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ABSTRACT 

There are two possibilities for electroweak symmetry breaking: ei

ther there is a scalar particle much lighter than 1 TeV or the longitudi

nal components of W and Z bosons interact strongly at center of mass 

energies of order 1 TeV or more. We study the general signatures of 

a strongly interacting W, Z system and conclude that these two possi

bilities can be unambiguously distinguished by a hadron collider facility 

capable of observing the enhanced production of WW, W Z and Z Z pairs 

that will occur if W's and Z's have strong interactions. Detection of the 

enhanced signal over background requires hadron collisions at a center 

of mass energy of order .;s = 40 TeV and an integrated luminosity of 

order 10·0cm-2• With these parameters we predict 3800 to 6000 gauge 

boson pairs satisfying cuts for which only 2600 pairs would be produced 

in the absence of strong interactions. 

As our results draw on the global chiral SU(2) symmetry of the 

scalar sector of the standard SU(2) X U(1) model, we give an extended 

proof, to all orders in the generalized renormalizable gauge, that high 

energy amplitudes of longitudinal W's and Z's are well approximated 

by amplitudes of the corresponding unphysical scalars. The results are 

applicable to the broad class of strong interaction models that admit a 

global chiral SU(2) symmetry. 

2 



1. Introduction 

Experiments at the proposed Superconducting Super Collider will study hard 

collisions with effective center of mass energies up to several TeV, and will provide 

a copious source of the intermediate vector bosons, W± and Z, of the electroweak 

interactions. Unless there is a Higgs boson appreciably lighter than 1 TeV, very 

general arguments require1,2 longitudinally polarized W's and Z's to have strong 

interactions with one another in this energy range. We concentrate in this paper on 

the most general experimental signals for strongly coupled W's and Z's. We find 

that a collider with specifications like those proposed for the SSC -.;s = O(40)TeV 

and C = O(10SS)cm.-2sec.-1 - is needed to observe these signals. 

Unless a Higgs particle is light enough to detect at LEP or SLC, such a collider 

cannot fail to make a fundamental contribution to our understanding of the origin 

of electroweak symmetry breaking. IT the signal for strongly interacting W's and 

Z's were not observed, it would provide the strongest possible motivation for a 

redoubled effort to search for a light Higgs sector. For example a standard model 

Higgs in the mass window 85 GeV ~ mH ~ 2Mw would almost surely have escaped 

detection as it would be above the reach of LEP II and lacking the WW and Z Z 

decay modes that allow detection above background in hadron colliders.3 IT on the 

other hand the signal for strongly interacting W's and Z's were seen, the SSC would 

be our unique window on a new, force and a new spectrum of particles. As we will 

show, less ambitious hadron colliders would have no possibility of studying these 

phenomena. 

IT longitudinal W's and Z's are strongly interacting, their physics is governed by 

the dynamics of the mechanism which breaks the gauge symmetry. For example, 

technicolor models· ,predict a specific spectrum of W, Z resonance states, analogous 

to the pion resonances of QC D, while the strong W, Z interaction limit of ultracolor5 

models have a rather different spectrum. Another example is a strongly coupled 

scalar field theory, in which the scalars are either elementary (as in the standard 

model) or, more likely, composite at a scale much smaller than the 1O-16cm. scale 

of electroweak symmetry breaking. In this case, except for what might be dictated 

by symmetry considerations, we have little idea of the nature of the spectrum. 

There are however predictions, based on current algebra and PC AC, which 

characterize a large class of models of strongly coupled W, Z systems. In a recent 

paper6 we emphasized multiple W and Z production as a signal for symmetry break

ing by new strong interactions. We investigated mechanisms for the production in 
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pp collisions of two or more longitudinally polarized gauge bosons, WL, ZL, since it 

is these components that may interact strongly, and we estimated WL and ZL mul

tiplicities. In this paper we present a more complete discussion of these production 

mechanisms. 

The most prominent signal for strongly interacting W's and Z's is the produc

tion of gauge boson pairs by the double bremstrahlung mechanism of Figure (1), 

first discussed in the context of Higgs production.7 For our purposes the important 

point is that Figure (1) is a negligible source of gauge boson pairs if the rescattering 

amplitude T(VI V2 -+ V;Vn is only of electroweak strength .. In this case, Figure 

(1) is suppressed by O(o:~) in rate relative to qq annihilation shown in Figure (2). 

But if T is of strong interaction strength, then the double bremstrahlung mecha

riism dominates qq annihilation for large mass boson pairs produced away from the 

forward direction. By counting large mass, nonforward boson pairs, we can learn 

whether WL and ZL have strong interactions. 

To estimate the strong interaction amplitude T(VI V2 -+ V{V;) and other relevant 

strong interaction amplitudes, such as 2 bosons -+ 4 bosons, two steps are involved. 

The first is to associate 8 -matrix elements of external longitudinally polarized vec

tor bosons, wi', ZL, with 8 -matrix elements of the corresponding unphysical scalar 

bosons wand z which are "eaten" to make Wand Z massive. This equivalence has 

been ciaimed2,8,9 to hold in Higgs theories to order (mw,z/Ew,z) where Ew,z are 

the energies of the external bosons. Since the previous derivations2,8,9 are not suffi

ciently general for our purposes, we devote Section 2 of this paper to an extension 

of the equivalence theorem in a general Re gauge and to all orders in perturbation 

theory. That section is rather technical and can be omitted by the reader primarily 

interested in the phenomenology of strongly interacting W's and Z's. 

The second step in our program is to use current algebra and PC AC to derive 

low energy theorems for the strong interaction wand z amplitudes. These theorems 

hold because in the absence of the gauge boson sector, wand z are by construction 

the Goldstone bosons of a spontaneously broken chiral 8U(2) symmetry. The low 

energy theorems are exact to all orders in the strong interactions. They can be 

derived. by current algebra techniques or more conveniently from the effective La

grangian of the sigma model, which reproduces the content of current algebra and 

PCAC. 

In Section 3 we discuss this effective Lagrangian for a strongly interacting W L , ZL 

system, using w,z as interpolating fields. We present a variation on the standard 
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unitarily argument2 which for asymptotically high energy, s ~ m~, identifies the 

value, mH, of the Higgs mass at which perturbation theory fails; our variation 

identifies the value of s at which perturbation theory fails for asymptotically large 

mH, mJr ~ s. We further explicate the chiral symmetry propertieslO of the effec

tive Lagrangian and discuss "soft meson theorems" in the context of the minimal 

model. The results are equally applicable to all other models possessing a sponta

neously broken global SU(2)L x SU(2)R symmetry, such as technicolor4 and some 

ultracolors models. The pervasiveness of models with such a spontaneously broken 

chiral SU(2) is no accident, since it offers an elegant means of ensuring the existence 

of a "custodial" SU(2) to protect the relation p == ~/MicoS2(JW = 1 to all orders 

in the strong w, Z interactions.ll 

For such models the behavior of the strongly interacting WL, ZL system is 

uniquely specified for a "low" energy (s <: m~,m~c) region above .(s ~ M~z) 
. . 

the two body production threshold. This is precisely analogous to the region of va-

lidity, (m! <: s <: m~ .. dron) of the soft pion theorems of hadronic physics. At what 

scale extrapolation of the low energy behavior breaks down, and what form scat

tering matrix elements take beyond that scale, would remain to be determined at 

the sse. In particular, our results show that large WW,ZZ, and WZ production 

cross sections at the sse could even signal the existence of new strong interaction 

sectors which are too heavy to be produced and studied directly at the sse. 

Section 4 contains our principal results for the study of new, Te V scale strong in

teractions at the hadron colliders proposed for the 1990's. If WL and ZL have strong 

interactions, we find that boson-boson fusion will provide an anomalous two gauge 

boson yield that can be observed at a collider with energy near 40 TeV and lumi

nosity approaching 10S3cm.-2sec.-1. In particular, we study two strong interaction 

models in some detail- the standard model with mH = 1 TeV and a second model 

based on the low energy theorems discussed in Section 3. For these models we com

pute production cross sections for the six final states - ZZ,W+Z,W-Z,W+W-, 

W+W+ ,W-W- - assuming four pp collider center of mass energies, .;s = 10, 

20,30,40 TeV. With appropriate cuts in rapidity and diboson invariant mass, we 

compare the results to the yields from tjq annihilation. Finally we present some 

estimates of how the total event rates can be translated into event rates for experi

mentally reconstructable final states. Preliminary versions of some of these results 
have been presented in our earlier workS and in sse workshops.12.13 

In order to develop a feeling for the range of possibilities, we have also considered 
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in Section 4 three additional strong interaction models. Two, which are unitary 

models that obey the low energy theorems of Section 3, are for comparison with 

our principal model based on an extrapolation of the low energy theorems. The 

third, techni-rho production by diboson fusion in an SU(N)TC technicolor model 

with N =·2, 4, 6, is intended to explore the possible effect of resonances on the two 

gauge boson yield. 

In Section 5 we briefly review previous resultsS,12,13 for production of n > 2 

bosons, including a new estimate of the four boson yield. 

Section 6 is a brief summary and conclusion. 
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2.The Equivalence Theorem' 

In this Section we discuss in some detail the equivalence between S-matrix ele

ments for external longitudinally polarized WL , ZL and those for the corresponding 

unphysical scalar particles, w, z. The reason for this is three-fold. First we wish 

to demonstrate explicitly that the result holds for S-matrix elements of w, z as 

calculated using the Feynman rules of the Re gauge;14 this has not been done in 

the previous literature2,8,9 Secondly there are some subtleties involved in extract

ing the leading O(m/ E) behavior for multiparticle external states, for example the 

argument2 of Lee et al. does not generalize in a straightforWard way to the mul

tip article case. Finally, we wish to study the validity of the equivalence theorem 

beyond the tree approximation; Cornwall et al.,a for example, claim only to have 

demonstrated equivalence at the tree level. While we are not interested in higher 

order corrections in the weak gauge couplings, our results are meaningful only if 

they are valid to all orders in the scalar self coupling .x = m~ /2v2
, since we are 

studying the strong coupling limit for that sector. 

We first show that the Ward identity needed for the validity of the equivalence 

theorem is the one given in Eq. (2.1) below; we will then derive that identity to 

arbitrary order in perturbation theory. 

