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Abstract 
Previous computational models of early language acquisition 
have shown how linguistic structure of speech can be acquired 
using auditory or audiovisual learning mechanisms.  However, 
real infants have sustained access to both uni- and multimodal 
sensory experiences. Therefore, it is of interest how the uni- 
and multimodal learning mechanisms could operate in concert, 
and how their interplay might affect the acquisition dynamics 
of different linguistic representations. This paper explores 
these questions with a computational model capable of 
simultaneous auditory and audiovisual learning from speech 
and images. We study how the model’s latent representations 
reflect phonemic, lexical, and semantic knowledge as a 
function of language experience. We also test how the findings 
vary with differential emphasis on the two learning 
mechanisms. As a result, we find phonemic learning always 
starting to emerge before lexical learning, followed by 
semantics. However, there is also notable overlap in their 
development. The same pattern emerges irrespectively of the 
emphasis on auditory or audiovisual learning. The result 
illustrates how the acquisition dynamics of linguistic 
representations are decoupled from the primary learning 
objectives (mechanisms) of the learner, and how the emergence 
of phonemes and words can be facilitated by both auditory and 
audiovisual learning in a synergetic manner. 

Keywords: computational modeling; language acquisition; 
visual grounding; statistical learning; unsupervised learning 

Introduction 
Computational models of early language acquisition (LA) 
focus on understanding how infants learn to bootstrap their 
language acquisition process. This includes questions such as 
how phonemic categories are acquired, how auditory word 
forms or lexemes are learned, or how words and phrases 
become related to their meanings. Typical modeling research 
tries to identify what kind of inputs, outputs, learning 
mechanisms, and innate biases or constraints are essential for 
human-like LA, and how variability in such factors affects 
learning outcomes. 

Classical modeling studies often focus on learning of 
specific linguistic units using dedicated processing 
mechanisms for them, such as phonemic category acquisition 
with Bayesian inference (Feldman, Griffiths & Morgan, 
2009) or word segmentation with statistical cues (Frank et al., 
2010). However, recent advances in machine learning (ML) 
have enabled increasingly powerful autonomous learning 
algorithms that do not explicitly target any particular 

language structures but use more generic learning principles 
instead. For instance, speech representations can be learned 
from unlabeled acoustic speech using so-called self-
supervised learning (SSL; e.g., van den Oord, Li & Vinyals, 
2018, Baevski et al., 2020). In SSL, the task of the model is 
to predict or reconstruct unobserved parts of the speech 
stream, not unlike to models of predictive processing ascribed 
to the human brain. Another branch of algorithms, known as 
visually-grounded speech (VGS) models, learn to link 
patterns of spoken language with semantically related visual 
inputs through associative learning (see Chrupała, 2022, for 
a review), again not unlike to cross-situational learning of 
word meanings in developmental literature (Smith & Yu, 
2008). Given that SSL and VGS algorithms do not use any 
prior knowledge of structures in spoken language (beyond 
some basic constraints on timescales of speech), they are also 
relevant as computational models of infant learning.  

Previous research with SSL and VGS models has shown 
that they are indeed capable of acquiring a range of language 
representations, such as phonemes, syllables, words, and 
word semantics (see, e.g., Chrupała et al., 2017; Chrupała, 
2022; Dunbar, Hamilakis & Dupoux, 2022; Khorrami & 
Räsänen, 2021; Merkx, 2022; Nikolaus & Fourtassi, 2021). 
Recently Lavechin et al. (2023) investigated SSL-based 
model of infant statistical learning using contrastive 
predictive coding (CPC; van den Oord et al., 2018) as the SSL 
mechanism. They showed that the model can acquire highly 
selective phonetic representations together with clearly 
above-chance lexical and syntactic category knowledge, and 
these all improve with increasing language experience. Peng 
and Harwath (2022b) recently combined auditory (SSL) and 
audiovisual (VGS) learning into a single neural network 
model architecture that can use both mechanisms in a 
sequence or in parallel. They showed that auditory learning 
before audiovisual learning can lead to notable learning gains 
in acquiring sematic relationships between speech and visual 
input. Peng and Harwath (2022c) also showed how visual 
grounding facilitates word segmentation in a similar model. 
Overall, the existing research demonstrates that auditory and 
audiovisual learning mechanisms can support acquisition of 
linguistic patterns, both independently and in conjunction. 

