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ABSTRACT OF THE DISSERTATION

Mathematical models of stress disorders:

Neuroendocrine dynamics and response

by

Lae Kim

Doctor of Philosophy in Biomathematics

University of California, Los Angeles, 2017

Professor Tom Chou, Chair

The hypothalamic-pituitary-adrenal (HPA) axis is a neuroendocrine system that regulates

numerous physiological processes. Disruptions in the activity of the HPA axis are correlated

with many stress-related diseases such as post-traumatic stress disorder (PTSD) and major

depressive disorder. In this dissertation, we characterize “normal” and “diseased” states

of the HPA axis as basins of attraction of a dynamical system describing the inhibition of

peptide hormones such as corticotropin-releasing hormone (CRH) and adrenocorticotropic

hormone (ACTH) by circulating glucocorticoids such as cortisol. In addition to including

key physiological features such as circadian and ultradian oscillations in cortisol levels and

self-upregulation of CRH neuron activity, our model distinguishes the relatively slow process

of cortisol-mediated CRH biosynthesis from rapid trans-synaptic e↵ects that regulate the

CRH secretion process.

We use the developed dynamical systems model of the HPA axis to understand the mech-

anisms underlying clinical protocols used to probe patient stress response. Specifically, we

address dexamethasone and ACTH challenge tests, which probe pituitary and adrenal gland

responses, respectively. We show that some previously observed features and experimental

observations can arise from the dynamics intrinsic to our bistable model, rather than relying

on specific and permanent parameter changes due to physiological disruption.

Importantly, we find that the slow regulation mechanism mediates external stress-driven
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transitions between the stable states in intensity, duration, and timing-dependent ways.

These results indicate that the timing of traumatic events may be a significant factor in

determining if and how patients will exhibit hallmarks of stress disorders.

Motivated by the importance of the timing, we develop a preliminary model that includes

the interaction between the HPA axis and the endocannabinoid system, which regulates the

initiation and termination process of the stress response. The preliminary model exhib-

ited habituation of the stress response to a repeated stressor. We investigate the general

mechanism shared in di↵erent levels of the sensory system that establishes and stores the

information of a repeating stimulus pattern and propose a possible form of basic elements of

such systems.
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CHAPTER 1

Introduction

The topic of this dissertation was motivated by a neuroendocrine problem found in the

research pertaining to post-traumatic stress disorder (PTSD). This psychiatric disorder was

first brought into public attention as a recognized medical diagnosis by Vietnamese War

veterans and has gradually become one of the most well-known and actively researched

stress-related disorders. As is common in the case of mental disorders, the diagnostic criteria

for PTSD relies heavily on self-reports and questionnaires that are subjective in nature. The

lack of objective measures with which to examine the disease has been a huge challenge in

this field. Cortisol, a steroid hormone also known as the “stress hormone,” was measured in

PTSD patients as a measure for monitoring stress level under PTSD and its progress. As the

level of cortisol typically increases during a stress response, cortisol levels were expected to

be higher among PTSD patients. For this reason, the first study that showed lower cortisol

levels among PTSD patients was initially met with a lot of resistance from the field. Despite

a few conflicting results in the literature, lower cortisol levels under PTSD is now accepted

as one of the features of the dysfunction.

Cortisol levels show birhythmic behavior, in which the hourly and daily rhythms are

superimposed. The regulation of the steroid hormone is a very dynamic process that in-

volves an interplay between the group of endocrine glands and a part of the brain, which

communicate with each other by secreting peptide hormones that also exhibit the oscillating

behavior observed in cortisol levels. The fundamental mechanism of the cortisol regulation

is well-described, and a handful of mathematical models have been developed in the past to

shed light on the same. Most of these models attempted to explain the ultradian (hourly)

oscillations seen in cortisol levels, and attributed the dysregulations in cortisol dynamics to
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the changes in the parameters of the system. The general assumption ascribed the enhanced

negative feedback sensitivity of the negative feedback e↵ect of cortisol at the pituitary as the

cause for the decreased basal cortisol level, based on some pharmacological challenge test

results.

The most distinctive feature of post-traumatic stress disorder that separates it from other

mental disorders is that it requires exposure to a traumatic experience. The experience can

be direct or indirect like witnessing an event taking place or even learning about a traumatic

incident that happened to a close friend or a relative. One of the most common symptoms

of the illness is recurrent, involuntary, and intrusive memories of the trauma and their

accompanying physiological responses. In this sense, PTSD is truly a psychological disorder,

originating from the dysfunctions in the memory consolidation and retrieval. On the other

hand, cortisol secretion is regulated by the endocrine system which, in turn, is controlled by

the central nervous system and the brain. Therefore, dysregulations in the cortisol dynamics

can be viewed as a downstream e↵ect that reflects the dysfunction in the “psychology”

manifested by the changes in the parts of the brain.

If PTSD is caused by a psychological distress that is not accompanied by physical trauma,

should the parameters representing the anatomical structure and biochemical rates change?

This dissertation attempts to explore this question through a mathematical description of the

known physiology of the neuroendocrine system, the interface that connects the endocrine

aspects of the disease to its psychological realm. In Chapter 2, we develop a dynamical

systems model of the neuroendocrine system based on the known physiology and analyze the

model using methods from multiple timescale analysis. In particular, we look for bistability

that can describe the lowered cortisol state as one of the stable states of the system.

Chapter 3 and 4 extends the analysis of the model to investigate the e↵ects of each

parameter on the nullcline structure and the long-term behavior of the model. In Chap-

ter 3, previous pharmacological challenge tests result used to support the current view of

the cortisol disruption (as altered negative feedback action) is replicated within our model

and compared to the measurements. Moreover, the e↵ects of trauma are incorporated as

perturbations to the dynamical system, and the way in which they can induce transitions
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between the healthy and diseased stable states are demonstrated and discussed. Chapter 4

includes the exogenous circadian rhythm drive into the model and explores the influence of

the two rhythms on the transitions induced by trauma. The model preserved its bistability

and the ultradian oscillations under the circadian drive. Interestingly, the model predicted

that stress-induced transitions between the stable states may be dependent on the timing of

the termination of the stressor in relation to the circadian rhythm.

This prediction motivated us to investigate the mechanisms responsible for the regulation

of the initiation and termination of the stress response in the hypothalamic-pituitary-adrenal

(HPA) axis, in Chapter 5. Recent studies have suggested that the endocannabinoid (eCB)

system interacts with the HPA axis system to gate the synaptic input of the paraventricular

nucleus (PVN). We develop a preliminary model of the eCB system and its interactions

with the HPA axis. The model exhibits a habituation of the cortisol response to a repeated

stressor. On the other hand, we initiated a study on the general mechanisms for establishing

information on a repeated stimulus working at di↵erent levels of the sensory system. Based

on the novelty detection in the retina-tectum network, we begin developing a model of a

dynamic network that encodes the information of a repeated stimulus and registers violations

in the expected stimulus pattern.

Parts of this dissertation have appeared in literature. Chapter 2 and elements of Chap-

ter 3 have been published by BioMed Central on Biology Direct. Also, a paper relating to a

few sections of Chapter 3 has been accepted by the Journal of Computational Psychiatry.
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CHAPTER 2

HPA axis dynamics

2.1 Background

Stress is an essential component of an organism’s attempt to adjust its internal state in re-

sponse to environmental change. The experience, or even the perception of physical and/or

environmental change, induces stress responses such as the secretion of glucocorticoids hor-

mones (CORT) – cortisol in humans and corticosterone in rodents – by the adrenal gland.

The adrenal gland is one component of the hypothalamic-pituitary-adrenal (HPA) axis,

which is a collection of interacting neuroendocrine cells and endocrine glands that play a

central role in stress response. The basic interactions involving the HPA axis are summa-

rized in Fig. 2.1. The paraventricular nucleus (PVN) of the hypothalamus receives synaptic

inputs from various neural pathways via the central nervous system that are activated by

both cognitive and physical stressors. Once stimulated, CRH neurons in the PVN secrete

corticotropin-releasing hormone (CRH), which then stimulates the anterior pituitary gland

to release adrenocorticotropin hormone (ACTH) into the bloodstream. ACTH then activates

a complex signaling cascade in the adrenal cortex, which ultimately releases glucocorticoids

(Fig. 2.1B). In return, glucocorticoids exert a negative feedback on the hypothalamus and

pituitary, suppressing CRH and ACTH release and synthesis in an e↵ort to return them to

baseline levels. Classic stress responses include transient increases in levels of CRH, ACTH,

and cortisol. The basic components and organization of the vertebrate neuroendocrine stress

axis arose early in evolution and the HPA axis, in particular, has been conserved across mam-

mals [Den09].

Dysregulation in the HPA axis is known to correlate with a number of stress-related

4
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Figure 2.1: Schematic of HPA axis. (A) Stress is processed in the central nervous system

(CNS) and a signal is relayed to the PVN in the hypothalamus to activate CRH secretion into

the hypophyseal portal system. (B) CRH is carried to the pituitary gland by the hypophyseal

portal system and activates ACTH secretion. ACTH travels to the adrenal cortex via the

bloodstream to activate cortisol (CORT) release. Cortisol inhibits both CRH and ACTH

secretion to down-regulate its own production, forming a closed loop. In the pituitary gland,

cortisol binds to glucocorticoid receptors (GR) to inhibit ACTH and self-upregulate GR

production. This part of the axis comprises the PA subsystem. (C) Negative feedback of

cortisol a↵ects the synthesis process in the hypothalamus, which indirectly suppresses the

release of CRH. External inputs such as stressors and circadian inputs also directly a↵ect

the release rate of the CRH release rates. (D) Released CRH self-upregulates the secretion

of CRH via binding to CRH-receptor 1 (CRHR-1) expressed on the PVN neurons. The

self-upregulation of CRH is further addressed in Chapter 3.

disorders. Increased cortisol (hypercortisolism) is associated with major depressive disor-

der (MDD) [GC02, JCP04], while decreased cortisol (hypocortisolism) is a feature of post-

traumatic stress disorder (PTSD), post infectious fatigue, and chronic fatigue syndrome

(CFS) [RJW04,GHJ05, JPT06,CYC04]. Since PTSD develops in the aftermath of extreme

levels of stress experienced during traumatic incidents like combat, sexual abuse, or life-

threatening accidents, its progression may be strongly correlated with disruption of the HPA
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axis caused by stress response. For example, lower peak and nadir cortisol levels were found

in patients with combat-related PTSD [YTL94].

Mathematical models of the HPA axis have been previously formulated in terms of dy-

namical systems of ordinary di↵erential equations (ODEs) [VAO11, JSC05,KSV05, SKO00]

or delay di↵erential equations (DDEs) [WTL10, RWW12, BCC08] that describe the time-

evolution of the key regulating hormones of the HPA axis: CRH, ACTH, and cortisol. These

models [WTL10, RWW12, SRD12] incorporate positive self-regulation of glucocorticoid re-

ceptor expression in the pituitary, which may generate bistability in the dynamical structure

of the model [GAG07]. Of the two stable equilibrium states, one is characterized by higher

levels of cortisol and is identified as the “normal” state. The other is characterized by lower

levels of cortisol and can be interpreted as one of the “diseased” states associated with

hypocortisolism. Stresses that a↵ect the activity of neurons in the PVN are described as

perturbations to endogenous CRH secretion activity. Depending on the length and magni-

tude of the stress input, the system may or may not shift from the basin of attraction of the

normal steady state towards that of the diseased one. If such a transition does occur, it may

be interpreted as the onset of disease. A later model [SRD12] describes the e↵ect of stress

on the HPA axis as a gradual change in the parameter values representing the maximum

rate of CRH production and the strength of the negative feedback activity of cortisol. In

this model, cortisol secretion patterns are assumed to depend solely on physiological changes

arising from e.g., anatomical or biochemical changes in cells or tissues. Such structural-level

variations can be mathematically represented by changes in physiological parameter values.

These two classes of models imply qualitatively di↵erent time courses of disease progres-

sion [GAG07, SRD12]. The former suggests that the abnormal state is a pre-existing basin

of attraction of a dynamical model that stays dormant until a sudden transition is triggered

by exposure to trauma [GAG07]. In contrast, the latter assumes that the abnormal state is

reached by the slow development of structural changes in physiology due to the traumatic

experience [SRD12]. Although both models [GAG07,SRD12] describe changes in hormonal

levels experienced by PTSD patients, they both fail to exhibit stable ultradian oscillations

in cortisol, which is known to play a role in determining the responsiveness of the HPA axis

6



to stressors [WWL98].

In this chapter, we consider a number of distinctive physiological features of the HPA axis

that give a more complete picture of the dynamics of stress disorders and that have not been

considered in previous mathematical models. These include the e↵ects of intrinsic ultradian

oscillations on HPA dysregulation, stress response, distinct rapid and slow feedback actions

of cortisol, and the correlation between HPA imbalance and disorders induced by external

stress. As with the majority of hormones released by the body, cortisol levels undergo a

circadian rhythm, starting low during night sleep, rapidly rising and reaching its peak in the

early morning, then gradually falling throughout the day. Superposed on this slow diurnal

cycle is an ultradian rhythm consisting of approximately hourly pulses. CRH, ACTH, and

cortisol are all secreted episodically, with the pulses of ACTH slightly preceding those of

cortisol [Chr98].

As for many other hormones such as gonadotropin-releasing hormone (GnRH), insulin,

and growth hormone (GH), the ultradian release pattern of glucocorticoids is important in

sustaining normal physiological functions, such as regulating gene expression in the hip-

pocampus [CSM10]. It is as yet unclear what role ultradian oscillations of cortisol play in

homeostasis, but the time of onset of a stressor in relation to the phase of the oscillation has

been shown to influence the physiological response elicited by the stressor [WWS98].

To distinguish the rapid and slow actions of cortisol, we separate the dynamics of biosyn-

thesis of CRH from its secretion process, which operate over very di↵erent timescales [Wat05].

While the two processes are mostly independent from each other, the rate of CRH secre-

tion should depend on the synthesis process since CRH peptides must be synthesized first

before being released (Fig. 2.1C). On the other hand, the rate of CRH peptide synthesis is

influenced by cortisol levels, which in turn, are regulated by released CRH levels. We will

investigate how the separation and coupling of these two processes can allow bistable limit

cycle attractors.
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2.2 Mathematical Description

Models of HPA dynamics [GAG07,WTL10,SRD12,RWW12,BVB09] are typically expressed

in terms of ordinary di↵erential equations (ODEs):

dC

dT
=pCI(T )fC(O)� dC(C), (2.1)

dA

dT
=pACfA(OR,O)� dA(A), (2.2)

dO

dT
=pOA(T )� dO(O), (2.3)

dR

dT
=pRgR(OR)� dR(R), (2.4)

where C(T ), A(T ), and O(T ) denote the plasma concentrations of CRH, ACTH, and cortisol

at time T , respectively. R(T ) represents the availability of glucocorticoid receptor (GR) in

the anterior pituitary. The amount of cortisol-bound GR is typically in quasi-equilibrium so

concentration of the ligand-receptor complex is approximately proportional to the product

O(T )R(T ) [GAG07]. The parameters p↵ (↵ 2 {C,A,O,R}) relate the production rate

of each species ↵ to specific factors that regulate its rate of release/synthesis. External

stresses that drive CRH release by the PVN in the hypothalamus are represented by the

input signal I(T ). The function fC(O) describes the negative feedback of cortisol on CRH

levels in the PVN while fA(x) (x 2 O,OR) describes the negative feedback of cortisol or

cortisol-GR complex (at concentration O(T )R(T )) in the pituitary. Both are mathematically

characterized as being positive, decreasing functions so that fA,C(·) � 0 and f 0
A,C(·) < 0. On

the other hand, the function gR(OR) describes the self-upregulation e↵ect of the cortisol-GR

complex on GR production in the anterior pituitary [TCW88]. In contrast to fA,C(·), gR(·)

is a positive but increasing function of OR so that gR(·) � 0 and g0R(·) > 0. Finally, the

degradation functions d↵(·) describe how each hormone and receptor is cleared and may be

linear or nonlinear.

Without including the e↵ects of the glucocorticoid receptor (neglecting Eq. 2.4 and as-

suming fA(OR,O) = fA(O) in Eq. 2.2), Eqs. 2.1-2.3 form a rudimentary “minimal” model
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of the HPA axis [VAO11, AVO13a]. If fA,C(·) are Hill-type feedback functions dependent

only on O(T ) and d↵(·) are linear, a unique global stable point exists. This equilibrium

point transitions to a limit cycle through a Hopf bifurcation but only within nonphysiologi-

cal parameter regimes [VAO11]. The inclusion of GR and its self-upregulation in the anterior

pituitary [GAG07] creates two stable equilibrium states of the system, but still does not gen-

erate oscillatory behavior. More recent studies extend the model (represented by Eq. 2.1-2.4)

to include nonlinear degradation [SRD12] or constant delay to account for delivery of ACTH

and synthesis of glucocorticoid in the adrenal gland [WTL10]. These two extended models

exhibit only one intrinsic circadian [SRD12] or ultradian [WTL10] oscillating cycle for any

given set of parameter values, precluding the interpretation of normal and diseased states as

bistable oscillating modes of the model.

Here, we develop a new model of the HPA axis by first adapting previous work [WTL10]

where a physiologically-motivated delay was introduced into Eq. 2.3, giving rise to the ob-

served ultradian oscillations [WTL10]. We then improve the model by distinguishing the

relatively slow mechanism underlying the cortisol-mediated CRH biosynthesis from the rapid

trans-synaptic e↵ects that regulate CRH secretion. This allows us to decompose the dynam-

ics into slow and fast components. Finally, self-upregulation of CRH release is introduced

which allows for bistability. These ingredients can be realistically combined in a way that

leads to novel, clinically identifiable features and are systematically developed below

2.2.1 Ultradian rhythm and time delay

Experiments on rats show a 3-6 minute inherent delay in the response of the adrenal gland to

ACTH [Pap77]. Moreover, in experiments performed on sheep [EPL90], persistent ultradian

oscillations were observed even after surgically removing the hypothalamus, implying that

oscillations are inherent to the pituitary-adrenal (PA) subsystem. Since oscillations can be

induced by delays, we assume, as in Walker et al. [WTL10], a time delay Td in the ACTH-

mediated activation of cortisol production downstream of the hypothalamus. Eq. 2.3 is thus
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modified to
dO

dT
= pOA(T � Td)� dOO. (2.5)

Walker et al. [WTL10] show that for fixed physiological levels of CRH, the solution to

Eqs. 2.2, 2.5, and 2.4 leads to oscillatory A(T ), O(T ), and R(T ). In order to describe

the observed periodic cortisol levels in normal and diseased states, the model requires two

oscillating stable states. We will see that dual oscillating states can arise within our model

when the delay in ACTH-mediated activation of cortisol production is coupled with other

known physiological processes that we describe below.

2.2.2 Synthesis of CRH

CRH synthesis involves various pathways, including CRH gene transcription and transport

of packaged CRH from the cell body (soma) to their axonal terminals where they are stored

prior to release. Changes in the steady state of the synthesis process typically occur on a

timescale of minutes to hours. On the other hand, the secretory release process depends on

changes in membrane potential at the axonal terminal of CRH neurons, which occur over

millisecond to second timescales.

To model the synthesis and release process separately, we distinguish two compartments

of CRH: the concentration of stored CRH within CRH neurons will be denoted Cs(T ), while

levels of released CRH in the portal vein outside the neurons will be labeled C(T ) (Fig. 2.1C).

Newly synthesized CRH will first be stored, thus contributing to Cs. We assume that the

stored CRH level Cs relaxes toward a target value set by the function C1(O):

dCs

dT
=

C1(O)� Cs

TC

. (2.6)

Here, TC is a characteristic time constant and C1(O) is the cortisol-dependent target level

of stored CRH. Eq. 2.6 also assumes that the relatively small amounts of CRH released into

the bloodstream do not significantly deplete the Cs pool. Note that the e↵ects induced by

changing cortisol levels are assumed to be immediate as the production term C1(O)/TC
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adjusted relatively instantaneously to current cortisol levels. This assumption is supported

by CRH hnRNA (precursor mRNA) measurements in [WOS11] that demonstrated the rapid

e↵ect of cortisol on the initial transcription activity. . On the other hand, the time required

to reach the steady state for the completely synthesized CRH peptide will depend on the

characteristic time scale constant TC . Ideally, TC should be estimated from measurements

of the pool size of releasable CRH at the axonal terminals. To best of our knowledge, there

are currently no such measurements available, so we base our estimation on mRNA level

measurements. We believe this is a better representation of releasable CRH than hnRNA

levels since mRNA synthesis is a further downstream process. Previous studies have shown

that variations in CRH mRNA due to changes in cortisol levels take at least twelve hours

to detect [MA99]. Therefore, we estimate TC & 12hrs = 720min. The negative feedback of

cortisol on CRH levels thus acts through the production function C1(O) on the relatively

slow timescale TC . To motivate the functional form of C1(O), we invoke experiments on rats

whose adrenal glands had been surgically removed and in which glucocorticoid levels were

subsequently kept fixed (by injecting exogenous glucocorticoid) for 5-7 days [WS95,Wat05].

The measured CRH mRNA levels in the PVN were found to decrease exponentially with the

level of administered glucocorticoid [WS95,Wat05]. Assuming the amount of releasable CRH

is proportional to the amount of measured intracellular CRH mRNA, we can approximate

C1(O) as a decreasing exponential function of cortisol level O.

2.2.3 Secretion of CRH

To describe CRH secretion, we consider the following three factors: synaptic inputs to CRH

cells in the PVN, availability of releasable CRH peptide, and self-upregulation of CRH

release.

CRH secretion activity is regulated by synaptic inputs received by the PVN from multiple

brain regions including limbic structures such as the hippocampus and the amygdala, that are

activated during stress. It has been reported that for certain types of stressors, these synaptic

inputs are modulated by cortisol independent of, or parallel to, its regulatory function on
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CRH synthesis activity [TDM06]. On the other hand, a series of studies [KY88b,KY88a,

JHB77] showed that cortisol did not a↵ect the basal spiking activity of the PVN. We model

the overall synaptic input, denoted by I(T ) in Eq. 2.1, as follows

I(T ) = Ibase + Iext(T ), (2.7)

where Ibase and Iext(T ) represent the basal firing rate and stress-dependent synaptic input of

the PVN, respectively. As the e↵ect of cortisol on the synaptic input during stress is specific

to the type of stressor [GCD03,CHW91, IXS95], we assume Iext(T ) to be independent of O

for simplicity and generality.

The secretion of CRH will also depend upon the amount of stored releasable CRH, Cs(T ),

within the neuron and inside the synaptic vesicles. Therefore, Cs can also be factored

into Eq. 2.1 through a source term h(Cs) which describes the amount of CRH released

per unit of action potential activity of CRH neurons. Finally, it has been hypothesized

that CRH enhances its own release [OCM85], especially when external stressors are present.

The enhancement of CRH release by CRH is mediated by activation of the membrane-

bound G-protein-coupled receptor CRHR-1 whose downstream signaling pathways operate

on timescales from milliseconds to seconds [PP09,MHG02]. Thus, self-upregulation of CRH

release can be modeled by including a positive and increasing function gC(C) in the source

term in Eq. 2.1. More details on the self-upregulation of CRH release will be addressed in

Chapter 3.

Combining all these factors involved in regulating the secretion process, we can rewrite

Eq. 2.1 by replacing fC(O) with h(Cs)gC(C) as follows

dC

dT
= pCI(T )h(Cs)gC(C)� dCC. (2.8)

In this model (represented by Eqs. 2.6,2.8,2.2,2.5, and 2.4), cortisol no longer directly sup-

presses CRH levels, rather, it decreases CRH synthesis through Eq. 2.6, in turn suppressing

Cs. The combination h(Cs)gC(C) in Eq. 2.8 indicates the release rate of stored CRH de-
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creases when either Cs or C decrease. We assume that inputs into the CRH neurons modulate

the overall release process with weight pC .

2.2.4 Complete delay-di↵erential equation model

We are now ready to incorporate the mechanisms described above into a new, more compre-

hensive mathematical model of the HPA axis, which, in summary, includes

(i) A delayed response of the adrenal cortex to cortisol (Eq. 2.5).

(ii) A slow time-scale negative feedback by cortisol on CRH synthesis (through the C1(O)

production term in Eq. 2.6).

