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Foreground-immune CMB lensing with shear-only reconstruction

Emmanuel Schaan1, 2, ∗ and Simone Ferraro3, 2, †

1Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
2Berkeley Center for Cosmological Physics, University of California, Berkeley, CA 94720, USA

3Department of Astronomy and Miller Institute, University of California, Berkeley, CA 94720, USA

CMB lensing from current and upcoming wide-field CMB experiments such as AdvACT, SPT-3G
and Simons Observatory relies primarily on temperature, rather than polarization. In this regime,
foreground contamination to the temperature maps produces significant lensing biases, which cannot
be fully controlled by multi-frequency component separation, masking or bias hardening.

In this letter, we use the different symmetries of the lensed CMB and foregrounds to argue that a
shear-only estimator should be approximately immune to foregrounds. Using simulations, we build
a new method to compute separately and without noise the primary, secondary and trispectrum
biases to CMB lensing. We show that the shear estimator is indeed insensitive to foregrounds, even
when applied to a single-frequency temperature map contaminated with CIB, tSZ, kSZ and radio
point sources. This dramatic reduction in foreground biases allows us to include higher temperature
multipoles than with the standard quadratic estimator, thus increasing the overall statistical power
of lensing measurements. In addition, the corresponding magnification-only estimator is highly
sensitive to foregrounds, and therefore provides a useful diagnostic for potential residuals.

I. INTRODUCTION

Weak lensing of the CMB measures the projected mat-
ter distribution throughout the observable Universe, and
is one of the most promising probes of dark energy, mod-
ified gravity and neutrino masses [1, 2]. As the mea-
surement precision increases, systematic biases become
more important. While CMB S4 [3] lensing data should
be polarization-dominated in the future, in the coming
decade, CMB lensing measurements from AdvACT [4],
SPT-3G [5] and Simons Observatory 1 will rely predomi-
nantly on temperature. In this regime, foregrounds such
as the cosmic infrared background (CIB), the thermal
Sunyaev-Zel’dovich effect (tSZ), the kinematic Sunyaev-
Zel’dovich effect (kSZ) and radio point sources (PS) can
produce biases much larger than the statistical errors,
if unaccounted for [6–9]. Mitigation methods such as
multi-frequency component separation [9], masking, and
bias hardening [7, 11] are sufficient to null the tSZ and
radio PS biases, but only partially cancel the CIB, and
have no effect on the kSZ, which alone causes a signifi-
cant bias [8]. New methods are therefore needed, in order
to produce unbiased CMB lensing measurements.

In this letter, we explore a different approach, by lever-
aging the symmetries of the lensing deflections. While
the standard quadratic estimator for lensing (QE, [12])
optimally combines information from the shearing and
magnification of hot and cold spots of the CMB, we
instead estimate shear and magnification separately, as
shown in [13–15]. Related work on lensing reconstruction
from shear estimators include [13, 19–21]. Intuitively,
foregrounds with isotropic 2D power spectra should only

∗ eschaan@lbl.gov
† sferraro@berkeley.edu
1 https://simonsobservatory.org/index.html

bias the magnification estimator, leaving the shear esti-
mator unaffected. The shear estimator should thus pro-
vide a robust probe of lensing, and the magnification es-
timator a sensitive diagnostic for residual foregrounds.

To test this hypothesis, we use simulated maps of
the CIB, tSZ, kSZ, radio PS and CMB lensing conver-
gence, including realistic non-Gaussianities and correla-
tions among them, from [22].

II. CMB SHEAR & MAGNIFICATION

In this section, we review the shear and magnification
estimators of [14, 15], compare their signal-to-noise and
explain heuristically why the shear estimator is expected
to be insensitive to foregrounds.

Estimators

Consider the ‘large-scale lens regime’, where the con-
vergence field is roughly uniform over a patch of the sky
containing many CMB hot and cold spots. This is the
regime L � `, where L and ` are the convergence and
temperature map multipoles, respectively. In this limit,
lensing produces the following off-diagonal correlations
in the lensed temperature T [14, 15]:
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where C0 is the unlensed power spectrum, κL the lensing
convergence, and θL,` the angle between vectors L and `.