However, what is unclear from the existing research is how 
the auditory and audiovisual learning mechanisms cooperate 
during learning, and how different levels of language emerge 
as a function of language experience in the presence of the 
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two mechanisms (considering, e.g., synergies across 
linguistic representations; e.g., Johnson et al., 2010).  

In this paper, we explore the temporal dynamics of early 
LA in the parallel presence of auditory and audiovisual 
learning mechanisms in a computational model of language 
learning. We apply the model to a large dataset of acoustic 
speech and related visual inputs and measure how phonemic, 
lexical, and semantic knowledge emerge in the model as a 
function of model training time (“language experience”). We 
also explore how the acquisition pattern depends on the 
relative emphasis on, and timing of, auditory and audiovisual 
learning.  

Theoretical Considerations 
Based on the developmental literature, one could formulate 

two archetypes of the acquisition process: A primarily 
sequential and compositional “bottom-up” process, and a 
holistic meaning -oriented “top-down” process. In the first, 
some amount of phonetic perceptual organization is expected 
to precede lexical learning (cf., e.g., NLM-e theory by Kuhl 
et al., 2007), which then enables word segmentation (cf., 
Saffran et al., 1996) and acquisition of word meanings 
through situated grounding (e.g., Smith & Yu, 2008). In the 
top-down case, early language would be bootstrapped by 
grounding of holistic phrase-like speech patterns with other 
multimodal and/or embodied experiences such as visual 
input. In this case, phonemic and lexical representations 
would not be proximal targets of learning, but gradually 
emerge through analysis and decomposition of the situated 
language patterns into constituents that enable more efficient 
encoding of the language (cf., e.g., PRIMIR theory by 
Werker & Curtin, 2005; see also Khorrami & Räsänen, 2021; 
Merkx, 2022; Tomasello, 2000; see also Räsänen & Rasilo, 
2015, for a discussion on the bottom-up and top-down 
strategies).  

In terms of computation, VGS models can be seen as an 
example of the top-down approach, as their learning criterion 
is focused on grounding of utterance-level auditory 
representations to their visual referents (Merkx, 2022). In 
contrast, SSL models could be seen as “bottom-up” in the 
sense that they focus on low-level auditory pattern discovery 
and without a mechanism to ground speech into referential 
meanings. However, the two archetypes do not have to be 
mutually exclusive, as auditory statistical learning and cross-
modal associative learning can be present in parallel. Also, as 
we will show, a learner focusing on holistic learning of usage-
based meanings may still exhibit acquisition order 
compatible with the bottom-up view.  

Methods 

Computational Model 
As our model of early LA, we adopt the so-called FaST-
VGS+ neural network architecture by Peng and Harwath 
(2022b). The model is a fusion of two earlier models with two 
distinct learning mechanisms: Wave2Vec 2.0 (Baevski et al., 

2020) for SSL-based learning from acoustic speech only 
(from now on: W2V2) and FaST-VGS from Peng and 
Harwath (2022a) for visually grounded learning from 
utterances and images related to speech contents. The high-
level architecture of FaST-VGS+ is visualized in Fig. 1. 

In auditory learning, the task of the network is to predict 
its own representational activations (quantized outputs of the 
wave encoder in Fig. 1) for speech segments that are masked 
from the rest of the processing chain, and when the network 
can make use of the non-masked parts of the utterance. When 
optimized for the prediction task, the network learns 
contextualized signal representations to “fill in the blanks” 
(see Baevski et al., 2020, for details). In case of audiovisual 
learning, the task of the network is to learn vector 
embeddings derived from images and utterances in such a 
manner that the embeddings from the two modalities are 
similar when the speech and image arrive concurrently (as a 
proxy for semantic relatedness). In contrast, when an 
utterance and image do not match, the embeddings should be 
different. By optimizing the network on the embedding 
similarity/dissimilarity task, it learns a latent semantic space 
in which relatedness of speech and images can be measured 
by comparing their embeddings with a chosen distance metric 
(see, e.g., Chrupała, 2020, for an overview). 

