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Centralized netting in financial networks

October 23, 2016

Abstract

We consider how the introduction of centralized netting in financial networks affects total netted

exposures between counterparties. In some cases there is a trade-off: centralized netting increases

the expectation of net exposures, but reduces the variance. We show that the set of networks for

which expected net exposures decreases is a strict subset of those for which the variance decreases,

so the trade-off can only be in one direction. For some network structures, introducing centralized

netting is never beneficial to dealers unless sufficient weight is placed on reductions in variance.

This may explain why, in the absence of regulation, traders in a derivatives network do not develop

central clearing. Our results can be used to estimate margin requirements and counterparty risk in

financial networks.

Key words: centralized netting, central clearing, exposures, networks.



1 Introduction

Centralized netting in a financial network is the novation of some links to a single counterparty.

This can reduce the aggregate level of exposures in the system by netting offsetting claims, and

so decrease systemic risk and collateral requirements. Examples of centralized netting include the

introduction of a central counterparty (CCP) to over-the-counter derivatives markets, triparty repo,

and netting in payments networks.1 Improvements are most likely when all exposures are simulta-

neously netted. Introducing centralized netting in a subset of exposures has the effect of improving

netting amongst those exposures, because they are now novated to the same counterparty. But it

disrupts bilateral netting sets amongst those exposures which are not novated. This paper examines

how this trade-off depends on the structure of the network.

We focus on the example of the introduction of a central counterparty (CCP) to a derivatives

network. Duffie and Zhu (2011) show that, when a single asset class is centrally cleared, bilat-

eral exposures between agents may increase — as a result of reduced netting opportunities across

pairs of counterparties — resulting in an overall loss in netting efficiency. Duffie and Zhu derive

conditions, in terms of the number of asset classes and the number of dealers, for whether or not

centralized netting in the form of a CCP is beneficial.

In Duffie and Zhu’s framework, all agents in the network are assumed to trade with one

another. By expressing the magnitude of links between agents in each asset class as a random

variable, they can then calculate expected exposures with respect to this distribution, and examine

how this changes before and after the introduction of centralized netting. A clear advantage of this

approach is that it is not necessary to observe the actual network exposures; instead it relates the

question of whether or not the introduction of centralized netting in a single asset class is beneficial

or not to easily observable parameters. But one drawback to their analysis is the assumption of a

completely-connected network, with all agents trading with one another. Typically, real-world

financial networks are not completely connected. Empirical studies show that there is typically a

number of well-connected counterparties coupled with a larger number of more poorly-connected

1For example, CLS (Continuous Linked Settlement) nets foreign exchange transactions in payments systems.
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counterparties.

In this paper we develop a model of centralized netting that extends the analytic framework

developed by Duffie and Zhu to more general network models. We develop analytical results

which do not depend on any assumptions about the precise structure of the network. In addition,

we examine the effect of centralized netting on the variance, as well as the expectation, of netted

exposures. Our rationale is that, if the agents have some aversion to volatility or extreme outcomes,

then they are likely to benefit from a lower variance of net exposures, as well as a lower mean. As in

Duffie and Zhu, we show that the introduction of centralized netting is more likely to be beneficial

when there are more agents, and when there are fewer asset classes.

Our first key result is that, for any given network, if introducing centralized netting reduces

expected exposures, then it must also reduce the variance of exposures. However, the converse

implication is not true. This means that the set of networks for which the expectation of exposures

is reduced is a subset of those for which the variance is reduced.

We derive general expressions to determine cases when centralized netting reduces the expec-

tation and variance of exposures. These expressions are in terms of the network distribution and

the number of asset classes. As the benefits of centralized netting are decreasing in the number

of asset classes in the network, we can determine the critical number of asset classes above which

centralized netting does not deliver benefits. This critical number is higher for the variance than

for the expectation of exposures.

These first results require full information about the structure of the network. Our second

result weakens this assumption. We establish upper and lower bounds on the maximum number of

asset classes required for centralized netting to deliver benefits. These do not depend on knowing

the degree distribution of the network. This second result could help a decision maker to judge the

benefits of central clearing when the full structure of the network is unknown.

Our additional results relate to specific network structures. The previous literature has demon-

strated that real-world financial networks can be explained by scale-free network models (e.g. So-

ramäki et al. (2007), Inaoka et al. (2004), Garlaschelli et al. (2005)) and by core-periphery models
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(e.g. Craig and von Peter (2014), Langfield, Liu, and Ota (2014), Markose (2012)). Both of these

structures can be generated by simple and intuitive processes. These processes incorporate the

growing structure of the network and preferential attachment: that is, new nodes are likely to at-

tach themselves to nodes which are larger or more successful. In the case of scale-free networks,

new nodes are more likely to attach themselves to nodes with a large number of existing connec-

tions (Barabási and Albert (1999)). Core-periphery networks emerge when there is heterogeneity

between nodes, with links to a particular class of nodes being more attractive (e.g. Van der Leij,

in’t Veld, and Hommes (2014) and Chang and Zhang (2015)). Our approach provides an appropri-

ate technique for generating the unobserved link-structure of the network, while preserving the ex

ante symmetry assumptions that are necessary to obtain analytic results.

Generating scale-free networks using the specific network formation process introduced by

Dorogovtsev, Mendes, and Samukhin (2001), we find that expected net exposures always increase

when a single asset is novated to a CCP, regardless of the size of the network. Therefore dealer

agents or policymakers require some desire to reduce the variance of net exposures in order to

justify the introduction of central clearing. Moreover, for the asymptotic network we find that,

when a single asset is novated to a CCP, expected net exposures always increase and the variance

of net exposures always decreases. Hence, the trade-off between mean and variance is a definite

feature of the limiting network. In contrast, for core-periphery networks we find that, for any given

number of asset classes, there is a minimum size of the network above which the introduction of

a CCP reduces both the mean and variance of net exposures. Thus, for sufficiently large core-

periphery networks, centralized netting is unambiguously beneficial.

Our findings can be applied to predict the impact of introducing a CCP on margin require-

ments, since aggregate margin needs are related to the distribution of netted exposures.2 Our

model can also be applied to any network where the issue of bilateral vs centralized netting is

under consideration. For example, it could be used to consider the effect of multilateral netting

in the interbank market, the benefits of bilateral vs triparty repo, or the effect on payment system

2See, for example, Sidanius and Žikeš (2012). More recent papers including Duffie, Scheicher, and Vuillemey
(2015) and Campbell (2014) use actual bilateral exposure data to analyze the issue empirically.
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exposures of introducing a netting mechanism (such as CLS or a liquidity-saving mechanism).

The techniques we develop in this paper can be used to evaluate the efficiency gains of no-

vating multiple asset classes to a single CCP or of different configurations of CCPs, which each

handle different sets of asset classes. Trivially, if it is efficient to novate one asset class to a CCP,

then it will always be efficient to novate another. This follows from the fact that efficiency gains

to novation are higher when the number of asset classes is lower and novating an asset effectively

reduces the number of asset classes by 1. The logical extension of this idea is that the well-known

result that the unconstrained first-best is to put everything through a single CCP. Our final results

of the paper show a related finding that (1) merging CCPs will always improve efficiency, again

with the ultimate conclusion that a single CCP is best, and (2) it is most efficient to novate asset

classes to the largest existing CCP.

2 A review of the relevant literature

The framework developed in Duffie and Zhu (2011) has been utilized by other authors in order to

investigate specific problems. Heath, Kelly, and Manning (2013) is perhaps the most similar to our

paper in that they examine a network other than the completely-connected structure of Duffie and

Zhu; specifically, they assume a core-periphery structure. They then use a computational approach

to compare the effect of various clearing arrangements on expected netted exposures.

Anderson, Dion, and Pérez Saiz (2013) and Cox, Garvin, and Kelly (2013) apply the Duffie

and Zhu framework to explore the policy issue of interoperability between CCPs. They examine

whether a regulator can reduce expected netted exposures by mandating trades to be novated to

a local CCP, which can link to a global CCP that clears a range of products. Both papers retain

the assumption of a homogeneous link network, though Cox, Garvin and Kelly allow for some

heterogeneity between dealer agents in the magnitude of exposures (but not in the existence of

links).