The first line is exact, to first order in κ. The second line
is approximate, valid only in the large-scale lens regime
L� `, but highlights the distinct effects of isotropic mag-
nification 2 (independent of θL,`) and anisotropic shear

(∝ cos 2θL,`), as in galaxy lensing. Because lensing is

characterized by only one scalar field (e.g., κL), shear
and magnification are related, and the QE measures both
effects simultaneously. However, foreground contamina-
tion will affect magnification and shear differently, so we
estimate them separately. Quadratic estimators sensitive
only to shear or magnification can be built as:

κ
shear/magnification

L
=
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These match the harmonic-space version of [14, 15], af-
ter normalizing them to be unbiased and substituting
T`TL−` to T`+L/2TL/2−`, to permit fast evaluation

as convolutions with FFT. We further substitute the
lensed CMB power spectrum to C0, as is customary
for the QE [16, 17]. The magnification estimator effec-
tively measures monopolar distortions of the small-scale
CMB power spectrum, while the shear estimator mea-
sures quadrupolar distortions, thanks to the cos(2θL,`)

weighting. While the estimators in Eq. 2 are only in-
terpreted as shear/magnification estimators in the large-
scale limit, they are still unbiased estimators of κL on
all scales.

Throughout this letter, we consider an upcoming stage
3 (‘CMB S3’) experiment, with 1.4′ beam FWHM and
7µK ′ sensitivity at 148GHz. We apply the lensing es-
timators to the single-frequency map at 148GHz, with-
out any multi-frequency component separation. For the
lensing weights, we include the lensed CMB, all the fore-
grounds of Sec. III and the detector white noise in the
total power spectrum.

2 To be consistent with the optical lensing literature, this effect
should really be called ‘convergence’ instead of ‘magnification’.
Since we already use the namagnificationme ‘convergence’ to des-
ignate the lensing field κ that is being reconstructed, we decided
to call shear and magnification the two distinct effects, to avoid
confusion.

Statistical signal-to-noise

As can be seen in Eq. (1), a scale-invariant power spec-
trum (∂ ln `2C0

` /∂ ln ` = 0) is not affected by magnifica-
tion, while a white spectrum (∂ lnC0

` /∂ ln ` = 0) is not
affected by shear. The unlensed CMB power spectrum
is neither white nor scale-invariant, so a similar signal-
to-noise is expected for the shear and magnification es-
timators. Indeed, as shown in Fig. 1, the lensing noise
in shear and magnification is comparable. This is con-
venient: the shear and magnification can be compared
as a consistency check for residual foregrounds. At fixed
`max,T , the total signal-to-noise in shear and magnifica-
tion is similar, and about 60% of that in the QE, includ-
ing the cosmic variance. However, as we show below, the
shear estimator is less affected by foregrounds, allowing
to use `max,T = 3500 instead of `max,T = 2500 for the QE.
Overall, the signal-to-noise in shear with `max,T = 3500
is larger than that in QE with `max,T = 2500 by 10%. To
optimize further, one may combine the QE with `max,T =
2000 to the shear measured from ` = 2000 − 3500. This
‘hybrid’ estimator, shown in Fig. 1, increases the SNR by
37% compared to the QE with `max,T = 2500, from 70
to 96, equivalent to almost doubling the survey area.

Expected sensitivity to foregrounds

Because a power spectrum is necessarily positive, any
residual foreground causes an excess power spectrum
monopole in the CMB map. From Eq. (1), since the
CMB is very steep (∂ ln `2C0

` /∂ ln ` < 0) over the scales
of interest (` & 1000), this excess monopole power is then
mistaken for a negative magnification, thus producing a
negative bias in the QE and magnification estimators.

