
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Learning Naïve Physics Models and Misconceptions

Permalink
https://escholarship.org/uc/item/79q4p98w

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 31(31)

ISSN
1069-7977

Authors
Forbus, Kenneth
Friedman, Scott

Publication Date
2009
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/79q4p98w
https://escholarship.org
http://www.cdlib.org/


Learning Naïve Physics Models and Misconceptions 
 

Scott E. Friedman (friedman@northwestern.edu) 
Qualitative Reasoning Group, Northwestern University, 2133 Sheridan Rd 

Evanston, IL 60208 USA 

 

Kenneth D. Forbus (forbus@northwestern.edu) 
Qualitative Reasoning Group, Northwestern University, 2133 Sheridan Rd 

Evanston, IL 60208 USA 

 

 

Abstract 

Modeling how intuitive physics concepts are learned from 
experience is an important challenge for cognitive science.   
We describe a simulation that can learn intuitive causal 
models from a corpus of multimodal stimuli, consisting of 
sketches and text.  The simulation uses analogical 
generalization and statistical tests over qualitative 
representations it constructs from the stimuli to learn abstract 
models.  We show that the explanations the simulation 
provides for a new situation are consistent with explanations 
given by naïve students. 

Keywords: Cognitive modeling; conceptual change; 
misconceptions; naïve physics; qualitative reasoning 

Introduction 

Many people have intuitive models of physical domains that 

are at odds with scientific models (Minstrell, 1982; 

McCloskey, 1983; diSessa, 1993; Brown, 1994).  While 

productive for reasoning about everyday physical 

phenomena, these naïve models cause patterns of 

misconceptions.  These misconceptions may result from 

improperly generalizing or contextualizing experience 

(Smith, diSessa, & Roschelle, 1994) or from incorporating 

instruction into a flawed intuitive framework (Vosniadou, 

1994).  Understanding how such intuitive models come 

about is an important problem for understanding how people 

learn physical domains (Forbus & Gentner, 1986). 

We believe it is important for computational models of 

domain learning and conceptual change (e.g. Ram, 1993; 

Esposito et al., 2000) to encompass the learning of the initial 

intuitive concepts.  This paper describes a simulation of 

learning intuitive physics models from experience.  

Experiences are provided as combinations of sketches and 

natural language, which are automatically processed to 

produce symbolic representations for learning.  The system 

identifies and encodes instances of the concepts to be 

learned and constructs qualitative representations of 

behavior across time.  Analogical generalization is used 

with a statistical criterion to induce abstract models of 

typical patterns of behavior, which constitutes our 

representation of intuitive models.  These models can be 

used to make predictions and perform simple counterfactual 

reasoning.  We compare its explanations to those of human 

students on a simple reasoning task (Brown 1994).   

We next briefly summarize the relevant aspects of 

qualitative process theory and structure-mapping theory 

used in the simulation.  Then we describe how our stimuli 

are represented and encoded, motivated by results and ideas 

from the cognitive science literature (diSessa, 1993; Talmy, 

1988; Zacks, Tversky, & Iyer, 2001).  The learning process 

itself is described next, followed by how the learned models 

are used in reasoning.  We show that the simulation’s 

explanations of a situation where a book is at rest on a table 

are compatible with student explanations (Brown, 1994).  

We close with other related work and future work. 

Background 

People’s intuitive physical knowledge appears to rely 

heavily on qualitative representations (Forbus & Gentner, 

1986; Baillargeon, 1998).  Consequently, we use qualitative 

process theory (Forbus, 1984) as part of our model.  In QP 

theory, physical processes are the mechanism of causality 

for changes in dynamic systems.  However, the learning we 

are describing here is what provides the foundation for 

ultimately learning physical processes; in the framework of 

(Forbus & Gentner, 1986), we are modeling the construction 

of protohistories from experience, and building on those a 

causal corpus consisting of causal relationships between 

those typical patterns of behavior.  To model these patterns 

of behavior, we use the concept of encapsulated history 

(EH) from QP theory.   

An encapsulated history represents a category of 

abstracted behavior, over some span of time.  It can include 

multiple qualitative states and events.   Encapsulated 

histories are used when a learner does not yet understand 

how to reduce a behavior to physical processes.  