In the original FaST-VGS+ formulation, the model 
consists of four optimization loss terms that were combined 
as a weighted sum during the training: 1) a standard 
audiovisual contrastive loss ℒ!" for audiovisual grounding 
based on similarity-scores of holistic utterance- and image-
level embeddings, 2) an additional "fine-grained” audiovisual 
loss ℒ!",$ that applies cross-modal Transformer attention to 
the acoustic and visual embeddings before calculating their 
similarity, 3) an auditory reconstruction loss ℒ!%&,' of W2V2 
that is primarily responsible for the auditory-only learning, 
and 4) an auditory diversity loss ℒ!%&,& that encourages 
variability to self-learned representations to avoid trivial 
local optima.  

In the present work, we do not use the ℒ!",$  loss due to 
its substantial computational burden and minor performance 
gains. Following Baevski et al. (2020), we also tie the W2V2-
related losses (ℒ!%&,'  and ℒ!%&,&) together with a ratio of 
1:0.1. Given that the numeric scales of the auditory and 
audiovisual loss terms are similar during the training (approx. 
ℒ ~ 0–10 overall), we can then control the relative weights of 
auditory and audiovisual learning with just one parameter 𝛼: 
	

ℒ = (1 − 𝛼)(ℒ!%&,' + 0.1	ℒ!%&,&- + 𝛼ℒ!"			(1) 
 

where ℒ denotes total loss of the model. For instance, by 
setting 𝛼 = 0, the model only uses the auditory learning 
mechanism, whereas 𝛼 = 1 only uses audiovisual learning.  

As for the details of different processing modules in Fig. 
1, the waveform encoder is a 6-layer convolutional neural 
network (CNN) that maps acoustic waveforms (sampled at 
16 kHz) into a sequence of latent 512-d embeddings (one 
embedding every 10 ms). Audio encoder is a stack of 8 
Transformer layers that feeds into two paths: a 5-layer  CNN 
(“ResDAVEnet”) responsible for gradual temporal pooling 
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(downsampling) of the utterance-level latent representations, 
and a Transformer-based 4-layer audio decoder (“Trm3” in 
Peng & Harwath, 2022b) whose task is to predict the masked 
speech segments. The downsampling CNN feeds to a single 
Transformer layer that summarizes the CNN output into a 
single 768-d auditory embedding a (the so-called CLS-token) 
using self-attention. The visual encoder consists of 6 
Transformer layers and converts pixels from detected object 
regions of an input image into an overall 768-d visual 
embedding v, again captured by the CLS token of the final 
layer. Finally, the embeddings from the auditory and visual 
paths are used for audiovisual similarity scoring S(a,v) (with 
a dot product) which are used in triplet loss (ℒ!") calculation. 
Please see Peng and Harwath (2022b) for model details. 

During training, the waveform encoder and audio encoder 
are updated by both auditory and audiovisual learning, 
depending on the relative weights of the two losses, whereas 
audio decoder is only updated by auditory learning. Like 
Peng and Harwath (2022b), we focus on the analysis of 
linguistic representations (here: phonemes and words) in the 
hidden layers of the audio encoder and decoder, as they are 
primarily responsible for creating contextualized speech 
representations for the two tasks. For semantic analyses, we 
focus on capability of auditory embeddings a to carry cross-
modal semantic knowledge with respect to visual domain.  

 
Figure 1: An overview of the model architecture, as adapted 
from Peng and Harwath (2022b). Green waveform and audio 
encoder neural blocks are shared and optimized by both 
auditory learning (W2V2) and audiovisual learning (VGS) 
based on their relative weights. Orange blocks are only 
updated by the audiovisual learning, and the blue block by 
auditory learning only. In the experiments, hidden layers of 
the audio encoder and decoder are analyzed for selectivity 
towards phonemes and words (marked with magnifiers). “Q” 
denotes vector quantization, “mask” training-time masking of 
representations from random speech segments, “T” 
Transformer layers, and “CNN” convolutional layers. 

Data 
The experiments used acoustic speech and image data of 
SpokenCOCO dataset (Hsu et al., 2020). The dataset consists 
of 123k images (photos of everyday scenes; originally from 

 
1 CDI-Lextest is available for download at 

https://github.com/SPEECHCOG/CDI_lextest. 

MSCOCO by Lin et al., 2014) that each come with five 
spoken captions describing the images in English, resulting 
in a total of 742 h of speech (2353 speakers). We use the data 
split of Karpathy and Fei-Fei (2017) with 118k images for 
training and 5k for testing. Given that the utterances and 
images consist of several words and visual objects, there is 
substantial referential ambiguity in the data. 