On the other hand, foregrounds with isotropic 2D
power spectra produce no quadrupole power, and there-
fore do not bias the shear estimator. This is the case if the
foreground sources have azimuthally-symmetric emission
profiles, and are unclustered (Poissonian) or isotropically
clustered. If the foreground sources have independent
random ellipticities, they will produce extra noise in the
shear estimator, analogous to the shape noise in galaxy
lensing (but no bias). The same occurs for example if the
foreground objects are point-like but clustered in ellipti-
cal filaments with random orientations. On the other
hand, any quadrupolar halo profile or halo clustering,
aligned with the local tidal field, would bias the shear
estimator, analogously to intrinsic alignments in galaxy
lensing (see App. D in [26]).

In summary, any residual foreground causes a negative
bias in the QE and magnification estimators, whereas
only foregrounds with very specific anisotropies can affect
the shear estimator. We quantify this intuition in the
next section.
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FIG. 1. Top: Lensing reconstruction noise per lensing mul-
tipole for the standard quadratic estimator (QE, red), the
shear (blue) and magnification (green) estimators, when us-
ing temperature modes ` = 30 − 3500.
Bottom: Total signal-to-noise on the amplitude of the lens-
ing power spectrum, including cosmic variance, as a function
of the maximum temperature multipole `max,T . Different col-
ors correspond to the different estimators. Dashed lines in-
dicate when foreground biases are larger than the statistical
uncertainty. At fixed `max,T , the signal-to-noise in shear and
magnification is similar, and is about 60% of the signal-to-
noise of the QE. However, as we show below, keeping the fore-
ground bias below the statistical error requires `max,T = 2500
for the QE (red dot, S/N = 70), compared to `max,T = 3500
for the shear estimator (blue dot, S/N = 77): hence the final
shear signal-to-noise exceeds that of the QE by 10%. A hybrid
estimator QE(` ≤ 2000) & shear(` = 2000 − 3500) is shown
in purple, and increases the signal-to-noise by 37% compared
to the standard QE(` ≤ 2500).
For both panels, we assumed an upcoming CMB S3 experi-
ment with 1.4′ beam FWHM and 7 µK′ white noise.

III. SENSITIVITY TO FOREGROUNDS:
SIMULATIONS

Method

We use simulated maps of lensing convergence, CIB,
tSZ, kSZ and radio PS at 148GHz from [22], obtained

by painting spherically-symmetric baryonic profiles on a
large-box (L = 1 Gpc/h) N-body simulation. A halo cat-
alog from this N-body simulation is also available. We
re-weight these halos to match the redshift distribution
of the LSST gold sample, with i-band magnitude i < 25.3
[23] (dn/dz ∝ (z/z0)2e−z/z0/(2z0) with z0 = 0.24), and
obtain a projected ‘galaxy’ number density map δg. The
‘galaxy bias’ measured from this map roughly matches
the expected value b(z) = 1 + 0.84z [23]. These maps
have two crucial features: they are realistically corre-
lated with each other, and have a reasonable level of
non-Gaussianity. The simulations also include the effect
of anisotropic clustering of halos inside filaments, but not
the possible intrinsic alignments of halo profiles. We ex-
pect the latter effect to be a small correction. Our goal is
to compute the foreground biases to the cross-correlation

of CMB lensing with galaxies C
κδg
L and to the CMB lens-

ing auto-spectrum CκκL .
We subtract the mean emission in each foreground

map, then rescale the maps by factors ∼ 1 to match
the power spectrum model of [24] (0.38 for CIB, 0.7 for
tSZ, 0.82 for kSZ, 1.1 for radio PS). Following [6], we
then mask the point sources with flux & 5mJy in each
foreground map. The resulting foreground power spectra
are shown in Fig. 2. In principle, one should add all the
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FIG. 2. Power spectrum of the lensed CMB, foregrounds and
white detector noise, for an upcoming CMB S3 experiment at
148GHz (1.4′ beam FWHM, 7 µK′ white noise). In each
foreground map, point sources with flux greater than 5 mJy
have been masked.

foreground maps together to get the total bias, includ-
ing their correct cross-correlations. However, component
separation will reduce each foreground differently. For
this reason, we analyze each foreground map separately.
This should allow the reader to quantify the foreground
bias for any component separation method by rescaling
our values appropriately. In what follows, our lens recon-
struction relies on temperature multipoles ` = 30−3500.
To measure the lensing bias due to the foregrounds, we
decompose the observed sky temperature Tobs into the
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lensed primary CMB TCMB, the foregrounds Tf and the
detector noise Tnoise: Tobs = TCMB+Tf+Tnoise. We write
Q[TA, TB ] for any quadratic estimator (QE, shear or mag-
nification) applied to maps TA and TB , symmetrized in
A↔ B.

