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ABSTRACT OF THE DISSERTATION

Trees for Group Key Management with Batch Update

by

Nan Zang

Doctor of Philosophy in Computer Science and Engineering

University of California San Diego, 2008

Professor Ronald L. Graham, Chair

Due to the tremendous increase in bandwidth of the network, the group-

oriented broadcast services are becoming increasingly popular. These group-oriented

broadcast services, such as teleconferencing and pay-per-view TV, have a large

number of subscribers and a central group controller (GC), which is in charge of

all the security related administrative tasks. All the members in the group share

a key called the Traffic Encryption Key (TEK), and the messages broadcast by

the group members are encrypted by the TEK. For security reasons, if there is

a group membership change, the TEK has to be updated. So, the GC needs to

send some rekeying messages. To minimize the number of rekeying messages, an

efficient and popular method is to arrange the members in a tree structure and

assign the auxiliary keys, called the Key Encryption Key (KEK), to the members

belonging to a same subtree. The problem of finding an optimal tree structure to

xi



minimize the rekeying messages to be sent is called the Group Key Management

(GKM) problem. The tree structures are called Group Key Management trees.

The group Key Management problem has been a popular research topic for

several years. Many models have been proposed. In this dissertation, we mainly

focus on a batch rekeying model. In this model, the number of group members n

is fixed and each member has probability p (p = 1− q) of being replaced by a new

member during a batch period.

In this dissertation, we focus on the problem of constructing “good” trees

and analyzing the properties of GKM optimal trees for fixed q and n. Two efficient

approximation algorithms are proposed to construct such trees: one is for the

limiting case when the number of group members becomes unbounded and the

other is for the limiting case as q → 1. We also relax the GKM problem to a

more general mathematical problem, called the Jumping Sequence Problem. We

give detailed analysis of the properties of the jumping sequences. Based on those

properties, we also provide a lower bound for optimal GKM trees.
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Chapter 1

Introduction

Because of the tremendous increase in bandwidth in recent years, group-

oriented broadcast services are becoming increasingly popular. These group broad-

cast network services, such as teleconferencing and pay-per-view TV, have n sub-

scribers (n is a large number) and a central group controller (GC) that broadcasts

data packages to all the subscribers over an insecure channel. The group-oriented

broadcast model was first introduced by Harney and Muckenhirn [1][2]. Each

group has a single GC which is in charge of all the security related administrative

tasks such as member verification and distribution of the group keys. Each mem-

ber in the group can use IP multicast to broadcast data packages to other group

members, which is different from the traditional unicast communication technol-

ogy which requires sending n copies of each data package. However, security must

be guaranteed, which means only the verified members in the group can access the

1
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data packages which are being broadcast. However scalable, IP multicast cannot

provide an effective mechanism to control the access to the broadcast data [3].

This security issue in the group-oriented broadcast is called the secure multicast

communication problem.

The secure multicast communication problem has received significant re-

search attention in recent years [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17].

A simple and popular method of limiting the access to the broadcast data packages

is through encryption. One symmetric group key Kg is shared by the central group

controller (GC) and all n group members. Whenever, a new member wants to join

the group, GC and the new member will mutually authenticate each other using a

protocol such as SSL [18]. If the new member is verified, GC will assign a private

key to him, which is only shared by the new member and GC. After the joining

process, GC will broadcast the group key information, encrypted by the private

key of the new member. So, each verified member in the group will hold the group

key Kg. All the data packages sent among the group members are encrypted by

the group key Kg. However, this popular encryption mechanism brings up another

security issue. The members of the group are not stable. Some current members

may leave in the future. After a member leaves, the previous group key Kg can

no longer be used and a message containing the new group key must be sent to

all the remaining members, which is called the rekeying message. If each member

only has two keys, the group key Kg and its own private key, the new group key
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must be encrypted for each remaining group member using its individual private

key. So, n − 1 messages have to be sent. A good way to decrease the number of

rekeying messages is to manage the group members in a hierarchical architecture:

decompose a large group of members into many subgroups, and members in each

subgroup share one subgroup key [19] [20].

This dissertation addresses the problem of finding the optimal key tree to

minimize the rekeying messages which are required for the group security. Member

verification mechanisms are not addressed in this dissertation.

In this chapter, we will first introduce a mechanism, called the key graph

approach, to represent the key hierarchical architecture and some popular key

graphs in the literature. In Section 2, we introduce a more efficient rekeying

mechanism, which uses periodical batch rekeying update after several joins/leaves.

The problems discussed in this dissertation are based on the batch update rekeying

mechanism.

1.1 Key Graphs

The secure group discussed above can be represented as follows [20].

A secure group is a triple (U ; K; R) where

• U is a finite nonempty set of users,

• K is a finite nonempty set of keys, and
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• R is a binary relation between U and K, that is, R ⊆ U × K, called the

user-key relation. User u has key k if and only if (u; k) is in R.

Figure 1.1: An example key graph.

A key graph is a directed acyclic graph used to represent the user-key

relation. A key graph contains two types of nodes: user-nodes representing users

U and key-nodes representing keys K. In a key graph, each user-node has one or

more incoming edges but no outgoing edges. If a key-node has only outgoing edges

and no incoming edges, then this key-node is called the root. Given a key graph

G = (V, E), it specifies a secure group as follows.

• For each user u in U , there is one and only one corresponding user-node in

G.

• For each key k in K, there is one and only one corresponding key-node in G.

• User-key relation (u; k) is in R, if and only if there is a direct path from

key-node k to user-node u.
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A key graph example is given in Figure 1.1. In the example, we can see U =

{u1, u2, u3, u4} and K = {k1, k2, k3, k4, k5}, with u1 holding the keys {k1, k2, k3}, u2

holding {k1, k3}, u3 holding {k1, k4} and u4 holding {k1, k4, k5}. Note, G doesn’t

show the private key of each user. Each user ui’s private key pki is only held by

GC and itself.

A key graph is used by GC for key management purposes. In a key graph,

each key is shared by its reachable members. For security reasons, when a member

leaves, every key that has been held by the leaving member and shared by other

members should be replaced. Let ua be the member who leaves, and let ka be

such a key. Denote Ua as the set of users holding ka. To replace ka, GC randomly

generates a new key and sends it to every member who holds ka except ua (Ua\ua).

To guarantee the security, GC needs to find a subset of keys K ′ such that the

members in Ua\ua hold at least one key in K ′. So, GC can encrypt the new key

by each key in K ′, and send out these |K ′| messages. Each member in Ua\ua can

read at least one encrypted rekeying message. To minimize the number of rekeying

messages (|K ′|), GC has to find a minimal size subset of keys, which cover exactly

all the members in Ua. In Figure 1.1, if u1 leaves, GC has to replace keys k1, k2,

k3 and can do it using K ′ = {pk2, k4}. The problem was first introduced by Wong

and Lam [21], called the Key Covering problem, and the authors showed that it is

NP-complete, which is proved by showing the NP-hard Set Covering problem can

be reduced to the Key Covering problem in polynomial time.
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Definition 1.1.1 (Key Covering Problem). Given a key graph G representing the

secure group (U ; K; R), and a subset S of U . Find a minimum size subset K ′ of

K such that S ⊆ userset(K ′). Here, userset(K ′) is defined as the set of users

holding at least one key in K ′.

1.2 Special Key Graphs

1.2.1 Key Trees

In this dissertation, we only consider key graphs with very special struc-

tures, namely key trees. In this case, the key graph is a single-rooted tree. In

the key tree model, all the internal nodes are key-nodes, and all the leaves are the

user-nodes. For example, Figure 1.2 gives a key tree, in which U = {u1, . . . , u8}

and K = {k1, . . . , k5}.

Figure 1.2: An example key tree.
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As we can see, in the key tree, GC is represented by the root, and the n

members of the group represented by the n leaves of the tree. Associated with

every internal node of the tree is an encryption key. The key associated with the

root is called the Traffic Encryption Key (TEK), which is used for communicating

confidential information among the group members. The key kv associated with

each non-root node v is called a Key Encryption Key (KEK) which is used for

updating the TEK when necessary. Each member possesses all the keys along the

path from the leaf representing itself to the root.

In the key tree, there is always an efficient way to find a rekeying process,

which sends the minimum number of rekeying messages. After a user leaves, the

GC accomplishes the rekeying task by broadcasting the new keys, in encrypted

form, from the lowest level upward recursively as follows: Let v be an internal node

at the lowest level whose key needs to be (but has not yet been) updated. For each

child u of v, the GC broadcasts a message containing Eknew
u

(knew
v ), which means

the encryption of knew
v with the key knew

u . Thus the GC sends out dv broadcast

messages for updating kv if v has dv children. Updating this way ensures that the

member which left will not know any information about the new keys while current

members can use one of their KEKs to decrypt the useful Eknew
u

(knew
v ) sequentially

until they get the new TEK.

Take Figure 1.2 as an example; if member u1 leaves the group, GC has to

update keys K4, K2, K1. Six rekeying messages have to be sent:
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• Epk2(K
new
4 ), Epk3(K

new
4 ) to update K4;

• EKnew
4

(Knew
2 ), EK5(K

new
2 ) to update K2;

• EKnew
2

(Knew
1 ), EK3(K

new
1 ) to update the TEK K1.

In a key tree T , if u leaves and the keys are updated following the above

rekeying mechanism, the minimum number of rekeying messages has to be sent is

∑
v∈path(u,r) dv, where path(u, r) is defined as the path from u to the root r.

1.2.2 Key Stars

A key star is a special structure of a key tree: the level of key tree is 2; the

degree of the root equals group size. An example is shown in Figure 1.3. Key star

models the traditional approach we discussed earlier. Every user has two keys: its

private key and the group key. Whenever a group member leaves, n − 1 rekeying

messages are required, where n is the size of the group.

� � � � � � � �

� �

� �� �

Figure 1.3: An example key star.



9

1.3 Group Key Management with Batch Update

The group key management with batch rekeying update is first introduced

by Li et al. [18]. They showed that the rekeying method after each join/leave

has two problems. First, it is relatively inefficient, especially when the members

of the group change frequently. Second, there is an out-of-sync problem between

keys and data. Because the data packages,which are transmitted by the network,

always encounter a delay problem. A group member might receive a data message

encrypted by an old group key, or it might receive a data message encrypted by

a new group key, which has not yet been received. In the batch rekeying model,

GC waits for a period of time, called a batch period, collects all the join and leave

requests, generates new keys, constructs rekeying messages, and multicasts these

messages.

Zhu et al. [22] introduced a new batch rekeying model based on some very

popular network services. For those network services, they can only serve at most

n members and many other customers must wait to be served. After a period of

time, the system will eject a current member with probability p. So, in this new

model, the number of members joining is assumed to be equal to the number of

members leaving during a batch updating period and every current member has

probability p of being replaced by a new member. In the key tree model, if a

member changes, the rekeying update process will be performed from the lowest

level upward, as in the rekeying process introduced in Section 1.2. Here, we will
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calculate the update cost involved in the rekeying process.

During a batch period, each member has probability p to change. We define

the update cost as the number of rekeying messages to be sent in a batch period.

As introduced in Section 1.2.1, if one member changes, we have to update all the

keys this member possessed; that is all the internal nodes along the path from the

corresponding leaf to the root. We update them following a bottom to top order.

