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Topological defect dynamics of vortex lattices in Bose–Einstein condensates

Lee James O’Riordan and Thomas Busch
Quantum Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.

Vortex lattices in rapidly rotating Bose–Einstein condensates are systems of topological excitations
that arrange themselves into periodic patterns. Here we show how phase-imprinting techniques
can be used to create a controllable number of defects in these lattices and examine the resulting
dynamics. Even though we describe our system using the mean-field Gross–Pitaevskii theory, the
full range of many particle effects among the vortices can be studied. In particular we find the
existence of localized vacancies that are quasi-stable over long periods of time, and characterize the
effects on the background lattice through use of the orientational correlation function, and Delaunay
triangulation.

PACS numbers: 03.75.-b,67.85.-d

I. INTRODUCTION

Ultracold gases have proven to be a valuable resource
for building simulators of condensed matter and solid-
state systems [1–3]. This is due to the fact that they
are low energy systems that can be trapped in periodic
settings using optical lattices, and that a large number
of techniques exist to control and change all terms of
the corresponding Hamiltonians. Control over the lat-
tice depths, and therefore the tunneling strength, gives
a handle on the kinetic energy term [4], superlattices al-
low to adjust the on-site energies [5], and different exter-
nal lattice geometries lead to changes in the band struc-
ture [6, 7]. Most recently artificial gauge fields have been
added to the toolbox [8–10].

One of the most interesting topics in solid-state physics
is the study of impurities and their effect on the back-
ground system. Studying impurities in Bose–Einstein
condensates (BECs) is a promising and rich topic and
the first experiments in this area have recently been car-
ried out [11–13]. Given the clean and highly controllable
nature of condensates, they allow a study of the fun-
damental physics of impurities, which is paramount to
creating models of realistic condensed matter systems,
which are never truly impurity or defect-free. By now
impurities have been used to investigate the atomic den-
sity distribution [11], as well as exotic quasi-particles such
as Fröhlich polarons [12]. These results show that impu-
rities are very robust and reliable tools to investigate the
underlying condensate behaviour, and many proposals
for further investigations exist [14–18].

Another ultracold system in which solid-state-like pe-
riodic structures appear are vortex lattices in rotating
Bose–Einstein condensates. BECs react to high rota-
tion frequencies by creating a large number of vortices
with single winding, which arrange themselves into a
triangular Abrikosov geometry, similar to the ones ob-
served in type-II superconductors [19]. These lattices
have been investigated for their collective excitations,
and have been shown to exhibit Tkachenko mode behav-
ior [20, 21]. More recently the focus has shifted towards
looking at perturbations of these lattices. For example,

applying a kicked potential with a spatial geometry sim-
ilar to the vortex lattice was shown to create transient
superlattice structures in the density [22]. Quantifying
the disorder of vortex lattices has recently become an
active topic of interest [23, 24]. These topics are par-
ticularly useful as they can allow the study of quantum
turbulence in highly controllable systems [25–27].

All the studies up to now have focussed on collective
behavior of the vortex lattices, as the introduction of a
single impurity into a vortex lattice is hard to achieve. In
this work we suggest an experimentally realistic method
to do this and examine the behavior of a vortex lattice
in the presence of a defect or impurity. For this we start
from a perfect vortex lattice at a fixed rotation frequency,
and will selectively either remove single vortices, or in-
troduce additional rotation at localized positions. The
easiest and experimentally most realistic way to do this
is via phase-imprinting, and we will show that this is a
highly controllable and precise way to manipulate vortic-
ity in a rapidly rotating Bose–Einstein condensate.

The manuscript is organized as follows. In Sec. II we
introduce the system of a rapidly rotating Bose–Einstein
condensate featuring a vortex lattice. We then proceed to
investigate the dynamics of removing a vortex from the
condensate using the phase imprinting method in Sec. III
and conclude in Sec. IV.

II. MODEL

For this work we consider the system of an Abrikosov
vortex lattice in a rapidly rotating Bose–Einstein conden-
sate within the mean-field regime. To investigate the evo-
lution of a perturbed vortex lattice we numerically solve
the Gross–Pitaevskii equation in two dimensions, assum-
ing a strong confinement along the third axis. This allows
us to restrict the dynamics to the x–y plane and focus
fully on the Abrikosov lattice geometry. Experimentally,
this corresponds to a system with a very strong confine-
ment in one direction only [28–30] and in the frame co-
rotating with the condensate, the non-linear mean field
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equation governing the BEC wave-function is given by

i~∂tΨ(r, t) =
[
− ~2

2m
∇2 + V (r)

+ g|Ψ(r, t)|2 − ΩLz

]
Ψ(r, t). (1)

