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Abstract

Purpose: To apply our convolutional neural network (CNN) algorithm to predict neoadjuvant 

chemotherapy (NAC) response using the I-SPY TRIAL breast MRI dataset.

Methods: From the I-SPY TRIAL breast MRI database, 131 patients from 9 institutions were 

successfully downloaded for analysis. First post-contrast MRI images were used for 3D 

segmentation using 3D slicer. Our CNN was implemented entirely of 3 × 3 convolutional kernels 

and linear layers. The convolutional kernels consisted of 6 residual layers, totaling 12 

convolutional layers. Dropout with a 0.5 keep probability and L2 normalization was utilized. 

Training was implemented by using the Adam optimizer. A 5-fold cross validation was used for 

performance evaluation. Software code was written in Python using the TensorFlow module on a 

Linux workstation with one NVidia Titan X GPU.

Results: Of 131 patients, 40 patients achieved pCR following NAC (group 1) and 91 patients did 

not achieve pCR following NAC (group 2). Diagnostic accuracy of our CNN two classification 

model distinguishing patients with pCR vs non-pCR was 72.5 (SD ± 8.4), with sensitivity 65.5% 

(SD ± 28.1) and specificity of 78.9% (SD ± 15.2). The area under a ROC Curve (AUC) was 0.72 

(SD ± 0.08).

Conclusion: It is feasible to use our CNN algorithm to predict NAC response in patients using a 

multi-institution dataset.
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1. Introduction

Neoadjuvant chemotherapy (NAC) is commonly used to reduce the size of breast tumors 

before surgery and improve clinical outcomes. Pathological complete response (pCR), i.e., 

the absence of residual invasive disease in the breast or nodes, is used as a measure of 

efficacy of NAC. Achieving pCR means better survival for patients [1] and a higher 

likelihood of benefiting from breast-conserving surgery instead of a full mastectomy [2]. 

Several large randomized NAC trials have demonstrated pCR to be a potential marker for 

clinical efficacy as there is a significant correlation between patients who achieved a pCR 

and improved disease-free survival and overall survival [3,4].

Magnetic resonance imaging (MRI) has become a valuable modality in the evaluation of 

NAC response and has led to identification of potential imaging-based biomarkers with 

successful incorporation into the clinical trial setting [5]. One such trial that evaluated MRI 

based data to predict pCR is the I-SPY TRIAL (Investigation of Serial Studies to Predict 

Your Therapeutic Response With Imaging and Molecular Analysis). ISPY 1 was a 

collaboration of the National Cancer Institute Specialized Programs of Research Excellence, 

the American College of Radiology Imaging Network; the Cancer and Leukemia Group B; 

and the National Cancer Institute Center for Biomedical Informatics and Information 

Technology. This multi-institution breast cancer study has made breast MRI imaging dataset 

publicly available for research.

Deep learning, the use of artificial neural networks applied to learning tasks, presents an 

efficient solution for complex imaging problems that were otherwise constrained by a 

limited set of pre-defined features. By employing an abundance of training datasets and 

processing power, a deep neural network can be trained to identify new imaging features in 

an unsupervised manner that can identify several different disease states. An example of 

such a method, convolutional neural networks (CNN) have shown great promise and have 

already been applied in areas of pathology and radiology. CNNs possess the potential to 

discover unique multi-scale features highly predictive of response beyond the limits of a 

handful of explicitly defined radiomic features.

Previously, we have developed CNN algorithms for various classification tasks using breast 

MRI imaging dataset yielding reasonable diagnostic performance [6–8]. Our studies are 

limited due to dataset compiled from a single institution. The use of external dataset 

composed of multiple institutions becomes invaluable to further validate CNN algorithms. 

The purpose of this study is to apply our CNN algorithm to the publicly available I-SPY 

TRIAL dataset to predict NAC response.

