sample of 1119 

observations with replacement (bootstrap sample; see for example Efron & Tibshirani, 1993) 

from this completed LAMP “population” data (created in step 1).  Although the data were 

originally sampled within churches, we did not resample within churches.  Rather we ignored 

churches when drawing our bootstrap samples.  Although this eliminates some of the structure of 

our LAMP data, it simplifies the calculations and the interpretation of results by making the data 

behave as if they were a simple random sample.  

 Step 3:  For each of the 2000 fully observed samples, we created four samples with 

missing data by setting income to missing for a random subsample of observations.  For each 
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sample we set income to missing for exactly 262 observations (the number of cases missing 

income in the original LAMP data).  The four samples correspond to four different missing data 

mechanisms:  a) missing completely at random; b) missing at random; c) nonignorable missing 

data, probability of nonresponse is weakly related to income (nonignorable low); and d) 

nonignorable missing data, probability of nonresponse is moderately related to income 

(nonignorable moderate). 

Generating missing completely at random samples 

 For our MCAR samples, we chose a simple random sample of 262 observations and set 

income equal to missing for each observation. 

Generating missing at random samples 

 For our MAR samples, we allowed the probability of missing income to differ by ethnic 

group.  We did this by drawing a stratified random sample, where our strata were African 

Americans, Hispanics and non-Hispanic whites.  Within each strata the sampling rate was held 

constant at the proportion of nonresponders in the original LAMP data.  For example, 56 percent 

of Hispanics did not report income in the original LAMP data and so for each simulated sample, 

we chose 56 percent of the Hispanic observations to receive missing income.  If the simulated 

sample had 223 Hispanic observations, then 123 of them received missing income. 

Generating nonignorable missing data 

 To generate nonignorable missing data we allowed the probability of missing income to 

differ by ethnic group and income.  For each ethnic group we split the data into high or low 

income according to the observed values of the income variable.  We then oversampled the 
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observations in the low income strata to receive missing income.  To create a sample where 

nonresponse was weakly related to income (nonignorable low), we set the odds of selection for 

receiving missing income to be 1.5 times greater for low-income respondents than for high-

income respondents.  For example, in the completed “population” data set, there were 194 

(17.3%) respondents with low income, and 925 (87.7%) with high income.  If missingness did 

not depend on income, we would have chosen approximately 45 respondents with low income 

(17% of 262) and 217 respondents with high income (83% of 262) to have income set to missing.  

Instead, we set 60 respondents' with low income (23% of 262) and 202 respondents' with high 

income (77% of 262) incomes equal to missing to achieve the desired odds ratio of 1.5.  To 

create a sample where nonresponse was moderately related to income, we set the odds of 

selection for receiving missing income to be 2.0 times greater for low-income respondents than 

for high- income respondents.   

 Step 4: For each of the 4000 simulation data sets (1000 simulation iterations X 4 

mechanisms of missingness) we applied seven techniques for dealing with missing data (all of 

those introduced in section 4.2 with the exception of full Bayesian multiple imputation) on each 

of those samples.  Techniques that call for an imputation model used the models described in the 

sub-sections of section 4.2.   

2.  Simulation of missing physician enthusiasm for mammography 

 Our simulations of missing on physician enthusiasm for mammography follow the same 

general form as the simulations for missing income (described in this appendix, section 1) with 

the following differences or notes: 

 Step 1:  The data were completed to make the “population” in exactly the same way. 
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 Step 2:  Fully observed samples were created in the same way.  However, to make the 

physician enthusiasm simulation more robust, we drew 5000 fully observed samples instead of 

1000. 

 Step 3:  In the second set of simulations physician enthusiasm for mammography was 

made missing instead of income.  Since missingness on physician enthusiasm was considerably 

less common than on income in the actual LAMP data, we generated missing enthusiasms at the 

same rate as the missing incomes; i.e. 262 missing values per data set of 1119.  The MCAR 

samples were generated as above in this appendix (section 1, step 3), by randomly choosing 262 

respondents to have their physician enthusiasm status “lost.”  Likewise, MAR samples were 

drawn to depend on ethnicity, with the same ratios as above (appendix III, section 1, step 3).  

Non-ignorable samples were generated as above, with missingness dependant on physician 

enthusiasm and ethnicity.  To observe the effects of more extreme levels of non- ignorability, 

three different levels of nonignorability were imposed.  Odds ratio of selection for missingness 

1.5 (low nonignorability), Odds ratio 2.0 (moderate non- ignorability), and 4.0 (high non-

ignorability), which in practice meant that the odds of selection for missingness were almost 

perfectly determined by physician enthusiasm and ethnicity (it is almost as if we sampled cases 

to receive missing income only from the low enthusiasm strata). 

 Step 4: For each of the 25,000 data sets (5000 iterations X 5 mechanisms of missingness), 

we applied 8 techniques, as discussed above in section 4.2.  Section 4.2 discusses the application 

of each technique for data that are missing income.  To apply to missing enthusiasm, all 

imputations and replacements were changed to pertain to enthusiasm, and, where applicable, 

used models more appropriate to predicting physician enthusiasm than income.  The models 
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corresponding to each technique, and the section number of the presentation of the technique for 

the missing income case (from the main text above) are listed below:  

Weighted casewise deletion (casewise re -weighted)—4.2.2 

 In the missing enthusiasm simulations, 6 imputation classes were used, based on ethnicity 

(newrace, 3 categories) and high school completion (dropout, 2 categories). 

Mean imputation—4.2.3 & Mean imputation with a dummy—4.2.4 

 In the missing enthusiasm simulations, the mean for physician enthusiasm was imputed 

for all missing values. 

Conditional mean imputation—4.2.5 

 In the missing enthusiasm simulations, conditional means were calculated based on 6 

imputation classes derived from ethnicity (newrace, 3 categories) and high school completion 

(dropout, 2 categories). 

Hotdeck imputation—4.2.6 

 In the missing enthusiasm simulations, hotdeck draws were taken within 6 imputation 

classes based on ethnicity (newrace, 3 categories) and high school completion (dropout, 2 

categories). 

Full Bayesian multiple imputation—4.2.7.1 

 We wrote our own Stata routine to implement Schafer's (1997b) algorithm for full 

Bayesian imputation in the simulations of missing enthusiasm.  Schafer's model calls for the 

inclusion of all model covariates, including the outcome, so we included all variables in our 

imputation model. 
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Approximate Bayesian bootstrap—4.2.7.2 

 To apply the ABB to the simulations of missing physician enthusiasm, we used all other 

model covariates (including the outcome) to predict physician enthusiasm for mammography. 