Here, we use Figure 1.2 to show how to calculate the update cost. If u1 changes,

GC first sends the new key K4 to u1 and its siblings (u2, u3). Since they don’t

have a common accessed key, GC has to send three messages which are the key K4

encrypted by the private keys of u1, u2 and u3, respectively. To update key K2,

GC needs to send the new key K2 to all its descendants, but only two messages

are required to be sent, which are the key K2 encrypted by the subgroup keys K4,

K5. Due to the above process, it is easy to see that we need to send dv messages

to renew the key Kv, where dv is the outgoing degree of v. In a batch period, each

key-node v has probability 1 − (1 − p)Nv to change, where Nv is the number of

members holding the key Kv. So, the number of expected messages to be sent in

the batch period is
∑
v∈V

(dv · (1 − (1 − p)Nv)).

1.4 The GKM Tree Problem

In this section, we will first define some terminology, and then give the

mathematical definition of the GKM tree problem, which this dissertation will
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focus on.

Definition 1.4.1. For a tree T , L(T ) is defined as the set of leaves in T , and

|L(T )| is the number of leaves in T . For every node u in T , du is defined as the

outgoing degree of u. We also denote the subtree rooted at the node u as Tu and

Nu as the number of leaves of Tu.

The GKM tree problem is defined as follows: given the number of leaves

n and a probability p a member changes, how can we arrange the members in a

tree structure to minimize the expected number of rekeying messages to be sent.

Mathematically, we can restate this in the following form.

Definition 1.4.2 (The GKM Tree Problem). Given an integer n > 1 and a con-

stant p (0 < p < 1); the weight of a tree T is defined as

C(q, T ) =
∑

v

dv · (1 − qNv),

where the sum is taken over all the nodes v of T and q = 1− p. The problem is to

find a tree structure T ∗ with n leaves so that

C(q, T ∗) = min
|L(T )|=n

{C(q, T )}.

The (q, n)-optimal tree refers to the tree structure T ∗. The minimum cost is

denoted as OPT (q, n). In this dissertation, we will simplify C(q, T ) as C(T ), if

there is no ambiguity about the value of q in the context.



12

1.5 Contributions

This dissertation focuses on the problem of constructing “good” GKM trees

given q and n. We make the following contributions in this dissertation.

1. For the limiting case as n → ∞, we show, in optimal GKM trees, there

always exists a unique subtree structure of the root, which appears an unbounded

number of times. In the case that this structure is symmetric, we prove it has very

good properties, and give an O(log n) time algorithm to find it.

2. For the limiting case as q → 1, we give a nearly 2-approximation algo-

rithm to build GKM trees with time O(log n).

3. We define the Jumping Sequence Problem, which is to find the jumping

sequences from 1 to n where there is a cost associated with each jump. We give

detailed analysis of the properties of the jumping sequences, and provide a lower

bound for optimal GKM trees.

1.6 Dissertation Organization

We organize the rest of this dissertation as follows. In Chapter Two, first we

give the properties of optimal GKM trees, and then relax the GKM tree problem

to a more general mathematical problem, called the Jumping Sequence Problem.

By analyzing the properties of the jumping sequences, we give a lower bound of

the cost of optimal GKM trees. In Chapter Three, we consider the case when the
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number of group members n is unbounded, and design an efficient approximation

algorithm to construct GKM trees. In Chapter Four, we consider the other limiting

case when q → 1, and modify the cost functions defined in Chapter One. For these

new cost functions, we analyze the properties of the jumping sequences and give a

nearly 2-approximation algorithm to build a GKM tree in O(log n) time. Finally,

Chapter Five presents conclusions and future directions.



Chapter 2

Properties of Optimal GKM Trees

The GMK tree problem was first introduced by Zhu et al. [22]. The authors

analyzed the properties of the trees with the restriction that the degree of the

node can be only a power of 2. Graham et al. [23] did a detailed analysis of the

properties of optimal tree structures. This was the first theoretical paper studying

this problem.

2.1 Related Work

In this section, we will survey some results concerning GKM trees in the

literature.

14
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2.1.1 Trees with Restricted Degree

Zhu et al. [22] first defined a special set of “symmetric” trees whose degrees

are restricted to powers of 2. T (a1, a2, ..., at) denotes a tree with t-levels, such that

the outgoing degree of the root is 2a1 , and the nodes on the ith level have outgoing

degree 2ai .

Lemma 2.1.1. If T (a1, a2, ..., at) is an optimal tree for q and m, then the tree

T (ai, ai+1) is an optimal tree for q1 and m1. Here, m =
t∑

h=1

ah, q1 = q−(
�t

k=i+2 ak),

m1 = ai + ai+1 and i < t − 1.

Proof. The cost of the optimal tree T (a1, a2, ..., at; q) is

C(q, T ) = 2a1(1 − q2m

) + 2a1+a2(1 − q2m−a1 ) + ... + 2m(1 − q2at
).

The cost function could be rewritten in the following form, for any 1 ≤ i < j ≤ t:

C(q, T ) =C(qi−1, T (a1, ..., ai)) + 2a1+...+ai−1C(qj, T (ai, ..., aj)

+ 2a1+...+ajC(qj, T (aj+1, ..., at)),

where qi−1 = q−(
�t

k=i ak) and qj = q−(
�t

k=j+1 ak).

From the above transformation, we can see if T (ai, ..., aj) is not an optimal

tree for q = qj and mj =

j∑
h=i

ah, the T (a1, ..., at) is not an optimal tree which is a

contradiction. By setting j = i + 1, we can see that if T (a1, a2, ..., at) is optimal

for q, then for any i ≤ t − 1, T (ai, ai+1) must be an optimal tree structure for

q1 = q−(
�t

k=i+2 ak) and m1 = ai + ai+1.
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The following Theorem was first introduced in [22]. Here, I give a simplified

proof by using Lemma 2.1.1.

Theorem 2.1.2. If a tree T (a1, a2, ..., at) is an optimal tree, then a1 ≥ 2, a2 =

a3 = ... = at−1 = 2 and at = 1 or 2.

Proof. From Lemma 2.1.1, we know if a tree T (a1, a2, ..., at) is an optimal tree for

q, T (ai, ai+1) is optimal for q1 = q−(
�t

k=i+2 ak). Here, we want to prove for any

two-level tree, if T (ai, ai+1) is optimal, then ai+1 ≤ 2 and ai ≥ 2.

We first prove ai+1 ≤ 2 by contradiction. We assume ai+1 > 2. We consider

two alternative trees T (ai, ai+1−1, 1) and T (mi), and show that for any 0 < q < 1,

T (ai, ai+1) can always be replaced by a better alternative tree, where mi = ai+ai+1.

The cost of the original tree is C(q, T (ai, ai+1)) = 2ai(1−q2mi )+2mi(1−q2ai+1
). The

cost of the first alternative tree is C(q, T (ai, ai+1−1, 1)) = 2ai(1−q2mi )+2mi−1(1−

q2ai+1
) + 2mi(1 − q2); the cost of the second alternative tree is C(q, T (mi)) =

2mi(1 − q2mi ). It is easy to check when 0 ≤ q < 2−
ai+1

2
ai+1 , C(q, T (ai, ai+1 − 1, 1)) is

smaller; and when q ≥ 2−
ai+1

2
ai+1 , C(q, T (mi)) is smaller. Thus, T (ai, ai+1) cannot

be the optimal tree when ai+1 > 2.

Second, we prove ai ≥ 2. Since we have proved that if T (ai, ai+1) is an

optimal tree then ai+1 ≤ 2, it is sufficient to show that neither of T (1, 1) nor T (1, 2)

is optimal. T (2) is always better than T (1, 1), since C(q, T (1, 1)) − C(q, T (2)) =

2(1 − q4) + 4(1 − q2) − 4(1 − q4) = 2(q2 − 1)2 ≥ 0. By drawing the function

behavior of f(q), g(q) and h(q) in Figure 2.1, it is obvious that T (1, 2) can never



17

be an optimal tree, where f(q) = C(q, T (2, 1)) = 4(1 − q8) + 8(1 − q2), g(q) =

C(q, T (1, 2)) = 2(1 − q8) + 8(1 − q4)+ and h(q) = C(q, T (3)) = 8(1 − q8).

� � � �

� � � �
� � � �

�

� �
�

� �
�

	 �
�


 �
�

� �
�

�

�

�

	




�

� �

� �

Figure 2.1: Behavior of functions f(q), g(q) and h(q) for q = 0 · · · 1.

From the above analysis, we know if T (a1, a2, ..., at) is optimal, then ai ≥ 2,

ai+1 ≤ 2 for any i ≤ t − 1. So the proof is completed.

2.1.2 Degree Restrictions of Optimal GKM Trees

In this section, we introduce some important properties of optimal GKM

trees. Based on these properties, Graham et al. [23] gave an algorithm to construct

a (q, n)-optimal tree where 0 < q < 1 and n > 0.

Theorem 2.1.3. Any subtree of the (q, n)-optimal tree is an optimal tree.

Proof. We prove it by contradiction. Suppose one subtree with n1 leaves of a

(q, n)-optimal tree is not optimal. Then we can substitute this nonoptimal subtree

by (q, n1)-optimal tree to get another (q, n) tree with smaller cost than the (q, n)-

optimal tree. This is a contradiction.
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Figure 2.2: Tree transformation one.

Theorem 2.1.4. When 0 ≤ q < 3−1/3, a key star with n leaves is the optimal tree

for any n.

Proof. This Theorem was first given in [23]. Here, we give another version of the

proof using Theorem 2.1.3. We prove it by contradiction.

Assume for 0 ≤ q < 3−1/3, the (q, n)-optimal tree is not a star. There must

be a subtree of (q, n)-optimal tree with the structure shown in Figure 2.2(a), in

which v is an internal node with degree dv ≥ 2, u is a child of v with du ≥ 2 and

all the children of u are leaves. Now, we show that the cost of the (q, n)-optimal

tree can be decreased by connecting u’s children to v directly, as shown in Figure

2.3. The cost of the original tree is

C(T1) = dv(1 − qNv) + du(1 − qNu) + C ′,

where C ′ is the contribution of the cost of other edges except for the solid edges
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shown in Figure 2.2(a); on the other hand, the cost of the new tree is

C(T2) = (dv + du − 1)(1 − qNv) + C ′.

By this transformation, we change the total cost by

∆(C) = C(T1) − C(T2)

= dv(1 − qNv) + du(1 − qNu) − (dv + du − 1)(1 − qNv)

= 1 − duq
Nu + qNv(du − 1)

By assumption, we know du − 1 ≥ 0. Now we want to prove 1 − duq
Nu ≥ 0

when 0 ≤ q < 3−1/3. It is easy to see that for fixed x, the function: f(q) = xqx is

maximized when x = 1/ ln(1/q). Based on the value of q, we consider the following

two cases:

1. If 0 < q < 1/e1/2, which implies 1/ ln(1/q) < 2, the function duq
Nu reaches

the maximum value when du = 2. It is easy to verify that 2q2 < 2/e < 1

when 0 < q < 1/e1/2.