, The identity we need can be expressed as: 

Ll(r,8,m) = 0 r ~ 1, 8 ~ 0, 

4 3 r 0 

Ll(r, 8, m) = E E (II m;;/ ~;(p;))(II Erl'6j(q;)), 
M;=O "j=O ;=1 j=1 

(2.1) 

X SG,,,.Gr,6, ... 6. (k) M, ... M",., ... ,..A, .. .A", p, q, 

which is a condition on the S-matrix elements for r vectors and/or unphysical 

scalars with momenta PI ••• Pro 8 longitudinally polarized vectors with momenta 

qi ••• q" and m other particles (fermions, physical Higgs particle, transversely po

larized vec~ors) with all momenta on shell. The At, t = 1 ... m, denote the spin and 

internal quantum numbers of the last m particles, and a, b = W±, Z. In writing (2.1) 

we have introduced a 5-component field V~ = (V:,cpG), with cpG the unphysical 

scalar eaten by the vector field V:' and a 5-component operator: 

DM(P) = (-ip,., mG
) (2.2) 
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such that if E:(p) S:::: (p, ... ) and S::::(p, .. ·) are S -matrix elements with one ex

ternal VG and cpG, respectively, of (out-going) momentum p, and all other external 

particles the same, then 

4 S 

E D!' (p) SM.jP, ... ) == -i E pi' S::::(p, ... ) + mG S::::(p, .. . ). (2.3) 
M=O FO 

In the following we will usually drop explicit summations over the Mi and J'j; it is to 

be understood that internal indices (a, b, A) are rurt summed except when explicitly 

indicated. We shall further compactify notation by writing, for example, 

S[(a,M'P)r (b,J',q)o(A,k)",] == S;;;::~~~;·;~.~,..,A, .. .A .. (p,q,k) (2.4) 

for the S-matrix element of Eq. (2.1). 

To see that the identity (2.1) assures the equivalence theorem, we write the 

longitudinal polarization vector for a vector boson VG of momentum p as: 

fiLl,. (p) = p,./mG + v:(p) (2.5) 

where v!(p) is a four-vector with components of order mG/ E for E ~ mG' Since 

the vertex functions S[(b,J',q)" ... ] that determine S-marix elements including 

n external vectors bi of momentum qi are at most logarithmically divergent for 

vanishing vector masses, m6;-+ 0, we may write 

r 

V(t,n,m) == (II vt;) S[(a,4,p)t (b,J',q)" (A,k)",] 
i=1 (2.6) 

= O[(m/E)"] 

Defining: 

r 0 

X(t,r,8,m) == (II mb;lqf')(II fi'i,cj(ltj)) 
i=1 ;=i (2.7) 

x S[(a,4,p)t (b,J',q)r (e,l/,It). (A,k)",], 

summing V(t, n, m) over all independent permutations among the (a;,p;) and (bi , qi), 

and using (2.5) to eliminate the vt" we obtain the relation: 
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n 

V(l,n,m) = L: (-r-' X(l,n - 8,8,m) = O[(m/Er], (2.8) 
.=0 

where barred quantities imply a sum over all independent permutations of the 

(tIi,Pi),(b;,qi) and (c;,/C;) that specify the momentum and electroweak charge of 

the unphysical scalars and longitudinally polarized vectors. Using the definition 

(2.2), the condition (2.1) may be written 

r 

A(r,8,m) = L:(-i)'-t X(l,r-l,8,m) =0 
t=o 

n-. 
= L:(-i)n-.-t X(l,n-8-l,8,m) 

t=o 

(2.9) 

where in the last term we have made the substitution r = n - 8. Multiplying (2.9) 

by (i)' and summing over 8, we obtain 

n-1 n-1 n-. 
L:(i)"~(n - 8,8,m) = 0 = L:(-)' L:(-i)n-t X(l,n - 8 -l,8,m) 
0=0 .=0 t=o 

n n-. 
= L:(-)' L:(-i)R-t X(l,n - 8 -l,8,m) - (i)nX(O,O,n,m) 

.=0 t=o 
(2.10) 

n n-C 

= L:(i)n-t L:(-)R-t-. X(l,n - 8 -l,8,m) - (i)RX(O,O,n,m) 
t=O .=0 

n 

= L:(i)R-t V(l,n -l,m) - (i)"X(O,O,n,m) 
t=O 

where the last equality in (2.10) follows from Eq. (2.8). Since V(l,n -l,m) is of 

order (m/ E)n-t we retain only the term with n = I to obtain: 

V(n,O,m) = V(n,O,m) = (i)"X(O,O,n,m) +O(m/E) (2.11) 

From the definitions (2.6) and (2.7), Eq. (2.11) reads: 

" SICa, 4,p),,(A, k) ... ] = (i)" (II f(L) .. J SICa, #"p)i(A, k) ... ] 
i=l (2.12) 

+O(m/E). 
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Eq. (2.12) is the statement that S-matrix elements for n longitudinally polarized 

vector bosons (Mi = #'i) and m other physical particles are the same, up to a phase 

and up to O(m/ E) corrections as the S-matrix elements obtained by replacing 

each longitudinally polarized vector boson by its corresponding unphysical scalar 

(M =4). 

Notice that Eq. (2.5) does run imply, for example, that 

~, ( ) 1". ( )S .. , ... ···( ) _ ~' ~ S .. , ... ···( ) 
(L) .. , PI ~(L) ... P2 1",,... ••• PhP2··· - -- 1",1" •••• P1,P2··· 

m1 m 2 . 

x [1 + Oem/E)]. 

The reason is that, as is well known, gauge theory cancellations remove the leading 

O[(p/m)"] behavior for n external longitudinally polarized vectors. The non-leading 

contributions need not be correspondingly suppressed. For example, explicit calcu

lations of the amplitudes for qq -+ Wtwi and 'Y'Y -+ wtwi in the tree approxi

mation show that 

1", ( ) 1". ( )Sw+w- 1 I"'..I"oSw+w- ( ) ~(L)W P1 ~(L)W P2 I",,...[q,or'rt) - Ma, P1 1'2 I",,...[q,or'rt) = 0 1 , 

while 

11)w(P1)ecl)w(P2)s:':i;,or 'rt) + S!it:';'rt) = O(m/ E). (2.13) 

We have further verified (2.1) explicitly in tree level for qq -+ WtWi. 
To derive the Ward identity (2.1), we introduce an auxiliary field B .. for each 

vector field (a = W:,Z,'Y), and write the gauge fixing term as 

lop = ~ GB: -~B .. F .. ), F .. =L:~v; 
M 

(2.14) 

where ~ is a 5-component derivative operator expressed in momentum space as 

~(p) = (ie .. p"',m .. ) (2.15) 

where m .. = 0 when "a" denotes the photon, a = 'Y. Using the equation of motion 

al 1 
0= -- =B .. - n F .. , aB.. v<;; .. 

(2.16) 
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one recovers the usual gauge fixing term in the Re gauge14 

.c - 1", -11 2 
GF - -2 L..J ea Fa I . 

a 
(2.17) 

We start with the result15 that the renormalized generating functional r(A) for 

one-particle irreducible Green's functions-where A represents all physical fields as 

well as unphysical scalars, Fadeev-Popov ghosts and the auxiliary fields Ba- is 

invariant under the improved BRS transformation16 

0= LjcI'x6A'(X)or(A) 
; 1 ok 1 

, (2.18) 

with (all repeated indices summed) 

.sA, = xf;caA; - O,aMDaMCa + c5foV€aBa, (2.19) 

where Ca and ca are ghost and anti-ghost fields, respectively, xf; = O(g) is the matrix 

element of the generator Ta between states * and D is a 5-component derivative 

operator defined in momentum space as 

n:c(p) = (ip",ma) = D!'(-p) (2.20) 

The generating functional W(J) for connected Green's functions is related to 
r(A) by 17 

W(J) + r(A) + ~ f cI'xJi (x) A; (x) = 0 
• (2.21) 

oW 
oJi(x) = -Ai (x) 

or 
OAi(X) = -Ji(x) 

In the following we will work in momentum space, where the transformation 

(2.19) is expressed as (all repeated indices summed): 

*The matrices Xt,· are defined as follows: for ghosts X,,; = 0, X:.c. = (~)g/abd' where /abdis the 

structure constantj for X(Mb),(Nd) we define X(4b),(vd) = X(,,,b),(4d) = O,X(,,,b),(vd) = gg"v/abd, and 

X(,4b),(4d) = g/abdj and we set XB.;, = 0 to ensure SE .. = O. We identify the physical Higgs field 

with the M = 4 component of the photon field, a = "Ij it vanishes on contraction with D, lJ, or DF 
since m .. = 0 for a = "(. 

11 

6Ai(k) = f (::)4 xf; ca(k - q) A;(q) - O,<aM) DM(-k)ca(k) 

+ O!o Ba(k)V€a 

(2.22) 

To obtain Ward identities for the connected Green's functions, we write W(J) 
as an expansion in the J i : 

n d4 
W(J) = ~fc!l (2~i4)(21r)4 o4(LPi)Ji,(-Pl) .. ·Jin (-Pn) 

(2.23) 

X Wi, ... in (PI ... Pn) 

Then 

c5W f n d4p. 
Ai(k) = ~ 71 ._\ = - ~ (J! (21r)4 Ji;(-p;)) Wii, .... n(k,Pi .. ·Pn) 

(2.24) 

X (21r)4 o4(k + Ep;) 

We now proceed to evaluate the identity 

o = __ 0 II(' c5 f d
4
q. A I' 

c6(-k) ;=1 c5J
ii

(-P;))) ~ (21r)4 J.(-q) oA;(q) J=O' ' 
(2.25) 

which follows from (2.18), using the definitions (2.22) and (2.24) . 

Let us first evaluate (2.25) for n = 1, PI == -P, il = in == i. Substituting the 

expressions (2.24) for the field variables in the transformation (2.22), we see that 

the first term in (2,22), which is bilinear in fields, does not contribute to (2.25) for 

n = 1. * We then obtain a relation among propatators: 

L 0i(Ma) DM(P) WCO• 6(p) = V€bWB6i(P). (2.26) 
a,M 

*To verify this it is useful to know that the physical Higgs fields which can appear on the right side 

of Eqs. (2.19) and (2.22), A:;~4' are shifted fields, with vanishing vacuum expectation values. 

12 
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Taking i = Ma, the equation of motion (2.16) for B(J may be used to convert (2.26) 

into relations among ghost, vector and unphysical scalar propagators: 

DM(J(p)W'a~6(P) = LD:b(p)WNb,M(J(P), (2.27) 
N 

that are readily verified for the tree approximation in the Re gauge. 

Next we evaluate (2.25) for i l ... in = B(J, ... B(J. AI'" Am, where the Ai rep

resent any physical particles including vector bosons with physical polarization 

(f,..(p)p'" = 0, f = fL or fT), with off-shell momenta Pl'" Pm,and the B(J; are auxil

iary fields with off-shell momenta kl ... k,. (The on-shell limit will be taken below.) 