Encapsulated histories are a type of schema, and 

consequently have variables.  The participants are the 

entities that an EH is instantiated over.  The conditions are 

statements which must be true for an instance of the EH to 

be active.  When an instance of an EH is active, the 

statements in its consequences are assumed to be true. 

Encapsulated histories are a form of explanatory schema: 

When instantiated, they provide an explanation for a 

behavior via recognizing it as an instance of a typical 

pattern, and furthermore can provide causal explanations, if 

there is causal information in the consequences. 
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Since EHs can include multiple qualitative states, they 

can be used for learning causal relationships between 

behaviors and properties of the world.  In naïve mechanics, 

for example, the models of movement, pushing, and 

blocking learned by the simulation are represented by 

encapsulated histories.  Figure 1 shows an EH learned by 

the simulation.  This can be read as: P1 pushes P2 while P1 

and P2 touch; the direction from the pusher P1 to the 

pushed P2 matches the direction of the push; and pushed P2 

consequently moves (M1) in the direction of the push.  

When given a novel test scenario, the EHs learned by the 

system are checked to see if there are entities that match the 

participants.  If so, instances of those EHs are created.  Each 

EH instance is active only if the statements in its conditions 

hold in the scenario.  If the consequences fail to hold, that is 

a prediction failure for the EH.   

 
define-encapsulated-history Push05 

Participants: 

Entity(?P1), Entity(?P2), PushingAnObject(?P3), 

Direction(?dir1), Direction(?dir2) 

Conditions: 

providerOfMotiveForce(?P3, ?P1), objectActedOn(?P3, 

?P2), dir-Pointing(?P3, ?dir1), touches(?P1, ?P2), 

dirBetween(?P1, ?P2, ?dir1), dirBetween(?P2, ?P1, 

?dir2) 
Consequences: 

causes-SitProp(Push05, 

                (exists ?M1 

                  (and MovementEvent(?M1),  

                       objectMoving(?M1, ?P2),  

                       dir-Pointing(?M1, ?dir1))) 

 

Figure 1: An encapsulated history relating pushing and 

movement. 

 

Our hypothesis is that people use analogical 

generalization to construct encapsulated histories.  To model 

this process, we use SEQL  (Keuhne et al., 2000).  SEQL is 

grounded in structure-mapping theory (Gentner, 1983), and 

uses the Structure-Mapping Engine, SME (Falkenhainer et 

al 1989) as a module.  Given two representations, a base and 

a target, SME computes a set of mappings that describe how 

they can be aligned (i.e. correspondences), candidate 

inferences that might be projected from one description to 

the other, and a structural evaluation score that provides a 

numerical similarity score.  SEQL uses SME as follows.  

SEQL maintains a list of exemplars and generalizations.  

Given a new exemplar, it is first compared against each 

generalization.  If the score is over the assimilation 

threshold, they are combined to update the generalization.  

Otherwise, the new exemplar is compared with the 

unassimilated exemplars.  Again, if the score is high 

enough, the two exemplars are combined to form a new 

generalization.  Otherwise, the exemplar is added to the list 

of unassimilated exemplars.  The combination process 

maintains a probability for each statement in a 

generalization, based on how frequently it occurred in the 

exemplars generalized within (Halstead & Forbus, 2005).  

These probabilities are used in our simulation for doing 

statistical tests.  

Multimodal Stimuli 

To reduce tailorability, we provide experiences to the 

simulation in the form of sketches accompanied by natural 

language text.  This serves as an approximation to what 

learners might perceive and hear in the world.  The sketches 

are created in CogSketch1 (Forbus et al., 2008), an open-

domain sketch understanding system.  In CogSketch, users 

draw and label glyphs to link the content of the sketches to 

concepts in CogSketch’s knowledge base2.  CogSketch 

automatically computes qualitative spatial relations between 

the glyphs such as topological relations, relative size, and 

positional relationships (e.g., above). Behaviors are 

segmented according to qualitative differences in behavior, 

such as changes in contact and actions of agents.  This is 

common practice in qualitative reasoning research, and 

seems psychologically plausible (Zacks, Tversky, and Iyer, 

2001).  Each distinct state is drawn as a separate sketch.  