2. If 1/e1/2 ≤ q < 1/31/3, which implies 2 ≤ 1/ ln(1/q) < 3, the function duq
Nu

reaches the maximum value when du = 2 or du = 3. It is easy to verify that

2q2 ≤ 2(1/3)2/3 ≈ 0.97 < 1, and 3q3 < 1 when q < 3−1/3.

From this analysis, we show that the cost of the subtree of the (q, n)-optimal

tree will be decreased by the above transformation. This contradicts our original

assumption. So, when 0 ≤ q < 3−1/3, a star is the optimal tree for any n.



20

From Theorem 2.1.4, we know the n-star is always the unique optimal key

tree when 0 < q < 3−1/3. So, to find the optimal GKM tree, we only need to

consider the case when 3−1/3 ≤ q < 1. In the following two theorems, some impor-

tant properties of the optimal trees are given, the degrees of all the internal nodes

other than the root are bounded, and the number of leaves of all the subtrees are

bounded. Base on these properties, a polynomial dynamic programming algorithm

is given to construct an optimal GKM tree when 3−1/3 ≤ q < 1.

Theorem 2.1.5. In a (q, n)-optimal tree, all internal nodes other than the root,

must have degree 4 or less.

Theorem 2.1.5 is proved by a switching technique. For a tree with an

internal node of degrees more than 4, there always exists a better tree whose

degrees are bounded by 4. For the details of the proof see [23].

Theorem 2.1.6. In a (q, n)-optimal tree, if v is a child of the root, then the number

Nv of leaves underneath v is upper bounded by max{4(log q−1)−1, 1}.

Proof. For a tree T , we associate a value tv = qNv with every node v. Recall the

subtree rooted at v is denoted by Tv. We say Tu is a subtree of v, if u is a child of

v. First, we need to show in a (q, n)-optimal tree, tu ≥ du−1
du

, where u is a child of

a non-root internal node v.

We prove this by contradiction. If tu < du

du−1
, then we can move u up to

become a sibling of v, as shown in Figure 2.1.2. In this transformation, we change
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Figure 2.3: Tree transformation two.

the total cost of the tree by

∆(C) = 1 − qNw + (dv − 1)(1 − qNv−Nu) − dv(1 − qNv)

< 1 + (dv − 1)(1 − qNv−Nu) − dv(1 − qNv−Nutu)

= qNv−Nu(dvtu − (dv − 1))

< 0,

where w is the parent of v and Nv represents the value before the transformation.

This contradicts the cost optimality of the original tree.

If u is not a leaf, we know du ≥ 2 and tu = qNu ≥ 1/2. Thus, Nu <

(log q−1)−1. Because v has at most 4 children by Theorem 2.1.5 and Nv ≥ 1, we

have Nv ≤ max{4(log q−1)−1, 1}.

We will revisit Theorem 2.1.6 in Chapter Three, when analyzing the case

n → ∞. If q is a constant and n → ∞, Theorem 2.1.6 guarantees that the size of

the subtrees of the root is bounded by a constant.
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2.1.3 Algorithm for Constructing Optimal GKM Trees

Based on Theorem 2.1.5 and Theorem 2.1.6, one can give a dynamic pro-

gramming algorithm for constructing optimal GKM trees. First, the algorithm

builds all the optimal subtrees which have outgoing degrees 2, 3 or 4, and which

have at most 4(log q−1)−1 descendant leaves. Second, among all the optimal sub-

trees, the algorithm groups them together, connecting to the root, to make a

(q, n)-optimal tree. The algorithm is shown as follows (Algorithm 1). Here is a

definition used in the algorithm.

Definition 2.1.7. A (q, L, n)-forest is defined as a forest with a lot of L leaves.

The cost of a tree edge e = (u, v) is defined as w(e) = 1 − qNv , where v is u’s

parent. The cost of the forest is the sum of tree costs plus k(1 − qn), where k is

the number of trees in the forest. We define the optimal-(q, L, n)-forest to be a

(q, L, n)-forest with minimum cost.

The time complexity of Algorithm 1 is O(nK+K4), where K = 4(log q−1)−1.

The “while” loop in Algorithm 1 takes time O(K4). For each R(i), 2 ≤ i ≤ 4,

we have to consider all the decompositions: i1 + i2 + i3 + i4 = i, where 0 ≤ i1 ≤

i2 ≤ i3 ≤ i4 ≤ i. There are K3 possible decompositions. The second “for” loop in

Algorithm 1 takes time O(nK).

If q is a constant, the time complexity of the algorithm gets larger as n → ∞

or q → 1. In the next two chapters, we will focus on these two special cases, and

will give two approximation algorithms with better time complexity for the limiting
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Algorithm 1 COT (Constructing Optimal Tree)

Input: n and q

Output: An optimal GKM tree for n and a

K = min{4(log q−1)−1, 1}
if q < 3−1/3 or 2 ≤ n ≤ 4 then

OPT (q, n) ← n(1 − qn)

Return OPT (q, n)

end if

R(1) = 0

for i = 2 to 4 do

R(i) = i ∗ (1 − qi)

end for

i = 5

while i < K do

Compute R(i), cost of the restricted (q, i)-optimal tree.

i = i + 1

end while

Forest(q, n, 0) ← 0

for L = 1 to n do

Forest(q, n, L) ← min(R(j) + 1 − qn + F (q, n, L − j)) over all j, 1 ≤ j ≤
min{K, L}

end for

OPT (q, n) ← Forest(q, n, n)

Return OPT (q, n)
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case when n → ∞ or when q → 1. In the next section, we first relax the GKM

tree problem to a more general mathematical problem which we call the jumping

sequence problem, and give a lower bound on the weight of the (q, n)-optimal tree

by analysis of the behavior of the jumping sequences.

2.2 Lower Bound for Optimal GKM Tree

In this section, we give the definition of the Jumping Sequence Problem.

Then, we will look at the properties of jumping sequences from 1 to n.

2.2.1 The Jumping Sequence Problem

In a tree T with n leaves, L(T ) is the set of the leaves of T . For each leaf

u, let the set of ancestor nodes of u (including u itself) be denoted by Anc(u). To

obtain a lower bound for the optimal tree cost, we first rewrite C(q, T ) as

C(q, T ) =
∑

u

du · (1 − qNu)

=
∑
u∈V

w(u) =
∑
u∈V

Nu · w(u)

Nu

=
∑

u∈L(T )

∑
x∈Anc(u)

w(x)

Nx

=
∑

u∈L(T )

c(q, u)

where we define c(q, u) =
∑

x∈Anc(u)
w(x)
Nx

. In other words, we distribute the weight

w(x) associated with every node x ∈ V evenly among its leaf descendants. So,
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the weight of the tree C(q, T ) is composed of the new weight function of each leaf

c(q, u) over all leaves of T . Therefore, c(q, u) is the cost per leaf for the leaf u.

Let the path from a leaf u to the root r be p0p1 . . . pk−1pk, where p0 = u and

pk = r. Note that c(q, u) =
∑k−1

i=0
1−q

Npi+1

Npi
is uniquely determined by the sequence

of numbers {Np0 , Np1 , . . . , Npk
}, where Np0 = 1 and Npk

= n. We will thus extend

the definition of c to all such sequences (1 = a0, a1, . . . , ak = n), where ai is a real

number. We will analyze the minimum value of c.

Definition 2.2.1 (Jumping Sequence Problem). Let Sn denote any sequence of

(real) numbers (a0, a1, . . . , ak) satisfying 1 = a0 < a1 < . . . < ak = n. We call

Sn an n-progression. Define c(q, Sn) to be c(q, Sn) =
∑k

i=1
1−qai

ai−1
and let F (q, n)

be the minimum of c(q, Sn) over all n-progressions Sn. Given q and n, we call the

problem of finding the best sequences from 1 to n with the minimum cost as the

jumping sequence problem.

It is easy to see in any GKM tree with n leaves, the number of leaves of

the nodes along the path from a leaf u to the root r (1 = Nu, Np1 , . . . , Nr = n)

is a special n-progression. Thus, F (q, n) gives a lower bound for the cost per leaf

value for any leaf in any tree T . So, we get OPT (q, T ) ≥ n · F (q, n).

2.2.2 Properties of Jumping Sequences

In this section, we focus on properties of the jumping sequences. First, we

derive the following monotone property for F (q, n).
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Theorem 2.2.2. For a fixed q, F (q, n) < F (q, n + 1).

Proof. Suppose S∗
n+1 = {1 = a0, a1, . . . , ak−1, ak = n + 1} is an optimal jump

sequence from 1 to n + 1. Because 1−qn+1

ak−1
> 1−qn

ak−1
, we have c(q, S∗

n+1) > c(q, S∗
n),

where S∗
n = (1 = a0, a1, · · · , ak−1, ak = n). Since F (q, n) is defined as the minimum

cost over all n-progression Sn, we have F (q, n) < c(q, S∗
n). Combining these two

facts, we proved that F (q, n) < F (q, n + 1).

Optimal jump sequences have the following natural recursive relationship.

This is helpful as it allows us to reduce the problem of how to make a general jump

to the problem of how to jump from 1.

Theorem 2.2.3. Let 1 < a1 < a2 < · · · < ak−1 < n be an optimal jump sequence

associated with q and n. Then for any 1 ≤ i ≤ k, the sequence 1 < ai+1/ai <

ai+2/ai < · · · < ak−1/ai < n/ai is an optimal jump sequence for q′ = qai and

n′ = n/ai.

Proof. The proof follows by noting that the cost function is optimal, and can be

rewritten as

F (q, n) =
k−1∑
j=0

1 − qaj+1

aj

=
i−1∑
j=0

1 − qaj+1

aj

+
k−1∑
j=i

1 − qaj+1

aj

=
i−1∑
j=0

1 − qaj+1

aj

+
1

ai

k−1∑
j=i

1 − (qai)(aj+1/ai)

(aj/ai)
(2.1)

The second term in (2.1) is the cost function of the jump sequence associated

with 1 < ai+1/ai < ai+2/ai < · · · < ak−1/ai < n/ai for q′ = qai and n′ = n/ai.
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If this were not optimal we could replace it with the optimal cost function thus

lowering F (q, n), but this of course contradicts that we started with an optimal

jump sequence.

Theorem 2.2.4. Let 1 < a1 < a2 < · · · < ak−1 < n be an optimal jump sequence

for a given value of q and n. Then for i = 0, 1, . . . , k − 2

√
2 ≤ ai+1

ai

<
19

4
,

In addition, if n ≤ 2 or q < e−1/e then the optimal thing to do is to jump straight

from 1 to n. On the other hand if n ≥ 5 and q > 0.9 then there will be at least one

intermediate jump between 1 and n.

The proof of Theorem 2.2.4 will be given in the next section. In this section

we will give some consequences following from Theorem 2.2.4. The first conse-

quence of Theorem 2.2.3 and Theorem 2.2.4 is that we can recursively construct

F (q, n) by finding the first jump. In the special case when n = ∞ we get the

following recursive relationship.

Corollary 2.2.5. The function F (q,∞) satisfies the following recursive relation-

ship

F (q,∞) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if q < e−1/e;

min√
2<a<19/4

(
1 − qa +

1

a
F (qa,∞)

)
otherwise.

