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I. INTRODUCTION

Thin shells of revolution are widely used in flight structures and
their analysis is of great importance to the design engineer. In such
shells for symmetrical loadings and small displacements, the membrane
stresses and the corresponding elastic displacements can be readily
computed. However, due to the variations in thickness, ring-like
reinforcements at openings and junctures with the adjoining shells and/or
structures, very important bending stresses develop. The analysis of such
stresses may be very complex. In fact, solutions are available only for
the few simplest possible shapes of the meridian. Also very few solutions
exist for the cases of variable thickness and in some of the solutions
which are available, the thickness variation is prescribed for reasons of
mathematical expediency. On the other hand, functional and manufacturing
requirements often demand arbitrary shape and thickness variation of the
shell of revolution. To achieve a practical solution for such a general
problem is the primary purpose of this investigation.

This first report of the general investigation confines its
attention to the elastic analysis of arbitrary shells of revolution
assuming small deformations. A general sclution of this problem has been
obtained by employing finlte elements into which any shell of revolution
may be subdivided., The basic finite element is a truncated conical shell.
Presentation of the detailed analysis of element flexibility, joint loads,
matrix solution of the probleﬁ, and examples solved with the aid of
IRM 7090 computer form the basis of this report. The developed proce-

dures are quite general and can be applied to any symmetrically loaded



shell of revolution. This includes possible variations in shell thickness

as well as boundary conditions.

In the second (next) report, the elastic analysis reported here
will be extended to include large deformations of the shell. This will
be done using a step-by-step procedure. Loads can be applied in small
increments and corrected geometry of the shell can be used in each step.
It is anticipated that the second report of this series will be followed
by ancther one in which inelastic properties of the material will be

incorporated into the analysis as far as possible.



II. REVIEW OF MATHEMATICAL FORMULATIONS

A search of literature shows that the general problem of axi-
symmetrically loaded shells of revolution has not been completely solved
for the case of arbitrary shape and thickness, non-elastic material and
large deformations. However, governing differential equations have been
formulated and solutions are available for certain special cases with
elastic materials. These will be summarized below.

H. Reissner and Meissner first formulated the governing equations
of shells of revolution based on the classical theory of elasticity

(1)

which can be easily found in Fllgge's book on shells .
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Timoshenko in his bocok gives also the same relations using somewhat

(2)

different notations

The general procedure of solving Equations (A) consists of eliminating
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one or the other of the dependent variables and forming an uncoupled fourth
order differential equation. Such an equation is then split, if possible,
into two seccnd order differential equations which are then solved,
Alternatively, an asymptotic or numerical procedures are used to obtain
a solution.

For thin spherical shells of constant thickness, the Reissner-
Meissner equations (A) can be solved exactly by the use of hypergeometric

(1)(2), (3)

series ; and Zagustin and Young solution using asymptotic integra-
tion gives good results for all regions of the shell.

For wvariable thickness, splitting the two fourth order differential
equations into second order equations can be achieved under certain
conditions(l>. But asymptotic methods are necessary in general. Rygol(u)
solved the resulting asymptotic differential equation in the form
Q;" + hxh‘Qé = O Dby approximating the thickness function N with two
constants. The solution is exact for certain varilation of thickness.
Kbvalenko(5) solved the problem of conical shells of linearly variable
thickness when the thickness increases toward the apex.

When the deformations increase, the problem becomes more complicated.
E-Reissner(é)(7> formulated the governing equations for the case of small
deformation but arbitrary rotation as follows.
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For the general case, a solution of these equations is very diffi-
cult. But for special cases (cylinders, spheres) with constant thickness,
asymptotic solutions are possible.
If only the linear terms are retained, the above equations further
simplify into those corresponding to the "small deformation theory',

different form from that given by (A). The equations take the following

form:
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[
. [Zr; v ] (xv) + v Z () (B-b)
[(; gcé)' %‘J (ropg) - (ropy)

The solution possibility of this set has been discussed before,

(8)(9)(10)

Naghdi and De Silva did some work in detail on

E. Relssner's equation. Their solutlon process made use of complex
auxiliary functions and lLanger's method of asymptotic 1ntegratwon( )u
Further complication arises when the effect of transverse shear
deformation is considered. Following I. Reissner's formulation for
. o omas (12)(13) ] a
small deformations Naghdi included transverse shear deformation

and derived the following equations for general axi-symmetrical shells of

revolution.
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If we set A and Veg = O , the equations reduce to (B-b).

The solution procedure for these equations is much the same as that
used earlier by Naghdi for the case without transverse shear effect.

For large deformations and non-linear material, solution can be
(7).

found only for membrane theory with isotropic incompressible material

Since the available mathematical solutions are extremely complex

and since it is almost impossible to incorporate into these solutions

7



the general practical range of shells with regard to shape, thickness,
material, and magnitude of deformations, an approximate, stepwise, pseudo-
elastic finite element solution has been formulated., In a general
problem, the actual shell of revolutlon is considered to be an assemblage
of a large number of straight cones each of uniform thlckness with the
exception of the top (or bottom) element which is a shallow spherical

cap of its own uniform thickness. Loads can be applied in small
increments for investigations of large deformations and/or inelastic
behavior of material. TFor each step of loading the displacements of the
nodal points and the forces in the conical and spherical elements can be
caleculated by standard matrix operations. The displacements of the nodal
points define a new geometry of the assemblage and hence new geometry and
structural properties of each element. From the forces in the elements
the stresses and strains can be computed which determine whether or not

a new set of constants defining the material properties should be assigned
to each element for the next increment of locad. In this manner, the
problems of large deformation and change of material properties after
yielding will be treated in subsequent reports. How the material
properties vary under biaxial stress conditions is the subject of a
separate experimental investigation. By making the size of elements and
the load increments sufficiently small, the actual case of smoothly
varying shape and thickness as well as gradual yielding of material can
be approximated. This report is confined, however, only to the analysis
of one load application, 1l.e., the reported solution is complete for
axi-symmetrical loading of an arbitrary elastic shell of revolution

experiencing small displacements.



ITI. THEORY OF FINITE ELEMENT SOLUTION

A. General Procedure.

The basic principles and procedures employed in the applications
of the finite element method in structuwral analysis for the case of
small deformations and elastic material have become well known in
recent years and are described in several publications(lg)(19)(20).

The basic steps consist of:

(1) Establishing the stiffness of the structure from the
stiffness (or flexibility) of the individual elements,

(2) Calculation of the forces on ¢r the displacements of the
Jjoints of the structure, and A

(3) Calculation of the forces and deformations of the elements.
In Step (l), some matrices defining the geometrical relations between
the structure and the elements are used.

In the ordinary structural problems the element flexibilitiles
are symmetrical with respect to the main diagonal and only three
gquantities are required to solve the problem completely. These
guantities are:

(1) Element stiffness matrix which includes the stiffness

of all elements in a diagonal arrangement,

(2) Loads or displacements imposed on the joints of the

structure, and
(3) The displacement transformation matrix.
However, in the problem considered here, element forces per unit length
are involved and hence unsymmetrical flexibility or stiffness matrices is

obtalined. Therefore, another geometrical matrix which will be called



the "equilibrium matrix" is required in addition to the displacement
transformation matrix. Each of these quantities will be discussed in

detail in subsequent sections.




B, flement Flexibilities

1. Conical Segment. The displacements of the edges of a conical

ring due to forces (including moments) applied on the edges can be obtained

from mathematical solutions for conical shells. The expressions derived

by Flﬁgge(l) will be used as the bhasis of our formulation.

Fllgge's bending solution of conical shell yields the following

relations.
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Flugge did not give expressions for v and w . But these can

be derived from the stress-strain and strain-displacement relations

1 1
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Using the expressions for Né and Ns from (I-a), eliminating

and integrating (II), we obtain

2 cot o VY -1 . '
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In the first of (I-b) integrals of Thompson functions have been removed

by using the following identities
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The positive directions of the forces and displacements in a conical
element are shown in Fig. 1.

It should be noted that Fllgge's bending solution of conical shell
was obtained from a system in which only horizontal force acts radially
at the periphery, the vertical force on the ring is zero. This can be
noted from Fligge's comment on the governing differential equation in
Ref. (1), and is reflected by the expressions of Q, and N, from

(I-a), which imply that there is only one force H applied such that

Q = -Hsina , N, = HcosO (2)

£
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The expressions Né and Ne given by (I-a) are the resulting membrane
forces in the shell due to the application of bending moments and
horizontal forces at the edges. If a force Né is applied at the edge
of the ring as a source of disturbance, the induced forces and deforma-
tions in the shell cannot be obtained from (I-a) and (I-b) and should be
computed from the expressions resulting from a membrane type analysis.