The second term in the expression (2.19) for 6Ai will contribute in this case only if 

one of the i; denotes a vector boson (Oi(~'''') 1= 0). However, for i; = (a, IL), this term 
J 

drops out upon contraction with a physical polarization vector, f~(p;)D:(pj) = 0, 

so it does not contribute to the case considered here. When substituted into (2.25), 

the first term in (2.22) gives rise to terms of the form: 

LX~'A~ W'.~6BG, ... BG.A •.. .A.(pl - q,k,kl ... k .. P2 .. . PI) 
(J (2.28) 

x WA~BG.+, ... B •• A.+, .. .A .. (q,kr+I' .. k"Pl+l" . Pm) 

where 

, m 

q=-Lki-LPi 
'=r+l i=l+l 

and 

, m 

k= -L ki - LPi 
i=1 i=1 

are off-shell momenta. The off-shell S -matrix elements S are related to the con

nected Green's functions W by products of external propagators Wij : 

n 

Wi, ... in (PI'" Pn) = (II Wili~ (Pt))Si: ...• dpl ... Pn) 
t=1 

(2.29) 

IT we multiply (2.25) by the product of inverse propagators for each physical field 

Ai, and set the Ai on mass shell, each term of the type (2.28) vanishes because there 

is always one off-shell momentum giving rise to a factor of the form: 
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W-1 ()W () p~=m~ A,A, PI A~A: q --> O. 

Thus we need only consider the contribution of the last term in (2.22), which 

when inserted in (2.25) takes the form: 

0= vebWB6Ba, ... Ba.A, .. .A ... (k,ki,Pi) 

= veJIT WA;A;(Pi)) Lui WBG.tj(k;))WB61(k) x Su, ... t.A, ... Am (k,ki,pi) 
i=1 t,tj ;=1 J 

m , (2.30) 

L (II WA;A;(Pi))(L e;j1/2W'4j~.j(k;)D~j(k;))W'4'+1~6(k)D~:~1(k) 
dj,Mj i=1 ;=1 

x S[(d,M,k)'+l(A,P)ml 

where S has been expressed in the notation of Eq. (2.4) with k == k,+l' In writ

ing the last equality in (2.30) we used the retation (2.27) for two point functions. 

Multiplying (2.30) by the inverse propagators for the physical fields Ai and for the 
ghost-fields and also by the factor 

, 
II e!~2, 
;=1 J 

and setting the Ai on mass-shell, we obtain from the above argument the desired 
Ward Identity: 

HI M· _ I 
~?I! Dd/(k;))S[(d,M,k)'+l(A'P)ml pbm? = O. . . 

(2.31) 

Equation (2.31) is valid to arbitrary order in perturbation theory and for off

shell values of the k;. Putting the ki on shell, kl = m~;, we recover the Ward 

identity (2.1) for physical S-matrix elements: S(Pi) = S(Pi)lp;'=m1' where in 2.31, 

some number T $ m of the fields Ai can be taken as longitudinally polarized vector 
bosons. 

The Ward identity (2.31) may also be derived without the use of the auxiliary 

fields B(J' In this case the last term in (2.19) is replaced by ora D~V~ and the Ward 

identity is obtained by evaluating (2.25) for i; = (aMh,'" (aM)., Al ... Am. Then 

additional terms, arising from both the first and second terms of (2.19), appear on 
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the right hand side of (2.31); these are eliminated by using the equations of motion 

for the antighost field: 

0= aCGho" = '" DM a va 
aCa ~ Fa M 

'" 1_ aM b -N Aa CGholl = L fCaDF [(XaM,dNVd - DM)Cb] 
all indices a 

(2.32) 

'" MA -= LCaDFaaVM 
a,M 

Having established the equivalence theorem (2.12), we turn in the next section 

to a discussion of the properties of the unphysical scalars that may be ascribed, to 

O(m/ E), to the longitudinally polarized vectors. 
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3. The Effective High Energy Theory 

Exploiting the results of the preceeding section, we consider the Lagrangian of 

the minimal electroweak model in the Re gauge: 

C = C, - V (3.1) 

where C, includes the covariant kinetic energy terms (Yang-Mills and gauge cou

plings), gauge fixing and gauge compensating (ghost) terms, masses and Yukawa 

couplings. For the purposes of this paper we assume .that the Yukwawa couplings 

are weak (Glluk ~ O(g)), in other words that there are no fermions considerably 

more massive than the W that acquire their mass through couplings to the stan

dard Higgs doublet. The case of a strongly interacting Yukawa sector is of interest 

in itself18 and could provide an additional source of multiple Higgs and/or W,Z 

production,19 but here we disregard that possibility. 

The Higgs potential V in (3.1) is given by 

2 1 2 2 
V = mH H2 + _ mH (cp2 + H2)H + mH (cp2 + H2)2 

2 2 V 8v 2 (3.2) 

where H is the physical Higgs scalar, v = (V2GF)-1/2 is the vacuum expectation 

value of the unshifted scalar field, and 

cp == (WloW2'Z) == (CPlo CP2, CPs), --W± = ~(Wl =F iW2) (3.3) 

are the unphysical scalars whose S-matrix elements satisfy the identities (2.1), 
(2.13) and (2.31) of the previous section: 

W± == CPw±, Z == cpz. 

The usual complex Higgs doublet ~ that transforms as 

o~ = !!.S.T~ 
2 

under the infinitesimal SU(2) gauge transformation 

oW, = a>.., - gf'ik>..iW,I: 
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(3.4) 

(3.5) 

(3.6) 



is expressed in terms of the 'P; as 

( 
-iw+ ) 

Cb = [~(H + v - iz)J . 
(3.7) 

As is well known, l since the vev is fixed by experiment, the quartic (>. = mk /2v2
) 

and cubic (mk/2v) scalar self-couplings become strong as the Higgs mass ap

proaches one TeV. In this limit we must work to all orders in the potential V. 

We shall therefore consider the scalar sector as a strongly interacting system in the 

presence of weakly coupled external sources, namely the gauge and Yukawa cou

plings that we treat in lowest non-trivial order. We do not propose to solve(!) the 

dynamics of the strongly coupled scalar sector, but rather to exploit its symmetries 

and the analogue of PC AC to make some statements about S -matrix elements 

for external w's and z's. The equivalence theorem then allows us to translate these 

into approximate statements on matrix elements for longitudinally polarized W's 

and Z's. 

The potential V is invariant under parity with H defined as a scalar and the 'P; as 

pseudoscalars. It is further invariant under a global vector SU(2), with infinitesimal 

transformations: 

oj 'P; = ltyli;/c'PI" oj H = 0, (3.8) 

and a global, nonhomogeneous "axial" SU(2): 

otH = -ItA'P;, ot'Pi = O;iltA(H + v) (3.9) 

(ltY,A are the infintesimal parameters of the transformations) that together form 

a Goldstone-realized "chiral" SU(2) x SU(2) invariance group. The conserved 

currents, obtained from the full scalar Lagrangian 

1 1 
.cop = 2(a,,'P)2 + 2(a"H)2 - V (3.10) 

are given by 
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; -1 a.cop y 0 

V" = Ity a(a,,'P;) 0; 'P' = c;;k(a,,'P;)'Pk, 

; -1[ a.cop A a.cop A J 
A" = itA a(a,,'P;) 0; 'Pi + a(a;.H) 0; H 

(3.11) 

= -(a"H)'P; + (a,,'P;)(H + v). 

It is easy to check, using the equations of motion for the fields 'P; and H, that the 

vector and axial currents are conserved: 

a"v" = a"A" = 0 

and that they satisfy the usual SU(2) x SU(2) current algebra: 

where 

and 

[ 

0 5 oJ k Q;, vtJ = [Q;,At = iC;ikV" 

[Q;, A~J = [Q!, V:J = ic;;/cA~, 

Q; = f dSzV;(z) 

Q! = J dSzA!(z) 

are the generators of the transformations (3.8) and (3.9), respectively. 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

It is clear that Weinberg's analysis20 of low energy 7T - 7T scattering amplitudes 

in the exact chiral limit, m,. -> 0, can be transcribed verbatim to the description 

of w, z scattering amplitudes if .c, is neglected. For mk ~ 8, the result will simply 

reproduce the tree approximation as calculated using the Lagrangian (3.10), since 

by construction the latter satisfies the constraints of chiral symmetry. This assertion 

can be made more transparent if one redefines the fields by a transformation 

Oli/u( 0 ) Cb = e'·o HJiU (3.16) 

that removes the scalars from the potential V, as in defining the unitary gauge. In 

the Lagrangian (3.10) they reappear with derivative couplings through the kinetic 
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energy term. The Lagrangian obtained iil this way is to be interpreted as an effec

tive Lagrangian for tree amplitudes that automatically satisfy the chiral symmetry 

constraints; in particular the derivative couplings assure Goldstone decoupling at 

zero energy. Since a field redefinition does not change S -matrix elements, the tree 

approximation to the linear O'-model, Eq. (3.10), gives the same amplitudes as 

the tree approximation to the non-linear O'-model obtained with the transformation 

(3.16). The non-linear formulation (using a slightly different field redefinition) has 

been studied previously in various contexts.10 

The tree amplitudes for w and z scattering have been given in Ref. 2; they are: 

rn 2 8 t) T(w+w- -+ w+w-) = -v2GF m H (--2- + --2-
8-mH t-mH 

8 t u) 
T(zz -+ zz) = -V2GFm~( 8 _ mL- + t - mL- + u - mL-

rn 2 8 T(w+w- +-+ zz) = -v2GF mH--2-' 
8-mH 

(3.17a) 

(3.17b) 

(3.17e) 

Note that the charge exchange process w+w- +-+ zz occurs only in the 8-wave 

channel. Lee et al.2 diagonalized the S-matrix for this system in the limit 8 > 
mL-, and found that the highest 8-channel eigenvalue saturates tree unitarity if 

mH = 1 TeV. IT we consider instead the limit mL- > 8, the same analysis shows 

that 8-wave tree unitarity is saturated for Va = 1.8 TeV. This means that for 

mH > 1 TeV, the tree approximation will cease to be valid beyond 2 TeV, if not 

sooner. On the other hand, chiral symmetry implies that the tree approximation is 

valid for some region above threshold. The tree amplitudes scale as 8/V2 , and we 

expect them to be approximately accurate until some new scale parameter (e.g. the 

Higgs mass) becomes relevant and provides the appropriate damping. This scale 

will correspond to new, observable phenomena, which mayor may not include an 

8-channel I = 0 resonance. 

As an example consider the 0(2N) sigma model. In the large N limit the scat

tering amplitudes are unitarized at the scale,...., 3211"2V 2/N.21 For a rough comparison 

with hadronic physics in the light quark sector (u and d only) we consider N = 2, 

since the 0(4) sigma model is precisely the SU(2)L x SU(2)R model of light quark 

phenomenology. Then with v = F1I' the unitarization scale is ,...., 1.2GeV, which is 

of the order or larger than the scale of the bound state spectrum of nonstrange 
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quarks. Pursuing the analogy with hadronic physics, it is also amusing that the 

I = J = 0 scattering amplitude obtained 13 by scaling 11"11" data by v / F1I' has a phase 

shift passing through 90° at Va~ 2TeV. 

