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Abstract 

Many studies of causal judgments have dealt with the relation 
between the presence and the absence of a cause and an effect. 
However, little is known about causal learning with a 
continuous outcome. The present study adopted Cohen’s d as 
an objective standard for effect size in situations where a 
binary cause influenced a continuous effect and investigated 
how people use means and standard deviations in the 
estimation of effect sizes. The experimental task was to read a 
scenario where the performance of two groups was compared 
and to infer the causal effect. Whereas means were 
manipulated while holding standard deviations constant in the 
mean difference group, standard deviations were varied with 
holding means constant in the standard deviation difference 
group. The results demonstrate that participants could respond 
appropriately to the difference in two means, and that they 
gave a higher estimate of effect size in large standard 
deviation situations than in small standard deviation situations. 
Judgments about standard deviations are in contrast to 
Cohen’s d, indicating disproportionate attention to different 
kinds of data samples. 

Keywords: causal learning; causal reasoning; intuitive 
statistics; effect size; continuous variable. 

Introduction 

Knowledge of causality is essential to explain past events, to 

control the present environment, and to predict future 

outcomes. Decision making based on causal knowledge 

enables us to achieve desired outcomes and avoid undesired 

consequences. In order to acquire precise knowledge of 

causal relations, we need to consider not only whether the 

causal relation exists, but also how much influence the 

cause has. When a teacher develops a new instruction 

method, for example, he or she has to examine whether the 

new instruction method has more educational effect than the 

previous one and how much improvement occurs. Scientists 

are accomplished at designing experiments and performing 

statistical analysis of the results. However, how do 

nonscientists estimate the influence of a cause on its effects, 

especially when outcomes are continuous values? The 

present study sheds light on this question. 

The problem has been extensively investigated in the 

causal learning literature (Gopnik & Schulz, 2007; Shanks, 

Holyoak, & Medin, 1996; see also Holyoak & Cheng, 2011 

for a review). Hume (1739/2000) argued that causal 

relations are not observable, and therefore must be induced 

from observable events; indeed, covariation among events 

serves as a fundamental cue for learning causal relations. 

Covariation is formally represented as a joint probability 

distribution for continuous variables and is specifically 

explained as the combination of presence and absence for 

binary variables. In a typical experimental situation, 

participants are asked to observe the states of the cause and 

its effect and then to judge the strength of the causal relation 

(e.g., Buehner, Cheng, & Clifford, 2003). It has been shown 

that both children and adults are quite sensitive to 

covariation information (e.g., Shultz & Mendelson, 1975; 

Wasserman, Elek, Chatlosh, & Baker, 1993). A classical 

and representative model is the ΔP rule (Jenkins & Ward, 

1965). The ΔP rule is defined by subtracting the probability 

of the effect occurring when the cause is absent from the 

probability of the effect occurring when the cause is present 

(i.e., ΔP = P(effect|cause) – P(effect|¬cause)). Positive ΔP 

values indicate a generative causal relation; negative ΔP 

values indicate a preventive causal relation. However, 

several studies have pointed out that covariation does not 

imply causation (Cheng, 1997) and that causal judgments do 

not always correspond to ΔP (e.g., Buehner et al., 2003; 

Shanks, 1985). Many models have been proposed, focusing 

on how people extract causal strength estimates from 

combinations of the presence and absence of cause and 

effect (Hattori & Oaksford, 2007; Perales & Shanks, 2007). 

In contrast to the many empirical and theoretical studies 

using binary variables, little is known about causal learning 

with continuous variables (e.g., White, 2001; Young & Cole, 

2012). Early studies have shown the difference in judgments 

between binary and multilevel variables. For instance, 

White (2001) examined causal learning from three level 

variables and revealed that causal judgment differed from 

correlational judgment in terms of sensitivity to 

confounding. In addition, White (2013) reported that cause-

absent information carried greater weight than cause-present 

information, indicating that causal judgments about 

multilevel variables differed from those about binary 

variables. It has also been demonstrated that the 

interpretation of ambiguous values of a variable was 

depended on participants’ hypothesis about the causal 

relation (Marsh & Ahn, 2009). Only a few studies have 

focused on causal learning from continuous variables. For 

example, Young and Cole (2012) showed participants were 

sensitive to the strength of the causal relation between two 

continuous variables in a video game task. Furthermore, 

Rashid and Buehner (2013) investigated whether people 

consider the base rate of the effect in situations where a 

binary cause produced a magnitude change on a continuous 

outcome. The results demonstrated that participants took the 

base rate of the effect into account in preventive scenarios, 

but not in generative scenarios. These findings differ from 

those obtained in previous studies using binary variables. 