Cont and Kokholm (2014) extend the Duffie and Zhu framework by relaxing the assumption
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of normal exposures between counterparties and show, using a simulation approach, that Duffie

and Zhu’s conclusions are sensitive to different distributional assumptions. However, they retain

the homogeneous network assumption that Duffie and Zhu use. This is in contrast to our paper,

which uses more general and realistic network structures.3 A recent working paper by Menkveld

(2015) considers the Duffie and Zhu framework and looks at the mean and variance of the aggregate

exposure of the CCP. His goal is to examine the ability of the CCP to survive simultaneous losses

in the centrally cleared asset. We, in contrast, look at the impact of introducing a CCP on mean

and variance of exposures across all asset classes and our focus is on the aggregate exposures of

all counterparties across all asset classes, not just those in the centrally cleared asset class.

Our paper makes two key innovations to the Duffie and Zhu model which, to our knowledge,

have not been considered before. First, we provide an analytical generalization of the model so

that it can be applied to any network. Second, we look at how the introduction of a CCP affects the

variance of counterparty exposures, as well as the mean, of net exposures for alternative network

structures.

In the broader literature, there are a variety of papers which use a network approach to focus

on issues relating to OTC derivatives networks other than netting efficiency. Markose (2012) finds

that the empirical OTC derivatives network aggregated over all products can be well-described by a

modified core-periphery model, and derives summary statistics to identify institutions which carry

the greatest quantity of systemic risk. Heath et al. (in press) use the same data set to show that the

empirical network structure has the potential to generate stability risks. Borovkova and Lalaoui El

Mouttalibi (2013) use a simulation approach to model the effect of the introduction of a CCP on

default cascades in a network. They examine both homogeneous (Erdős-Rényi) and core-periphery

networks, and find that homogeneous networks are more resilient.

Jackson and Manning (2007) and Galbiati and Soramäki (2012) use different approaches to

examine the desirability of tiering — that is, restricting direct access to the CCP to a limited set

of counterparties. Song, Sowers, and Jones (2014) extend the Galbiati and Soramäki framework

3While our framework explicitly permits the use of non-normal exposures, some distributional assumption is nec-
essary in order to obtain analytical results.
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to study the effect of network structure on the maximum exposure risk of the CCP itself, and use

extreme value theory to obtain analytical results.

3 A general network model of exposure netting

We assume that the dealer network is not directly observable but the number of nodes, the degree

distribution and the distribution of the magnitude of bilateral exposures is known. This is a realistic

assumption for dealer networks, where the regulator and participants often lack exact real-time

knowledge of bilateral exposures. This is a generalization of the assumption made in Duffie and

Zhu (2011), in which the exact structure of the network is fixed and known.

Let N be the number of nodes (i.e. market participants) and let S be a random variable denot-

ing the number of links any given node has. Define Ji to be the set of nodes with which node i has

a link. The size of this set is given by a realization of the random variable S.

Let K denote the number of asset classes. Links are undirected: each link is endowed with

a vector reflecting the net exposure in each asset class between the two dealer agents. This may

be positive or negative, depending on the direction of the exposure. Define Xi j to be a K-vector

of values (weights) on the link between nodes i and j, if it exists. The kth element in each vector,

denoted Xk
i j, represents the net exposure between the two nodes in asset class k. When Xk

i j > 0 then

node i has a net exposure to node j in asset class k, and when Xk
i j < 0 then the reverse is true. Each

value is generated with the same known distribution, independently of one another and of the link

structure of the network.4

First consider the situation without a CCP. Consider two linked nodes i and j. Define Y K
i j ≡

max
{

∑
K
k=1 Xk

i j,0
}

to be the value of node i’s netted exposure to node j. Positive net exposures in

one asset class can be partially or wholly offset by negative net exposures in another asset class

with the same counterparty. If i and j are not linked, then the net exposure is zero. The total net

exposure of node i equals ∑ j∈Ji Y
K
i j .

4The constraint Xk
i j = −Xk

ji does apply, but as our analysis focuses on a representative node, we do not need to
apply this constraint.
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Now define the function f (K) as the expected net exposure between any two nodes, given

that there are K asset classes:

f (K)≡ E
[
Y K

i j
]
. (1)

The expected total netted exposures for a given node i are:

φN,K ≡ E

[
∑
j∈Ji

Y K
i j

]

= E

[
E

[
∑
j∈Ji

Y K
i j

∣∣∣S]]

= E [S f (K)]

= E [S] f (K) ,

(2)

where we have used the fact that each Y K
i j is independent from one another, and from S.

Similarly, the variance of the exposure between two nodes after netting is:

g(K)≡ Var
[
Y K

i j
]

(3)

and the variance of the total netted exposures of the network is:

vN,K ≡ Var

[
∑
j∈Ji

Y K
i j

]
. (4)

We can evaluate this expression using the law of total variance:

vN,K = E

[
Var

[
∑
j∈Ji

Y K
i j

∣∣∣S]]+Var

[
E

[
∑
j∈Ji

Y K
i j

∣∣∣S]]

= E [Sg(K)]+Var [S f (K)]

= E [S]g(K)+Var [S] f (K)2.

(5)
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3.1 Novating a single asset class to a CCP

Now we introduce a CCP in a single asset class. Without loss of generality, reorder the asset classes

so that the centrally cleared asset class is the one labelled K. The net exposure of a given node i

becomes:

∑
j∈Ji

Y K−1
i j +max

{
∑
j∈ Ji

XK
i j ,0

}
︸ ︷︷ ︸

Y S
i,CCP

(6)

where the first term is the sum of a node’s exposures to the other nodes, and the second term is its

netted exposure to the CCP. We can rewrite the second term as Y S
i,CCP, with the S superscript arising

because the size of Ji has distribution S.

Note that, for a given realized value of S, the two terms in (6) are independent: the first term is

determined entirely by exposures arising from the first K−1 assets, while the second is determined

entirely by exposures arising from asset K.

Now, when there is a CCP, the expected total net exposure of node i is:

φ̃N,K = E

[
E

[(
∑
j∈Ji

Y K−1
i j +Y S

i,CCP

)∣∣∣S]]

= E [S f (K−1)+ f (S)]

= E [S] f (K−1)+E [ f (S)] ,

(7)

and the variance of the total net exposure of node i is:

ṽN,K = E

[
Var

[(
∑
j∈Ji

Y K−1
i j +Y S

i,CCP

)∣∣∣S]]+Var

[
E

[(
∑
j∈Ji

Y K−1
i j +Y S

i,CCP

)∣∣∣S]]

= E [Sg(K−1)+g(S)]+Var [S f (K−1)+ f (S)]

= E [S]g(K−1)+E [g(S)]+Var [S f (K−1)+ f (S)] .

(8)

Using (2) and (7), the change in expected net exposure that results from novating a single asset
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class to a CCP is:

φ̃N,K−φN,K = E [ f (S)]−E [S] ( f (K)− f (K−1)) . (9)

Using (5) and (8), the change in variance that results from novating a single asset class to a CCP

is:

ṽN,K− vN,K =

Var [S f (K−1)+ f (S)]−Var [S] f (K)2 +E [g(S)]−E [S] (g(K)−g(K−1)) .
(10)

These results show that introducing centralized netting will change both the mean and variance of

total net exposures. Reduction in either the mean or the variance is likely to be positive for users

of the system, since it means that counterparty risk — and total margin needs — are lower either

in expectation or volatility. Therefore we can say that:

• centralized netting delivers netting benefits when both (9) and (10) are negative;

• netting is worsened when both expressions are positive; and

• when the expressions have different signs, then there is a trade-off depending on the weight

decision-makers place on the mean and the variance of exposures.

The key focus of this paper is to identify the extent to which the effect of centralized netting

depends on the underlying network structure.