As shown in [6–8], biases to the CMB lensing auto
power spectrum CκκL arise from the foreground bispec-
trum (‘primary’ and ‘secondary’ terms), and from the
foreground trispectrum. We evaluate them as follows:

1) The primary bispectrum term is computed as
2〈Q[Tf , Tf ] κCMB〉, as in [6–8].

2) The secondary bispectrum could in principle be
computed as 4〈Q[Tf , TCMB] Q[Tf , TCMB]〉. However,
this auto-correlation is biased by the large noise of
Q[Tf , TCMB], which would have to be subtracted. We
therefore propose and implement a new method to avoid
these issues. We Taylor-expand the lensed CMB map
TCMB = T 0 + T 1 + ... in powers of κ, and compute the
quantity 8〈Q[Tf , T

0] Q[Tf , T
1]〉. This is equivalent, be-

cause the quadratic estimators are by construction un-
biased when applied to the pair (T 0, T 1). However, the
noise is greatly reduced, and this is a cross-correlation so
no noise subtraction is needed (no N0, or higher order
bias N i). We reduce the noise even further by not gen-
erating a true Gaussian realization for T 0, but instead
fixing the modulus of all the Fourier modes to the square
root of the power spectrum.

3) For the trispectrum term, we compute
〈Q[Tf , Tf ] Q[Tf , Tf ]〉, and subtract the Gaussian
contribution (which is a part of N0) analytically, as in
[6, 7].

For the cross-correlation with tracers C
κδg
L , only the

primary bispectrum is present, and without the combi-
natorial factor 2: 〈Q[Tf , Tf ] δg〉. The secondary bispec-
trum and trispectrum terms only act as a source of noise
on this cross-correlation, not bias.

Results

The resulting foreground biases for the cross-

correlation C
κδg
L are shown in Fig. 3. Despite the mask-

ing, the CIB, tSZ, kSZ and radio PS lead to very large
and statistically significant biases for the QE and the
magnification estimators. Again, multi-frequency com-
ponent separation may be used to null the tSZ bias, or
reduce the CIB or radio PS biases. However, reducing
all these biases simultaneously typically causes a large
noise increase. Furthermore, multi-frequency analyses
have no effect on the kSZ bias. These foreground bi-
ases are therefore a major concern for the standard QE.
On the other hand, no foreground bias is detected in
the shear estimator. This is the main result of this let-
ter: even when applied to a single-frequency temperature
map, the shear estimator measures only the quadrupo-
lar distortions from lensing, and is therefore immune to
foregrounds. It is remarkable that this holds even for a
single frequency map out to `max,T = 3500, where the

temperature modes are foreground dominated. Our QE
tSZ bias in Fig. 3 is smaller than in [9, 10], which can be
explained by our scaling down of the tSZ map to match
the power spectrum model of [24], our masking, and the
different redshift of our galaxy catalog. Our CIB bias is
slightly larger than found in [10].
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tS
Z
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−0.05

0.00

R
ad

io
FIG. 3. Relative bias to the cross-correlation between CMB
lensing and the LSST gold galaxy sample, as a function of
lensing multipole L, when including temperature multipoles
` = 30 − 3500 at 148GHz. This bias corresponds to the ‘pri-
mary bispectrum’ term. The grey boxes indicate bins of lens-
ing multipoles with the corresponding statistical error bars
for the standard quadratic estimator (lensing noise plus cos-
mic variance, identical in each panel). The foreground biases
are much larger than the statistical error bars for both the
standard quadratic estimator and the magnification estima-
tor, whereas it is barely measurable for the shear estimator.