Let us now consider the scalar sector in the presence of gauge and Yukawa 

interactions. That part of the Lagrangian (3.1) that involves scalar fields can be 

decomposed as 

C(tp) = C", + Cv",. + Cv'"" + Ca.F. + Caho" + CIIU/c (3.18) 

where C", is defined in (3.10). Cv",. contains the gauge couplings to scalars that are 

linear in the gauge fields: 

Cv",. = -i~t a (~f'. W + g' B)~ 

= eAr,lV;+ 2~[W+"(V,,- + A;) + h.e] 

+ -g-Z"{A3 + V 3 (1 - 2eo828)}, 
2eo88 " " 

(3.19) 

where A; = A~ + iA! and V,,- = V; + iV; are defined as charge raising operators, 

and.A; and V; are the conserved Noether currents (3.11). Ca.F. is the gauge fixing 

term, Eq. (2.17), and contains a pseudoscalar mass term 

m!a = m~a/ea (3.20) 

where tpa is the gauge parameter. 

Let us first work in the "Landau" gauge defined here as the e -+ 00 limit of the 

R( gauge. In this case the pseudoscalars remain massless and decouple from the 

ghosts (see Eq. (2.32)), and the gauge fixing term (2.17) becomes: 

lim Ca.F. = - lim ea la"V"aI2 + (a"V"a)¢>a' 
(-+00 (-+00 2 (3.21) 

Since the limit e -+ 00 imposes a"V"a == 0, we may neglect the second term in (3.21). 

In other words the V +-+ tp transition amplitude vanishes upon contraction with a 

physical external polarization vector f' p = 0, or an. internal propagator: 

a" .a"v(x)(-+oo = o. (3.22) 
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Thus in the "Landau gauge", the scalar sector is exactly chiral SU(2) invariant, 

with the chiral invariance broken only by the weak Yukawa and gauge couplings. 

The Yukawa couplings of scalar (H) and pseudoscalar ('Pi) densities have well de

fined transformation properties, Eq. (3.8) and (3.9), under chiral SU(2). The gauge 

bosons are coupled to the conserved vector and axial currents, Eq.(3.19). The sit

uation is entirely anlogous to the chiral symmetric hadronic sector (in the limit 

m,.. --+ 0) of QCD in the presence of low energy weak interactions, and the same low 

energy theorems apply" to matrix elements of current and scalar densities between 

states of strongly interacting particles - in this case wand z. It is easy to check 

that, as expected, the tree approximation to the Lagrangian (3.1), (3.18) satisfies 

the current algebra constraints for amplitudes involving external w, z, and external 

sources, as well as for the purely strong w, z scattering amplitudes discussed above. 

How does renormalization affect these results? First we note that the Landau 

gauge condition is not renormalized, and the poles in the unphysical scalar prop

agators are not shifted away from the origin. We interpret g,g' and the vector 

boson masses as their renormalized on-shell values; since we are .working to lowest 

nontrival order in these quantities, the corresponding counter terms play no role. 

Finally, we define v as the renormalized coupling of the pseudoscalar field to the 

axial current, 

< 0 I A~ I 'Pj >== iOijP"V, (3.23) 

as measured by the muon lifetime: 

v == (v2GF )-1/2[1 + 0(g2)J (3.24) 

up to 0(g2) corrections that we are neglecting. To see that (3.23) and (3.24) are 

equivalent definitions,IO we note that the scalar contribution to the W± self-energy 

is, from Eq. (3.19) 

E:,,(p) = ~ f /l'xe-ipz[< T(A!(x),A~(O) + V: (x), V,,-(O)) >J. (3.25) 

"For more than one external vector or axial current, the quartic gauge scalar couplings (Lv'<p') 
cancel Schwinger terms so as to insure the naive current algebra manipulatons with the matrix 
elements of time ordered products replaced by T' products.22 
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Current conservation (3.12), and Lorentz invariance of the vacuum < V,,(O) >= 0, 

imply that E:" is divergenceless: 

p"E:,,(p) = 0; E:,,(p) == E(p)(-g"" + p";"). 
p 

Now E:" has a pole at p2 = 0 arising from w-exchange (Fig.3a) with residue 

g2 
p2E",,(p2) Ip'=o = "8 < 0 I A! I w+ >< w+ I A~ I 0 > 

2g2 
=p"p"v"4 

where the last equality follows from the definition (3.23). Then for small p2, 

2 

E",,(p2 ~ 0) = ~ v 2
( -g"" + p;;"), 

and the pole in the W -propagator is shifted according to 

(Ao)"" == 12 (-g"" + p";") --+ A"" = {Ao f(AE)"}"" 
p p "=0 

= (_g"" + p;;,,) (p2 _ g2V2/4fl 

(3.26) 

(3.27) 

(3.28) 

Corrections to this result from, for example, the diagrams in Fig. 3b are 0(g2). The 

physical mass of the W is identified as the position of the pole in the propagator: 

m:V = (g2v 2/4)(1 + 0(g2)), 

which is equivalent to (3.24). 

IT we work instead in a gauge with finite e, the w, z acquire small masses: 

m~ = m~;/ei (3.29) 

and as a consequence the currents (3.11) are only partially conserved: 

. m~ a" A' = -' (n·v " ei Y' (3.30) 

a"v; = fijkWjWkm;! ej (= 0 if ew = ea). 
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In this case current algebra must be implemented with the assumption that 

matrix elements of the axial current divergence are pseudoscalar pole dominated, 

and, as for finite pion masses in chiral pion dynamics, the same results are obtained 

to lowest order in m;' It is worth noting that the explicit chiral symmetry breaking 

parameter m; and the spontaneous chiral symmetry breaking parameter v2 are here 

in the ratio 

(mw IV)2 = 0.11, (3.31) 

while the analogous parameters in the pion case are in the ratio 

(mrl fr)2 = 2.27, 

so that the effects of explicit breaking are less important for the system studied 

here." It follows, moreover, from the results of Section 2, that pseudoscalar am

plitudes calculated in any Re gauge can differ only in order ml E, since they differ 

only in that order from the €-independent physical amplitudes for longitudinally 

polarized vector mesons. 

What we have done in this section is to display explicitly the chiral properties of 

the scalar sector in the Re Lagrangian of the minimal electroweak model. The same 

properties hold a fortiori for the unphysical scalars of technicolor models, where 

they are by construction the Goldstone bosons of a spontaneously broken chiral 

symmetry. Such a chiral SU(2) is a feature of a large class of experimentally viable 

models since conservation of the diagonal subgroup of SU(2)L x SU(2)R protects 

p = (Mw IMzcos(J",)2= 1 + 0(0:) from strong interaction corrections. 

Together with the results of Section 2, that again are expected to hold in more 

general models, the chiral properties discussed in this section permit us to deter

mine, independently of perturbation theory, the couplings of longitudinally polar

ized vector mesons to one another and to weak external sources over some energy 

range S'hmhold S S S A 2 , where A is a scale parameter characterizing the strongly 

interacting system. The remaining sections of this paper will be devoted to the 

phenomenology of strongly interacting W's and Z's. 

"However, there need be no simple relationship between symmetry breaking effects from m" # 0 in 

the usual sigma model and symmetry breaking due to gauge interactions, since the latter include 

symmetry breaking terms that have no counterpart in the ungauged model with explicit pion mass 
m,,#O. 
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4. Strong Interaction Signals in Two Body Channels 

Two boson bremstrahlung,7,6 shown in Figure 1, provides us with a beautiful 

probe of strong interactions among the W and Z bosons. Since kinematics requires 

that the bosons are emitted off the mass shell they must rescatter in order to appear 

in the final state. In the standard model with a light Higgs boson, the rescattering 

amplitude is weak, 0(0:), and Figure (1) is a negligible source of gauge boson pairs 

relative to qq annihilation shown in Figure 2. But when the rescattering amplitude is 

strong, Figures (1) and (2) are of the same order in 0:. In this case, for a sufficiently 

energetic hadron collider (y'S 2: 0(40 TeV), as we show below), there is a set of cuts 

such that the bremstrahlung mechanism is dominant. Measurement of the diboson 

yield satisfying these cuts (which are on the rapidity and diboson mass) is then a 

powerful test for the existence of new strong interactions. 

4.1 Gauge boson luminosity distributions. 

We will briefly sketch the derivation23 of the longitudinal boson luminosity dis

tributions obtained from Figure (1), for the sake of completeness and in order to 

explain a subtle and amusing feature. As emphasized above, it is only the longitu

dinal bosons which can have strong interactions, but they have negligible couplings 

o (gmqlMw ) + O(Mw I yS), to the light quarks in Figure (1). How then can brem

strahlung be an important source of strongly interacting gauge bosons? 

Our derivation proceeds by first computing the cross section to produce the 

Higgs boson by diboson fusion as shown in Figure (4). The cross section is (for 

mq = 0) 

g6 Mars ( f) 3 + 3CIC2 + C1 + C2 - 2S1S 2 COS(CP1 - CP2) 
q = 64 %1%2 (q2 _ M,2 )2(q2 _ M,2)2 

LIPS 1 W 2 W 

(4.1) 

where LIPS stands for Lorentz Invariant Phase Space, S corresponds to the initial 

qq pair, Ci = cos (Ji and Si = sin (Ji refer to the polar scattering angles of the quarks 

qi, CPi are their azimuthal angles, z; = 2E;/y'S denotes the energy fraction retained 

by final state quark q;, and the domain of integration is 

f = f d3pH d3p~ d3p~ 4 
( ) - (211")98EHE' E' (211") c5(P1 + P2 - PH - p~ - p;). 
LIPS 1 2 

The integral is dominated by forward scattering angles, (Ji ~ 0, which minimize 

the W propagators in the denominator. In the spirit of the Weizsacker-Williams 
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approximation for the analogous two photon process, we put (h = O2 = 0 except 

in the propagators (where Oi = 0 would lead to a spurious singularity). In this 

approximation the cross section becomes 

g6M~ f dZldz2dcldc2 8(2 - ZI - Z2 - ZH) 
0= 4(271")3S2 ZH (1- Cl + 2M~/zlS)2(1 - C2 + 2M~/z2S)2 (4.2) 

with 

./4m2 
ZH ~ V ---jl- + (ZI - Z2)2 

With the additional approximation M~ <t: sz;, the angular integrations yield factors 

11 dCi ~ SZ; 

-1 (1 - Ci + 2M~/z;s)2 = 2M~ (4.3) 

The rest of the integral can be done exactly, with the final result 

a 3 1 
0= ,:2 {--(I+x)lnx-(I-x)} 

81V1W 2 
(4.4) 

where a", == al sin2 0", and x == m'k I s. 

It is only the longitudinally polarized W bosons which contribute to this result. 