Note that in the case K = 1, the CCP clears all of the assets that the dealers trade with one

another. In this case, we would always expect the introduction of a CCP to improve netting, as

it does not disrupt any of the existing bilateral netting sets. This is confirmed by observing that

φ̃N,1 ≤ φN,1 and ṽN,1 ≤ vN,1.5

5To show this, note that f (0) = 0 = g(0) and that the max{·,0} function is sub-additive.
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3.2 Assigning a distribution to the bilateral exposures

To obtain tractable results for the cases where K > 1, we need to assume a distribution for the

bilateral exposures between dealers. This will enable us to write down expressions for f and g in

equations (9) and (10). We follow Duffie and Zhu (2011) and assume that each of the bilateral

exposures Xk
i j is independent and identically distributed normally with mean 0 and variance σ2.6

Using the formula for the sum of independent normal random variables, we can write the function

f as:

f (θ) =
∫

∞

0

1√
2πθσ

ye−
y2

2θσ2 dy

= σ

√
θ

2π
,

(11)

and:

g(θ) =
∫

∞

0

1√
2πθσ

y2e−
y2

2θσ2 dy −

(
σ

√
θ

2π

)2

=
1
2

∫
∞

−∞

1√
2πθσ

y2e−
y2

2θσ2 dy−σ
2 θ

2π

= σ
2(π−1)

θ

2π
.

(12)

We substitute these into (9) and (10) to show that a CCP reduces the expectation of net expo-

sures if and only if:
√

K +
√

K−1 <
E[S]

E[
√

S]
, (?)

and introducing a CCP reduces the variance of net exposures if and only if:

Var[S
√

K−1+
√

S]< KVar[S]. (13)

Rewriting the first variance term in (13) in terms of expectations operators, we can express this

6We can generalize slightly: the results that follow will also apply asymptotically (i.e. as N,K→ ∞) so long as the
distribution of the exposures has zero mean and finite variance. This follows from the law of large numbers.
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condition as:

2
√

K−1 <
Var[S]−Var[

√
S]

E[S
3
2 ]−E[S]E[

√
S]
, (†)

when the denominator is non-zero.

The denominator of (†) is zero if and only if S is a constant, in which case the numerator

is also zero. In this case, the degree of every node is constant and known with certainty, so the

variance of netted exposures does not change upon introduction of centralized netting. We call

such a network a “trivial network”; the Duffie and Zhu network is an example of such a network.

Trivial networks are not realistic representations of real-world networks, which typically exhibit

some heterogeneity in their degree distributions.

3.2.1 Effect of changing the number of asset classes K

Result 1. As the number of asset classes K increases, there is less benefit from the introduction of

centralized netting. This is true whether the benefit is measured in terms of lower expectations or

lower variance of netted exposures.

Proof. We can express this more precisely as follows: for any number of asset classesK, let ΣK be

the set of networks for which centralized netting reduces the mean of netted exposures. Then for

all K′ > K, ΣK′ is a subset of ΣK . The same is true for the variance. The result follows immediately

from the fact that the left-hand sides of both expressions (?) and (†) are increasing in K.

The intuition behind Result 1 is that, as K increases, the CCP clears a lower proportion of

the dealers’ activity with one another, so the benefit of netting with the CCP is reduced. This is

consistent with the findings of Duffie and Zhu.

For a given network structure, we can define K∗ as the critical value of K below which ex-

pected net exposures decrease upon introduction of a CCP, and above which they increase. K† is

the corresponding critical value for variance. Then:

K∗ ≡ 1
4

(
E[S]

E[
√

S]
+

E[
√

S]
E[S]

)2

(14)
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K† ≡ 1
4

(
Var[S]−Var[

√
S]

E[S
3
2 ]−E[S]E[

√
S]

)2

+1 (15)

In other words, expressions (?) and (†) are equivalent to, respectively, K < K∗ and K < K†. These

expressions are the focus of the analysis moving forward. They relate the impact of introducing a

CCP to the number of asset classes K on the left-hand side, and to the degree distribution S on the

right-hand side.

Next we present a general result on the relationship between K∗ and K† that holds for any

finite non-trivial network (i.e. a network which has some variance in its degree distribution).

Proposition 1. K† > K∗ for all finite non-trivial networks.

Proof. All proofs are in the Appendix.

An implication of Proposition 1 is that the more the decision-maker cares about variance, the

wider the range of asset classes K for which the CCP delivers netting benefits. Relative to the

existing literature, which only examines conditions for central clearing to reduce expected netted

exposures, this proposition suggests that central clearing is more likely to be beneficial, so long as

the decision-maker places a non-zero weight on variance.7

3.2.2 Bounds on K∗ and K†

In this paper and the related literature, we treat the degree distribution S as known, even though the

exact structure of the network is not. For example, expressions (14) and (15) relate K∗ and K† to

moments of S, which are assumed to be known. However, in reality a decision-maker — such as

an association of dealers or a regulator trying to decide whether or not to mandate central clearing

in a trading network — may lack knowledge even about the degree distribution of the network.

For example, a decision-maker may only know the size of the network N and the number of asset

classes K. In such a case, a decision-maker may be interested in bounds on K∗ and K† which can

help to inform a decision.
7In their empirical treatment, Cont and Kokholm (2014) do use statistics other than the mean to assess the benefits

of introducing centralized netting. They find that introducing a CCP can reduce the Value-at-Risk (VaR) of exposures
more than it does the mean. They do not examine the effect on the variance of exposures.
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Proposition 2 (Bounds on K∗ and K†). Among all networks S with P(S ≤ N − 1) = 1, K∗ lies

between 1 and N2

4(N−1) , and both bounds can be achieved. When K† is defined, it lies between 1 and

N−1, and both bounds can be achieved.

Proof. All proofs are in the Appendix.

A decision-maker can compare the observed K to the upper bounds, which are both functions

of the known quantity N. If K is larger than the upper bound on K∗ (K†), then the decision-maker

knows that introducing a CCP will increase the mean (variance) of netted exposures. The upper

bound for K† is at least as higher as that for K∗ when N ≥ 2, which means that when the decision-

maker is sure that central clearing increases the variance of netted exposures, then she can be sure

that it increases the mean too. There may be intermediate cases where a decision-maker is sure

that there would be an increase in the mean but cannot be sure about the variance; in such cases, a

decision-maker who puts more weight on the effect on variance is more likely to introduce central

clearing.

For both K∗ and K†, the lower bound is achieved if and only if S takes values only on 0 and 1,

which is a trivial case since the network consists only of disconnected pairs and singletons. If the

decision-maker has additional information about the network — for example, if the decision-maker

believes the network to be connected — then she may be able to improve on these bounds.8

4 Examination of different network structures

In this section we consider how the impact of introducing a CCP is affected by the underlying struc-

ture of the network. The structure of the network is reflected on the right-hand sides of expressions

for K∗ and K† via the distribution of the random variable S.

As a network is a very general object, we restrict our analysis to specific cases identified in

8Note that the upper bound on K∗ is achieved if and only if we have the homogeneous network considered in Duffie
and Zhu. That means that the homogeneous network achieves the highest expected netting efficiency under central
clearing, compared to all networks of the same size. To put it another way, using the decision criterion in Duffie and
Zhu is likely to lead to central clearing being accepted too often.
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the existing literature. First we apply our results to Duffie and Zhu’s network and recover their

results. Then we apply our analysis to core-periphery and fat-tailed networks, in order to examine

the effect on the results of the presence of large well-connected counterparties, which are typically

present in real-world financial networks.

4.1 Homogeneous network of Duffie and Zhu

Duffie and Zhu (2011) assume the network is completely connected, so every agent has full degree.

This means that S = N−1 with certainty, and so K∗ = N2

4(N−1) , which corresponds to their equation

6. The Duffie and Zhu network is a trivial network as defined earlier, and introducing a CCP has

no effect on variance. The benefit of the CCP can be considered just by examining the effect on

the mean.

A slight generalization of Duffie and Zhu’s completely connected network is the Erdős-Rényi

random network, where links are formed independently with some probability p. In this network,

the nodes are still homogeneous ex ante but there may be random variations in their realized link

patterns. As an Erdős-Rényi network grows in size, K∗ and K† grow without limit.9 However,

the Erdős-Rényi homogeneous network is not the focus of our paper, as it is not a good fit to

real-world financial networks (as shown, for example, in Markose (2012) and Craig and von Peter

(2014)). Instead we focus on two models which have been shown to be more realistic: fat-tailed

and core-periphery network structures.