Fligge also gives the solution to the problem of membrane

(1)

deformation of conical shells . The resulting expressions for the

case where no distributed loads are applied to the shell surface are

g

TT log s + C

<
i

1

L
Bt

L
Et

cot @ (log s + v) - C, cot o (I-c)

cot O - i
8

x

where € and Cl are constants of integrations to be determined

from a force condition and a displacement condition respectively on

the boundary.
For the case of zero distributed loads, C = Né° 8 = Ni T8y =
n o os,
5 J

It must be pointed out that for equilibrium in the vertical
direction a force Ng applied at edge J has to be balanced by a
force Ni applied at edge 1 . The bending moment or horizontal
force applied individually at either edge is self-~equilibrating.
Membrane deformations can only be computed with respect to some
reference position which is governed by the constant Cl .

To avoid the coupling of bending and membrane actions and for the
reason mentioned in the previous paragraph, we choose Ms , H applied

at both edges and Ns applied at the lower edge as the basic element
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force quantities, and arbitrarily assume that the ring is held stationary
at the upper edge during stretch, i.e. vy o= 0, under the action of
membrane force Né .

Four boundary conditions define the four constants A1 R A2 s Bl R

B, of Eq. (I-a). These are
at vy = yi 3y MS = Mi 2 H = Hl ( 3)
at Y o= y'j 9 MS = MJ. 3 H = Hj

Upon substituting the expressions of Al s A B B, , which are

2° 717 "2

now functions of M, , Mj , H Hj into Egs. (I-a) and (I-b) we

i 2
obtain the force and deformation quantities as functions of Mi N Mj y
Hi s Hj and of Thompson functions and their first derivatives. The
algebraic manipulation is lengthy and tedious. Only the resulting
expressions in symbolic form will be given below.

Before we present the resulting force and deformation expressions,
we need to define a few more quantities,

To correspond with the horizontal force H, there must be a

horizontal displacement & . From simple geometry
8 = wsinQ + v cos « (L)

We see that the positive direction of & 1is outward.
We then find that the deformations ?(, ,;{. » B, 5 B, as defined
i J i J
by Flugge's solution are not all in the same direction as the correspond-
ing forces Mi 5 Mj 3 Hi s Hj . Also since the membrane force Nﬁ and
Ni exist simultaneously we must define the corresponding deformation
in the same sense. (From now on we abbreviate the symbol N: and Ng

as Ni and Nﬁ where Ni =T Nﬁ ) Thus, we introduce the following

as the basic element deformation quantities corresponding to the basic
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Referring back to the shell solutions from which Eq. (6) was
developed we see that force quantities are all in units of pounds or
pound~inches per unit length. Hence the f matrix so obtained is not
symmetrical with respect to the main diagonal. Items of the matrix
représenting deformations due to forces on the same edge of the ring
are symmetrical, while those representing effects of forces across the
edges are not. The latter bear a ratio of T to each other which
reflects the ratio of the circumferences between the two edges of the
ring‘ Hoﬁever, it can be easily shown that items of f matrix do
satisfy Betti's law. We could use the total forces around an edge as
basic force quantities and obtain a symmetrical f matrix. But since
at later stages we shall make frequent use of the expressions from
shell solutions which involve forces per unit length, we choose to
retain its present form.

The accuracy of the f matrix, judged from the values of the

quantities on opposite sides of the main diagonal, has been investigated
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over a wide range of thickness, lengths, angles and radii of cones. It
was found that the first kxl portion is nearly perfect for almost any
case provided the length of the element is not smaller than the thickness,
but the fifth column and fifth row which depend on different mathematical
functions dilverge more and more as the geometry of the cone approaches
extreme cases. The first Lxl submatrix, representing entirely the bend-
ing effect, is valid as long as tan O is finite, but discrepancies between
items on opposite sides of the diagonal increase as ¢ approaches 90°;
in such cases the expressions for cylindrical shells should be used. To
reduce discrepancies between quantities of the fifth column and the fifth
row, it is recommended that for @<:300 (since for small <« plate action
predominates ) quantities of the fifth row be used to establish those of
the fifth column (by multiplying with appropriate factors), while for
a> 60° quantities of the fifth column be used to establish those of the
fifth row.

For conical rings with larger periphery on top, & is greater than
900 and cos O is negative. 1In this case, we shall take the larger slant
distance as s, , the smaller slant distance as 5 (r<1), and we can
use the same expression to obtain the flexibility matrix of the element,
provided a change of sign is applied to the values thus obtained for all
the third and fourth column quantities (fij s, i=21%t5, J=3,4)and
%o the last three of the fifth column quantities (f35 , f% , :E’SS).,
This flexibility matrix after inversion will represent the stiffness of

the conical ring.



2. Cylindrical Segment. For the cylindrical ring, the effects

of the bending forces and the membrane force also should be treated
separately, Both the bending sclution and membrane solution for axi-
symmetrical cylinders are available in Ref. (1) and (2). Using the nota-
tions and sign convention by Flﬁgge(l) (Fig. 2), we established, after
considerable amount of manipulation, the required relationships.

With a force N 1lbs. per inch applied at one end of cylinder, there
must be an equal force N at the other end. The deformations due to

membrane force N are

v = - Y la
Et
N x, - x,)
e = u, ~u, = — T (1v-2)
J 1 Et
dw
= = 0
t N
X
7 - — - X'-'X;
W <+
Y
u 1
M
\ i
M~ | """'*Q,____L_ -
W, x } ! X X)
v N

FIG. 2 - FORCES AND DEFORMATIONS IN
A CYLINDRICAL ELEMENT
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The bending solution of axi-symmetrical cylindrical sections yields

2
2K Kk -KE .
Mx = % [e (0151n KE - C, cos kt)
T
KE ,

- e (03 sin K& - C) cos K@)J
ok k3 ke "(C o) Kt - (C. - C.)sd ng
Qx = —~;§- e 1 *+ Cy) cos £ - 1" 2)51n

_e K6 [(03 - C)) cos K& + (c:_3 + C)) sin K& I} (1IV-D)
w o= et {Cl cos k& + C, sin K@v +e € [03 cos K& + C) sin KEJ

X = %% = i %g = - g K¢ [(C - C ) cos KE + (C + C, ) sin Kg}
+ K € (C, +C)) cos K¢ - (¢, - C)) sin Kg-
a 3 i 3 Ly
v ~K§ ,
u = -5y { L( -C; - G, ) cos Kt +(Q 02) sin Kﬁ]

+ e KE {(03 - Ch) cos Kt + (03 + Ch) sin K§]i}+ o

3 2
Et i 2, a x
where K = w-~—~§; s kK = 3(1-y%) Z £ = b,

c 03 3 CM , and C are constants of integration. The

lJCE)

constants C C €, can be determined by defining two

2)C3,

force guantities at each end of the ring, and the constant C

l)

will drop out when only the expression of e = uj - ui is wanted.
To conform to the particular force and deformation system
adopted as standard for our process (see Fig. 1 and Egs. (5) ), we

apply the four conditions



2L

at & = t, = O Moo= M
at £ = gi = 0 QX == "Hi
at £ = gJ = 'g MX = MJ (9)
at & = § . = é -

J a Qp = Hj

To obtain expressions of Cl’ Ca, C3’ OM in terms of Mi’ Mj’ Hi’ Hj .

Upon substitution of these expressions into (IV-b), there result

(reference

X1

|

i

to Eq. (5) ):

i

K o o
Y { (Cq9- Cpp= €397 Cyp) My + (Cip- Cop= Capm )M,

(Cpgm Cpg Ogg- Opa)My + (Cpym Cpp- Cop Cuh)°Hﬁ}

+

L P

i) . - .
{ [«e (cos w + sin w) Ciq+e (cos w - sin w) Coq

+ ew(cos W + sin w) CMlJ .M,

+ ew(cosw - sin w) C 5

31

e-w(cos w - sin w) C

»w( W in w) C
+|-e (cos w + sinw) Cp, + oo

+ e(cos w - sin w) C

. ‘ i
2 *e (cos w + sin w) CMEJ N%

+ [ “(cos w + sin w) C “(cos w - sin w) C

1.3 23

+ e(cos w - sin w) C.. + e (cos & + sin w) CM3J " H

33

) wf) . ’
+ [-e (cos w + sin w) Cpy + € (cos w - sin w) Co),

W ) W . .
+ e (cos w - sin w) CSM + e (cos w + sin w) Chh] Hj}

(- -Cq” 31) M, o+ (- -Cp- 32) M, + (- 013 33) H + (- clu~03u) H,

-0 (1) S ] . W, . R
(e cos w C,y *esinwCy +ecosw 031 +esinw Chl) M,

-t w
+ e sin w-C + e cos wC

-0
+ (e cos wC oo 32

W, .
12 + e sinw Chz) Mj

+ (e ™cos w~Cl3 + e Ysin w-023 + e cos w'033 + e’sin m°0h3)‘Hi

-0 . -0, W W, .
+ (e cos w Cjy + e sinweCy +ecos wC, +esinw bhh) H

3



where

o
1

y - 0 ; | r ‘ X |
—— D — o - o OF s i 34y ) om z””"
e = 3 p: {Le (cos W sin w) lJ 13 + Le (cos w + sin w) l} o3

- . -
Uy | ! W . ; .
- le {cos w + sin w}—lJ~633 + [e {cos w - sin w)”ljbgh3} *H,

