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ABSTRACT

We introduce a two-dimensional finite element model of fluid
flow in fractured rock masses wherein the discontinuities are
deformable and constitute the primary flow paths. The interaction
between the fluid and the fracture motions as well as inertia effects
are taken into account. The model permits us to simulate fractured
rock systems which are at an incipient state of instability; it is
possible to predict the behavior of such systems when their state of'
stress is changed by injection or removal of fluid.

A computer program based on this theory has been developed. It
determines the hydrodynamic state of the fluid, the displacement, strain
and stress response histories of the rock masses, the change of the
kinetic and the potential energy of the rock, and the amount of energy
dissipated during slip. A number of simplified problems are solved.
The results confirm that the present model can be used to study the
controlled release of tectonic stresses along predetermined faults

through fluid injection.
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1. INTRODUCTION

Considerable evidence, gathered recently at Rangely, Colorado oil field,
strongly suggests that fluid injection has caused small earthquakes along a
fault. This and similar obsérvations are described by Dietrich, Raleigh and
Bredehoeft [1] and Handin and Raleigh [3], among others. Consequently the
concept was developed that if earthquakes can be made by man's injection of
fluid into the subsurface, then perhaps the appropriate control of fluid
pressures in the earth's crust can lead to a method of earthquake control
along major faults [3]. In order to study the role of fluids in controlling
the behavior of fractured rock masses, it is necessary to develop both mathe-
matical models and corresponding computer programs that allow the engineer to
simulate the behavior of such systems under a wide range of field conditions.

Recently several attempts at developing appropriate mathematical models
have been reported [4-10]. Gale, Taylor, Witherspoon and Ayatollahi [8],
modifying the two-dimensional finite element formulation described in [6,7],
successfully simulated quasi-static processes in systems of deformable
fractured rock wherein the discontinuities constitute the dominant flow
paths. However, the dynamic nature of slip mechanisms limit the applicability
of the quasi-static model to the study of pre-failure conditions. Dietrich
et al. [1,2] developed a dynamic finite element model for a single fault that
undergoes slip under the influence of tectonic and predetermined fluid stresses.
This model is able to provide a basis for predicting the dependence of dis-
placements and near field transient motions on stress drop, rupture dimensions
and seismic energy. However, Dietrich's model was not designed to incorporate
the interactive processes between the fluid pressure, the fracture deformations

and the stresses in the rock.
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Since it appeared that the commonly known computational models all are
unnecessarily restricted, an effort was made to develop a more realistic
model that could simulate transient interactive processes in systems of
fluid flow in deformable fractured rock. Based on the two-dimensional
formulation of Gale et al. [8] we have been able to create a new finite
element model which accounts for the inertia effects in the rock and the
coupling between the fluid flow and the motion of the system of fractures.
The new model simulates quasi-static and dynamic processes, and can be
used to study the effect of fluid injection into systems which are at an
incipient state of instability. This report is devoted to a description
of the theory and the nonstandard computational techniques of the new
model.

We are directing our attention to idealized geological structures which
consist of a deterministic system of fractures in a two-dimensional elastic
body of rock. The fluid flow is assumed to be confined to the network of
fractures. The discretization procedure employed in the present study is
schematically illustrated in Figure 1. The geological structure consists
of four continuous domains separated by two intersecting curvilinear fracture
surfaces. In Figure 1, both the geological structure and the corresponding
discrete model are shown. In the discrete model, the following three types
of finite elements are identified: (a) an isoparametric quadrilateral
element discretizing the continuous domains, (b) a four-node joint element
modelling the fractures, and (c) the one—dimensiénal, two-node fluid flow
element. The intersections of the fracture elements with each other and

with the boundaries define the nodal points of the mesh formed by the fluid

elements. Thus, the meshes defined by fracture elements and by fluid elements,
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respectively, possess the same topological and geometrical data.

The behavior of the continuous rock mass is assumed to be described by
the equations of linear elastodynamics. Effects due to the porosity of the
rock are neglected. The finite element formulation of the elastic solid
parts of the mesh is standard and will not be repeated here; for a detailed
description of the relevant techniques the reader is referred to Zienkiewicz
[12]. The nonstandard aspects of the discrete model will be addressed sub-
sequently in Chapters 2, 3 and 4.

In Chapter 2 we outline the theory of the joint element and define the
initial value problem which governs the dynamic behavior of the fractured
rock masses. The opening, closing and slip mechanisms of the fracture
surfaces are modeled by simplified contact and friction laws. Rate effects
in the constitutive relations and failure criteria have not been @ncluded in
the present model. Also the effects of shear dilitancy have been neglected
in the constitutive relations of the joint element.

Chapter 3 is devoted to a description of the theory of fluid flow in
the network of fractures. First we derive the flow element. It is based
on a Galerkin formulation of a simplified Navier-Stokes equation. This
formulation accounts for time dependent volumetric changes of the fluid
due to fracture motions, and allows for nonuniform cross-sectional areas
of the flow paths. Finally, we define and discuss the set of differential
equations which determines the state of the fluid in the network of fractures.

The present finite element formulation of fluid flow in deformable
fractured rock leads to two coupled systems of nonlinear differential
equations. In Chapter 4 we outline the computational techniques and

solution strategies which are employed in solving these equations. We
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use standard step-by-step integration methods of structural dynamics to
replace the differential equations by approximating algebraic equations of
recursive form. Furthermore, we discuss suitable iterative techniques to
solve these nonlinear equations in each time step.

Chapter 5 presents five applications of this finite element model to
simplified problems in order to demonstrate some of its pertinent properties.

Conclusions from this investigation are summarized in Chapter 6.



2. A KINEMATIC FINITE ELEMENT MODEL OF FRACTURED ROCK

In this chapter we define the initial value problem which approximately
describes the dynamic behavior of systems of fractured rock. Particularly,
we outline in detail the theory of the joint element which models contacting
and frictional motions of fracture surfaces.

2.1 TANGENT FORMULATION OF THE JOINT ELEMENT

The geometry of a typical joint element located in the x,y plane is
defined in Figure 2. The top and bottom faces of the joint element are
kinematically constrained in the same way as the boundaries of adjacent

continuous elements, insuring inter-element compatibility of displacements:

u 1 u T r-u 1

X = ‘Pl X + wz x ’ (2.13)
u u u
- y—-B e y—-l ' L y—JZ
- — - -

u u 1 u

= | vy, ! ; (2.1b)
Lu u u

2 MU e P 2 P

where u, and uy are displacements in x and y direction, respectively. In
(2.1) subscript B stands for bottom face (nodes 1,2), subscript T stands for
top face (nodes 3, 4), the vector (ux,uy)z contains the displacements u, and

uy of node i, i = 1,2,3,4, and

Yy

a - s)/z} -
v, '

(1 +8&)/2

H

are linear interpolation functions defined over the domain -1 < £ < 1.

