
Lawrence Berkeley National Laboratory
Recent Work

Title
RELATIVISTIC THREE-PION CALCULATION-PART III

Permalink
https://escholarship.org/uc/item/79v1v5gp

Authors
Basdevant, Jean-Louis
Kreps, Rodney E.

Publication Date
1965-08-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/79v1v5gp
https://escholarship.org
http://www.cdlib.org/


UCRL-16331 

University of California 

Ernest 0. 
Radiation 

Lawrence 
Laboratory 

TWO-WEEK LOAN COPY 

This is a library Circulating Copy 
which may be borrowed for two weeks. 
for a personal retention copy, call 
Tech. Info. Dioision, Ext. 5545 

RELATIVISTIC THREE-PION CALCULATION- Part III 

Berkeley, California 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



l 

UNIVERSITY OF CALIFORNIA 
Lawrence Radiation Laboratol;"Y. 

Berkeley, California 

AEC Contract No. W-7405-eng-48 

UCRL-16331 

RELATIVISTIC THREE-PION CALCULATION--PART III 

Jea.n-Louis Basdevant and Rodney E. Kreps 

August 1965 



i · .. 

,. 
r. 
!: 
,. 

' ; 

'. 

r:. 

' ' . 

, ·r 

.{. 

. 
'· 

~-· 

.. 
\. /. ·, .~ 

. l 

* RELATIVISTIC .. THREE-PION CALCULATION-PART III 

t 
Jean-Loui~ Basdevant 

' 
UCRt-:16331 

Lawrence Radiation Laboratory, University of California · 
Berkeley, California 

and 

± Rodney E. Kreps 

-D~partment of Physics, University of California 
Berkeley, California 

August 1965 

ABSTRACT 

A model for three-spinless-meson relativistic resonances • based · .... .;-
I 

on the Alessandrini-Qmnes generalization of the Faddeev equations, which 

1 2 vas explained in tvo previous papers, ' is studied in all three-pion 

states with angular momentum J < 3 • The only part of the two-body 

amplitude which is taken into account is the p resonance. The 

separation of isospin is shown explicitly, and it is explained hov the 

It momentum-space equations reduce to only one when Bose statistics is 
·r 

taken into account. The results do not suggest the dynamical origin of 

the A2 , and many isoscalar resonances are found in a small energy 

region • 

·;., 



~ ' : 

~- '· .• ~ . 
(' 

··.~ 

;· 

·. ''"""" \ '' 

:. I·' 

. \ 

\.: 

il 
'· 

:t. INTRODUCTION 

1 2 In two previous papers ' we have described a model for relativistic 

three-pion resonances~ This model uses a. version of the ~addeev eCJ.uations · 

given by Alessandrini and Omnes~ 3 and assumes that the two-body amplitude 

is separable in the initial and final momenta. The calculation was carried 

out in II for the specific case. r. = 0 , JP -= 1- 9 by assuming that the 

tr-w amplitude wa.s dominated by the p • The results were encouraging in 

that they exhibited an independence from the detailed structure of the form 

factors used to characterize the off-shell dependence.of the two-body 

amplitudee The energy-behavior of the eigenvalues of the kernel was shown, 
I . ' 

·:.· 
and the strong influence of the tr-p normal threshold allowed one to under-

'stand qualitatively the features of the model. 

In this paper we shall keep the assumption that the two~body amplitude 

is entirely gi.ven by the I = 1 , J = 1 interaction, and we shall examine 

the results of the same model for all isospin and parity states and for 

J = 0 11 1, and 2 • It must be 11oted that the isosca.lar part of the w-w 

interaction will contribute to the I = 1 three-pion states. However, both 

because the three-pion resonance decays seem experimentally dominated by 

w-p , and because we wish to keep the calculation relatively simple, we have · 

neglected these :lsoscaJ.ar contri.butions c 

In Section II we examine ·the con.sequences of having an I = 1 two-

body amplitude on the isospin structure of the three-body· scattering amplitudee 

In Section III we show that the identity of the particles and the application 

of Bose statistics reduce the number of equations that need to be considere~ 
("'' ~ 

from three to dhe., Finally, Section IV is a statement and discussion · 

of the results. 
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II. ISOSPIU 