5 i

y -, » oy -t R

o e o @ - gin w)-1{C + e cos W 4+ s8in wi-1(C
+2r<{[ (cos nw) ] 1 [ ( in w) | %

w in : w o aim w1 e .
- [e (cos w + sin m}~l} C3h + [e (cos w - gin w) lJ th} Hj

K € » C

a

0 = B Czm satisfy the relations

Fj LA E £ C
117 712 L3

C B ’ M, I & N s « I8
Cll Mi + 012 43 + 013 Hl + clh HJ

c = C.°M, + C_ M, + C _“H + C2MOH

2 21" 22", 23"y 3
(10)
C = C..°M, + C_M, + C..*H, 4+ C_ *H.
3 3174 32 7 33 71 3h 7
€y = My + Oty 4 O C,, H
o PP o Do1 42 o D31 8> o D1 a3
§ T e e e e— » ; R 5 s ) = TR TR
o Dip 42 o Dop 52 ; Y3 g3 . Do 53
e e S s = "‘":"“ 5 Uy R i = e
21 N AR W Aok B A e
- D13 a2 C D23 ae e D33 aS - DL3 33
S\J =4 A g } ' = had Te— -l ’ e F—— - 9 ‘\Jl =g - ——— ————
317 A g 3= L pry 33 A& o3 3% A g3
o Dy, a2 .G Doy a2 o D3h a3 - Dy 53
1 S T T D T m————— AR P L - =
H A ogy 27 A ol 43 A g3 BETOA oS

A = [2 sin w + (e - e'w)J . [2 sin w - (¥ - emw)J

2u

D = cos 2W-gin2w - e

1l

. W -t ) w
Dy, = - {cos w + sin w){e - e ) - 2 sin w-e
20 .

D. = e - 1 - gin 2w

31

w -3 . W

Dy, = coswile -e ) -2 sin we



o
o™

D, = (cos w - sin m)2 +2 gin® w - ¥
D = -cos w (e° - e™) - sinw (¥ + ™)
22
. 2
D32 = 2 gin w
. W -
D, = -sinw (e - &™)
D = - 4 sin 2w + cos 2w
13 = € ;
D23 = (cos w - sin w)(e” - e»w) +2sinw - e
-2u
D, = 1~ e - sin 2w
33
Dy, = cosw (¥ - e™) - 2sinw-e™
3
-2 L2 .
Dlh = e -2 s8in w - sin 2w - 1
Dy, = -cos w (¥ - ™) - sin w(e” + e™)
, &
D3h = @ s8in w
w -
Dy, = -sinw (e - e )
Equations (IV-a) yield
%i = 0
~. = O
X3
= va. .
61 = Wy o= gV (11)
- va,
63 = 5 = - i)
4
e = g I

From Egs. (10) and (11), the flexibility matrix of a cylindrical

ring can be obtained such that



|
|
{

I

|

F — ) ()
xXi M
- M.
X3 J

$ gi \ = [ £ J ¢ Hy b
5, H,

J J

L € / N N /

in which f15 3 f25 » fSl B f52 are known to be zeros. The stiffness

of the cylindrical ring is obtained by inversion of the f matrix.

(12)
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3. Spherical Cap. Fligge and Timoshenko both present the

asymptotic solution for bending of shallow spherical shell in their
books(l)(e). The resulting general expressions are given below with

the notations shown in Fig. 3.

W o= Cl ber x + 02 bel x + 03 kel x - CLL ker x + C6

<
i

.4 s 1 i 1]
-z (L +v) { C, bei'x - C, ber'x - 03 ker'x

CS b
- .' - R ed
Chkelx +06m}
_ 1 1 . g t e L '
x = 7 (Cl ber'x + C, bei'x + 03 kei'x - C) ker x)
. K ol et x - & (1-y)ver -1 (1y)vei x|
M, = 7 {Cl[ bei x - = (1-v)ver xJ + Ca[ber x - = (1-v)bei XJ
+ CB[Rer x - % (l-v)kei'x} - Cy [-kei x - i (l—v)ker'x]}
K 1. : 1. |
My = 72 Icl[gl"V)X ber'x - vy bei x} + Cy [(l—v)X bei'x + v ber xJ (v-a)
+ C [}l—v)i kei'x + v ker x] - C [(l-v); ker'x - v kei x]}
3 X L x
N 1 - T L opat Lo
N& = "y [02 p ber'x Cl " beitx + C4 " kel'x
L pert 1
+ 03 p” ker'x + C5 x2
Et Chet v - L pept R
Ny = -7 [02 (-bei x = ber x) - N (ver x = bei x)
+C (ker x - = kei'x) + C. (-kei x - % ker'x) _ 5
N X 3 X x2
- .I.{... . s g 1 1 - |
Qr = 23 [ Cl bei'x + C2 ber'x + C3 ker'x + Ch kei XJ

From the above for shallow shells, the horizontal and vertical

components of forces and displacements can be found with the relations:



fax)
ﬂ‘
ﬁz
i
B b f
D

r
Q = M3+ Q
(13)
T
5h = V4oV
r
SV.-_'EV-W
The solution with six constants of integration is very general,
and applies to both the cases with and without a singularity at the
apex.
Using the second of Eq. (13), we find
gtd  Cs
g - — V-b
o = -TF (V-D)

Fligge mentions(l) that C5 is related to the total vertical force
applied above a horizontal section at which the forces are considered.

Thus, C. 1is dependent on the manner in which the spherical shell is

5

held in vertical equilibrium, We shall discuss the cases with and

without singularity and their relation to our problem separately.
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a) The Case with Singularity. Suppose the cap in Fig. k4 is

supported by a concentrated force P at the apex. Then apparently 05

is equal to a certain multiple of that force.

|~

£
12 (1-v2)

=
t

FIG. 3 - SHALLOW SPHERICAL CAP

FIG. 4
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Since the cap is under the combined action of P at the apex and
Q‘v around the periphery, the corresponding deformation must be the
change of height of the cgp. If we choose the apex of the cap as
reference point, i.e., (W)rzo = 0, then (sv)edge = (5v)edge - (W)rz.-O
represents the increase in height of the cap. The horizontal deforma-

tion &, and change of slope ‘X, offer no ambiguity. The conditions

h
at r=x=0, w and X, must be finite
at e X = O, w=0
g (1)
at r=x= 0, N and NS must be finite
ult i =C. =0 =C. .
res in CLL 6 s C3 5

The remaining three constants C:L » C2 5 C. can be determined

5
by defining three guantities at the edge:

at X=X (I’:::I‘O), M:‘:M, H::HO, Q‘VmQO
Then the deformations of the edge can be expressed in the following

forms.

— —]-: 1 3t ; 2 o §
No = 7 (Cllber x_ + Cy bed xo)MO + l(cleber x_ + Cpybel XO)HO
+

( ber! X+ Ie  pei'x - _,_lfg kei'x ) Q
7 13 2 23 o X % %o
Sh = £ C x_ ber x_ - (1 +v) bei'x

o 8 11 [s!

Coy [x bei x_ + (1 +v) ber xO]} M

Y/ "
+2 4 Cp |, ber x_ - (L +wv) bei”on
+ C [x bei x_ + (L + v) ver? xojj} H
. .'
+ {a 13 x_ ber x_ (1 + v) bei XOJ
gC x bel x_ + (1L + v) ber'x
a 23 0
3,

a K X

£ %o . , (1 +v)
- x kel x  + (1L +v) ker X+ - Q
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E
v = - 31 -
& = {Cll [ x (1 +‘v) beltx ber x

where Cll

13

21

22

+

4

o+

+

+

a2 o o 0

£, :
1K -
Coy [ z (1 +v) ver x - bei xOJ M

£2
Cin [-— ;—2 x (1L +v) bei'x - ber xo]
2

< _
=~ 0 'v - bei
Con [ 32 (1 +v) ber x - bei XOJ} H

— 22 -
- — it -
013 l' - X (1L +v) bei X - ber XOJ

o

ZEX 3
* 0 1 -
023 l_ z (1 +v) ber x_ - bei XOJ

2 2
r x -
'e e LZ 20 (L +v) (ker'xo + %{—-) - kei XOJ} QO

K a o

1. .
2K ber XO
3 (VI-a)
ax ‘
2]..;__._._.2...9..2_ [ber x - (l}-{v) bei'xOJ
Et(a“+ ro) )
E { ber x *ker'x - ber'x *ker x =~ S_]::_}’_l bei'x *ker'x
VAN Lo} o] o} XO o} e}
2 -
r
(1-v) ber'x *ker'x J . 4 o + [ber X - (1-v) bei'x J .
b4 o o K o] X o]
o o
23 &8 }
2 2
K(a“+ ro)
2
1 2 .
A K bedl Xo
3
a” x
i > 02 [bel X+ (l;V) 'ber'xOJ
Bt(a“+ ro) o
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C = = bei x *ker'x =~ bei'x *ker x + (l'V) ber'x *ker'x
23 A [} o} o} o} Xo o] 0
-
+ ié:Xl bei'x *kei'x J ° £ o + Lbei X o+ Li:Xl ber'x J .
b4 o) o} K o] X o}
o} o)
23 &2
K(a2+ = }
o)
(1-v) © (1-v) . oo |
and A = —[bei XO + Xo ber Xo ber xo Xo bei XOJ

bei'x ~ber'x
o) o}

From Eq. (VI-a), the following relationship can be developed.