Displacement components with respect to the local axes s, n are defined by

NN
= C
u =z [11 o (2.3a)

the linear transformation




do

Fig. 2.
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]
/Y'
—J X

Geometry and coordinate systems of the
undeformed joint element.
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where

cos® sin®
c = , (2.3b)
b -sin®  cos®

cos® = Ax/L, sin@ = Ay/L, Ax = Xy = Xy» Ay = Y, - Yo L = (sz + Ayz 1/2,

and ug and u  are the displacements in directions s and n, respectively;
see Figure 2.

Shear and normal strains are defined by

m
1]

(us)T - (us)B (2.4a)

and

€, = (w)yp - (ulg (2.4b)

respectively, which in view of (2.1) and (2.3) implies that

€= % 0 }
- (2.5)
En h (2 En *
In (2.5)
? = (-‘Pl, “wzs \Pz, \Pl) (2-6)
and
T
p. = (U , W y MU , Y )
~s sl s2 s3 s4 . 2.7
On © (unl’ un2’ Un3? un4) ’

where, for example, u_, denotes the displacement of node 1 in direction s.
In addition, we introduce the vector

T

ya) (2.8a)

S e S R M

containing the nodal displacements in directions x and y. Vectors p_ and

p, are expressed in terms of p by the kinematic relations

-~

053, S8 (2.80)




= E P, (2.8¢c)
where

C = diag(c, ¢, ¢, 2 (2.84d)

and as and an are Boolean matrices, the elements of which are either 1 or 0;

for example,

(2.8e)

S B

Next we define the constitutive model of the joint material. To this end

we introduce the vectors

(es, en)T , (2.10a)

m
"

T
f (fs, fn) . (2.10b)

where the elements of € are defined by (2.4), and fs and fn are shear and normal
forces per unit length acting in directions s and n, respectively. Constitutive
theories of discontinuities in rock defining the relation between f and € were
discussed by Goodman and Dubois [9]. In the present work the mechanical
behavior of jointed rock is described by a nondilatant model in which shear
and normal deformations are locally uncoupled. However, shear and normal
modes of deformations are coupled indirectly through a Coulomb type failure
criterion, as will be seen later. Goodman, Taylor and Brekke [7] proposed
a constitutive model similar to the one introduced here.

In accordance with the experimental data reviewed in [9], the normal
stress is related to the normal strain by an elastic, (i.e. path independent

and nondissipative) law of the form
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f“ = fn (en) . (2.11)

The particular function fn(en) which is used in the present model is defined
and illustrated in Figure 3. The tangent normal stiffness is defined by
kn = dfn/den. In Figure 3, do denotes the initial aperture of the joint, and
fno is the initial normal stress. The maximum tensile strength across the
slip surfaces is assumed to be zero.

Shear deformations of the joint element are governed by friction. A
‘one-dimensional elastic-plastic law was adopted for the constitutive model
of the joint in shear modes of deformation, as indicated in Figure 4. Failure

is specified according to the Mohr-Coulomb hypothesis

H

£ C if £ >0
4 n (2.12)

f C-f tanp if f <O s
sy n n

where fsy isvthe yield limit (peak shear strength), C is the cohesion, and
¢ the angle of friction. Shear failure occurs if Hglz-fsy' The residual
strength during slip is given by afsy. a is called the stick-slip
ratio; it controls the amount of energy dissipated during plastic shear
motion (slip). The value of a is restricted by 0 < a < 1.

The state of stress at a point of the plane-strain continuum is defined
by the stress vector

T

9= (Ogxr Oyy? 92z° oxy) » (2.13)

where the z-axis is normal to the x,y-plane. The state of stress at a point
on the fracture surface is defined by (2.10b), and £ is given in terms of

o by the standard transformation

f=Dg (2.14a)
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A fn (NORMAL STRESS)

!
|

= ¢, (NORMAL STRAIN)

o,

fno (INITIAL NORMAL STRESS)

' |

kn (TANGENT STIFFNESS)

o — — ao— i —— oo e Sr—tts e it et

DEFINITION OF THE CONSTITUTIVE RELATION fn(En):

€
no n

-d <e_ <0 f =f + , k_= no
0 n n no 1+ sn7d0 n 1+ En/do)z
£ o
0<e <--22: f =f « € , k =k
— n-— k n no no n n no
no
..._n_o_<5: f =0 s k =0
k n n n
no

Fig. 3. Constitutive relation of joint element in contacting mode of
deformation.
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where

2 2
-sC scC 0 ¢ - 8
9: { 2 2 ], : {2.14b)

s c 0 -2s¢

and s = sin®, ¢ = cosO. Equations (2.14) are used to define the initial
state of stress of a fracture surface such that it is statically compatible
with the corresponding initial state of stress of the adjacent continuum.

Next we introduce the vector of nodal forces in global directions

T
E = (lea py1’ (] PX4’ Py4) » (2-15)
and the vectors
T
= (P, Py Pqs P y)
~S sl s2 s3’ s4 T (2.16)
En = (Pnl’PnZ’ PnS’ Pn4) ’
where, for example, Ps1 is the force at node 1 in direction s. The
vector P is related to P_ and P by the equilibrium equation
_ T, T T
E - g (... gs * Engn)’ (2.17)

and matrices g, gs and a have been defined above; see expressions (2.8).
We want to establish the conditions of equilibrium between the nodal

forces and the internal state of stress. By the principle of virtual

displacements
1
L[ 7
~s’2f? deE
-1
(2.18)
1
_L [T
En'Zf? £, d¢
-1
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Expressions (2.18) imply the following equations of statics:

Pa1 ¥ Png =0

an + Pn3 = 0 . (2.19)
L -

Phi +'pn2+'2.jfn dg = 0

Of course, the elements of BS are related by equations similar to (2.19).