(iii) A fast-acting positive feedback of stored and circulating CRH on CRH release (through

the h(Cs)gC(C) term in Eq. 2.8);

Our complete mathematical model thus consists of Eqs. 2.2, 2.4, 2.5, 2.6, and 2.8. We

henceforth assume fA(OR,O) = fA(OR) depends on only the cortisol-GR complex and use

Hill-type functions for fA(OR) and gR(OR) [WTL10, RWW12, GAG07, SRD12]. Our full

theory is characterized by the following system of delay di↵erential equations:

dCs

dT
=
C1(O)� Cs

TC

, (2.9)

dC

dT
=pCI(T )h(Cs)gC(C)� dCC, (2.10)

dA

dT
=pAC

✓
KA

KA +OR

◆
� dAA, (2.11)

dO

dT
=pOA(T � Td)� dOO, (2.12)

dR

dT
=pR

✓
1� µRK2

R

K2
R + (OR)2

◆
� dRR. (2.13)

The parameters KA,R represent the level of A and R at which the negative or positive e↵ect

are at their half maximum and 1 � µR represents the basal production rate for GR when

OR = 0.
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Of all the processes modeled, we will see that the slow negative feedback described in

Eq. 2.9 will be crucial in mediating transitions between stable states of the system. The slow

dynamics will allow state variables to cross basins of attraction associated with each of the

stable states.

2.2.5 Nondimensionalized model

To simplify the further development and analysis of our model, we nondimensionalize Eqs. 2.9-

2.13 by rescaling all variables and parameters in a manner similar to that of Walker et

al. [WTL10], as explicitly shown in the Appendix. We find

dcs
dt

=
c1(o)� cs

tc
, (2.14)

dc

dt
= q0I(t)h(cs)gc(c)� q2c, (2.15)

da

dt
=

c

1 + p2(or)
� p3a, (2.16)

do

dt
= a(t� td)� o, (2.17)

dr

dt
=

(or)2

p4 + (or)2
+ p5 � p6a, (2.18)

where cs, c, a, r, o are the dimensionless versions of the original concentrations Cs, C, A,R,O,

respectively. The dimensionless delay in activation of cortisol production by ACTH is now

denoted td. All dimensionless parameters qi, pi, td, and tc are combinations of the physical

parameters and are explicitly given in Appendix 2.6.1. The functions c1(o), h(cs), and gc(c)

are dimensionless versions of C1(O), h(Cs), and gC(C), respectively, and will be chosen

phenomenologically to be

c1(o) =c̄1 + e�bo,

h(cs) =1� e�kcs , (2.19)

gc(c) =1� µc

1 + (q1c)n
.
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The form of c1(o) is based on the above-mentioned exponential relation observed in adrenalec-

tomized rats [WS95,Wat05] (shown in the Appendix Fig. 2.11). The parameters c̄1 and b

represent the minimum dimensionless level of stored CRH and the decay rate of the func-

tion, respectively. The function h(cs) describes how the rate of CRH release increases with

cs. Since the amount of CRH packaged in releasable vesicles is likely regulated, we assume

h(cs) saturates at high cs. The choice of a decreasing form for c1(o) implies that increasing

cortisol levels will decrease the target level (or production rate) of cs in Eq. 2.14. The re-

duced production of cs will then lead to a smaller h(cs) and ultimately to a reduced release

source for c (Eq. 2.15). As expected, the overall e↵ect of increasing cortisol is a decrease in

the release rate of CRH. Finally, since the upregulation of CRH release by circulating CRH

is mediated by binding to CRH receptor, gc(c) will be chosen to be a Hill-type function,

with Hill-exponent n, similar in form to the function gR(OR) used in Eqs. 2.13 and 2.18.

The parameter 1 � µc represents the basal release rate of CRH relative to the maximum

release rate and q�1
1 represents the normalized CRH level at which the positive e↵ect is at

half-maximum.

2.3 Multiple Timescale Analysis

2.3.1 Fast-slow variable separation and bistability

Since we assume the negative feedback e↵ect of cortisol on synthesis of CRH operates over

the longest characteristic timescale tc in the problem, the full model must be studied across

two separate timescales, a fast timescale t, and a slow timescale ⌧ = t/tc ⌘ "t. The full

model (Eqs. 2.14-2.18) can be succinctly written in the form

dcs
dt

= "(c1(o)� cs), (2.20)

dx

dt
= F(cs,x), (2.21)

where x = (c, a, o, r) is the vector of fast dynamical variables, and F(cs,x) denotes the right-

hand-sides of Eqs. 2.15-2.18. We refer to the fast dynamics described by dx/dt = F(cs,x)
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as a fast flow. In the " ! 0 limit, it is also easy to see that to lowest order cs is a constant

across the fast timescale and is a function of only the slow variable ⌧ .

Under this timescale separation, the first component of Eq. 2.21 (Eq. 2.15) can be written

as
dc

dt
= q(cs(⌧), I)gc(c)� q2c, (2.22)

where q(cs(⌧), I) ⌘ q0Ih(cs(⌧)) = q0I(1� e�kcs(⌧)) is a function of cs(⌧) and I. Since cs is a

function only of the slow timescale ⌧ , q can be viewed as a bifurcation parameter controlling,

over short timescales, the fast flow described by Eq. 2.22. Once c(t) quickly reaches its

non-oscillating quasi-equilibrium value defined by dc/dt = qgc(c)� q2c = 0, it can be viewed

as a parametric term in Eq. 2.16 of the pituitary-adrenal (PA) subsystem (Eqs. 2.14-2.18).

Due to the nonlinearity of gc(c), the equilibrium value c(q) satisfying qgc(c) = q2c may

be multi-valued depending on q, as shown in Figs. 2.2A and 2.2B. For certain values of the

free parameters, such as n, 1 � µc, and q1, bistability can emerge through a saddle-node

bifurcation with respect to the bifurcation parameter q. Fig. 2.2B shows the bifurcation

diagram, i.e., the nullcline of c defined by qgc(c) = q2c.

For equilibrium values of c lying within a certain range, the PA-subsystem can exhibit

a limit cycle in (a, o, r) [WTL10] that we express as (a⇤(✓; c), o⇤(✓; c), r⇤(✓; c)), where ✓ =

2⇡t/tp(c) is the phase along the limit cycle with period tp(c).

The dynamics of the PA-subsystem depicted in Fig. 2.3 indicate the range of c values that

admit limit cycle behavior for (a, o, r), while the fast c-nullcline depicted in Fig. 2.2B restricts

the range of bistable c values. Thus, bistable states that also support oscillating (a, o, r) are

possible only for values of c that satisfy both criteria.

Since circulating CRH only feeds forward into a, o, and r in the " ! 0 limit, a complete

description of all the fast variables can be constructed from just c which obeys Eq. 2.22.

Therefore, to visualize and approximate the dynamics of the full five-dimensional model, we

only need to consider the 2D projection onto the fast c and slow cs variable. A summary of

the time-separated dynamics of the variables in our model is given in Fig. 2.4.

To analyze the evolution of the slow variable cs(⌧), we write our equations in terms of
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Figure 2.2: Nonlinear gc(c) and bistability of fast variables. (A) The stable states of the

decoupled system in Eq. 2.22 can be visualized as the intersection of the two functions qgc(c)

(dashed curve) and q2c (gray line). For a given Hill-type function gc(c), Eq. 2.22 can admit

one or two stable states (solid circles), depending on function parameters. The unstable

steady state is indicated by the open circle. (B) Bifurcation diagram of the decoupled

system (Eq. 2.22) with q as the bifurcation parameter. Solid and dashed segments represent

stable and unstable steady states of the fast variables, respectively. L and U label basins

of attraction associated with the lower and upper stable branches of the c-nullcline. Left

and right bifurcation points (qL, cL) and (qR, cR) are indicated. Fixed points of c appear and

disappear through saddle node bifurcations as q is varied between qL and qR.

the scaled time variable ⌧ = "t:

dcs
d⌧

= (c1(o)� cs), (2.23)

"
dx

d⌧
= F(cs,x). (2.24)

In the " ! 0 limit, the “outer solution” F(cs,x) ⇡ 0 simply constrains the system to be

on the fast c-nullcline defined by qgc(c) = q2c. The slow evolution of cs(⌧) along the fast

c-nullcline depends on the value of the fast variable o(t) through c1(o). To close the slow

flow subsystem for cs(⌧), we fix c to its equilibrium value as defined by the fast subsystem

and approximate c1(o(c)) in Eq. 2.23 by its period-averaged value

hc1(c)i ⌘
Z 2⇡

0

c1(o⇤(✓; c))
d✓

2⇡
= c̄1 +

Z 2⇡

0

e�bo⇤(✓;c) d✓

2⇡
. (2.25)
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Figure 2.3: Dynamics of the oscillating PA-subsystem as a function of fixed c. (A)

Maximum/minimum and period-averaged values of ACTH, a(t), as a function of circulating

CRH. (B) Maximum/minimum and period-averaged values of cortisol o(t). Within physio-

logical CRH levels, ACTH, GR (not shown), and cortisol oscillate. The minima, maxima,

and period-averaged cortisol levels typically increase with increasing c. The plot was gen-

erated using dimensionless variables c, a, and o with parameter values specified in [LWA08]

and td = 1.44, corresponding to a delay of Td = 15min.

x(t)fast variables

c (  )τs c(t) a(t)     o(t)     r(t)

(oscillating)

slow variable

PA subsystem2D system
(non−oscillating)

Figure 2.4: Classification of variables. Variables of the full five-dimensional model are

grouped according to their dynamical behavior. cs(⌧) is a slow variable, while x(t) =

(c, a, o, r) are fast variables. Of these, (a, o, r) form the typically oscillatory PA-subsystem

that is recapitulated by c. In the " = 1/tc ⌧ 1 limit, the variable cs(⌧) slowly relaxes towards

a period-averaged value hc1(o(c))i. Therefore, the full model can be accurately described

by its projection onto the 2D (cs, c) phase space.

Since o⇤ increases with c (see Fig.2.3B), hc1(c)i is a decreasing function of c under phys-

iological parameter regimes. This period-averaging approximation allows us to relate the

evolution of cs(⌧) in the slow subsystem directly to c. The evolution of the slow subsystem

is approximated by the closed (cs, c) system of equations

18



dcs
d⌧

= hc1(c)i � cs, (2.26)

0 = q0h(cs)I(t)gc(c)� q2c. (2.27)

with hc1(c)i evaluated in Eq. 2.25. By self-consistently solving Eqs. 2.26 and 2.27, we can

estimate trajectories of the full model when they are near the c-nullcline in the 2D (cs, c)-

subsystem. We will verify this in the following section.

2.3.2 Projected dynamics on the reduced system

The separation of timescales results in a natural description of the fast c-nullcline in terms

of the parameter q (Fig. 2.2) and the slow cs-nullcline (defined by the relation cs = hc1(c)i

relating cs to c) in terms of c. However, the c-nullcline is plotted in the (q, c)-plane while

the cs-nullcline is defined in the (c, cs)-plane. To plot the nullclines together, we relate

the equilibrium value of cs, hc1(c)i, to the q coordinate through the monotonic relationship

q(cs) = q0Ih(hc1(c)i) = q0I(1�e�khc1(c)i) and transform the cs variable into the q parameter

so that both nullclines can be plotted together in the (q, c)-plane. These transformed cs-

nullclines will be denoted “q-nullclines.”

We first consider a fixed basal stress input I = Ibase = 1 and plot the q-nullclines in

Fig. 2.5A for increasing values of k, the parameter governing the sensitivity of CRH release to

stored CRH. From the form h(hc1(c)i) = (1�e�khc1(c)i), both the position and the steepness

of the q-nullcline in (q, c)-space depend strongly on k. Fig. 2.5B shows a fast c-nullcline and

a slow q-nullcline (transformed cs-nullcline) intersecting at both stable branches of the fast

c-nullcline. Here, the flow field indicates that the 2D projected trajectory is governed by fast

flow over most of the (q, c)-space.

How the fast and slow nullclines intersect each other controls the long-term behavior of

our model in the small " limit. In general, the number of allowable nullcline intersections will

depend on input level I and on parameters (q0, ..., p6, b, k, n, µc, td). Other parameters such
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Figure 2.5: Slow and fast nullclines and overall flow field. (A) The nullcline of

cs in the " ! 0 limit is defined by cs = hc1(c)i. To plot these slow nullclines together

with the fast c-nullclines, we transform the variable cs and represent it by q through the

relation q = q0h(cs). These transformed nullclines then become a function of c and can be

plotted together with the fast c-nullclines. For each fixed value of c, o(t; c) is computed by

employing a built-in DDE solver dde23 in MATLAB. The numerical solution is then used to

approximate hc1(c)i in Eq. 2.25 by Euler’s method. The q-nullcline shifts to the right and

gets steeper as k increases. (B) The fast c-nullcline defined by qgc(c) = q2c (black curve)

is plotted together with the slow cs-nullcline plotted in the (q, c) plane (“q-nullcline,” blue

curve). Here, two intersections arise corresponding to a high-cortisol normal (N) stable state

and a low-cortisol diseased (D) stable state. The flow vector field is predominantly aligned

with the fast directions toward the c-nullcline.

as q0, q1, and µc appear directly in the fast equation for c and thus most strongly control

the fast c-nullcline. Fig. 2.6A shows that for a basal stress input of I = Ibase = 1 and an

intermediate value of k, the nullclines cross at both stable branches of the fast subsystem.

As expected, numerical simulations of our full model show the fast variables (a, o, r) quickly

reaching their oscillating states defined by the c-nullcline while the slow variable q = q0Ih(cs)

remains fairly constant. Independent of initial configurations that are not near the c-nullcline

in (q, c)-space, trajectories quickly jump to one of the stable branches of the c-nullcline with

little motion towards the q-nullcline, as indicated by ⇠f in Fig. 2.6A.

Once near the c-nullcline, say when |F(cs,x)| ⌧ ", the trajectories vary slowly according

to Eqs. 2.23. Here, the slow variable cs relaxes to its steady state value while satisfying the

constraint F(cs,x) ⇡ 0. In (q, c)�space, the system slowly slides along the c-nullcline towards
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the q-nullcline (the ⇠s paths in Fig. 2.6A). This latter phase of the evolution continues until

the system reaches an intersection of the two nullclines, indicated by the filled dot, at which

the reduced subsystem in cs and c reaches equilibrium.

For certain values of k and if the fast variable c is bistable, the two nullclines may intersect

within each of the two stable branches of the c-nullcline and yield the two distinct stable

solutions shown in Fig. 2.6A. For large k, the two nullclines may only intersect on one stable

branch of the c-nullcline as shown in Fig. 2.6B. Trajectories that start within the basin of

attraction of the lower stable branch of the c-nullcline (“initial state 2” in Fig. 2.6B) will

stay on this branch for a long time before eventually sliding o↵ near the bifurcation point

and jumping to the upper stable branch. Thus, the long-term behavior of the full model can

be described in terms of the locations of the intersections of nullclines of the reduced system.
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Figure 2.6: Equilibria at the intersections of nullclines. (A) For intermediate values

of k, there are three intersections, two of them representing stable equilibria. Solid red lines

are projections of two trajectories of the full model, with initial states indicated by red dots

and final stable states shown by black dots. The full trajectories approach the intersections

of the q-nullcline (blue) and c-nullcline (black). (B) For large k there is only one intersection

at the upper branch of the c-nullcline. Two trajectories with initial states near di↵erent

branches of the c-nullcline both approach the unique intersection (black dot) on the upper

branch. The scenario shown here corresponds to a Type I nullcline structure as described in

the Additional File.
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2.4 Discussion

The dual-nullcline structure and existence of multiple states discussed above results from

the separation of slow CRH synthesis process and fast CRH secretion process. This natural

physiological separation of time scales ultimately gives rise to slow dynamics along the fast c-

nullcline during stress. The extent of this slow dynamics will ultimately determine whether

a transition between stable states can be induced by stress. How external stress-driven

transitions mediated by the fast-slow negative feedback depend on system parameters will

be explored in next chapter. The remainder of this chapter will be focused on understanding

how our model exhibits bistable attracting limit cycles that characterize the normal and

diseased states that preserve the ultradian oscillations. In particular, di↵erent types of

nullcline structures that may arise depending on system parameters will be identified and

analyzed.

Changes in parameters that accompany trauma can lead to shifts in the position of the

nullclines. For example, if the stored CRH release process is su�ciently compromised (e.g.

smaller k), the slow q-nullcline moves to the left, driving a bistable or fully resistant organism

into a stable diseased state. Interventions that increase k would need to overcome hysteresis

in order to restore normal HPA function. More permanent changes in parameters are likely

to be caused by physical rather than by psychological traumas since such changes would

imply altered physiology and biochemistry of the person. Traumatic brain injury (TBI)

is an example of where parameters can be changed permanently by physical trauma. The

injury may decrease the sensitivity of the pituitary to cortisol-GR complex, which can be

described by decreasing p2 in our model. Such change in parameter would lead to a leftward

shift of the q-nullcline and an increased likelihood of hypocortisolism. Similarly, various

physiological conditions associated with certain parameter changes can be incorporated into

our model to predict and analyze their e↵ects on the long-term behavior of the system. In the

remainder of this chapter, we will focus on how the new parameters (q0, q1, µc, k) introduced

in our model determine the existence and the type of bistability of the system. A more

comprehensive discussion will be included in the following chapter.
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To be more concrete in our analysis, we now choose our nullclines by specifying parameter

values. We estimate many of the dimensionless parameters by using values from previous

studies, as listed in Table 2.1. Of the four remaining parameters, µc, q0, q1, and k, we

will study how our model depends on k while fixing µc, q0, and q1. Three possible nullcline

configurations arise according to the values of µc, q0, and q1 and are delineated in the following

section. We have also implicitly considered only parameter regimes that yield oscillations in

the PA subsystem at the stable states defined by the nullcline intersections.

Table 2.1: Dimensionless parameter values of our full model. Analogous parameters from

the literature are referenced.

Parameter Value Source and Ref. Description
n 5 assumed Hill coe�cient in upregulation

function gc(c)
c̄1 0.2 estimated from [Wat05] baseline stored CRH level
b 0.56 estimated from [Wat05] relates cortisol to stored CRH

level
k undetermined · relates stored CRH to CRH re-

lease rate
µc undetermined · basal CRH release rate
q0 undetermined · maximum CRH release rate
q�1
1 undetermined · circulating CRH for half-

maximum self-upregulation
q2 1.8 estimated from [WWS98] ratio of CRH and cortisol decay

rates
p�1
2 0.067 p�1

2 [LWA08] (o r)-complex level for half-
maximum feedback

p3 7.2 p3 [LWA08] ratio of ACTH and cortisol decay
rates

p4 0.05 p4 [LWA08] (o r)-complex level for half-
maximum upregulation

p5 0.11 p5 [LWA08] basal GR production rate by pi-
tuitary

p6 2.9 p6 [LWA08] ratio of GR and cortisol decay
rates

tc 69.3 assumed CRH biosynthesis timescale
td 1.44 “⌧” [LWA08] delay in ACTH-activated cortisol

release
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2.4.1 Three types of bistable nullcline structure

To determine how the q-nullcline crosses the c-nullcline, we substitute cs by its equilibrium

period-averaged value hc1(c)i. If we assume a basal input level I = 1, the values of k that

will position the basal q-nullcline to just pass through the left and right bifurcation points

(qL, cL) and (qR, cR) can be found by solving qL,R = q0(1� e�khc1(cL,R)i):

kL =
1

hc1(cL)i
ln

✓
1

1� qL/q0

◆
, kR =

1

hc1(cR)i
ln

✓
1

1� qR/q0

◆
. (2.28)

All possible ways in which the nullclines can cross each other as k is varied are illustrated in

Fig. 2.7.
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Figure 2.7: The possible number of equilibria of the reduced (cs, c) system. (A) A

Type 0 scenario in which kR < kL permits only one nullcline intersection, either one the

lower stable branch, the unstable branch, or the upper stable branch. (B) In this Type I

parameter regime, the c-nullcline is shaped and positioned such that kL < kR. Therefore,

it is possible for the model to exhibit two oscillating stable states provided kL < k < kR.

For k < kL (k > kR), the q-nullcline shifts to the left(right) and the intersection with the

upper(lower) branch of the c-nullcline disappears, leading to only one stable point. (C) A

Type II c-nullcline. For k < kL, there is only one intersection at the lower branch. For all

k > kL there are two intersections.

The specific locations of the bifurcation points, as well as kL and kR, are complicated

functions of all parameters. However, Eqs. 2.28 allows us to distinguish three qualitatively

di↵erent regimes. The first possibility is kL > kR, where there can be at most only one

intersection between the slow and fast nullclines. We denote this as a Type 0 scenario
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(Fig. 2.7A) characterized by having at most a single stable state towards which the system

will always return upon cessation of external stress. In Type 0 situations with intermediate

values of k, the intersection will arise in the unstable branch of the c-nullcline. In this case,

we expect the system to oscillate between the two stable branches of the c-nullcline. Here,

the fast variables a, o, and r will cycle periodically between two oscillating levels.

In order for the two nullclines to intersect three times (twice on stable branches of the

c-nullcline), the q-nullcline must “fit” within the bistable region of the c-nullcline. As shown

in Fig. 2.7, there are two separate subcases of nullclines that intersect twice. If kL < kR, a

value of kL < k < kR would imply that the q�nullcline can intersect both stable branches of

the c-nullcline, leading to two stable solutions. We refer to this case as Type I (Fig. 2.7B).

Another possibility is that the right bifurcation point is beyond the maximum value

q = q0 dictated by the function h(hc1(cR)i). As shown in Fig. 2.7C, the bistable c-nullclines

exhibits only one bifurcation point within the domain of q. The lower branch of the c-

nullclines in this set extends across the entire range of physiological values of q, ensuring

that the q-nullcline will intersect with the lower branch for any value of k. Therefore, to

determine if there are two intersections we only need to check that kL  k is satisfied. In this

Type II case, the system is either perpetually in the diseased low cortisol state, or is bistable

between the diseased and normal states; the system will always be at least susceptible to

low-cortisol disease. Summarizing,

- Type 0: Exactly one solution (one nullcline intersection) exists for the reduced

subsystem. Here, kR < kL and the intersection may occur on the lower or upper stable

branches, or on the unstable branch of the c-nullcline. The system is either permanently

diseased, permanently resistant, or oscillates between normal and diseased states.

- Type I: At least one solution exists. A stable diseased solution exists if k < kL, two

stable solutions (diseased and normal) arise if kL  k  kR, and fully resistant state

arises if k > kR.

- Type II: At least one solution exists. A stable diseased state arises if k < kL while
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both diseased and normal solutions arise if k > kL. A fully disease-resistant state

cannot arise.
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Figure 2.8: Phase diagram in (µc, q0, q1)-space. Regimes for each of the three types of

bistable c-nullclines shown in the parameter space (µc, q0, q1) and (µc, q1) with n = 5. The

uncolored regions correspond to systems that do not exhibit either bistability or oscillations.

With the parameters fixed according to Table 2.1, we will treat k as a control parameter

and exhaustively sweep the three-dimensional parameter space (q0, q1, µc) to determine the

regions which lead to each of the nullcline structural types. In addition, we restrict the

parameter domain to regions which admit oscillating solutions of the full problem. In other

words, parts of both stable branches of the c-nullclines must fall within values of c which

support oscillations in the PA-subsystem (Fig. 2.3). The regions in (µc, q0, q1) space that

satisfy these conditions and that yield each of the types of nullcline crossings are indicated

in Fig. 2.8.

Based on measurements of self-upregulation of CRH secretion during stress [OCM85],

µc = 0.6 is chosen to set the baseline level of the Hill function gc(c = 0) ⇡ 0.4. q1 is

approximated by setting the inflection point of gc(c) to arise at c ⇡ 25, the average value

used by Walker et al. [WTL10]. Assuming c ⇡ 25 is a fixed point of Eq. 2.15 when I = 1

and cs ⇡ hc1(25)i, q0 can be estimated as a root of the right-hand-side of Eq. 2.15. This

choice for the remaining parameters puts our nullcline system into the Type I category that

can exhibit one or two stable states with oscillating (a, o, r) subsystems. We restricted the

analysis of our model to Type I systems.
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Given these considerations, we henceforth chose µc = 0.6, q1 = 0.04, and q0 = 77.8 for

the rest of our analysis. This choice of parameters is motivated in the Additional File and

corresponds to a so-called “Type I” nullcline structure. In this case, three possibilities arise:

one intersection on the lower stable branch of the c-nullcline if k < kL, two intersections if

kL < k < kR (Fig. 2.6A), and one intersection on the upper stable branch of the c-nullcline

if k > kR (Fig. 2.6B). For our chosen set of parameters and a basal stress input I = 1, the

critical values kL = 2.5 < kR = 2.54 are given above by Eq. 2.28.