2. Materials and methods

The ISPY TRIAL protocol was HIPAA-compliant and the informed consent process were 

approved by the American College of Radiology Institutional Review Board and local-site 

institutional review boards. Women with invasive breast cancer of 3 cm or greater 

undergoing NACT with an anthracycline-based regimen, with or without a Taxane, were 

enrolled between May 2002 and March 2006. MRI data was collected as described by 
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Hylton et al. [5]. From the ISPY TRIAL Breast MRI public database, 131 cases collected 

from 9 different institutions in the United States were successfully downloaded for this 

study.

2.1. Data Pre-processing

After the breast MRIs were obtained and anonymized, a fellowship trained breast imaging 

radiologist with over 10 years of experience subsequently reviewed and segmented the 

tumor identified on the first post contrast MRI images. The volumes and segmentations were 

resized to a slice size of 256 × 256 using bicubic and nearest-neighbor inter-polation 

respectively. The background and chest were zeroed using chest wall and air masks, and 

contrast limited adaptive histogram normalization of the MRI volumes was performed on 

each phase separately. Two 3D volumes of each image were generated; the first baseline 

volume consisted of a 32×32×16×3 pixel bounding cube centered on each tumor; the second 

normalized box was based on a bounding cube size calculated from the radius of the 

segmentation mask and subsequently resized to 32×32×16×3 pixels. The last dimension of 

the volumes represented each of the 3 dynamic phases as a separate channel.

The network was trained on two-dimensional input slices of each patient. During each 

iteration, one of the 16 slices each from one of the two volumes (the normalized and 

baseline volume) were used. The volume used was randomly selected and the slice used was 

based on a random normalized distribution centered on the center slice. Each slice was 

randomly rotated, flipped, cropped and contrast adjusted. A randomly generated Poisson 

noise array was added to the slice to simulate the effect of random imaging noise. The slice 

was then resized to 32×32×3 and used as input to the network.

2.2. CNN architecture

Similar to our previously developed CNN algorithm [6–8], CNN was implemented entirely 

of 3 × 3 convolutional kernels and linear layers (Fig. 3). The convolutional kernels consisted 

entirely of 6 residual layers [9], totaling 12 convolutional layers. Feature maps were down-

sampled using strided convolutions. Dropout with a 0.5 keep probability and L2 

normalization was utilized. Training was implemented by using the Adam optimizer 

described by Dozat et al. [10–12] which performs parameter wise momentum augmented 

training. Network weights were initialized randomly.

A 5-fold cross validation was utilized for performance evaluation using 80% (n = 105) for 

training and 20% (n = 26) for validation. Software code for this study was written in Python 

using the TensorFlow library v1.13. Experiments and CNN training were performed on a 

Linux workstation with dual NVIDIA Titan X Pascal GPUs with 12 GB on chip memory, an 

i7 CPU and 48 GB RAM.

3. Results

The average age of patient was 48.3 years old (SD 9.0). Patients identified themselves as 

Caucasian (n = 101), African American (20), Asian (6), Native Hawaiian/Pacific Islander 

(1), American Indian/Alaskan Native (0), Multiple race (1) and N/A (2). Tumor receptor 

status was: Er + (n = 70), Pr + (55), HR+ (76), Her2+ (34), and triple negative (35).
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Of 131 patients, 40 patients achieved pCR following NAC (group 1) and 91 patients did not 

achieve pCR following NAC (group 2) comprising of the two classification groups in this 

study (Figs. 1 and 2).

Diagnostic accuracy of our CNN classification model distinguishing patients with pCR vs 

non- pCR was 72.5 (SD ± 8.4), with sensitivity 65.5% (SD ± 28.1) and specificity of and 

78.9% (SD ± 15.2). The area under a ROC Curve (AUC) was 0.72 (SD ± 0.08).