The tangent stiffness matrix of the joint element is defined by

oF 2.20
k=35 (2.20)
Invoking the chain rule, by (2.8) and (2.17), (2.20) leads to
_ AT T T
E - E (gs Es gs * ~n En gn) 9 ’ (2.21a)
where
P
= =3
~S 395
(2.21b)
~n agn
Since
of af 3e
s _ ] S - x ¢
aes aes ags s X
(2.22)
afn afn aen
= =k ¢ :
agn aen agn n I

where ks and kn are the tangent moduli in shear and normal deformation,

respectively, (2.21b) in conjunction with (2.18) yields



(2.23)

H\'
[
— o
=
»n
1o
-3
[E =
.
gy

_ L T
ot [
-1

The mass density of material contained between slip surfaces is usually
negligible compared to the density of the surrounding rock. Accordingly, we
assume the joint element to have no mass.

The sum of the strain energy and the dissipated energy is defined by

1

3
L T
u+ED-—-2-/ £ de dE . (2.24)
21 %

Substituting (2.10) into (2.24), and making use of (2.5) and (2.18), we obtain

p

Ps °n
U+E = Pl dp_ + Pl do_ . (2.25)
D ~S =s ~n N :
0

0

-~ ~

The shear behavior is governed by the elastic-plastic constitutive model
defined in Figure 4. Correspondingly, we can decompose the shear strains
into elastic and plastic components:

€ = g+ ez . (2.26)

and the dissipated energy
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P R
e51 P s2 p
Ep =f Psa degy +/ Ps3 degy (2.27b)
0 0
where €, = € £=_1’ €52 © & £=1’ °te The numerical determination of U

and ED is based on expressions (2.27), as will be explained later.

Finally, we derive kinematically consistent nodal forces due to fluid
pressure acting along the interﬁal faces of the joint element. Invoking the
small displacement assumption we establish the necessary equilibrium relations
for the undeformed element. The internal pressure distribution is (approximately)
given by

P =U(E) P+ ¥, P, (2.28)

where Py and p, are the values of the pressure at sections 1,4 and 2,3,
respectively. By the principle of virtual displacements, the nodal forces

due to internal pressure are given by (2.17), with

Es = 9 (2.29a)

1
f o7 pdc . (2.29b)

-1

and

Nj

2.2 COMPUTATIONAL CONSIDERATIONS

In this section we make some comments regarding the implementation of
the joint element into a computer program. We begin with a remark concerning
the programming of equations (2.17) and (2.21a). Matrices g, a and a are
introduced for notational convenience only. Matrix multiplications are not

performed in the procedures assembling matrices P and K.
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Next we discuss methods for computing the vectors of internal forces
(2.18) and the stiffness matrices (2.23). The integrals in equations (2.18)
and (2.23) are most conveniently evaluated numerically. A two-point integra-
tion rule was found to be adequate in terms of accuracy and computational
efficiency. A one-point integration rule does not suffice, since it amounts
to an averaging procedure which neglects all but the constant terms in the
integrands of (2.18) and (2.23). Among the commonly known two-point quadra-
ture methods, the Gaussian integraticﬁ rule provides the highest accuracy
when continuous functions are integrated. However, it introduces coupling
between the degrees of freedom of adjacent nodal points along the fracture
surfaces, (e.g. between the degrees of freedom of nodes 1 and 2 in Figure 2).
This, in turn, can prevent the iterative solution algorithm from converging
into dynamic states of equilibrium. For example, we tested the two-point
Gaussian formulation in a series of problems which were supposed to simulate
nonlinear displacement oscillations of a planar fault system in shear (i.e.
frictional modes of deformation). The equilibrium iterations consistently
failed to converge whenever one Or more mass points passed the point of
maximum amplitude and started to accelerate in reversed direction; see¢
example 4 in Chapter 5. However, we have been able to simulate nonlinear
frictional motions in a physically meaningful way by performing the state
determination at the nodal points of the joint element. This was accomplished
by choosing a two-point integration rule which samples at the two sections
E = 1. This integration rule is defined by the following example: consider

the function g(§), then

1
/ g(E) d = g(-1) + g(1) . (2.30)
4
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Obviously, this quadrature method is integrating smooth functions less
accurately than the Gaussian formula. However, it provides the correct
coupling between interacting points across fracture surfaces, such that
the phenomena of contacting and stick-slip friction are simulated by our
discrete model in a physically meaningful way.
Explicit forms of (2.18) and (2.23) corresponding to the nodal- z

point integration rule are

_ L T
Ps = 7 f510 fo2 £e2r £ 2 31
_ L f f T ( . )
Pa ™ 7'('fn1’ -f120 th2e nl)
and
- - p
ksl 0 0 -ks1
L kSz -ksz 0 s (2.32a)
~S 2 ksz 0
(symmetric)
| ksl
knl 0 0 -knl
k -k 0
k= = n2 n2 , (2.32b)
h k 0
n2
(symmetric) K
L nl
respectively, where fsl = fs =-1’ fs2 = f5 g:l, ksl = ks(esl), kSz = ks(esz),

etc. With this we conclude the discussion of equations (2.18) and (2.23).
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The energies stored and dissipated in the joint element are determined by
equations (2.27). The integrals in (2.27) are evaluated incrementally. For

this purpose each integral in (2.27) is written in an incremental form which

can be defined as follows:

€
f P(e) de = E ; f P(e) de . (2.33a)
0

i=0,1,2,

The integrals extending over the individual increments are evaluated

approximately using the trapezoidal rule:

€

i+l
f P(e) de =~ [P(ei) + p(€i+1)](si+1 - ei)/?. . (2.33b)
€

i
Finally, it should be mentioned that the vector of nodal forces due to

internal pressure, defined by (2.17) in conjunction with (2.29), is explicitly

given by
P=bp . (2.34)
where
T
2 = (pl’ Pz) s (2‘35)
and b = N e. Matrix N is defined by
r:n 0-‘
0 -n
N=]| ~ ~ , (2.36a)
~ 0 n
n 0
where
n = (-sin0®, cosO)T (2.36b)

is the unit vector in direction (see Figure 2). Furthermore, matrix

=
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o

-

1 2 1
- - -
e = [eg;] = [7 / b, ¥ del (2.37)
-1 1 2z

in which i,j = 1,2, and the interpolation functions y. are defined by (2.2).
i

2.3 THE GOVERNING INITIAL VALUE PROBLEM

The dynamic behavior of the fractured rock mass is described by the

following system of second order differential equations of motion:

M U+ K(u) =R+ B H . (2.38)

In (2.38) u and g denote, respectively, the vectors of nodal displacements
and accelerations, @ is the mass matrix of the jdealized solid material,
and
KW = kg u+ K0 : (2.39)

In (2.39) Es is the (constant) stiffness matrix of the solid material and
EJ(E) is the vector of nodal forces representing the internal reactions of
the deformed fractures. As was mentioned in the introduction, four-node
isoparametric quadrilateral elements are used to discretize the continuous
domains. The corresponding mass, stiffness and load matrices are defined
in the relevant literature; see for example {[12]. Since the joint elements
have been assumed massless, @ represents the mass of the continuous rock
enly.