Here V (r) is the harmonic trapping potential with a fre-
quency ω⊥ = 2π × 1 Hz. The trap rotation frequency
is given by Ω and Lz is the angular momentum op-
erator along the z-direction. The effective interaction
strength in 2D is characterized by g and we assume to
have N = 9.8 × 105 atoms of 87Rb, with a singlet state
s-wave scattering length of as = 90rb ≈ 4.76 × 10−9 m,
where rB is the Bohr radius. For the rapidly rotating
case, Ω = 0.995ω⊥, the vortices form an ordered triangu-
lar lattice with spacing av ≈ 2.1 × 10−5 m, that rotates
similarly to a solid-body in the large number limit [31].
Simulating a large vortex lattice is a difficult numeri-
cal problem, as large grid sizes are required to resolve
all aspects of the system both in position and momen-
tum space. Thus, an advanced numerical technique is
necessary to obtain solutions in a reasonable timescale.
We have developed and made use of “GPUE”, an open-
sourced, graphics processing unit (GPU) enabled Gross–
Pitaevskii equation solver [32]. This software allows us
to integrate linear and non-linear Schrödinger systems in
significantly shorter times than alternative implementa-
tions [33, 34].

To quantify the order of the vortex lattice the position
of each vortex was found by summing the wavefunction
phase over adjacent grid sites, and looking for a 2π wind-
ing. This gave a vortex position estimated to the numer-
ical grid. A linear least-squares fit was then performed
to more accurately determine the vortex core position
to sub-grid resolution by locating the real and imagi-
nary zeros of the wavefunction within this region. This
allows for the detected core position to take on a contin-
uous range of spatial values within the condensate. As
tracking many-body dynamics is a complex problem, we
make use of the Delaunay triangulation technique from
computational geometry to examine the ordering of the
the vortex lattice. In the ideal triangular Abrikosov lat-
tice, every vortex has 6 nearest neighbors, l = (1, . . . , 6),
located at θl = lπ/3 around the polar angle and any
perturbation related to a defect changes these locations.
Delaunay triangulation generates a mesh from the vor-
tex positions, which makes it easy to check for the pres-
ence of non 6-fold connected vortices. These vortices are
termed as n-fold topological lattice defects, where n is
the number of connected edges, and dislocation defects
can form when, for example, a 5-fold and a 7-fold defect
pairs. Since all these structures are easily countable, this
method allows us to characterize the effect a well-defined
perturbation has on the lattice.

As unperturbed Abrikosov lattices in BECs are well
ordered everywhere in the bulk region [35] we define a
radial boundary at approximately 2/3 of the maximum
density, which corresponds to rv = 2 × 10−4 m from

the center and restrict our analysis to vortices inside it.
This leaves an edge boundary of approximately 4av wide
where vortices are not counted. Given the coordinate lo-
cations for each vortex within the boundary, it is possible
to calculate statistical quantities that characterised the
degree to which the lattice is ordered. As our system is
of finite size, the usually used translational correlations
have only limited value and we will focus in the follow-
ing on orientational correlations, which quantify how the
lattice aligns along a particular angle. The orientational
correlation function is defined as

g6(r) =
1

N(r)

N(r)∑
j,k

ζ6(rj)ζ
∗
6 (rk), (2)

with

ζ6(rj) =
1

nj

nj∑
l

exp(i6θjl), (3)

where N(r) is the number of paired vortices separated by
r = |rj − rk|, ζ6 is the orientational order parameter, l
runs over the nearest neighboring vortices, nj is the num-
ber of nearest neighboring vortices, and θjl is the angle a
paired vortex and a nearest neighbor makes relative to a
reference axis [36]. We examine the orientational correla-
tion function as a measure of the order of a “vortex unit
cell”, defined by the angle made by nearest neighbors to
an individual vortex. For a perfectly ordered triangular
lattice this value will tend to 1 at r = av, next nearest-
neighbor positions and higher order lattice spacings, and
0 elsewhere.

III. PHASE IMPRINTING DEFECTS

Phase imprinting is a class of techniques for directly
manipulating the phase of a condensate in such a way
that the phase is modified to a desired form [37]. As
a consequence the density distribution will adjust itself,
and in ground state condensates dark solitons [38], as well
as vortices [39, 40] have been created this way. However,
the phase imprinting methods can also be used to an-
nihilate a vortex from the lattice by applying a phase
profile of opposite winding to remove the vortex phase
singularity. This will leave the condensate with a density
depletion at the prior location of the singularity, which
will consequently fill in and excite phonon modes in the
condensate.