4 N M
Xo o
< 51’10 ’ = [fo} r S HO ? (lll-)
8vo : Qo
\ J J
or in matrix notation: v = f 8
o) o) o)

The 3x3 flexibility matrix £ defined by (14) theoretically
should be symmetrical. An actual example showed that there are slight
discrepancies between terms on opposite sides of the main diagonal.
This is due to the asymptotic nature of the solution and the use of
1 and r/a for cosine and sine of the extended angle ¢O . The use
of this ¥ matrix in an actual problem in general yielded satisfactory
results except for a local "hump" near the singular support. However,
such local phenomenon can be minimized if the size of the cap is made
very small. In certain cases, such as the examples using approximate
joint loads (see examples in Section IV), a 3x3 flexibility matrix like

this one is essential for obtaining the correct answer.



b) The Case Without Singularity. When the vertical force Qv

is bpalanced by some distributed pressure instead of a single force P
at apex, different constants of integration are required to achieve a
solution. For finite deformations and finite membrane forces at the
apex, 03 and Cu must vanish. If we again consider the apex as the
vertical reference point, 1i.e, w=0 at r = x= 0, then C6 = -Cl .
The remaining three constants Cl B 02 3 05 are eliminated by defining
three quantities Mb s HO B QO at X = x, as before. On this basis,

the expressions for edge deformations become:

3

%, £ [(ber'x )2 + (bei'x )2J - M ~ %
o T T K o o o~ 2 2.
AEt 2 (a%+ ro)

|bei x «bei'x + ber x *ber'x |+ H
o o o) o o

L

a

+

ber x *ber'x + bel x *bei'x J *Q
AEtze(a2+ rg) [ © 0 0 o} (o}

i
t

Bh
e}

{ ber x +ber'x + bei x +«bei'x } * M
o] o] o] o) o)

£a?

@;Et(a2+ ri)

{ xi [(ber xo)2 + (bei Xo)aj

+

2 x bel X «ber'x - ber x -bei'x
o} 0 o) o) o}

-+

(1 - vg) {:(ber‘xo)2 + (bei'xo)ejg}' H

a3

o
|

[ X [(ber xo)z + (bei Xo)2j

-+

AyEt(a2+ rg)

+ 2 [bei X *ber'x - ber x *bel'x J
o) o) o) o)

+

X

o .
(1-v7) L(berlxo)a + (bei'XO)EJ }' Q - (1+wv) é% %
(o]

(VI-Db)
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2
X
3

ar x
O

ber x +ber'x + bel x .beitx ~ (
o] o o o] 2

+
A Et(a2+ ri)

x f

22
o

+ 1) ber'x } *M
o o o

{ [(ber xo)2 + (Dbei xo)2J

£;~:~21J . Lber x *bei'x - bei x sber'x J
x o o o o

_ 5 o .
mew%) +(%1%& J

ber x - AL V) pegiy J - H
L [o] XO [s] (]

5 (L+v) -
a8
2
LB
a
28
- ( 02 + l)
a,
alt
+
A Et'f(a2+ ri)
2
X
- [ Of (1L +wv) -
a
2
+€§ (1 - va)
a
2
b
+ ( 02 + 1)
a,

{ ] {:(ber x )2 + (be xo)g]

££~:412J' [ber x *bei'x - bei x ~ber'x J
% o o o )

(ber'x )2 + (bei'x )EJ
L o} o}

If we form a 3x3 flexibility matrix f_ = from (VI-b) so as to satisfy

(14), we find that the third column and the third row are not symmetrical

with respect to the main diagonal.

In this case Betti's law is not

satisfied because the part of work done by the distributed pressure in

vertical direction is not included by considering only the quantities

appearing in Egq. (VI-b).

Such a flexibility matrix cannot be used.

However, the relationships expressed by (VI-b) are valid, and the

first 2x2 matrix obtained from (VI-b) is the same as that obtained from
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(VI-a). This means that the force-deformation relationships in the
horizontal and rotational senses are independent of the manner in which
the cap is supported vertically. In our solution process using the
exact joint loads (see Sections III,C,2 and IV,A), we shall make use of
such a 2x2 flexibility matrix along with the first two coefficients

of the last equation of (VI-Db).




C. Joint Loads

In the finite element analysis, only the forces and displacements of
certain discrete points of the structure are considered. These points are
called the nodal points of the structure which are the junctions of the
individual elements. For axi-symmetric shells of revolution, these nodal
points are circles. If the structure is subjected to concentrated forces
applied at the nodal points, the results of the analysis will be exact if
the geometry of the element is exact. If distributed load exists, we can
either consider the distributed load as concentrated at several nodal
points, thus obtaining an approximate solution, or we can hold the nodal
points fixed in space and determine the fixed-edge forces of each element.
The reactions of these fixed-edge forces can be applied at the nodal
points as concentrated joint loads. The element forces and deformations
due to these concenfrated joint loads superimposed on the fixed-edge
forces and deformations yield the final answers. Next, we shall discuss

the two alternative procedures in more details.



1. Approximate Joint Loads.

A

\
CZ/ §3

FIG. S

Fig. 5 shows the developed surfaces of conical elements (a) and (b)

with joints 1, 2, and 3; Cl and 02

The approximate load on joint 2 is due to the components of the total

are thelr respective centroids.

pressure on the shaded area. Thus, we developed an expression for the

Joint loads due to internal pressure P

T2 = 0
T, + T
2 b ;
Ph2 = [ ) a sin 05 + ('*——‘é‘;;) b sin (Xb] pr
r, + I Ty + Ty : (15)
= o] A
P, = [ ) a cos @ + ( 5x, ) b cos abJ P..
where T2 B Ph2 P Pv2 are the moment, horizontal and vertical forces

applied at joint 2, a and b are the meridianal lengths of the

elements (a) and (b),

r, s Ty are the horizontal radii of the centroidal

circle of elements (a) and (b)

horizontal radius of Joint 2

]
il
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o, , @ are the inclinations of elements (a) and (b)

as defined in Fig. 1.

The loads contributed by pressure on the gpherical cap are assumed
entirely concentrated on the bottom edge of the cap.

Such approximations yleld only vertical and horizontal forces and
no moment for the Jjoint loads. Actual calculations showed that the
concentrated forces induce high negative moments at intermediate joints,
even far from end restraints, where the action is known to be predominantly
membrane.

As the sizes of the elements are made smaller, these negative joint
moments decrease as to be expected. But in order to reduce these moments
to the magnitudes of what they should be in a nearly membrane state of
stress, we must divide the actual shell into a very large number of
elements.

A solution using these approximate joint loads, which are considered
as equivalent system to the actual loading, i1s quite satisfactory for the
solution of problems. In this solution, it is necessary to use a 3x3
flexibility for the spherical cap (as discussed in III, B, 3-a).
Otherwise, the results would show zero vertical element force in the cap

which is not correct.

39



40

2., Joint Loads from Fixed-Edge Forces of the Element. A solution

using this type of joint loads consists of the following steps: (Fig. 6)

(1) Fix all joints in space and compute the fixed-edge

forces in all elements.

(2) Reverse these fixed-edge forces, apply them on the joints,
and let the structure deform. Compute joint displacements.

Then determine the forces and deformations in the elements.

(3) The final states of forces and deformmations in the

elements are obtained by adding (1) to (2).

FIND FEF IN JOINT LOAD AS (1)+(2) GIVE
ELEMENTS. REVERSED FEF FINAL FORGCES
AND DEFORMATIONS
FIND JOINT DIS- IN ELEMENTS.
PLACEMENTS,

ELEMENT FORCES,
AND DEFORMATIONS.

(1) (2) (3}

FIG. 6

For the case of ordinary structural frames the solution is exact. For
the case of a shell, this solution, although exact in concept, does not
yield more accurate results than that found using approximate joint
loads. Moreover, this procedure involves more steps than the solution
using approximate joint loads. Therefore, it was not found to be
particularly advantageous. This will be discussed later in Section V.

The calculation of the fixed-edge forces in the spherical and

conical elements needs some further comments.
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a) Spherical Cap. Membrane solution of shallow spherical

shell gives

(1-v) .
Xmo = 2 Et Fr Yo
¥ (l‘-v) L . 7 «
8o = 2Bt Pr Yo @ (16)
(1-v) L2
o = ZEc Pr T %o

Eq. (16) gives the membrane deformations {Vmo} which have
been defined in Fig. 3. (Subscript m indicates membrane action).
The application of a set of edge forces { SFO} will produce edge
deformations <{VFO} which when added to {'%n} result in zero

deformations. Thus,

Vmo + VFO = 0
Since vF = fo . SF
o) o)
f <5 = -V
0 FO m (17)
-1
SF = —fo Vm
o 0

For the case without singularity at apex, we use a 2x2 fo matrix

(refer to III, B, 3). Hence

o «[koj. Hno (172)

5h

iy o

The third component of the element forces can be found separately:

QVF = % P, * a * sin ¢o (18)



Fig. 7 shows the relations between the fixed edge forces of the cap

and the joint forces, from which it is apparent that

or

FIG. 7

The 3x3 matrix in (19) is the equilibrium matrix of the spherical cap

A (see III, D, 1) with a minus sign. Hence

R = —AO . SF (20)
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b) Conical Ring.