4.2 Fat-tailed networks

Many real-world financial networks have degree distributions with significant excess kurtosis.

There is likely to be a small number of highly-connected nodes (we can think of these as the

major dealers), with the majority of nodes having few connections. One popular model for this

property is a ‘fat-tailed network’: that is, a network with a degree distribution which asymptoti-

cally obeys a power law P(S = s) ∼ s−α, for some real-valued parameter α > 1. Fatter tails are

9This is a consequence of Proposition 3 — see section 4.3.2.
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associated with lower values of α.

In this section we will focus on scale-free networks, which are a particular class of fat-tailed

networks that have been shown to arise in many real-world applications, including financial net-

works.10 Focusing on this class is instructive because they arise according to a simple and intuitive

process, as explained in the following section.

4.2.1 How do scale-free networks arise?

Barabási and Albert (1999) show that scale-free networks can be formed via growth and prefer-

ential attachment. As time goes on, new nodes join the network and tend to form links with the

nodes which are better-connected. This is a realistic model of how a derivatives trading network

may develop. Over time we would expect new dealers to enter as the market grows. And there are

several reasons why these dealers are more likely to trade with the agents which are already better-

connected, such as name recognition, an existing relationship in another market, or economies of

scale allowing better-connected agents to offer more attractive terms. Barabási and Albert show

that networks formed through this process have fat tails with exponent α = 3.

Barabási and Albert’s general solution only applies when the number of nodes becomes very

large, but the assumption of a large network is not necessarily realistic for our purposes. For ex-

ample Duffie and Zhu consider a network of size 12, which is the number of entities that, at the

time of writing their paper, had partnered with ICE Trust to create a CCP for clearing credit de-

fault swaps.11 In order to model networks of finite size, we need to settle on a specific form of

Barabási-Albert network. We use the scale-free network formation process described in Dorogovt-

sev, Mendes, and Samukhin (2001); henceforth we refer to this as the DMS network. The major

advantage of the DMS network is that it has an exact solution for a network of any size. The DMS

network generating process is as follows:

1. Begin at time t = 2 with 3 nodes. Each has two links connecting to one another.

10See, for example, Soramäki et al. (2007), Inaoka et al. (2004) and Garlaschelli et al. (2005).
11Sizes of other real-world CCP networks can be found in Table 1 in Galbiati and Soramäki (2012) and footnote 12

in Cox, Garvin, and Kelly (2013).

15



2. Each time period, a new node is added to the network and connects to two existing nodes.

To determine which nodes, choose an existing link at random (each with equal probability).

The new node then connects to the two nodes which share that existing link. Repeat.

3. This process generates an undirected DMS network. We now need to determine the value of

each link. We assume that if two dealers have a link in one asset class, then they have a link

in all K asset classes. For each pair of connected nodes i and j, we generate the net exposures

Xk
i j, k = 1, . . . ,K, as K iid normal random variables with mean 0 and standard deviation σ.

Carried out for t steps, this produces a network of size N = t+1, which tends towards a scale-

free network with exponent α = 3 as t becomes large. The left-hand panel of Figure 1 shows the

realization of a DMS process for t = 100.

Figure 1: Left-hand panel: Scale-free network of size t = 100, generated using the DMS pro-
cess. Right-hand panel: Core-periphery network of size N = 100, generated using a Bernoulli
distribution with parameters z = 0.25, p = 0.2,c0 = 0.

4.2.2 Asymptotic analysis of fat-tailed and scale-free networks

We can use the definition of fat tails to approximate the moments of the degree distribution as the

size of the network N→ ∞:

E[Sm]∼
∫ N−1

Z
sm−αds (16)

where Z is some constant.
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Thus, as N→ ∞:

E[Sm]∼


O((N−1)m−α+1) if m > α−1

O(log(N−1)) if m = α−1

O(1) if m < α−1

(17)

and so E[Sm] has a finite limit if and only if m < α−1.

We can apply this result to our expressions for K∗ and K†, (14) and (15). Table 1 below

summarizes the asymptotics for various values of α.

Table 1: Asymptotic behavior of K∗ and K† in a fat-tailed network.
K∗ K†

1 < α≤ 2 tends to positive infinity tends to positive infinity
2 < α≤ 3 tends to finite limit tends to positive infinity

α > 3 tends to finite limit tends to finite limit

When α > 3, the right-hand sides of both expressions (14) and (15) tend to finite limits. This

means that there will be some critical values K∗ and K† beyond which the introduction of a CCP

will increase the expectation and variance of net exposures no matter how large the network is. But

when 1 < α≤ 2 the converse is true: for any given number of asset classes K, there will be some

critical network size beyond which the expectation and variance of net exposures decline with the

introduction of a CCP. This suggests that a CCP is more likely to deliver benefits to dealers in

networks with fatter tails. This makes intuitive sense, because such networks have a large number

of major dealers (well-connected nodes), and so the bilateral netting with major dealer is less than

efficient in a network where there are fewer of them (i.e. those with thinner tails).

For real-world networks α typically lies between 2 and 3.12 This corresponds to the inter-

mediate case in Table 1, implying a potential trade-off between a higher expected value of net

exposures and a lower variance when the number of asset classes is larger than the asymptotic

limit of K∗.
12For example, Soramäki et al. (2007) and Inaoka et al. (2004) both estimate α = 2.1 for the interbank payment

networks in the US and Japan respectively. Garlaschelli et al. (2005) estimate α lies between 2.2 and 3.0 for networks
of shareholdings in the US and Italy. For Barabási-Albert scale-free networks, α has an asymptotic limit of 3.
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Lemma 1. For the infinite DMS network, novating a single asset class to a CCP always increases

expected netted exposures, for any number of asset classes K ≥ 2. But it always decreases the

variance of net exposures.

Proof. All proofs are in the Appendix.

The increase in expected exposures that results from the introduction of a CCP (φ̃N,K−φN,K)

has a finite upper bound as N → ∞. However, the reduction in variance (ṽN,K − vN,K) is without

bound. This means that — so long as agents’ preference functions put any weight on volatility —

then, for any given K, there must be some critical size of the network above which introducing a

CCP is beneficial for the dealer agents.

4.2.3 Finite analysis of the scale-free network

The distribution of S for a given t is given in Dorogovtsev, Mendes and Samukhin (see their equa-

tion 8):

Pt(s) =
t

t +1

[
s−1
2t−3

Pt−1(s−1)+
(

1− s
2t−3

)
Pt−1(s)

]
+

1
t +1

1[s=2] (18)

for t ≥ 3, with initial condition P2(s) = 1[s=2]. (Here, 1[·] denotes the identity function which takes

the value 1 if the condition in the subscript is true, and zero otherwise.)

Figure 2 shows the effect of introducing a CCP for a range of values of K and t. The distribu-

tion of S is determined by equation (18) for the corresponding value of t. This has been calculated

for DMS networks with up to 250 members. The upper frontier of the black area in the figure

corresponds to K∗, while the upper frontier of the gray area corresponds to K†.

K∗ tends monotonically upward with an upper bound of approximately 1.73 (see the proof of

Lemma 1 in the Appendix). This confirms that the introduction of a CCP will increase expected

net exposures for any non-trivial DMS network (i.e. one where K ≥ 2). In contrast, K† (shown

by the frontier of the gray area) increases without limit as ∼O((log(N−1))2), as predicted by the

asymptotic analysis. This means that, for sufficiently large networks, the introduction of a CCP

will cause a reduction in the variance of exposures.
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Figure 2: The effect of the introduction of a CCP in a DMS scale-free network, for a range
of values of (K, t). The chart is calculated up to t = 249 — that is, N = 250. Values of K∗ are
represented by the frontier between the black and gray areas. Values of K† are represented
by the frontier between the gray and white areas. Illustrative real-world values of N,K are
shown by the cross markers (see footnote 13).