The sequential relationships between them are drawn as 

arrows on the metalayer, where other sub-sketches are 

treated as glyphs, as shown in Figure 2.  Figure 3 shows a 

close-up of one of the sketched states. The child, truck, and 

car are glyphs in the sketch. The two right-pointing arrows 

are pushing annotations.   

 
Figure 3: Example state drawn in CogSketch. 

 

Our encoding of the physical phenomena of pushing, 

movement, and blocking as separate concepts is motivated 

by two lines of evidence.  diSessa (1993) notes that people 

are unlikely to confuse successful resistance (i.e. a wall 

blocking a person’s push) from nonsuccess (i.e. a ball 

moving due to tugging a string) in recalling events, and that 

these phenomena are encoded separately.  Talmy (1988) 

attributes this separation of success and nonsuccess 

                                                           
1 CogSketch is available online at 

http://spatiallearning.org/projects/cogsketch_index.html 
2 CogSketch uses a combination of knowledge extracted from 

OpenCyc (www.opencyc.org) and our own extensions for 

qualitative, analogical, and spatial reasoning. 

 
Figure 2: A sketched behavior 
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encoding to varying language schemata between the two 

conditions. 

For information not easily communicated via sketching, 

we use simplified English, which is converted to predicate 

calculus via a natural language understanding system 

(Tomai & Forbus, 2009).  Here is one of the sentences from 

our example: “The child child-13 is playing with the truck 

truck-13.”  The special names child-13 and truck-13 are 

the internal tokens used in the sketch for the child and the 

truck respectively, so that linguistically expressed 

information is linked with information expressed via the 

sketch.  This sentence leads to these assertions being added 

to the exemplar: 
(isa truck-13 Truck) 

(isa play1733 RecreationalActivity) 

(performedBy play1733 child-13) 

(with-UnderspecifiedAgent play1733 truck-13) 

If the NLU system finds an ambiguity it cannot handle, it 

displays alternate interpretations for the experimenter to 

choose.  But again, the choices are created by the NLU 

system: No hand-coded predicate calculus statements are 

included in the stimuli. 

To be sure, this method of simulation input has 

limitations: Sketches are less visually rich than images, and 

they do not provide opportunities for the learner to 

experiment.  Nevertheless, we believe that this is a 

significant advance over the hand-coded stimuli typically 

used by other systems, given the reduction in tailorability.   

CogSketch is being developed in part as a model of human 

visual perception, so there is independent support for many 

of its representational choices.  Sketching and simplified 

English are natural human communication methods, so 

preparation of stimuli is simplified as well.  

Learning 

The simulation is provided with a set of target phenomena 

that it is trying to learn, here pushing, movement, and 

blocking.  We assume that for a truly novice learner, words 

used in contexts of behaviors that they do not understand are 

clues that there is something worth modeling.   

Given a new stimulus, a set of exemplars is produced, one 

for each occurrence of a target phenomenon.  Since an 

instance of a particular phenomenon may continue across 

state boundaries, these occurrences can span multiple states.  

Temporal relationships between these occurrences are 

derived to support learning of preconditions and 

consequences.  For example, consider a series of states S1-

S3, where a man is pushing a crate in S1-S2 and not in S3, 

and the crate moves in S2-S3 but not in S1. The motion 

would have a startsDuring relationship with the 

pushing.  Each stimulus observed by the simulation is 

automatically temporally encoded into exemplars using this 

strategy. 

Generalizing behaviors 

For each target phenomenon, the simulation maintains a 

separate copy of SEQL, a generalization context (Friedman 

& Forbus, 2008).  A generalization context has an entry 

pattern that is used to determine when an exemplar is 

relevant.  For example, the entry pattern for pushing is (and 
(isa ?x PushingAnObject) (providerOfMotiveForce ?x 

?y) (objectActedOn ?x ?z)).  Figure 4 shows the 

generalization contexts and their contents after the learning 

experiment described below.  Multiple generalizations exist 

in Pushing and Moving contexts because certain exemplars 

are not structurally similar enough to share a generalization.  