A crucial difference between binary variables and 

continuous variables is the distribution of data samples. In 
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order to estimate the effect of a binary cause on a 

continuous outcome precisely, one needs to consider not 

only the difference in the means, but also their distributions. 

One basic statistical measure appropriate for use in this 

situation is Cohen’s d (Cohen, 1962, 1988), where one of 

the means from the two distributions is subtracted from the 

other and the result is divided by the pooled standard 

deviation for the variables: 

 

𝑑 =
𝑀𝐸 −𝑀𝐶

𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑
  (1) 

 

In this equation, ME and MC are experimental (E) and 

control (C) means and SD refers to the pooled standard 

deviation. According to this index, the effect size becomes 

larger as the difference in two means become large and as 

the standard deviations became small. Cohen’s d is widely 

used in the psychology literature (Cumming, 2014; Fritz, 

Morris, & Richler, 2012). 

The purpose of the present study was to investigate how 

people use means and standard deviations in the estimation 

of effect sizes. The experimental task was to read a scenario 

comparing the performance of two groups, and to infer the 

causal effect size. Means and standard deviations were 

systematically manipulated. If participants evaluate effect 

sizes in a manner consistent with calculating Cohen’s d, 

their estimations should increase as the difference in means 

becomes large and as the standard deviations become small. 

Method 

Participants and design 

A total of 42 undergraduates in an introductory psychology 

class participated in the experiment and received course 

credit. They were randomly assigned to either the mean 

difference group or the standard deviation difference group. 

In the mean difference group, means were manipulated 

while holding standard deviations constant. In contrast, 

standard deviations were varied while holding means 

constant in the standard deviation difference group. In 

addition, the effect sizes (Cohen’s d = 0.5, 1.0, 2.0, 4.0) 

were manipulated within-participants. Each participant 

completed four causal learning tasks with different data sets. 

Procedure 

The participants’ task was to respond to questions in a 10-

page booklet written in Japanese. The first page outlined the 

experiment and asked for age and gender. On the second 

page, participants received the following instructions: 

 

Imagine that you are a teacher who tries to find a 

better way of teaching Japanese (English, Math, or 

Science) in a school. In order to improve students’ 

academic performance, you developed a new 

instruction method that was different from a previous 

method, and investigated its effect. Students were 

divided into two homogeneous classes according to 

their academic ability. Whereas students in one class 

took lessons with the previous method, students in the 

other class took lessons with the new instruction 

method. Your task is to estimate the effect of the new 

instruction method on students’ academic 

performance. 

 

The academic subjects (e.g., science) were designed to 

distinguish each effect size condition. 

Following the instructions, participants were informed 

about the detailed results of students’ academic achievement. 

The information consisted of 40 exam scores. Half of the 

scores were obtained from students experiencing the 

previous instruction method (i.e., the control group in the 

cover story), and the other half of the scores were from 

students who had experienced the new instruction method 

(i.e., the experimental group in the cover story). 

Examination scores could vary from 0 to 100. Participants 

were required to look at the listed results thinking whether 

the new instruction method had an influence on the 

improvement in academic performance. 

Table 1 depicts the data sets in each effect size condition. 