Neglecting the quark mass, as we have, a transversely polarized boson cannot be 

emitted in the forward direction, so our small angle approximation has eliminated 

the contribution of the transverse components. Longitudinal bosons gm be radi

ated in the forward direction, with the result shown in Eq. (4.3) that the angular 

integrations yield factors sIM~. This factor is the key to understanding why the 

longitudinal components are able to contribute even in the limit of vanishing quark 

mass. The longitudinal wave function is 

110 1 
cL = Mw (p,O,O,E) 

where plio = (E,O,O,p) is the four-momentum and E2 = p2 + M~. For E ~ Mw, 

ct~L_Mw Mw 2E (1,0,0,-1) 
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The first term is the source of the common wisdom that the longitudinal component 

cannot couple to massless quarks. But the second term contributes a factorM~ Is to 

o that is independent of the quark mass, which can contribute even asM~ Is -+ 0 

because it is just canceled by the factor slM~ from Eq. (4.3). (If we had kept 

terms of order Oi, then the angular integrations would have yielded logarithmic 

factors from the transverse components, precisely as in the Weizsacker-Williams 

treatment of 11 scattering.) 

The effective luminosity to find incident W+W- beams in parent beams of quarks 

and/or antiquarks can be obtained from Eq. (4.4) by unfolding the definition 

o(qq -+ qqWW -+ qqH) = f dx df. I . o(WW -+ H) 
dx wW/qq 

Generalizing to all gauge boson types, VI V2 = WW, W Z, Z Z, the result is 

df. = a",;:X2 ;[(1 + z) In; - 2 + 2z I 
2 1 1 J 

dz v,v./qq 

where a", = alsin2 0""z = svvlsqq 

and the Xi are defined by 

1 
XWua = 4 

1 + (1 - ~ sin2 0",)2 
XZuli = 16 cos2 0", 

1 + (1 - ~ sin2 0",)2 
XZda = 16 cos2 0", 

(4.5) 

(4.6) 

(4.7) 

Equation (4.6) gives the total yield of gauge boson pairs at a given z. In order 

to implement the rapidity cuts we will need to unfold Eq. (4.6), 

df. I 11 d
2 
f. I 

dz = • du dzdu 
v, V./q,q. v, V./q,q. 

(4.7a) 

where 

d
2 f. I a~XIX2 (1 - u)(u - z) 

dzdu v,V./q,q. 71"2 zu2 (4.8) 

26 



and in the notation of Eq. (4.1) u is defined as u = 1- ZI' The rapidity of the VIV2 

center of mass system with respect to the qIq2 center of mass is then 

u 
= In . r,;' Yq yZ 

4.2 Calculation of Boson Pair Cross Sections. 

(4.9) 

The cross section to produce a pair of longitudinal gauge bosons by the double 

bremstrahlung mechanism is given by the gauge boson 2 ---+ 2 scattering cross sec

tions cW / d cos 0 (VI V2 ---+ V;V;) (0 being the VV center of mass scattering angle), 

convoluted with the luminosity distribution function df,/dz Iv,v./q,q. to find V1 V2 in 

the q1q2 beams, convoluted in turn with the quark luminosity df,/dr Iq,q./pp to find 

the quarks in the incident proton beams. The quark luminosity distribution is 

df,! = {d;Mx)!2(;) 
dr q,q./pp 

(4.10) 

where the /; are the familiar probability functions, normalized, for example, so that 

f dx(u(x) - u(x)) = 2. 

To implement the rapidity cut, we must unfold the x integration in Eq. (4.10), 

the u integration in (4.7), and the integration over cos 0, the V1 V2 center of mass· 

scattering angle. The result is a five dimensional integral, which in the absence of 

rapidity cuts would be 

O'(pp ---+ V;V; + ... ) = /.1 dro 
~o /.

1 dx r L { -Jt(x)I2(-) 
~ x X 

91 92 
V1 V2 

/.1 /.1 d
2

:C I /1 dO' x dz dU-
d 

d . dcosO-d--(V1V2---+V;V;)} 
~o/~ .. z U V v: / -1 cos 0 

1 2 q1q2 
(4.11) 

To impose the rapidity cut on both final state bosons V;' we must also restrict 

the domain of integration with the constraint 

I yp + Yq ± Yv I~ YMAX· (4.12) 
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Here Yv is the rapidity of V; in the VV center of mass (and -Yv is that of V;), 

1 E + p cosO 
Yv = zln( '" ____ ,,)c.m .•. (4.13) 

where E and p are the c.m.s. energy and three-momentum of V;. (In computing 

Yv we use Mw = 83GeV for both the Wand Z masses.) The V1 V2 rapidity with 

respect to the q1q2 c.m.s. is, 

U 
Yq = In VZ 

and the q1q2 rapidity with respect to the pp c.m.s. is 

x 
yp = In .;:r 

The rapidity cut that we adopt for the result presented below is 

YMAX = 1.5, 

(4.14) 

(4.15) 

(4.16) 

tighter than that used in some of the literature. Since the Wand Z decay products 

may "migrate" as much as one rapidity unit, our cut means that they will fall within 

the observable range of ±2.5. 

4.3 Strong VV Amplitudes. 

The object of interest in Eq. (4.11) is the VV scattering cross section, 0'(V1 V2 ---+ 

V;V;). Lacking both a good candidate for the relevant strong interaction theory and 

the techniques to compute the strong scattering amplitudes even if we did know the 

theory, we cannot make precise quantitative predictions. Our goal is more modest: 

to establish the order of magnitude of the signals to be expected if the VV scattering 

occurs by strong interactions. 

To this end we have concentrated on two simple models of the strong VV am

plitudes. One is motivated by the low energy theorems, discussed in Section 3, 
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which follow rigorously from global chiral SU(2) symmetry. The other is the stan

dard model taken in tree approximation, with the Higgs· boson mass set to the 

value, mH = 1 TeV, at which partial wave unitarily implies the onset of strong 

interactions.2 With these models we have computed the cross sections to produce 

the six diboson channels - Z Z, W+ Z, w-Z, W+W-, W+W+, W-W- - at four pp 

center of mass energies, ..;s = 10,20,30,40 TeV. For comparison we have also 

considered some dynamical models in particular cases: (1) 'scaling the measured 

11"11" 8-WaVe amplitudes by v / Fr , 13 (2) an O(N) model of the Higgs sector solved to 

leading order in 1/ N,21 and (3) pair production mediated by techni-rho production24 

in SU(Nhc technicolor models. 

We begin by considering the scattering amplitudes for two longitudinally polar

ized gauge bosons in the standard model. As discussed in Section 2, up to corrections 

of order Ma, /8 which we neglect, these are equal to the scattering amplitudes for 

the corresponding unphysical Goldstone bosons w and z. The tree amplitude for 

wtwi -+ ZLZL is then well approximated at high enough energy by the corre

sponding tree amplitude for w+w- -+ zz. The latter is given by the sum of the two 

Feynman diagrams shown in Figure (5), 

M(w+w- -+ zz) = -2i>. - 4i>.2V2_-
1

-
2
-

8-mH 

8 = -2i>. --2· 
8- m H 

(4.17) 

using the relationship between the quartic coupling constant>. and the vev v 

2 G 2 >. _ mH _ FmH 
- 2v2 - V2 (4.18) 

In the limit 8 ¢: mh the amplitude (4.17) approaches the value 

M(w+w- -+ zz) £; 2i>'-;- = i.!!.... 
mH v2 (4.19) 

as required by the low energy theorems discussed in Section 3. While Eq. (4.17) is 

a perturbative result, Eq. (4.19) is valid to all orders in >.. 

We have so far neglected rH , the Higgs width. In the absence of a fourth 

generation of fermions, the dominant decays are to w+w- and zz, implying 
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~ 3V2GFm~ 
rH = 3211" 

~ ! . ( mH )3TeV 
= 2 1TeV 

(4.20) 

For mH = 1 TeV, we have rH £; l TeV, a value so large that it calls into 

question the possibility of a simple particle interpretation. For such large values 

mH must be regarded as a parameter of the Lagrangian rather than the mass of 

a well defined particle. If the theory exists for such large mH, we have yet to· 

determine the nature of its particle spectrum. 

For our phenomenological estimates we wish to include the effect of r H. If we 

simply modified the propagator in Figure (4b) with the replacement 

1 1 
--- -+ ---;;--
8-mh 8-mh+imHrH 

then the resulting amplitude 

8+imHr H 
-2i>. . 2. 

8-mH +,mHrH 

would not have the correct low energy limit, Eq. (4.19). We therefore adopt the 

following minimal prescription, which preserves analyticity and the constraints of 

the chiral SU(2) symmetry: in Eq. (4.17) we give the pole its proper complex value 

and we rescale the amplitude by a complex constant to ensure the correct threshold 

behavior. The result of this prescription is the following list of amplitudes: 

.rH 8 
M(w+w- -+ zz) = -2i>.(1-' mH) 8 - mh + imHr

H 
(4.21a) 

r H t 
M(wz -+ wz) = -2i>.(1- i m)t _ mh + imHr

H 
(4.21b) 

r s t} - + -) 2 ·'(1- .-.!!...){ . + 2· r M(w+w -+ w W = - ,,, I 8 _ m 2 + ImHrH t - mH + ImH H 
mH H (4.21c) 
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M(w+w+ --+ w+w+) = M(w-w- --+ w-w-) 

= -2i>.(1- i~){ tL . + t . } 
mH tL - mL- + ImHrH t - mL- + ImHrH 

M(zz --+ zz) = -2i>.(1 - i rH 
) 

mH 

(4.21d) 

s t 'It 

{ 2' r + 2' r + 2' r} S-mH+lmH H t-mH+lmH H tL-mH+SmH H 

(4.21e) 

These amplitudes with mH = 1 TeV and r H = 0.48 TeV define our. first model for 

estimating yields of strongly interacting VV pairs in pp collisions. 

Since the tree amplitudes respect the global chiral symmetry of the model, their 

low energy limitS are as given by the low energy theorems. The low energy limits 

of Eqs. (4.21) are therefore valid to all orders in the strong coupling >.. The low 

energy amplitudes are 

Ml == M(w+w- --+ zz) ~ i S2 
V 

M2 == M(w±z --+ w±z) ~ i~ 
v2 

tL 
Ms == M(w+w- --+ w+w-) ~ -i2 

v 

s M" == M(w+w+ --+ w+w+) ~ M(w-w- --+ w-w-) ~ -i
v2 

Ms == M(zz --+ zz) ~ 0 

(4.22a) 

(4.22b) 

(4.22c) 

(4.22d) 

((4.22e) 

The amplitudes (4.22) will be a valid description of longitudinal gauge boson scat

tering if s is large enough that the theorem of Section 2 applies (w - WL, Z - ZL) 

but small enough that the low energy theorems of Section 3 are valid. We some

times refer to this as the region of the "Fermi limit" since it is like the low energy 

regime of growing amplitudes that occurs in weak interactions at energies below the 
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masses of the mediating particles - Wand Z for the weak interactions or the new 

spectrum of strongly interacting particles for the case we consider here. 