For the lensing auto-spectrum CκκL , the primary, sec-
ondary and trispectrum biases discussed in the previous
section are shown in Fig. 4. At low (high) lensing multi-
poles, the primary (trispectrum) bias dominates. In both
cases, a large bias is seen in the QE and magnification
estimator, while the shear estimator is unbiased. Our
primary and trispectrum foreground biases are consistent
with the results of [6] for the CIB and tSZ, and slightly
smaller than what found in [8] for the kSZ, due to our
rescaling of the kSZ map and the slightly different lensing
weights. We compute individually the secondary fore-
ground bias. This term is smaller than the primary and
trispectrum term, but non-negligible for L of a few hun-
dred. Here, the shear estimator does not improve over
the QE and magnification estimators. Overall, the shear
estimator dramatically reduces the foreground biases. As
a result, in the absence of any foreground cleaning, the
shear estimator allows to increase the range of multipoles
used in the lens reconstruction from `max,T ≈ 2500 for the
QE, to `max,T ≈ 3500 for shear-only. Multi-frequency
foreground cleaning can help increase the range of usable
multipoles – and thus the statistical power – for both
estimators.



5

IV. CONCLUSION

For current and upcoming CMB experiments such as
AdvACT, SPT-3G and Simons Observatory, CMB lens-
ing reconstruction will rely primarily on temperature,
rather than polarization. Foreground emission is known
to contaminate temperature maps from which lensing is
reconstructed, and therefore produce very significant bi-
ases, leading to wrong conclusions about cosmology if
unaccounted for. Modeling and subtracting these bias
terms is likely to be very challenging, due to the complex
baryon physics involved in producing them. While some
foregrounds can be nulled (tSZ) or reduced (CIB, radio
PS) by a multi-frequency analysis, at the cost of a degra-
dation in map noise, other foregrounds cannot (kSZ).

In this letter, we therefore explored a different ap-
proach, by using the approximate isotropy of the fore-
ground 2d power spectra, and splitting the QE into
isotropic magnification and anisotropic shear estimators
[13–15], with similar signal-to-noise ratios. The shear es-
timator enables a remarkable reduction of foreground bi-
ases, compared to the QE, even when applied to a single-
frequency temperature map. As a result, the shear es-
timator allows to increase the range of multipoles used
in the lens reconstruction to `max,T ≈ 3500, instead of
`max,T ≈ 2500 for the QE, while keeping foreground
biases within the statistical uncertainty. Overall, the
signal-to-noise in shear with `max,T = 3500 is larger than
that in QE with `max,T = 2500 by 10%. Component
separation may allow the use of higher multipoles for all
estimators. The shear estimator thus provides a robust

way of measuring lensing. On the other hand, the mag-
nification estimator is highly sensitive to foregrounds, so
comparing magnification and shear provides an excellent
diagnostic for foreground contamination.

Further optimization is possible, by combining differ-
ent estimators with different `max,T . For instance, a hy-
brid estimator QE(` ≤ 2000) & shear(` = 2000 − 3500)
improves the lensing signal-to-noise by 37% compared to
the standard QE(` ≤ 2500), equivalent to almost dou-
bling the survey area. Future CMB lensing data from
CMB S4 should be polarization-dominated. The shear
and magnification estimators can be generalized to po-
larization [15], and may bring improvements there too.
This would have implications for precision delensing, in
order to isolate primordial tensor modes. Finally, sim-
ilar foreground biases occur in lens reconstruction from
intensity mapping [25, 26] (e.g., the ‘self-lensing bias’ for
CIB), and the shear estimator may allow to reduce them
[25, 26]. We leave a full exploration of these promising
avenues to future work.
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FIG. 4. Relative bias on the CMB lensing power spectrum, as
a function of lensing multipole L, when including temperature
multipoles ` = 30−3500 at 148GHz. The grey boxes indicate
bins of lensing multipoles with the corresponding statistical
error bars for the standard quadratic estimator (lensing noise
plus cosmic variance).
Top: primary bispectrum bias, dominant at low L.
Middle: secondary bispectrum bias.
Bottom: trispectrum bias, dominant at high L.
The dominant biases (primary and trispectrum) are much
larger than the statistical error bars for the QE and mag-
nification estimator, and are barely measurable for the shear
estimator. The secondary bispectrum bias is smaller, and
similar in size for all estimators.
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SUPPLEMENTAL MATERIAL