Fig. 8 shows a conical ring

under internal pressure Pr .

To £ind the membrane displace-

ments, we need some arbitrary

support to balance the pressure

vertically. For this purpose

we choose to hold the cone at
upper edge such that the
meridianal displacement v of
the top edge is zero. This, we recall, is the same boundary condition
as used in determining the meridianal stretch in the flexibility matrix
(see III, B, 1).
Under this assumption the displaced cone will be in the dotted
position a'b'c'd'. (Note that angle changes are not shown in Fig. 8.)
A rigid body displacement will bring the cone to the dashed position
a becd where the top edge of the cone is at the original level. We
see that such a movement does not change the magnitudes of the horizontal
displacements Bmi and 6mj and the meridianal stretch e, - Thus the
stiffness matrix obtained in III, B, 1 can be used directly to find the
fixed-edge forces.

Membrane solution of conical shells gives:

prcot a s?

N, = —— (s, - =4)
mi o i s,
1
prcot%x fz

- . = == (3s, + )
Komd 2 Et |

ho) cot%x
= = — - 25 (21)
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L

_ p_ecot” O )
mi T T 2Tt sin @ [(2~V)s TYE J
L
mJ Et sin o J

p_cot & . 8,
e = = (l~2v)(s.2 - 5,2) -25.% log —<
m L Bt J L J Ss

By the same reasoning as followed in (a)

S, = ~f v = -kv (22)

f N h
?Cmi Mfi
X MFJ
where Vo= Smj \ and SF = ) HFi>
3 Ty
e, NFJ
’ /
Also
R = -AS, = Akv {23)
or for the ntﬂ element in general
r N\
R'(n)
1
g(®) SR C R C Y (23-a)
(n) n i)
R,
J
\ J

where Ah is the equilibrium matrix relating the edge forces to the

joint forces of the 0™ element (see 1II, D, 1).




¢) Cylindrical Ring. Bquations (22) and (23) still hold

except the stiffness and equillibrium matrices used should be those of
the cylindrical element. The membrane deformations {vm} in this

case are

p_ a®
- r
Sy = " (2k)
2
5. . =&
mj =~ Bt
vp.:al

€n =

With the Joint loads determined in the above described manner,

a standard matrix solution will yield

{ )

7 (n)
i

5 (n)
J

g(n) = ﬁ'(n)
i

7 (7)
J

ﬁ‘(n)
J

\ /4

which represent only the effect of the system of joint loads resulting

from the unbalanced fixed-edge forces. The final edge forces in the nth

element are

. 5 SF<n) (25)

RECVRI- CO N CY RV
1

o(n)

while == iy, .
ma
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D. Matrix Sclution of the Problem

1. The Standard Matrix Operations. It was mentioned at the begin-

ning of this section that four kinds of matrices are needed to solve a
problem of axi-symmetrical shells of revolution. We have already discussed
the formulation and application of the stiffness and load matrices. Now
we shall show the formulation of the displacement transformation and
equilibrium matrices.

Fig. 9 shows the positive directions of the loads and displacements
of the nodal points or Jolnts of the structure which are adopted in this

report.

Joint displacements:

6 - in direction of T,
positive when flattens
the element.

ﬁh - in direction of P,

e h
positive outward.

AV - in direction of P,

positive upward.

ELEMENTS = @,0.®, ... ®

JOINTS = 1,2,3,...n4]

FIG. 9 - JOINT FORCES
AND DISPLACEMENTS.



Remembering the definitions of the element forces and deformations (Figs°

1 and 2) we

oS
1
N
l,_l
N

il

obtain the following relations:

. Ahl + 31n‘al . AVl + cos al Ahe - sin ¢



L8

In matrix form:

xOW 1 0 0 oy
5h 0 1 0 Ahl
© A
vl
Bv 0] o -1
o ]
x. (1) 1 0 0 o :
i Ah2
= (1)
X 0O 0 0 1 A,
4 =
[
e
n
“n
“5‘,(“) -1 0 0 0 0 Am
- , 0
5 (n) 0 0 0 1 0 n+l
J(Il) Ahl’l'f‘l
- i g1 A
L e ) B c05c>Ln s:LnoLn 0 cosd.rl s:LnoLn \ vn+lj
or
HOIEY 7 )
0 B r
1
M 353
v(l) B% I‘2
5x
V(2) = B r3 ¢
5xg
(n) B T
n+1
v ; | 5xg~ L )
Using symbolic notations:

v = Br (26)

where v 1is the matrix representing edge deformations of all elements
r 1s the matrix representing the displacements of all joints

and B 1s the displacement transformation matrix.




k9

Next, considering the equilibrium of each joint, with proper atten-
tion to the positive directions of the Jjoint forces and element forces as

defined in Fig. 1,2, and 9, we have

( _ (1)
Tl = M - Mi
. (1)  =(1) (1)
< Phl = H =~ H1 T cos Oél N,
—(1) (1)
= - i (02 .
\Pvl QVO +r sin O Nj
o o= oy (1) (2)
2 J i
) _ oy (1) (2) (1) _=(2) (2)
th H Hi + cos Otl Nj T cos 062 .
(1)  =(2) . (2)
= -81 o
\PVE in Otl N + r sin o NJ
( T M (n—l) - M (n)
n J i
P H (n-1) H (n) + cos O . N.(n"l) - r(n> cos O N.(n>
{ hn J n-1 J J
P = -sin & N (n-1) + ;(n) gin & N.(n)
[ Vi n-1 J
( _ o ()
Tn+l = Mj
< F = H,(n) + cos O N.(n)
ol no
(n)
= ~gin &
Pvn+1 sin 0 I\Tj

Note: for cylindrical element, & = 900 sin@ =1, cos & =0, r = 1,

the above relations still hold.



From these relations we can form

r ~ J— (O)
Ry Ayl A S
3x3 | 3%5
(1)
R, Ap
3x10
2)
R A 5
3 3x10 3
{ f .
R].’H-l é'»‘a An"' l .
1 3x10
e
P, \_ 7

or using symbolic notations:

R = AS (27)

where R 1is the matrix representing forces on all joints
S is the matrix representing edge forces of all elements

and A is the equilibrium matrix.

With v and S as defined in Egs. (26) and (27), we can write

S = kv (28)

where

()
(D)

(@)
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0 -1 1 -1 n -1
and. k( )-"‘- fo i k( ) fl K} *es0 s e eNere k( )= fn s

fo is the flexibility matrix of the cap
fl sesesenn fn are the flexibility matrices of the 1?t........ nth
cone or cylinder.

Egs. (27), (28), (26) yield

R AkXkBr = Kr

]

(29)
Ak B

K

which relates directly the joint displacements r +to the joint force
R of the structure. The quantity K is called the stiffness of the
structure. |

With a given set of joint loads R we can find in sequence:

r from (29), v from (26) and S from (28).

This process of solution, however, involves the operations with
large matrices, such as A, B, k, consisting mostly of zeros and
therefore, poses a problem of storage for the computer. Indeed,

IEM 7090 can handle problems using only about 15 elements when this
process is employed.

One way to avoid such a storage problem is to form the structural
stiffness KX directly by operating with small matrices An 3 Bn and
k(n) instead of the large matrices A, B, and k. This process will

be discussed in the next article.



2. 'The Direct Stiffness Method. To avoid the difficulty of

having inadequate storage locations in the computer, we operate with
the small submatrices An B Bn of the large matrices A and B
appearing in Egs. (27) and (26) together with the element stiffness
k(n) and form the structural stiffness K in a different way.

In the previous article we have established for the first conical

element the following relations:

(1) _ (1) (1)
‘V‘(l) = Bl I'E(l) (30)
R o a, s
, ) (1) [ e, (1)
& (1) Pt ’r.(l) Lpy
1 P 1
where RE(l) = > = 4 vi ’ I (l) = ¢ o= 4 l\,i
L () T : L e |
J J
¥ / PhJ \ J ZLhJ
Ps By 5
\ J J

are the joint forces and joint displacements of the structure consisting

of only one element, i.e., element (1).