The cross markers illustrate values of N,K for four real-world networks.13 In some cases the

markers are in the white region, meaning that — assuming the underlying network has a DMS

structure — the case for introducing a CCP would need to be motivated by considerations other

than netting efficiency. In two cases the markets are in the gray region, suggesting that the in-

13 We have drawn these from published papers where the values of N and K are easiest to deduce. These are as
follows. N = 12,K = 6 (point A): US derivatives network in June 2010 used by Duffie and Zhu (2011); N = 176,K = 5
(B): UK interbank network in 2011 used by Langfield, Liu, and Ota (2014); N = 38,K = 5 (C): global OTC derivatives
network, used by Markose (2012), restricted to most active participants; N = 14,K = 6 (D): CDS network in March
2010 estimated from DTCC Trade Information Warehouse Report.
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troduction of a CCP would be beneficial if sufficient weight is placed on the reduced variance of

netted exposures.

4.3 Core-periphery networks

Core-periphery networks have been presented in the recent literature as an alternative to scale-

free networks as a model of real-world financial linkages. These networks are characterized by a

partition of the nodes into two sets: a heavily-connected set of ‘core’ nodes, along with a sparsely

connected set of ‘peripheral’ nodes. In most models this partition is determined exogenously.

Borgatti and Everett (1999) present a general model to allow for the detection of core-periphery

networks: they assume that in such networks all core nodes are linked to one another, while there

are no links between peripheral nodes. They then present a statistic to test for correlations between

such an idealized core-periphery network and the actual data. Their model is agnostic about the

distribution of links between core and periphery nodes; this is because their specification is aimed

at empirical verification of the structure, rather than a general model of a core-periphery network.

Langfield, Liu, and Ota (2014) and Craig and von Peter (2014) use the Borgatti-Everett ap-

proach to identify core-periphery structures in the UK and German interbank markets respectively.

Wetherilt, Zimmerman, and Soramäki (2010) and Markose (2012) use alternative methods to show

that, respectively, the UK money market and the global network of OTC derivatives can be char-

acterized as having core-periphery structures.

4.3.1 How do core-periphery networks arise?

Van der Leij, in’t Veld, and Hommes (2014) show that core-periphery structures can arise as the

stable outcome of a process of strategic network formation between heterogeneous agents. In their

model, there are ‘big’ (core) banks and ‘small’ (peripheral) banks, and the payoff from forming a

link with a big bank is greater than a link with a small bank. Chang and Zhang (2015) demonstrate

that, when agents differ in the amount that they need to trade, they will self-organise into a core-

periphery structure, with the agents with the lowest trading need forming the core. Chang and
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Zhang associate these core nodes with market making.

Underlying this network generation process is the assumption that, for any given agent, links

to core nodes are desirable, while links to peripheral nodes are not. There are plausible reasons

why this may be the case for real-world financial networks. Agents may prefer to deal with larger

players, with whom they are likely to have existing relationships in other markets. Exposures to

larger players may be easier to monitor. And economies of scale may mean that these larger players

offer more attractive trading terms.

Abstracting away from consideration of individual nodes’ optimal strategies, we can charac-

terize the formation of a core-periphery network using the following simple process:

1. Begin with c0 core nodes, which are connected to each other.

2. At each step a new node is added. With probability z this new node is labeled ‘core’. Other-

wise, the node is labeled ‘peripheral’.

3. A new core node forms links with all of the existing core nodes with certainty, and forms

links with each of the existing peripheral nodes according to some distribution h. A new

peripheral node will never form links with existing peripheral nodes, but will form links

with existing core nodes according to the distribution h.

This process, carried out for N− c0 steps, will produce a network of size N which meets the

Borgatti-Everett definition of a core-periphery network. The parameters of the model are c0, z and

the distribution h. Borgatti and Everett allow any feasible distribution to determine core-periphery

links; for example h could depend on existing links in the network at a given point in time. One

natural and simple way to model links between the core and periphery is to assume that each link

occurs independently with some fixed probability p ∈ (0,1) — that is, the link formation process

follows a Bernoulli distribution. Under this assumption, the number of links for any randomly

chosen node can be expressed as a mix of binomial distributions plus a constant.14 The right-hand
14Let C be the number of core nodes. Then C∼ c0 +Bin(N−c0,z), and the conditional distribution S|C∼ C

N · [(C−
1)+Bin(N−C, p)]+(1− C

N ) ·Bin(C, p). Note that the case z = 1 corresponds to the Duffie and Zhu network with size
equal to N.
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panel of Figure 1 shows a realization of such a network-generating process. We will focus on the

Bernoulli core-periphery network in the remainder of this section.

4.3.2 Asymptotic analysis of core-periphery networks

In order to make asymptotic inferences about the Bernoulli core-periphery network, we will state

and prove a more general Proposition on the asymptotic limit of networks with ‘thin tails’, which

we define as follows.

Proposition 3. Suppose the degree distribution S of the network has the following properties:

• Var[S]/E[S]2 tends to a finite limit as N→ ∞;

• All of the higher moments tend to zero as N→ ∞.

Then K∗ and K† are both ∼ O(E[S]) as N→ ∞.

Proof. All proofs are in the Appendix.

For a network which meets the conditions in Proposition 3, K∗ and K† will increase without

bound as the size of the network becomes large. This suggests that, for any given number of asset

classes K, there is a minimum size of the network above which the introduction of a CCP would

reduce both mean and variance.

Examples of network models which meet these ‘thin-tailed’ conditions are the Duffie and

Zhu network, the Erdős-Rényi network described in section 4.1, and the Bernoulli core-periphery

network described above. In all of these cases, E[S]∼ O(N).

Proposition 3 does not apply to a network with a link formation process h which generates

fat tails; such a network would not meet the conditions stated in the Proposition. For example, if

the core and peripheral nodes form links according to a Barabási-Albert preferential attachment

process, then such a network will exhibit asymptotic results similar to those derived in section

4.2.2. Markose (2012) shows that the network of global OTC derivatives exposures can be modeled

by a core-periphery network with fat tails in the degree distribution. In this case, the analytics of

the fat-tailed network would be more appropriate.
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4.3.3 Finite analysis of the Bernoulli core-periphery network

While the only parameter in the DMS network is its size N, the Bernoulli core-periphery network

has four parameters N, z, p and c0. In order to derive numerical solutions, we need to choose

feasible parameter values, so we turn to the empirical literature. Table 2 below summarizes pa-

rameter estimates from three selected papers: the global OTC derivatives network from Markose

(2012), the Dutch interbank market from Van der Leij, in’t Veld, and Hommes (2014), and the

German interbank market from Craig and von Peter (2014).15 The value of c0 is impossible to ob-

serve and is likely to make little difference for larger networks, so we assume c0 = 0. We will use

z = 0.10, p = 0.10 for our numerical solutions — these parameter values are fairly representative

of Table 2.16

Table 2: Parameter estimates for selected real-world core-periphery networks.
Global OTC Dutch interbank German interbank

Period 2009 Q4 2008 Q4 2003 Q2
N 204 100 1802
Estimated z 0.10 0.15 0.02
Estimated p 0.01 0.31 0.11

Figure 3 shows the effect of introducing a CCP for various values of N up to 250, for the

parameters z = 0.10, p = 0.10, c0 = 0. As predicted, K∗ and K† increase approximately linearly

with N. There is a gray intermediate area where K∗ < K < K† — in such cases, introducing a CCP

will increase expected net exposures in the network, but reduce the variance. The cross markers

represent the same four real-world networks shown on Figure 2.17

As Figure 3 shows, there are network sizes N where a CCP is unambiguously bad for netting

efficiency. For all N ≤ 93, K∗ < 2 and so a CCP will never reduce average net exposures for

15For the global OTC network we use the ‘inner core’ as defined by Markose. Each paper provides the number of
nodes N, the size of the core C and the total number of directed links L. We assume that c0 = 0. We can then estimate
z = C

N and p = L−C(C−1)
2C(N−C) .

16The Markose parameter values may be thought to be the best proxy, given that we are interested in central clearing
of OTC derivatives and not other forms of interbank lending. However, it should be noted that the Markose network
exhibits fat tails and so does not conform very well to a Bernoulli core-periphery structure.