Another consequence is that the bound on the jumps gives a natural lower

bound for the cost. Namely, F (q, n) is at least as much as the cost of the first

jump. This gives us the following result.
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Corollary 2.2.6. For a fixed 0 < q < 1, let n ≥ √
2 then F (q, n) ≥ 1 − q

√
2.

Perhaps the most important consequence of Theorem 2.2.4 is that it gives

a natural bound on the number of jumps that can be taken. In particular it can

be shown that the number of jumps from 1 to n is Θ
(
min(ln(n),− ln

(
ln(1

q
)
)
)
)
.

So if we fix n and let q→1 then the number of jumps is of order ln(n). While if

we fix q and let n→∞ then the number of jumps is of order − ln
(
ln(1

q
)
)

(which is

still finite, and indeed has a bounded maximum jump value).

Corollary 2.2.7. Let n < ∞ and q < 1, and let k be the number of jumps, (the

number of intermediate terms that are visited in the optimal jump sequence from

1 to n is k − 1). Then

k ≥ min
(
0.64 ln(n) − 0.04,−0.64 ln

(
ln(

1

q
)
) − 0.45

)
,

k ≤ min
(
2.89 ln(ncv),−2.89 ln

(
ln(

1

q
)
) − 0.89

)
.

Proof. If 1 < a1 < a2 < · · · < ak−1 < n is the optimal jump sequence then

it follows from Theorem 2.2.4 that
√

2
k−1 ≤ ak−1 ≤ (4.75)k−1. To find a lower

bound we note that by Theorem 2.2.4 we must continue jumping until either

(4.75)k−1 > n/5 or q(4.75)k−1
< 0.9. Solving for k in the first equation we have

that k >
(
ln(n) − ln(5)

)
/ ln(4.75) > 0.64 ln(n) − 0.04. Solving for k in the second

equation we first have that (4.75)k−1 ln(q) < ln(0.9) or (4.75)k−1 > ln(0.9)/ ln(q),

so that k >
(
ln

(
ln(10/9)

) − ln
(
ln(1

q
)
))

/ ln(4.75) + 1 > −0.64 ln
(
ln(1

q
)
) − 0.45

To find an upper bound we note that by Theorem 2.2.4 it is possible to

continue jumping as long as (
√

2)k−2 < n/2 and q(
√

2)k−2 ≥ e−1/e. Solving for k
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in the first equation we have that k <
(
ln(n) − ln(2)

)
/ ln(

√
2) + 2 < 2.89 ln(n).

Solving for k in the second equation we first have that (
√

2)k−2 ≤ 1/
(
e ln(1

q
)
)
, so

that k ≤ ( − ln
(
ln(1

q
)
) − 1

)
/ ln(

√
2) + 2 < −2.89 ln

(
ln(1

q
)
) − 0.89.

Recalling the definitions of GKM trees and the jump sequences, it is easy to

see that the number of jumps k gives the depth information of the (q, n)-optimal

tree. Based on Corollary 2.2.7 when n → ∞, the depth of a (q, n)-optimal tree is

bounded by O(ln(ln q−1)−1), and the average degree of the node in (q, n)-optimal

tree is also bounded by a constant. So, Corollary 2.2.7 shows that the number of

leaves under any node v is bounded by O(ln(q−1)−1), where v is a child of the root

r, which is consistent with with Theorem 2.1.6.

2.2.3 Proof of Theorem 2.2.4

Here we will give a proof of Theorem 2.2.4. We will break the proof into a

series of claims that will establish the upper and lower bounds. The main technique

is to compare costs of different sequences and show that one is always better. We

will first start with an observation which will be useful for proving the special

cases.

Observation 2.2.8. For a fixed q if the optimal jump sequence of length m beats

the optimal jump sequence of length m + 1, then the optimal jump sequence of

length m beats the optimal jump sequence of length � for each � ≥ m + 1.

This observation follows by noting that for the optimal jump sequence of
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length � the associated cost of the first first m + 1 terms is bounded by the total

cost but is also at least as large as the cost of the optimal jump sequence of length

m + 1. The result then follows.

Claim 2.2.9. If n ≤ 2 or q < e−1/e then the optimal thing to do is to jump from

1 straight to n.

Proof. From Observation 2.2.8 it suffices to show that the cost of jumping from 1

straight to n is better than the cost of jumping from 1 to x to n for all 1 < x < n.

Now suppose that n ≤ 2, then this is equivalent to showing that

1 − qn

1
<

1 − qx

1
+

1 − qn

x
or 0 < 1 − xqx + (x − 1)qn.

We need to show hx(q) = 1 − xqx + (x − 1)qn is positive in the range. Start by

noting that hx(1) = 0, it therefore suffices to show that h′
x(q) < 0 for q < 1 to

establish the result. A calculation shows that

h′
x(q) = −x2qx−1 + n(x − 1)qn−1 = xqn−1

(
n − n

x
− xqx−n

)
.

Now since x − n < 0 then qx−n > 1 and we have

n − n

x
− xqx−n < n − n

x
− x ≤ n − 2

√
n < 0,

where the last step is a simple minimization problem and uses n ≤ 2.

Now suppose that q < e−1/e, then it is easy to check that xqx ≤ −1/e ln q <

1. So 0 < 1 − xqx + (x − 1)qn is easily satisfied.

Note that Claim 2.2.9 is the real number version of Theorem 2.1.4.
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Claim 2.2.10. If n ≥ 5 and q > 0.9 then there will be at least one intermediate

jump between 1 and n.

Proof. It suffices to show jumping from 1 to 2 to n gives a lower cost then jumping

from 1 to n. This will hold if

1 − qn

1
>

1 − q2

1
+

1 − qn

2
or 1 − 2q2 + qn < 0.

Since 1− 2q2 + qn ≤ 1− 2q2 + q5 it suffices to show this holds when n = 5. In this

case we have that f(0.9) = −0.02951 while f(1) = 0 and f ′′(q) = −4+20q3 ≥ 10.58

for 0.9 < q < 1. Combining these establishes the result.

We now turn to establishing the upper and lower bounds. By Theorem

2.2.3 it will suffice to show that the bounds hold for the first jump.

Claim 2.2.11. If an optimal jump sequence starts 1 < a < b < · · · , then b ≥ 2.

Proof. Since we are making an intermediate jump, by Claim 2.2.9 we may assume

that q ≥ e−1/e > 0.69. Now suppose b < 2. Comparing the costs of jumping from

1 to b and from jumping 1 to a to b we have that the first sequence has lower cost

if

1 − qb

1
<

1 − qa

1
+

1 − qb

a
.

[All other terms associated with the cost are equal and drop out.] This is equivalent

to (a − 1)qb − aqa + 1 > 0. Since we assumed b < 2 and a − 1 > 0, it suffices to

show this holds when b = 2, i.e., it suffices to show

f(a) = (a − 1)q2 − aqa + 1 > 0 for 0.69 ≤ q < 1, and 1 < a < 2.
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We have

f ′(a) = q2 − qa − a ln(q) qa and f ′′(a) = − ln(q) qa(2 + a ln(q)).

For the range given for a and q it is easy to check that f ′′(a) > 0. Since we also

have that f(1) = 1−q > 0, it suffices to show that f ′(1) > 0 and the result follows.

Substituting, we have

g(q) = f ′(1) = q2 − q − q ln(q).

Since we know g(1) = 0, to show this is positive we again do a similar trick.

Namely by calculus we have

g′(q) = 2q − 2 − ln(q) and g′′(q) = 2 − 1

q
.

Since g′(1) = 0 and g′′ > 0 in the range of q we are interested in, g is minimal

at q = 1, i.e., g(q) > 0 for 0.69 < q < 1 and so the result follows. In particular,

skipping over a lowers the cost, which is a contradiction.

Claim 2.2.12. If an optimal jump sequence starts 1 < a < b < · · · then a ≥ √
2.

Proof. Again we may assume q ≥ 0.69. Now suppose a <
√

2. we compare the

costs of jumping from 1 to a to b with jumping from 1 to
√

2 to b, and we see that

the second sequence has a lower cost if

1 − q
√

2

1
+

1 − qb

√
2

<
1 − qa

1
+

1 − qb

a
.

[Again all other terms drop out.] It again suffices to show this holds for b = 2, and

so we want to show

f(a) = a
√

2(q
√

2−qa)+(
√

2−a)(1−q2) > 0 for 0.69 ≤ q < 1, and 1 < a <
√

2.
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By calculation we have

f ′(a) =
√

2(q
√

2−qa)−a
√

2 ln(q) qa−1+q2 and f ′′(a) = −
√

2 ln(q) qa(2+a ln(q)).

Again we have that f ′′ > 0 in the range that we are interested in. Since f(
√

2) = 0

it suffices to show that

g(q) = f ′(
√

2) = −2 ln(q)q
√

2 − 1 + q2 < 0.

Since g(1) = 0 to show that this is negative we again compute to get

g′(q) = 2q − 2
√

2 ln(q)q
√

2−1 − 2q
√

2−1 and

g′′(q) = 2 − 2
√

2(
√

2 − 1) ln(q)q
√

2−2 − (4
√

2 − 2)q
√

2−2.

Since g′(1) = 0 and g′′ < 0 (the term with the ln(q) makes an insignificant con-

tribution and the other terms then easily give a negative term) in the range that

we are interested in the result follows, showing we should never take a first jump

below
√

2.

For the upper bound we will break the proof into two cases, namely when

q is “small” and when q is “large”. Of course we already know by Claim 2.2.9

that there are no intermediate jumps for q < e−1/e and so the upper bound holds

trivially in that range.

Claim 2.2.13. If q ≤ 0.88 then an optimal jump sequence makes at most one

intermediate jump between 1 and n, and further such a jump is bounded above by

4.75.
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Proof. By Claim 2.2.9 we can assume q ≥ 0.69. To show that there is at most one

intermediate jump it suffices to show that the optimal cost of two intermediate

jumps will never beat the optimal cost of one intermediate jump. To find the

optimal two intermediate jump sequence and one intermediate jump sequence, we

minimize

q(x, y) =
1 − qx

1
+

1 − qy

x
+

1 − qn

y
and r(z) =

1 − qz

1
+

1 − qn

z

respectively. In particular we need,

qy(x, y) =
− ln(q)qy

x
− 1 − qn

y2
=

− ln(q)

xy2

(
y2qy − x(1 − qn)

− ln(q)

)
= 0,

r′(z) = − ln(q)qz − 1 − qn

z2
=

− ln(q)

z2

(
z2qz − 1 − qn

− ln(q)

)
= 0.

Given that we know q ≥ 0.69 and the shape of the curve t2qt there will be two

possible solutions for y and z, since we are trying to minimize, we will want to find

the first such solution in each case. In particular since x > 1 it follows that we

have y > z.

We then have that the one jump sequence always dominates a two jump

sequence if for any x and y we can find a z so that

1 − qx

1
+

1 − qy

x
+

1 − qn

y
>

1 − qz

1
+

1 − qn

z
,

or rearranging,

(
1 − qx

1
+

1 − qy

x
+

1

y

)
−

(
1 − qz

1
+

1

z

)
> qn

(
1

y
− 1

z

)
︸ ︷︷ ︸

<0

.
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So it is certainly sufficient to show that the left hand side is > 0. By using a

computer algebra system it can be checked that this holds for q ≤ 0.88.