Model Evaluation 
Evaluation focused on analyzing how phonemic, lexical and 
semantic information emerge in the model as a function of 
training time (a proxy for model’s language experience). 
 
Phonemic Evaluation. For phonemic evaluation, we applied 
the widely used ABX-task (Schatz et al., 2013), also used by 
Lavechin et al. (2022) and Peng and Harwath (2022b). The 
task consists of feeding the model with a large number of 
minimal pair speech triplets (e.g., A: “bat” B: “bit” X: “bit”) 
and testing whether the resulting hidden layer activations of 
the model are more similar for the tokens containing the same 
target phoneme than across phonemic categories. 
Representation similarity is measured with dynamic time 
warping -based alignment of the representations in time, 
followed by calculation of the alignment path cost (see Schatz 
et al., 2013, for more details). Output of the test is ABX error 
rate (%): the percentage of ABX-trials in which the model 
failed to discriminate the minimal pair token from the same-
phoneme tokens. For the ABX test, we used the English 
Librispeech version of the test (www.zerospeech.com; 
Dunbar et al., 2022), for which we report the ABX scores for 
the within-speaker clean data condition.  

 

Lexical Evaluation. For lexical evaluation, we created a 
new1 benchmark called “CDI-Lextest” to evaluate how well 
a model’s hidden layer activations discriminate between 
different lexical items. For this purpose, we synthesized 
isolated tokens of 89 lexical types from the receptive 
vocabulary of English CDI short forms (list taken from 
Wordbank; Frank et al., 2016). These words represent 
common early vocabulary items of North American English 
learners. Google cloud text-to-speech API was used for the 
synthesis, and each lexical type was synthesized using 10 
different neural voices (5 male, 5 female) and in both 
question and statement prosodic forms. This resulted in a 
total of 1780 word tokens with 20 tokens per lexical type.  

During the test, the model is fed with a word token at a time 
and should output a fixed-dimensional representation vector 
for the token irrespectively of the duration (e.g., mean hidden 
layer activation across time). Pairwise cosine distances 
between all the 1780 token vectors are then calculated. A 
quality score (0–1) is assigned for each token, where the score 
is defined as the proportion (0–1) of the nearest 19 other 
tokens being of the same word type as the given token, since 
there are a total of 19 other tokens of the same lexeme in the 
test set (e.g., given a “ball” token, what is the proportion of 
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other “ball” tokens within the nearest 19 tokens). The final 
lexical quality score qLEX ∈ [0, 1] (chance ~1/89) is calculated 
as the mean of token scores across all the 1780 tokens. As a 
result, the test measures how well tokens of each word type 
cluster together in the representation space while avoiding 
confusions across word types. 
 

Semantic Evaluation. Semantic evaluation was performed 
in terms of standard audiovisual retrieval using recall@10 as 
the metric (see, e.g., Chrupała, 2020). For each utterance in 
the test set of SpokenCOCO, the corresponding embedding 
(“query”) a was first extracted from the output of the audio 
model branch (see Fig. 1). Cosine distances between the 
query and image embeddings v of all test set images (from 
the visual encoder) were then calculated. If the embedding of 
the matching image was within the 10 nearest embeddings to 
the query embedding, the retrieval task was considered as 
successful. The proportion of successful retrievals across all 
25000 unique speech queries in the test set was then defined 
as the audio-to-visual recall@10 ∈ [0, 1]. The process was 
repeated for visual-to-audio search using all the 5000 images 
as the queries and checking if at least one of the five correct 
captions were in the top 10. We report the mean of the two 
retrieval directions as the final recall@10. 

Experimental Setup 
As our baseline model, we train the model with 𝛼 = 0.5 for 
50 epochs and starting from randomly initialized model 
parameters, which corresponds to equal emphasis on auditory 
and audiovisual learning throughout the process. In addition, 
we run the experiment for 𝛼 = 0.1 (strong emphasis on 
auditory learning) and 𝛼 = 0.9 (strong emphasis on 
audiovisual learning). We also report results for a scenario 
where the model is first trained for 20 epochs with 𝛼 = 0 
(auditory learning only), followed by 50 epochs of equal 
weighing of the mechanisms (𝛼 = 0.5), denoted as 𝛼 = 0 →
0.5 -variant. This aims to simulate learning where auditory 
learning is predominant up to a certain stage, after which the 
learner starts to utilize visual information as well (e.g., due to 
improved head stability and motor skills). Finally, we test a 
model with equally weighted auditory and audiovisual pre-
training (for 20 epochs), followed by 50 epochs of auditory 
learning (𝛼 = 0.5 → 0) to see if the model’s representations 
can handle long-term absence of visual information. The 
epochs counts were determined based on saturation of 
recall@10 (or its pre-training benefits) in pilot experiments. 