The vector-valued forcing function R = E(t) is due to all prescribed

loads acting on the system, such as body and surface forces, or time depen-

dent displacement boundary conditions. The fluid pressure inside the fracture

walls is accounted for by the term B H in (2.38), where H is the vector of

nodal heads defined in Chapter 3.
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The assemblage procedure establishing matrices M, K, B,

etc. in terms of the corresponding element matrices is standard;
see for example [12]. The initial value problem of (2.38) consists of

finding the vector valued function u(t) satisfying (2.38) at all times

} , ' (2.40)

where d and v are given initial data. It is to be noted that the

tC[O,tm ], t > 0 and

ax max

u(0)

u(0)

]
0.

]
1<

discrete model described by (2.38) dissipates energy through frictional deform-
ations of the fracture surfaces only. Dissipation due to viscous properties
of the material has been ignored.

Equation (2.38) constitutes one equation for the unknowns u and §-
To make the problem well posed a second equation is needed. It will be

derived in the following chapter.
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3. FLUID-FLOW NETWORK ANALYSIS

The system of fractures formed by idealized slip surfaces through non-
porous rock masses constitutes the network of flow paths. The rationality

of a fluid-flow model similar to the one presented here was discussed by Gale

et al. [8]. A typical part of a mesh of flow elements is schematically depicted

in Figure 1. The topology and geometry of the network of fluid-flow elements
are defined by the mesh of joint elements, such that to each joint element
corresponds a fluid element with the same topological and geometrical data.
Both the geometry and the coordinate system of a typical fluid-flow element
are defined in Figure 5. Of course, the plane of symmetry of the element is
in general parallel to direction s; see Figure 2. For notational convenience,
without loss of generality, the theory of the flow element will be presented

for the special case s = X.

3.1 DERIVATION OF THE FLOW ELEMENT

In Figure 5 q denotes the flow rate (i.e.,transported liquid volume
per unit time), and h is the average head at a cross-section x. At any
station x along the flow path, the cross-sectional area available for fluid
flow is given by

S=Aed s (3.1a)
where

d=d4d +¢_ . (3.1b)

In (3.1) d = d(x,t) is the width of the flow channel, A its average depth
measured in direction z (i.e. normal to the x,y plane), and € is the
normal strain of the joint element defined by (2.4). Hence, the function

S(x,t) is uniquely defined by u(t) and the kinematic assumptions (2.1) and
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q= FLOW RATE (AVERAGED OVER THE CROSS-SECTION)
h= HEAD (AVERAGED OVER THE CROSS - SECTION)
d= WIDTH OF FLOW CHANNEL

Fig. 5.

Geometry and coordinate system of a fluid flow element.
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(2.2). This implies that within each element S(x,t) is linear in x. The
assumptions A = const. and d << L allow us to ignore the nonaxial velocity
companents vy and v, Furthermore, we assume the velocity profile to be
parabolic, that is vx(y) is quadratic in y and vx(-y) = vx(y), where Ve is
the velocity of a fluid particle in direction x. By these assumptions we
implicitly violate the boundary conditions Ve © ﬁs and vy = ﬁn at the lateral
faces of the flow channel. This is justified since we are employing a quasi

one-dimensional formulation in which only averaged quantities occur. For

example, the mean velocity v, defined by

v = -;-/ v ds (3.2a)
S

is related to the flow rate by

v = q/S . (3.2h)

The principle of conservation of mass can be expressed in the form

-2—}+%§-=o ) (3.3)

Moreover, assuming sufficiently small velocities, the inertia forces and the
convective terms in the Navier-Stokes equation can be neglected such that the
combined momentum and constitutive differential equation of incompressible

viscous flow becomes

K &++q=0 . (3.4)

In (3.4) k = ¥ Sdz/lzu is the area permeability for a parabolic flow profile,
h is the head, y is the specific weight and u the viscosity of the fluid.
Neglecting gravity effects, the pressure is given by p=Yh-p v2/2,

where p is the fluid density. However, since we neglected the effect of

P
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convective and inertia terms in the Navier-Stokes equation, for consistency,

we also drop the kinetic energy term in the expression for p and simply use

p=Yh . (3.5)

Combining (3.3) and (3.4) yields the partial differential equation

S
153; (k %—2 - %{ (3.6)

which determines the state of the fluid at any section x; see Figure 5. The
boundary value problem consists of finding the function h(x,t) which satisfies
(3.6) and one boundary condition at each end of the flow element depicted in

Figure 5. Admissible boundary conditions are

it
o

h

p°ra al at section 1
(3.7)

-q, at section 2

"
=2

h

, 0T q

The sign convention used in (3.7) is defined in Figure 5, and prescribed
quantities are characterized by a superposed hat.

In order to derive the finite element equations of the above boundary
value problem, it has to be rewritten in weak form. Denoting the boundary
points by 'b", the points where q is specified by bq and the prescribed

boundary flow rates by a, the weak (or Galerkin) form of (3.6) is given by

L
3 d 3S A
-[ [5x (k 5—2) - 3¢l v(x) dx +f (4-q) ¥(x) db = 0, (3.8)
0
q
which must hold for all admissible functions Y(x); see Strang and Fix [13].

The first step towards the discretization of (3.8) is to admit only a finite

number of test functions wi(x). Here i = 1, 2 and the functions wi are
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defined by (2.2) in terms of £. Replacing y(x) by wi(E), changing

variables and integrating by parts, equation (3.8) becomes

1

Y.
2 i ~ -
tf ‘é'é"'kaa ./wlatd€+¢‘qwidb+¢qwidb_o(3'9)

-1 q bh
for i = 1,2. For notational simplicity we use the same symbols for the continuous
and the approximating discrete forms. It is important to note that in (3.8) and

(3.9) the function h(g,t) is assumed to satisfy the boundary conditions at bh.