Finally, the optimal jump will be the first solution to z2qz +(1−qn)/ ln(q) =

0 which will certainly occur before the solution to z2qz + 1/ ln(q) = 0. Plotting

(4.75)2q4.75 + 1/ ln(q) in the range 0.69 ≤ q ≤ 0.88, we see that it shows that the

solution occurs before 4.75, i.e., the optimal jump has length bounded above by

4.75.

Claim 2.2.14. If an optimal jump sequence starts 1 < b < · · · and q ≥ 0.88 then

b < 4.75.

Proof. Now suppose that an optimal jump sequence starts by jumping from 1 to

b where b > 4.75. Then we claim that it is better to start by jumping from 1 to 2

to b. This last statement holds if

1 − q2

1
+

1 − qb

2
<

1 − qb

1
.

[Again all other terms drop out.] Rearranging, this will be equivalent to showing

0 < 2q2 − qb − 1. It suffices to show that this last statement holds for b = 4.75,

i.e., it suffices to show

g(q) = 2q2 − q4.75 − 1 > 0 for 0.88 ≤ q < 1.

Note that g(0.88) = 0.00393 . . . > 0 and g(1) = 0. Since g′(q) = 4q − 4.75q3.75 and

g′′(q) = 4 − 17.8125q2.75 we have that the graph is concave down for our range of
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q, the result then follows. This shows that we would never jump more than 4.75

in an optimal jump sequence.

This completes the proof of Theorem 2.2.4.
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Chapter 3

Optimal GKM Trees As n → ∞

3.1 Optimal Trees as n → ∞

In this section, we will analyze the properties of the GKM tree as n → ∞.

Based on the properties, we will give an approximation algorithm to build a “good”

GKM tree.

As the number of leaves n → ∞, the cost of the GKM tree C(q, T ) =

∑
v dv · (1− qNv) → ∞. To compare the cost value of trees as n → ∞, we define a

new cost function called the cost per leaf for tree T .

Definition 3.1.1. Recall the definition of cost per leaf for leaf u,

c(q, u) =
∑

x∈Anc(u)

w(x)

Nx

,

where Nx is the number of leaves under x and Anc(u) is the ancestor set of leaf

u. Here we define the cost per leaf function for tree T as the average cost per leaf

37
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values among all the leaves in T :

CL(T ) =
C(T )

n
.

We also define CL(T1) as the average cost per leaf value among all the leaves of

subtree T1.

Lemma 3.1.2. (Majority Property) If q is fixed, as the number of leaves n → ∞,

in a (q, n)-optimal tree, the root has an increasing number of subtrees; but, these

subtrees only have a constant number of structures. There must be an optimal tree

Topt, in which only one tree structure show up an unbounded number of times, and

we call it the dominant subtree. We call other subtree structures of Topt residual

subtrees.

Proof. This lemma follows from Theorem 2.1.6 in Chapter Two. Because each

subtree of the root has a constant number of leaves. When n → ∞, the root has

an increasing number of subtrees. Due to the definition of cost per leaf, there must

be at least subtrees has the minimum cost per leaf value, so it can replace any

other subtree to make a better tree.

So, to find a “good” GKM tree as n → ∞, the main task is to find the

dominant subtree. Here, we assume, the dominant subtree has a uniform property

(defined below). We assume that the “good” GKM trees have the “uniform prop-

erty”, because, from the definition of the GKM problem, each group member is

identical and each has the same probability p of changing membership, we should

treat them in the same manner.
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Definition 3.1.3 (Uniform Property). A tree has the Uniform Property if all the

nodes at the same level have the same degree. In this case, the tree which has

t-levels can be written in the form T (a1, a2, . . . , at). The nodes at the ith level

has outgoing degree ai. Note, the Uniform Property is a general relaxation of the

degree restrictions mentioned in [22].

Lemma 3.1.4. Denote Td as the dominant tree of the optimal GKM tree Topt as

n → ∞. If Td has the Uniform Property and can be written as Td = T (a1, a2, . . . , at),

then Td can be expressed in the concatenating form: Td = T (S4s; S3r; S2), where

S4s = {4, 4, ...4︸ ︷︷ ︸
s

}; S3r = {3, 3, ...3︸ ︷︷ ︸
r

}; S2 = {2} or ∅, where s ≥ 0 and t ≥ 0.

Proof. Recalling Lemma 2.1.1 in Chapter Two, if a tree T (a1, a2, ..., at) is an op-

timal tree for q and m =
t∑

i=1

ai, then T (ai, ai+1) is optimal for q1 = q−(
�t

k=i+2 ak).

Due to Theorem 2.1.5 in Chapter Two, if Td is an optimal tree, ai must be 2, 3, or

4. To prove Lemma 3.1.4, we show that, when q ≥ 3−1/3, T (2, 2), T (2, 3), T (2, 4)

or T (3, 4) cannot be optimal tree by finding a better alternative tree.

Case A) T (2, 2) cannot be an optimal tree when n = 4. In this case C1 =

C(q, T (2, 2)) = 2(1 − q4) + 4(1 − q2); while the alternate tree T (4) has cost C2 =

C(q, T (4)) = 4(1 − q4). It is easy to check ∆(C) = C1 − C2 = 2(1 − q2)2 ≥ 0.

Case B) T (2, 3) cannot be an optimal tree when n = 6. In this case C1 =

C(q, T (2, 3)) = 2(1 − q6) + 6(1 − q3); while the two alternate trees we consider

are T (6) and T (3, 2). These have cost C2 = C(q, T (6)) = 6(1 − q6) and C3 =

C(q, T (3, 2)) = 3(1 − q6) + 8(1 − q2). We can see q < 3
√

1/2, ∆(C1) = C1 − C2 =
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(2q3 − 1)(q3 − 1) ≥ 0; when q ≥ 3
√

1/2, ∆(C2) = C1 − C3 =≥ 0.

Case C) T (2, 4) cannot be an optimal tree when n = 8. C1 = C(q, T (2, 4)) =

2(1−q8)+8(1−q4); while the two alternate trees we consider are T (8) and T (4, 2).

These have costC2 = C(q, T (8)) = 8(1 − q8) and C3 = C(q, T (4, 2)) = 4(1 − q8) +

8(1− q2). We can see for q < 4
√

1/3, ∆(C1) = C1 −C2 = (3q4 − 1)(q2 − 1) ≥ 0; on

the other hand, when q ≥ 4
√

1/3, ∆(C2) = C1 − C3 = 2(q2 − 1)2(3 − q2) ≥ 0.

Case D) T (3, 4) cannot be an optimal tree when n = 12. In this case,

C1 = C(q, T (3, 4)) = 3(1 − q12) + 12(1 − q4); while the two alternate trees we

consider are T (12) and T (4, 3). These have cost C2 = C(q, T (12)) = 12(1 − q12)

and C3 = C(q, T (4, 3)) = 4(1 − q12) + 12(1 − q3). We can see q < 3
√

1/3, ∆(C1) =

C1 − C2 = 9q12 − 12q3 + 3 ≥ 0; when q ≥ 3
√

1/3, ∆(C2) = C1 − C3 = q12 − 12q4 +

12q3 − 1 ≥ 0.

Now, we simplify the dominant tree in the form Td(4, 4, . . . , 4︸ ︷︷ ︸
s

, 3, 3, . . . , 3︸ ︷︷ ︸
r

)

as Td(4
s3r) and Td(4, 4, . . . , 4︸ ︷︷ ︸

s

, 3, 3, . . . , 3︸ ︷︷ ︸
r

, 2) as Td(4
s3r2); and simplify the cost per

leaf function of the dominant tree CL(Td(4
s3r)) as CL(s, r).

Theorem 3.1.5. If Td is an optimal dominant tree and can be written in the form

Td(4
s3r), then s = 1.

Proof. We prove Lemma 3.1.5 by analyzing the function behavior of CL(s, r).

From the definition, we know CL(s, r) = C(Td(4
s3r))/(4s3r).

First, we consider the dominant tree in the three special forms Td(4
03r),
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Td(4
03r+1) and Td(4

13r−1). Their cost per leaf values are:

CL(0, r) =(1 − q3) +
1

3
(1 − q9) + . . . +

1

3r−1
(1 − q3r

) +
1

3r
(1 − qn)

CL(0, r + 1) =(1 − q3) +
1

3
(1 − q9) + . . . +

1

3r
(1 − q3r+1

) +
1

3r+1
(1 − qn)

CL(1, r − 1) =(1 − q3) +
1

3
(1 − q9) + . . . +

1

3r−1
(1 − q3r−14) +

1

3r−14
(1 − qn)

As n → ∞, we have qn → 0. We now compare the above three cost per leaf

functions.

Case A) CL(0, r) ≤ CL(0, r + 1) if and only if Qr ≤ α
1
3 , where Qr = q3r−1

and α = (1
3
)

1
3 ≈ 0.6934.

Case B) CL(0, r) ≤ CL(1, r − 1) if and only if Q4
r − Q3

r − 1
12

≤ 0. The

function f(x) = x4−x3− 1
12

has two positive solutions β ≈ 0.8760 and γ ≈ 0.5586.

Since we only need to consider the case q ≥ (1
3
)

1
3 , which implies Qr ≥ (1

3
)

1
3 , so we

can ignore γ. We have CL(0, r) ≤ CL(1, r − 1) if and only if Qr ≤ β.

Case C) CL(1, r− 1) ≤ CL(0, r + 1) if and only if 1
3
Q9

r −Q4
r + Q3

r − 7
36

≤ 0.

The function f(x) = 1
3
x9 + x4 − x3 − 7

36
has only one positive solution δ ≈ 0.8902

in the interval [0, 1]. So, CL(1, r − 1) ≤ CL(0, r + 1) if and only if Qr ≤ δ.

Comparing the values of α, β and δ, we get

α < β < α
1
3 < δ < β

1
3 < α

1
9 < δ

1
3 < β

1
9 < α

1
27 < δ

1
9 < · · ·

If we only consider the trees in the form Td(4
03i) and Td(4

13i−1) as our

candidate best trees, where i ≥ 1. As q increases from (1
3
)

1
3 to 1, Td(4

031), Td(4
130),

Td(4
032), Td(4

131) et al. turn out to be the best trees sequentially:

(i) When α ≤ q < β, Td(4
031) is the best tree.
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(ii) When (β)( 1
3
)i ≤ q < (δ)( 1

3
)i
, Td(4

13i) is the best tree, where i ≥ 0.

(iii) When (δ)( 1
3
)i ≤ q < (β)( 1

3
)i+1

, Td(4
03i+2) is the best tree, where i ≥ 0.

Second, we will show other trees in the form T (4s3r) where s > 1 cannot

be the optimal dominant tree. We compare CL(s, r) and CL(s + 1, r) for a fixed

r.

CL(s, r) =(1 − q3) +
1

3
(1 − q9) + · · · +

1

3r−1
(1 − q3r

) +
1

3r
(1 − q3r4) + · · ·

+
1

3r4s−1
(1 − q3r4s

) +
1

3r4s
(1 − qn)

CL(s + 1, r) =(1 − q3) +
1

3
(1 − q9) + · · · +

1

3r−1
(1 − q3r

) +
1

3r
(1 − q3r4) + · · ·

+
1

3r4s
(1 − q3r4s+1

) +
1

3r4s+1
(1 − qn)

As n → ∞, we have CL(s, r) ≤ CL(s + 1, r) if and only if q3r4s+1 ≤ 1
4
.