2.4.2 Bistable limit cycle attractors

2.4.3 Normal stress response

Activation of the HPA axis by acute stress culminates in an increased secretion of all three

main hormones of the HPA axis. Persistent hypersecretion may lead to numerous metabolic,

a↵ective, and psychotic dysfunctions [MS93,McE98]. Therefore, recovery after stress-induced

perturbation is essential to normal HPA function. To model the change in the amount of

synaptic input experienced by the PVN during stress response, we consider time-dependent

synaptic input strength, I(t). Since the majority of neural circuits that project to the PVN

are excitatory [HFM03], we assume external stress stimulates CRH neurons to release CRH

above its unit basal rate and that I(t) = 1 + Iext(t) (Ibase = 1) with Iext � 0. We explore

the stability of the HPA axis by initiating the system in the upper of the two stable points

shown in Fig. 2.9A and by then imposing a 120min external stress input Iext = 0.1. The

HPA axis responds with an increase in the peak level of cortisol before relaxing back to its

original state after stress is terminated (Fig. 2.9B). This transient process is depicted in the

projected (q, c)-space in Fig. 2.9A.

Upon turning on stress, the lumped parameter q and the slow nullcline shift to the right

by 10% since q = q0(1+Iext)h(hc1(c)i) (see Fig. 2.9A). The trajectory will then move rapidly

upward towards the new value of c on the c-nullcline; afterwards, it moves very slowly along

the c-nullcline towards the shifted q-nullcline. After 120min, the system arrives at the “⇥”

on the c-nullcline in Fig. 2.9A. Once the stress is shut o↵ the q-nullcline returns to its original
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position defined by I = 1. The trajectory also jumps horizontally back to near the initial q

value and subsequently quickly returns to the original upper-branch stable point.
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Figure 2.9: Normal stress response. Numerical solution for the response to a 120min

external stress Iext = 0.1. (A) At the moment the external stress is turned on, the value

of (q, c) increases from its initial stable solution at (64.4, 27) to (71, 27) after which the

circulating CRH level c, quickly reaches the fast c-nullcline (black) before slowly evolving

along it towards the slow q-nullcline (blue). After short durations of stress, the system

returns to its starting point within the normal state basin. (B) The peaks of the cortisol

level are increased during stress (red) but return to their original oscillating values after the

stress is turned o↵.

2.4.4 Timing of stress onset and transient response

Here, we show how the transient response of the system during stress is dependent on the

timing of the stress initiation. In previous studies [WWS98,WWL98], changes in corticos-

terone levels in rats were measured in response to stress induced by noise applied at di↵erent

phases of the animals oscillating cortisol cycle. It was observed that the timing of the stress

onset relative to the ultradian phase was crucial in determining the magnitude of corticos-

terone response. Increases in corticosterone levels were markedly higher when noise was

initiated during the rising phase than when initiated during the falling phase.

We can frame these experimental observations mechanistically within our theory. Fol-

lowing the experimental protocol [WWS98,WWL98], we simulate the stress response using

a brief stressor with a duration of 30min. As shown in Fig. 2.10A, an external stress that is
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Figure 2.10: Stress timing and cortisol response. (A) A stressor of duration of 30min

with magnitude Iext = 0.2 was applied mainly over the falling phase of the underlying

cortisol oscillation. The first peak after the stress onset was almost unchanged, but the first

nadir was elevated. (B) The same stressor used in (A) applied during the rising phase led

to a significantly increased subsequent peak while the first nadir was una↵ected. (C) The

trajectory of the system (red) is projected onto the cortisol-ACTH plane. The new limit

cycle of the PA-subsystem corresponding to fixed I(t) = 1.2 is indicated by the blue curve.

During stress, the trajectory of the system is attracted towards the new limit cycle. The

system recovers after making a smaller cycle within the normal limit cycle, reaching a higher

nadir. (D) The trajectory of the system deviates then recovers back through a trajectory

above the normal limit cycle, reaching a higher peak.

applied mostly over the falling phase of the cortisol oscillation results in a higher subsequent

nadir in o(t) than one that is applied predominantly during a rising phase. However, as

shown in Fig. 2.10B, stress applied mainly during the rising phase leads to a higher subse-

quent peak level. This observation is consistent with the results of the experiment on rats
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and can be explained by the dynamics inherent in our model.

The immediate increase in q = q0Ih(cs) associated with the increase in I leads to a rapid

increase in c, as shown in Fig. 2.9. This higher level of circulating CRH shifts the stable

limit cycle of the PA subsystem to a new one with higher minimum and maximum values

of ACTH and cortisol (as shown in Fig. 2.3). This new limit cycle is shown by the blue

curve in Figs. 2.10C,D. Under external stress, a trajectory of the system quickly deviates

and approaches the new limit cycle, but quickly returns to the original limit cycle after

cessation of stress. Thus, depending on the position of the trajectory relative to that of the

new stressed limit cycle, the initial deviation may try to reach the new limit cycle in the

falling or rising cortisol phases as shown in Figs. 2.10C,D. Moreover, if the duration of the

stress is shorter than the period of the inherent oscillation, the trajectory will return to its

original limit cycle before completing a full cycle of the new limit cycle. These properties of

the limit cycle dynamics explain the di↵erence in the level of subsequent peak following the

stress onset depending on the timing of the stress onset.

2.5 Summary and Conclusions

We developed a theory of HPA dynamics that includes stored CRH, circulating CRH, ACTH,

cortisol and glucocorticoid receptor. Our model incorporates a fast self-upregulation of CRH

release, a slow negative feedback e↵ect of cortisol on CRH synthesis, and a delay in ACTH-

activated cortisol synthesis. These ingredients allow our model to be separated into slow and

fast components and projected on a 2D subspace for analysis.

Depending on physiological parameter values, there may exist zero, one, or two stable

simultaneous solutions of both fast and slow variables. For small k, CRH release is weak

and only the low-CRH equilibrium point arises; an individual with such k is trapped in

the low-cortisol “diseased” state. For large k, only the high-CRH normal state arises, ren-

dering the individual resistant to acquiring the long-term, low-cortisol side-e↵ect of certain

stress disorders. When only one stable solution arises, HPA dysregulation must depend on

changes in parameters resulting from permanent physiological modifications due to e.g.,
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aging, physical trauma, or stress itself [McE98, DRM14a]. For example, it has been ob-

served that older rats exhibit increased CRH secretion while maintaining normal levels of

CRH mRNA in the PVN [HTP94]. Such a change could be interpreted as an age-dependent

increase in k, which, in our model, implies that aging makes the organism more resistant

to stress-induced hypocortisolism. Indeed, it has been suggested that prevalence of PTSD

declines with age [AB00,RBB88].

Other regulatory systems that interact with or regulate the HPA axis can also a↵ect

parameter values in our model. Gonadal steroids, which are regulated by another neuroen-

docrine system called the hypothalamic-pituitary-gonadal (HPG) axis, activate the preoptic

area (POA) of the hypothalamus [SSC90,GAT01], which in turn attenuates the excitatory

e↵ects of medial amygdala stimulation of the HPA axis [FCS90]. Thus, low testosterone lev-

els associated with hypogonadism would e↵ectively increase I(t) within our model, shift the

q-nullcline in the (q, c)-space, and in turn increase cortisol levels. One might consider this

as a possible explanation for chronically elevated cortisol levels observed in major depressive

disorder patients who su↵ers from hypogonadism. Although it is beyond the scope of this

paper, one may further investigate role of gonadal hormones, or role of any other interacting

systems, in mediating stress response by considering which parameters would be a↵ected in

our model.

Within certain parameter regimes and for intermediate k, our theory can also exhibit

bistability. When two stable solutions arise, we identify the states with low oscillating levels

of cortisol as the diseased state associated with hypocortisolism. Thus our model implies that

HPA dysregulation may develop without permanent “structural” or physiological changes,

but via “transitions” between two modes of behavior that correspond to basins of attraction

of the dynamical system. How such transitions, or onset of a disease, can be induced by

stressors will be investigated in the next chapter. Besides the magnitude and duration of

the stressor, we will also consider the e↵ect of the relative timing of stress initiation to

the intrinsic oscillation of the system on stress-driven transitions, as its importance was

demonstrated in the normal stress response simulations.
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2.6 Appendix

2.6.1 Nondimensionalization

Our equations are nondimensionalized in a manner similar to that used by Walker et al.

[WTL10]:

t = dOT, cs = Cs/C̄s, c = (µRpR)
�1dOC,

a = (µRpRpA)
�1d2OA, r = (µRpR)

�1dOR, o = (µRpRpApO)
�1d3OO, (A1)

Here, cs, c, a, r, o are the dimensionless versions of the original concentrations Cs, C, A,R,O,

respectively. Cs is normalized by C̄s, which denotes the typical maximum amount of re-

leasable CRH in the physiological range. Upon using these variables, the dimensionless

forms of Eqs. 2.9-2.13 are expressed in Eqs. 2.14-2.18. The parameters qi, pi are dimensionless

combinations conveniently defined to be analogous to those used by Walker et al. [WTL10]:

tc = dOTC , td = dOTd, q0 = pC/(µRpR),

q2 = dC/dO, p2 = µ2
Rp

2
RpApO/(d

4
OKA), p3 = dA/dO, (A2)

p4 = d8OK
8
R(pApO)

�2(µRpR)
�4, p5 = (1� µR)/µR, p6 = dR/dO.

Using these scalings, we arrive at the dimensionless Eqs. 2.14-2.19.

2.6.2 Parameter estimates

Many of the numerous physiological parameters in our model can be estimated or constructed

from previous studies on the HPA axis. For example, as shown in Fig. 2.11, the parameters

forming the function c1(o) are derived from fitting to data on adrenalectomized male rats

[Wat05]. From the fitting, we estimate the baseline level c̄1 ' 0.2, and the decay rate

b ' 0.6 [Wat05]. Furthermore, the dimensionless parameters p2, . . . , p5 and td will be fixed

to those used in Walker et al. [WTL10]: p2 = 15, p3 = 7.2, p4 = 0.05, p5 = 0.11, p6 = 2.9
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Figure 2.11: Fitting c1(o) to rat data. Nondimensionalized data taken from Watts

[Wat05] and fitted using the form for c1(o) given in Eq. 2.19. Cortisol levels were arbitrarily

rescaled according to 125ng/ml = 3.

and td = 1.44 (Td = 15 min). Although it is not possible to determine all of the remaining

parameters from data, we will use reasonable estimates. The half-life of cortisol was estimated

to be about 7.2min [WWS98] while the half-life of CRH has been estimated to be about

4min [SAG84]. Therefore, q2 = dCd
�1
O ⇡ 1.8. Of the remaining parameters (n, µc, q0, q1, k),

the dependence on n will turn out to be quantitative so we henceforth set n = 5. These

estimated parameters are listed in Table 2.1.

Even though one expects the values of these e↵ective parameters to be highly variable,

we fix them in order to concretely investigate the mathematical structure and qualitative

predictions of our model. The parameters µc, q0, q1, and k remain undetermined; however, it

is instructive to treat k as a control parameter and explore the nullcline structure in µc, q0, q1

parameter space.
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CHAPTER 3

The HPA axis and PTSD

3.1 Introduction

As introduced in the previous chapter, the hypothalamic-pituitary-adrenal (HPA) axis is

a neuroendocrine system that regulates the secretion of cortisol by the adrenal cortex in

response to stressors. In order to understand how the HPA axis functions, especially in

the context of post-traumatic stress disorder (PTSD), a number of challenge tests have been

developed. These tests typically involve measuring changes in key endogenous hormone levels

after the administration of their synthetic analogues in both PTSD and normal subjects. In

this paper, we will interpret the outcomes and dynamics of the challenge tests through

mechanistic models of HPA axis dynamics.

Cortisol (a type of glucocorticoid steroid hormone) is a “stress hormone” that regulates

or supports a variety of important cardiovascular, metabolic, immunologic, and homeostatic

functions [WBB16]. As typical for hormones, maintaining cortisol concentrations within

appropriate ranges during both stress response and in the basal state is essential for nor-

mal physiological function. A stress response is typically initiated when neurons in the

paraventricular nucleus (PVN) of the hypothalamus receive increased synaptic inputs from

various regions of the brain, each containing information about certain types of stressors.

These synaptic inputs induce the PVN neurons to release corticotropin-releasing peptide

hormone (CRH) into the portal blood vessel connecting the hypothalamus to the anterior

pituitary. Released CRH travels to the anterior pituitary and activates the secretion of

adrenocorticotropin hormone (ACTH). ACTH travels via the bloodstream to the adrenal

cortex, located above the kidneys, where it stimulates cortisol secretion. Finally, cortisol
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travels back to both the pituitary and the hypothalamus to suppress their activities, com-

pleting the negative feedback loop and returning cortisol to a basal level. Both ACTH and

cortisol exhibit ultradian (hourly) and circadian (daily) oscillations. The basic interactions

regulating the HPA axis dynamics are summarized in Fig. 3.1. When the HPA axis is dys-

regulated, cortisol may fail to return to basal levels, disrupting other functions and causing

comorbidities. For example, excessive cortisol is associated with major depressive disorder

(MDD) [GG02] while low cortisol is reported among PTSD patients. Clinical observations

that confirm lower than normal cortisol levels in the urine of PTSD patients collected over a

24-hour period [Mas68,YSN90,YKB95] and in blood samples drawn at 15 minutes intervals

over a 24 hours [BVK07]. In one measurement, cortisol levels collected in urine of PTSD

subjects was 40.9 ± 12.3 µg/day and appreciably lower than the 62.8 ± 22.2 µg/day collected

in urine of normal subjects [YSN90]. Blood samples also showed that plasma cortisol levels

were consistently lower among PTSD patients over the 24-hour period and significantly lower

in the afternoon [BVK07].

Despite the general trend of lower cortisol under PTSD, a few contradicting reports may

be found in the literature. Most of them are surveyed in a recent meta-analysis [MRV07].

For example, urine measurements in [RLW01] showed a marginally significant increase of

cortisol in premenopausal women with PTSD; the basal cortisol level in [YGY04a] showed

no di↵erence between PTSD and control groups. The overall pooled estimate of the mean

cortisol level from the meta-analysis [MRV07] indicated cortisol was lower within the PTSD

group (standardized mean di↵erence= �0.12 with p-value of 0.24), but concluded that the

di↵erence was not significant. On the other hand, the di↵erence between PTSD and control

subjects was shown to be significant in some subgroups, such as females and those exposed

to certain types of trauma [MRV07]. Most importantly, the meta-analysis found that cortisol

levels were significantly lower among PTSD patients when compared to subjects who had not

been previously exposed to trauma (standardized mean di↵erence = �0.35 with p-value of

0.007). One of the goals of our study is to propose a theory to explain how trauma exposure

can lead to altered cortisol dynamics and understand why certain subgroups are likely to

express lower post-traumatic cortisol levels.
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Figure 3.1: Schematic of the HPA axis. (A) Stress is processed in the central nervous

system (CNS) and a signal is relayed to the paraventricular (PVN) in the hypothalamus

to activate CRH secretion into the hypophyseal portal system. (B) CRH di↵uses to the

pituitary gland and activates ACTH secretion. ACTH travels down to the adrenal cortex

to activate cortisol (CORT) release. Cortisol inhibits both CRH and ACTH secretion to

down-regulate its own production, forming a closed loop. (C) Negative feedback of cortisol

suppresses CRH synthesis in the PVN, ultimately reducing the amount of stored CRH and

its subsequent release. External inputs such as stressors and circadian inputs directly a↵ect

the release rate of CRH at the axonal terminal. (D) CRH released by the PVN stimulates

the protein kinase A (PKA) pathway to activate release of CRH by the anterior pituitary,

contributing to ACTH secretion in a auto/paracrine fashion.
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In previous chapter, we developed a dynamical model of the HPA axis to describe the

interactions among the key hormones mentioned above and the glucocorticoid receptor (GR)

that mediates feedback activity of cortisol. Here, we consider a self-upregulation process of

CRH through the auto/paracrine function in the anterior pituitary for a more accurate

description of the physiology. This modification of the original model does not change its

overall qualitative features. A detailed comparison between the original mode and the current

model is included in the Appendix. For appropriate sets of parameters, our model exhibits

bistability with two attracting limit cycles over which cortisol and ACTH oscillate with an

ultradian (hourly) rhythm. Of the two distinct oscillating states, the one with lower averaged

cortisol level was characterized as a diseased state and the one with higher cortisol level was

associated with the normal state. In previous chapter, all parameters were fixed except for

the one representing the net synaptic input experienced by the PVN neurons.

In reality, many of parameters may vary due to aging [GM14], life experience [DRM14b],

gender di↵erences [SSW01,UCO06], the use of medication [SSH08], and especially in response

to injuries. For example, selective serotonin reuptake inhibitor (SSRI) treatment was shown

to increase hippocampus volume [TDD14]. This may in turn modulate the tonic inhibition

exerted by the hippocampus on the PVN and subsequently change the baseline synaptic

input to CRH neurons in the PVN. On the other hand, traumatic brain injury (TBI) can

produce di↵use axonal injuries (DAI) [SSL14] that can a↵ect the synaptic strength or activa-

tion pattern of the hypothalamus [MSS02]. Recent studies on the influence of maternal HPA

function in neonatal rats have suggested that early life experience can have long-lasting im-

pacts on responsivity of HPA axis activation [DRM14b]. Finally, the strength of the negative

feedback of cortisol in the pituitary is hypothesized to be enhanced under PTSD [Yeh02].

These examples are only a few of many conditions that may be associated with anatomi-

cal/physiological changes that can be interpreted, and thus incorporated, as alterations in

the parameters of our model [KDC16].

Here, we briefly analyze the nullcline structure of the new model as a function of pa-

rameters and analyze the conditions under which normal-diseased bistability arises, whether

or not stress-induced transitions are possible between the bistable states, and whether or
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not the experimentally observed ultradian oscillations can be reproduced. We also system-

atically investigate how the dynamics depend on relevant parameters. Understanding how

changes in parameters a↵ect transient and long-term behavior of the HPA axis could guide

the diagnosis and therapeutic strategies. We specifically include perturbations that represent

existing pharmacological challenge tests used to assess HPA axis function.

For example, dexamethasone (DEX) has been used as an exogenous steroid that sup-

presses ACTH release in the pituitary. DEX suppression tests have shown that the relative

decrease in cortisol is greater in PTSD patients than those in a control group. The current

viewpoint is that the greater decrease in cortisol seen in PTSD subjects is due to an enhanced

negative feedback of cortisol. Within a mathematical framework, this e↵ect would typically

be modeled by changing the physiological parameters describing the negative feedback. Our

model allows for a novel mechanism: cortisol suppression may be due to transitions between

bistable steady states without necessarily invoking parameter changes.

Moreover, we demonstrate how our mathematical analysis can help address previously

unresolved observations of challenge experiments. ACTH stimulation tests performed to

assess adrenal sensitivity in PTSD subjects showed slightly increased cortisol response to

ACTH administration among PTSD subjects [RDP09]. This observation contradicts the

authors’ speculation of decreased adrenal sensitivity in PTSD subjects. We show that this

experimental result is in fact consistent with the decreased adrenal sensitivity hypothesis

and emphasize that the interplay between all components of the HPA axis must be taken

into account to fully understand its overall dynamics.

Finally, we investigate how transitions between the normal and diseased states may be

induced within our model. The synaptic input of the PVN is varied over time with di↵erent

duration and magnitude to understand how stress-driven transitions between normal and

diseased states can arise when a two-stage negative feedback (of cortisol on CRH) mechanism

is incorporated. The possibility of such transitions lead to a number of novel features in the

overall system. Within our model, prolonged stress-induced secretion of CRH can trigger

transitions between normal and diseased states, suggesting a possible mechanism leading to

the emergence of a low cortisol state after a traumatic experience. In this picture, disruptions
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to the HPA axis could be alleviated by externally controllable inputs that lead to transi-

tions between the bistable states, rather than by permanently altering specific physiological

parameters.

Our model provides an alternative hypothesis on the origin of the lowered cortisol levels

of PTSD patients, in which the onset of the disease is described as a transition from one basin

of attraction to another. However, the hypothesis does not necessarily exclude the current

view in which the dysregulated hormone dynamics is attributed to change of parameters of

the system. To further validate our model and its implications, we propose a novel challenge

test that could further assess and discriminate the two views.

3.2 Parameters and long-term dynamics

Our nondimensionalized model of the HPA axis based on the interactions shown in Fig. 3.1

consists of a system of delay di↵erential equations as follows

dcs
dt

=
1

tc
((c̄1 + e�bo)| {z }

c1(o)

�cs), (3.1)

dc

dt
= q0I(t) (1� e�kcs)| {z }

h(cs)

+ gc,max
(q1c)n

1 + (q1c)n| {z }
gc(c)

�q2c, (3.2)

da

dt
= c

1

1 + p2(or)| {z }
fa(or)

�p3a, (3.3)

dr

dt
=

(or)2

p4 + (or)2
+ p5

| {z }
gr(or)

�p6r, (3.4)

do

dt
= a(t� td)� o, (3.5)

where cs represents the amount of stored CRH at the axonal terminal of CRH secreting

neurons in the PVN, c is the level of circulating CRH, a defines the level of circulating
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ACTH, r describes the level of available glucocorticoid receptor in the anterior pituitary,

and o is the level of circulating cortisol. In Eqs. 3.3 and 3.4, the cortisol-receptor complex is

assumed to form and dissociate under fast dynamics and this level will be approximated as

that of steady-state by the product o⇥ r. All parameters are listed in Table 3.1.

The introduction of cs is the most distinctive feature of our model in comparison to

others [GAG07,WTL10,AVO13b,SRD12] and allows us to more realistically model aspects

of CRH dynamics that occur on di↵erent timescales. The two variables, cs and c, distinguish

the two stages of the CRH secretion process: (i) the “slow” synthesis and packaging process

of CRH peptides as regulated by cortisol and (ii) the “fast” release process of CRH into

the median eminence governed by synaptic activities and nongenomic e↵ects of cortisol.

The constant tc reflects the slow timescale (minutes to hours) over which the amount of

stored CRH, cs, relaxes towards a target value c1(o) relative to the timescale of CRH release

(milliseconds). The target value c1(o) is set by circulating cortisol levels o(t) and embodies

its negative feedback on CRH synthesis.

The two state variables, cs and c, are coupled by Eq. 3.2 through a saturating and

monotonically increasing function h(cs) = 1� e�kcs so that the average release rate of CRH

increases with more stored CRH available. Self-upregulation of CRH release by the hy-

pothalamic PVN neurons was included in our previous model [KDC16] and was based on an

experiment [OCM85] that showed that when CRH is injected into the third ventricle, PVN

neurons increase their rate of CRH release into the median eminence. Thus, this experiment

indicates self-upregulation only if the CRH released in the median eminence directly and

immediately increases the CRH level in the cerebrospinal fluid (CSF) filling the third ven-

tricle. This is certainly a plausible mechanism. Yet, since a direct connection between the

two pools of CRH is not yet well established, we improve our model by considering another

relevant source of CRH activity.

Other measurements [GC98] have demonstrated that CRH is also produced and secreted

by the pituitary itself and that ACTH secretion in the anterior pituitary is upregulated in an

auto/paracrine fashion by CRH secretion. We correspondingly revise the model presented

in [KDC16] and in Eq. 3.2 of the current work include both CRH secretion due to the
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stimulation of the PVN neurons, as modulated by the synaptic input I(t) and the amount

of stored CRH cs, and CRH secretion due to the auto/paracrine activity of the anterior

pituitary, as described by the increasing Hill-type function gc(c). Its amplitude gc,max can be

estimated by isolating the self-upregulated CRH activity of the pituitary [GC98]. Together

with the decaying term, our new Eq. 3.2 describes the time rate of change of the total CRH

concentration that can influence the anterior pituitary.