Expanding h in terms of the test functions yields

h(g,t) = chz) hj(t) ’ (sum) (3.10)

where summation over j is implied and hj is the (average) head at section j,

j = 1,2. Substitution of (3.10) into (3.9) leads to

1

3. W,
2 i
Ef kg——ggldghj+—fwlatd£+¢\p qdb+¢-w q db =
-1 -1

(3.11)
for i = 1,2. If the cross-sectional area is expressed in terms of its values

at nodes 1 and 2 as

(3.11) can be integrated exactly and the result may be written in the matrix
form

EF h+e (3.13)

t»n
(R

In (3.13) e is defined by (2.37), and
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S
kp =T , (3.14a)
-1 1
h= (h, h)t (3.14b)
~ 1’ 72 ’ :
q = (a;» 4y) , (3.14c)
T
S = (S, S,) (3.144)
In (3.14a)
k = v AdS/ (121) , (3.14e)
where
=3 .3 2 2 3
d” = @, +djd, * d, d; + d3)/4 . (3.14f)

Note that the 'hats' on the nodal quantities in (3.14b,c) are omitted for

notational convenience.
A basic question with regard to the finite element fluid-flow equations

is the following: Do equations (3.13) determine states of fluid flow which
approximately (i.e. in a discrete fashion) satisfy the governing differential
equation (3.6)7 To answer this question we compare the sum and the difference
of equations (3.13) with the associated differential equations (3.3) and (3.4),

respectively. The sum yields

2% -9 5+ 8,
. + > =0 , (3.15a)
and the difference can be written in the form
h, - h q, + q 4
- 2 1 1 2 e :
k N + == L(§ - Sz)/lz . (3.15b)

Obviously, (3.15a) is a first order difference approximation to (3.3)3
(3.15b) is a first order difference formula for (3.4), provided that L'éz - Sl
is sufficiently small compared to the left hand terms in (3.15b). Thus, the

form (3.13) is consistent with (3.6) and the discrete solution converges to
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the exact one as L » 0. However, we are concerned about the accuracy of the
discrete solution for positive vaiues of L, for which the term L(é2 - él) may
be large enough to have significant effects on the approximating finite
element system. In order to eliminate this potential source of error,

matrix e in (3.13) is replaced by

e = % (3.16)

e Fis an averaging operator which guarantees that the right hand term in

(3.15b) is equal to zero for all L. The vector S in (3.13) can be expressed

in terms of the nodal velocities o of the joint element:

§=AN p , (3.17)

N being defined by (2.36). Using (3.16) and (3.17) in (3.13) we get

T . _
kg h+bpe=4q ’ (3.18)
where p is defined by (2.8), and bF = AN er- The matrix bF is explicitly

given by

Ay -Ax by  -Bx -Ay Ax by Ax

T _A (3.19)
2 lay -ox Ay  -Ax by Ax Ay  Ax .

3.2 STATEMENT OF THE GOVERNING EQUATIONS

In order to determine the pressure and flow rate distribution in the
entire flow network, matrix equations such as (3.18) for all fluid-flow
clements have to be assembled and the resulting system of differential equa-
tions has to be solved. Assembly conditions are defined and illustrated in
Figure 6, in which three flow elements are attached to a nodal point I. The
first condition enforces compatibility, that is all individual heads at

adjacent element nodes must be equal. The second condition insures
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conservation of mass. Expressing o in terms of u and assembling all flow

elements, we end up with the system of first order differential equations

T - _
B UK H=Q (3.20)

In (3.20) @ is the vector of nodal heads, and é denotes the vector of nodal
velocities. The vector valued function g(t) represents prescribed external
flux of fluid entering the system, as well as the effects of time dependent
pressure boundary conditions. The term ET é in (3.20) accounts for the
cffects of wall motions normal to the direction of fluid flow. The flow
conductivity matrix EF depends nonlinearly on the fracture deformations:

K (3). The assembly procedure which sets up the matrices EF’ EF’ etc.

in terms of the corresponding element matrices defined above is

standard. In fact, it can be shown that the fluid-flow network analysis

is analogous to a displacement analysis of a plane truss. In this analogy
the head and the flow rate in the fluid flow element correspond to the

axial displacement and the force in the truss bar clement, respectively.
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4. SOLUTION ALGORITHMS FOR THE NONLINEAR DYNAMIC STRESS-FLOW ANALYSIS

The behavior of the entire solid-fluid system of fractured rock is des-
cribed by equations (2.38) and (3.20). The interactive effects between the
solid and fluid domains in the model are represented by the term § ﬁ in (2.38),
and by the terms §§ é and EF ﬂ in (3.20). To determine the state of the system
at all times tEZ(O,tmax] we have to find the response histories E(t) and ﬁ(t)
which simultaneously satisfy equations (2.38) and (3.20). Due to the inherent
complexity and nonlinearity of this sytem of coupled differential equations we
cannot hope to find a closed form solution, but instead must resort to
numerical techniques which generate approximate solutions in a step-by-step

fashion.

4.1. TIME DISCRETIZATION

The Newmark family of step-by-step integration formulas [11] was found to
be a versatile and efficient tool for integrating equations (2.38) and
(3.20). Application of the Newmark methods amounts to replacing these

differential equations by the following algebraic equations of recursive form:

2
dnep = dp * ATV, T AT [(1/2 - 8) 2, + B3]
, (4.1a)
Vael " Vn ? At[(1 - v)a, +x §n+1]
% §n+1 * §(én+1) - Bn+1 * E §n+1 ’ (410
Bl v, ¢ K(d DH = (4-1¢)
-F n+l  ZF'in+l’ <n+l  n+l ’
do =d
b ~ , (4.1d)
v =V
~0  ~
-1 T
H =K. (d) [Q - Bov]
~0 ~f1 ~0” "o ~F ~0 , (4.1e)
2, = W IR, * BH, - K@)
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wheren =0, 1, 2,..., N -1. N is the number of time steps, Ot = tmax/N’

d» Vo 3 and H_ are the approximations to B(tn)’ é(tn), g(tn) and g(tn),
respectively. Furthermore, t =n At, En = B(tn), gn = g(tn), and B, Y are

free parameters which govern the stability and numerical dissipation of the
Newmark algorithms. The choice B8 = 1/4 and vy = 1/2 corresponds to the constant
average acceleration method, which is also known as the trapezoidal rule or the
Crank-Nicolson method. This algorithm is the most accurate unconditionally
stable member of the Newmark family, and does not possess numerical dissipation.
Further elaborations on these points and more technical details about step-by-
step integration formulas in general, as well as the Newmark methods in

particular, can be found in [11, 14].