For all training, we use Adam optimizer with an initial 
learning rate of 10-4 with a warm-up period and then a linearly 
decaying learning rate schedule. The optimizer is always 
reset between pre-training and the final 50 epochs of training 
to ensure sufficient learning rate and Adam stability with a 
suddenly changing optimization space.  

The models are probed for phonemic, lexical and 
semantic scores for each of the first 5 epochs, then every 10 
epochs, and for the final 50th epoch. Phonemic evaluation is 
conducted with the temporal sequence of hidden layer 
activations at the 100 Hz sampling rate of the audio encoder 
and decoder (Fig. 1). Lexical evaluation uses the time-

average of the hidden layer activations across the duration of 
the input word. Both phonemic and lexical evaluations are 
separately conducted for all layers of the audio encoder (N=8) 
and decoder (N=4). When reporting the phonemic and lexical 
learning curves, only the best scores are shown across the 
tested layers for each epoch. Semantic evaluation with 
recall@10 uses the high-level auditory and visual 
embeddings from their respective processing paths. 

To facilitate comparison across the three linguistic levels 
of interest, plotted learning curves are normalized between 0 
(chance level in the task) and 1 (the best performance across 
all the training variants and epochs), referred to as PHON, 
LEX, and SEM for phonemes, words, and semantics, 
respectively. The best non-normalized performance scores at 
the end of full training (epoch 50) are reported separately to 
indicate absolute quality of the three representation types.  

Results 
Table 1 shows the unnormalized performance of the model 
variants in the three original evaluation tasks at the end of full 
training. Note that the intermediate representation qualities of 
some variants can exceed the final performance (cf. Fig. 2).   

All variants are successful in all the three tasks with 
substantially above-chance performance. ABX scores reach 
5.06–6.90% phoneme discrimination error rate (chance 50%) 
and recall@10 reaches 0.422–0.798 depending on the 
variant, both measures being comparable to earlier studies 
focusing on the respective tasks (e.g., Chrupała, 2022; Peng 
& Harwath, 2022a, 2022b), especially considering that the 
previous ABX scores are typically reported for models 
trained on the same data as used by the ABX task 
(Librispeech corpus). The new lexical test results in a score 
of qLEX = 0.829 for the best variant and 0.519 for the worst. 
Substantially above chance performance in all three 
categories provides a solid basis for closer analysis of the 
learning process as a function of language experience. 
 
Table 1: Absolute performance levels obtained by each 
variant after full training. ABX = phoneme error rate, qLEX = 
lexical quality score, recall@10 = audiovisual retrieval 
performance. 𝛼 =X à Y denotes 𝛼 during (X) and after (Y) 
pre-training. Numbers in parentheses denote the layer 
number responsible for the reported best performance. 

Model variant ABX (%)  
(layer) 

qLEX 
(layer) 

recall@
10 

𝛼 = 0.5 5.06 (8) 0.519 (8) 0.750 
𝛼 = 0.1 5.15 (8) 0.713 (8) 0.759 
𝛼 = 0.9 5.06 (8) 0.647 (7) 0.744 

𝛼 = 0.5 → 0	 6.23 (8) 0.574 (8) 0.422 
𝛼 = 0 → 0.5 6.90 (2) 0.829 (6) 0.798 

Concurrent Auditory and Audiovisual Learning 
Moving on to the linguistic representation trajectories, Fig. 2. 
shows the results for the normalized PHON, LEX and SEM 
scores. The overall learning pattern is similar across all the 
different learning scenarios: phonemic representations are 
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always emerging first, followed by lexical organization, 
whereas semantics always start improving after there is at 
least some amount of lexical organization. Yet, in all the 
cases where both auditory and audiovisual mechanisms have 
finite contributions to the process (Fig. 2, top row) there is 
always notable concurrency in the improvement of all three 
levels of representation. Also, whenever both mechanisms 
are present, the changes in 𝛼 result only in minor numerical 
differences between the learning curves of PHON and SEM.  