In a three-pion system one can construct one state .of isospin 

I~ 0, three independent I= l states,.two independent I • 2 states, t · 
and one I = 3 state.. Since we are considering n-p systems, ~ m 3 

is impossible. We shall show that it is possible to remove the isospin ;· 

dependence (up to the inhomogeneous .term and a factor.in the kernel) from 

the Faddeev equa.·tions for each definite total isospin; 
., 

Case I = 0,. There is just one total isospin state, which may be 

written variously as 

I = o) = I I 2 = 1 I m 0) 

f) r = o) (2:1) 

·Where are the labels oi" the particles •. It is therefore obvious 

that the matrix elements of all the transition amplitudes involved in 

.the Faddeev equations are all the same as far as isospin is concerned, 
J. 

and that the Faddeev equations can be. written simply by omitting the 

isospin dependences 

Case I = 1~ Here there are three independent states and ve shall 

choose the symmetric nonorthogonal. bnsiS · ·· 

'.'!! 
~ ~~ 

ll)'' IIl = 1 
' I23 a= 0 

' 
I ar 1), \I -

. I~\;:;~= II2 • l e I31 = 0 I = l)' :· ~~~- ' ., f.1 

13/ - !I3 = l ' Il2 = 0 I = 1) .. (2:2) 
' 
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The matrix elements of the three-body amplitude between these states 

are written 
' l ., 

• . (2:3) 

. We need to know the matrix elements between these states of, for example, 

thetrans;tion amplitude. t 1 where particl~ l does not interact. To 

this end we define a new basis in which tJ, is diagonali 

.. 

' I = 2 23 

I=l), 

' 
.... 

The other basis is related to this one through the equation 

where. 

s = 

Ia> a L sasls )l , 
.e 

1 ,0 0 

1/3 -15/3. 

1/3 -1/-f3. ..,-;/3 • 

(2:4) 

(2:5) 

(2:6) 

' . 



.. As our original basis is not orthogonal, the identity has the representation 

(2:7) 

'• 
'lrthere 

4. -1 -.t 

I = 3 -l 4. -1 iO (2:8) 

-1 -1 4 0 

The Faddeev equation for the amplitude T~ is 

T i = tl - tl G [ T
2 + T3] 0 . 0 {2:9) 

We take matrix elements of this equation with respect to the basis {2:2) fJ. 

and in the particular case. considered here where the subsystem is in 
,, 

( 2 : 5 ) and ( 2 : 7 ) I I = l • upon using , the resulting equation is 

0 0 0 0 0 0 

(Tl) = 0 1/3 -1/3 tl -·.tlo
0 0 1/2 -l/2 [('!.'2) + (T3) J ~ 

0 ... 1/3 0 •1/2 l/2 

(2:10) 

"where tl no longer has isospin dependenceo It is clear from (2:10) • 
that 

(2:lla) 

and 

.. (2:llb) 
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A similar treatment can.be given to T2 and T3 , so that the f'in&l 

Faddeev equations are 

.. (2tl2) 

2 '. . 3 
The equations for GB and G8 are-obtained by·cycli~ permutation of' 

·.the indices. The subscript . B has no essential role in the structure 

, of these equations as it is a final V11riable and appears only in the 

I 
inhomogeneous term. The kernel of these equations is the same as for 

I= 0 _except for the numerical factor· -1/2. 4 

£ase I = ~· There are two independent states and no basis symmetric 

in the tree particles, so we choose 

' 

In terms of' this basis the Faddeev equations become 

!h. ' 

{T2) .;._ l 
(

1/4 ' 

-.~/4 

-1314_-\ 

3/4 ) 

II 

e {2:13) 

' 

•• 

{2:14 Continued) 
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' l/4 ./3/4 
e 

./3/4 3/4 
(2:14 Concluded) 

We_. define 

G l ' l ' 1 
s · • • 2 Tis , 

G 2 2 
S = TlS , 

G 3 = T 3 
8 ' 18 J. 

(2:15) 

and upon inserting (2:15) into (2:11~), we obtain equations identical to. 

(2:12) except for the inhomogeneous terms. 

,·, 

,, . 
• 

·~i~· 't . 

... 