Substitution of (4.1a) into (4.1b) and (4.1c) yields

-~

ao ! én+1 * 5(§n+1) = Bn+1 * g gn+1 ? (4'23)
T -~
a; Bp o+ Ke(d, ) By = Qe ' (4.2b)
where
En+1 = En+1 * ! (ao én M) zn * a3 En) ’ (4.2¢)
~ = T
Qo1 = L1 * B (@, d *+ 0y V" % ) (4.2d)
§n+1 - ao (§n+1 - én) - % Yn “3 4 ? (4.2e)
Yn+1 = o'1 (§n+1 B én) - a4 Yn - aS %n ’ (4.2£)
and
a = =
o

(4.3)

1/(ae%);  wp = ¥/t B); oy = 1/ (8B }

ag = 1/(28) - 1; o, = Y/8-1; o At (y/28 - 1)

Expressions (4.2) represent a system of nonlinear algebraic equations of
recursive form. Computational techniques for solving such systems will be
discussed after the following remarks concerning the computation of the total
energy stored in the continuous domains of the mesh.

4.2 ENERGY OF THE SOLID MATERIAL

The kinetic and strain energies of the discrete model at time t, are
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EE =1/2 v: My (4.42)
and T
n . ™ T
Us 1/2 én Es én * Es(go) gn ? (4.4b)

respectively, where M is the mass matrix of the solid material and Es is
defined by (2.39). Both ! and 55 are assembled from the mass and stiffness
matrices of the isoparametric quadrilateral elements. The vector Es(go) in
(4.4b) represents the nodal forces due to the initial state of stress of the
continuous rock. In (2.38) the effect of initial stresses is implicitly
accounted for through R. In the computer program matrix operations (4.4)

are most efficiently performed at the element level.

4.3 SOLUTION STRATEGY FOR THE ANALYSIS OF COUPLED SOLID-FLUID SYSTEMS

In order to generate the entire response history the system of nonlinear
algebraic equations (4.2) has to be solved at the set of discrete points tn+1’
n=20,1,2, ..., N-1. Thus, at any instant of time tn’ it is essentially the
same problem that has to be solved as in the case of the steady-state
analysis.

The fixed-point iteration technique which was used by Gale et al. [8] to
simulate quasi-static processes was found to be suitable for the dynamic
analysis also. This technique amounts to solving equations (4.2v) for 5n+1
fixed during the iterative solution

with d fixed, and then holding H
~T1+ ~N+

1 1
of (4.2a) for dn+1' This cycle is repeated until convergence is reached.
Convergence implies that the fluid pressure distribution is (numerically)
compatible with the state of stress throughout the deformable rock.

We define the fixed point iteration technique by rewriting (4.2) in

the form
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i+l i*ly _ R j
0.0 l:«. §n+1 * §(§n+1) En-o-l * § l;{ru-l 4 (4.5a)
j S R . T 4J
Keldny1) Hnep = Qo1 ~ %1 B dn+1 ’ (4.50)
where j = 0, 1, 2, ... . To start the iteration we set j = 0 and §z+1 = dn'

Each cycle consists of two steps: first equation (4.5b) is solved for Hl+1,

and then d%:i is determined from (4.5a). The fixed poiﬁt iteration is

terminated if ||H .| - §n+lll < eg |]§n+1||, where € is a given convergence

tolerance and ||...|| denotes a vector norm. The norm presently used

in the computer program is called max-norm; it is defined by IlHlimax =

max{IHkl, k=1, 2,3, ... }, where Hk is the kth element of vector H. In
most applications convergence was achieved in one or two iteration cycles,

Y .
depending on the required accuracy. The converged vectors §i+% and g%:i are

denoted by Hn+1 and d respectively.

~n+1’

The second step in each fixed point jteration cycle consists of solving

the nonlinear algebraic equations (4.5a) for d;:i in terms of §i+1-

In [8] a secant stiffness iteration method was adopted for the corresponding
step in the analysis of steady-state configurations. For the simulation of
nonlinear dynamic processes of the presently considered type the secant
method was not found to work satisfactorily. Instead, the Newton-Raphson
algorithm proved to be a reliable and efficient iterative technique to
determine dynamic equilibrium configurations of the fractured rock system.

A modification of the Newton-Raphson method, the so called constant stiffness
or load perturbation method is discussed in [9] with regard to applications
of similar type as considered here. In the remainder of this chapter we
define and discuss the Néwton—Raphson method within the context of equations

(4.5a).



- 35 -

For notational simplicity we rewrite (4.5a) in the form

F(d) - R* = 0 , (4.6a)
s _ oL+l
in which d = én+1 ,
*_ n j
5 - §n+1 * E §n+1 (4.6b)
and
F@) = @M KD a0 K@ (4.60)

where KS and KJ are defined by (2.39). To solve (4.6a) for § we use the

Newton-Raphson method; it is defined by the following recursive formulas:

ok} adl*! = r- Fah)
-~ ~ T ,1=0,1,2,.... (4.7)
§1+1 - gl . Ad1+1
The starting values are given by d° = di+1, and the tangent stiffness matrix
DKi =0 M+ K + DKi (4.8a)
~ 0~ S wJ '
where
] ¢
i, °~J
DEJ 5T d=di . (4.8b)

053 is assembled from the corresponding joint element stiffness matrices

defined by (2.21). Equilibrium is achieved, and the iteration is terminated,

if

[IR* - Fa'*H]], < e, (4.9a)
where H...Ilz is the L, vector norm defined by [El], = (2 Fi)l/z, F=
(Fl’ Fz, ...)T, and € is a given convergence tolerance. Iﬁstead of (4.9a)

the following convergence criteria may be used:

1 ,
g™ |1, < e HHdM ], . (4.9b)
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The advantage of (4.9a) compared to (4.9b) is that it directly monitors

the absolute magnitude of the out-of-balance forces. However, since € must

be adjusted to the order of magnitude of the numbers occurring in the force

inconvenient. This drawback is overcome by using

(4.9b). Once the Newton-Raphson iterations converged, we set d%:} = d1+1,

vectors this criterion is

where d1+1 is the converged solution of (4.6). The modified Newton-Raphson
method is derived from (4.7) by simply using the same tangent stiffness
matrix over a number of iteration cycles. Hence, for the modified version,

replace (4.7) by

ok® aai*l = rv - F@H
~ - ~ - Ci=0,1,2,0... (4.10)

at*l - al +ad

A flow chart of the complete solution procedure described in this chapter

is shown in Figure 7. Finally, we note that the quasi-static, steady-state

solution is obtained if in (4.3) ak =0, k = 0,1,2,3,4,5.
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Fig. 7. Flow chart of the complete solution procedure
for coupled stress-flow analysis.
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5. APPLICATIONS

A number of simplified problems have been solved to test the computer
program and to demonstrate the method of analysis described in Chapters 2
to 4. Problems 1 and 2 are designed to test the release and locking mechanism
in pure shear modes of deformation under quasi-static and dynamic conditions.
Problems 3 to 5 demonstrate the feasibility of using the present model to
study the effects of injection agd removal of fluid along prestressed frac-
ture surfaces, and serve as an introduction to similar problems of more
complex nature. Although the computer program features lumped and consistent
mass matrices, the examples discussed subsequently in this chapter are all
based on lumped mass approximations. For the solution of the dynamic problems

the trapezoidal rule (i.e. B = 1/4, Y = 1/2 in (4.3)) has been used.