To include changes in synaptic input under stress, I(t) is modeled as a time-dependent

parameter I(t) = I0 + Iext(t), where I0 is the minimum basal input level and Iext(t) is the

increase in the synaptic input induced by external stress.

The concentrations of ACTH a, cortisol in circulation o and the availability of glucocor-

ticoid receptor GR in the pituitary r obey Eqs. 3.3,3.4 and 3.5, respectively, and comprise

the pituitary-adrenal (PA) subsystem, in which c can be viewed as a control parameter.

The nonlinear multistate dynamics are defined by the decreasing and saturating regulation

terms fa(or) and gr(or), respectively. The characteristic timescale constant td is normalized

by the decay rate of cortisol and is proportional to the time required for cortisol synthesis

and release by the adrenal cortex after stimulation by ACTH. More details of the model,

its dimensional form, and the choice of the functional forms used in Eqs. 3.1-3.5 can be

found in Appendix 3.7.1 and in [KDC16]. A comprehensive list of all parameters and their

descriptions is included in Table 3.1.

[WTL10] showed that the PA subsystem (Eqs. 3.3-3.5) exhibits a limit cycle for a range

of fixed time delay, td. For concreteness, we consider a time delay of 15 minutes (td =

1.44) for the rest of this paper. Moreover, the amplitude and the frequency of the limit

cycle was shown to depend continuously on c, so that the limiting behavior of the PA

subsystem could be unequivocally determined by the value of c. The separation of the two

timescales – the faster timescale of the (a, r, o) limit cycle in the PA subsystem and the

slower timescale governing the CRH synthesis process – allows us to study the dynamics

of the entire system (Eqs. 3.1-3.5) by confining our analysis to the reduced system on the

(cs, c)-phase plane. This means that the long-term behavior of the entire system can be

characterized by the structures of the nullclines of cs and c projected onto the (cs, c)-plane.

41



In particular, for certain sets of parameters, the nullcline structure exhibits bistable fixed

points on the (cs, c)-plane that can be characterized as the diseased and normal modes of

the PA subsystem, each marked by ultradian oscillations and distinct mean cortisol levels.

None of the earlier models [SKO00,SJB06,GAG07,WTL10,AVO13b,SRD12,GTO14,BO17]

has captured both multistability and endogenous ultradian oscillations. More details on

bifurcation and fast/slow analysis of the previous models can be found in [KDC16] and

[Ber15].

There is no consensus on which mathematical model is mechanistically the most accu-

rate. [HRW15] selected five pulications [VAO11,SRD12,AVO13b,JSC05,CHF09] to compared

model predictions with cortisol and ACTH levels obtained from 17 healthy individuals. Mea-

sured ACTH levels were substituted into the equation for cortisol for each of the models,

and cortisol data was generated. Later, the role of cortisol and ACTH was reversed: mea-

sured cortisol levels were used to numerically determine ACTH. Simulated data and actual

measurements were then compared.

None of the five models analyzed provided good fit with data: the best overall model

by [AVO13b] still yielded a di↵erence of an order of magnitude between simulations and

data. It also did not exhibit ultradian oscillations. Attempts at better calibrating the model

for a more accurate description of the circadian rhythm yielded some improvement, with

the mean percentage error decreasing from 94% to 66%. It is important to note that when

computing the goodness of fit on the data of 17 subjects, parameters were fixed at the original

values provided by the authors. Individual di↵erences and/or variations in environments

were not taken into account. These attempts at matching models with actual data show

how challenging the task actually is. Many variables must be taken into account, including

personalized parameter sets, circadian and ultradian rhythms, external inputs, and other

factors, some of which may still be unidentified.

The focus of our work is not to exactly match data to our model, but rather to provide a

mechanistic framework to better understand the interplay between various components of the

HPA axis and its overall qualitative behaviors. Our goal is to gain insight on how variations

in parameters may a↵ect the HPA equilibrium for each individual, and how transitions may
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be induced between multiple equilibria if they exist. Moreover, truly validating our model

would require extensive data measured both before and after exposure to trauma. Such

data do not exist to best of our knowledge, and we hope that our work could motivate new,

specific measurements that may yield a complete picture of the HPA axis and its dynamics.

In the following sections we outline the analysis of the present model described by

Eqs. 3.1-3.5.

3.2.1 Parameter dependencies

In this section, we investigate how the model (Eqs. 3.1-3.5) behaves as its parameters are

varied. This is important since some of the ones used in previous studies [WTL10,KDC16]

were estimated from insu�cient data or arbitrarily selected. We will first examine the

robustness of the long-term behavior of our model to changes in individual parameters.

Since the long-term behavior of the model can be characterized by the nullcline structures of

Eqs. 3.1-3.5 projected onto the (cs, c)-plane, in the following subsections we will study how

parameter changes a↵ect the cs- and c-nullclines. Descriptions of each parameter and their

e↵ects on the nullclines are listed in Table 3.1.

3.2.2 Nullcline analysis: c-nullcline

The c-nullcline is defined as the set of (cs, c) that satisfies the following relation (obtained

by setting Eq. 3.2 equal to zero):

0 = q0Ih(cs) + gc(c)� q2c, (3.6)

where

h(cs) = 1� e�kcs and gc(c) =
gc,max(q1c)n

1 + (q1c)n
. (3.7)

There are a total of seven parameters in the constraint defining the c-nullcline in Eq. 3.6:

q0, q1, q2, I, gc,max, n, and k. Our first approach is to study how time-dependent changes in
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Table 3.1: Parameters and their e↵ects on nullcline structure

Parameter Description E↵ects on nullclines (when increased)

q0 maximum release rate of CRH
in basal state

an upward shift of the upper branch and
a leftward shift of both knees of the c-
nullcline.

q1 circulating CRH for half-
maximum self-upregulation

an upward shift of the upper branch and
a leftward shift of both knees of the c-
nullcline.

q2 ratio of CRH and cortisol de-
cay rates

a downward shift of the upper branch
and a rightward shift of both knees of
the c-nullcline.

gc,max maximum auto/paracrine ef-
fect of CRH in the pituitary

a rightward shift of the lower and upper
knee of the c-nullcline and a upward shift
of the upper branch.

n Hill coe�cient of gc(c) de-
scribing the self-upregulation
of CRH

a leftward shift of the left knee and a
rightward shift of the right knee of the
c-nullcline

k relates stored CRH to CRH re-
lease rate

a leftward shift of the middle branch of
the c-nullcline and an upward shift of the
lower branch of the c-nullcline

b relates cortisol to stored CRH
level

a leftward shift of the middle branch of
the cs-nullcline

p2 (or)-complex level for half-
maximum negative feedback

a rightward shift and elongation of the
oscillatory regime of the cs-nullcline.

p3 ratio of ACTH and cortisol de-
cay rates

a rightward shift and elongation of the
oscillatory regime of the cs-nullcline.

p4 (or)-complex level for half-
maximum positive feedback on
r production

elongation of the oscillatory branch of
the cs-nullcline.

p5 basal GR production rate by
pituitary

shortening of the oscillatory branch of
the cs-nullcline.

p6 ratio of GR and cortisol decay
rates

a rightward shift and shortening of the
oscillatory branch of the cs-nullcline.

td delay in the adrenal cortex in
response to ACTH

elongation of the oscillatory branch of
the cs-nullcline [WTL10].

the synaptic input I a↵ect the dynamics of the system. Since I and q0 form a product,

changes in I and q0 are equivalent; therefore we only consider changes q0, q1, q2, µc, n, and k.

In Fig. 3.2 we vary one parameter at a time while all others are kept fixed at nondimensional

reference values q0 = 28.0, q1 = 0.04, q2 = 1.8, I = 1, gc,max = 42, n = 5 and k = 2.83, as

detailed in [KDC16] and in Appendix 3.7.1.
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Increasing q0 narrows and shifts the bistable region in the (cs, c)-plane towards lower

values of cs, while extending the nullclines to larger values of c (Fig. 3.2A). When q1 is

increased, the bistable region also narrows and shifts toward lower cs values, but the range of

the corresponding c values on the nullclines do not change significantly (Fig. 3.2B). Increasing

q2 (Fig. 3.2C) appears to have the opposite e↵ect: the bistable region is widened and the

range of corresponding c values decreases. This behavior is expected since it can be shown

that the roots of Eq. 3.6 depend on the ratio q0/q2. When gc,max is increased, the upper

branch of c-nullcline shifts towards higher values of c and the bistable regime moves towards

the lower cs values (Fig. 3.2D). The Hill coe�cient n of gc(c) (in Eq. 3.2) also exhibits a

saddle-node bifurcation at a critical point 4 < n⇤ < 5 (Fig. 3.2E). Once bistability emerges,

the upper and lower knees of the c-nullcline shift towards lower and higher values of cs as

n increases. The bistable regime in cs is elongated as the two knees shift in the opposite

direction from each other. Lastly, increasing k (Fig. 3.2E) shifts the bistable region towards

lower cs values without appreciably changing the values of c over which bistability exists.

By understanding how each parameter a↵ects the c-nullcline, we can identify and predict

which parameter changes disrupt HPA axis function. For example, we predict that increas-

ing k will make the lower cortisol state less accessible since the range of cs covered by the

lower branch of the c-nullcline narrows as k increases. Furthermore, we can use our results

to interpret experimental reports of perturbations to the HPA axis. Any physiological dis-

ruption observed or associated with changes in long-term HPA function can be mapped to

relevant parameter changes in our model.

3.2.3 Nullcline analysis: cs-nullcline

The cs-nullcline is defined as the set of (cs, c) that satisfies the relation (obtained by setting

Eq. 3.1 equal to zero):

0 = c1(o)� cs. (3.8)
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Figure 3.2: E↵ects of changing parameters on the c-nullcline. One of the nondimen-

sionalized six parameters that a↵ect the c-nullcline is varied over a range of values (from

80% to 120% of their reference values) and the corresponding c-nullclines are plotted. The

dashed segment of the nullcline indicates the unstable steady states. Darker color indicates

a greater value of the corresponding parameter. When not varied, parameters are set to the

reference values q0 = 28.0(I = 1), q1 = 0.04, q2 = 1.8, gc,max = 42, n = 6 and k = 2.83. (A)

q0 is varied from 22.4 to 33.6. (B) q1 is varied from 0.032 to 0.48, (C) q2 is varied from 1.44

to 2.16.(D) gc,max is varied from 33.6 to 50.4. (E) n is varied from 1 to 8. A saddle-node

bifurcation occurs between n = 4 and n = 5. (F) k is varied from 2.26 to 3.40.

Eq. 3.8 does not directly relate cs to c but couples the two through o, which exhibits oscil-

latory behavior for physiological values of c. To directly relate c to cs, we average o over

one full cycle of its oscillation, the values of which are fully determined by c through the PA

subsystem as illustrated in the previous section. The nullcline relation (Eq. 3.8) can thus be

approximated and rewritten as

0 = hc1(c)i � cs, (3.9)

where
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hc1(c)i ⌘
Z 2⇡

0

c1(o⇤(✓; c))
d✓

2⇡
= c̄1 +

Z 2⇡

0

e�bo⇤(✓;c) d✓

2⇡
. (3.10)

The term o⇤(✓; c) represents the trajectory of o(t) with phase ✓ along the limit cycle of the

PA subsystem defined by a given c. Therefore the cs-nullcline depends on the dynamics of

the PA subsystem (Eqs. 3.3-3.4) and its parameters b, p2, p3, p4, p5, and p6. We can now vary

one of these parameters while fixing the others to [KDC16,WTL10]: b = 0.6, p2 = 15, p3 =

7.2, p4 = 0.05, p5 = 0.11, and p6 = 2.9 as illustrated in Fig. 3.3. The part of the cs-nullcline

that is approximated by averaging c1(o) over a full period of the limit cycle is indicated by

dashed segments.

Fig. 3.3A shows that increasing b shifts the cs-nullcline to the left in the (cs, c)-plane.

This shift towards lower values of stored CRH, cs, is expected since higher b corresponds to

stronger cortisol-induced suppression of the CRH synthesis. On the other hand, as shown in

Figs. 3.3B and C, increasing p2 or p3 lengthens the oscillatory regime of the cs-nullcline and

shifts it towards the right. Increasing p4 elongates the oscillatory regime while increasing

p5 shrinks it. In both cases, a relatively small horizontal shift of the cs-nullcline is observed

(Figs. 3.3D and E). Finally, increasing p6 increases the upper limit of c of the oscillatory

branch and shifts it to smaller values of cs, as shown in Fig. 3.3F.

The long-term behavior of the HPA axis to corresponding parameter changes are now

mapped out. We can use these results to predict what long-term changes would emerge

under various pathological conditions, as illustrated in the next section. Note that many

physiological disruptions may alter more than one parameter and that changing multiple

parameters simultaneously can lead to a qualitatively di↵erent deformation of the cs- and

c-nullcline. The e↵ect of multiple parameter changes is beyond the scope of this paper.

However, we can easily extend our analysis to address the issue by altering all the parameters

of interest when generating the nullclines.
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Figure 3.3: E↵ect of changing parameters on cs-nullcline One of the six parameters

that a↵ect the cs-nullcline is varied over a range of values (from 80% to 120% of their

reference values) and corresponding cs-nullclines are plotted. The dashed segment of the

nullcline indicates the time-averaged value of cs over the limit cycle corresponding to the

value of c (Eqs. 3.9 and 3.10). Darker color indicates a greater value of the corresponding

parameter. When not varied, these parameters are set at the reference values: td = 1.44, b =

0.6, p2 = 15, p3 = 7.2, p4 = 0.05, p5 = 0.11, and p6 = 2.9. (A) b is varied from 0.48 to 0.71

(B) p2 is varied from 1.5 to 27, (C) p3 is varied from 3.6 to 7.92.(D) p4 is varied from 0.04

to 0.06. (E) p5 is varied from 0.09 to 0.14. (F) p6 is varied from 2.3 to 3.8.

3.3 Pharmacological Challenge Tests

In the previous section, we have shown that the long-term dynamics of the system are

determined by the crossing of the c- and cs-nullclines defined by Eqs. 3.6 and 3.9. Thus,

we only need to understand how the intersections change upon varying model parameters

to study how alterations in parameters will a↵ect the system. Having studied how the

HPA axis responds to parameter changes, we use our model to better understand a series

of pharmacological challenge tests used to assess HPA function in PTSD. We re-examine

some current interpretations by comparing them to our predictions and uncover unforeseen

intricacies underlying the response of the HPA axis. Our analysis allows us to present novel,

alternative interpretations of the observed experimental data. Indeed, this is one the main
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virtues of mathematical models as they allow to probe complex, non-linear dependencies and

to craft non-trivial predictions. Although the model presented in Eqs. 3.1-3.5 can be used

to study any condition or experimental protocol that involves parameter alterations in the

HPA axis, we will focus, in this paper, on experiments related to PTSD.

3.3.1 Dexamethasone suppression test (DST)

The dexamethasone suppression test (DST) is a pharmacological challenge test typically

used to identify the cause of abnormal cortisol levels observed in diseases such as Cushing

syndrome. In DST, a cortisol analogue (dexamethasone, DEX) is used to probe the negative

feedback of cortisol on ACTH secretion in the pituitary. In particular, some studies have

used DST to test whether lower basal cortisol levels in PTSD result from an enhanced neg-

ative feedback of cortisol on pituitary activity. DEX is a synthetic glucocorticoid compound

that suppresses ACTH secretion, and subsequently cortisol secretion, when it binds to glu-

cocorticoid receptors (GR) in the pituitary [CKK00]. In DEX suppression studies, cortisol

levels are measured pre-DEX and post-DEX and used to calculate the percent suppression

of cortisol, defined as

s =
pre-DEX cortisol - post-DEX cortisol

pre-DEX cortisol
⇥ 100. (3.11)

The mean percent suppression of cortisol s was shown to be greater in PTSD subjects

(s = 83%) than in the control group without PTSD (s = 74%) [YGG04]. The di↵erence in

s was interpreted as due to heightened sensitivity of the negative feedback of cortisol in the

pituitary [SYK97, YGY04b]. This interpretation implicitly assumes that the suppression

e↵ect of cortisol (and dexamethasone) is directly proportional to its concentration. The

linear relationship is convenient but neglects the contribution of other components of the

system that can interact with the suppression activity to yield a more complex, possibly

non-linear relationship. We use our mathematical model to examine how exogenous DST

a↵ects the dynamics of the HPA axis. We model DEX administration by replacing o(t) with
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o(t) + oexo(t) in Eqs. 3.3 and 3.4 to yield

dcs
dt

=
c1(o)� cs

tc
, (3.12)

dc

dt
= q0I(t)h(cs) + gc(c)� q2c, , (3.13)

da

dt
=

c

1 + p2((o+ oexo(t))r)
� p3a, (3.14)

dr

dt
=

((o+ oexo(t))r)2

p4 + ((o+ oexo(t))r)2
+ p5 � p6r, (3.15)

do

dt
= a(t� td)� o, . (3.16)

Here oexo(t) denotes the concentration of circulating DEX converted to equivalents in cortisol

concentrations based on the relative potency of DEX from [Ste97]. Note that we do not

include DEX in Eq. 3.12 since it was shown that DEX retention is much lower in the brain

[SKR05] and that DEX does not a↵ect GR in brain tissue [CKK00]. In a typical DEX

challenge test, cortisol levels are measured in the morning (8 am) to obtain basal pre-DEX

cortisol levels. DEX is then orally administered, typically at night (11 pm), and post-DEX

cortisol levels are measured again the following morning (8 am). We assume circulating DEX

levels follow a simple pharmacokinetic law

doexo
dt

= ⇧o(t)� p7oexo, (3.17)

where p7 represents the decay rate of DEX relative to the decay rate of cortisol. For simplicity,

we use a rectangle function for ⇧o(t). The width (30min) of ⇧o(t) is estimated based on the

at peak concentration of DEX [PRS98] and the height (2 in nondimensionalized unit of o)

is set to match the dosage used in the experiment [YGG04]. Based on the half-life of DEX

(⇠ 240min [PRS98]) and cortisol (⇠ 7.2min [LWA08]), we set p7 = 0.03.

The numerical solutions of cortisol levels during DEX suppression test within our model
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(Eqs. 3.12-3.16) are shown in Figs. 3.4A and B for normal and PTSD subjects, respectively.

The parameters used in both figures are identical: normal and PTSD subjects are character-

ized solely by which one of the two stable states they initially reside in (cs, c) space. Initial

(cs, c) values are plotted in Fig. 3.4C and labeled Npre and Dpre for normal and PTSD sub-

jects. We take the average of o over a full cycle of oscillation to estimate pre-DEX cortisol

values hsiN = 63% and hsiD = 73% for normal and PTSD subjects. These predicted values

are in qualitative agreement with the experimentally reported percent suppression sN = 74%

and sD = 83% for normal and PTSD subjects [YGG04]. Due to the oscillatory behavior of

cortisol in the basal sate, the percent suppression depends on the phase of the oscillation

at the time of pre-DEX measurement. For example, if the pre-DEX measurement time is

set near the peak of the oscillations, our model predicts sN = 76% for normal subjects and

sD = 81% for PTSD subjects. For a more accurate comparison between our predictions and

data, the timing of DEX administration with respect to the phase of the oscillating cortisol

levels should be carefully controlled in experiments.

To understand the behavior of our HPA axis model under DEX administration, we ob-

serve how oexo(t) a↵ects the (cs, c)-nullcline structure. Since oexo(t) contributes only to the

PA subsystem (Eqs. 3.3-3.5), it only a↵ects the cs-nullcline. The latter is shown in Fig. 3.4C

(dark blue) near the time of measurement, 9 hrs from DEX administration. Normal and

diseased states initially resting at the intersection of the cs- and c-nullclines slowly evolve

towards the shifted intersections (labeled Npost and Dpost for normal and PTSD subjects,

respectively) defined by the new cs-nullcline under DEX administration.

We use the decrease in fa(or) = 1/(1 + p2(or)) in Eq. 3.3 due to DEX administration as

a measure of suppression of pituitary activity under the challenge test. Recall that fa(or) is

a modulating factor of the ACTH production rate and represents the negative feedback of

the cortisol on the pituitary. For the pre-DEX value of fa(or), we take the period-averaged

value of or, denoted horiN and horiD for normal and diseased initial states, respectively. Note

that the new shifted cs-nullcline under DEX administration is not associated with oscillatory

behavior and the new intersections represent non-oscillating equilibria. The cortisol levels

depicted in Figs. 3.4A and B confirm that cortisol oscillations cease under DEX suppression,

51



which has not yet been experimentally tested. The non-oscillating equilibrium value for

o and r are denoted o⇤↵ and r⇤↵, where ↵ = N,D indicate normal and PTSD states. In

Fig. 3.4C, pre-DEX values of fa(hori↵) and post-DEX values of fa((o⇤↵+ oexo)r⇤↵) are plotted

for normal (↵ = N) and PTSD (↵ = D) subjects. The decreases in fa(or) denoted as �fa,↵

in Fig. 3.4D indicate that suppression is greater for PTSD subjects than for normal subjects,

despite the comparable change in or values. This is because of the form of fa(or): decreases

in fa(or) due to increases in o are greater for lower initial values of or. In other words, the

state with low initial or value will experience greater suppression as o increases to o + oexo

since fa(or) is convex (fa(or)00 > 0) and decreasing (fa(or)0 < 0) for o � 0 and r � 0.

Our model provides an additional interpretation of DEX administration results in PTSD

patients. The enhanced suppression e↵ect on cortisol may be due to the intrinsic dynamics

rather than parametric changes; within our model, the negative feedback e↵ect is dependent

on the state of the system at the time of DEX administration, which in turn depends on

dynamics and history of the system. Thus, increased suppression of cortisol levels in PTSD

subjects during DEX administration may simply indicate that PTSD subjects were in the

low cortisol state before the test, rather than implying that permanent changes had occurred

in their system in the course of developing PTSD.

This alternate explanation has a direct implication on how one should design therapeu-

tic protocols for PTSD or other stress-related disorders associated with cortisol disruption.

Under the enhanced negative feedback hypothesis, therapies or medications would attempt

to lower the pituitary sensitivity to cortisol to bring it back to normal levels. Our model

shows that this “straightforward” approach would fail and suggests that therapies should

instead focus on devising appropriate perturbations to the system. For example applying

externally controlled inputs I(t), could induce transitions back to the normal stable state as

shown in [KDC16]. This framework is consistent with current recommendations for treat-

ment of stress disorders via exposure therapy and cognitive-behavioral techniques in which

an individual is re-exposed to trauma or stress in a controlled way.
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Figure 3.4: Numerical simulation of DEX challenge test on normal and PTSD

subjects. (A) Numerical simulation of cortisol response in a “normal” subject during DEX

suppression test. The average percent suppression of cortisol in this scenario is hsNi = 63%

(B) Numerical simulation of cortisol response in a PTSD subject during DEX suppression

test. Here, the average percent suppression of cortisol is hsDi = 73%, significantly greater

than that of a normal subject. (C) Intersections of the c-nullcline with pre-DEX (light

blue) and post-DEX (blue) cs-nullclines. Normal and PTSD subjects are represented as

black circles and red triangles, respectively. (D) The values of fa(or) pre- and post-DEX

treatment are plotted for normal (black circles) and PTSD states (red triangles)

3.3.2 ACTH stimulation test

In this section, we consider the ACTH stimulation test typically used to diagnose conditions

associated with insu�cient adrenal activity. Cortisol levels are measured after the adminis-

tration of cosyntropin, a synthetic derivative of ACTH. Exogenous ACTH stimulates cortisol

secretion to the same extent of endogenous ACTH and thus e↵ectively increases a(t) in our

model. As in the analysis of the DEX suppression test, we can model cosyntropin adminis-

tration by replacing a(t) with a(t) + aexo(t), where aexo(t) denotes the concentration of the
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cosyntropin in circulation.