' 
.. ) 

t ' 
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III. STATISTICS 

Fo~ a system of three identical bosons, the statistics requires 

complete symmetry upon particle interchange. If we call s the 

symmetrized amplitude and abbreviate the va.ria.bles ~1 .,p2 ,~3 ) by · 

(1 2 3) then, for I = 0 , we have 

6 S(l 2 3) = T(1 2 3) + T(2 3 1) + T(3 1 2) - T(1 3 2) 

~ T(2 1 3) - T(3 2 1) 1 I .. 

since the isospin pa.rt ie·a.ntisymmetric, If we define. 

then we have 

.. 

(3:1) 

6 s c 1 2 3, - I< 1 2 3, + I< 2 3 1, + I<~ 1 2, 

-Ic3 2.1>: .• 

~<1 3 2) · .. I<2 1 3) 

(3:3) 

For I= 1 ewe ha.ve1 for example, 

,\ 
+·T26(3 l 2) + T38~3·2 l) • (3s4) 

If we define 

(3:5) 
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and use Eqe ·(2:11) and its. cyclic counterparts, we have 

6 s
16

C1 2 3) = ~(2 1 3) + ~(3 1 2) - ~(2 3 1) ~ ~(~ 2 l) • {3:6) 

Similar equations hold for S2 and s
3 

o 

For I = 2 11 we again define I by ( 3: 5) a.nd w.e have 

. {3:7) 

· and an analogous form holds for s2· •· The important feature of 

Eq,se (3:3), ·(3:6), and (3:7), is that the physical amplitude ~epends only 

on the function z= , In all three isospin states, because the particles 

have identical dynamics, the equations for G1 · have the form 

G1 (l 2 3) = I 1 (1 2 3) + K(l 2 3,1 2 3)[G2 (lc2 3) + G3 (1 2 3)], 

G2(l 2 3} = I 2 (1 2 3) + K(2 3 1,2 3 l}[G
1

(1 2 _3) + G3{1 2 3)], 

G3{1 2 3) = r
3

(1 2 ·3) + K(3 1 2,'3 1 2)[G~(l 2 3) + G2 (1 2 3) J • 

(3:8) 

A trivial permutation of the -variable-involved in the second and third 

equations, and a summation,yield 

L<l 2 3) L I.(l 2 3) + ,, 
'i· 

[K(l 2 ~-2 3 l) + K(l 2 3,3·1 2)] ~(1 2 3), 

(3:9) 

• 

' 
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which is our final momentum space equation. Thus the statistics allows 

us to consider only one equation instead of the original three, and we 

do not need to impose any symmetry requirements on ~ • 
We now want the representation of (3:9) in terms of states.of 

definite angular momentum. We shall follow the techniqu~s of Omnes5 

·. as was done in I and II , so that the l!th component of an object 

of angular momentum J can be written 

L. f~(w1 ,w2 ,wa>.»-~H(a,S,y) ~ 
M 

(3:10) 

2 2 . 
where !l + ~2 + ! 3 a 0 , wi. a pi + 1 , and (a,S,y) are the Euler 

angles which take the space·fixed axis into a body-fixed system whose z 

axis is along !l x ~2 , and whose x 6 axis is along ..!!J.. 
·After separation of angular momentum in this fashion, our 

equation (3:9) becomes 

M'=+J 

I 

where ei·~. is the angle between p·' 
iJ ,., i, and ~j' • The inhomogeneous 

(3:11) . 

terms depends :-o~, the. final variables, which have been suppressed. The 
~ :· ~\~ 

summation over M' will contain only even or odd terms according to 

the parity. If the two-body interaction is only in the R.th partial · 

.. i 
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(3:12) 

where t(w,w';o) is the two-body tth partial-wave amplitude, o0 is 

the Green's function, and 

(3:13) 

tlie notations here.are the same as in I and II e For the various 

angular momentum and pa.rity states, assuming that the two-body interaction 

is in t = l , and defining· 

the matrices are
1 

\ -) 

S = sin y sin y' ; 

c - cos y cos y' 

JP = o- x00 $: 3/4w c, 

X ··= 00 3/Bli s, 

Jp = 1+ ~-1Mf =·lgllo (S + 2MM'C)' 

.·. 

Jp r= 2- '·X.-., m -~ {!1M~'· S + C (2 ~ ~ · (2 + ;g)(~ + w2 } 
-"MM 321'1 2 I+ 

+ '[~~ 2~)~M'2/16~' 
_p ·+ . .. 3 
.r = 2 ~1M• = lbll MM' S • 

(3:14) 

(3:15a) 

"(3:15b) 

(3:15c) 

(3:15d) 

(3:15e) 

. t..,;. .. 