4. Discussion

Utilizing a publicly available breast MRI dataset from the ISPY-Trial, our CNN algorithm 

was able to achieve an overall accuracy of 72.5% in predicting patients with pCR following 

NAC. Our results indicate that it is feasible to use our CNN algorithm on an MRI dataset 

composed of studies performed from 9 different institutions. There were criteria to keep the 

MRI protocol consistent among different institutions participating in this trial such as plane 

of acquisition, temporal resolution timing and spatial resolution parameters [5]. However, it 

is not possible to keep all the parameters the same across multiple intuitions with inherent 

variabilities unique to each institution producing some-what heterogeneous set of MRI 

images. Using this type of dataset from multiple institutions is an important step towards the 

goal of generalizability of this technology and for further clinical validation [13].

Other groups have also applied advanced imaging techniques prediction of breast cancer 

response to NAC treatment. Quantitative radiomics extracts data from routine medical 

imaging and analyzes complex imaging features, unperceivable to the human eye [14]. 

Radiomics of breast cancer using MRI works on the principle of analyzing various intrinsic 

features including dynamic contrast enhancement (DCE) kinetics, which often define tumor 

heterogeneity, to predict NAC response [15,16]. In 2015, Aghaei et al. looked at quantitative 

kinetic imaging features to predict NAC therapy response from the pre-treatment MRI scan 

of 68 cancer patients [15]. In the pool of 39 imaging features tested, 10 yielded relatively 

higher classification performance with the areas under receiver operating characteristic curve 

(AUC) values ranging from 0.61 to 0.78. A study by Cain et al. used pre-treatment MRI 

performed in 288 patients to predict response to NAC using a multivariate machine learning-

based model [16]. A comprehensive set of 529 radiomic features was extracted from each 

patient’s pre-treatment MRI and was tested for predictive potential. The AUC values for 

predicting pCR in a subset of Triple Negative and HER+ patients were significant (0.707, 

95% CI 0.582–0.833, p < 0.002).

These previously mentioned studies have shown promising results in breast MRI data 

analysis. However, these methods are dependent on feature engineering, which require 

domain knowledge to build feature extractors, which simplify the complex data and create 

more comprehensible patterns to be applied in algorithms. These methods are limited in 

their function, as they are dependent on human extraction of crucial features. More recently, 

a subset of machine learning named CNN that has made great strides in medical imaging 

analysis. Compared to traditional machine learning, which is dependent on human extracted 

features, artificial neural networks depend on the curated input data and allow the computer 

to construct predictive statistical models through increasingly complex layers and self-
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optimization in an automated way [17]. Using CNN, Ravichandran et al. evaluate 166 breast 

cancer patients to predict pCR from a pre-treatment MRI tumor dataset [18]. Their CNN 

algorithm achieved an area under the curve (AUC) of 0.77 and an overall accuracy of 82%. 

Inclusion of clinical variables improved response prediction with an AUC of 0.85 and an 

accuracy of 85%. Our group also used a CNN based algorithm in a study of 141 patients to 

predict whether the patient would achieve a complete pathologic response using a pre-

treatment MRI data yielding an overall mean accuracy of 88% in three-class prediction of 

NAC7.

A CNN algorithm that allows automated extraction of features from the input data are 

crucial to the defined problem domain using medical images. This process improves its 

ability to study the input features in an end-to-end manner, using complex, stacked hidden 

layers to predict a desired output. Therefore, CNN feature extraction is not a variable with 

each new MRI and thus may perform better than traditional machine approach using feature 

engineering [17].

Despite these promising results, the use of machine learning and breast MRIs for early 

prediction of NAC treatment response requires further clinical validation. Published studies 

that have explored this approach, have been retrospective, single-institutional, and have 

included relatively small number of patients. Thus, the motivation for this study was to apply 

CNN algorithm to test the predictive potential of classifying patents with pCR using a 

database composed of breast MRIs from multiple institutions.