Consequently, each generalization within a context 

represents a different behavior of the same concept.  Our 

simulation currently operates in batch mode, only 

constructing models after all stimuli have been processed. 

 

Generalization

Contexts

Generalizations

Pushing

Moving

Blocking
Ungeneralized

Exemplars

 
Figure 4: Generalization contexts after learning 

Constructing intuitive models 

The simulation creates encapsulated histories from 

protohistories in two steps: (1) Statistics are used to 

determine which generalizations are worth modeling with 

encapsulated histories, and (2) worthwhile generalizations 

are parameterized to create encapsulated histories.  We 

discuss each step in turn. 

 

Filtering generalizations 

Not all analogical generalizations lead to useful 

encapsulated histories.  If the conditions are too broad, 

inaccurate predictions will result.  The probability 

information constructed during generalization provides an 

important filter.  We assume a probability threshold t (here, 

0.9) for correlation.  That is, if any target phenomenon p is 

in a generalization with probability P(p) ≥ t, then p is 

considered a correlated phenomenon within that 

generalization’s context.  A generalization is decisive if the 

binary entropy H(P(p)) ≤ H(t), for all phenomena p 

correlated with its generalization context.  Entropy is the 

appropriate criterion to use because it measures information 

gain (i.e., low entropy implies high gain).  All decisive 

generalizations are parameterized into encapsulated 

histories. 

 

Extracting Causal Models from Generalizations 

The system creates one encapsulated history per decisive 

generalization.  Expressions whose probability is lower than 
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the probability threshold t are filtered, thus reducing 

contingent phenomena.  Expressions that remain are 

analyzed to determine what role they should play in the 

encapsulated history.  An expression is held to be either (a) 

a cause of the state, (b) a consequence of the state, or (c) a 

condition that holds during the state, based on analyzing the 

temporal relationships involved.  If the expression occurs 

before the start of the current state and persists until or 

throughout the current state, it is a possible cause.  If an 

expression temporally subsumes or coincides with the state, 

it is a possible condition.  If it begins during, with, or 

immediately after the end of the current state, it is a possible 

consequence.    

  Probabilities and temporal relationships are used to 

hypothesize causal relationships.  For instance, in one 

generalization, movement starts with a pushing event with 

P=0.5, and starts after a pushing event with P=0.5.  In this 

case, movement is not a likely condition for pushing 

because it only satisfies the temporal requirement half the 

time.  Conversely, movement is a likely consequence, 

because starting with and starting after are both permissible 

temporal relations of consequences. 

After the causes, conditions, and consequences are 

determined, the simulation defines an encapsulated history 

by introducing variables for the entities that appear in the 

conditions, existence statements for the entities that only 

appear in the consequences, and using the attribute 

information in the generalization to construct the 

participants information.   Figure 1 and 6 illustrate.  Notice 

that, while the learning process removes most irrelevancies, 

in Block00 the entity ?P1 is included even though it is 

not causally relevant.  It is there because the examples 

involving pushing all involve the pushing agent standing or 

sitting on a surface – so to the simulation, blocking must 

involve touching something else.   

Reasoning with Encapsulated Histories 

Given a new scenario, the simulation attempts to make 

sense of it by instantiating its encapsulated histories.  For 

each EH, it finds combinations of entities that satisfy its 

Participants and Conditions constraints.  When these 

constraints are completely satisfied for a set of entities, an 

instance of that EH is considered to be active, meaning that 

the statements in its Consequences are assumed to hold.  

As shown in Figure 1, this can include predicting new 

phenomena.  When some of these constraints are violated, 

or some of the consequences are not satisfied, the EH 

instance can be used for generating counterfactual 

explanations, as explained below.   

To illustrate, consider a scenario used by Brown (1994) 

and others, illustrated in Figure 5.  The sketch shows a book 

on a table.   Gravity pushes down on the book and the table.  

The scenario description includes two occurrences of 

pushing: gravity pushing the book and gravity pushing the 

table.  The encapsulated history in Figure 6 can be 

instantiated sufficiently to be considered for inference by 

the simulation, since the criterion is that all non-event 

participants be identifiable in the scenario.  Event 

participants need not be identified because these can be 

instantiated as predictions. 