. .. : :/, 
.,_.., 
,. 

,,, /. 
I.,. I 
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In the preceding equationsj if the' parity is even (odd) the possible· 

values for M and M' .are odd (even), 

The final equations obtained by combining (3:15), (3:12),· 

and (3:11) can be further reduced by using explicit symmetries; of the 

kernel, and by using a separable· approximation to the two-b.ody amplitude. 

·'· 

... 
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IV, . RESULTS AND DISCUSSION 

The method used to analyze the ~quations is the same as in II. 

Again it should be emphasized that we are 1nterested'only in resonances, 

so that we ·study only the properties of the kernel and do not compute the 

full amplitude. Also~ the only part of the two-body amplitude which we 

consider is the p state, so that the results are the same for I = 1 

and I = 2 11 as explained :!.n Section· II. The complete results are given 

in Table ~where we give the masses and widths of the computed resonances 

·for all isospins and 'for total angular momentum ·J = 0 , ~ , 2 in 

the two parity states, 
' 

One immediate feature of this table is the absence of a 

JP = 2+, I == 1 resonance:;; . In :fact this is the channel of the A2 
7 .. 

7 8 particle, whose.existence and quantum numbers seem very well established 

and which has a branching ratio of 60% in '11'-P 

resonances that we obtain are in JP = 1+. or 

• The only isovector 

which are impossible 

for the observed · 'KR decay mode of the A2 • However_, these resonances 

are not incompatible with the experimentally observed enhancements above 

1 BeV (the A1 meson,7 for instance). 

We also find a plethora of isocalar resonances, all of which 'lie 

in a very limited energy region. Although th:f.~ is not absolutely 

incompatible with the present experimental evidence, it does seem unlikely 

that all of these resonances ac:tually do exist. However, as vas pointed 

out in II, the : E meson 7 seems a good canditate for one of them and at 
k ·~ 

a lower energy ~here is some evidence for the so-called H meson.7 

An interesting detail of the results is that this model predicts 

relatively small widths, which are in very good agreement with the size 

,, 

' ~. 
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·o--r observed widths of meson resonances l~'l the energy range 1 to 1.4 BeV. 
' \ 

Furthermore, it was seen in II that because of the nature of the 

eigenvalue curves, influenced essentially by the w-p normal threshold, 

the widths .of resonances tend t_o increase as the mass decreases in this 

energy region. n1is is because the imaginary part of the eigenevalues is 

largest in the vicinity of the w-p threshold. It is interesting to 

remark that.the widths and masses of experimentally observed resonances 

follow this qualitative rule • 

In conclusion we can say that the lack of an. A2 and the multitude 
l 

of I = 0 resonances seem to indi'cate serious deficiencies- of the model. 

The simplest remedy that on_e could try woUld be to give more detailed 

-information on the two-b_ody scattering amplitude by including the f 0 and 

the ABC enhancement e This change would affect only the I == 1 channels, 

and the ABC would not contribute to the 2+ _and 1- amplitudes. The large 

!, 8 
i i branching ratio of the A2 i,nto KK and 1r ..,, indicate that a good 

calculation of this particle should include these channelso In general 

it seems certain tnat at the energies of our resonances, inelastic effects 

will·orten be important. Also, the inherent drawbacks of a Faddeev-type 

approach, among which are the omission of certain classes of diagram and 

the lack of consideration of crossing symmetry, may prevent this model from 

having any physical significance. However, the model does yield some 

interesting results and we consider that further theoretical and experimental 

information is necessary before either accepting or discarding it in whol,e 

or in part. 

,. 

·, 
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Table 1. Masses and Vidths in MeV of the r.esonances 

Obtained in the Various channels, 

•• t· 

''\ 

.. ,. 

M: .. 

13709 

1390 

1470 

1350 

1480 

I·= 0 

r. 

140 

80 

60 

.85 

60 

I = 1,2 

.Jr. I r 

none 

1340 90 

,. 

none 1. ,, . ~ 

: \ 
'I none \ 

. ' ' 
I'\ ' 
' \ . 
'. :~ ' 

·~ ·y· 1350. 85 
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