A. Single vortex dynamics

To fully understand the effects of removing a vortex
from the lattice system, let us first investigate the situa-
tion where the vorticity from a condensate carrying only
a single vortex is removed. For this we apply a phase pat-
tern that exactly cancels the 2π phase winding and simu-
late the resulting dynamics. The results of such a process
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can be seen in Fig. 1, and, as expected, the depletion in
the condensate density fills in after the vortex phase is re-
moved and the breathing mode is excited. Since the sys-
tem is rotationally symmetric, we also plot the expecta-
tion value of the squared radius, 〈r2〉, where r2 = x2+y2,
which clearly shows that the annihilation process excites
the breathing mode at the expected frequency of 2ω⊥ for
a two-dimensional system [41]. The change in energy due
to the phase removal can be meaningfully characterised
via the ratio of compressible (phonon) and incompress-
ible (vortex) kinetic energy spectra shown in Fig. 2. The
kinetic energies are determined from the density weighted
velocity field, u = |Ψ| ~m∇θ, where θ is the phase of the
condensate. The contribution from the compressible and
incompressible energies can be taken as u = uc+ui, and
are determined by solving

∇× uc = 0 (4a)

∇ · ui = 0. (4b)

The resulting spectra, Ei,c, are then calculated as an an-
gle average over linearly spaced intervals of wavenumber
magnitudes in reciprocal space [42]

Ei,c(k) =
mk

2

∑
j∈r

2πˆ

0

dφk
U i,cj (k, t)

sk
, (5)

where

U i,cj (k, t) =

ˆ
d2re−i(k·r)ui,cj (r, t), (6)

and sk is the number of samples in a particular interval.
As one can see from Fig. 2 after the vortex is annihi-
lated and sounds wave are created, the energy ratio drops
and lower incompressible-to-compressible values appear,
in particular for higher wavenumbers. The latter is due
to the removal of large kinetic energies from the atoms
close to the vortex core.

While the above example suggests that erasing vor-
tices is a straightforward and controllable process, this
assumption needs to be checked for the situation where
the imprinted phase and the existing phase are not per-
fectly centered on each other. This situation is shown in
Fig. 3, and one finds that cases where the imprinted pro-
file is sufficiently close to the core (i.e. within twice the
healing length, ξ ≈ 1.06×10−6 m) the existing vortex gets
erased as before. However, beyond this distance a sep-
arate antivortex gets created and the vortex-antivortex
pair travels to the edge of the condensate system and
begins to circulate around [43]. For a densely packed lat-
tice of vortices, however, this is not a problem since the
typical distance between vortices is of the same order of
magnitude as the healing length.

B. Lattice dynamics

The removal of a single vortex from the vortex lattice
by phase erasing initially affects only the nearest neigh-
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FIG. 1. The evolution of the condensate density is shown for
the initial state, and after 10 ms of evolution. The removal of
the phase singularity at r = 0 leads to a filling in of the density
dip, which can also be seen from the line-plot. The process
excites the monopole mode at frequency 2ω⊥ (see inset).
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FIG. 2. Ratio of incompressible to compressible energy at t =
0 (solid) and t = 10 ms (dashed). Initially the incompressible
energy is greater than the compressible due to the presence
of the vortex, giving values greater than unity for all k. After
application of the phase profile, the vortex is annihilated, with
the energy released as phonons, indicated by a decrease in
incompressible energy for all k values.

bors, as the phase gradient is only significant over the
length scale of a healing length close to the erased sin-
gularity. The altered velocity profile will lead to the re-
maining vortices leaving their position in the Abrikosov
lattice and the excitation of phonon modes. However in
the lattice areas away from the impurity, these phonon
modes have only minimal impact on the geometry [22].
To characterize the vortex dynamics following the appli-
cation of the phase profile, we will in the following track
each individual vortex throughout the full time-evolution
and use the resulting trajectories and Delaunay triangu-
lation for analysis.

Let us first consider the situation where a single vortex
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FIG. 3. The condensate evolution following an uncentered
phase imprint. For an imprint where the singularities of the
vortex and the imprinted phase are less than twice the healing
length away from each other the existing vortex is annihilated
and phonon modes are excited (a, b). However, beyond this
distance an antivortex is created, which travels with the pre-
existing vortex and circulates the condensate (c, d, e). The
distance for cases (a, b) and (c, d, e) are r = 1.36 × 10−6 m,
and r = 2.73× 10−6 m respectively.