The different conditions were d = 0.5, d = 1.0, d = 2.0, and d 

= 4.0, resulting from the manipulation of means and 

standard deviations. As shown in Equation 1, Cohen’s d is 

calculated by dividing the difference between two means by 

the pooled standard deviation. In the mean difference group, 

differences between means of the two groups were 

manipulated (Mexperimental − Mcontrol = 5, 10, 20, 40) while 

keeping the standard deviations constant (all SD = 10). The 

larger the differences between two means were, the larger 

the effect sizes were. In the standard deviation difference 

group, in contrast, standard deviations of the two groups 

 

Table 1 

Data sets for each effect size condition by group 

Group Control Experimental Control Experimental Control Experimental Control Experimental

M 40 45 40 50 40 60 40 80

SD 10 10 10 10 10 10 10 10

M 40 50 40 50 40 50 40 50

SD 20 20 10 10 5 5 2.5 2.5

Standard deviation

difference

d  = 0.5 d  = 1.0 d  = 2.0 d  = 4.0

Effect size condition

Mean difference
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were manipulated (SDexperimental = SDcontrol = 20, 10, 5, 2.5) 

while holding differences between the two means constant 

(Mexperimental − Mcontrol = 10). The smaller the standard 

deviations were, the larger the effect sizes were. The 

examination scores in each condition were designed to be 

normally distributed. Due to the constraints of natural 

numbers, sample size, and normal distribution, the 

calculated effect sizes in the standard deviation difference 

group were slightly different from those of the mean 

difference group (e.g., d = 1.99, 4.05 in the standard 

deviation difference group; d = 2.00, 4.00 in the mean 

difference group). These effect size conditions enabled me 

to investigate whether people were sensitive to means and 

standard deviations in estimating effect size. 

On the third page of the task booklet, participants were 

asked to infer the effect of the new instruction method on 

students’ academic performance. Specifically, the question 

was “To what extent does the new instruction method have 

an influence on the improvement of the academic 

performance in Japanese (English, Math, or Science)?” A 

rating was made on a scale from 0 (the new instruction 

method does not cause an improvement at all) to 100 (the 

new instruction method causes a great improvement). In 

addition to estimating effect size, participants reported their 

confidence in the judgment with a scale ranging from 0 (not 

confident at all) to 100 (extremely confident). Then, 

participants completed the next effect size condition in a 

similar procedure. The order of the effect size conditions 

was counterbalanced across participants using a Graeco-

Latin square design. 

The last page of the booklet consisted of questions about 

statistical knowledge. In particular, the instructions stated 

statistical terms and asked participants to choose one of four 

options about each term: (1) don’t know it, (2) have heard of 

it, (3) have learned it, and (4) can calculate it. The statistical 

terms included mean, variance, standard deviation, and 

effect size. These questions were added for exploratory 

reasons. 

Results 

Responses to questions about statistical knowledge revealed 

that none of the participants could calculate effect size. 

Figure 1 (left panel) shows the mean ratings of effect size in 

each condition. In the mean difference group, higher 

estimations were obtained as the effect size became large. In 

contrast, there was a small reduction in the estimations of 

the standard deviation difference group. A two-way mixed 

ANOVA with type of statistic (mean difference, standard 

deviation difference) as a between-participants factor and 

effect size condition (0.5, 1.0, 2.0, 4.0) as a within-

participants factor yielded significant main effects of type of 

statistic, F(1, 40) = 6.44, MSE = 1035.96, p = .015, η
 2

 G 

= .091, and effect size condition, F(3, 120) = 3.14, MSE = 

208.52, p = .028, η
 2

 G = .029. The interaction between type of 

statistic and effect size condition was also significant, F(3, 

120) = 15.21, MSE = 208.52, p < .001, η
 2

 G  = .125. 

Subsequent tests of the simple main effects of effect size 

condition were significant for both the mean difference, F(3, 

60) = 17.47, MSE = 164.48, p < .001, η
 2

 G  = .242, and 

standard deviation difference groups, F(3, 60) = 3.77, MSE 

= 252.55, p = .015, η
 2

 G = .068. In the mean difference group, 

individual comparisons showed ratings in the d = 0.5 

condition to be significantly greater than those in the d = 4.0 

condition (p < .001 with a Shaffer correction). However, the 

opposite pattern occurred in the standard deviation  
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Figure 1. Mean judgment of effect size (left panel) and confidence (right panel) in each effect size condition. The error bars 

represent standard errors of the mean. 
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difference group (p = .035 with a Shaffer correction). 

Participants estimated higher effect sizes as the difference 

between two means became larger, but not as the standard 

deviations became smaller. 