In this supplementary material, we present fast implementations of the shear/magnification estimators using Fast
Fourier Transform (FFT), and derive the noise properties of these estimators. We then compare the power spectra
of the simulated foreground maps from [22] to the fitting functions from [24], and show sanity checks for our mock
LSST gold sample. Finally, we show the overall foreground biases to CMB lensing, as a function of the maximum
temperature multipole `max,T .

Appendix A: Fast evaluation with FFT

For computational efficiency, it is very useful to rewrite the estimators using FFTs, as we describe in this section.

1. Quadratic Estimator

We recast the standard quadratic estimator (QE) into the following form:

φ̂L = NL

∫
d2`

(2π)2
iL ·︸︷︷︸

divergence


TL−`
Ctotal
L−`︸ ︷︷ ︸

inverse-var.
weighted map

×
C0
`

Ctotal
`

i` T`︸ ︷︷ ︸
Wiener-filtered
gradient map

 . (A1)

The QE is thus the divergence of the real-space product of the inverse-variance weighted unlensed map by its Wiener-
filtered gradient. This is written explicitly as products and convolutions, which can be evaluated efficiently via FFT.

The corresponding reconstruction noise is:

NL =

[∫
d2`

(2π)2

f2
`,L−`

2Ctotal
`

Ctotal
L−`

]−1

, (A2)

where f`,L−` = −
[
L · `C0

` + (`← L− `)
]
. In order to write this as a sum of products and convolutions, we expand

as follows:

f2
`,L−` =

[
L · `C0

` + (`← L− `)
]2

= (L · `)2C0 2
` + (L · `)[L · (L− `)]C0

`C
0
L−` + (`← L− `).

(A3)

This allows us to rewrite the integrand as a sum of separable terms in ` and L− `:

(N0
L)−1 =

 L2
x

L2
y

LxLy

 ·

∫

d2`

(2π)2

 `2x
`2y

2`x`y

 C0 2
`

Ctotal
`

1

Ctotal
L−`

+

∫
d2`

(2π)2

 `x (Lx − `x)
`y (Ly − `y)
2`x (Ly − `y)

 C0
`

Ctotal
`

C0
L−`

Ctotal
L−`

 .

(A4)

This expression is a sum of products and convolutions, which can now be evaluated efficiently via FFT.

2. Shear and magnification estimators

The notions of shear and magnification are only well-defined in the regime where the convergence field is roughly
uniform on a patch of the sky containing many CMB hot and cold spots. This occurs when L� `. In this limit, we
can Taylor expand the power spectra in L around `:

C0
|`±L/2| = C0

`

[
1± 1

2

(
L · `
`2

)
∂ lnC0

`

∂ ln `
+O

(
L

`

)2
]
. (A5)
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As a result, the off-diagonal correlations of the lensed temperature become:

〈T`+L/2T
?
`−L/2〉 ' C

0
`

 κL︸︷︷︸
isotropic

magnification

∂ ln `2C0
`

∂ ln `
+ κL cos 2θL,`︸ ︷︷ ︸

anisotropic
shear

∂ lnC0
`

∂ ln `

 . (A6)

We can thus distinguish the effects of isotropic magnification (independent of θL,`) and anisotropic shear (∝
cos 2θL,`). Given the dependence on θL,`, estimators for magnification and shear can be obtained as follows:

κmagnification

L
≡
∫

d2`
(2π)2 T`+L/2T

∗
`−L/2

C0
`

2(Ctotal
` )2

∂ ln `2C0
`

∂ ln `∫
d2`

(2π)2
(C0

` )2

2(Ctotal
` )2

(
∂ ln `2C0

`

∂ ln `

)2 , (A7)

and

κshear
L ≡

∫
d2`

(2π)2 T`+L/2T
∗
`−L/2 cos(2θL,`)

C0
`

2(Ctotal
` )2

∂ lnC0
`

∂ ln `∫
d2`

(2π)2 cos(2θL,`)2 (C0
` )2

2(Ctotal
` )2

(
∂ lnC0

`

∂ ln `

)2 . (A8)

These quadratic estimators would be the inverse-variance weighted magnification and shear estimators if the variance
of T`TL−` was exactly 2(Ctotal

` )2, which is not quite true. A multiplicative factor that makes the estimators above
unbiased on all scales can be derived, and is discussed in Sec. A 4.