In a previous study [RDP09], an ACTH stimulation test was administered to PTSD and

normal subjects to measure potential di↵erences adrenal gland response between the two

groups. It was hypothesized that a bolus of cosyntropin would lead to a smaller pulse of

cortisol secretion in PTSD patients due to hypo-reactivity of their adrenal glands. Adrenal

hypo-reactivity would also suggest lower baseline cortisol levels, consistent with a number

of observations [YGG04, YGY04b]. Surprisingly, the main experimental finding was that

cortisol response to cosyntropin was not significantly altered in PTSD subjects. Moreover,

the baseline cortisol levels observed under PTSD were actually slightly higher than normal

[RDP09]. It was thus concluded [RDP09] that either adrenal reactivity is not altered in

PTSD patients or that potential alterations do not a↵ect HPA dynamics.

This interpretation relies on the intuition that a proportional relationship exists between

adrenal reactivity and cortisol response so that upon stimulation, in this case by cosyntropin,

any adrenal hypo-reactivity in PTSD subjects would lead to smaller cortisol increases. This

picture would be valid if the stimulating activity of ACTH in the adrenal gland were isolated

from other ACTH interactions within the HPA axis. However, cortisol suppresses endoge-

nous ACTH secretion in the pituitary, which in turn, indirectly reduces cortisol secretion.

In addition, glucocorticoid receptor (GR) concentration is coupled to cortisol through the

dependence on or in Eq. 3.4 and thus influences the negative feedback in the pituitary. As

a result of these various nonlinear interactions, particularly those embodied by gr(or) and

fa(or), cortisol response to ACTH stimulation is more complex than a simple proportionality

relationship. We now use our model to explore these nonlinear interactions and develop a

more nuanced interpretation of the experimental observations.

In particular, we will contrast and compare our results to the above described experi-

mental data and show that indeed, upon taking into consideration the full dynamics of the

HPA axis, laboratory observations [RDP09] may be consistent with the hypothesis of reduced

adrenal reactivity in PTSD subjects, in contrast to the original interpretation. Within our

model adrenal gland reactivity to ACTH determines the parameters p2 and p4 in Eqs. 3.1-3.5

(refer to Appendix 3.7.1 for details). To model hypo-reactivity we adjust both parameters
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to reflect 10% decrease in the adrenal gland reactivity in PTSD subjects. The resulting

numerical solutions are plotted in Fig. 3.5A and show that basal cortisol levels are indeed

increased in the basal state of PTSD subjects, consistent with the baseline cortisol measure-

ments in [RDP09]. This result emphasizes that the simple intuition of a direct relationship

between adrenal reactivity and cortisol response is not accurate.

To now describe the response of cortisol under an ACTH stimulation test, we modify our

model by rewriting Eq. 3.5 as

do

dt
= a(t� td) + aexo(t� td)� o, (3.18)

where aexo(t) denotes the concentration of exogenous cosyntropin in circulation. We model

the dynamics of aexo(t) using a pharmacokinetic description similar to that used for DEX:

daexo
dt

= ⇧a(t)� p8aexo. (3.19)

Here p8 represents the clearance rate of cosyntropin scaled by the clearance rate of cortisol

and ⇧a(t) is a rectangle function. We set p8 = 1.7, based on the half-life of exogenous

ACTH (4.1min [MRJ72]). We compare cortisol’s response to cosyntropin administered near

the nadir of its ultradian oscillation for hypo-reactive and near the peak for normal adrenal

glands in Fig. 3.5B. In this case, the response of a hypo-reactive subject is higher than

that of a normal subject. To study the dependence of cortisol response on the timing of

cosyntropin administration, in Fig. 3.5C we plot the peak levels of cortisol under cosyntropin

administration against the phase of the oscillation at which the administration took place.

Overall, cortisol response is predicted to be slightly greater in normal subjects with the

maximum peak response of a hypo-sensitive subject (dashed red in Fig. 3.5C) comparable

to the minimum peak response of a normal subject (solid red in Fig. 3.5C). This prediction

implies that depending on the phase of the intrinsic oscillation at the time of cosyntropin
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administration, the response of a hypo-reactive adrenal gland could be greater than normal.

However, the corresponding mean cortisol response should be lower if a su�ciently large

sample size is used without controlling for the phase of cortisol at the time of cosyntropin

administration.

Our model predicts that reduced adrenal reactivity to ACTH will increase baseline

cortisol levels. This implies that the experimental result reported in [RDP09] may indeed

reflect a reduced adrenal reactivity in PTSD subjects, amending previous interpretations.

The increase in cortisol response seen among PTSD patients can also vary depending on

the timing of cosyntropin administration. For example, the relative increase in cortisol

is greatest upon administering cosyntropin during the increasing phase near the nadir of

cortisol’s intrinsic oscillation as seen in Fig. 3.5C. Note that if experiments on normal and

PTSD individuals are not phase-matched, the response of a normal subject may be less than

the response of a PTSD subject, as observed from the experiment. Since the sample size

used in the experiment was small (N = 8 subjects for PTSD and N = 9 subjects for control),

the increased cortisol response among PTSD subjects may be explained as a confounding

e↵ect arising from the timing of ACTH/cosyntropin administration. Phase-matching would

be required for a proper interpretation of the measurement.

3.4 Stress-driven Transitions

We now discuss how transitions from a normal to a diseased state can be induced by positive

(excitatory) external stress of su�cient duration. In Fig. 3.6, we start the system in the

normal high-c state.

3.4.1 External stress induces transition from normal to diseased state

Upon stimulation of the CRH neurons through Iext > 0, both CRH and average glucocor-

ticoid levels are increased while the average value of c1(o(t)) is decreased since c1(o) is

a decreasing function of o. As cs(⌧) slowly decays towards the decreased target value of

hc1(o(c))i, h(cs(⌧)), and hence q(cs), also decrease. As shown in Fig. 3.6A, much of this
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Figure 3.5: Numerical solutions of ACTH stimulation test. (A) The oscillating stable

state of the system with normal (solid) and hypo-reactive (dashed) adrenal gland sensitivity

are plotted. For direct comparison, the nondimensionalized o is scaled by the same factor

(the normal adrenal sensitivity) in both cases for a direct comparison. Details of the scaling

of the state variables are provided in Appendix 3.7.1. The hypo-reactive subject with p2
and p4 adjusted to represent lower adrenal sensitivity exhibited slightly higher basal cortisol

levels. (B) Cortisol response to exogenous ACTH administration is plotted for normal (solid)

and for hypo-reactive (dashed) adrenal sensitivity. The phase of the oscillation at the time of

administration was di↵erent in each simulation. (C) The peak cortisol levels reached during

exogenous ACTH administration are plotted as a function of the phase of of the intrinsic

oscillations at the time of ACTH administration for normal (solid red) and hypo-reactive

(dashed red) subject. The phase and the peaks shown in (B) are marked in the plot as an

example. The maximum peak cortisol level of the hyposensitive subject and the minimum

peak cortisol level of the hypo-reactive subject are both around o = 8.

decrease occurs along the high-c stable branch of the c-nullcline. Once the external stress is

switched o↵, q will jump back down by a factor of 1/(1 + Iext). If the net decrease in q is

su�cient to bring it below the bifurcation value qL ⇡ 64 at the leftmost point of the upper

knee, the system crosses the separatrix and approaches the alternate, diseased state. Thus,

the normal-to-diseased transition is more likely to occur if the external stress is maintained

long enough to cause a large net decrease in q, which includes the decrease in q incurred

during the slow relaxation phase, plus the drop in q associated with cessation of stress.

The minimum duration required for normal-to-diseased transition should also depend on

the magnitude of Iext. The relation between the stressor magnitude and duration will be

illustrated in the Additional Files.

A numerical solution of our model with a 30hr Iext = 0.2 was performed, and the tra-

57



jectory in (q, c)-space is shown in Fig. 3.6A. The corresponding cortisol level along this

trajectory is plotted in Fig. 3.6B, showing that indeed a stable transition to the lower cor-

tisol state occurred shortly after the cessation of stress. In addition to a long-term external
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Figure 3.6: Stress-induced transitions into an oscillating low-cortisol diseased

state. An excitatory external stress Iext = 0.2 is applied for 30hrs. Here, the system reaches

the new stable point set by I = 1.2 before stress is terminated and the q-nullcline reverts

to its original position set by I = 1. (A) At intermediate values of 2.5 < k < 2.54, when

two stable state arise, a transition from the normal high-cortisol state into the diseased low-

cortisol state can be induced by chronic external stress. (B) Numerical solutions of cortisol

level o(T ) plotted against the original time variable T shows the transition to the low-cortisol

diseased state shortly after cessation of stress. (C) and (D) If k > kR = 2.54, only the normal

stable state exists. The system will recover and return to its original normal state after a

transient period of low cortisol.

stress, the stable transition to a diseased state requires 2.5 < k < 2.54 and the existence

of two stable points. On the other hand, when k > kR = 2.54, the enhanced CRH release

stimulates enough cortisol production to drive the sole long term solution to the stable up-

per normal branch of the c-nullcline, rendering the HPA system resistant to stress-induced
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transitions.

The response to chronic stress initially follows the same pattern as described above for

the two-stable-state case, as shown in Fig. 3.6C. However, the system will continue to evolve

along the lower branch towards the q-nullcline, eventually sliding o↵ the lower branch near

the right bifurcation point (indicated in Fig. 2.7 by (qR, cR)) and returning to the single

normal equilibrium state. Thus, when k is su�ciently high, the system may experience a

transient period of lowered cortisol levels after chronic stress but will eventually recover and

return to the normal cortisol state. The corresponding cortisol level shown in Fig. 3.6D shows

this recovery at T ⇡ 3400min, which occurs approximately 1500min after the cessation of

stress.

3.4.2 Transition to diseased state depends on stress timing

We have shown how transitions between the oscillating normal and diseased states depend

on the duration of the external stress Iext. However, whether a transition occurs also de-

pends on the time – relative to the phase of the intrinsic ultradian oscillations – at which

a fixed-duration external stress is initiated. To illustrate this dependence on phase, we plot

in Figs. 3.7A and B two solutions for o(T ) obtained with a 250min Iext = 0.1 initiated at

di↵erent phases of the underlying cortisol oscillation. If stress is initiated during the rising

phase of the oscillations, a transition to the low-cortisol diseased state occurs and is com-

pleted at approximately T = 1000min (Fig. 3.7A,C). If, however, stress is initiated during

the falling phase, the transition does not occur and the system returns to the normal stable

state (Fig. 3.7B,D). In this case, a longer stress duration would be required to push the

trajectory past the low-q separatrix into the diseased state.

As discussed earlier, an increase in period-averaged cortisol level during stress drives a

normal-to-diseased state transition. We see that the period-averaged level of cortisol un-

der increased stress is di↵erent for stress started at 120min from stress started at 150min.

As detailed in the Additional File, the amplitude of the first cortisol peak after the start

of stress is significantly lower when the applied stress is started during the falling phase
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Figure 3.7: Stress timing and transition to low-cortisol oscillating state. Cortisol

levels in response to Iext = 0.1 applied over 250min. (A) If stress is initiated at T = 150min,

a transition to the low-cortisol diseased state is triggered. (B) If stress is initiated at T =

120min, the system returns to its normal high-cortisol state. Note that the first peak (marked

by “H”) during the stress in (A) is higher than the first peak in (B). (C) If stress is initiated

at T = 150min, stress cessation and the slow relaxation along the c-nullcline during stress

are su�cient to bring q just left of the separatrix, inducing the transition. (D) For initiation

time T = 120min, q remains to the right of the separatrix, precluding the transition.

of the intrinsic cortisol oscillations. The di↵erence between initial responses in o(t) a↵ects

the period-averaging in hc1(o)i during external stress, ultimately influencing cs and conse-

quently determining whether or not a transition occurs. Note that this phase dependence is

appreciable only when stress duration is near the threshold value that brings the system close

to the separatrix between normal and diseased basins of attraction. Trajectories that pass

near separatrices are sensitive to small changes in the overall negative feedback of cortisol
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on CRH synthesis, which depend on the start time of the stress signal.

3.4.3 Stress of intermediate duration can induce “reverse” transitions

We can now use our theory to study how positive stressors Iext may be used to induce

“reverse” transitions from the diseased to the normal state. Understanding these reverse

transitions may be very useful in the context of exposure therapy (ET), where PTSD patients

are subjected to stressors in a controlled and safe manner, using for example, computer-

simulated “virtual reality exposure.” Within our model we can describe ET as external

stress (Iext > 0) applied to a system in the stable low-c diseased state. The resulting

horizontal shift in q causes the system to move rightward across the separatrix and suggests

a transition to the high-c normal state can occur upon termination of stress. As shown in

Fig. 3.8A, if stressor of su�cient duration is applied, the trajectory reaches a point above

the unstable branch of the c-nullcline upon termination leading to the normal, high-cortisol

state (Fig. 3.8B). Since the initial motion is governed by fast flow, the minimum stress

duration needed to incite the diseased-to-normal transition is short, on the timescale of

minutes. However, if the stressor is applied for too long, a large reduction in q is experienced

along the upper stable branch. Cessation of stress might then lower q back into the basin

of attraction of the low-cortisol diseased state (Fig. 3.8C). Fig. 3.8D shows the cortisol level

transiently increasing to a normal level before reverting back to low levels after approximately

1400min.

Within our dynamical model, stresses need to be of intermediate duration in order to

induce a stable transition from the diseased to the normal state. The occurrence of a reverse

transition may also depend on the phase (relative to the intrinsic oscillations of the fast

PA subsystem) over which stress was applied, especially when the stress duration is near

its transition thresholds. For a reverse diseased-to-normal transition to occur, the decrease

in cs cannot be so large that it brings the trajectory past the left separatrix, as shown in

Fig. 3.8C. Therefore, near the maximum duration, stress initiated over the falling phase

of cortisol oscillation will be more e↵ective at triggering the transition to a normal high-
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Figure 3.8: Stress-induced transitions to high-cortisol oscillating state. (A) Pro-

jected 2D system dynamics when a stressor of amplitude Iext=0.1 is applied for 9min starting

at T = 120min. c is increased just above the unstable branch (c ⇡ 20) to allow the unstressed

system to cross the separatrix and transition to the normal high-c stable state. (B) The plot

of o(T ) shows the transition to the high-cortisol, high-oscillation amplitude state shortly

after the 9min stress. (C) A stressor turned o↵ after 780min (13hrs) leaves the system in the

basin of attraction of the diseased state. (D) Cortisol levels are pushed up but after about

1400min relax back to levels of the original diseased state.

cortisol state. Overall, these results imply that exposure therapy may be tuned to drive

the dynamics of the HPA axis to a normal state in patients with hypocortisolism-associated

stress disorders.

3.5 Proposal and Predictions for a new two-stage challenge tests

In the previous section, we re-examined the hypothesis that changes in physiological parame-

ters (specifically p2) can result in a greater suppression of pituitary activity by dexamethasone
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or cortisol. This enhanced negative feedback has been proposed as the cause for lower basal

cortisol levels in PTSD subjects. Using our model and analyses, we presented an alternative

hypothesis based on the nonlinear interactions in our dynamical system. Here, we outline

new experiments that could be used to further evaluate and distinguish these two hypothe-

ses. If the negative feedback of cortisol on the pituitary is enhanced in PTSD subjects, their

response to stressors should be reduced, especially when the pharmacological suppression is

in e↵ect. One way to further probe the system is to combine a non-pharmacological, psy-

chological stressor with the DST. The ensuing cortisol response can be used to probe the

purported enhanced negative feedback on the pituitary.

As in the previous section, we assume I ext(t) to be a positive constant when the external

stressor is on, and zero while o↵. We turn on I ext for sixty minutes starting nine hours after

DEX administration, when post-DEX cortisol levels are usually measured. In contrast to the

enhanced negative feedback hypothesis, our model shows that cortisol response is generally

greater in the low cortisol PTSD state (Fig. 3.9A,B) than in the normal state. Moreover,

the peak of cortisol under PTSD can surpass that of cortisol under normal conditions if I ext

is su�ciently large.

To understand this unexpected “reversed” phenomenon, consider the nullcline structure

during DEX administration and after the stressor is applied (Fig. 3.9C and D). Upon turning

on the stressor, the perturbation in I increases the secretion rate of CRH of the PVN neurons,

e↵ectively changing q0 in Eq. 3.2. We have previously shown that increasing q0 shifts the

upper branch of the c-nullcline and moves the bistable regime towards the left in the (cs, c)-

plane, as shown in Fig. 3.2A. For a stressor with I ext = 0.5, the c-nullcline is shifted so that

the PTSD state on the lower branch is no longer in the bistable regime in the (cs, c)-plane

and consequently the PTSD state jumps to the upper branch and relaxes towards the only

available steady state, approximated by the intersection of the two nullclines in Fig. 3.9D.

Meanwhile, the normal state residing on the upper branch of the c-nullcline also jumps to

the shifted nullcline, but the size of the jump is significantly smaller compared to the jump

from the lower branch (as seen in Fig. 3.9D).

The proposed two-step challenge protocol directly contrasts our model prediction and
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Figure 3.9: Numerical solutions of a combined two-step challenge test. We propose

a new challenge test in which a non-pharmacological stress challenge is given after DEX

administration. (A) The cortisol responses of normal and diseased state systems to a non-

pharmacological stressor I ext(t) at the typical time (9 hours) of post-DEX measurement in

DST (shaded region). The response is greater in the system with lower cortisol level (dashed

red, PTSD group) than the control (solid black) despite the larger suppression induced by

DEX prior to the stressor. (B) A close-up of (A) shows that the peak cortisol level in

PTSD subjects surpasses that in normal subjects during the external stress. (C) Nullcline

structure during DEX suppression is similar to the one in Fig. 4C (in the main manuscript)

before the external stressor I ext is applied. The cs-nullcline jumps immediately after DEX

administration (light blue to dark blue) and relaxes very slowly back to its original position.

The stable points slide along the upper and the lower branches of the c-nullcline towards the

new intersection with the temporarily shifted cs-nullcline (dark blue). (D) The c-nullcline

is shifted leftward and upward during application of the stressor I ext. The states on the

upper and lower branch of the original c-nullcline quickly move toward the new c-nullcline

(red arrows). The increase during the shift in c (and subsequently in o) is greater for the

PTSD state.
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the previous hypothesis. The increase in cortisol response in a subject with lower basal

cortisol level cannot be explained by an altered negative feedback strength, while it can be

understood as a natural consequence of the changing dynamical structure of the system due

to perturbations in the parameter. The experiment also eliminates a confounding e↵ect of

the timing of the measurement due to the ultradian oscillation in cortisol level.

3.6 Summary and Conclusions

The HPA axis is a dynamical system continuously evolving to meet changing physiological

needs and environmental stimuli. Even at equilibrium, key hormones such as cortisol and

ACTH exhibit ultradian oscillations. To accurately interpret the response of the HPA axis to

internal, anatomical changes or external inputs, such as the injection of exogenous hormones,

we need to understand how the response depends on the state of the system itself and

the interplay between its di↵erent components. To this end, we developed a mathematical

model of HPA dynamics where changes in parameter values and exogenous sources of key

hormones could be explicitly included. Of particular importance is the understanding of

how pharmacological intervention might a↵ect the long-term dynamics of the HPA axis.

Our model is useful in this respect since the e↵ect of medication, trauma, or disease can

be mapped onto changes in given parameters. We thus performed a parameter sweep and

were able to predict possible modifications to long-term behaviors induced by corresponding

pharmacological challenge tests.

Measurements taken during an ACTH stimulation test have shown higher baseline cortisol

levels in PTSD subjects and unchanged cortisol responses to exogenous ACTH administra-

tion [RDP09]. This result was interpreted as evidence against altered adrenal reactivity in

PTSD subjects. Upon incorporating the altered adrenal gland reactivity into our model as

a parameter change, we found that data from [RDP09] can be explained by adrenal hypo-

reactivity in PTSD. Our simulations show that a hypo-reactive adrenal gland can lead to

raised baseline cortisol with similar cortisol response to exogenous ACTH administration

compared to that of normal subjects. We believe that the phase of the intrinsic oscillations
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in cortisol at the time of exogenous ACTH administration should be controlled for more

accurate interpretation of experiments.

The most well-known feature of HPA dysfunction in PTSD patients is the low secretion

of cortisol. The current viewpoint is that lowered cortisol levels are a consequence of an

enhanced negative feedback in the HPA axis [YTL96,BVK07]. This conclusion is based on

DEX suppression tests that show a greater percent suppression of cortisol among PTSD

subjects. Extending our model to include DEX administration, we have provided an addi-

tional mechanism to explain low cortisol levels in PTSD, namely that it arises as a feature

of an alternate stable state of the dynamical system. The diseased low-cortisol stable state

exhibits greater percent suppression of cortisol without enhancing the sensitivity of the neg-

ative feedback of cortisol in the pituitary. Thus, enhanced cortisol suppression is an inherent

feature of a stable state in our bistable model.

Our model can help understand the many ways trauma might dysregulate cortisol dynam-

ics and identify subgroups of PTSD patients that may require di↵erent treatment approaches.

For instance, one could measure specific parameters for subjects within one of the subgroups

that showed a significant di↵erence in cortisol level [MRV07] and verify whether the as-

sociated nullcline structure would allow for bistability. If so, our model supports possible

treatments in the form of appropriate external inputs to the system to induce the transition

between the stable states. To the contrary, if bistability does not arise, treatment protocols

should focus on adjusting the parameter values to correct the dynamics.

Although our model has provided a mechanistic description of the HPA axis behavior

under two distinct pharmacological challenge tests, it does not provide a direct explanation

for the variability observed in baseline cortisol levels in PTSD patients. One possibility is

that the discrepancy merely reflects di↵erent stages or e↵ects of disruptions in the HPA axis

induced by exposure to trauma.

The literature on PTSD has been driven by diagnostic criteria that rely heavily on non-

quantitative and subjective self-reports. This is also true with research on neuroendocrine

alterations in PTSD, where the definition of PTSD often failed to take into account important
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factors such as gender and type of trauma. Such issues have likely contributed to conflicting

reports on how basal cortisol levels are a↵ected by PTSD. Our mathematical model provides

a framework to help interpret how external perturbations, such as pharmacological challenge

tests, lead to abnormal dynamics and long-term behavior. Analysis of our model allows us

to characterize, more mechanistically, PTSD by identifying specific components of the HPA

axis that can be a↵ected by trauma or medication.

Our model o↵ers a mechanistic explanation to the seemingly counter-intuitive phenomenon

of lower cortisol levels after stress-induced activation of cortisol production. Solutions to our

model demonstrate that the negative-feedback e↵ect of a temporary increase in cortisol on

the synthesis process of CRH can slowly accumulate during the stress response and eventually

shift the system into a di↵erent basin of attraction. Such a mechanism provides an alternative

to the hypothesis that hypocortisolism in PTSD patients results from permanent changes in

physiological parameters associated with negative-feedback of cortisol [YTL96,YL07].

We also find that external stress can induce the “reverse” transition from a diseased

low-cortisol state to the normal high-cortisol state. Our results imply that re-exposure to

stresses of intermediate duration can drive the system back to normal HPA function, possibly

“decoupling” stress disorders from hypocortisolism.

Interestingly, we show that the minimum durations required for either transition depends

on the time at which the stress is initiated relative to the phase of the intrinsic oscillations

in (a, o, r). Due to subtle di↵erences in cortisol levels immediately following stress initiation

at di↵erent phases of the intrinsic cortisol oscillation, the di↵erent cumulative negative-

feedback e↵ect on CRH can determine whether or not a trajectory crosses a separatrix

(Fig. 3.7). When the duration of external stress is near its threshold, normal-to-diseased

state transitions are easier to induce when stress is initiated during the rising phase of

cortisol oscillations. Reverse diseased-to-normal transitions are more easily induced when

stress is initiated during the falling phase.

In summary, our theory provides a mechanistic picture that connects cortisol dysregu-

lation with stress disorders and a mathematical framework one can use to study the down-
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stream e↵ects of therapies such as brief eclectic psychotherapy (BEP) and exposure therapy

(ET). Both therapies involve re-experiencing stressful situations directly or through imagi-

nation, and have been consistently proven e↵ective as first-line treatments for PTSD symp-

toms [OVG07,FKF08,RER12]. Our results suggest that ET can directly alter and “decouple”

the expression of cortisol from an underlying upstream disorder. Changes in neuronal wiring

that typically occur over slower times scales is also expected after ET [TST13]. In our model,

such changes would lead to slow variations in the basal input I(t). Thus, cortisol level may

not be tightly correlated with PTSD, particularly in the context of ET.