FIG. 4. The trajectories of the vortices over 4 seconds follow-
ing the removal of the vortex closest to the center, where each
color represents a unique trajectory path. The vortices can be
seen to move counter-clockwise in the co-rotating frame due
to the loss of the local velocity field. However, the effect of
the removal decreases quickly with increased radial distance.

is erased within the central area of the vortex lattice. In
Fig. 4 we show the trajectories of the remaining vortices
over a time-scale of 4 seconds. One can see that a long-
lived vacancy is maintained close to the centre with the
adjacent vortices rotating faster than the lattice due to
the loss of the local velocity field. The honeycomb-like
vacancy region eventually decays and the system settles
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FIG. 5. The orientational correlation function for the vor-
tex lattice after removing the central vortex is given for
t = (0, 1, 6) seconds (top to bottom). The peaks at t = 0
appear at nearest neighbor, next nearest, and higher order
distances. Due to finite binning of the lengths, the peaks be-
come grouped to 1 at higher length scales. For times greater
than t = 0, the peak correlations drop, however, the large
value at long times indicates a well ordered lattice as high
correlations are observed across all length scales.

into a new local geometry. Very similar behavior can be
observed if the erased vortex is not one of the central
ones, as long as it is within a region of constant areal
vortex density. However, being closer to the edge of the
lattice reduces the stability of the perturbed region. The
overall lattice remains well structured after a vortex re-
moval, as can be seen from the orientational correlation
function shown in Fig. 5 for different times. Although
the gaps between the peaks that exist at t = 0 disappear
during the evolution due to the presence of the phonon
excitation, the overall correlations remain high for long
times and constant across all length scales. The slight
peak softening arises from the vortices no longer being
aligned to a perfect triangular lattice position, which is
indicative of a weak disordering or distortion of the lat-
tice structure.

As described above, the Delaunay triangulation of the
lattice can give a graphical overview of how connected
the different vortices are, and therefore what changes to
the lattice structure have occurred [36]. We show the
resulting graph for the case where a single vortex was
removed from the center of the lattice in Fig. 6. One can
see that a pair of (5,7)-fold connected lattice defects form
immediately after the removal (at 10 ms), which slightly
adjusts and becomes stable for long times. Removing
vortices at different positions in the lattice shows similar
behavior, with a localization of the disordered region not
far from the site of vortex removal.

If the phase imprinting is not directly aligned with the
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10 ms 800 ms

2 s 6 s

FIG. 6. Delaunay triangulation of the vortex lattice after
removing one vortex, shown at t = (0.01, 0.8, 2, 6) s. The
resulting lattice defects are indicated by white and gray stars
for 5-fold and 7-fold defects respectively. One can see that
two (5,7) dislocations are formed quickly, which settle and
persist in the lattice for long times. Lattice dislocation lines
are indicated for inset t = 6 s.

vortex singularity, other n-fold dislocations can be found
in the Delaunay triangulation. This is due to the vortex
core size becoming comparable to the average spacing
between the cores in rapidly rotating condensates, and
therefore the imprinted changes to the velocity field affect
more vortices. Fig. 7 shows the time-averaged number of
lattice defects following an imprint displaced relative to
a vortex and lattice vector. One can see that if the dis-
placement is still within the core of the vortex, on average
1 or 2 defects are created of the 5-fold (a) and the 7-fold
(b) kind. At the cusp of the core, the imprint tends to
create upwards of 3 to 4 defects, which again tends back
to the average of 2 beyond this region. This shows that
the previously discussed issue resulting from the creation
of antivortices through imperfect alignment does not ex-
ist in Abrikosov lattices, and we will concentrate on the
perfect imprint of the phase in the following discussions.

To further demonstrate the localized nature of the de-
fect, let us briefly discuss the situation where two vortices
are erased in separate regions away from the lattice cen-
tre. The Delaunay triangulation for this case is shown in
Fig. 8, and the independence of the two localized regions
is clearly visible, with each showing similar behavior to
the case discussed above. Since we are limiting ourselves
here to perfect imprinting, we also show the number of
edges formed between vortices as a function of time for
5, 6 and 7 nearest neighbors respectively (Nx) in Fig. 9.
One can see that the initial perturbation settles quickly
to values similar to the ones above.

In addition to simply erasing vorticity, we can also use
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FIG. 7. The time-averaged number of defects appearing over
a range of imprint positions, relative to a central vortex from
t = 1 →10 s, and allowing 1 s of settling time. A schematic
of the examined region is shaded in (a), with the resulting
5-fold (b) and 7-fold (c) defects shown following an imprint.
The insets show a snapshot of two different parameter regions
at t = 6 s. A high simultaneity is observed between their
appearance, where a paired (5,7) defect indicates a lattice
dislocation. Not all 5 and 7-fold defects pair, as some can
exist individually, or pair with other n-fold defects.