3. Fast approximate estimators

To enable the use of FFT in the evaluation of the shear and magnification, we further approximate the above
expressions as:

κmagnification

L
≡
∫

d2`
(2π)2 T`TL−`

C0
`

2(Ctotal
` )2

∂ ln `2C0
`

∂ ln `∫
d2`

(2π)2
(C0

` )2

2(Ctotal
` )2

(
∂ ln `2C0

`

∂ ln `

)2 , (A9)

and

κshear
L ≡

∫
d2`

(2π)2 T`TL−` cos(2θL,`)
C0

`

2(Ctotal
` )2

∂ lnC0
`

∂ ln `∫
d2`

(2π)2 cos(2θL,`)2︸ ︷︷ ︸
→1/2

(C0
` )2

2(Ctotal
` )2

(
∂ lnC0

`

∂ ln `

)2 . (A10)

These integrals are evaluated by FFT, using the following replacement:

cos(2θL,`) = 2
(L · `)2

L2`2
− 1 =

1

L2

[
L2
x − L2

y

4LxLy

]
·
[
`2x − `2y
`x`y

]
1

`2
, (A11)

These estimators make two approximations, beyond the Taylor expansion to first order in κL. The first one is the
Taylor expansion of the unlensed power spectrum to first order. The second one is the replacement of slightly different
` in the temperature maps/weights.

Outside of the large-scale lensing L� `, the first approximation becomes inaccurate, and the shear and magnifica-
tion acquire a multiplicative bias, which we compute in the next subsection.

On the other hand, the second approximation doesn’t introduce any spurious error, to first order in L/`. Indeed,
the extra term averages over angle to zero, when multiplied by 1 or cos(2θ), as is done in the shear and magnification
estimators:

〈T`TL−`〉 ' C0
`

 κL︸︷︷︸
isotropic

magnification

∂ ln `2C0
`

∂ ln `
+ κL cos 2θL,`︸ ︷︷ ︸

anisotropic
shear

∂ lnC0
`

∂ ln `
+ κL cos θL,`︸ ︷︷ ︸

additional term
which averages to zero

2L

`

∂ lnC0
`

∂ ln `
+O

(
L

`

)2

 . (A12)
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4. Multiplicative bias

Introducing the following simplifying notations
gmagnification

`
=

C0
`

2(Ctotal
` )2

∂ ln `2C0
`

∂ ln `
,

gshear
` = cos(2θL,`)

C0
`

2(Ctotal
` )2

∂ lnC0
`

∂ ln `
,

(A13)

the quadratic estimators for shear/magnification can be written as:

κ
shear/magnification

L
=

∫
d2`

(2π)2 T`TL−` g`∫
d2`

(2π)2 C
total
` g2

`

. (A14)

Since 〈T`TL−`〉 = φLf`,L−`, we obtain the multiplicative bias of the estimator:

〈κL〉shear/magnification = κtrue
L

(−2

L2

) ∫ d2`
(2π)2 f`,L−` g`∫
d2`

(2π)2 C
total
` g2

`

, (A15)

where again f`,L−` = −
[
L · `C0

` + (`← L− `)
]
. Finally:

〈κL〉shear/magnification = κtrue
L

(
2

L2

) L ·
∫

d2`
(2π)2 (L− `)C0

L−` g`∫
d2`

(2π)2 C
total
` g2

`

. (A16)

This can again be evaluated with FFT.