Thus, the stiffness of the structure consisting of only element (1)

is

1) A (1) B,

and similarly for the nth structure, that is, the structure consisting

of the n™ cone (or cylinder), only

@) _ 4 k(B g (31)

I n
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For the spherical cap

o} o]
and
where RE(O) = RJ(O), rE(O) = rj(o), since the cap has only a lower
edge.
By partitioning of matrices, Egq. (31) can be rewritten as
4 N r - 3
5 (0) @) | gm) . (n)
i ii ‘ i3 1
ORI I I — |
o (2) =n) | (n) . (n)
J Ji JJ J
N /
L - N /
where k(n) = A .° k( )- B

ii ¥ Tni ni

g0 g (8 g

f#

13 ni n
(32)
'12(.".1> - A - kB g
Ji nj ni

wn) _ 4 2, g
33 nJ n

and A, , A ., B,
[:AnJ = |-, {Bn}- [Bni | BnJ.J
|
B

Next, we note that the joint force at any joint in the assemblage

» B . are submatrices of A and B such that
nj n n

is the sum of the forces on joints 1 and J of the lower and upper

elements respectively, and the joint displacement of any joint in the

assemblage 1s common for joints 1 and J of the lower and upper elements.
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This means that

(1) (0) _o (1)
Rl = Ri + Rj rl = ri = rj
(1) (2) (1)
R2 = RJ + Ri rg = r‘j = rl
------------------------ and  semrmce e e
R R.(n~l) + R.(n) T T (n-1) + T
n 3 i n N
(n) (n)
Rel = Rj Tarl = T

Using Equations (32) and (33), the structural stiffness of the

assemblage may now be put into a tri-diagonal matrix form

R, (E(O)#Egi)) E§§) . .
R, E(i> (k(l)+k(2)) Eéi) .
R, $ . gﬁ?) (k(2)+k(3)) .
. o . (k(n l) (n))
—(n
Rnel : ’ a ji)

which is an expanded form of the relation

R:.:K_'I'

=(n)
kj ;

—(n)
Jd

I‘n-!t—l

and it should be noted that K as developed in Eq. (29) also can be

stated in this form.

5k

(33)

(34)



The process described in this article has the advantage that
Eii R Eij s iﬁi ’ Ejj for each element are developed in a do-loop of
the computer program, eliminating the storage of the large matrices
A, B, and k. The final K matrix is the only large matrix which
remains for subsequent calculations. If this K matrix is stored
in a conventional rectangular form, the 7090 computer can handle problems
involving 45 conical elements. By the use of subroutines of skew

*
storage and sclution or by applying a recursion process(al) problems

involving several hundred or more elements can be analyzed.

*
Private communication from Messrs. A. De Fries and Ashvin Shah,

Graduate students of University of Califormia, Berkeley.
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3. Special Methods for Shells Subject to Internal Pressure.

For shells subject to internal pressure only in which the stress
conditions are essentially membrane except in regions near the restraints,
some short-cut procedures can be used instead of the more general

approaches discussed above. Two of such methods are described below,

a) Substitution of a known element force in  place of a part of

the structure.

FIG. 10

Fig. 10(a) shows a spherical shell under internal pressure p,. It
is known that the portion above joint & 1is essentially in membrane
state of stress and the membrane force N¢ at a can be readily

determined. We can, therefore, consider the portion of the shell

below a , apply N¢ as an additional joint load at a (Fig. 10-D)
and thus, reduce the number of elementary cones which need to be

considered., This procedure simplifies the solution.
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b) Membrane solution plus edge-displacement effect. Fig. ll(a)

shows the spherical shell subject to intermal pressure P, -

FIG. Il

We first remove the end constraints and let it deform entirely as
a membrane. The shell will take the configuration shown by dashed line
(2) (Figs.1ll-b and 1l-c). This deformed shape and the induced internal
forces can be easily obtained from the membrane solution. Then we
impose the known displacements at the boundary to bring the edge back
to its original location and slope. At this stage bending moments and
cross shears are induced in the shell, and the final configuration of the
shell is shown by the dotted line (3) in Fig. 1ll-c. In applying this
procedure, finite element analysis is used only in the last step of
analysis in which only displacements at the boundary are applied. Here
the problem of local moments or uneven meridianal forces around joints
does not arise.

It should be remembered that the membrane solution is a convenient
approximation. It represents a simplified particular solution of the
governing differential equation of the shell. But for most cases, the

error introduced in such an approximation is found to be negligible.



IV. APPLICATIONS OF FINITE ELEMENT SOLUTION

A, Examples 1-10

A large number of examples had been worked out in order to test the
correctness of the formulations presented in the previous sections and to
explore the advantages or disadvantages of each particular sequence of oper-
ations. A number of these examples will be presented in this chapter to
illustrate applications of the method and to illustrate some of the diffi-
culties encountered in solving problems.

For convenience of comparison, most of the examples involve the
analysis of the same shell by different procedures. Thus, methods of using
different Joint loads, different number of elements, different stiffness
of spherical cap, and special short-cut procedures are illustrated. Only
one example 1is solved for a cylindrical pipe to illustrate the application
of cylindrical elements.

The shell analyzed in most of the examples is a spherical one of
constant thickness fixed at the bottom with a central semi-angle of 750, a
radius of 100 in. and thickness of 1/2 in., subject to an internal pressure
of 100 psi. The assumed material properties are E = lOT psi and ~ = 0.2,

(22)

Hetényi's solution of a spherical shell which is believed to be

sufficiently accurate for all practical purposes is used as a basis of com-
pariscn. Rajan also formulated a solution for spherical shells(EB) in
closed mathematical form; the critical values of meridianal moments obtained
by using this method are also listed for comparison.

Several steps are involved in solving the problem. First, decision

must be made regarding the number of elements to be used to approximate the
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actual shell and where the joints should be located. When the locations of
the joints are selected, the geometry of the conical elements can be com-
puted and from this the appropriate Thompson functions are obtained using
certain parameters. The flexibilities and/or stiffness of the elements are
then developed using these Thompson functions. OSeparate computer programs
have been written for these purposes including the calculations of approxi-
mate joint loads. When the stiffnesses of the elements are available, one
single large program takes care of all the remaining steps of the solution
including the development of Jjoint loads from fixed-edge forces if necessary.
All computations are carried out by IEM 7090 computer, under the UCB
Computer Center job number 255.

The criterion for judging the accuracy of a solution is a comparison
with other known solutions of the distribution of the meridianal moments
in general and especially of their critical values at the fixed edge. In
a few cases the meridianal tension is also shown.

Ex. 1

The TSO sphere was analyzed as

an assemblage of a 50 spherical
@ cap and 25 cones as shown in
Fig. 12. Approximate Joint loads

were used.

The meridianal moments Ms’
membrane force NS at each joint
and the displacements Ah and
é} of each Jjoint are tabulated

below.

In the table, Ns below Jjoint indi-

cates the Ni force in the element

below the Joint, NS above joint

indicates the Nj force in the

F|G‘l2..25 CONE ARRANGEMENT elmmntahwethejohm.

OF 75° SPHERE. For each element Ni =7 - Nj'
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N N

Jotnt| £ M Above|Below| “n | Zv Jotmt| f| g Avove|Betow| “h | Z
1 |50[-608 6731 [.0091[.0931]| 1k |hk|-113|L4862 |5133 |.0557 |.0630
2 |8 |-155|k215 (6027 |.0135(.0990) 15 |L7|-111{4875 {5117 |.0588 |.0602
3 [11|- 85(4396 |572L |.0159(.0882] 16 |50|-112{4887 |5111 |.062k [.0578
Lo |1k~ 97|51k {5551 |.0191].0829{ 17 |53|-134[4905 |5120 |.0659 |.0552
5 |17(-110[4595 {5446 |.0230|.0812] 18 |56]-112|4933 [5109 |.0671|.0510
6 |20(-11k| 4655 | 5370 |.0272(.0802) 19 |59|-10T7|kok1 |5006 |.0683|.046T
7 |23]-114| k701 {5316 [.0312.0789] 20 |62|-103|4ok8 [5084 |.0706|.0L433
8 |26|-114|4738 | 5272 |.0351|.0773] 21 |65|-104 (k955 |5061 |.0752|.0408
9 |29|-114|L767 5238 |.0388|.0754) 22 |67|-127|4981 |5054 |.0761.0381
10 | 32|-11h|Lk792 | 5208 |.0k25|.CT33] 23 |69|-165{498k [5052 |.0687|.0321
11 |35(-115/4813 |5185 |.0k60].0710f 24 |71|-161|4987 [5045 |.0k95 |.c220
12 |38|-115|L832 | 5168 |.0kok|.06851 25 |73+ 15{4990 |5042 |.0197.0091

13 | 411114 4848 | 5149 |.0526|.0659) 26 | 75| +54k|4993 0 0

NOTE: All quentities are in inch and pound units.
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Ex., 2 The same assemblage as in Ex. 1 was analyzed with joint loads
derived from the fixed-edge forces of the elements. A2 x 2 stiff-
ness was used for the cap. The results are tabulated below.