In the 2012 ACRIN 6657 TRIAL by Hylton et al. [5], MRI data from 216 women was 

analyzed for both pCR and residual cancer burden (RCB). They reported AUC differences 

between MRI volume and clinical size predictors at 3 time points, respectively, were 0.14, 

0.09, and 0.02 for prediction of pCR. AUC for pCR was predicted to be 0.73. They 

concluded that MRI findings are a stronger predictor of pCR to NACT than clinical 

assessment, with the greatest advantage observed with the use of volumetric measurement of 

tumor response early in treatment. Similarly, the study under the ACRIN 6657 TRIAL by 

Scheel et al. [21] showed data from 138 women to determine the accuracy of preoperative 

measurements for detecting pathologic complete response (CR) and assessing residual 

disease after neoadjuvant chemotherapy (NACT) in patients with locally advanced breast 

cancer. In their study, MRI had the highest accuracy for detecting pathologic CR for all 

lesions and non-mass enhancement (NME) (AUC = 0.76 and 0.84, respectively). Longest 

diameter by MRI and longest diameter by clinical examination showed moderate ability for 

detecting pathologic CR for multiple masses (AUC = 0.78 and 0.74), and longest diameter 

by MRI and longest diameter by mammography showed moderate ability for detecting 

pathologic CR for tumors without DCIS (AUC = 0.74 and 0.71). In subjects with residual 

disease, longest diameter by MRI exhibited the strongest association with pathology size for 

all lesions and single masses (r = 0.33 and 0.47). They reported that MRI is more accurate 

than by mammography and clinical examination for preoperative assessment of tumor 

residua after NACT and may improve surgical planning. Our study using a novel CNN 

approach yielded similar diagnostic performance of AUC = 0.72 without the need for size 

measurements which can be prone to subjective bias. In addition, with the larger training 

data, there is potential for the performance of our CNN algorithm to improve.
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A number of large randomized trials have shown that achieving pCR after NAC for locally 

advanced breast cancer not only aids in predicting patient mortality but also reduces patient 

morbidity by allowing for less invasive surgery [3,19]. Timely and accurate identification of 

patients who will respond to NAC based on pre-treatment MRI could substantially improve 

treatment guidance in the neoadjuvant setting. Ruling out treatment resistance would enable 

de-escalation of toxic therapeutic measures that have little benefit. There is potential great 

benefit of a clinical tool such as our CNN algorithm that may be used to accurately predict 

NAC treatment response in patients.

There are few limitations of our study. Despite being multi-institutional, the dataset was 

relatively small in size. It has been shown that the performance of a CNN has been shown to 

increase logarithmically with increasing datasets [20]. In addition, because CNN is a type of 

artificial neural network and is considered an end-to-end process, as it does not clearly 

reveal the reasoning behind the final result in a deterministic manner. To better understand 

the intuition behind the predictions of a neural network is an ongoing area of research. 

Furthermore, potential of combining clinical information such as molecular subtypes of 

cancer and the results of our CNN algorithm in order to further improve overall prediction 

model is under investigation. Lastly, further clinical validation of our CNN algorithm is 

planned to be performed prospectively with randomization [20].

5. Conclusion

It is feasible to use our CNN algorithm to predict NAC response in patients using the I-SPY 

TRIAL dataset from multiple institutions. Our CNN algorithm has the potential to impact 

clinical management in patients with locally advanced breast cancer, including the 

opportunity to direct appropriate therapy in non-responders, minimize toxicity from 

ineffective therapies, and facilitate the upfront use of novel targeted treatment in the 

neoadjuvant setting.
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Fig. 1. 
Example images from tumors that responded to neoadjuvant therapy.
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Fig. 2. 
Example images from tumors that did not respond to neoadjuvant therapy.
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Fig. 3. 
Network architecture: The neural network was custom built and trained with random 

initializations. It consisted of 12 convolutional layers set up as 6 residual nodes and 2 linear 

layers before an output layer predicting two classes. Inputs were 32 × 32 pixels.
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