The mean confidence ratings for each condition are 

presented in the right panel of Figure 1. There was a small 

increase in confidence as a function of effect size in the 

mean difference group. A 2 (type of statistic) × 4 (effect 

size condition) mixed ANOVA was performed, with type of 

statistic as a between-participants factor and effect size 

condition as a within-participants factor. A main effect of 

effect size condition was found, F(3, 120) = 2.96, MSE = 

122.68, p = .035, η
 2

 G = .012. The interaction between type of 

statistic and effect size condition was also significant, F(3, 

120) = 3.29, MSE = 122.68, p = .023, η
 2

 G  = .013. 

Subsequent tests for the simple main effects of effect size 

condition were significant within the mean difference group, 

F(3, 60) = 5.78, MSE = 117.96, p = .002, η
 2

 G = .033, but not 

in the standard deviation difference group, F(3, 60) = 0.66, 

MSE = 127.41, p = .579, η
 2

 G  = .009, showing that 

participants were more sensitive to the means than to the 

standard deviations. 

In summary, participants could respond appropriately to 

the difference in two means. However, they gave a higher 

estimate of effect size in large standard deviation situations 

than in small standard deviation situations. The results of 

the confidence ratings revealed that participants were 

confident in the evaluation of effect size when two means 

differed greatly from each other. 

 

 

Discussion 

The present study adopted Cohen’s d as an objective 

standard for effect size in situations where a binary cause 

influenced a continuous effect, and investigated how people 

use means and standard deviations in the estimation of 

effect sizes. The results show that participants judged 

greater effect sizes as the difference between two means 

became large, and smaller effect sizes as the standard 

deviations became small. Although the rank order of the 

estimates corresponded to the order of Cohen’s d in the 

mean difference group, the opposite pattern was obtained in 

the standard deviation difference group. One possible 

explanation for this pattern of the results is differential 

weighting for each data sample. That is, people pay more 

attention to information consistent with their hypothesis and 

less attention to disconfirming evidence. When standard 

deviations of two groups are large, some data samples in 

one group are much higher than the average of the other 

group. Judgments based on these samples result in a higher 

estimation of effect size. When both groups have a small 

standard deviation, in contrast, data samples are not 

overlapping and are spaced closely within the group. 

Therefore, each sample would be weighted similarly. 

Indeed, many studies about causal learning with binary 

variables have pointed out that each type of information has 

differential weighting in judgments (e.g., Kao & 

Wasserman, 1993; Mandel & Vartanian, 2009). For 

example, Kao and Wasserman (1993) reported that 

information about the presence of both cause and effect is 

given more weight than other type of information. 

The present study adopted continuous variables that were 

normally distributed, and investigated the effect of mean 

difference on the estimation of effect sizes. One 

methodological limitation of the current experiment is that 

we cannot discriminate whether participants responded to 

mean, median, or mode. This is because these indices are 

equal in normal distributions. Since people are limited in 

their memory capacity, they need to summarize data 

samples in some way. An intriguing question for future 

study is to investigate how people summarize continuous 

values. Using skewed distributions would enable us to 

differentiate mean, median, and mode. Peterson and Miller 

(1964) demonstrated that participants were sensitive to 

median and mode, but not to mean, when probability 

distributions were highly skewed. 

Another key question to be addressed is the role of 

sample size and experimental design. Effect sizes are 

indices unaffected by sample size. However, evidence from 

studies about causal learning with binary variables indicates 

that causal judgments become greater as the number of 

samples increases (Clément, Mercier, & Pastò, 2002; 

Shanks, 1985). Furthermore, studies of correlation 

judgments suggest that the detection of correlation becomes 

easier as sample size increases (Anderson & Doherty, 2007), 

except for very specific situations (Kareev, 1995). These 

extensions will provide converging evidence to investigate 

the effect of sample size on the estimation of effect sizes in 

situations where a binary cause influences a continuous 

effect. In addition, it is also valuable to examine the 

difference between within-subjects and between-subjects 

designs. Since previous studies about causal learning have 

relied heavily on the situations with independent samples, 

little is known about causal judgments for repeated 

measurements (cf. Rottman & Keil, 2012). These 

investigations will shed more light on the question of how 

people estimate effect sizes. 
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