 
Figure 5: An example from Brown (1994) for testing learned 

knowledge 

 

Specifically, activating Block00 to explain gravity 

pushing the book requires assuming two additional events: 

(1) the book ?P2 pushes some adjacent object ?P3 in the 

direction ?dir1 of the initial push, and (2) the entity ?P3 

blocks the book ?P2.  The table alone satisfies the 

constraints on ?P3, binding the last of the non-event 

participants.  This is sufficient grounds for the simulation to 

instantiate new pushing and blocking events, binding them 

to ?P6 and ?P7, respectively.   

 
define-encapsulated-history Block00 
Participants: 

Entity(?P1), Entity(?P2), Entity(?P3), Entity(?P4), 

PushingAnObject(?P5), PushingAnObject(?P6), 

Blocking(?P7) 

 

Conditions: 

providerOfMotiveForce(?P5, ?P2), objectActedOn(?P5, 

?P3), providerOfMotiveForce(?P6, ?P3), 

objectActedOn(?P6, ?P4), doneBy(?P7, ?P4), 

objectActedOn(?P7, ?P3), dir-Pointing(?P5, ?dir1), dir-

Pointing(?P6, ?dir1), dirBetween(?P2, ?P3, ?dir1), 

dirBetween(?P3, ?P4, ?dir1), dirBetween(?P3, ?P2, 

?dir2), dirBetween(?P4, ?P3, ?dir2), touches(?P2, ?P3), 

touches(?P3, ?P4), touches(?P2, ?P1) 

 
Figure 6: An encapsulated history relating pushing and 

blocking phenomena 

 

The simulation has two strategies for answering questions 

about a scenario.  If the question concerns a phenomenon 

that is predicted by the EH instances it has created for the 

scenario, it answers based on that information, including 

any causal argument provided as part of the EH.  If the 

question concerns some phenomenon that is not predicted, it 

assumes that phenomenon occurs and looks at what new 

EHs could be instantiated to explain it.  The instantiation 

failures for those EH instances are provided as the reasons 

for the phenomenon not occurring, as shown below. 

Experiment 

To test whether this model can learn psychologically 

plausible encapsulated histories from multimodal stimuli, 

we compare explanations it provides for a question from 

Brown’s (1994) assessment of student mental models.  We 

start by summarizing Brown’s results, and then we describe 

the conditions used for the simulation and compare its 
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results.  If the explanations used by the students and the 

simulation are compatible on the same reasoning task, then 

the simulation has learned psychologically plausible 

intuitive models. 

Brown’s results 

A question about the scenario in Figure 5 was asked of 

students: Does the table exert a force against the book? 

Brown reported that 33 of 73 students agreed that the 

table exerts an upward force on the book, because it must, in 

order to counteract the downward force of the book.  This is 

the scientifically correct answer.  However, the 40-student 

majority denied that the table exerted this force.  Their 

reasons fell into five categories: 

1. Gravity pushes the book flat, and the book exerts a 

force on the table.  The table merely supports the 

book (19 students) 

2. The table requires energy to push (7 students) 

3. The table is not pushing or pulling (5 students) 

4. The table is just blocking the book (4 students) 

5. The book would move up if the table exerted a 

force (4 students) 

We query our simulation similarly, to determine whether 

it can reproduce some of the reasons that students gave. 

Simulation setup 

Our simulation was implemented using the Companions 

Cognitive Systems architecture (Forbus et al., 2008).  We 

used 17 multi-state sketches as stimuli, using examples 

motivated by the mental models literature cited earlier.  This 

set did not include the test scenario.  The SEQL assimilation 

threshold was set to 0.5 and the encapsulated history 

probability threshold was set to 0.9.  The temporal encoding 

step resulted in 28 pushing exemplars, 16 moving 

exemplars, and 6 blocking exemplars.  These exemplars 

produced ten generalizations across the three generalization 

contexts, as illustrated in Figure 4.  Six of these 

generalizations were decisive, leading to the pushmove 

model of Figure 1, the pushblock model in Figure 6, and 

four additional models. 