As for the LEX, it appears that a stronger emphasis on the 
auditory learning (𝛼 = 0.1) leads to somewhat slower but 
more consistent over-time improvement of the lexical 
representations compared to other cases. In fact, 𝛼 = 0.5 and 
𝛼 = 0.9 result in a peak of LEX at around epochs 3–4, after 
which LEX starts to degrade gradually even though PHON 
and SEM continue to improve. While the reason for this is 
unclear, it is possible that the audiovisual learning 
mechanism prioritizes encoding of vocabulary with visual 
referents at the cost of more general lexical encoding. For 
instance, some words of the CDI-Lextest, such as “all gone”, 
“I”, “help”, or “fast”, have little identifiable correspondence 
to the entities present in still visual scenes of SpokenCOCO. 
Hence, model overfitting to groundable lexemes may occur. 

Results on Auditory to Audiovisual Learning 
In the case of purely auditory learning (epochs –20 to 0 of 
𝛼 = 0 → 0.5  in bottom left panel of Fig. 2), there is a clear 
and relatively fast improvement in PHON, yet learning is still 
slower than in the scenario where concurrent audiovisual 
grounding is available (bottom right). LEX also gradually 
improves with purely auditory learning (see Lavechin et al., 
2023, for a similar finding), but again at a slower rate than 
with audiovisual learning. Naturally, audiovisual semantics 
show no improvement with purely auditory learning. When 
the auditory learning becomes supported by audiovisual 

learning (epoch 0 onwards), the model reaches the best 
overall learning outcomes for LEX and SEM. PHON also 
becomes very good in absolute terms (cf. Table 1) but falls 
slightly short of the non-pretrained variants. In addition, 
learning of semantics is very rapid in this scenario compared 
to the models that do not have auditory pre-training.  

The results suggest that general auditory statistical 
learning is beneficial in initializing speech representations 
that can then later support different levels of language 
structure. While phonemic discrimination is largely obtained 
already with purely auditory processing, the obtained 
auditory representations also support fast acquisition of high-
quality lexical and semantic representations when access to 
visual information becomes available. The finding also aligns 
with the 𝛼 = 0.1 variant (Fig. 2, top center), where a stronger 
emphasis on auditory learning was found to improve the 
stability of lexical representations over time.   

Results on Audiovisual to Auditory Learning  
In the last learning scenario, audiovisual grounding is used to 
bootstrap the learning and is then followed by purely auditory 
learning (𝛼 = 0.5 → 0; Fig. 2, bottom right). The first 20 
epochs of pre-training now correspond to the 𝛼 = 0.5  
condition with the same findings as earlier (Fig. 2, top left). 
In this case, the good phonemic representations obtained with 
concurrent auditory and audiovisual learning stay as such 
when access to visual information is removed. In addition, 
the LEX of approx. 0.6 obtained by 𝛼 = 0.5 stage stays 
relatively constant during the following auditory learning 
stage but does not show any further improvements. 
Interestingly, quality of semantic representations obtained 
during audiovisual learning increases very slightly during the 
first epochs of purely auditory learning. After that, SEM stays 
stable until ~15 epochs, and finally start to degrade when 
visual input remains unavailable for too long.  
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The observed persistence of visually grounded semantic 
representations in the absence of further audiovisual input is 
atypical from the perspective of catastrophic forgetting in 
artificial neural networks. It appears that the auditory learning 
process does not aggressively alter the audiovisual 
representations when optimizing the network purely for the 
auditory learning task. Instead, the auditory and audiovisual 
representations are somewhat aligned across the tasks, but 
only when the network is initially trained for both tasks.  

Discussion and Conclusions 
This study set out to investigate how phonemes, words, and 
utterance-level semantics evolve as a function of language 
experience when the learning is driven by two mechanisms: 
1) purely auditory learning of speech patterns and 2) 
associative learning between utterances and concurrent visual 
input. We studied the question with a computational model 
of speech representation learning using model training time 
as a proxy for language experience. The employed model was 
able to utilize regularities within the acoustic speech stream 
but also across perceptual modalities through visual 
grounding, both without strong priors on linguistic structure 
of speech or without any other strong constraints or biases 
(see Peng & Harwath, 2022b for the original description).  