N N
Joint| M_ | A | b fJoint| M g N A
= Above |Below i s Above |Below v
1 |-507 3849 |.0132 [.1143F 1k 110 5141 4870 | .0552 [.0629
2 |- 36 6147 4216 |.0148 |.1029] 15 111 5127 (4882 | .0581 [.0599
3 68 5780 L4408 |.0165 |.0898) 16 111 5114 | 4894 | .0608 |.0567
Ly 81 5589 4526 |.0195 [.0841] 17 113 5102 {4905 | .0633 {0533
5 85 sh7o |L60T [.0232 |.0821) 18 116 5092 | L4915 | .0658 {,0kg9
6 91 5389 |4e66 |.0272|.0808] 19 119 5082 | Lo2h | 0688 |.0469
7 97 5330 |4711 |.0311 [.0793} 20 110 5072 | 4933 | 0729 |, Okll
8 101 5285 | 4747 |.0349 |.OTT5] 21 59 5063 | L9960 | .OT54 |.0L10
9 103 5250 | 4776 |.0386 |.0755) 22 |-1.2 5038 | hobh | .0739 |.0373
10 105 5220 | 4800 |.04k21 |.0733] 23 |- 60 5034 | L96T7 | 0669 |.0315
11 107 5196 | 4821 |.0456 [.OTO9) 24 |- 64 5031 | Lo71 | .0L8T |.0217
12 108 5175 | 4839 |.0L89 |.0684] 2L 112 5027 | Lo7h | .0195 {.0090
13 109 5157 | 4855 |.0522 |.0657] 26 6L2 502k 0 0




Ex. 3 The seme assemblage as in Ex. 1 was permitted to deflect as a mem-

brane, then the edge was forced back to its original position and

inclination.
N N
Joint| M_ S & | 4 |Joint | M ? a | A
Above| Below . Above | Below

1 |-7.2 ~-53.0(.0070 |.0841] 1k -0.3 |=-1.1 {-1.1 |.0556 |.0630
2 |-3.5 |-33.2]-22.8{.0112|.0846] 15 |-.13 |-1.0 |- .9 |.0585 .0600
3 |-0.9 -16.6{ -12.7/.0153 |.08k0} 16 -.27 |- .9 |- .8 [.0613 .oséé
L |-0.1 |-10.0|- 8.1|.0194[.0831] 17 |-.02 |- .8 |- .8 |.0638[.0535
5 |-.05 |- 6.7]-5.6|.0234].0819] 18 |+1.6 |- .8 |- .7 |.0662 .o56i
6 |-.07 |-u.8/- 41|02 |.0808] 19 |+u.8 |- .7 |- .7 |.0688 |.on68
7T |-.08 - 3.6]- 3.3(.0313(.0791} 20 +3.3 |- .7 |- .6 [.0722 [.Ok39
8' -.06 - 2.9/~ 2.5].0351[.0773] 21 -22.8 |- .6 |- .6 [.0757 .oulo—
9 |-.05 - 2.3] - 2.1{.0388|.0754] 22 -6h.2 |- .6 |- .6 [.0753 90378‘
10 |-.0k4 - 1.9]- 1.7]|.0k2k |.0726] 23 -112.8/- .6 |- .6 |.0681 |.0318
11 |[-.03 - 1.6{- 1.5|.0459 |.0710{ 24 -112.2) - .6 |- .6 .0ko2 {.0219
12 |-.02 - 1.4~ 1.3].0493].0685} 25 +63.9 |- .6 |- .6 [.0197 |.0092
13 |-.01 |- 1.2/~ 1.2{.0525|.0658] 26 | +595.4|- .6 0 o

Note: 1. Add 500 #/in (the constant membrane force) to the results of
bending analysis to obtain the total NS .in the shell.

2. The displacement values listed are total displacements caused by

the membrane and bending displacements.

It is significant to list for the purposes of comparison the M_

P-4

values for the same shell based on Hetényi's and Rajan's solutions. The

accuracy of these solutions is known to be very good.




Hetenyi's Solution

5° | 26 -.00012 | 47 | -.1101 67 -63.66
8 29 -.oo0kk T s0 | -2ho1 | 69 | -112.1
11 Less than| 32 | -.00051 | 53 | -.0042 71 -111.7
B 13 w0032 156 (41636 || T3 | +6.kk

17 10 38 | +.00706 | 59 = +4.839 5 +589.2
— I R R A L
I—ﬂé? 4 Clot10 | 65 | -22.55 |

Rajan's Solution

g | M ” é Moo S L ; Moo

50 | 26 | w7 | -0k | 67 | - eh.3
8] f29 1-.00035 | 50 | -.2311 | 69 -110.5
11 | Less than| 35 | ..00039 53 | +.0253 L | -10k.k

14 L 735 w0012 ’T 56 | +1.65 73 + 79.8

17 I R B B B

20 L +.0103 |62 | +2.82 ”
23 Ly T o118 T s | 23 | -
Bx. L The TSO sphere as in Ex. 1 was

FIG. 13 -10 CONE
ARRANGEMENT

divided into 10 cones and a 50
The
analysis was obtained by a super-

cap as shown in Fig. 13.

posing edge displacements found

from the membrane solution to ob-
tain correct boundary conditions.
The meridianal moments are listed

below.
Joint | M_ [ Joint| Mo
1 | -12 T | +1
2 |-2]| 8| +6
3 -. 9 | -23
L4 Y 10 | -125 E
5 | -.2 ] 11 |+504 §
6 | -.3 j
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Ex. 5

N=5000

FIG. 14 -23 CONE ARRANGEMENTS
WITH CAP REPLACED BY
A MEMBRANE FORCE.

64

The seme 750 sphere as in Ex. 1.
A 300 cap was removed and the
remaining pcrtion divided into
23 conical rings (Fig. 14). The
force at the edge of the cap,

known to be very close to membrane

Py

tensicn of EN is applied in

the direction of the tangent of
the cap. The pressure over the
remaining portion of the sphere
was approximated at the Jjoints
The solution yields

as usual.

the following meridianal moments.

Joint  # 4 M Joint @ M [Joint f M :
1 30° 0 9 § L6 -51.4 17 | 62 -47.8 E
2 32 -10.8 § 0 | 48 -51.2 18 6L -61.2 i
T3 3| -31.6 e 50 | w512 19 66 | -93.1 !
b 36 5.8 1 g 52 511 {20 | 68 |-1b1.8
5 i 38 -52.0 | 13 | 5k -50.5 | 21 } 70 | -175.0
6 ko -53.3 | 1k 56 “hg2 o2 72 | -101.9
7 f Lo ; -52.7 15 58 ! -h7.1 23 T4 +239.0 N
8 J Iyl ; -51.9 16 60 f *§5f%, j 2l 75 +56§f§wm‘i



Ex. 6

The 750 sphere of Ex. 1 was divided in three different arrangements
of cones, and analyzed with the approximate Joint locads. The three cone
arrangements are:

(1) 50 cap and 25 cones with subtended angles ranging from top o
bottom of 20 of 30 and 5 of 2°. This is the arrangement used in
Examples 1, 2, and 3.

(2) 5° cap and 35 cones with subtended angles of 5 of 19, 5 of 2°,

10 of 3°, 10 of 2°, and 5 or 1°.

(3) 50 cap and 45 cones with subtended angles of 5 of 10, 25 of 20, and

15 of 1°.

The resulting meridianal moments for each case are plotted in Fig. 15.

APPROX. GCONGC. JT. LOAD
5° GAP
500

400 —o— 45 ELEM: 5-1° 25-2° 15-|°
--4--— 35 ELEM: 5-1°, 5-2°, 10-3° 10-2°% 5-1°

~-o-- 25 ELEM: 20-3° 5-2°

300

200

100

e == o

0
X /{{ 'Zﬁi @ o—o—c»—o—o—-o—o-ﬁ»-o-o--o-wvc’t:‘\

‘Edﬂ" I e e e - e A
g

N

g

\
}
\
|

5° CAP (3 X3 STIFF)
.4.——,1
- 200

- 400

~FIG. 15 Mg DISTRIBUTION FROM SOLUTIONS
USING APPROXIMATE JOINT LOADS.



Ex. 7

Ex. 8

By the same three cone arrangements as in Ex. 6, the shell was
analyzed with F.E.F. joint forces. The resulting meridianal mom-

ents are plotted in Fig. 16.

——642.8

600 $~—608.5 - JOSI:ICTAF[;OAD
\600 t ) I | { ‘ . l
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Same three cone arrangements as in Exs. 6 and 7. Superposition of
edge-displacement effects on membrane solutions. The resulting MS

are plotted in Fig. 17.
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Ex. 9 The 750 sphere of Ex. 1 was analyzed with approximate joint loads
using three different cone arrangements which involve uniform
element lengths and break angles everywhere in the shell, except
in regions next to the cap. The three cases are:

(1) 5% cap and 45 cones: 5 of 2%, Lo of 120

2
(2) 50 cap and 35 cones at 2° spacing

(3) 5° cap and 2k cones: 1 of 1°, 23 or 3°

The meridianal moments are plotted in Fig. 18.
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Ex. 10

1000 1b. jn.
in

el

£S5 [1s00b.
in.
2
177777 T77777777

A circular pipe 20" in diameter,
35" long, and 3" thick is sub-
Jected to a moment of 1000
1b-in/in and a horizontal force
of 1500 1bs per in. at one end;
the other end is fixed. Let

e
E =3 x 10° psi, 4 = O.