Now, we can see for a fixed r, as q increases from 0 to 1, among all the dominant

trees in the form Td(4
x3r), Td(4

03r) is the first best dominant tree structure, then

Td(4
13r) becomes best at the point q = (1

4
)

1
3r41 , then Td(4

23r) becomes the best at

point q = (1
4
)

1
3r42 , and so on. For a fixed r, Td(4

s+13r) is better than Td(4
s3r) if

and only if q > ε
1

4s3r , where ε = (1
4
)

1
4 .

Now, we will prove the trees in the form T (4s3r) where s > 1 cannot be the

optimal dominant tree by induction.

We consider the three intervals α < q < β, β ≤ q < δ and δ ≤ q < β
1
3 as

the base cases. In the interval α < q < β, from (i), we know Td(4
031) is the best

among the trees in the form Td(4
03r) and Td(4

13r). From the above analysis, we

also get q4i3r
(i ≥ 1) can only beat Td(4

031) as q ≥ ε
1
3 . However, ε

1
3 ≈ 0.8909 > β.
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So, Td(4
031) remains the best in this interval. Similarly, it is easy to check the

statement holds for the other two intervals.

As for the interval q ∈ [β( 1
3
)i
, δ( 1

3
)i
), where i ≥ 1, we first assume the

statement holds for i = k. When i = k + 1, we know Td(4
13k+1) is the best among

the trees Td(4
03r) and Td(4

13r) in the interval q ∈ [β( 1
3
)k+1

, δ( 1
3
)k+1

). Td(4
s3k+1) (s ≥

2) can only beat Td(4
13k+1) when q ≥ ε

1

413k+1 . However, (ε
1
4 )

1

3k+1 ≈ 0.917
1

3k+1 >

δ
1

3k+1 . From the above analysis, we see that for any s and t ≥ k + 1, Td(4
s3t)

cannot beat Td(4
13k+1) in this interval. Now, we want to show the trees in the form

T (4s3t), where n < k + 1, cannot be a better tree. We prove it by contradiction.

If there is a tree T (4m3t) with a better cost in the interval, we have

CL(s, t) = 1 − q3 +
1

3
(1 − q32

) + . . . +
1

3t
(1 − q3t4) + . . . +

1

3t4s
(1 − qn)

CL(1, k + 1) = 1 − q3 +
1

3
(1 − q32

) + . . . +
1

3k+1
(1 − q3k+14) +

1

3k+14
(1 − qn)

(3.1)

We set q0 = q3, and q0 is in the interval [β( 1
3
)k

, δ( 1
3
)k

]. We can rewrite the

above two equations as a function of q0:

CL(s, t) = 1 − q0 +
1

3
CL(s, t − 1; q0)

CL(1, k + 1) = 1 − q0 +
1

3
CL(1, k; q0).

(3.2)

Let CL(s, t − 1; q0) stand for the value of CL(s, t − 1) when q = q0. From

the assumption CL(s, t) < CL(1, k + 1), we get CL(s, t − 1) < CL(1, k) when

q = q0. This is a contradiction, since we assumed that CL(1, k) is the best tree in

the interval [β( 1
3
)k

, δ( 1
3
)k

).

A similar induction proof works for the case q ∈ [δ
1

3i , β( 1
3
)i+1

], when i ≥ 1.
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The proof is completed.

Table 3.1: The best dominant tree structures.

q (0, α) [α, β) [β, δ) [δ, β1/3) [β1/3, δ1/3) [δ1/3, β1/32
) . . .

Td Td(1) Td(3) Td(4) Td(3
2) Td(4 · 3) Td(3

3) . . .

Theorem 3.1.6. As n → ∞, if Td = Td(4
s3r) is an optimal dominant tree, then

we can find the best Td structure by looking up Table 3.1 based on the value of q:

(i) When α ≤ q < β, Td(4
031) is the best tree.

(ii) When (β)( 1
3
)i ≤ q < (δ)( 1

3
)i
, Td(4

13i) is the best tree, where i ≥ 0.

(iii) When (δ)( 1
3
)i ≤ q < (β)( 1

3
)i+1

, Td(4
03i+2) is the best tree, where i ≥ 0.

Here, α, β and δ are the same values as defined in the proof of Theorem

3.1.5.

Proof. This is a direct result from the proof of Theorem 3.1.5.

Corollary 3.1.7. If Td is an optimal dominant tree, then it can expressed in the

form Td(a0, 3, . . . , 3, at), where a0 = 4 or ∅; at = 2 or ∅.

Proof. This result follows from Lemma 3.1.4 and Theorem 3.1.5.
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Algorithm 2 CBDT (Constructing Best Dominant Trees with Uniform Property)

Input: q

Output: The Best Dominant Tree having the Uniform Property for q

q′ = q2

Find the dominant tree structure Td1(4
s13r1) by looking up Table 3.1 using q′

Find the dominant tree structure Td2(4
s23r2) by looking up Table 3.1 using q

if CL(q′, Td1) < CL(q, Td2) then

Return T ′
d1(4

s13r12)

else

Return Td2(4
s23r2)

end if

3.2 Approximation Algorithm to Construct GKM

Trees

Based on Corollary 3.1.7, we give a constant time algorithm to find the best

dominant tree having the Uniform Property.

Due to Theorem 2.1.4 in Chapter Two, we know that a star is the optimal

tree when q ∈ (0, (1
3
)−

1
3 ). Here, for a given value q ∈ [(1

3
)−

1
3 , 1) and a given number

of leaves n, we show how to construct an approximate tree GLR(q, n). And we

will show the approximate tree performs very well by experimental results.

The idea of the construction is: first, find the dominant tree Td by algorithm

3 for q; then build a GKM tree using the dominant tree as often as possible and
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one “leftover” tree. If the number of leaves (size) of the dominant tree Td returned

by Algorithm 3 is bigger than n, we use the the largest feasible dominant tree in

Table 3.1 with size less than n.

Algorithm 3 GLR (Constructing an Approximate GKM Tree)

Input: q and n

Output: An approximate GKM Tree

Call Algorithm 3 to find the best dominant tree Td

The root of GLR(q, n) contains n1 + 1 subtrees: n1 Td’s and one GLR(q, L1)

where n1 = n DIV |Td| and L1 = n MOD |Td|

Return GLR(q, n)

Take n = 29 and q = 0.9 as an example. By looking up the Table 3.1,

we find the best dominant tree Td(3
2) with 9 leaves. The root of GLR(0.9, 29)

has �29/9 + 1 = 4 subtrees, three of which are Td(3
2) trees and one of which is a

“leftover” subtree GLR(0.9, 2) which can be constructed recursively. The structure

of GLR(0.9,29) is shown below.

Figure 3.1: The approximate tree generated by GLR when n = 29, q = 0.9.

We can run simulations on the performance of GLR for various values of
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q and n. Define Ratio(q, n) = GLR(q, n)/OPT(q, n). Figure 3.2 and Figure 3.3

show Ratio(q, n) as a function of n for q = 0.9 and q = 0.999 respectively. Within

the simulation range, we see that for a fixed value q, the Ratio curve oscillates,

but tends to 0 as n gets larger. For q = 0.1 the maximum ratio is below 1.02,

when n is in the range [50, 250]. Notice that each curve has some dips and is not

monotonically decreasing with q.

Figure 3.2: Simulation results on Ratio(q, n) for q = 0.9
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Figure 3.3: Simulation results on Ratio(q, n) for q = 0.999.



Chapter 4

Optimal GKM Trees as q → 1

In this chapter, we will discuss how to build a “good” GKM tree for the

limiting case q → 1. Algorithm 1 takes O(nK + K4) time to build an optimal

GKM tree. However, K → ∞ as q → 1, since K = 4(log q−1)−1, so the time

complexity of Algorithm 1 is unbounded as q → 1.

In this chapter, we will first introduce the properties of optimal GKM trees

and the algorithm to construct an optimal GKM tree given by Graham et al. [23].

Later, we will modify the definition of the Jump Sequence Problem for the case

q → 1, and analyze the properties of the jumping sequences, which will give a

lower bound of the optimal GKM tree. We will conclude this chapter by giving a

linear time 2.01(1 + 1
�log3 n�)-approximation algorithm.

49
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4.1 Related Work

We first define a new cost function for GKM trees for the limiting case

q → 1. Recall that, given a fixed q and n, the cost of a GKM Tree T is defined

as C(q, T ) =
∑
v∈V

(1 − qN(v)) =
∑
e∈E

(1 − qL(e)), where N(v) is the number of leaves

under node v and L(e) is the number of leaves underneath the edge e. When

q = 1, the cost value of any tree T is 0. Since the slope of C(q, T ), C ′(q, T )|q=1 =

−
∑
e∈E

L(e), is negative, we will say the optimal GKM tree as q → 1 is the tree which

has the smallest value of
∑
e∈E

L(e). However, there may be some ties of the function

values among the tree structure. That is, two or more tree structures might give

the same value of
∑
e∈E

L(e), so second order derivatives have to be considered. It is

shown that we can always find an optimal GKM tree as q → 1 by comparing the

second order derivatives.

Definition 4.1.1. Denote the function −C ′
q(q, T )|q=1 as λT ,

λT =
∑
e∈E

L(e).

Let λ∗(n) be the smallest possible value of λT over all the trees having n leaves.

The basic recurrence that λ∗(n) satisfies is:

λ∗(n) = min
2≤m≤n

{m · n +
∑

λ∗(ik)}

where the sum is taken over all ik ≥ 1 such that i1+· · ·+im = n and m denotes the

degree of the root r. Based on this recurrence, Graham et al. [23] first determined



51

the exact value of λ∗(n) for all values of n by comparing the value of λ∗(n) for

different m.

Figure 4.1: The optimal GKM trees for n = 2, . . . , 9.

We first the optimal GKM tree for n = 2, . . . , 9 (Figure 4.1), and calculate

the corresponding values of λ∗(n) by hand:

Table 4.1: λ∗(n) values for n = 2, . . . , 9.

n 1 2 3 4 5 6 7 8 9
λ∗(n) 0 4 9 16 23 30 38 46 54

For integers t ≥ 0, define the intervals It = {3t, 3t + 1, . . . , 2 · 3t} and

Jt = {2 · 3t, 2 · 3t + 1, . . . , 3t+1}. It is easy to see that λ∗(n) is linear on I0, I1, J0

and J1.

Theorem 4.1.2. Extend λ∗(n) to a real function λ∗(x) for all x ≥ 1 by linear

interpolation (See Figure 4.2). Then λ∗(x) satisfies

λ∗(x) =

⎧⎪⎪⎨
⎪⎪⎩

(3t + 4)x − 4 · 3t if 3t ≤ x ≤ 2 · 3t,

(3t + 5)x − 6 · 3t if 2 · 3t ≤ x ≤ 3t+1.

As mentioned earlier, if for any number of leaves n, there is a unique value

m∗ such that only the tree structures with root degree m∗ can reach the minimum
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Figure 4.2: Graph of λ∗(n).

cost λ∗(n). We can construct the optimal GKM trees recursively by only consider-

ing the trees with root degree m∗. However, one can show, in the following cases,

the trees having the minimum cost value λ∗(n) can have different root degrees.