It is important to emphasize that we modeled neuroendocrine dynamics downstream of

the stress input Iext. How the form of the stress function Iext depends on the type of stress

experienced requires a more detailed study of more upstream processes, including how hor-

mones might feed back on these higher-brain processes. Since higher cortisol levels are found

among female PTSD patients with a history of childhood abuse [LC95] and among PTSD

patients who have experienced a nuclear accident [Bau93], future studies of such divergent,

experience-dependent dysregulation will rely on more complex input functions Iext(t). For

example, under periodic driving, complex resonant behavior should arise depending on the

amplitude and frequency of the external stress Iext(t) and the nullcline structure of the spe-

cific system. Moreover, e↵ects of other regulatory networks that interacts with the HPA

axis can be included in our model through appropriate forms of Iext(t). This leads us to the

topics of the next chapter. We first investigate the circadian rhythm input, which is one of

the most well known and studied driving forces of the HPA axis. Then we will elaborate

Iext(t) by including the description of synaptic signaling that regulates the initiation and

termination of activation of the PVN.
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3.7 Appendix

3.7.1 Nondimensionalization

For completeness, we reproduce the dynamical system model first introduced in Chapter 2.

The original model was described by the delay-di↵erential equations

dCs

dT
=
C1(O)� Cs

TC

, (3.20)

dC

dT
=pCI(T )h(Cs)gC(C)� dCC, (3.21)

dA

dT
=pAC

✓
KA

KA +OR

◆
� dAA, (3.22)

dR

dT
=pR

✓
1� µRK2

R

K2
R + (OR)2

◆
� dRR, (3.23)

dO

dT
=pOA(T � Td)� dOO, (3.24)

where Cs, C, A,R, and O represent concentrations of stored CRH in the PVN, circulating

CRH, circulating ACTH, glucocorticoid receptors on the pituitary, and circulating cortisol,

respectively. In our new model, Eq. 3.21 is modified as:

dC

dT
=pCI(T )h(Cs) + gC(C)� dCC. (3.25)

The parameters p↵ relate the production rate of species ↵’s to their corresponding modulating

factors. Greater values of p↵’s indicate increased reactivity. For instance, an increase in pO

will yield a greater production rate for a given ACTH level A(t). Modulating functions in the

production terms of Eqs. 3.20-3.23 are equivalent to those used in the nondimensionalized

Eqs. 3.1-3.4, expressed in terms of dimensional parameters and variables. Lastly, parameters

d↵ denote the linear decay rate of species ↵.

The dimensionless form of our model (Eqs. 3.1-3.5) is derived from the dimensional model

in the previous subsection with similar scalings used by [WTL10]:
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t = dOT, cs = Cs/C̄s,

c = (µRpR)
�1dOC, a = (µRpRpA)

�1d2OA, (3.26)

r = (µRpR)
�1dOR, o = (µRpRpApO)

�1d3OO.

Here, the original time variable T is scaled by the decay rate of cortisol. The original concen-

trations Cs, C, A,R,O are nondimensionalized to cs, c, a, r, o, respectively. Cs is normalized

by C̄s, which denotes the maximum stored CRH in the physiological range. For the term

describing the additional sources of CRH (from auto/paracrine activity of the pituitary) in

the new model, we denote the rate parameter that sets the maximum secretion rate of CRH

by the pituitary cells as gc,max. The parameters q0 and gc,max should add up to the total se-

cretion rate of CRH in the previous model. From the measurements in [GC98], we estimate

the relative contribution of the auto/paracrine activity of the pituitary in CRH production

to be in the range of 40% � 80%. For concreteness, we set it to be 60% in our simulations.

Note that the adrenal reactivity pO is one of the scaling factors of the nondimensionalized

cortisol level o. When comparing the cortisol responses with altered adrenal reactivity, one

needs to take into account for the altered scaling factor for o. The numerical solutions shown

in Fig. 3.5 are scaled appropriately to compensate for the altered scaling factor caused by

the increased adrenal reactivity pO.

Finally, the nondimensionalized parameters qi, pi are defined analogously to those used

by [WTL10]:

tc = dOTC , td = dOTd,

q0 = pC/(µRpR), q2 = dC/dO,

p2 = µ2
Rp

2
RpApO/(d

4
OKA), p3 = dA/dO, (A2)

p4 = d8OK
8
R(pApO)

�2(µRpR)
�4, p5 = (1� µR)/µR,

p6 = dR/dO.
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Here, p2 / pO and p4 / p�2
O and both parameters should be adjusted accordingly when

considering changes in adrenal gland sensitivity, pO, in our model.

3.7.2 Comparison of new and previous model

We briefly describe the e↵ect of including the auto/paracrine activity of the pituitary on the

nullcline structure and the behavior of the model. In our previous model Chapter 2, the

upregulation of CRH release was assumed to act on the release process of the PVN neuron

itself and the auto/paracrine activity of the pituitary was not considered. The equation for

c in the previous model analogous to Eq. 3.2 of current model is:

dc

dt
= q0I(t) (1� e�kcs)| {z }

h(cs)

✓
1� µc

1 + (q1c)n

◆

| {z }
gc(c)

�q2. (3.27)

Since both previous and the new model include an increasing Hill-type function gc(c),

we expect both of them to have bistability. Indeed, we have shown that the new model

also exhibits bistability in appropriate parameter regimes. Changing each parameter also

had a similar e↵ect on the c-nullcline, but the new model retained the bistable regime more

robustly. Here we provide analogous plots of Fig. 3.2 generated with the previous model for

a direct comparison in Fig. 3.10.
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Figure 3.10: E↵ects of changing parameters on the c-nullcline. One of the nondi-

mensionalized six parameters that a↵ect the c-nullcline is varied over a range of values

(from 80% to 120% of their reference values) and the corresponding c-nullclines are plot-

ted for the previous model in Chpater 2. Darker color indicates a greater value of the

corresponding parameter. When not varied, parameters are set to the reference values

q0 = 70(I = 1), q1 = 0.04, q2 = 1.8, µc = 0.66, n = 6 and k = 2.83. (A) q0 is varied

from 66 to 84. (B) q1 is varied from 0.032 to 0.48, (C) q2 is varied from 1.44 to 2.16.(D) µc is

varied from 0.48 to 0.72. A saddle-node bifurcation occurs near µ⇤ ⇡ 0.56 (thicker nullcline).

(E) n is varied from 1 to 8. A saddle-node bifurcation occurs between n = 4 and n = 5. (F)

k is varied from 2.26 to 3.40.
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CHAPTER 4

Circadian rhythms in the HPA axis

4.1 Introduction

We have developed a dynamical model of the HPA axis that describes the known interactions

among the three key hormones responsible for regulating the stress response in the HPA axis.

The model exhibited bistable oscillating (ultradian) states that characterized the normal and

diseased states. A generalized and simplified form of the external input via a direct projection

of the higher brain areas to the PVN was considered. It is important to note that the HPA

axis is extensively co-regulated by immune, endocrine, and nervous system. For example, the

activity of the hypothalamus-pituitary-gonadal (HPG) axis a↵ects the excitatory inputs to

the PVN through the regulation of the sex steroids [FCS90], in addition to various pathways

that project to the PVN during the stress response. Notable among these are catecholamine-

producing pathways from the brainstem that directly relay information of physiological stress

via visceral pathways [HC97]. Other pathways from the limbic area such as the amygdala

and the bed nucleus of the stria terminalis (NST) are activated by stressors involving higher-

order sensory processing. Each of these pathways will have a particular form of Iext(t) with

its own magnitude and waveform. These stressor-specific forms of Iext(t) have not yet been

studied and fall beyond the scope of this work. Nonetheless, our work provides a general

framework on ways to analyze their e↵ect on the HPA dynamics if such information were

available.

In this chapter, we will consider another type of external input of the HPA axis to capture

the circadian rhythm observed in cortisol levels, in addition to the ultradian rhythm. The

circadian rhythm refers to biological oscillations of a period that is approximately of 24-hour
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that is highly conserved from cyanobacteria to humans. The suprachiasmatic nucleus (SCN)

of the hypothalamus is known as the main pacemaker responsible for the circadian rhythm in

mammals [SS06]. The circadian rhythm drives the rest-activity cycle and diurnal variations

in many physiological processes such as metabolism and hormone secretion. The current

consensus is that the circadian rhythm in cortisol is also regulated by the SCN, supported

by the experiments that showed the loss of the rhythm when the SCN was disrupted [AKG79].

We will incorporate the circadian input from the SCN into our model based on clinical

observations and then compare i to the approach employed by previous models. Thereafter,

we will apply the methods presented in the previous chapter to analyze the behavior of

the HPA stress system under the circadian input. Finally, the e↵ects of the external input

generated by the stressor combined with the circadian input will be studied. Stress-induced

transitions from normal to diseased states under the circadian rhythm within our model

predict a new property in which the onset of the lower cortisol level state is dependent on

the timing of the stressor termination relative to the circadian phase.

4.2 Suprachiasmatic nucleus and the HPA axis

The suprachiasmatic nucleus (SCN) of the hypothalamus is a group of neurons that is con-

sidered to be the central circadian oscillator. The SCN receives the information about the

day-night cycle from the photosensitive retinal ganglion cells and uses it to synchronize the

internal circadian timing system with respect to the environment [SS06,SS02]. This hypoth-

esis is supported by findings that showed that the ablation of the SCN leads to a complete

loss of circadian rhythmicity [SZ72]. Another study demonstrated that the transplantation of

an intact SCN restores circadian rhythmicity in arrhythmic mutant animals [RFD90]. The

circadian rhythm generated in the SCN is transformed into neuronal or hormonal signals

that a↵ect various processes in the body including the HPA axis.

Previous models that included circadian oscillations [JSC05, VAO11,WTL10] have as-

sumed that the PVN receives a direct neuronal input from the SCN that drives the HPA

axis through the modulation of the PVN activity. This assumption was realized through
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the variation of the secretion rate of CRH over time. Within our model, this corresponds

to a periodic Iext(t) with a period of 24 hours. One can easily extend the work on pulse-like

Iext(t) from the previous chapter to predict the model’s behavior under a circadian Iext(t).

However, a recent study [MEI76] showed that the circadian rhythm in cortisol persisted in

rodents when their pituitaries were removed, indicating that the circadian rhythm in cortisol

may not depend on the rhythmic release of ACTH and CRH. On the other hand, there is

evidence suggesting that the circadian input from the SCN acts on the adrenal gland. Au-

tonomic control of the cortisol rhythm is shown to be influenced by adrenal sensitivity to

ACTH [JE97,UAE06,KKS81] that is modulated by splanchnic nerve innervation from the

SCN to the adrenal gland [JE97,UAE06]. The splanchnic nerves are visceral nerves that re-

lays synaptic signals from the central nervous system to the peripheral sympathetic neurons

and ganglia. Based on these observations we consider the e↵ect of circadian modulation of

the adrenal sensitivity to be driven directly by the SCN via the sympathetic nervous system.

The dynamics of the HPA axis including the circadian input from the SCN is summarized

in Fig. 4.1.

The sensitivity of the adrenal cortex represented by the parameter pO appears in Eq. 2.12

of the original model with dimensional variables. In the nondimensionalized system (Eqs. 3.1-

3.5), parameters p2 and p4 and the state variable o are dependent on pO. To describe the vary-

ing sensitivity of the adrenal cortex, we consider a time-dependent pO(T ), and subsequently

time-dependent p2(t) and p4(t) (refer to the nondimensionalization in the Appendix of Chap-

ter 2). The periodic input from the SCN and its modulating e↵ect can be described by some

periodic function with a period of 24 hours. For concreteness and simplicity, we first consider

a sinusoidal function, Icirc(t) = 1+0.2(1+sin(2⇡!t)), where !�1 is equivalent to 24 hours in

the dimensional time variable T . Specifically, time-dependent parameter pO(t) = p̄OIcirc(t)

(Fig. 4.2A), and subsequently p2(t) = p̄2Icirc(t) and p4(t) = p̄4(Icirc(t))�2 are used in the

model. Here p̄i’s are the reference parameter values used as the fixed values in the previous

chapter. As the scale of o(t) is also dependent on Icirc(t) (o(t) / (pO(T ))�1O(T )), we will

refer to Icirc(t)o(t) as o(t) in the plots of this chapter to reflect the change in the actual

cortisol level.
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Figure 4.1: Modulation of adrenal sensitivity by the SCN. The circadian rhythm in

cortisol secretion is mediated by splanchnic nerve innervation of the adrenal gland. The

adrenal sensitivity to ACTH stimulation is modulated over a circadian rhythm.

As discussed in the previous chapter, changes to the parameter p2 and p4 a↵ect the cs-

nullcline of the system. We have numerically generated a few cs-nullclines in Fig. 4.2B with

selected pO values across its circadian range, pO 2 [p̄O, 1.4p̄O]. The plot shows that increasing

pO, and p2 and p4 adjusted accordingly, shift the cs-nullcline horizontally to the right, while

shifting the oscillatory regime of the cs-nullcline downward in the (cs, c) plane. The cs-

nullclines shifts continuously between the two cs-nullclines that corresponds to the minimum

and the maximum of pO over 24 hours. Numerical solutions with the time-dependent adrenal

sensitivity (Fig. 4.2C) show that the peak and nadir of the hourly oscillation increase with

adrenal sensitivity. The cortisol level exhibits a circadian rhythm superimposed on top of the

underlying ultradian oscillations, consistent with the observations of plasma cortisol levels.

Note that when the c-nullcline has a bistable regime as the one shown in Fig. 4.2B, the

bistability of the system can be preserved. The stable oscillating state with lower cortisol

levels (characterizing PTSD and other diseased states) also exhibits the circadian rhythm,

as shown in Fig. 4.2D.
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Figure 4.2: Response of the HPA axis to circadian adrenal sensitivity.(A) A si-

nusoidal function is selected to represent the modulation of the adrenal sensitivity. The

circadian rhythm is decomposed into four phases (labeled as I, II, III, and IV) of the sinu-

soidal function. (B) E↵ects of circadian adrenal sensitivity on the cs-nullcline. (C) Model

prediction for circadian adrenal sensitivity demonstrates increased pulse amplitude in the

cortisol level during the peak of the adrenal sensitivity. (D) The bistability of the model is

preserved under the circadian rhythm. The parameters used in the simulations are the same

as those from the previous chapter except for p2 and p4 varying from 13.2 to 18.4 and from

0.44 to 0.62, respectively.

4.3 Projected dynamics on the reduced system

We have previously seen that if the external inputs are assumed to be fixed over time, the

long-term behavior of the system can be summarized by the equilibrium points of the reduced

system (located at the intersections of nullclines on the (cs, c) plane). The equilibrium “point”

on the reduced system represented a limit cycle in the (a, o, r) space, of which the amplitude

and frequency of the oscillation were determined by the value of c. Here, the intersection of

the nullclines moves back and forth along the c-nullcline as the cs-nullcline oscillates over time
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due to the time-varying adrenal sensitivity. The question here is determining the system’s

behavior in the long-term with the time-dependent intersection.

First, we look at the trajectory of the system projected on the (cs, c) plane after the

system has reached its steady state. In Fig. 4.3, the trajectory is decomposed into four

segments according to the four phases of the circadian rhythm shown in Fig. 4.2A. Recall

that in the slow time variable ⌧ , the dynamics of the system can be approximated by the

following set of equations:

dcs
d⌧

= hc1(c; ⌧)i � cs, (4.1)

0 = q0h(cs)I(t)gc(c)� q2c. (4.2)

Note that hc1(c; ⌧)i is now a periodic function of time (with a period of 2 units of ⌧),

and that cs is subject to the periodic driving force, which gives rise to a time-dependent

cs-nullcline. At any given time, ⌧ , cs evolves towards the direction of the moving cs-nullcline,

sliding along the c-nullcline (since c is constrained by the relation in Eq. 4.2, which defines

the c-nullcline). As the movement of cs-nullcline is faster than that of the state variable

in this case, the cs-nullcline moves further away from the state variable until it changes

its direction of movement at the peak (nadir) of Icirc(⌧). Once the change in the direction

of the cs-nullcine occurs, the state of the system keeps on moving towards the cs-nullcline,

until the cs-nullcline and the state eventually intersect and pass each other on the (cs, c)

plane. Once the passing occurs, the direction of the state reverses as its relative position

to the cs-nullcline changes to the opposite side. Similar dynamics occur during the rest of

the circadian period until the state of the system reverses its direction of movement again,

and the cycle is repeated. Thus the reduced system in steady state is also oscillatory with

the same period of the circadian drive. To demonstrate this, the state of the whole system

projected on the (cs, c) plane and the cs-nullcline at specified times are plotted in Fig. 4.3B.

As c is oscillatory, the amplitude and frequency of the limit cycle in the (a, o, r) space also

change accordingly in a periodic manner. In total, the system exhibits an hourly oscillation

with its amplitude modulated in a circadian rhythm. We have plotted the trajectories of
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the system for each of the four phases of the circadian rhythm in Fig. 4.3 to illustrate the

evolution of the system in respect to the movement of the cs-nullcline.
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Figure 4.3: Long-term behavior under periodic cs-nullcline. (A) Labels 1-6 indicates

the time of the corresponding cs-nullclines plotted in (B). (B) Each open circle is the pro-

jection of the state at the time of the corresponding label. The relative positions of the

state from the cs-nullcline at each time point demonstrate that the system is always relaxing

towards the cs-nullcline but lags behind and never catches up. (C)-(F) The trajectory of the

system at each phase on the upper branch ((C)-(D)) and the lower branch ((E)-(F)) of the

c-nullcline is plotted. The grey arrows indicate the region swept by the cs-nullcline during

the labeled phase.
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4.4 Circadian rhythm and Stress-driven transitions

In this section, we investigate the ways in which transitions between the two stable states

are influenced by the inclusion of the circadian rhythm. The activation of the HPA axis

by a stressor is described as increasing the synaptic input strength Iext(t) > 0, transiently

increasing the secretion rate of CRH by the modulating factor I(t) = I0+Iext(t). We consider

a simple rectangular pulse function for Iext(t) as before. We have seen in the previous chapter

that the transition from normal to diseased state was dependent on the duration and the

magnitude of the stressor. The change in I(t) a↵ects the c-nullcline and changes the nullcline

structure. If the stressor is kept on for a su�cient duration, the system relaxes towards the

new steady state. The steady state during the influence of the stressor is also oscillatory

and can be analyzed in a similar manner as in the previous section. Fig. 4.4A and B are

analogous to Fig. 4.3B and C that illustrate the long-term behavior of the system under

stress.
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Figure 4.4: Long-term dynamics under stress. The trajectory of the state under stress

(Iext(t) = 2) during (A) phase IV and I (B) phase II and III.

Increased I(t), or equivalently q0, during the stress response shifts the c-nullcline upward

and contracts the bistable regime in the (cs, c) plane. The intersections of the cs- and c-

nullclines, and consequently the steady state of the reduced system, generally moves towards

the left in the plane due to the decreasing direction of the cs-nullcline, while still oscillating

between the region determined by the range of the cs-nullcline. This implies that with a
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stressor with su�cient magnitude, the system will generally move towards the left, beyond

the basins of attraction of the non-stressed system. In Fig. 4.4, we can confirm that the

steady state under stress is shifted over to the other side of the separatrix of the fast variables

(solid green line). When the stressor is turned o↵ and the c-nullcline returns to its original

position, the system will lie in the basins of attraction of the diseased state. This is how

transitions from the normal to the diseased state were induced in the previous chapter

without considering the circadian input. However, the cs-nullcline now moves under the

influence of circadian rhythm. Consequently, the fast timescale dynamic depends on the

position of the cs-nullcline at the time of stressor initiation and termination. In other words,

the transition will now depend on the phase of the circadian rhythm at the time of stress

termination. The dependency on the circadian phase at the stress termination is confirmed

in Figs. 4.5 and 4.6, in which the stressor is terminated at the end of the four phases.
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Figure 4.5: Stress-induced transitions under circadian rhythm. The system transi-

tions to the diseased branch when the stress is terminated at the end of (A) phase IV and

(C) phase I. (B,D) The projected trajectories of the system show that the state is su�ciently

repositioned to the other side of the separatrix at the end of (B) phase IV and (D) phase I.
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When the stressor is terminated between the end of phase IV and the end of phase

I, transitions to the lower branch were induced when the duration was su�ciently large

(' 23hrs). The trajectory during the stressor plotted in Figs. 4.5B and C show that the

position of the state at the time of stressor termination is on the left half of the steady

state oscillation as expected. Note the position of the cs-nullcline at the time of termination

(highlighted in Figs. 4.5B and C).

0.6 0.65 0.7

30

35

40

45

50

cs

c q0      =   30;
q1      =   0.04;
q2      =   1.8;
gmax   =   38;
k       =   2.83;
b       =   0.6;
n       =   6;
p2      =   15;
p3      =   7.2;
p4      =   0.05;
p5      =   0.11;
p6      =   2.9;
Td  =  20;
Iext = 1;

c = 0.88
+0.176*(1+sin(2*pi*t/day));

0.6 0.65 0.7

30

35

40

45

50

c

c q0      =   30;
q1      =   0.04;
q2      =   1.8;
gmax   =   38;
k       =   2.83;
b       =   0.6;
n       =   6;
p2      =   15;
p3      =   7.2;
p4      =   0.05;
p5      =   0.11;
p6      =   2.9;
Td  =  20;
Iext = 1;

0 1 2
0

1

2

3

4

t(day)

o

0 1 2
0

1

2

3

4

o

30 hrs

36 hrs

A B

C D

II

III

II

III

Figure 4.6: Stress-induced transition under circadian rhythm during phase I and

III The system fails to make the transition to the diseased branch when the stress is termi-

nated at the end of (A) phase II and (C) phase III. (B,D) The projected trajectories of the

system show that the state has su�ciently shifted to the other side of the separatrix at the

end of (B) phase II and (D) phase III. Note that the stress durations are longer than the

one in Fig. 4.5A.

On the other hand, when the stressor is terminated between the end of phase II and III,

transitions do not occur regardless of the stress duration. Since the system is in the right

half of the steady state oscillation at the time of stress termination (Figs. 4.6), the state of

the system is closer from the separatrix while it descends towards the c-nullcline after the
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stress. Moreover, the cs-nullcline are also further to the right, “pulling back” the trajectory

towards the basin of attraction of the normal state.

4.5 Conclusion

We have included circadian input from the SCN into our model in a more physiologically

relevant way. The circadian input from the SCN modulates the adrenal sensitivity, which

is described as the time-varying parameter that oscillates over a period of 24 hours. The

bistable structure of the HPA axis dynamics is preserved under the circadian drive. The two

distinct stable states exhibit both ultradian and circadian oscillations superimposed upon

each other. We can use the model to investigate the ways of the circadian and ultradian

rhythm interact and influence the overall dynamics of the cortisol dynamics and stress re-

sponse. Transitions between the two distinct stable states are considered again with the

circadian rhythm in a similar manner as the previous chapter. The model implies that the

transitions from normal to lower cortisol state, or the onset of PTSD, are dependent on the

phase of the circadian rhythm at the time of stressor termination as well as the duration and

magnitude of the stressor. Stress-induced transitions occur when the activation of the PVN

elicited by the stressor terminates in the first half of the increasing phase of the sinusoidal

circadian rhythm. Such prediction motivates us to investigate the mechanisms underlying

the initiation and termination process of the stress response. In other words, a more phys-

iologically relevant form of Iext(t) may be important in understanding and controlling the

onset of PTSD or other causes of dysregulations in cortisol dynamics.

Recent findings suggest that endocannabinoid (eCB) system is an integral regulator of

the stress response. In particular, the retrograde neurotransmitter controls the initiation

and the termination of the HPA axis activation through modulation of the synaptic input in

the PVN. In the following chapter, we will give a brief introduction to the eCB system and

present some preliminary models and simulations.
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CHAPTER 5

Prospective works

5.1 Endocannabinoid system and the HPA axis

The eCB system is a group of retrograde neurotransmitters and their receptors, which are

widely distributed throughout the cortico-limbic and hypothalamic circutiry that regulates

the activation of the HPA axis [HT12]. There are two types of eCB molecules that are

relevant to the HPA axis: anadamide (AEA) and 2-arachidonoyl glycerol (2-AG). Both

AEA and 2-AG are synthesized within the PVN cells and released into the synaptic cleft in

a retrograde manner. Their receptors, cannabinoid type 1 (CB1) are primarily localized to

axon terminals and are coupled through G-protein that inhibits adenylyl cyclase pathway

that ultimately suppress the synaptic activity [MPB16]. Stressor elicits bidirectional changes

in AEA and 2-AG during acute stress response.