17We use different networks in Table 2 to those used to illustrate the figures. This is due to differing degrees of
confidence in our ability to estimate the relevant parameters — N and K in the case of the figures, and z and p in the
case of Table 2.
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Figure 3: The effect of the introduction of a CCP in a core-periphery network with z =
0.10, p = 0.10,c0 = 0, for a range of values of (K,N) up to N = 250. Values of K∗ are rep-
resented by the frontier between the black and gray areas. Values of K† are represented
by the frontier between the gray and white areas. Illustrative real-world values of N,K are
shown by the cross markers (see footnote 13).

networks of this size. And for all N ≤ 29, K† < 2 and so introducing a CCP for networks of this

size increases both the mean and variance of net exposures.

Testing other parameter values, we also find that K∗ and K† always increase with N and with

both z and p. We can interpret higher K∗ and K† as indicating that the introduction of a CCP brings

greater netting benefits. These results arise because, when the network relies on links with a small

fraction of key nodes (the scale-free case), bilateral netting substantively reduces net exposures,

and central clearing disrupts this. But when links are more spread amongst a larger number of
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key nodes (the core-periphery case with large z or p), central clearing may bring greater netting

benefits.18

This strongly suggests that knowledge of network structure — as well as the size and the

number of asset classes — is important in assessing the possible benefits of central clearing on

netting efficiency. Particularly important is the tail of the degree distribution, which determines the

connectivity of the largest nodes in the network.

5 Generalization to several CCPs and multiple asset classes

Until now we have only considered the case of the introduction of centralized netting in one asset

class. In reality, a single CCP may clear more than one asset class, or there may be several CCPs

all clearing different asset classes. This may affect netting efficiency: for example Duffie and Zhu

(2011) show that merging multiple CCPs into a single CCP will always improve netting efficiency.

In this section, we briefly show how our results can be generalized to a setting with several CCPs.

Suppose that, as before, there are N dealer agents in the OTC derivatives network, and K asset

classes. M CCPs are introduced, indexed by m = 1, . . . ,M. CCP m clears a number of asset classes

am. We relabel the asset classes so that asset classes in the set {1, . . . ,a1} are cleared by CCP 1,

those in the set {a1 +1, . . . ,a1 +a2} are cleared by CCP 2, and so forth.

The total number of asset classes novated to central clearing is A := a1 + · · ·+aM. The asset

classes with labels ∈ {A+1, . . . ,K} are not centrally cleared.19

By the same reasoning as in Section 3.1, we can show that the expectation and variance of

18This is supported by Table 1 which suggests that, as α increases in a large fat-tailed network, central clearing
tends to bring greater netting benefits. That is because a fatter tail means a greater number of nodes with a substantial
number of links, so bilateral netting with individual nodes is relatively less important.

19We assume here that any given asset class is cleared by at most one CCP. We do not consider the case where an
asset class can be cleared by more than one CCP. Our results in this section suggest that such a case is inefficient.
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exposures following centralized netting are:

φ̃N,K = E[S] f (K−A)+
M

∑
m=1

E[ f (amS)], (19)

ṽN,K = E[S]g(K−A)+
M

∑
m=1

E[g(amS)]+Var
[
S f (K−A)+

M

∑
m=1

E[ f (amS)]
]
. (20)

Note that in the case m = 1, a1 = 1, A = 1, we recover equations (7) and (8).

These equations provide us with a way of comparing the netting efficiency under different

constellations of CCPs, by writing a given constellation in terms of a partition of the set of asset

classes. Let us assume again that the underlying bilateral exposures Xk
i j are iid normally distributed

∼ N(0,σ2) for some parameter σ. We can use the expressions (11) and (12) to show that intro-

ducing a given CCP constellation reduces the expectation and variance of exposures if and only if,

respectively:

1
A

(√
K +
√

K−A
) M

∑
m=1

√
am <

E[S]
E[
√

S]
, (?′)

2
√

K−A <
AVar[S]−

(
∑

M
m=1
√

am

)2
Var[
√

S](
∑

M
m=1
√

am

)(
E[S

3
2 ]−E[S]E[

√
S]
) . (†′)

Expressions (?′) and (†′) are generalizations of (?) and (†) respectively. As before, all of the K

terms are on the left-hand sides of the expressions, which are increasing in K. Therefore a given

CCP constellation will tend to be less efficient when the total number of asset classes is higher.

The intuition is the same as before: when A is fixed and K increases, then the CCPs collectively

clear a smaller proportion of the network, and so the benefits they bring from netting within asset

classes are less likely to be greater than the cost from disruption of existing bilateral netting sets

across asset classes. We can redefine K∗ and K† as the values of K for which there is equality

between the left- and right-hand sides of (?′) and (†′), respectively.

We can use these expressions to prove the following general results.

Lemma 2.
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1. Merging CCPs will always improve netting efficiency: Given any constellation Ψ1 =

{a1, . . . ,aM}, consider a new constellation Ψ2 = {a1 + a2, . . . ,aM} with one fewer CCP.

Then both the expectation and variance of exposures under Ψ2 will be lower than under Ψ1.

2. It is most efficient to novate asset classes to the largest existing CCP: Given any constel-

lation Ψ1 = {a1, . . . ,aM}, consider two alternative constellations Ψ2 = {a1 +1,a2, . . . ,aM}

and Ψ3 = {a1,a2 + 1, . . . ,aM}. If a1 > a2, then both the expectation and variance of expo-

sures under Ψ2 will be lower than under Ψ3.

Proof. See Appendix.

Lemma 2 shows that merging CCPs will reduce both the mean and variance of net exposures,

and that it is most efficient to clear a new asset class through the largest existing CCP. Taken

together, these findings imply that the most efficient arrangement would be to have a single CCP

net every asset class. It is easy to see that this is best, because all exposures can be netted against

one another. However, such an arrangement may not be optimal once a regulator takes into account

systemic risk, because such a CCP would be hugely systemically important. If a regulator does

not want too many asset classes being cleared by a single CCP, our expressions (?′) and (†′) can

help her to compare different potential clearing arrangements, and to assess trade-offs against some

other factor of concern, such as systemic risk.

6 Implications for policy

In 2009, G-20 Leaders called for central clearing in a variety of derivatives markets (in particular

high-volume standardized credit default and interest rate swaps). This has now been introduced

into legislation in various member countries; for example in the United States through Title VII

of the Dodd-Frank Act of 2010, and in the European Union through the European Market Infras-

tructure Regulation (EMIR) of 2012. What can our analysis tell us about the need for regulatory

intervention? In other words, given that the dealer agents have chosen not to set up a CCP them-

selves, what market failure does a regulator address by mandating central clearing?
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Margin requirements in a derivatives network are related to netted exposures. Let us assume

that the dealers are less averse to volatility and the associated extreme outcomes than is socially

optimal. This may be the case, for example, if high or volatile margin requirements impose ex-

ternalities on markets for the collateral assets (Murphy, Vasios, and Vause (2014)), or if agency

problems mean that dealers take excessive risks. In such cases, the dealers would not wish to

introduce centralized netting, even though it may be socially optimal to do so. A social planner

may determine that the optimal policy measure is to mandate central clearing, although the deal-

ers themselves may disagree. This explains the need to introduce regulation which mandates that

dealers use a CCP.

Another plausible explanation is that, while a CCP may improve netting efficiency among

dealers in aggregate, it does not provide an improvement for every party in the network.20 In other

words, it is socially efficient but not Pareto-efficient. This may make it difficult for the agents in

the network to coordinate and set up a CCP themselves. Even if a CCP were set up, some agents

may prefer not to use it and would continue to trade bilaterally. This would disrupt netting sets for

those who do use the CCP, imposing an externality upon them and making centralized netting less

effective. This provides a reason for a regulator to intervene and mandate central clearing, in order

to improve the efficiency of the market as a whole.

As in Duffie and Zhu we do not account for the fact that exposures to the CCP are likely to

bear less counterparty risk than those to commercial trading counterparties.21 Nor do we attempt

to anticipate any strategic behavior on the part of the participants: after a CCP is introduced the

participants in the network are assumed not to find it optimal to adjust their exposures to one

another. Modelling this would require some assumptions about the preferences of the participants;

papers such as Chang and Zhang (2015) provide a possible model. Our approach can be thought

of as consistent with participants facing a high cost of changing counterparties.

Our theoretical results can be applied to data. If the actual link structure is known, then the

20Heath, Kelly, and Manning (2013) find that the netting benefits of central clearing accrue disproportionately to
core nodes.