Case A) When 4 · 3t−1 < n ≤ 6 · 3t−1, the root degree m could be 2 or 3 as

the tree structure reaches the minimum cost λ∗(n).

Case B) When n = 4 · 3t−1, the root degree m could be 2, 3 or 4 as the tree

structure reaches the minimum cost λ∗(n).

Let T ∗(n) be the optimal tree structure with n leaves as q → 1. Although

the slope value λ∗(n) of C(q, T ∗) is determined by n, the root degree of the optimal

GKM tree cannot be decided. For the above two “ambiguous” cases, the second

derivative of C(q, T ) has to be considered.

Definition 4.1.3. Denote the function C ′′
q (q, T )|q=1 as µT :

µT = 2
∑
e∈E

(
L(e)

2

)
.
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Let µ∗(n) denote the largest possible value of this sum over all trees T (n) for which

λT (n) = λ∗(n).

By comparing the values of µT (n) in Case A) and Case B), it can be shown

the root degree of T ∗(n) is always 3 except for n = 4 · 3t and n = 2.

Theorem 4.1.4. As q → 1, the (q, n)-optimal tree T ∗(n) always has root degree 3

except for n = 4 · 3t, in which case T ∗(n) has root 4, and for n = 2, when T ∗(2)

has root degree 2.

4.2 Jump Sequences as q → 1

In this section, we will consider the relaxed version of the GKM tree problem

introduced in Chapter Two, and will provide one lower bound and one upper bound

for the jumping sequences from 1 to n. Based on the result given in this section,

we will give a linear time approximation algorithm to build an approximate GKM

tree as q → 1.

As q → 1, we know F (q, n) → 0, i.e., all the jumps have cost 0. So for this

limiting case we should consider a modified cost function. To determine which cost

function, we start by recalling q = 1− p and note that 1− qx = px + O(p2) by the

Binomial Theorem. Thus, F (q, n) proposed in Chapter Two becomes

F (q, n; a1a2, . . . , ak−1) =
k−1∑
i=0

1 − qai+1

ai

= p

k−1∑
i=0

ai+1

ai

+ O(p2).
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The obvious candidate is to use the first order term as our new cost function, i.e.,

the cost of a jump from a to b will be given by b/a. Note this is consistent with

the cost function of trees as q → 1. Given a sequence of jumps, the total cost of

moving from 1 to n will be given by

G(n; a1, a2, . . . , ak−1) =
a1

1
+

a2

a1

+ · · · + ak−1

ak−2

+
n

ak−1

=
k−1∑
i=0

ai+1

ai

,

and we will denote the minimal cost of jumping from 1 to n by

G(n) = min
k

min
1<a1<a2<···<ak−1<an

G(n; a1, a2, . . . , ak−1).

In the next two subsections, we will analyze properties of these jumping sequences

as q → 1.

4.2.1 Jumping along the Reals

We begin by noting that by the arithmetic-geometric mean inequality, for

any jump sequence we have

G(n; a1, a2, . . . , ak−1) ≥ k k

√
a1

1

a2

a1

· · · ak−1

ak−2

n

ak−1

= k k
√

n,

with equality holding if and only if a1/1 = a2/a1 = a3/a2 = · · · . Note that for

any n > 1 the function f(x) = xn1/x is concave up for x > 0 and so has a unique

minimum which occurs at f(ln n) = e ln n.
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Lemma 4.2.1. When jumping along the reals we have that

G(n) = min
{�ln nn1/�ln n�, �ln n�n1/�ln n	} = e ln n + O

( 1

ln n

)
.

While the optimal jumping patterns are formed by geometric sequences with ratio

e1+o(1).

Proof. The form of G(n) and the formation of a geometric series with a ratio of

either n1/�ln n� = eln n/�ln n� = e1+o(1) or n1/�ln n	 = eln n/�ln n	 = e1+o(1) follows from

the statements preceding the proposition. It remains to verify the asymptotic

behavior. So suppose that �ln n = ln n − α then we have

�ln nn1/�ln n� − e ln n =
(
ln n − α

)
eln n/(ln n−α) − e ln n

= e ln n
(
eα/(ln n−α) − 1

) − αe eα/(ln n−α)

= e ln n

(
α

ln n − α
+O

( 1

ln n2

))−αe+O
( 1

ln n

)
= O

( 1

ln n

)
.

Now suppose that �ln n� = ln n + α then we have

�ln n�n1/�ln n	 − e ln n =
(
ln n + α

)
eln n/(ln n+α) − e ln n

= e ln n
(
e−α/(ln n+α) − 1

)
+ αe e−α/(ln n+α)

= e ln n

( −α

ln n + α
+O

( 1

ln n2

))
+αe−O

( 1

ln n

)
= O

( 1

ln n

)
.

The proof is completed.

4.2.2 Jumping along the Integers

We will let GZ(n) denote the minimal cost for the case of when we restrict

jumps to the integers. Clearly, GZ(n) ≥ G(n) = e ln n+O(1/ ln n). However, with
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the restriction of jumping only on the integers we should expect the cost to go up.

In this section will look at the asymptotic behavior of GZ(n). First though we will

introduce an important integer sequence, and some of its properties, that will play

a role in the behavior of the function.

Lemma 4.2.2. Let a(n) be the integer sequence such that a(0) = 1 and a(n) =

�e·a(n − 1) + 0.5 for n ≥ 1 (i.e., to get the next term multiply by e and round).

Then the following holds:

• a(n) = �γen + 0.5 for γ = 1.098002099366832827899136351 . . .

• lim
n→∞

( n∑
i=1

a(i)

a(i − 1)
− e ln

(
a(n)

))
= α = 0.014357537447198206167909857 . . .

This sequence, which starts {1, 3, 8, 22, 60, 163, 443, 1204, 3273, 8897, . . .},

is A024581 in the OEIS [24]. Essentially what it does is try to best approxi-

mate jump lengths of e where after every jump forward we reset (i.e., as com-

pared to taking the nearest integer to powers of e which would be the sequence

{1, 3, 7, 20, 55, 148, 403, 1097 . . .}).

Proof. For the first part we let b(n) = a(n)/en. We first show that this sequence

converges. For n ≥ 1,

|b(n) − b(n − 1)| =

∣∣∣∣a(n)

en
− a(n − 1)

en−1

∣∣∣∣
=

∣∣∣∣�e·a(n − 1) + 0.5
en

− e·a(n − 1)

en

∣∣∣∣
= e−n

∣∣�e·a(n − 1) + 0.5 − e·a(n − 1)
∣∣ ≤ 1

2
e−n,



57

where the last step follows from noting that no number is more than 1/2 away from

the nearest integer (this is what the inside of the absolute value is expressing). This

implies the sequence is Cauchy and so must converge. Let γ = limn→∞ b(n). Then

note that for any n

∣∣b(n) − γ
∣∣ ≤ ∞∑

k=n+1

∣∣b(k) − b(k − 1)
∣∣ ≤ ∞∑

k=n+1

1

2
e−k =

1
2
e−(n+1)

1 − 1
e

<
0.3

en
.

Multiplying both sides by en, this implies that
∣∣a(n) − γen

∣∣ < 0.3. Since a(n) is

an integer and γen is less than 0.3 away it must be that a(n) is the nearest integer

to γen. From this it can be shown that 1.05en < a(n) < 1.15en.

For the second part let

c(n) =
n∑

i=1

a(i)

a(i − 1)
− e ln

(
a(n)

)
,

and consider the following

c(n) − c(n − 1) =
a(n)

a(n − 1)
− e ln

(
a(n)

a(n − 1)

)

≤ e·a(n − 1) + 0.5

a(n − 1)
− e ln

(
e·a(n − 1) − 0.5

a(n − 1)

)

=
1

2a(n − 1)
− e ln

(
1 − 1

2e·a(n − 1)

)

≤ 1

2a(n − 1)
+

1

a(n − 1)
≤ 3e

2en
.

(Here we used the fact that for 0 ≤ x ≤ 1/2e that − ln(1−x) ≤ 2x.) On the other

hand it is easy to see that c(n) is increasing, i.e., since x−e ln x has a minimum value

of 0 at x = e, so c(n)−c(n−1) ≥ 0. Combining we have
∣∣c(n)−c(n−1)| ≤ 3e/2en

from which the convergence of c(n) easily follows. This shows that c(n) converges
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to α with an error of order e−n, a little more careful analysis can show that the

error is at most 0.05e−2n.

The numerical approximation for γ and α can be found by the computing

the corresponding terms for sufficiently large n.

Theorem 4.2.3. When jumping along the integers we have that

GZ(n) ≤ e ln n + α + O
( 1

ln n

)
,

where α is the constant introduced in Lemma 4.2.2.

Proof. We construct an approximate optimal sequence for n by letting � = �ln ln n

and then take the first � terms from the integer sequence from Lemma 4.2.2

to form the initial part of the sequence, a(1), a(2), . . . , a(�). From the proof

of Lemma 4.2.2 we have that 0.38 ln n ≤ a(�) ≤ 1.15 ln n, i.e., we have that

a(�) = θ(ln n). Now starting at a(�) find the optimal jump sequence jumping

to n along the real numbers and then round each term to the nearest integer, to

form the rest of the sequence. We denote this remaining part of the sequence by

b(0) = a(�), b(1), b(2), . . . , b(k), b(k + 1) = n.

We now need to bound the cost of the jump sequence a(1), . . ., a(�), b(1),

. . ., b(k).

From Lemma 4.2.2, the first part of the jump sequence has cost bounded

by e ln(a(�)) + α − o(1). It is also easy to adapt the proof of Proposition 4.2.1

to see that the cost of the optimal jump sequence along the reals from a(�) to N
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is e ln
(
n/a(�)

)
+ O(1/ ln n). It remains to show that the error from rounding the

terms to the nearest integer is of order O(1/ ln n).

By Proposition 4.2.1 we know that the sequence b(i) = �a(�)βi +0.5 where

β ≈ e. A simple calculation shows that

∣∣∣∣β − b(i + 1)

b(i)

∣∣∣∣ ≤ β + 1

2b(i)
≤ β + 1

a(�)βi
.

From this it follows that the error we get from rounding to the nearest

integer is bounded by

k∑
i=0

∣∣∣∣β − b(i + 1)

b(i)

∣∣∣∣ ≤
∞∑
i=0

β + 1

a(�)βi
=

β(β + 1)

a(�)(β − 1)
= O

( 1

ln n

)
.

4.3 An Approximation Algorithm to Build GKM

Trees

In this section, we design a approximation algorithm, namely the LR algo-

rithm, to build GKM trees. LR maintains an almost balanced ternary tree (i.e.,

the depth of any two leaves differ by at most 1) in which at most one internal node

has degree two. Moreover, LR adds new leaves incrementally in a left to right

order. Figure 4.3 shows the tree we get by using LR for n = 2, . . . , 9. We can also

recursively build a key tree using LR in the following way. For a tree with n ≥ 3

leaves, the number of leaves in the root’s three subtrees is decided by the table
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Figure 4.3: Trees generated by LR for n = 2, . . . , 9.

below; while for a tree with 2 leaves, the tree structure is a root with two children

(a star).