Smooth extrapolation of the amplitudes (4.22) to larger s defines a minimal 

model, since the threshold behavior will continue smoothly until dynamical struc

tures, such as resonances, are encountered. However we cannot extrapolate the 

amplitudes (4.22) indefinitely since they would eventually grow beyond the magni

tude allowed by partial wave unitarily. We therefore adopt a simple prescription 

in the spirit of geometrical models of hadron scattering: we extrapolate the ampli

tudes (4.22) until the partial wave amplitudes saturate the unitarily bound while 

for higher energies we assume· the partial wave amplitudes are at their maximally 

allowed values with the relative phases implied by (4.22). This is similar to geo

metrical models of strong interaction scattering, which assume that all classically 

allowed elastic partial waves contribute maximally. It yields a conservative estimate 

of the total cross section, in that we do not include contributions of higher partial 

waves beyond those sand p-wave amplitudes that contribute to (4.22) nor do we 

include the contributions of multibody final states. 

The low energy amplitudes (4.22) are specified by three independent partial 

waves, aJI(s), constrained by unitarily to obey 

1 aJI(s) I:::; 1. 

Our model consists of taking the three indepent nonzero amplitudes to be 

s ( 2 
Cloo = 161rv20 161rv - s) + O(s - 161rv2) 

Clo2 = -_s-0(321rV2 - s) - O(s - 321rv2) 
321rv2 

au = ~0(961rV2 - s) + 0(961rV2 - s) 
961rv 

The amplitudes (4.22) are then obtained from 

1 

M, = 161ri L (2J + 1) (cos O)J A~(s) 
J=O 

32 

(4.23) 

(4.24a) 

(4.24b) 

(4.24c) 

(4.25) 



I. 

where the nonvanishing A~ are given by 

A~ = ~(1100 - 1102) 
3 

2 1 .. 
Ao = 2Ao = 1102 

A~ = A~ = all 

1 
.Ag = 3 (21100 + 1102) 

(4.26a) 

(4.26b) 

(4.26c) 

(4.26c) 

It is easy to verify that for s < 1611"v2 Eqs. (4.24)-(4.26) are equivalent to the low 

energy amplitudes (4.22). 

To judge the reliability of this approach we have considered two other unitary 

models for the J = 0 w+w- -+ zz amplitude. The first is based on a 4>4 field 

theory with a global, spontaneously broken O(N) symmetry, which has been solved 

to leading order in 1/ N21. For N = 4 this model corresponds to the Higgs sector 

of the standard model, since 0(4) is homomorphic to SU(2) x SU(2). To leading 

order in l/N, M(w+w- -+ zz) is, like the Born amplitude, pure s-wave, and is given 

by 

where 

S 
M(w+w- -+ zz) = -2iA s (1 +~) _ mh 

N mh -s 
~(s) = --(1 -In-) 

3211"2 v2 M2 

(4.27) 

(4.28) 
/ 

and M is a renormalization scale which we will set to 1 TeV. Taking mh ~ 8 and 

N = 4, we have 
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M(w+w- ...... zz) = i 82[1- 8 s 2(1 +i1l" -lnM82Wl 
v 1I"V 

(4.29) 

and 

s s -s S 
o(w+w- ...... zz) = --[(1 - -(1 -In _))2 + (_)2tl 

3211"v" 811"v2 M2 811"v2 (4.30) 

Another alternative approach is based on rescaling measured pion scattering 

cross sections by 

v 
o .. + .. - ...... o .. o(k) = Ow+w- .... u(F .. k) (4.31) 

where k is the pion center-of-mass momentum. Equation (4.31) is in fact a pre

diction of the SU(3)Tc technicolor model. It was shown in Ref. 13 that the pion 

scattering cross section in Eq. (4.31) is reasonably well represented by the unitary 

parameterization 

aJ] = sin 6J]ei6J1 (4.33) 

where 

600 = (l1oo)LET (4.33a) 

1 + i(1102hET 
2i602 _ .() • 

e - 1 - I 1102 LET 
(4.33b) 

Here (I1oO)LET and (1102)LET are the amplitudes predicted by the Low Energy The

orems, Eqs. (4.22), 

S 

(Iloo)LET = 1611"v2 

s 
(a02)LET = - 321rv 2 

(4.34a) 

(4.34b) 

(compare Eqs. (4.24)). For the 8-wave w+w- -+ zz cross section we have then 
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321r 12 
U(W+W- -+ ZZ)J=O = 9s 1 <Loo - a02 • (4.35) 

Finally, as an example of how resonances can contribute to the diboson yield, 

we consider techni-rho production by vector meson fusion with subsequent decay to 

a pair of longitudinally polarized vector bosons. For the VL VL -+ VL VL amplitudes 

we use an s-channel Breit-Wigner approximation, with techni-rho mass and width 

for an S U (Nhc technicolor theory given by2. 

av 
- --mp m pT - N F" 

3 v r(p -+ n) 
r(PT -+ VLVL) = (N)S/2 F1t; (1- 4m!/m~)Sf2· 

(4.36) 

(4.37) 

Techni-rho production by vector meson fusion was previously computed in Ref. (13) 

but without including rapidity cuts on the final state bosons. Techni-rho production 

via qq annihilation was evaluated, with rapidity cuts, in Ref. (25). 

4.4 Results and Discussion. 

Our estimated yields of gauge boson pairs at pp colliders are obtained by substi

tuting the strong VV amplitudes from the previous subsection into Eq. (4.11). We 

have used the quark distribution functions of Ref. (25) with A = 200MeV.26 Yields 

are computed assuming an integreted luminosity of 10·ocm. -2, as would be achieved 

at a collider with a luminosity.c = lOSScm.-2sec.-1 operating for 107 sec. =:: l year. 

In all cases we impose a rapidity cut 1 Yv 1::5 1.5 on the produced gauge bosons. 

The rapidity cut helps to increase the ratio of VV pairs produced by new strong 

interactions relative to the qq -+ VV "background" which has a large forward com

ponent, and it also ensures that the boson decay products are likely to fall within 

the experimentally observable solid angle. While we concentrate on the pp collider 

option, we have also considered pp collisions for a few cases; as discussed below, the 

differences in cross sections for pp and pp are not very great. 

The level at which we can hope to detect new strong interactions by enhanced 

production of gauge boson pairs is determined by the size of the conventional pair 

production cross section via qq annihilation. The strong interaction mechanism 

produces only longitudinally polarized gauge bosons while those produced by qq 
annihilation are predominantly transverse. However since we have no efficient way 
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of measuring the boson polarizations we must consider the yield from qq -+ VV for 

all polarizations. These yields are shown in Table 1, for four pp collider energies, 

y'S = 10,20,30,40 TeV, and for diboson masses greater than 0.5, 1.0, and 2.0 

TeV. 27 The yields fall very rapidly with increasing diboson mass. 

Table 2 contains the yields obtained from the standard model amplitudes, Eq. 

(4.21), with mH = 1 TeV. Results are given for the six channels, Z Z, w+ Z, w- Z, 

W+W-, W+W+, W-W-, with a diboson mass cut myy > 1 TeV. Figures 6-11 show 

the corresponding mass distributions, dn/dmyy, for myy from 0.5 to 2.0 TeV. The 

ZZ yield includes contributions from zz -+ zz and w+w- -+ ZZ, while the W+W

yield includes contributions from w+w- -+ w+w- and zz -+ w+w-. At the 40 TeV 

collider the Z Z and W+W- signals from Table 2 are both appreciably larger than 

the qq background yield from Table 1, for instance, 1100 Z Z pairs in the signal 

compared to 370 in the background. The ratios of yields, W+W- : W+ Z + W- Z : 

Z Z, are also interesting since they are not sensitive to theoretical and experimental 

uncertainties in the absolute yields. For these ratios we find 4.3 : 1.8 : 1 for the 

qq background compared to 2 : 0.1 : 1 for the standard model signal. The smaller 

ratio for W+W- : Z Z is characteristic of strong interaction models, while the W Z 

and like-sign WW ratios are more model dependent, as seen below. In our standard 

model example the W+W- and Z Z yields are much larger than those of the other 

four channels, because only they benefit from the I = 0 s-channel Higgs diagram. 

As is clear from Figs. 6-11, in this model the signal for myy > 2 TeV is negligible. 

However, in a more realistic model including a broad resonance at 1 TeV, we would 

not expect the total cross sections to be damped a la Breit-Wigner above resonance. 

In Table 3 and Figs. 12-17 we exhibit the yields obtained from the model defined 

in eqs. (4.24)-(4.26), based on extrapolation of the amplitudes predicted by the low 

energy theorems.28 In this case there are significant contributions for diboson masses 

above 2 TeV, and in Table 3 we present yields for both myy > 1 TeV and myy > 
2 TeV. For y'S = 40 TeV and myy > 1 TeV the ratio W+W- : W+ Z + W- Z: ZZ 

is 1.3 : 1.4 : 1, compared to 4.3 : 1.8 : 1 for the qq background. In addition the model 

predicts large yields of like-sign dibosons, W+W+ + W-W-, a dramatic signature 

with no qq backgrounds. This model is intended to explore the possibility that the 

spectrum of new strongly interacting particles might lie well above 2 TeV, as may 

occur for example in ultracolor models.5 The model treats the 1= 0,1,2 channels 

"democratically" as prescribed by the low energy theorem, and therefore predicts 

large yields in the W± Z channels, with I = 1,2, and in the pure I = 2 W+W+ and 

W-W- channels. As discussed in Section 4.3, we regard these yields as a lower limit 
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to the actual total yields, which would probably occur under such a hypothesis in 

additional partial waves and in higher multiplicity final states. 

The bottom two rows of Table 3 show the yields for W+W+ and W-W- if the 

rapidity cut is relaxed from 1 YW 1< 1.5 to 1 Yw 1< 4. The effect at ..;s = 40 TeV 

is to increase the yields by more than 50%. Since these charge ± 2 channels have 

no background from qq -+ VV, we can exploit the full solid angle coverage, which 

is likely to extend to y = ±5 for the decay products.29 

In Table 4 and Figure 18 we compare the low energy theorem based model in the 

ZZ channel, Eqs. (4.24) -(4.26), with two unitary models which also satisfy the low 

energy theorems at threshold: The first is the O(N) cp4 model solved to leading 

order in liN and then evaluated at N = 4,21 Eq. (4.30), and the second is the scaled 

fit lS to 11'11' scattering data, Eqs. (4.31)-(4.35). The models are in order of magnitude 

agreement for myy < 2 TeV: they agree to 20% for 1/2 < myy < 2 TeV and to 

30 and 50% for 1 < myy < 1.8 TeV. However, they disagree in order of magnitude 

for mzz > 2 TeV. This is as we might expect since the models based on the pion 

data and the liN expansion each reflect only the two body, J = 0 channels. In a 

more complete description we would expect both higher partial waves and inelastic 

channels to set in at mzz ~ 2 TeV. We seek to model the effect of these additional 

contributions to the total cross section by the saturation prescription, Eq. (4.24), 

for the threshold amplitudes. 