21Anderson, Dion, and Pérez Saiz (2013) attempt to model this by having different weights for links to CCPs and
to commercial counterparties.
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empirical distribution S can be plugged into our equations in Section 3. As part of the regulatory

reforms following the financial crisis, regulators have increasingly better access to OTC derivatives

data. However, in general these data will not be back-dated — in particular, regulators may not

have data on network structures leading into the last crisis — so it may not be possible to observe

the empirical network structure at precisely the point when risk is at its peak. It may also be

difficult for regulators to piece together exposure data about different asset classes and identify

different corporate entities as part of the same dealer. Moreover, even if the network structure is

known, exposures may change rapidly as contracts move into and out of the money. Our approach

allows a regulator not to be concerned about the identity of each node, but to use the structure of

the network as a whole.

Finally, networks develop and grow over time and so historical data may not be useful for

understanding an innovative or growing market. As the network structure rapidly changes in real

time, regulators may find it more useful to model the growth dynamics rather than rely on observed

data which rapidly becomes stale. Our model allows for this.

7 Concluding remarks

We show how the introduction of centralized netting in a single asset class affects both the mean

and variance of netted dealer exposures, depending on the underlying structure of the network.

Centralized netting is more likely to decrease both mean and variance if the network is larger, or

if there are a smaller number of asset classes traded in the network. But centralized netting brings

fewer netting benefits if the network relies on a small number of key nodes for most of its links.

This has welfare implications because net dealer exposures relate to aggregate counterparty

risk in the network and to liquidity needs. For example, if centralized netting reduces both the

expectation and variance of exposures, it is likely to be beneficial. If it increases both the expec-

tation and variance, then it is likely to reduce welfare. We show that there will be cases where

the decision-makers must trade off lower variance against a higher mean, but not vice versa. This
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means that some aversion to volatility may be required to favor the introduction of a centralized

netting system, such as a CCP. In such cases, whether centralized netting improves welfare or not

will depend upon details of risk controls, as well as the preferences of the dealers, policymakers

and any other relevant agents.

Appendix

Proof of Proposition 1

As notational shorthand, define Tj = E[T j] = E[S j/2], where S is the degree distribution of the

network. Note that, because S can only take non-negative values, Tj is real-valued and non-negative

for all j≥ 0. In this proof we shall make repeated use of the following result, which is an immediate

consequence of Hölder’s inequality.

Result 2. For any r > 1, a≥ 0, b≥ 0,

Ta+b ≤ T
1
r

arT
1
s

bs

where 1
r +

1
s = 1. Equality holds if and only if ar = bs, except in the trivial case when T is a

constant.

Let us assume that Proposition 1 is false, and that there is some non-trivial network for which

K∗ ≥ K†. We can write this as:

1
4

(
T2

T1
+

T1

T2

)2

≥ 1
4

(
T4−T 2

2 −T2 +T 2
1

T3−T2T1

)2

+1

⇐⇒
(

T2

T1
− T1

T2

)2

(T3−T2T1)
2 ≥ (T4−T 2

2 −T2 +T 2
1 )

2

We can take square roots of both sides of this expression without changing the direction of

the inequality, so long we are sure that the square root of each side is non-negative. The following
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statements ensure that it is indeed the case.

T4−T 2
2 −T2 +T 2

1 = Var[S]−Var[
√

S]≥ 0;

T2

T1
− T1

T2
=

E[S]
E[
√

S]
− E[
√

S]
E[S]

≥ 0; and

T3−T2T1 = E[T 3]−E[T 2]E[T ]≥ 0.

The first two are obviously true, because S ≥ 1 with probability 1. The third can be proved using

Result 2 with a = 2,b = 0,r = 3
2 ,s = 3.

That means that we can take square roots of both sides of the inequality above to obtain:

(
T2

T1
− T1

T2

)
(T3−T2T1)≥ T4−T 2

2 −T2 +T 2
1

⇐⇒
(

T2

T1
− T1

T2

)
T3−T 2

2 +T 2
1 ≥ T4−T 2

2 −T2 +T 2
1

⇐⇒
(

T2

T1
− T1

T2

)
T3 ≥ T4−T2

⇐⇒ T 2
2 T3 +T1T 2

2 ≥ T1T2T4 +T 2
1 T3.

Now we shall use Result 2 to show that this is not true for any non-trivial network, and thus

obtain a contradiction.

Setting a = 4
3 ,b = 2

3 ,r = 3,s = 3
2 , we have T2 < T

1
3

4 T
2
3

1 . Setting a = 8
3 ,b = 1

3 ,r =
3
2 ,s = 3, we

have T3 < T
2
3

4 T
1
3

1 . Multiply these together gives T2T3 < T1T4, and so T 2
2 T3 < T1T2T4.

Setting a = 3
2 ,b = 1

2 ,r = 2,s = 2 in Result 2, we can show T 2
2 < T1T3. This means T1T 2

2 <

T 2
1 T3. Adding these up gives T 2

2 T3 +T1T 2
2 < T1T2T4 +T 2

1 T3, and we have our contradiction.

We have shown that K∗ ≥K† can only be true for a trivial network. Thus, the result is proved.

�
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Proof of Proposition 2

Bounds for K∗

For K∗, the upper bound N2

4(N−1) is achieved if P(S = N− 1) = 1; that is, if we have a Duffie and

Zhu network. And the lower bound of 1 is achieved if S can only take values on 0 or 1.

Let us write K∗(x) = 1
4(x +

1
x )

2 where x = E[S]
E[
√

S]
. In the feasible region x ≥ 1, K∗ has a

minimum at x = 1 and is increasing for x > 1. Thus the lower bound for K∗ is 1. This is attained

when x = 1; i.e. E[S] = E[
√

S], which implies that S only takes values on 0 and 1.

Now we consider the upper bound. Suppose there is some S for which K∗(x)≥ N2

4(N−1) . Then,

since K∗(x) is an increasing function, x ≥
√

N−1. That means that E[S] ≥
√

N−1E[
√

S], which

can only be true if P(S = N−1) = 1; that is, we have the Duffie and Zhu network. �

Bounds for K†

For K†, the lower bound 1 is achieved when Var[S] = Var[
√

S]; i.e. when S only takes values on 0

or 1. It is easy to see from the definition of K† that it cannot attain a value lower than 1.

The proof for the upper bound is more complicated, so we first explain heuristically how it

proceeds. We are trying to find a candidate probability vector p ∈ [0,1)N which maximises K†(p)

subject to ∑i pi = 1 (where i takes values in {0,1, . . . ,N− 1}). Proposition 2 stipulates that we

are maximising over the set for which K†(p) is defined, so we can exclude any vectors p with any

element with the value 1. We call these excluded points ‘vertices’.

We will show that K†(p) is maximised on the boundary of this feasible set. That means we

reduce our focus from a space with N dimensions to one with N− 1 dimensions. By the same

argument K†(p) must be maximised on the boundary of that set too which has N−2 dimensions,

and so on inductively. Eventually we are reduced to one-dimensional line segments; that is, the

subspaces where p has at most two non-zero elements. At this point, we cannot employ the induc-

tive argument any more, because the boundaries of these line segments are the vertices at which

are not contained in the feasible set for p. Therefore we know K†(p) is maximised on these line
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segments, and we can then finish the proof by examining these to find the maximal value.

Write Ω(p) = Var[S]−Var[
√

S]
E[S1.5]−E[S]E[

√
S]

. Since Ω(p) ≥ 0, maximising K† = 1
4Ω2 + 1 is equivalent to

maximising Ω(p). We can write down the following Kuhn-Tucker conditions:

∂Ω

∂pi
+λi +ζ = 0, ∀i (21)

λi pi = 0, ∀i (22)

ζ(∑
i

pi−1) = 0, (23)

where each λi is the Lagrange multiplier for the constraint pi ≥ 0, and ζ is the Lagrange multiplier

for the constraint ∑i pi = 1. As we are trying to find the maximum of Ω, the Lagrange multipliers

are all non-negative.