Under steady state conditions, there is a tonic signal of AEA from the PVN cells that

inhibits the synaptic input of the pre-synaptic neurons of the PVN. Exposure to stressor

rapidly increases the CRH signaling of basolateral amygdala (BLA) projecting onto the

PVN. The CRH receptor of the PVN neurons subsequently increases the enzymatic activity

that hydrolyzes and deactivates AEA. This decrease in AEA signaling disinhibits the pre-

synaptic neurons and results in the activation of the PVN neurons. Note that CRH acts as

a neurotransmitter and does not directly a↵ect the CRH level in the portal vein, c. After

the initial decrease following the stressor exposure, AEA level slowly recovers over time,

typically on the timescale of hours [HT12] The pathway responsible for AEA synthesis is not

currently known.

On the other hand, studies suggest that stressors act to increase 2-AG synthesis. Mea-
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surements of 2-AG after restraint and footshock stress showed an increase in hypothala-

mus [ETH10]. The increase induced by stressors was blocked by glucocorticoid receptor

antagonist, indicating that the glucocorticoid mediates the regulation of 2-AG synthesis

during stress. The exact mechanisms by which cortisol upregulates 2-AG synthesis is not

yet fully understood. However, the typical timescale of the process ranging from 20 min

to 60 min suggests that the e↵ect is nongenomic and is mediated by membrane-associated

receptors.

5.1.1 A preliminary model of the eCB + HPA axis

We modify the model of the overall synaptic input strength received by the PVN as a function

of AEA and 2-AG levels as following:

I(E1, E2, t) = Ibase+Iext(E1, E2, t)

= Ibase + fext(E1, E2)Isyn(t), (5.1)

where E1 and E2 denote the AEA and 2-AG level, respectively, in the PVN neurons.

The overall magnitude of the external input, Iext(t) is modulated by a decreasing func-

tion fext(E1, E2) that represents the retrograde inhibitory action of AEA and 2-AG on the

pre-synaptic neurons of the PVN neurons. Isyn(t) is a rectangular pulse function that is

nonzero during the course of stressed state and zero during the non-stressed state. The

function Isyn(t) indicates whether the pre-synaptic neurons of the PVN active or not. Note

that if we set fext(E1, E2) be constant and independent of E1 and E2 we recover the previous

Iext(t) of a rectangular pulse function. The functional form of fext(E1, E2) has not yet been

studied to best of our knowledge. We assume it also takes the form of a Hill function as

fext(E1, E2) = Vext
Kne

e

Kne
e + (E1 + E2)ne

, (5.2)

where Vext and Kext denote the maximum synaptic strength and half-maximal e↵ective eCB

concentration, respectively.
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5.1.2 Decay of AEA at stress response initiation

For simplicity, let us assume that degradation of AEA induced by a stressor occurs instan-

taneously.

E1(t) =

8
><

>:

E1,ON stressor is on (Isyn(t) > 0)

E1,OFF otherwise

where E1,OFF and E1,ON denote the non-stressed (stressor “OFF”) steady state AEA level

and the stressed (stressor “ON”) steady state AEA level, respectively. Recent measurements

show that AEA quickly decreases in response to the stressor (reaches the nadir about 5min

after the stressor initiation [HT12]) and it slowly recovers back to its non-stressed steady

state. Our current model does not capture the recovery phase but assumes that it stays at

the low AEA state until the stressor is over. Alternatively, one may consider a function of

the following form:

E1(t) = E1,OFF �H(t� ti)E1,ON(t� ti)e
�r(t�ti), (5.3)

where H(t) is the Heaviside step function and ti is the time of the most recent stressor

initiation. The AEA level, E1(t) decreases from the beginning of the stressor and reaches

its nadir around time t = r�1 before increasing back to the non-stressed basal state level

E1,OFF. The characteristic time constant r can be estimated as 5min�1 based on the time

course of AEA given in [HT12].

5.1.3 Synthesis of 2-AG during stress response

Glucocorticoids (cortisol) upregulates 2-AG synthesis, mediated by membrane-associated

receptor action that acts over a fast timescale. We assume that the change in synthesis rate

of 2-AG brought by changes in cortisol level is immediate. The increased level of cortisol, o(t)

during acute stress response will increase 2-AG level and eventually terminate the activation

of the PVN.
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Based these observations, we model the dynamic of 2-AG level as following:

dE2

dt
= �(gE2(o(t))� E2), (5.4)

where gE2(o) is an increasing positive function of cortisol o, which reflects the increased

synthesis rate of 2-AG induced by the increase in cortisol level. We assume a simple linear

decay rate of dE2 for 2-AG degradation. The timescale constant � reflects how fast the

synthesis and degradation process of 2-AG take place relative to other interactions in the

HPA axis. It should be adjusted to match the observed peak time around 50min after the

stressor initiation.

5.1.4 Preliminary results: Habituation in stress response

The eCB system and its e↵ect on the synaptic strength of the a↵erent input to the PVN

has been described in the previous section. Since E2(o(t)) is dependent on cortisol level o(t),

we can couple the eCB system described above with the mathematical model of the HPA

axis developed in the previous chapters. The activation and termination of the HPA axis

response to acute stress is dependent on the dynamics of the two eCB molecule levels in the

modified model. With estimated parameters in Eqs. 5.2-5.4, we can simulate the response

of HPA axis under repeated stressors. We arbitrarily select Vext = 2, Ke = 1.75, ne = 4,

E1,OFF = 1, E1,ON = 1, and � = 0.01 for concreteness. The synthesis rate of 2-AG in Eq. 5.4,

gE2(o) is assumed to be an increasing function that saturates:

gE2(o) = 1� e�ro,

where r is the parameter that relates the cortisol level and the synthesis rate of 2-AG and

set at r = 0.5. More physiologically accurate parameters and functional forms for the eCB

model will be estimated in future work. Using the preliminary model, we illustrate and

suggest a possible role of eCB signaling in the habituation of the HPA axis response to

repeated stress. Circadian rhythm is not included in this preliminary study for simplicity.
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Figure 5.1: Habituation of HPA response to a repeated stress.(A) A same type of

stressor is repeated for seven times with intervals of 210min. Each stressor lasted for 60min.

The peak of cortisol response decreased over the repeated stressors. The time at the initiation

of each stressor is marked by a red dashed line. (B) The average level of 2-AG increases

over the repeated stressors. (C) Due to increased level of 2-AG, the overall synaptic input

received by the PVN during each stressor decreases more rapidly over repetition.

Fig. 5.1A shows that the peak level of cortisol during a stressor decreases over the repeti-

tion of the same type of stressors. 2-AG level increases in response to the increased cortisol

level during a stress response but decreases back to its basal level as cortisol returns to its

basal state. When another stressor arrives before 2-AG level is dropped back to its steady

state value, 2-AG level begins to increase from a higher level than the level before the first

stressor and increases to a higher level relative to the level reached after the previous stressor.

Overall, the average level of 2-AG gradually increases over the repeated stressors(Fig. 5.1B)

and consequently the magnitude of pulses of synaptic input received by the PVN decreases

more rapidly over the repetition (Fig. 5.1C). The time intervals between stressors was set

approximately equal to the period of the intrinsic oscillation to eliminate the e↵ect of timing

on the cortisol response (refer to Discussion 2.4). More complex patterns in the cortisol

response appear for some other intervals due to the timing e↵ect (not shown), but the corti-

sol response eventually decreases over repetition and exhibits habituation. Note we assume

that the timescale of the changes in 2-AG is set to be comparable to that of the cs. The

habituation process was preserved with timescales that are comparable the fast timescale of

the HPA axis model (PA subsystem). Once better estimations of parameters and functional

forms used in Eqs. 5.2-5.4 become available, the e↵ect of timing, di↵erent timescales of 2-AG
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(�), and bistability on the habituation process can be further analyzed. Furthermore, the

role of eCB signaling in PTSD and other stress disorders may be further investigated with

those estimations available.

5.2 Novelty detection in retina-tectum neural network

5.2.1 Background

The detection of novelty, or detection of violations in the expected patterns in environmental

stimulus, is essential for adapting to a constantly changing environment. These processes

occur at various levels of our cognitive system in response to di↵erent types of sensory

or cognitive stimulus. For instance, preliminary in vitro experiments on the turtle and

mouse tectum cells show various activity patterns in response to di↵erent types of novel

stimuli (Jian-Young Wu, personal communication, March 11, 2015). On the other hand,

recognizing and establishing a regular pattern in stimulus and storing the information is

another aspect of detecting novelty. The local field potential measurements (Jian-Young Wu,

personal communication, March 11, 2015) demonstrate that neurons in the tectum show a

vigorous response to the first flash and gradually subdue over repeated flashes, establishing

an expectation of regularity. When the regular pattern is broken by an omitted flash or extra

flash, there is a response in the local field potential. At the network level, the tectum shows

distinct spatiotemporal patterns depending on the type of novelty. For example, pseudo-

color activity maps of the voltage-sensitive dye amplitude from the tectum surface show

distinct spatiotemporal patterns with the highest amplitude occurring in di↵erent locations

in response to the beginning, omission, addition, and end of the stimulus (Jian-Young Wu,

personal communication, March 11, 2015).

In this section, we introduce a framework on ways to model and analyze novelty detection

in the retina-tectum network. We develop a phenomenological model of the building blocks

of a neural field model that can describe the various spatiotemporal activity patterns of the

retina-tectum network. From the model, we aim to understand how dynamic networks can
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establish and store an expectation of regularity and how particular spatiotemporal patterns

may emerge in response to each type of violation in the sensory stream. We will focus on

developing the building block models that describe the novelty detection activity in one of

the processing stages in the retina-tectum (the ganglion cell layer) and characterize di↵erent

types of behaviors observed.

There are four basic types of neurons consisting the retina-tectum network: photorecep-

tor cells, bipolar cells, ganglion cells in the retina and the tectum neurons (a homologous

structure to the superior colliculus in mammals). Each type of neurons reside in separate

layers in the retina, where synaptic connections are made between one layer and another.

When a photon hits a photoreceptor in the retina, it hyperpolarizes the cell through a

cascade of reactions that eventually close cGMP gated ion channels [Yau94]. Thereafter,

photoreceptors make glutamatergic projections onto ON- and OFF-bipolar cells. The re-

leased glutamate has an opposite e↵ect on two types of bipolar cells due to di↵erent types

of receptors expressed: excitatory e↵ect on OFF-bipolar cells and inhibitory e↵ect on ON-

bipolar cells [PBC08]. Both types of bipolar cells (BC) synapse onto ganglion cells (GC)

only of the same type (OFF-bipolar to OFF-ganglion and ON-bipolar to ON-ganglion), as

their sites of synapses are separated in two discrete layers [FK76]. ON- or OFF-bipolar cells

can modulate the activity of the same type of ganglion cells, through inhibitory interneurons

called amacrine cells (AC). Only the GC generate action potentials, while all other cells

communicate through graded potential [KSJ00]. Finally, the axons of GC form the optic

nerve, which projects to the tectum; where we assume the signals from ON- and OFF-paths

are integrated.

In summary, the activity in the tectum is driven through four main feed-forward pro-

cessing stages: photoreception, transmission to bipolar cells, transmission to ganglion cells,

and transmission along the optic nerve to neurons in the tectum. Within photoreception

and transmission to ganglion cells stage, there are lateral connections. Horizontal cells re-

ceive excitatory input from photoreceptors and send inhibitory input to their post-synaptic

photoreceptor cells. Amacrine cells receive excitatory input from ON- or OFF-bipolar cells

and send inhibitory input to their post-synaptic ON- or OFF-ganglion cells. A schematic
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Figure 5.2: A schematic diagram of the retina-tectum network. The light stimulus

hyperpolarizes the photoreceptors (P) that e↵ectively disinhibits and activates ON-bipolar

cells and inhibits OFF-bipolar cells. Horizontal cells are activated by photoreceptors and

feed back into neighboring photoreceptors, generating spatial inhomogeneity in the input

layer for the bipolar cell layer. ON- or OFF-bipolar cells (B) directly form synapses with

and activate the ganglion cells or indirectly form synapses with and inhibit the ganglion cells.

The two pathways (direct and indirect) are integrated at the ganglion cell layer. Ganglion

cells project onto tectum cells, in which novelty-specific spatiotemporal patterns emerge.

The dashed box represents a building block of the network. P: photoreceptor, H: horizontal

cells, B: ON- or OFF-bipolar cells, A: amacrine cells, G: ganglion cell, and T: tectum cells.

+: excitatory synapse, �: inhibitory synapse.

diagram of the retina-tectum network is shown in Fig. 5.2

5.2.2 Model development

Assuming the linear-nonlinear (LNL) model for the retinal neurons and following the stan-

dard notations used in the literature [Ama77,Erm98,Tay99] the average membrane potential

of a neuron population of type ↵ near position ~x = (x1, x2) in the two-dimensional space at

time t will be denoted by u↵(~x, t). The dynamics of u↵(~x, t) is described as,
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u↵(~x, t) =

Z

⌦⇢R2

Z t

0

X

�

�↵�(~x, ~y, t� t0)F�(u�(~y
0, t0))dt0d~y, (5.5)

where �↵�(~x, ~y, t) represents the temporal filtering e↵ects of synaptic processing from the

pre-synaptic neuron population � positioned at ~y to the post-synaptic neuron population ↵

positioned at ~x. We assume that �↵� is in the form �↵�(~x, ~y, t) = !↵�(~x, ~y)�↵�(t), where

!↵�(~x, ~y) is the average intensity of connection from neurons of type � at position ~y to neurons

of type ↵ at position ~x. Function F�(u�(~y, t)) is called the output function and denotes

the average activity (represented typically as the mean firing rate) of a local homogeneous

population of the pre-synaptic neuron of type � near position ~y at time t. Thus, the right-

hand side of Eq. 5.5 represents the total amount of influence received by neurons of type ↵

at ~x from neurons of di↵erent types summed over the relevant domain ⌦ ⇢ R2.

5.2.3 Novelty detecting ganglion cells

Schwartz et al. [SHS07] have found ganglion cells that showed the omitted stimulus response

(OSR), in which neurons show a response to the omission of a stimulus from a periodic

sequence. Such omission detecting ganglion cells will be considered as the “circuit element”,

or a basic “building block”, of the retina-tectum network model. We first consider a building

block of the full network consisting of six groups of cells—photoreceptor cells (P ), ON-bipolar

cells (N), OFF-bipolar cells (F ), ganglion cells (G), and amacrine cells (A)—on an isolated

point in space at ~x = (x, y). The spatial interactions among photoreceptor cells mediated by

horizontal cells (Fig. 5.3) will not be included explicitly in the current study. In other words,

we set �↵�(~x, ~y, t) = !↵�(~x, ~y)�↵�(t) = �(~x)�↵�(t), where �(~x) is the two-dimensional Dirac

delta function. Such form of connectivity function will e↵ectively remove the integration

over the space domain in the general form (Eq. 5.5).
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Figure 5.3: A schematic diagram of the building block. The building block of the

retina-tectum network consists of the two signaling pathways that converge at the ganglion

cell layer. A direct input coming from ON- or OFF- bipolar cell layer and an indirect input

via the amacrine cell layer coming from ON - or OFF bipolar cell layer. We only consider

the case in which the two signaling pathways are from the same type of bipolar cells (i.e.,

u1 and u2 are both ON- or both OFF- bipolar cells).

First, the activity of photoreceptors, denoted by uP (~x, t), is described as,

uP (t) =

Z t

0

�P (t� t0)S(t0)dt0 P : photoreceptor cells, (5.6)

�P (t) = ��P e
��P t,

FP (uP ) = uP , (5.7)

where S(t) represents the incoming light stimulus. Without loss of generality, we will set the

steady state of uP during dark at 0. The temporal filtering e↵ect of the phototransduction

�P (t) is negative, since the light causes hyperpolarization of the photoreceptors. The output

function of photoreceptor cells is approximated as a linear function of uP , based on the

measurements in [BM02] For the repeated light stimulus used in the experiment we set,

S(t) = ⌃k⇧d(t� kT ), (5.8)
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where T is the period of the repeated stimulus and ⇧d(t) is the simple rectangular pulse

function of duration d.

Hyperpolarization induced by phototransduction in photoreceptor cells results in a de-

crease in intracellular calcium level and consequently a decrease in the amount of glutamate

release to both ON- and OFF-type bipolar cells [PBC08]. These two types of bipolar cells

are distinguished by the type of glutamate receptor they express. ON-bipolar cells (N) ex-

press metabotropic receptors (mGlu6) that result in negative current when activated. In

contrast, OFF-bipolar cells (F ) express ionotropic receptors (AMPA) that result in positive

current [MS86]. Thus, the two types of bipolar cells respond in an opposite manner to light;

ON-bipolar cells depolarize with positive synaptic current flowing in, while OFF-bipolar

cells hyperpolarize with negative synaptic current flowing out during a light stimulus. The

activity of ON- and OFF-bipolar cells can be described as,

uN(t) =

Z t

0

�NP (t� t0)FP (uP (t
0))dt0, N : ON-bipolar (5.9)

�NP (t) = �kN te
��N t

uF (t) =

Z t

0

�FP (t� t0)FP (uP (t
0))dt0, F : OFF-bipolar (5.10)

�FP (t) = k↵te
��F t,

F↵(u↵) = u↵, ↵ 2 {N,F}

where �NP (t) and �FP (t) are temporal filtering functions of ON- and OFF-bipolar cells for

inputs from photoreceptors (P ) with normalizing constants kN and kF . The functional forms

are chosen based on measurements in [CAS83]. The negative sign of �NP (t) represents the

inhibitory nature of the synapse between ON-bipolar cells and photoreceptors. Moreover, the

two types of bipolar cells have di↵erent characteristic time constants for the temporal filtering

e↵ect, since ionotropic receptors usually operate in faster time scale than metabotropic

receptors [CAS83]. We assume accordingly that �F > �N .

Both types of bipolar cells make excitatory synapses onto ganglion cells of the same type
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or amacrine cells. Bipolar cells also communicate through graded potential, and we assume

that the output functions of ON- and OFF-bipolar cells, FN(u) and FF(u), are simply linear

functions based on the study in [BM02]. The membrane potential of amacrine cells can be

described as,

uA(t) =

Z t

0

�A(t� t0)u↵(t
0)dt0 A : Amacrine cell (5.11)

�A(t) = �Ae
��At

FA(uA) = �uA ↵ 2 N,F

where �A(t) is the temporal filtering function of amacrine cells. Again, the output function

of amacrine cells is approximated as a linear function of uA based on the previous study

in [BM02]. The negative sign represents the inhibitory synaptic output of amacrine cells to

its post-synaptic neurons.

Finally, we assume that synaptic inputs from amacrine cells and bipolar cells are inte-

grated into the ganglion cell layer as a weighted sum. Under such assumption, the membrane

potential of ganglion cells can be described as,

uG(t) = !G↵

Z t

0

�G↵(t� t0)F↵(u↵(t
0))dt0 G : Ganglion cell (5.12)

+ !GA

Z t

0

�GA(t� t0)FA(uA)(t
0)dt0, ↵ 2 {N,F}

�G�(t) = �G�e
��G�t � 2 {N,F,A}

where the a↵erent connection strength of ganglion cells from bipolar cells (of type ↵) and

amacrine cells are denoted by !G↵ and !GA, respectively. The temporal filtering function

�G�(t) was approximated as an exponentially decreasing function for simplicity. Substituting

the output functions of the bipolar and amacrine cells, F↵(u↵) = u↵ and FA(uA) = uA in the

expression, we can rewrite Eq. 5.12 as
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uG(t) = !G↵

Z t

0

�G↵(t� t0)u↵(t
0)dt0 � !GA

Z t

0

�GA(t� t0)uA(t
0)dt0. (5.13)

The ganglion cell layer receives the direct synaptic input from only one type of bipolar

cell (↵ is either N or F , but not both), as noted earlier.

For simplicity, we assume that the membrane potential dynamics of the photoreceptors,

ON- and OFF-ganglion cells, and amacrine cells are su�ciently fast and consider the limiting

case of �P ,�GN ,�GF ,�GA,�A ! 1. Note that the convolution of a function u(t) with an

exponentially decaying function, �e��t becomes

�

Z t

0

e��(t�t0)u(t0)dt0 ! u(t), (5.14)

as � ! 1 and Eqs. 5.6-5.12 can be approximated under the limit as

uP = �S(t), (5.15)

u↵(t) = �
Z t

0

�↵(t� t0)S(t0)dt0, (5.16)

uA(t) = u�(t), (5.17)

uG(t) = !G↵u↵(t)� !GAu�(t). ↵, � 2 {N,F} (5.18)

Here we assumed that the inhibitory input from the amacrine cell layer is also driven by

either ON- or OFF-bipolar cells, but not both (i.e., � is N or F ).

Before presenting the analysis of the main model, we present a toy model with some

simplifying assumptions that are mathematically more tractable to illustrate the key mech-

anisms of our model of the OSR. Readers who wish to proceed directly to discussions on the

main model may skip the following subsection.

96



5.2.4 A toy model

For mathematical tractability, we consider a toy model for novelty detecting ganglion cell as

follows:

ui(t) = �
Z t

0

�i(t� t0)S(t0)dt0,

�i(t) = ±�ie
��it,

uG(t) = !1u1(t)� !2u2(t), (5.19)

which has the identical form to the model developed in the previous section (Eqs. 5.15-5.18)

except for the temporal filtering function of the bipolar cell i is denoted by �i(t) and assumed

to be a decreasing exponential function with the corresponding decay rate �i. The activities

of two bipolar cells is integrated as a weighted sum at the ganglion cell (uG), with their

corresponding synaptic weights denoted as !i. The sign of �i(t) and subsequently the sign

of ui depends on the type of bipolar cell it represents. If the ith bipolar cell associated with

ui(t) is an ON-bipolar (OFF-bipolar) cell then the sign of �i(t) is negative (positive) and

the sign of ui is positive (negative). The negative sign of the second term on the right-hand

side of Eq. 5.19 indicates that the synaptic weight !2 represents the connection with the

amacrine cell layer (Eq. 5.11, 5.17 and 5.18). The two synaptic inputs u1(t) and u2(t) from

the bipolar cells layer are driven by the same kind and we will not consider the cross-talk

between the ON- and OFF-channels in this work. Without loss of generality, we will assume

that u1 and u2 are both associated with ON-bipolar cells.

We consider a pulsed light stimulus represented given at time t = tk by the Dirac-delta

function �(t�tk). The activity of the bipolar cell after a single light stimulus, S(t) = �(t�tk),

becomes ui(t) = �ie��i(t�tk), which decays exponentially over time. Repeated pulse inputs

with a fixed interval of T beginning at t = 0 can be written as,

S(t) =
X

k=0

�(t� kT ), (5.20)
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which leads to

ui(t) =

Z t

0

�ie
�i(t�t0)

X

k=0

�(t0 � kT )dt0 = �i

X

t�kT>0

e��i(t�kT )

= �i

X

t�kT>0

e��it
0
e��ikT = �ie

��it
0 X

t>kT

(e��iT )k, (5.21)

where t0 denotes the time passed since the last pulse (i.e., t0 = t mod T ). The expression

for ui(t)’s can be cast as a simple geometric series with the common ratio, ri = exp(��iT )

and uG(t) can be expressed as:

ui(t) = �ie
��it

0 X

kT<t

rki , (5.22)

uG(t) = !1�1e
��1t0

X

kT<t

rk1 � !2�2e
��2t0

X

kT<t

rk2 . (5.23)

The first term (k = 0) in the series represents the influence of the most recent input and

the second term (k = 1) represents the influence of the second most recent input, and so

on. The last term in the series, the term with the largest k such that kT < t, represents

the influence of the oldest stimulus and decreases exponentially over time as expected, since

the largest k increases as t increases. At each pulse (t = kT, k 2 Z), a neuron’s activity

jumps by �i, and the increase caused by each jump decays exponentially at the rate of �i

until the arrival of the next stimulus. After the first couple of pulses, each of the geometric

series converges quickly to its limit (since ri < 1) and the peak of the bipolar cell activity

can be approximated as the geometric series ui ⇡ �i
1�ri

. As the two geometric sum converge,

uG also converges towards the weighted sum of the limits. Once the peak of uG is near its

limit, the sum fluctuates between uG = !1
�1

1�r1
� !2

�2
1�r2

(t0 = 0, at the beginning of each

cycle) and uG = !1
�1

1�r1
e��1T � !2

�2
1�r2

e��2T (t0 = T , at the end of each cycle). Finally, we

can approximate uG(t) as,
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uG(t) ⇡ c1e
��1t0 � c2e

��2t0 , (5.24)

ci = !i
�i

1� e��iT
. t0 ⌘ t mod T

For concreteness, we consider a stimulus with period T = 1 and a ganglion cell receiving

inputs from bipolar cells with �1 = 0.4 and �2 = 0.2, where the positive input comes from a

bipolar cell with faster kinetics (greater �i) and the negative input from a bipolar cell with

slower kinetics (smaller �i). For example, u1(t) may represent the synaptic input coming

directly from the ON-bipolar cell layer (positive when the light stimulus is “ON”, n1 = 0) and

u2(t) may represent the synaptic input also coming from the ON-bipolar cell layer indirectly

through the amacrine cell layer (n2 = 1). We only consider the case of n1 6= n2. Clearly,

other cases give ganglion cells that are always active (positive) or always inactive (negative)

at each stimulus.