In Table 5 and Figs. 19-21 we show the results for techni-rho production by 

gauge boson fusion in SU(N)TC technicolor with N = 2,4,6. These results can be 

compared directly with the corresponding cross sections for techni-rho production 

by qq annihilation obtained in Ref. (25) for the case N = 4 and ..;s = 40 TeV. From 

diboson fusion we find 380 p~'s and 690 pi's compared to 240 and 420 respectively 

from qq annihilation. 

In Table 6 we compare pp and pp colliders at ..;s = 10,20,30,40 TeV. In 

particular we compute the ratios of pp to pp cross sections for production of Z Z 

pairs using the standard model with mH = 1 TeV, of Eq. (4.21), and the low 

energy amplitudes, Eq. (4.22). The difference is always less than 30%, and for 30 

and 40 TeV it is less than 20%. Since pp colliders are likely to reach considerably 

greater luminosities than pp colliders, it is clear that the pp option is preferred. 

We turn next to some estimates of what the total predicted yields may mean in 

"In these models we have neglected the elastic ZZ contribution which vanishes in the low energy 
limit. 

37 

J; 

terms of observed events. We consider primarily leptonic decay channels, for which 

we expect detection efficiencies to be high and non-VV backgrounds to be very 

low. The results are summarized in Table 7. For instance, for the ZZ channel we 

consider the decay of one Z to e+ e- , p,+ p,- while the other Z decays to e+ e-, p,+ p,

or to v,v., v,.v,., v.v •. We assume such decays could be reconstructed with efficiency 

~ 1, so the "observability factor" in this case is just the net branching ratio, given 

by 

B(Z -+ ee + ji,p,)(B(Z-+ ee + ji,p,) + 2B(Z -+ vv)) = .025. 

The observability factor from W Z is computed similarly from the branching ra

tios for Z -+ ee, ji,p, and W -+ ev., p,v,., TV •. When no attempt is made to reconstruct 

the W charges, the WW channel is also reconstructed from the three leptonic modes 

ev., p,V,., TV.. Since the charge can probably be determined for muons as hard as 

8 TeV but not for electrons without special effort,29 the W+W+ I W-W- factor 

is just (B(W -+ p,V,.)) 2 . A possible W Z channel which we have not included is 

W -+ Lv + Z -+ vv. If these decays could be reconstructed, the net observability 

factor for W Z in leptonic channels would increase significantly from the .015 shown 

in Table 7 to .06. 

We have also included preliminary estimates for the channels VW and V Z, where 

V denotes either a W or Z decaying to qq jets. For these cases the observability 

factor is the product of branching ratios for the decays shown in the table multiplied 

by an "efficiency" factor or 0.2. The latter factor is based on an ISAJET study by 

E. Fernandez et al.,so which shows that hadronic decays can be distinguished from 

the QCD background of quark and gluon jets at a signal: noise level of 1 : 1 with 

efficiency 0.2. 

These observability factors - and especially those involving hadronic decays -

must be regarded at tentative estimates. The capability to detect Wand Z's will 

benefit from the experience that will be acquired during the next ten years at CERN 

and FNAL. We anticipate that our estimates, based on the present, rather limited 

experience, will prove to be conservative. 

In Tables 8 and 9 we exhibit the predicted yields of reconstructable events, based 

on the observability factors of Table 7. In Table 8 each pair of numbers represents 

the signal from the standard model (Table 2) compared to the qq annihilation 

background (Table 1), with myy > 1 TeV and 1 Yv 1< 1.5. In Table 9 the signal 
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is taken from the extrapolated low energy theorem (Table 3); a second pair of 

numbers is given for myy > 2 TeV, and the like-charge WW yields are shown both 

for 1 Yw 1< 1.5 and 1 Yw 1< 4. 

Inspection of Tables 8 and 9 shows that it should be straightforward to detect 

the existence of strong interactions between W and Z bosons in a 40 Te V pp collider 

with luminosity approaching 1033cm.-2sec.-1• For instance, in both the models of 

Tables 8 and 9, the WW pairs detected in leptonic decays give a signal of order 100, 

representing a 10 0' enhancements above qq annihilation background. For the sum 

of Z Z and W Z detected leptonically,both tables 8 and 9 show - 50' enhancements 

over qq annihilation. Both tables also show large enhancements in the VW channels 

with V detected hadronically; for these cases a misidentification background equal 

to the signal must be added to the qq annihilation backgrounds shown in the table. 

For instance in Table 8 the VW signal of 180 is above a total estimated background 

of 180 + 140 = 320, giving a 100' enhancement. In addition the model of Table 9 

contains some spectacular signals in the yields of dibosons with mass gre~ter than 

2 TeV and in the like-charge WW pairs. 

From Tables 8 and 9 it is clear that neither the 10 nor 20 TeV collider would 

be sufficient to detect strong interactions among W's and Z's. Considering the 

uncertainties in the estimates of both signals and backgrounds, the expected yields 

and signal: noise ratios at 10 or 20 TeV do not allow unambiguous recognition 

of strong interaction enhancements. We show in Figs. 22-29 the total event yields 

expected for .;s = 30 TeV and 40 TeV in our two strongly interacting models and 

with no strong interactions. The 30 TeV collider with .c = 1033cm.-2sec.-1 is near 

the edge of what is required, and would also be inadequate if our estimates prove 

to be overly optimistic by as little as a factor 3. 

It is also clear from these results that even for the 40 TeV collider it is important 

to approach as near as possible to the luminosity of 1033cm. -2 sec. -1. Decreasing 

the assumed integrated luminosity by a factor 3, the Z Z + W Z leptonic signals from 

Tables 8 and 9 go from 4.5 - 5.5 0' down to 3.5 - 4.5 0', the WW leptonic signal 

decreases from 8 - 14 0' to 6 -10 0', and the VW hadronic signal goes from 8 -100' 

down to 4 - 6 0'. IT the integrated luminosity is decreased by an order of magnitude, 

then the significance of the most prominent signals is diminished to the 2 or 3 0' 

level. 
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5. Multiple Wand Z Production 

In this section we shall briefly discuss mechanisms for multiple (n > 2) produc

tion of intermediate vector bosons. A high average multiplicity of W's and Z's in 

events with, say, a total transverse energy greater than 500 GeV would be a clear 

signal for new strong interactions. Unfortunately, results based on the scaling prop

erties of the effective chiral Lagrangian or on the resonance structure of technicolor 

models are not very encouraging. However, a rich resonance spectrum, somewhat 

different from that suggested by a technicolor rescaling of observed pion dynamics 

could modify the rather meager yields obtained below. 

5.1 Vector meson fusion. 

Multibody production rates via the fusion mechanism of Fig.l are obtained by 

folding the effective vector boson luminosity, Eq. (4.6), into the cross section for 

VL VL --+ 2nVL. Since the equivalent strong scattering amplitude for cpcp --+ 2ncp 

conserves "parity" as defined in Section 3, only even numbers of longitudinally 

polarized vector bosons can be produced by this mechanism. The production of 

additional "soft" WL's and ZL'S can be determined, using standard current algebra 

techniques, from the elastic and charge-exchange cross sections estimated in the 

previous section. The current algebra result can be estimated6 by using massless 

2n-body phase space and a factor ..;'s/v in amplitude for each additional WL or ZL, 

giving 

O'(VLVL --+ (2n + 2)VL) 8 2 . 1 
O'(VLVL --+ 2nVL) ~ (16'1l"2 v2) (2n)2(2n + 1)(2n -1)' 

(5.1) 

As a measure of the accuracy of the estimate (5.1), it can be compared with the exact 

current algebra calculationS1 in the "Fermi Limit" mH » ..;'s. In this case1S the 

exact and approximate results for W+W- --+ 2 or 4W's differ by no more than 30% 

over the range 1 TeV ~ ..;'s ~ 2.5 TeV. We therefore adopt (5.1) as a reasonable 

approximation. Using the two-body cross section estimates of Sect. 4, we predict on 

this basis more than • 70 four-body events (90% of which have invariant mass above 

2 TeV) for an integrated luminosity of 104ocm-2 for pp interactions at.;s = 40 TeV. 

Ten percent of these events will contain two or more bosons decaying leptonically, 

a spectacular signature. 

"This estimate is a lower bound in that we do not include a combinatorial factor for 4-body charge 

channels. This factor is partically compensated by the fact that we have not rigorously imposed 

y-cuts on all 4 W's, but have simply folded the factor (5.1) into the appropriately cut 2-body yields 
of Section 4. 
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A larger four-body yield could occur if there were a resonance in the TeV mass 

region with appreciable couplings to both the two-body and four-body channels. 

This possibility has been investigated13 in the context of technicolor models, where 

resonance widths and masses are predicted from pion resonance parameters using 

formulae analogous to Eqs. (4.36-37). This prescription gives, for example, a four

body W± yield of at most 20 events in a year's running at the SSG. This is 

because the lightest pion resonance with significant decay branching ratios to both 

two- and four-body final states scales according to Eq. (4.36) to a <p<p resonance 

mass of 3 GeV or more for N :::; 7, so that the effective vector boson luminosity is 

appreciable only over the lower mass tail of the resonance. For large N the resonance 

mass decreases, but its width decreases more rapidly, significantly damping the 

production cross section. 

5.2 qq annihilation. 

Light quark-antiquark annihilation into the eaten scalar equivalents of longitudi

nally polarized W's and Z's is mediated by the s- channel exchange of transversely 

polarized gauge bosons (WT, ZT, ')') that couple weakly to the strongly interaction 

w,z system through the axial and vector currents, Eqs. (3.19) and (3.11). Since 

these weak couplings do not conserve "parity" , an odd number of W L'S and Z L'S can 

be produced through couplings to the axial current. In the tree approximation to 

the standard model, the production of three longitudinally polarized vector bosons 

is governed by the physical Higgs exchange diagram of Fig. 30. For mH ~ 1 TeV, 

this process is dominated by the production and decay of a quasi-real Higgs particle. 

For mH > > vrs, the Born approximation reduces to an effective four-point coupling 

as determined by current algebra. The corresponding rates were estimated in Ref. 

6, where it was found that a year's running at the SSG would yield a total of about 

150 three-body events in all charge channels for mH ~ 1 TeV, and about 50 events 

for mH > > vrs. While these numbers, at least for on-shell Higgs production, do 

not appear prohibitively small, a subsequent studyS2 of the rates for qq annihila

tion into three transversely polarized W's and Z's via conventional gauge couplings 

indicates that the "strong coupling" contribution to three-body WL and ZL will 

be buried under a "weak" gauge coupling background. At first sight this result is 

somewhat surprising, as the diagram of Fig. 30 involves only two weak vertices and 

one strong vertex (HVL VL), while the background amplitude requires three weak 

vertices. However, there are a large number of diagramss2 that can contribute to 

the background process, as well as a large number of possible spin configurations 

in the final state, and these combinatorial factors apparently overcome the weaker 
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coupling strength. 

Nevertheless, an observable excess of three-body final states over "gauge theory" 

background might occur if there were a 1+ resonance in the 1 - 2 TeV mass region. 