5.1 AN ELASTICALLY SUPPORTED RIGID BLOCK SLIDING BETWEEN TWO JOINTS

Consider the problem of Figure 8: An elastically supported rigid
block is sliding between two joints in a quasi-static motion caused by
a prescribed forcing function P(t). This problem is intended to test
the release and locking mechanisms of the joint elements in pure shear
deformations, and to illustrate and compare secant and tangent stiffness
methods of solution. The finite element mesh as well as the function P(t)
are defined in Figure 8.

The modulus of elasticity and Poisson ratio of the elastic elements
are, respectively, E = 0.05 and v = 0. The constitutive relations of the
joint element are defined in Figures 3 and 4, where fn =f =0,f =20,

no SO

=1, k__=1,d

o o =1, ¢ = 45°, C= 0.1, o=0.8. Since f =0, the

o
peak shear strength fSy equals C. The stiffness of this single degree-of-
freedom system depends on the linearly elastic lateral elements and on the

nonlinear friction laws built into the joint elements.
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Fig. 8. Elastically supported rigid block sliding between joints in a
quasi-static forced motion. (a) Problem set-up. (b) Forcing
function.
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The solution history in the displacement-force configuration space is
depicted in Figure 9. At any instant of time the internal resisting force
F(ux) is seen to be in equilibrium with the external force P(t). The
results of Figure 9 are obtained by the Newton-Raphson iteration technique
as described in Chapter 4. This technique was found to be very efficient
in solving nonlinear algebraic equations of the type considered here. It
automatically takes advantage of locally linear behavior. In addition, only
one extra iteration is needed to advance the solution over a nonlinear event.
For example, in Figure 9 only one iteration is needed to advance from state
4 to state 5, and it took two iterations to advance from point 6 to point 7.

The basic differences between a secant stiffness iteration technique,
the constant stiffness method and the Newton method are schematically
indicated in Figure 10. For the sake of clearness, in Figure 10, o =1
and the initially stress-free system is loaded by P = P3; see Figure 8.

Both the secant and constant tangent stiffness methods would need a very
large number of iterations to come close to the exact solution, whereas the
Newton method finds it in just two iterationms.

As indicated in Figure 9, the entire response history F(ux) includes
several loading and unloading phases. The secant stiffness method, as
defined in [8,9], was not found to be applicable to nonlinear problems
which include unloading of the type encountered here. The Newton method
easily handles the unloading case in two iterations, provided that an
overshooting control is preventing the computed solutions to diverge too

far away from the correct equilibrium configuration.
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Fig. 10. Solutions to a bilinear static problem by (a) the secant stiffness
method, (b) the constant stiffness or modified Newton method, and
(c) the tangent stiffness or Newton method.
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5.2 SINGLE DEGREE-OF-FREEDOM OSCILLATORY SYSTEM

A single degree-of-freedom oscillatory system is used to test the release
and locking mechanisms of the joint elements as well as the solution algorithms,
under nonlinear dynamic conditions. The problem set-up is shown in Figure 11:
A rigid block is sliding between two joints in a dynamic motion which consists
of a forced and a free phase. The finite element mesh and the forcing
function P(t) are defined in Figure 11.

The constitutive relations of the joint elements are defined in Figures

3 and 4 with the following data: fn =f =-1,f

no o " 0, kno =1, k__=1/2,

S b-1e]

do =1, ¢ =45°, C=0, oo = 1. The mass of the rigid block is assumed to
be one and the time step size At = 1/10. Since C = 0 and fn = -1, the peak
shear strength fSy equals one. As in the previous example, no fluid effects
are considered. If the density of the fluid is set to zero, the computer
program automatidally skips the determination of the fluid flow and the
fixed-point iteration is switched off.

The displacement of the rigid block as a function of time is shown in
Figure 12. For the purpose of comparison, the displacement reponse history
according to a linear joint constitutive law is included in the same figure.
As indicated in Figure 11, the motion is forced during the first 3.4 seconds,
and it is free thereafter. The amplitudes of the free oscillator can be
read off Figure 12. They are Uax = 4.3 for linear elastic friction and

u = 2 for the elastic-plastic friction mechanisms. The

max ~ “steady state
difference between the linear and the nonlinear oscillations is due to the
energy dissipated during plastic sliding. The slip-phases are indicated in
Figure 12, and the force-displacement history is plotted in Figure 13.
Figures 12 and 13 indicate that the rigid mass slides into a new permanently

displaced equilibrium position, , about which it oscillates

usteady state
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JOINT ELEMENT
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Fig. 11. Rigid block sliding between joints in forced and free dynamic
motions. (a) Problem set-up. (b) Forcing function.
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elastically.
For the free oscillator conservation of energy requires that

n n
Ep + Ex * "= E, ,n=0,1,2,...N, (5.1)

where EB, Ei and U" are the dissipated, kinetic and strain energies at time
to respectively, and E0 = const. (5.1) is satisfied by the discrete solution
with Eo = 8. This can be seen from Figure 14, in which Eg, E; and U" are

plotted versus time.

5.3 EFFECT OF INJECTION AND WITHDRAWAL IN A CRUDE FRACTURE MODEL WITH

STICK-SLIP RATIO OF 0.98

Here let us consider a very crude model that we used to study the effect
of injection and removal of fluid along a prestressed fault. The finite
element mesh is shown in Figure 15. The boundary conditions are chosen
such that the behavior of an infinitely long strip of rock along a planar
fault is approximated. In the following we define the physical properties
of the fluid, the solid material and the rock. The data is given in the
units of pounds, feet, seconds.