The four additional models learned by the system were 

not activated during this test scenario.  Three EHs described 

movement behaviors caused by pushing, with minor 

variations in the conditions.  The fourth EH describes 

classic “billiard ball” causality, with a push causing motion, 

which then causes another push and setting another entity 

into motion. 

Comparison with human results 

Given these EHs, how does the system perform?  Upon 

receiving the test scenario, the system activates EHs to infer 

the additional events of the book pushing down against the 

table and the table pushing down against the ground. 

For the query, since the simulation does not have the 

event of the table pushing the book as a current prediction, it 

uses the counterfactual strategy.  Only the EH of Figure 1 
can provide a possible explanation.  Assuming this EH is 

active, the simulation gets a new prediction: The book 

should move upward as a result of the push.  This prediction 

contradicts the book’s lack of motion in the scenario.  

Consequently, it answers that the table does not push up on 

the book, because in that case the book would move 

upward, and it does not.  This is essentially the same as 

answer 5, given by four students. 

After the proof by contradiction, the system cites 

activated EHs in which the book and table jointly participate 

to explain their behavior in the scenario.  Consequently, it 

uses the EH in Figure 6 to explain that gravity pushes down 

on the book, that the book pushes down on the table, and 

that the table blocks the book.  This is similar to answer 4, 

given by four students.  This explanation also resembles 

answer 1, given by 19 students, though the students cite the 

concept of support, which was not among the simulation’s 

target phenomena.  These results support the hypothesis that 

the models learned by the simulation are like those used by 

naïve students. 

Could the system learn models corresponding to the other 

answers?  If the target phenomena and corpus included the 

concept of support and energy, it seems likely to us that it 

could, but this is an empirical question.  With a different 

corpus of examples – perhaps including examples like those 

used by Camp & Clement (1994) and the rest of Brown 

(1994) – the simulation may be capable of coming to the 

correct model.  Answer 3 may rest on an interpretation of 

events being mutually exclusive, i.e., if the table is blocking, 

then it cannot be doing the other actions.  Further 

experiments should clarify this. 

Related Work 

The closest simulations are the COBWEB (Fisher, 1986) 

model of conceptual clustering and INTHELEX (Esposito et 

al., 2000), which develops and revises prolog-style theories. 

COBWEB does unsupervised learning of hierarchical 

relationships between concepts, in contrast with our use of 

supervised learning (via entry patterns in generalization 

contexts) of causal models.  COBWEB calculated 

probabilities of features, whereas SEQL provides 

probabilities of structured relations.  INTHELEX uses 

refinement operators to model multiple steps in a trajectory 

of learned models, whereas we focus only on one transition, 

the first.  Both COBWEB and INTHELEX used hand-

represented input stimuli, whereas ours is derived by the 

simulation from sketches and natural language.  Ram (1993) 

discusses SINS, a robot navigation system that retrieves 

cases, adapts control parameters, and learns new 

associations incrementally.  While both our system and 

SINS develop concepts incrementally from experience, our 

system learns models of physical behaviors and causal laws, 

and SINS learns associations between environmental 

conditions and control parameters.   

Lockwood et al. (2005) used CogSketch and SEQL to 

model the learning of spatial prepositions, using single 

sketches labeled with words, in contrast to the sequence of 

sketches labeled with sentences used here. 
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Discussion & Future Work 

We have described how analogical generalization and 

qualitative representations can be used to model the process 

of learning initial intuitive models.  To reduce tailorability, 

the simulation inputs were combinations of sketches and 

simplified English.  The resulting explanations resemble a 

subset of those of given by human students on a scenario. 

While we believe that this is a significant first step, there 

is much more to be done.  First, a broader variety of 

phenomena must be tested, to provide more evidence as to 

generality.  Second, we need to conduct statistical tests to 

determine how order-sensitive the simulation is, and how 

the quality of models learned varies with the number of 

examples provided.   By comparing models learned with 

different numbers of examples, can we find sequences of 

models that correspond to known developmental 

trajectories?  That will help determine how much of the 

development of mental models this simulation can explain.  

Finally, we plan to incorporate these ideas in a larger-scale 

model of conceptual change, where the quality and content 

of its predictions guide future learning. 
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