5. Bias-corrected shear and magnification estimators

Correcting the multiplicative bias gives the following estimators for shear and magnification:

κ
shear/magnification

L
=

(
L2

2

) ∫
d2`

(2π)2 T`TL−` g`

L ·
∫

d2`
(2π)2 (L− `)C0

L−`
g`

, (A17)

where the g` functions are defined above. This is the estimator used in the paper.

6. Noise power spectrum

The shear and magnification estimators, corrected for multiplicative bias or not, are of the form

κ
shear/magnification

L
=

∫
d2`

(2π)2
T`TL−` g` /normalization. (A18)

We thus find the noise power spectrum to be

Nκshear/magnification

L =

∫
d2`

(2π)2
Ctotal
` Ctotal

L−` g`

(
g` + gL−`

)
/normalization2. (A19)

In Fig. 5, we show that these analytical expressions for the noise power spectrum match the measured power spectrum
of the estimator, when applied to mock Gaussian CMB maps with power spectrum equal to the total power spectrum
(lensed CMB + detector noise + foregrounds).
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FIG. 5. Comparison of the measured noise power spectrum for the QE, shear and magnification (data points) with the
analytical prediction (dashed lines). This validates our pipeline for the QE, shear and magnification estimators, and for the
analytical noise calculations.

Appendix B: Foreground spectra

We compute the power spectra of the various foreground maps from [22], before masking, and multiply them by
factors of order unity (0.38 for CIB, 0.7 for tSZ, 0.82 for kSZ, 1.1 for radio PS) to match the spectra from [24]. After
masking, the resulting power spectra are shown in Fig. 6, and compared to the spectra from [24]. At the power
spectrum level, the effect of masking is most spectacular for the radio PS. However, while masking may not change
the foreground power much, it may have a larger effect on the foreground bispectrum and trispectrum.

100 1000
`

0.01

1

100

104

`(
`

+
1)
C
`/

(2
π

)
[µ
K

2
] total

lensed CMB
detector noise
CIB
tSZ
−CIB×tSZ
kSZ
radio PS

FIG. 6. We fixed the normalization of the Sehgal maps [22] to match the power spectrum model from [24] (dashed lines). The
Sehgal maps were subsequently masked for point sources above 5mJy, producing the solid curves shown in this figure. At the
power spectrum level, the effect of masking is most visible on the radio PS.

Appendix C: Galaxy catalog

To construct a mock LSST gold sample, we re-weight the halos in the catalog from [22] to match the redshift
distribution of the LSST gold sample, with i-band magnitude i < 25.3 [23]:

dn

dz
∝ 1

2z0

(
z

z0

)2

e−z/z0 , with z0 = 0.24. (C1)

The expected galaxy bias for the LSST sample is b(z) = 1 + 0.84z [23], and Fig. 7 shows that our reweighted mock
catalog has approximately the same bias.
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`

10−8

10−7

10−6

C
`

LSST ×κtrue: theory

LSST ×κtrue: sim

FIG. 7. Cross correlation between our mock LSST gold sample, constructed by reweighting the halos in the catalog from [22],
and the CMB lensing convergence in the simulations. The solid line shows the theory expectation for the actual LSST gold
sample [23]. The rough agreement implies that the bias of the reweighted sample is close to the one of LSST sources, which is
sufficient to estimate the foreground biases to LSST×κCMB.

Appendix D: Foreground biases to the lensing amplitude

We show the bias on the amplitude of the lensing power spectrum and the amplitude of the cross-power spectrum
of CMB lensing and LSST gold galaxies in Fig 8. Considering the lensing auto-spectrum, the foreground bias equal
the statistical uncertainty (including cosmic variance) for `max,T = 2500 for the QE and magnification, compared
to `max,T = 3500 for the shear estimator. This increase in `max,T has important implications in terms of lensing
signal-to-noise, as described in the main text.
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FIG. 8. Relative bias on the amplitude of the lensing power spectrum (left) and the amplitude of the cross-power spectrum of
CMB lensing and LSST gold galaxies (right) due to the various foregrounds. The grey band is the statistical error, including
cosmic variance.
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