Fluid: specific weight vy = 62.4; viscosity u = 0.235 10_4; initial pressure

P, =.3 105.
Solid material: density p = 5.12; modulus of elasticity E = 5.0 108, Poisson
ratio v = 0.25; initial state of stress O _ = -2.0 105, g = -6.0 105, o]
XX yy 22

-2.0 105, g _=-1.4 105.

xy
Fracture: initial tangent moduli kno = 108, kSo = 108; initial state of
stress fno = -1.7 105, fso = -1.4 105; cohesion C = 0; angle of friction

& = 40°; stick-slip ratio a = 0.98; initial aperture d, = 0.01; average

depth available for fluid flow A = 100.
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The length of a joint element L = 1000, the time step size At = 0.01, and
the convergence tolerances are € = 0.1 and € = 0.001.

Initially the system is at a state of static equilibrium with no fluid

flow. As fluid is injected and removed in equal amounts at nodes 2 and 4,
respectively, a pressure gradient along the flow path starts to build up,

as indicated in Figure 15. It is assumed that the amount of injected

fluid is increased very slowly, such that the response of the system can
be determined by a quasi-static, steady-state analysis.

As the fluid pressure at node 2 builds up, the fracture at this point

starts to open and the absolute magnitude of fn decreases. Thus, as a
consequence of (2.12), the associated shear peak strength fsy decreases
correspondingly. The quasi-static process is continued until fsy has been
reduced down to approximately the value of lfsol, the initial shear stress.

At this state the program switches to a dynamic mode of analysis. The amounts

of injected and removed fluid are further increased until fSy f_lfsol. At

, and
y

the out-of-balance force (fSO - afsy) starts to accelerate the rock masses

this point failure occurs, the residual strength is set equal to afs

into a shear motion in y-direction. The corresponding nodal displacements
UY’ taken as functions of time, are plotted in Figure 15. The inertia forces
which are related to the motion of node 2 lead to increased shear stresses
and hence failure at the adjacent nodes 1 and 3. Eventually all three nodes
1 to 3 move into new permanently displaced equilibrium positions, as can be
seen from Figure 15. Due to the locking effect of the reduced fluid pressure

around node 4, nodes 4 and 5 do not fail in shear.

5.4 EFFECT OF INJECTION AND WITHDRAWAL IN A CRUDE FRACTURE MODEL WITH

STICK-SLIP RATIO OF 0.99.

The problem of example 3 was solved with a somewhat finer mesh and a
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stick-slip ratio a = 0.99. The new mesh and the corresponding displacement
histories uy(t) of nodes 1 and 2 are depicted in Figure 16. Figure 17 shows
the displacement response histories of nodes 1, 2 and 3 in a larger scale.
The final increase of pressure which was necessary to create failure at node
2 induced a vibration of nodes 2 and 4 in x-direction, as indicated in
Figure 17. The motions of some points within the continuous rock are
indicated in Figure 18, in which the response functions uy(t) of nodes 6,

7, 8 and 10 are plotted.

The original joint element, as introduced in [7], employes a one-point
integration rule. It has been explained in Chapter 3, why this is inadequate
in general: The one-point integration rule neglects the strain energy due
to nonuniform deformation patterns. Hence, a joint element based on a two-
point Gaussian integration rule was tested. However, this formula introduces
coupling between the sections 1,4 and 2,3 of the joint element (see
Figure 2), which, in turn, can cause the joint element to simglate friction
and contact mechanisms in a physically incorrect way. For example, consider
the displacement response histories of nodes 1 and 2 corresponding to the
joint element with Gaussian integration, shown in Figure 19. The interaction
between the degrees of freedom of adjacent nodes along the fault prevents
the individual masses from being locked at the points of maximum displacement
(i.e. zero velocity), and thus leads to physically meaningless results,

as indicated in Figure 19.

5.5 EFFECT OF INJECTION AND WITHDRAWAL IN A CRUDE FRACTURE MODEL WITH

STICK-SLIP RATIO OF 0.94.

In this example we consider a rigidly supported mass of rock, which is

subdivided by a straight fracture into two equal parts. The finite element
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mesh and the steady-state fluid pressure profile in the fault are schematically
indicated in Figure 20. The physical data are the same as for example 3,
except that a = 0.94, and the initial shear stress is assumed to be ny =

-1.35 105. In this case, compared to the previous two examples, a larger
amount of water must be pumped into the fracture system in order to cause
failure.

The artificial sources and sinks are equidistantly distributed along
the fault, as indicated in Figure 20. In general, the fluid pressure profile
in the fault depends on the distances between the artificial sources and sinks
and on the amounts of fluid injected and removed at the various locations.
The specific pressure distribution in the present case was created by
pumping in at section 4,11 only two thirds of the total amount of fluid
which is removed at sections 2,9 and 6,13.

Again, as in the previous two examples, the structure is initially in a
prestressed state of static equilibrium. As the artificial sources and sinks
are activated, a quasi-static process starts to redistribute the stresses,
such that the peak shear strength (failure limit) around the center (nodes
4,11) 1is reduced, but around the artificial sources it is increased. As
soon as an incipient state of instability is reached, a dynamic mode of
analysis is employed to study the failure and the subsequent transient
states of the system. In Figures 20 and 21 the displacement response
histories of nodes 1 to 7 are shown. Only the three center nodes failed
and thus have been permanently displaced. The fault did not fail in the
lateral parts away from the center. This can be explained by the locking

effects caused by fluid removal through the artificial sources.
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The y-acceleration of nodal point 4 as function of time is plotted
in Figure 22. The slip phases are clearly distinguished from the phases
of linear elastic oscillations around the new positions of equiiibrium
indicated in Figure 20.

The energy dissipated during slip and the kinetic energy of the rock
as functions of time are plotted in Figure 23. The change in strain energy

of the system, denoted by AU" can be computed from

n n
Ep + Ey + At = Ego *+ AU, , n= 0,1,2,...,N, (5.2)

where E, is the kinetic energy and AU° is the change in strain energy at

Ko
the instant of failure. In the present case EKo + AUo ==0.5 104.
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6. CONCLUSION

A mathematical model of fluid flow in nonstationary systems of deformable
fractured rock has been developed. The model is based on a two-dimensional

finite element formulation which incorporates inertia effects and accounts for

the interaction between the fluid and the solid domains of the region considered.
This enables one to predict the behavior of systems at an incipient state of
instability when their state of stress is changed by injection and removal

of fluid. The corresponding computer program allows idealized geological
structures to be investigated under a large variety of conditions. The

program determines the hydrodynamic states of the fluid and the displacement,

strain and stress response histories of the rock masses during quasi-static
and dynamic processes. Also the potential, kinetic and dissipated energies

are computed as functions of space and time.
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