The results show that irrespectively of how auditory and 
audiovisual learning are weighted during the learning 
process, phonemic representations always precede lexical 
learning. In addition, improvements in lexical selectivity 
systematically precede learning of utterance-level semantics. 
At the same time, there is also substantial concurrency in 
learning the different levels of representation. Note that the 
general pattern could be interpreted as sequential acquisition, 
if a performance score threshold (e.g., above chance) would 
be used to determine a specific “age of acquisition” for the 
phonemic, lexical and semantic knowledge. However, such a 
sequential interpretation would be a simplification that hides 
many details of the acquisition dynamics, and hence would 
not reflect the interactions between levels of language. In 
fact,  a related issue may exist in interpretation of behavioral 
research with infants, where the focus is often on finding 
above-chance behavioral differences between experimental 
conditions, which is then used to draw conclusions about the 
existence or lack of particular language capabilities. 

With respect to bottom-up and top-down theories of 
language acquisition, the results from all testing conditions 
are superficially compatible with the acquisition patterns 
associated with “bottom-up” view in the sense that sensitivity 
towards phonemic structure appears before lexical and 
semantic knowledge. However, the results show how initially 
emerging phonetic discrimination capabilities can result from 
statistical learning operating on top of acoustic speech (see 
also, e.g., Lavechin et al., 2023), from audiovisual associative 
learning (see also Khorrami & Räsänen, 2021), or from both 
simultaneously. This disconnects the observable order of 
acquisition (phone(me)s à words à meanings) from the 
underlying learning mechanisms and learning targets driving 
the acquisition. Hence, one should not equate the emergence 

of different language capabilities at different developmental 
milestones with a cascade of specific learning processes 
targeting at those capabilities. Thereby, the present results 
are equally compatible with the usage-based accounts of 
language acquisition, where gradual emergence of lexical and 
sub-lexical structure results from holistic “top-down” 
meaning-centered learning (see Chrupała, 2022; Khorrami & 
Räsänen, 2021; or Merkx, 2022, for a recent discussion, 
models and references; cf. also Werker & Curtin, 2005).  

The present results also suggest that learning of language 
patterns from auditory or audiovisual input is flexible in 
terms of the two types of learning applied, as linguistic 
structure emerges in all the tested learning scenarios. Visual 
input is highly useful whenever available, but the acquired 
visually grounded representations are tolerant against periods 
of absent visual information. There is some benefit from 
having a stronger early emphasis on auditory learning, latter 
followed by learning from sights. This may be due to a more 
generic nature of auditorily-learned representations 
compared to visual grounding, where only some words of the 
language have concrete visual referents. Hence, the 
groundwork laid by auditory learning can make learning from 
the more infrequent visual events more effective. This also 
fits to the language experiences of real infants, to whom 
communicative scenarios with closely paired visual referents 
are less frequent than access to speech signal in general.  

Naturally, the present findings are subject to the 
simplifying assumptions and constraints of the present setup. 
For instance, the present speech data was not naturalistic 
speech and visual input to children (cf., e.g., Clerkin et al., 
2017) but spoken descriptions of photographs from the MS-
COCO database. When audiovisual learning was employed, 
the density of referentially relevant utterance-image pairs 
was also much higher than what would be expected in real 
world, even though there was still substantial referential 
ambiguity between the two modalities. On the other hand, the 
model lacks a mechanism for infant-caregiver joint attention 
that can shape the referential ambiguity substantially in the 
favor of the learner (e.g., Yu et al., 2021). The analogy 
between model training and “amount of language 
experience” was based on iterative processing of the same 
dataset instead of having a continuous stream of new 
language experiences. However, all the representations were 
tested on different data from the training set (with PHON and 
LEX on completely different corpora and SEM on a separate 
held-out fold), which means that the representations still 
generalize to novel data. Finally, the metrics used for the 
three levels of representation are only way to test learner’s 
knowledge, and robustness of the results with respect to other 
ways to probe language skills should be verified. 

Overall, the study provides new insights into the 
complementarity of auditory and audiovisual learning in 
early language acquisition, and how they might relate to the 
emergence of linguistic knowledge. To better understand the 
generality of the findings, the present experiments should be 
replicated with more naturalistic training data (in quality and 
quantity) and with alternative model architectures. 
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