Table 4.2: LR Algorithm.

Leaves (Left) Leaves(Middle) Leaves (Right)
3t ≤ n < 5 · 3t−1 n − 2 · 3t−1 3t−1 3t−1

5 · 3t−1 ≤ n < 7 · 3t−1 3t n − 4 · 3t−1 3t−1

7 · 3t−1 ≤ n < 3t+1 3t 3t n − 2 · 3t

We denote the tree with n leaves constructed by LR as Tn. Note that the

structure of the ternary tree can be decided in log n time because every time we go

down the tree, there is at most one subtree whose number of leaves is not a power

of 3 and needs further calculation.

Let LR(q, n) denote the cost of the ternary tree constructed by LR for

given n and q. To obtain an upper bound for LR(q, n), we first prove the following

lemmas.

Lemma 4.3.1. The inequality LR(q, n) < LR(q, n + 1) holds for all n > 0 and

0 < q < 1.

Proof. We view C(Tn) as the cost of Tn for given q, which is defined in Chapter
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One and compare the cost of the corresponding nodes w(u) and w(u′) in Tn and

Tn+1 respectively. Assuming w(u) = du · (1− qNu), we have w(u′) = w(u), w(u′) =

du · (1 − qNu+1) or w(u′) = (du + 1) · (1 − qNu+1). Therefore, for any node u of

T and its corresponding node u′ of Tn+1, we have w(u) ≤ w(u′). This proves the

lemma.

Lemma 4.3.2. For any integer t > 0 and 0 < q < 1, we have 1−q3t

3t−1 > 1−q3t+1

3t .

Proof. Note that 3
∑3t

i=1 qi−1 > (1+q3t
+q2·3t

)
∑3t

i=1 qi−1 =
∑3t+1

i=1 qi−1. The lemma

is proved by multiplying 1−q
3t on both sides.

Lemma 4.3.3. For any integer t > 0 and 0 < q < 1, we have

LR(q, 3t+1) < 3(1 +
1

t
)LR(q, 3t).

Proof. From the description of the LR algorithm, we know LR is a complete

ternary tree when n = 3t and n = 3t+1.

LR(q, 3t+1) = 3t+1(1 − q3 +
1

3
(1 − q32

) + · · · + 1

3t−1
(1 − q3t

) +
1

3t
(1 − q3t+1))

< 3t+1(1 +
1

t
)(1 − q3 +

1

3
(1 − q32

) + · · · + 1

3t−1
(1 − q3t

))

= 3(1 +
1

t
)LR(q, 3t).

The above inequality holds, due to Lemma 4.3.2.

Lemma 4.3.4. When n = 3t, GZ(n) ≥ 0.996 · GZ(Sn). Let Sn be the jumping

sequence (1, 3, 32, . . . , 3t).

Proof. Recall that GZ(n) denotes the minimal cost for the case of when we restrict

jumps to the integers, so we have GZ(n) ≥ G(n) ≥ k k
√

n. For any n > 1 the
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function f(x) = xn1/x is concave up for x > 0 and so has a unique minimum which

occurs at f(ln n) = e ln n. So, when n = 3t, we have GZ(n) ≥ et ln 3. On the other

hand, we know that GZ(Sn) = 3t. Hence, we have

GZ(n)

GZ(Sn)
=

et ln 3

3t
≥ 0.996.

The following Theorem will give a lower bound of the cost of the (q, n)-

optimal tree as q → 1.

Theorem 4.3.5. For 3t ≤ n < 3t+1, we have OPT (q, n) ≥ 0.996 · n ·G(S3t) when

q → 1.

Proof. This is a direct consequence of Lemma 4.3.1, Lemma 4.3.4.

Now we are ready to prove the approximation ratio of the LR algorithm.

Theorem 4.3.6. When q → 0, we have LR(q, n) < 3.015(1 + 1
�log3 n�)OPT(q, n).

Proof. Suppose 3t ≤ n < 3t+1. We claim the following

LR(q, n) < LR(q, 3t+1)

< 3(1 +
1

t
)LR(q, 3t)

= 3(1 +
1

t
)3t · GZ(S3t)

≤ 3.015(1 +
1

t
)OPT(q, n).

The first inequality is implied by Lemma 4.3.1 and the second one by Lemma

4.3.3. The last inequality holds due to Theorem 4.3.5.
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In the above discussion, we use the smallest balanced ternary tree with no

less than n leaves as an upper bound for LR(q, n). By adding a small number of

leaves instead of filling the whole level, we can obtain a better approximation ratio

which is shown below.

We divide the integers in the range (3t, 3t+1] into three consecutive subsets

of equal size H = 3t+1−3t

3
as follows:

P1 = (3t, 3t + H], P2 = (3t + H, 3t + 2H], P3 = (3t + 2H, 3t+1].

For any n ∈ Pi, we can use LR(q, n′) where n′ = max Pi to upper bound the

value of LR(q, n) by Lemma 4.3.1. Let ∆t = LR(q, 3t) − LR(q, 3t−1) and define

a = 1 − q3t+1
. Notice that

LR(q, 3t+1) = 3a + 3 · LR(q, 3t) = 3a + 3∆t + 3 · LR(q, 3t−1).

It’s not hard to verify the following inequalities based on the definition of the tree

cost:

LR(q, 7 · 3t−1) < LR(q, 3t+1) − ∆t,

LR(q, 5 · 3t−1) < LR(q, 3t+1) − 2∆t.

We now derive a lower bound for the value of ∆t.

Lemma 4.3.7. For 0 < q < 1, we have ∆t ≥ 1
6
· LR(q, 3t+1).

Proof. We only need to prove ∆t > a + LR(q, 3t−1). By the definition of ∆t, we

know that ∆t = 2 · LR(q, 3t−1) + 3(1 − q3t
). Then by using Lemma 4.3.2, we
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have 3(1 − q3t
) ≥ (1 − q3t+1

), which implies LR(q, 3t−1) + 3(1 − q3t
) ≥ (1 − q3t+1

).

Therefore, we have ∆ = 2 · LR(q, 3t−1) + 3(1 − q3t
) > LR(q, 3t−1) + a.

By making use of Lemma 4.3.7, we can obtain the following theorem on the

performance of LR.

Theorem 4.3.8. When q → 1, we have LR(q, n) < 2.01(1 + 1
�log3 n�)OPT(q, n).

Proof. We prove the theorem using Lemma 4.3.7 and similar arguments used in

Theorem 4.3.6. The discussion below is divided into three cases according to the

value of n.

Case A) 3t < n ≤ 5 · 3t−1.

LR(q, n) < LR(q, 5 · 3t−1)

<
2

3
LR(q, 3t+1)

<
2

3
· 3.015(1 +

1

t
) · 3t

n
· OPT(q, n)

≤ 2.01(1 +
1

�log3 n) · OPT(q, n).

Case B) 5 · 3t−1 < n ≤ 7 · 3t−1.

LR(q, n) < LR(q, 7 · 3t−1)

<
5

6
LR(q, 3t+1)

<
5

6
· 3.015(1 +

1

t
) · 3t

n
· OPT(q, n)

<
5

6
· 3.015(1 +

1

t
) · 3

5
· OPT(q, n)

< 2.01(1 +
1

�log3 n) · OPT(q, n).
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Case C) 7 · 3t−1 < n ≤ 3t+1.

LR(q, n) < LR(q, 3t+1)

< 3.015(1 +
1

t
) · 3t

n
· OPT(q, n)

< 3.015(1 +
1

t
) · 3

7
· OPT(q, n)

< 2.01(1 +
1

�log3 n) · OPT(q, n).

As q → 1, both the LR algorithm and GLR algorithm maintain almost

balanced trees, but they deal with the “leftover” leaves in two different ways: the

LR puts all the “leftover” leaves at the bottom level of the complete ternary tree;

the GLR bundles all the “leftover” leaves as a “leftover” tree and puts it as a sibling

of the complete balanced trees. In Figure 4.4, We compare the approximation ratios

of LR and GLR when q = 0.99 and n = 1 · · · 1000. From the simulation results,

we see that when n is large, GLR appears to perform better.
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Figure 4.4: The Ratio of LR and GLR as q = 0.99.



Chapter 5

Conclusions and Future Work

This dissertation addressed the group key management problem for broad-

casting applications. We analyzed in detail on one of the popular network models,

in which group members have the same probability p of changing membership in

a batch period. We focused on the problem of constructing “good” trees and ana-

lyzing the properties of GKM optimal trees, given the number of group members

n and the probability p of changing membership. In the first part of the disserta-

tion we focused on finding the properties of GKM optimal trees, proposing a lower

bound for the cost of optimal GKM trees. In the second part, we looked at the

limiting case when n → ∞. As n → ∞, we showed that almost all the subtrees of

the root are the same (Majority Property), and proved such subtree structure can

be determined by the value of q. Then, we proposed an efficient approximation

algorithm to construct an approximate GKM tree by using such subtree structure.

67
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Computer simulations showed the algorithm is very effective. In the last part, we

saw another limiting case when q → 1, i.e. p → 0. A new cost function of the

GKM tree was defined for this special case. As q → 1, we designed an O(log n)

heuristic algorithm and showed it produces a nearly 2-approximation to the opti-

mal GKM trees. In this dissertation, we also defined a new mathematical problem,

called the Jumping Sequence Problem, which is a real number analog of the GKM

problem. We analyze the jumping sequence behavior from 1 to n, and show some

important properties of the jumping sequences. All these properties agree well

with the known facts about optimal GKM trees.

There are many interesting problems and directions of future research aris-

ing from the work presented here.

1. In this dissertation, we gave an approximation algorithm, called GLR,

to build approximate GKM trees. The GLR algorithm can be used on the Group

Key Management model in which the number of group members changes. We saw

this algorithm was quite good on GKM trees by practical experiments. However,

in this dissertation, we didn’t provide the numerical bound of the approximation

ratio for either the case when n is stable or the case when n is changing.

2. We proposed a new mathematical problem, called the Jumping Sequence

Problem. In this dissertation, we have focused on two different cost functions

involved with jumping from a to b, i.e., (1 − qb)/a and b/a, which are both re-

lated to the GKM tree problems. In Chapter Three, we have proved if the cost
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of jumping from a to b is b/a, the optimal jumping sequence which starts with

(1, 3, 8, 22, 60, 163, 443, 1204, . . .), matches with the first hundreds of terms of the

sequence A024581 in the OEIS [24]. We have also noticed if the cost of jump-

ing from a to b is set to be (a + b)/a2, the jumping sequence which starts with

(1, 2, 5, 12, 29, 70, 169, 408, 985, . . .) seems to be the optimal sequence to jump from

1 to ∞ and appears to agree with the Pell numbers. There are many different

possible cost functions and it would be very interesting to see what combinatorial

properties different cost functions have.

3. In this dissertation, we considered the model in which each group member

has the same probability p of changing membership. A much harder problem

is to find an efficient tree to arrange the group members, where each member

has a different probability pi of changing membership. Under this new model,

the cost functions of trees become very complicated, and little work has been

done in the literature. A good way to attack this problem may be to consider a

simplified version first: there are two different probabilities p1, p2 of changing and

each member has either probability p1 or p2 of changing.

There clearly remain many interesting and important research directions to

be pursued.
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