Computing the partial derivative of Ω, equation (21) becomes:

−(λi +ζ)v2 =(E1.5−E1E0.5)(i2−2iE1− i+2
√

iE0.5)

− (E2−E2
1 −E1 +E2

0.5)(i
1.5− iE0.5−

√
iE1),

(24)

where v is the denominator of Ω, and Em is shorthand for E[Sm].

Multiplying (24) by pi and summing over i gives:

−Nζv2 = (E1.5−E1E0.5)(E2−2E2
1 −E1 +2E2

0.5)

− (E2−E2
1 −E1 +E2

0.5)(E1.5−2E1E0.5)

= E1(E0.5E2−E1E1.5)+E0.5(E0.5E1.5−E2
1).

(25)

But all the terms on the right-hand side of (25) are greater than or equal to zero,22 while those on

the left-hand side are less than or equal to zero. Therefore each term must be exactly equal to zero,

and so S is a constant. At such points, Ω is not defined, so we can surmise that Ω(p) is maximised

on the boundary of the feasible set for p.

22We showed this in the proof of Proposition 1, where we used Result 2 to show that T1T4 ≥ T2T3 and T1T3 ≥ T 2
2 ,

with equality if and only if T is a constant.
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This boundary is the set of points in [0,1)N with at least one zero element. Suppose that Ω(p)

is maximised on a point on the boundary where the element in position i′ is zero. Then we can

try to maximise Ω(p) on the corresponding subspace, which has N−1 dimensions. Repeating the

analysis above, we can see that Ω must be maximised on the boundary of this subspace, which is

the set of points in [0,1)N with at least two zero elements, one of which is in position i′.

Repeating this argument N−2 times we can infer that Ω is maximised on the set of points in

[0,1)N which have exactly two non-zero elements. We cannot go any further, because the boundary

of this subspace is the set of points with only one non-zero element; that is, the vertices, which we

know do not lie in the feasible set of p.

Consider a general point p in this subspace, with its non-zero elements at i and j, where i < j.

Suppose pi = δ and p j = 1− δ, for some 0 < δ < 1. Then Em = δim +(1− δ) jm for each m, and

so:

Ω(p) =
( j− i)2− (

√
j−
√

i)2

( j− i)(
√

j−
√

i)
(26)

with the terms in δ cancelling out in the numerator and denominator of (26). This means that Ω is

constant along any line in the subspace, and we simply need to choose i and j to maximise (26).

Noting that j− i = (
√

j−
√

i)(
√

j+
√

i), we can cancel terms to obtain:

Ω(p) =
√

j+
√

i− 1
√

j+
√

i
, (27)

which is maximised when
√

j+
√

i is as large as possible. This means that j =N−1 and i=N−2,

and so Ω(p) = 2
√

N−2 and K† = N−1. �

Proof of Lemma 1

We have already shown the second part is true, because α = 3 for the DMS network and so K†

grows without bound (see Table 1). Now we just need to show that the asymptotic value of K∗ —

which we know tends to a finite limit — is smaller than 2.

Observe that Et(S) = 4t−2
t+1 → 4 in the DMS network, since at each step of the network con-
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struction process four additional links are created (each new node has an in-link and an out-link

with two existing nodes). Dorogovtsev, Mendes, and Samukhin (2001) show that:

lim
t→∞

Pt (s) =
12

s(s+1)(s+2)
,

and so the term Et [S]
Et [
√

S]
is asymptotically equal to:

4/

(
12

∞

∑
s=2

1√
s(s+1)(s+2)

)
= 2.17.

This gives us an asymptotic value for K∗ = 1.73 < 2. Therefore in the infinite limit the CCP never

reduces expected netted exposures, except in the trivial case where K = 1; i.e. when the CCP clears

the only asset class. �

Proof of Proposition 3

Let us use µ and V to denote E[S] and Var[S] respectively, for a given N. Then, as N→ ∞, we can

make use of the following approximations:

E[
√

S] = µ0.5E
[

1+
(

S
µ
−1
)]0.5

≈ µ0.5
[

1− V
8µ2

]
, (28)

and

E[S
3
2 ] = µ1.5E

[
1+
(

S
µ
−1
)]1.5

≈ µ1.5
[

1+
3V
8µ2

]
. (29)

In both cases we have expanded the binomial series around 1 and neglected cubic and higher-order

terms. Substituting these into our expressions for K∗ and K†, we find that both K∗ ∼ O(µ) and

K† ∼ O(µ). �
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Proof of Lemma 2

1. Let K∗1 and K∗2 represent the values of K∗ for constellations Ψ1 and Ψ2 respectively, as

given by equation (?′). We need to show that K∗1 < K∗2 . As A and the distribution S are the same

under both constellations, we can show that:

K∗1 < K∗2 ,

⇐⇒ 1
A

(√
K∗1 +

√
K∗1 −A

)
<

1
A

(√
K∗2 +

√
K∗2 −A

)
,

⇐⇒
( M

∑
m=1

√
am

)−1
· E[S]

E[
√

S]
<
(√

a1 +a2 +
M

∑
m=3

√
am

)−1
· E[S]

E[
√

S]
,

⇐⇒
√

a1 +
√

a2 >
√

a1 +a2,

which is true for any a1,a2 > 0.

Now let us define K†
1 and K†

2 similarly. We have:

K†
1 < K†

2 ,

⇐⇒
AVar[S]−

(
∑

M
m=1
√

am

)2
Var[
√

S](
∑

M
m=1
√

am

)(
E[S

3
2 ]−E[S]E[

√
S]
) <

AVar[S]−
(√

a1 +a2 +∑
M
m=3
√

am

)2
Var[
√

S](√
a1 +a2 +∑

M
m=3
√

am

)(
E[S

3
2 ]−E[S]E[

√
S]
) ,

⇐⇒ AVar[S]

∑
M
m=1
√

am
−
( M

∑
m=1

√
am

)
Var[
√

S]<
AVar[S]

√
a1 +a2 +∑

M
m=3
√

am
−
(√

a1 +a2 +
M

∑
m=3

√
am

)
Var[
√

S],

⇐⇒0 < AVar[S]
( 1
√

a1 +a2 +∑
M
m=3
√

am
− 1

∑
M
m=1
√

am

)
+
(√

a1 +
√

a2−
√

a1 +a2

)
Var[
√

S],

(30)

which is always true since
√

a1 +
√

a2 >
√

a1 +a2 for any a1,a2 > 0. Thus the first part of the

Lemma is proved.

2. Let K∗2 and K∗3 represent the values of K∗ for constellations Ψ2 and Ψ3 respectively.
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We need to show that K∗2 > K∗3 . We have:

K∗2 > K∗3 ,

⇐⇒ 1
A+1

(√
K∗2 +

√
K∗2 − (A+1)

)
>

1
A+1

(√
K∗3 +

√
K∗3 − (A+1)

)
,

⇐⇒
(√

a1 +1+
M

∑
m=2

√
am

)−1
· E[S]

E[
√

S]
>
(√

a2 +1+ ∑
m 6=2

√
am

)−1
· E[S]

E[
√

S]
,

⇐⇒
√

a1 +1+
√

a2 <
√

a1 +
√

a2 +1,

⇐⇒
√

a1 +1−
√

a1 <
√

a2 +1−
√

a2,

(31)

which is true since a1 > a2 and
√

X +1−
√

X is a decreasing function.

Now let us define K†
2 and K†

3 similarly. We have:

K†
2 > K†

3 ,

⇐⇒
(A+1)Var[S]−

(√
a1 +1+∑

M
m=2
√

am

)2
Var[
√

S](√
a1 +1+∑

M
m=2
√

am

)(
E[S

3
2 ]−E[S]E[

√
S]
) >

(A+1)Var[S]−
(√

a2 +1+∑m6=2
√

am

)2
Var[
√

S](√
a2 +1+∑m6=2

√
am

)(
E[S

3
2 ]−E[S]E[

√
S]
) ,

⇐⇒(A+1)Var[S]
( 1√

a1 +1+
√

a2 +∑
M
m=3
√

am
− 1
√

a1 +
√

a2 +1+∑
M
m=3
√

am

)
+

Var[
√

S]
(√

a1 +
√

a2 +1−
√

a1 +1−
√

a2

)
> 0,

(32)

which is always true since a1 > a2. Thus all parts of the Lemma are proved. �
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