This problem was solved by a

closed form mathematical pro-

FlG |9 cedure using 35 cylindrical
elements of 1" length. The
results of both solutions are
tabulated below.

Pipe Solution by Mathematical Approach
Jo:mt M| Q ”w Jo:.nt M Q W -!:Tointl M Q ( W i
% o S [N AU S . .
1 |1000 1500, .0252f 13 ! 1083 3-302 -.0018; 25 |-150 | 10 |~-.0002
2 jee3h 905 | 0206| 1k | B0 -261-.0019 26 |-138 | 14 |-.0001
: 3 3003, 570 .0163} 15 561 ~219*-.0018% 27 |-122 | 17 |-.0001
L4 {345 eb7! .0125| 16 | 363 | -178|-.0017| 28 |-104 | 18
5 13525 5] .0091] 17 | 20k | -1k0 -.0016: 29 |- 86| 19
- | e e R
6 3439 1 -167! .0063 18 81 | -107|-.001k; 30 - 67| 18
. ; SRS SN , - Less
7 3210 -282, .0040: 19 | - 11 . - 781-.0012] 31 |- Lo | 18
8 ;2890 j-356fV]OOéij‘éd_»iw:ufém':7531-,0010 3 -3 18 | them
B L ‘ : e e e }
9 2522 =381 .000T: 21 -120 - 33}-.0008, 33 |- 13| 17 10 b
A ] - - SN S S
10 2137  -385 -.0003 22  -1L45 - 181-.0006, 3k booay
11 1759 ' -369 -.0010; 23 -156 - - 5 -.0005} 35 | 21 17 .
12 1koh —359 —.0015; 2l -157 © b -.00031 36 | 38 17




Pipe Solution by Finite Element Approach

Joint | M_ Q w  [Joint | M_ Q w  Point | M_ Q W
1 |1000 (1500 | .0252| 13 {1082 [-302-.0018| 25 [-150 | 10 |-.0002
2 |e23hk | 985 | .0206] 1k 801 (-261|-.0019| 26 |-137 | 14 |-.0001
3 |3003 | 570 .0163)| 15 561 |-218(-.0018} 27 |-122 | 17 -.0001
L |3kos | 2h7| .01251 16 363 |-178|-.0017} 28 |-10k | 18
5 (3525 51 .0091} 17 204 |-140|-.0016§ 29 |- 86 | 19
6 3438 |-167| .0063] 18 81 |-107|-.0014} 30 |- 67 | 18
T [3209 {-282| .00k0{ 19 - 11 |- 78|-.0012} 31 |- ko | 18
- 8 12890 |-350| .0021} 20 - 77 |- 53|{-.0010f 32 |- 31 | 18
9 |2522 |-381| .0007| 21 | -120 |- 33|-.0008] 33 |- 13 | 17
10 (2137 {-385|-.0003) 22 | -145 |- 17|-.0006] 3.4 Loy o1t
11 |1758 |-369 |-.0010] 23 -156 |- 5|-.0005} 35 21 | 17
12 |1403 |-339|-.0015] 2k -157 L |-.0003] 36 38 117
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B.

Computer Programs

l’

For an elastic analysis of shells of revolution, the following

individual programs (coded originally in Fortran language) are now avail-

able.

Geometry and Thompson functions for conical elements.

The argument for Thompson functions (yi, yj) may be very large,
and the Thompson functions will involve numbers much greater than
1038 or smaller than 10-38 which are beyond the capacity of IBM T090.
Fortunately, the flexibilities of a conical element always involve the
product of a ber-series function and a ker-series function. This pro-
gram yields Thompson functions in which a certain positive power is
taken off from all the ber-series Tunctions while an equal negative
power is taken off from the ker-series functions. These Thompson
functions of false power will yield the correct flexibility matrix of
a cone Jjust as well as Thompson functions of true power.
Flexibiiity and stiffness of conical elements, good for &% 900°
Thompson functions for individual numbers, good for arguments up to
120, output in true power.
Flexibility and stiffness of spherical cap.
a. with singularity
b. without singularity together with F.E.F. output
Flexibility and stiffness of cylindrical element (in subroutine form)
Approximate joint loads
Solution program using approximate joint loads and 3 x 3 cap stiffness,
good for L5-element cone arrangement and for zero or known end-joint
displacements. For other boundary conditions, it is necessary to
regroup the unknowns and change the arrangements of several matrices

involved.

TO



8. Solution program using 2 x 2 cap stiffness ana F.E.F. joint loads.
The F.E.F. joint loads are developed within the program. The output
éives the final solution (sum of fixed cones solution and the effect
of unba;anced joint loads). This is good for cases with the same
boundary conditions as mentioned in 7.

9. A program to compute the remaining forces (Né, M@) and stresses in

the cones.

These programs will not be listed in this report but are expected to appear,
possibly in slightly modified form, in a second report covering the large

deformation problem.

Tl
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V. CONCLUSIONS

Examples 1 and 2 of the previous chapter showed that the solutions
using approximate joint loads and the F.E.F. joint loads represent two
opposite trends of slow convergence. The former (using approximate loads)
yielas negative moments in the interiof regions of the shell, and Nj
values in the conical elements smaller than the known membrane force, while
the Ni values are always greater than the Nj values. The latter approach
(using F.E.F. joint loads) yields positive moment at interior joints and
Nj values greater than tﬂe known membrane force, while the Ni values are
always smaller than the Nj values. It is believed that the appearance
of negative residual moments in the first approach is a natural consequence
of the application of concentrated forces, and that the appearance of posi-
tive residual moment in the second approach is due to the fact that by the
procedure used we have introduced some large quantities (the F.E.M.) into
a region where these quantities do not exist. Since the unbalanced moment
around a joint is much smaller than the fixed-end moments and the distributed
moments can never exceed the unbalanced moments in magnitude, positive
moments remain at the Jjoints. However, as the number of elements becomes
very large and the element lengths become small, these residual moments,
positive or negative, do diminish. Examples 6 and 7 showed that the results
of analysis by both approaches converge; Examples 1, 2, 3 point out the
fact that the joint displacements obtained by different procedures are
about same.

Example 5 illustrated the use of short-cut method by which a 23-element
solution yields nearly as good results as a regular solution using 45

elements (Ex. 6).



Examples 6 and 7 showed that whenever Joint loads are applied some
residual moments always remain in regions where the stress condition is
known to be membrane. These residual moments are positive when F.E.F.
Joint loads are used and negative when approximate joint loads are used.
Their magnitudes depend on the lengths of the elements and the break angle
between the elements. When the element lengths and break angles are made
smaller, the residual moments diminish quickly (M e 12), It appears that
by averaging the results of a solution using approximate joint loads and
those of another solution using F.E.F. joint loads, both based on the same
arrangement of elements, the correct results can be obtained. Such a step,
however, needs rational Jjustification.

Examples 4 and 8 indicate the advantage of superposition of edge dis=~
placement effects on a membrane solution. By this procedure a lO-element
arrangement yields nearly as good results as does a 25-element or a
35-element arrangement. No problems of residual moments arise.

Example 9 showed that when constant element lengths and break angles
are used throughout (except near vertex), the MS distribution using var-
ious element lengths all take the same shape. Their plots appear only at
different heights from a base line in a graph. These different heights
from the base line represent the residual moments for the particular
element lengths and break angles used in the analysis. Comparing Examples
8 and 9, we see that the correct MS distribution can be obtained by sim-
ply shifting the base line down (for approximate joint loads) and up (for
F.E.F. joint loads) through an amount equal to the residual moment and
read the curve referred to the new base line. But if the lengths of the

elements are kept the same while the break angles are not (possible near

boundaries), such an approach should not be taken because the non~-uniformity
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of break angles will cause local change of the slope of the M  curve and

s

thus impair the correctness of the result.

Example 10 simply showed the correctness and accuracy of using cylin-

drical elements for a solution.

1.

We thus come to the following conclusions.
Finite element analysls of axi-symmetrical shells of revolution does
give correct results, but due to the space nature of the problem, a
much larger number of elements than that needed for a frame analysis

is required for the desired accuracy.

The use of F.E.F. joint loads, although exact in concept, offers no
practical advantage over the use of approximate joint loads. On the
contrary it involves more steps for a solution than does the use of

approximate joint loads.

For possible‘cases, a solution by superposition of edge-displacement
effects and membrane effects is always recommended. Such a solution
can make use of a relatively small number of elements and yet yield
accurate results. For shells with arbitrary shape and thickness, a

finite-element membrane solution is fairly simple to formulate.

The use of equal element lengths and equal break angles throughout
the shell is recommended. In such cases a relatively small number of
elements could yield correct results by the use of shifting base line

gpproach discussed before.

Short-cut methods of replacing a portion of the shell with known

forces can be used to save effort if possible.

Joint displacements are relatively insensitive to the soclution method

and the number of elements used.
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