Initially at small t, Eqn. 5.23 is governed by the di↵erence in the convergence rates of

the two geometric series. If !1�1 > !2�2 and c1 > c2, the di↵erence between the peaks of

two inputs u1 and u2 (Fig. 5.4B) is initially positive and increasing since the geometric series

of u1(t) converges to its limit, c1, more quickly than that of u2(t) converging to its limit,

c2. Once u1(t) is su�ciently near its limit, the di↵erence between the peaks of two inputs

decreases since the peak of u1(t) remains nearly constant; while u2(t) continues to increase

towards its limit (Fig. 5.4B). Overall, the activity of uG(t) stays positive and reaches its peak

response shortly after the beginning of the repeated stimulus, thereafter decreasing to its

limit, c1 � c2. The response of the ganglion cell subdues after the initial response and stays

inactive, once the slower (lower �2) bipolar cell input, u2(t) catches up and balances the

input from the faster (greater �1) bipolar cell input, u1(t). Such balanced state that follows

the initial active phase characterizes the establishment of the “expectation of regularity”.

We consider the model’s response to two types of violations of the expected stimuli

pattern: (i) an extra stimulus between the periodic stimulus (ii) an omission, or a delay,

of the expected stimulus. Fig. 5.4C illustrates how the toy model responds to an extra
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Figure 5.4: Establshing the expectation of regularity and the e↵ect of an extra

stimulus. (A) Plots of u1 (blue) and u2 (red) are overlayed for the comparison. u1 converges

faster to its limiting state. An extra stimulus is given at t = 26.5 (green dashed line). (B)

Peaks of u1 and u2 are plotted for better visualization. Due to the faster convergence

rate of u1, the di↵erence between u1 and u2 (labeled a) is large at the beginning of the

repeated stimulus. As u1 reaches near its limit and u2 catches up, the di↵erence between

u1 and u2 (labeled b) becomes smaller and approaches its limit. When there is an extra

pulse introduced after u1 and u2 reaching their limits, u1 and u2 increase by !1�1 and

!2�2, respectively (blue and red triangles). The overall di↵erence (labeled c) increases if

!1�1 � !2�2 > 0. The di↵erence decreases back to its limit soon after the extra stimulus.

(C) The evolution of the di↵erence between the peaks of u1 and u2. The weights were set

!1 = !2 = 1 for concreteness but may be adjusted to maximize the response to an extra

stimulus.

stimulus by increasing its activity level. At the time of the extra pulse, uG(t) increases

instantaneously by !1�1 � !2�2 > 0, showing a positive response. The activity due to

the extra pulse decays exponentially as the contribution of each pulse in each bipolar cell

output decreases exponentially, as discussed above. The magnitude of the response to the

extra stimulus clearly depends on !i’s and �i’s. Without loss of generality, we let !1 = 1

and consider the relative synaptic strength !2, normalized by the synaptic strength of the

bipolar cell input from u1. Fig. 5.5A shows that uG(t) with smaller !2 = 0.7 stays active

throughout the repeated stimulus. The contribution of the inhibitory input from u2 is not

su�cient to balance the excitatory input from u1, and uG(t) does not become inactive after

the initial response. Consequently, the ganglion cell always stays active throughout the

repeated stimulus, failing to distinguish the violation of the repeated pattern by an extra

stimulus. On the other hand, if !2 is su�ciently large (e.g., !2 � 1�e��1T

1�e��2T
), c2 can be
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greater than c1, even if !1�1 � !2�2 > 0 remains true. In such case, say !2 = 1.5, uG(t)

stays inactive after the initial response to the beginning of the stimulus; since the inhibitory

input dominates and keeps the activity of uG(t) low. Fig. 5.5C verifies such prediction, also

showing that the increase by !1�1 � !2�2 at the time of the extra stimulus is not su�cient

to overcome the dominating inhibitory input. Thus if !2 is too big, the ganglion cell also

fails to respond to the extra pulse and detect the violation in the repeated pulse.

The toy model of the ganglion cell implies that there exists a range of the ratio between

the strengths of the two synaptic inputs that allows the ganglion cells to (i) respond to the

beginning of the stimulus, (ii) stay inactive during repetition, and (iii) respond to a violation

of the repeated pattern by an extra stimulus. When the inhibitory synaptic strength is too

low compared to the excitatory input (!1 � !2), the ganglion cell stays active throughout

the stimuli, and the response to an extra pulse cannot be distinguished. On the other hand,

when the inhibitory synaptic strength is too high, the ganglion cell stays inactive during the

repetition and to an extra stimulus. Fig. 5.5D illustrates di↵erent qualitative behaviors of

the ganglion cell over a range of !2, with !1 = 1.

The range of !2, or the relative synaptic strength of the inhibitory input, that allows

detection of an extra stimulus by ganglion cell model depends on the period of the stimulus,

T . A repeated stimulus of T = 4 does not induce the same qualitative behavior of the

same ganglion cell described above. The relative synaptic strength of !2 = 1.1 that allowed

the extra stimulus detecting ganglion cell for the repeated stimulus of T = 1 stays active

throughout the repeated stimulus of T = 4 and fails to respond to an extra stimulus (Fig. 5.5).

As the ratio of the geometric series, ri =
�i

1�e��iT
, decreases in T , the convergence rate of

the geometric series depends on T ; subsequently the initial and the limiting behavior of

the ganglion cell to a repeated stimulus depend on T . Without discussing the details of

exactly how the qualitative behavior of the ganglion cell model depends on T , we confirm

the dependency by comparing plots in Fig. 5.6 (T = 4) to that of Fig. 5.5 (T = 1), in which

repeated stimuli of di↵erent periods are given to an identical ganglion cell model.

The toy model also responds to an omitted stimulus. With the same values of �1 = 0.4

and �2 = 0.2 as above, the initial response to the initiation of the stimuli remains the same.
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Figure 5.5: Extra stimulus detection of the toy model. (A) When the negative synaptic

input is su�ciently weaker than the positive one, !2 < !1, the ganglion cell stays active

(above zero) throughout the repeated stimulus and fails to respond di↵erently to an extra

stimulus (given at the time marked by the green dashed line). (B) For an intermediate ratio

of the two synaptic weights, the ganglion cell responds positively to the beginning of the

stimuli and an extra stimulus. (C) When the negative synaptic input is su�ciently stronger

than the positive one, the ganglion cell stays inactive (below zero) after the initial response

and fails to change its behavior in response to an extra stimulus. (D) The time course of

the activity level of the ganglion cell is plotted horizontally across relative weight of negative

input ranging from 0 to 2, spanned vertically. Red colors indicate high activity levels and

blue colors indicate low activity levels.
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Figure 5.6: Stimulus frequency and extra stimulus detection. (A)-(D) are analogous

plots of Fig. 5.5A-D and generated using the same toy model used in those figures, but with

the repeated stimulus with a period T = 4. The same ganglion cell model cannot detect an

extra stimulus for any values of !2 2 [0, 2].

After the expectation of regularity has been established, one of the stimuli is omitted at

t = 30 in Fig. 5.7. For time t between the time of the omitted stimulus and the first stimulus

after the omission, 30 < t < 31, uG(t) can be written as:

uG(t) = !1�1e
��1t0

X

0<kT<t

rk1 � !2�2e
��2t0

X

0<kT<t

rk2 , (5.25)

since the most recent stimulus (k = 0) is omitted in the series. The series can be re-

written by shifting the index:
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uG(t) = !1�1e
��1(T+t0)

X

kT<t�T

rk1 � !2�2e
��2(T+t0)

X

kT<t�T

rk2 , (5.26)

uG(t) ⇡ c1e
��1(t0+T ) � c2e

��2(t0+T ). (5.27)

Since �1 > �2, the first term decays faster than the second and uG decreases (Fig. 5.7B

and C) until the next stimulus arrives and reaches the minimum at uG = c1e�2�1T �c2e�2�2T .

Depending on the !i’s, uG may become negative between the regular stimulus (Fig. 5.7B and

C). Moreover, uG decreases even further during the extended time between the last stimulus

before and the first stimulus after the omitted stimulus. The influence of the omitted stimulus

decays away quickly once the repeated stimulus resumes and uG(t) converges back to its

limiting behavior.
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Figure 5.7: Extended decay over an omitted stimulus induces negative response.

(A) Plots of u1 (blue) and u2 (red) are overlayed for the comparison. The time of the

omitted stimulus is marked by the red dashed line. (B) A closer look at the plot (A) near

the time of the omitted stimulus. u1 decays more rapidly between the repeated stimilus and

may decrease from above (labeled by a) to below (labeled by b) u2 for a range of !2. The

extended period between the last stimulus before and the first stimulus after the omitted

stimulus allows u1 to decrease further and widens the gap (labeled by c). (C) Plot of uG

near the time of the omission. The synaptic weights are set !1 = !2 = 1 for concreteness.

uG continues to decrease over the extended time interval over the omitted stimulus.

The example shown in Fig. 5.7 with !1,2 = 1 illustrates how an omission of stimulus

decreases the activity of the ganglion cell, uG. The decrease in uG between two stimuli is

due to the faster decay of the e↵ect of the excitatory input, u1(t). The decrease during inter-
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Figure 5.8: Negative response of the toy model to an omitted stimulus. (A) When

the negative synaptic input is su�ciently weaker than the positive one, !2 < !1, the ganglion

cell stays active (above zero) throughout the repeated stimulus and fails to respond di↵erently

to an omitted stimulus (given at the time marked by the red dashed line). (B) For an

intermediate ratio of the two synaptic weights, the ganglion cell responds negatively to an

omitted stimulus. (C) When the negative synaptic input is su�ciently stronger than the

positive one, the ganglion cell stays inactive (below zero) throughout the repeated stimulus

and fails to change its behavior in response to an omitted stimulus. (D) The time course of

the activity level of the ganglion cell is plotted horizontally across relative weight of negative

input ranging from 0 to 2, spanned vertically. Red colors indicate high activity levels and

blue colors indicate low activity levels.

stimulus period occurs for a wide range of !2, as verified in Fig. 5.8. Thus, the ganglion

cell does not respond positively to an omitted stimulus if the bipolar cell with the positive

synaptic input has faster kinetics than the negative one (i.e., �1 > �2).

The decrease induced by an omitted stimulus suggests that the negative of uG would

increase its activity in response to an omission. The negative of the model �uG = �!1u1 +

!2u2 has the same form as the original with its �i’s switched. The negative form of the

toy model suggests that a ganglion cell receiving a positive input from a bipolar cell with a

relatively slower kinetics than that of the bipolar cell that projects a negative input (e.g.,
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Figure 5.9: Positive response of the toy model to an omitted stimulus.(A)-(D) are

analogous plots of Fig. 5.8A-D and generated using the same toy model used in Fig. 5.8,

except with �1 and �2 switched. The positive input has slower kinetics compared to that of

the negative input (�1 < �2). As expected from the negative response to an omitted stimulus

shown in the other case (�2 < �1), the toy model responds positively to an omitted stimulus

for intermediate values of !2.

�1 = 0.2 and �2 = 0.4) would increase its activity in response to an omitted stimulus. Fig. 5.9

confirms that such ganglion cell does show a positive response to an omitted stimulus for

a range of !2. Note that the ganglion cells with !2 that allows detection of the omitted

stimulus stay inactive throughout the stimulus, only reacting to an omission (Fig. 5.9B).

Others ganglion cell models with !2’s outside of the range either stay always active (!2 is

too low, Fig. 5.9A) or always inactive (!2 is too high, Fig. 5.9C).

For completeness, we consider the response to an extra stimulus of the ganglion cell with

the switched �i’s, which behaves the same as �uG(t). One can easily see from Fig. 5.5 (by

reflecting the plots over the horizontal axis) that such ganglion cell cannot detect an extra

stimulus for range of !2’s considered since an extra pulse will always induce a downward

jump in uG(t).
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We conclude the section with a summary of the key features of the toy model:

(i) The initial response to the stimulus is governed by the di↵erence in the convergence

rates of the two input sources.

(ii) There exists a range of !2’s alloing the model to detect an extra (omitted) stimulus

if the positive and direct input bipolar cell has relatively faster (slower) kinetics than

the negative and indirect input through amacrine cell.

(iii) The range of !2’s allowing the detection of each type of novelty depends on the period

of the stimulus, T .

5.2.5 The building block model

The general form for the building block model was as following

u↵(t) = �
Z t

0

�↵(t� t0)S(t0)dt0, (5.28)

�↵ = k↵te
��↵t

uG(t) = !G↵u↵(t)� !GAu↵, ↵ 2 {N,F} (5.29)

where the temporal filtering function �↵(t) for ON- (↵ = N) and OFF-bipolar (↵ = F )

cells were assumed to be a decreasing exponential function in the toy model. For a more

realistic description, we refer to the experiment by [CAS83] that approximated �↵(t) from the

intracellular microelectrode recordings made in the bipolar cells of the snapping turtles. The

measurements suggested a filtering function of the form �↵(t) = k↵te��↵t, where �↵ denotes

the kinetic parameter of the temporal processing of synaptic input from photoreceptors to

bipolar cell of the type ↵ 2 {N,F}. The amplitude k↵ is adjusted to set the peak of the

function at one. The kinetic parameters vary over intensity of the light stimulus [CAS83]

and also adapt to the changing temporal contrast [BM02]. ON-bipolar cells are observed to

have a slower kinetics than OFF-bipolar cells and we assume that �F > �N in general. For

concreteness, we will let �F ⇡ 0.05 and �N ⇡ 0.02 based on the approximations in [CAS83]
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and [BM02] for the rest of the discussion. Note that all the inputs of uG are of the same

type as we do not consider any cross-talk between the ON- and OFF-channels.

Based on the study by [Rie01], bipolar cells adapt to changes in temporal contrast by

changing their kinetics: The measurements indicated that the time-to-peak (��1
↵ ) and the

amplitude (k↵) of the temporal filtering function was decreased by about 10% and 25%,

respectively, in OFF-bipolar cells when the temporal contrast was increased from 10% to

30%. In the ON-bipolar cells, the same change in temporal contrast induced about 20%

decrease in the amplitude; but little or no change in the time-to-peak. Thus, if the input

from the photoreceptor is spatially inhomogeneous, �↵ will vary over space.

The space-time patterns of activity across arrays of retinal neurons measured in [RNO00]

have shown that the region of bipolar cells that receive direct synaptic input from photore-

ceptors contracts over time, due to feedback activity of horizontal cells in the photoreceptor

layer. Such contraction indicates that temporal profile of the synaptic input received by

bipolar cells varies over space. Consequently, the temporal contrast in synaptic input re-

ceived by bipolar cells will also vary over space when repeated light stimuli are given. The

space-varying temporal contrast observed in [RNO00] and the adaptation of bipolar cells

shown in [Rie01] together suggest that the bipolar cell layer will be inhomogeneous in the

kinetic variables, and �F ’s will be vary over space. The details of the underlying mechanism

of the contraction fall beyond the scope of this work and have been left as future work.

For the rest of the section, we incorporate the varying �F ’s into our building block model

and study their implications on the response of ganglion cells to violations in the repeated

pattern in the stimuli.

First, we consider a building block in which a direct input from OFF-bipolar cell layer,

denoted as uF (t), and an indirect input coming in through amacrine cell layer also from

OFF-bipolar cell layer, denoted as uF 0(t) are summed at the ganglion cell layer. Here, uF 0 is

analogous to u1 and uF is analogous to u2 of the toy model from the previous section. We

consider two distinct values of the kinetic parameters, �F ,�F 0 2 {0.05, 0.055}, assuming that

the time-to-peak of one of the bipolar cell layers that connects directly or indirectly with

the ganglion cell layer is about 9% shorter than that of the other bipolar cell layer. Such
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Figure 5.10: A building block with a slow direct and a fast indirect OFF-bipolar

cells. (A) A schematic diagram of the building block consits of a direct input from ON-

bipolar cell and an indirect input from another ON-bipolar cell. Relative synaptic weights are

denoted as !GF and !GF 0 . Without loss of generality, we assume !GF = 1 and only consider

!GA to represent the relative strength of the two inputs. (B)-(D) The weights are chosen to

give the most distinctive response to a novelty introduced in the stimuli. (B) The building

block model responds at the beginning of the repeated stimulus and becomes inactive (below

zero) from the third stimulus. The model does not respond to an omission, but responds to

the first stimulus after the omission. (C) The building block model cannot detect an early

arrival of a stimulus. (D) The building block model exhibits a slightly positive response to

an extra stimulus, which could elicit an output response if the thershold of the output is set

appropriately.
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assumption is based on the observed adaptation of the bipolar cells due to the inhomogeneity

in the temporal contrast discussed above. In Fig. 5.10, the response of the ganglion cell to

di↵erent types of novelty introduced to a repeated stimulus. Each repeated stimulus lasted

for 20ms and was repeated with the period of 50ms (f = 20Hz, T = 50ms). The relative

synaptic weights are selected in each type of novelty so that the responses to changes in

stimulus pattern are most apparent. When the bipolar cell layer with direct synapse has

the slower synaptic filtering process, �F 0 > �F , the ganglion cell responds to the beginning

of the stimulus and the first stimulus after the omitted stimulus (uG peaks near such points

in Fig. 5.10B). On the other hand, the ganglion cell cannot detect an early stimulus that

arrives 15ms earlier (Fig. 5.10C).

Analogous to the toy model with �1 > �2, the initial activation results from the faster

convergence of uF 0 to its limiting state. However, the convergence to the limiting state is very

similar for the two pathways in such case; since �F and �F 0 only di↵er by 10% (Figs. 5.11B,

C, and D). The rate of convergence is very rapid for both pathways for the frequencies

considered (f = 20Hz, T = 50ms), since the contribution of stimuli as few as three cycles

ago becomes negligible in the convolution of Eq. 5.28; the contribution of each stimulus is

weighted by the filtering function at the position determined by the amount of time passed

since the arrival of the stimulus. In Fig. 5.11A, one can see that the filtering function begins

to decay rapidly after the time-to-peak and stimuli of three cycles ago are already far away

from the peak and their contribution becomes negligible. This implies that uG(t) converges

to its limiting behavior within two or three cycles of stimulus when the interval between

stimuli is large compared to the time-to-peak of the temporal filtering function (Fig. 5.10A).

Consequently, the contribution of a stimulus arriving early becomes negligible too quickly

and fails to increase uG su�ciently above the limiting state (Fig. 5.10C). Finally, we consider

the case in which an extra stimulus is presented between two regular stimuli. This case can

be viewed as having two consecutive stimuli arriving early. The latter of the two early

stimuli arrives before the e↵ect of the first early stimulus decays and the e↵ects of the two

accumulate. The di↵erence of the two weighted inputs from the bipolar cell layer grows and

uG increases above the limiting state (Fig. 5.10D).
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Figure 5.11: Linear filtering process of a periodic stimulus in bipolar cells. (A)

The temporal filtering functions (ON-bipolar cells are chosen for better visualization) with a

greater (blue) and smaller (red) �’s are plotted with regular stimuli (green) with the period of

T = 50ms and duration of 20ms. The time-to-peak of the bipolar cell with the larger � (blue

dot) is shorter than that of the bipolar cell with the smaller � (red dot). The amplitudes

of the filtering functions are adjusted arbitrarily for better visualization. (B) The filtering

of the repeated stimuli converges quickly to the limiting state by the arrival of the second

stimulus. The overall behaviors of the bipolar cells with slightly di↵erent �’s are almost

identical as expected. (C) The contribution of an early stimulus on the convolution decays

quickly and becomes negligible after two cycles. The e↵ect of the early stimulus decays away

by the time when the next stimulus arrives and the di↵erence between the two inputs cannot

grow large enough. (D) An extra stimulus is followed by another stimulus with a shorter

time interval between them, which allows the di↵erence between the two weighted inputs to

grow, e↵ectively accumulating the contributions of the two early stimuli on the convolution.
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Following the analysis of the toy model, we consider the case in which the direct synapse

has the slower synaptic filtering process, �F 0 < �F (Fig. 5.12A). The ganglion cell responds

to the omission and termination of the stimulus (Fig. 5.12B) as expected from the analysis

of the toy mode with �1 < �2. Surprisingly, the building block model also responds to

an early and an extra stimulus (Figs. 5.12C and D). The response is more apparent with

the extra stimulus, as its e↵ect can be thought of as an accumulation of two early stimuli

presented consecutively. We suspect that such discrepancy between the toy model and the

current model is due to the increasing regime of the new filtering function that was not

present in the filtering function used in the toy model. We will leave further analysis of such

phenomenon for future work.

5.2.6 Conclusion

In this preliminary work, we have developed a simple and mathematically tractable model for

the activity in the ganglion cell layer of the retina-tectum network. The qualitative features

of the model can be characterized by four parameters: the kinetic parameter of the temporal

filtering function of the two pathways, �↵ and �↵0 , converging at the ganglion cell layer and

the synaptic weights of the two inputs, !G↵ and !G↵0 coming from the two pathways. The

two kinetic parameters can be reduced to one by rescaling the time variable with one of the

kinetic parameters and the ratio between the two weights ! = !G↵0
!G↵

determines the qualitative

behavior of the model. Here, ↵ and ↵0 are either both ON-bipolar cells or both OFF-bipolar

cells. The model represents a component, or a region, in the ganglion cell layer that detects

and responds to di↵erent types of novelties introduced in a repeated stimuli. The type of

novelty a component is sensitive to is determined by the four parameters associated with

the component. We believe that such phenomenological model can be used as a “building

block” of the network that–as a whole–can generate spatiotemporal patterns, which encode

the information of the type of novelty observed in a regularly repeated stimulus.

The current model relies on some simplifying assumptions. The adaptation in the kinetic

parameter due to variable temporal contrast will change over time, and �↵’s may be viewed
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Figure 5.12: A building block with fast direct and slow indirect OFF-bipolar cells.

(A) A schematic diagram of the building block consisting of a direct input from OFF-bipolar

cell with faster kinetics and an indirect input from another OFF-bipolar cell with slower

kinetics. Relative synaptic weights are denoted as !GF and !GA. Without loss of generality,

we assume !GF = 1 and only consider !GA to represent the relative strength of the two

inputs. (B)-(D) The weights are chosen to give the most distinctive response to a novelty

introduced in the stimuli. (B) The building block model responds to an omitted stimulus

and the end of the repeated stimulus. (C) The building block model exhibits a very slight

activation in response to an early stimulus. (D) The building block model exhibits a clear

response to an extra stimulus.
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as a time-dependent parameter in future models. The distribution of synaptic strength over

space and between layers will be investigated in the future to put together the building block

models developed here and complete the model of the retina-tectum network. Moreover, the

output function of ganglion cells will be approximated to connect the ganglion cell layer and

the tectum cell layer. With various activity patterns that are potentially available from the

building blocks, we suspect that the complete model can produce spatiotemporal patterns

that are physiologically relevant in novelty detection.
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