10 ms 800 ms

2 s 6 s

FIG. 8. Delaunay triangulation of the vortex lattice upon
removal of two vortices at either sides of the lattice for
t = (0.01, 0.8, 2, 6) s. The resulting defects that form remain
localized for long times. The lattice largely remains ordered,
as observed with removing the central vortex.

phase imprinting to create varying degrees of disorder.
By, for example, applying an appropriate 4π magnitude
phase imprint we can replace a vortex with an antivor-
tex at a given position. Since this does not require a
change in the local density, all resulting perturbations
stem from the adjusted velocity field of the vortex that
has been flipped [44]. However, it is immediately obvious
that such a situation is unstable, which can be confirmed
by observing the creation of a large number of defects,
as shown in Fig. 10. An increase in the number of de-
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FIG. 9. The defect count taken from a Delaunay triangulation
of the vortex lattice following the removal of two vortices on
opposite sides as a function of time. After a brief settling
time, the lattice attains an almost constant defect count.
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FIG. 10. The defect count taken from a Delaunay triangula-
tion of the vortex lattice following an insertion of an antivor-
tex. The number of defects increases as the local structure
decays, and eventually gives rise to a quasi-constant state.

fects can be seen up to approximately t = 3 s, during
which the antivortex causes local disordering of the lat-
tice, annihilates with a nearby vortex, and gives rise to
the creation of a large number of (5,7) defect pairs. After
this the number of defects no longer grows, but instead
fluctuates about a stable value which is greater that that
of the previously examined cases.

A final class of possible perturbations is the removal of
a cluster of neighboring vortices from the lattice, and in
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FIG. 11. The defect count taken from a Delaunay triangula-
tion of the vortex lattice following the removal of 7 vortices
from the centre of the lattice.

Fig. 11 we show the results from erasing an entire seven
vortex unit cell from the condensate. As expected, one
can see that the number of lattice defects rises consider-
ably and does not settle during the time over which we
can simulate the condensate. In this case, the disordered
regions occupy a large area of the lattice and the number
of 6-fold connected vortices becomes very low.

Comparing the orientational correlation functions for
the three cases discussed in this section (removing two
distant vortices, creating an antivortex, and removing 7
vortices) also demonstrates the different degree of disor-
der they produce (see Fig. 12). The removal of the two
vortices at opposite sides of the condensate still yields
reasonably high correlations (〈g6(r)〉 ≈ 0.8) at all times
and length scales, indicating a well ordered lattice. Cre-
ating an antivortex in the lattice leads to lower correla-
tions across all length scales, especially in the long time
limit (〈g6(r)〉 ≈ 0.7), but still tends to the same long-
ranged value as the previous case. This indicates an or-
dered lattice outside the region of the localized defects.
Lastly, the removal of seven vortices shows a significant
drop in correlations at all length scales and across both
times (〈g6(r)〉 ≈ 0.5), indicating a global disordering of
the vortices, which is consistent with the large number
of defects identified earlier.

IV. DISCUSSION AND OUTLOOK

We have shown that the removal of a vortex from an
Abrikosov vortex lattice via phase imprinting creates a
quasi-stable honeycomb-like vacancy site. The removal
of the associated velocity field near the vacancy, how-
ever, disturbs the solid-body behavior of the lattice and
the vacancy region rotates slower than the surrounding
vortex lattice. It eventually decays, creating highly sta-
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FIG. 12. The orientational correlation function is given for
moderate (t = 3 seconds, top) and long (t = 6 seconds, bot-
tom) times after the phase imprint. The general behaviour
at short and long ranges is similar for all three scenarios, but
the correlations are significantly reduced, especially for the
situation where seven vortices are removed.

ble topological lattice defects that persist for long times.
In fact, the resulting defects can be seen to pair, with
(5,7) lattice defects being the most prominent, and man-
ifesting themselves as dislocation defects in the lattice.

The characterization of perturbed lattices put forward
by us complements the recent work of Rakonjac et al.
[23], where the authors determine the disorder present
in a vortex lattice in a BEC by comparing the ratio of
the standard deviation of nearest neighbor distances to
the mean distance. Here we extend the available tools
by using orientational correlations, Delaunay triangula-
tion for topological defect detection, and by introducing
a method to controllably engineer lattice defects through
phase imprinting. Although our work relies on theoretical
data, all methods can easily be applied to experimental
data as well.

We have also discussed that various kinds of defects can
be created controllably by varying the degree to which
the crystal structure gets erased. This suggests the use of
the phase erasing technique in Abrikosov lattices for ex-
amining turbulence in two-dimensional condensates. By
introducing a variable number of antivortices one could,
for example, examine the transition from an ordered to
a disordered system.
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