For example, the results of Ref. 6 also show that the pair production process 

qq ~ WtWi via (equivalent scalar) coupling to the vector current gives a two

body production rate of longitudinally polarized W's that is an order of magnitude 

lower than the rate for transverse W production. (In this case both amplitudes are 

second order in the weak gauge coupling.) Nevertheless, technirho production via 

qq annihilation, which has a rate comparable to the vector boson rate presented in 

Sect. 4, yields25 over 200 W+W- and over 400 W Z events above "gauge theory" 

background. IT there were, for example, an analogue of the axial vector A-meson 

with a mass below two TeV one might expect a similar excess above background of 

three-body events. Again, this would provide an important signal for new strong 

interactions in the electroweak sector. 
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6. Concluding remarks 

We have studied the general signatures for a strongly interacting W, Z system 

and estimated detectable yields based on the properties of such systems that nat

urally assure the observed W / Z mass ratio. In this sense our estimates may be 

considered as minimal expectations. Specific models may entail additional pro

duction mechanisms, such as the gluon-fusion mechanism of extended technicolor 

models that could significantly enhance multi W, Z yields.33 Signatures might also 

be enhanced by a sufficiently low mass spectrum of resonances. Various theoretical 

techniques have been applied to the analysis of the large mH limit of the standard 

model34,35 and of various composite models36 in attempts to predict the expected 

spectrum. It has even been speculated 37 that strongly bound W, Z composite 

states could occur with masses as low as a hundred GeV. Possibly observable new 

phenomena may also arise from quasi-stable non-trivial scalar field configurations.38 

Clearly the physics of a strongly interacting vector boson system may be very 

rich. Our aim in this paper has been to establish the experimental conditions 

that will assure at the very least an answer to the question of whether electroweak 

symmetry breaking involves new strong interactions or whether it is implemented 

by a standard relatively light Higgs particle. We saw in Sect. 4 that this question 

can be answered by a hadron facility capable of detecting the excess of centrally 

produced high mass pairs of vector bosons that are predicted if these bosons have 

strong couplings. We found that the proposed sse parameters, namely a center

of-mass energy of 40 TeV and a maximum luminosity of 1033 cm-2 sec-1 , meet 

the requirements for detectablity. While the yields of higher multiplicity events 

obtained in Sect. 5 are rather meager, they should contribute a few spectacularly 

signed events at a facility with these parameters. We found that a center of mass 

energy of 20 TeV or less is inadequate for the purpose outlined above, while a 

30 TeV facility with 1:, = 1033 cm-2 sec-lor a 40 TeV one with reduced luminosity 

would be marginal. It goes without saying that that highest achievable energy would 

provide the best chance for studying the dynamics of a strongly interacting W, Z 

system should this be the solution to the electroweak symmetry breaking puzzle 

chosen by nature. 
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VV Yields: qq annihilation 

vs= 10 TeV 20 Tev 30 TeV 40 TeV 

ZZ 0.8, 40, 670 8, 150, 1800 18, 260, 2900 29, 370, 3600 

W+Z 1, 60, 940 10, 180, 2000 20, 290, 2700 30, 390, 3600 

W-Z 0.5, 30, 560 5, 110, 1400 10, 190, 2100 18, 280, 2800 

W+W- 4, 190, 3300 30, 660, 7400 60, 1200, 11000 90, 1600, 14000 
----- ----------

Table 1 

Boson pair yield from qq annihilation for 1040 em. -2 integrated luminos

ity and IYv I < 1.5. The three values are for myy above 2.0, 1.0, and 0.5 

TeV. 
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VV Yields: mH = 1 TeV 

Vs= 10 TeV 20 TeV 30 TeV 40 TeV 

ZZ 30 250 610 1100 

W+Z 2 17 42 76 

W-Z 0.7 8 22 41 

W+W- 61 500 1200 2200 

W+W+ 3 25 63 110 

W-W- 0.5 5 17 33 

Table 2 

Yields of boson-boson pairs from boson-boson fusion computed in the 

standard model with mH = 1 TeV, for 104ocm.-2 integrated luminosity 

and cuts of myy ~ 1.0 TeV and 1 !IV 1< 1.5. 
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VV Yields: low energy theorem extrapolated 

Vs= 10 TeV 20 TeV 30 TeV 40 TeV 

ZZ 0.4, 8 12, 88 50, 250 110, 470 

W+Z 1, 8 20, 80 80, 230 180, 440 

W-Z 0.3, 3 9, 36 36, 110 85, 230 

W+W- 0.6, 12 16, 120 60, 330 140, 630 

W+W+ 1, 12 30, 110 110, 300 220, 560 

W-W- 0.1, 2 5, 22 20, 74 50, 150 

W+W+ 

1 Yw 1<4 2, 15 40, 170 160, 490 340, 970 

W-W-

1 Yw 1<4 0.1, 2 6, 33 30, 120 80, 260 

Table 3 

Boson-boson fusion yields from extrapolated (see text) low energy the

orems, for 10·ocm.-2 integrated luminosity and, except for the last two 

rows, 1 !IV 1< 1.5. The two entries are for myy above 2.0 and 1.0 TeV. 
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Comparison with Unitarized Models 

Low Energy Thm. O(N) Model Pion Data 

0.5 < mzz < 2TeV 690 560 560 

1.0 < mzz < 1.8 320 160 230 

mzz > 2TeV 110 13 14 

Table 4 

Yields of ZZ pairs for 1 yz 1< 1.5 and 104ocm.-2 integrated luminosity. 
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Techni-rho production 

NTc = 2 4 6 

W+Z 220 450 670 

W-Z 110 240 370 
W+W- 180 380 570 I 

-

Table 5 

Boson pair yields from s-channel techni-rho formation in technicolor 

SU(N) models with N = 2,4,6. Yields assume 1040 cm.-2 integrated 

luminosity and cuts 1 Yv 1< 1.5 and myy > 1.0 TeV. 
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'J' 

ZZ yields: pp versus pp 

.fi= 10 TeV 20 TeV 30TeV 40 TeV 

mH = 1 TeV 0.8 0.9 0.9 1 I 

Low Energy 

Thm. 0.7 0.7 0.8 0.8 
----

Table 6 

The ratio u(pp -+ Z Z + ... ) / u(pp -+ Z Z + ... ) computed from the double 

bremstrahlung mechanism using the standard model with mH = 1 TeV 

and the low energy theorems to compute the gauge boson scattering 

amplitudes. We have imposed the cuts 1 Yz 1< 1.5 and mzz > 1.0TeV. 

S3 

./ 

Net Observability Factors for Observable Modes 

Boson Pair(s) Decay Modes Observability Factor 

ZZ ii + ii/vv; l = e,JI. .025. 

WZ l'v+ii; l'=e,JI.,T; l=e,JI. .015 

VZ: V=W+Z qq + il; l = e,JI. 
.009 V = W 

.018 V=Z 

VW: V=W+Z qq + Lv; l=e,JI.,T 
.075 V = W 

.037 V=Z 

WW lv+ Lv; l=e,JI.,T .063 

W+W+/W-W- JI.+VJl.+v/JL-VJl.-V .0069 

Table 7 

Net "observability factors" for some decays of two gauge bosons, as 

defined in the text. 
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Detectable VV yields: mH = 1 TeV 

yS= 10 TeV 20 TeV 30 TeV 40 TeV 

Boson Pair(s) 

ZZ 0.8/1 6/4 15/6 28/9 

WZ .04/1 0.4/4 1/7 2/10 

VZ: V=W+Z 0.6/2 5/5 12/9 21/13 

VW: V=W+Z 5/18 41/60 100/110 180/140 

WW 4/12 33/42 82/76 140/100 
W+W++W-W- .02 0.2 0.5 0.9 

Table 8 

Yields of VV pairs into reconstructable final states computed with "ob

servability factors" from Table 7. The first entry is the signal from the 

standard model, mH = 1, based on Table 2. The second entry is the 

background from qq annihilation, based on Table 1. Yields are for 1040 

integrated luminosity, 1 Yv 1< 1.5, and mvv > 1.0 TeV. The entries in 

rows three and four have additonal QCD backgrounds as discussed in 

the text. 

SS 

Detectable VV yields: low energy theorem extrapolated 

yS= 10TeV 20TeV 30TeV 40TeV 

.01/.02 0.3/0.2 1/0.5 3/0.7 

ZZ 0.2/1 2/4 6/6 12/9 

.02/.02 0.4/0.2 2/0.5 4/0.7 

WZ 0.2/1 2/4 5/7 10/10 

.02/.03 0.5/0.3 2/0.6 4/1 

VZ: V=W+Z 0.2/2 3/5 8/9 14/13 

0.2/0.4 5/3 19/6 41/9 

VW: V=W+Z 2/18 23/60 65/110 130/140 

0.1/0.3 3/2 12/4 26/6 

WW 2/12 16/42 44/76 84/100 

.007 0.2 0.9 2 
W+W++W-W- 0.1 0.9 2 51 
W+W++W-W- .01 0.3 1 3 

1 Yw 1<4 0.1 1 4 9 

Table 9 

VV yields to detectable final states, computed from "branching ratios 

times efficiencies" from Table 6. Top entries are signal/qq backgound 

for mvv > 2 TeV, bottom entries for mvv > 1 Te¥'. Yields assume 

104ocm.-2 integrated luminosity and Yv < 1.5. The entries in rows 

three and four have additional QCD backgrounds as discussed in the 

text. 

S6 



Figure Captions 

Figure 1 Two gauge boson production by boson-boson fusion. 

Figure 2 Two gauge boson production by quark-antiquark annihilation. 

Figure 3 Lowest order (a) and higher order corrections (b) to W self-energy. 

Figure 4 Higgs production by diboson fusion. 

Figure 5 Tree diagrams for VIVI - zz. 

Figure 6-11 Mass distribution of boson pairs computed from diboson fusion in 

the standard model with mH = 1 TeV. We impose a rapidity cut 
1 Yv 1< 1.5 and assume an integrated luminosity of 1O,oem.-'. 

Figure 12-17 Mass distributions from diboson fusion assumitig the model based 

on the low energy theorems. Rapidity cut and luminosity are as 

in fig. 6-11. 

Figure 18 Comparison of the model based on the low energy theorem to the 

O(N) model and the scaled pion-pion scattering data. Rapidity 

cut and luminosity are as in figs. 6-11. 

Figure 19-21 Diboson fusion production of techni-rho which decays to gauge boson 

pairs, for SU(N)rc, N = 2,4,6. Rapidity cut and luminosity are 

as in figs. 6-11. 

Figure 22-20 Total boson pair yields as a function of invariant mass for 1 Yv 1< 1.5 

and an integrated luminosity of 10'° em. -2 • The distributions 

shown are for two strong interaction models and in the absence of 

strong interactions. 

Figure 30 Tree amplitude for production of three longitudinally polarized gauge 

bosons by ~q annihilation. 
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+ + w W : low energy theorem 
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z Z : Comparison of models Pr 10 W+W-
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