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Abstract. In previous work, we introduced a data model and a query language for temporal 

data. The model was designed independently of any existing data model rather than an 

extension of one. This approach provided an insight into the special requirements for han­

dling temporal data. In this paper, we discuss the main functionality of the model and the 

implications on physical design. We feel that the functionality and implementation issues 

discussed in this paper are applicable to all temporal models. 

1. INTRODUCTION 

In previous papers [Shoshani & Kawagoe 86, Segev & Shoshani 87] we have 

developed a temporal data model that is independent of existing data models, such as the 

relational or network models. Our approach differs from many other works [Ariav 86, 

Clifford & Croker 87, Gadia & Yeung 88, Klopproge 81, N avathe & Ahmed 86, Snodgrass 

87, Tansel 86] that e~tend existing models to support temporal data. Our goal was to design 

a model (called a TSC model for reason that will become clear below) which reflects the 

semantics and operators of temporal data without being influenced by existing models. Once 

this model was developed, then it is possible to investigate the incorporation of its structures 

and operations into existing models. We have performed a requirements analysis for 

representing the TSC model in the context of the relational model [Segev & Shoshani 88]. 

We showed that the relational model is not sufficient to represent all temporal data and has 

ThiJ research wu supported by the U.S. Department of Energy Applied Mathematics Sciences Research Program of the Office of 
Energy Resean:h under oonuact DE-AC03-76SF00098. 
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to be extended with the construct of a temporal relation having new semantic properties. 

We have also discussed the options for the representation of a temporal relation and the rea­

sons for our preferred representation. lp this paper we highlight the functionality of the 

TSC model, and discuss its physical design implications. Note that our reference list is by 

no means complete; for a complete list, see the bibliography by Starn & Snodgrass in this 

issue. 

2. THE TEMPORAL DATA MODEL 

The TSC model is based on the simple observation that temporal values are associated 

with a specific object, and are totally ordered in time; i.e. they form an ordered sequence. 

For example, the salary history of some individual forms an ordered sequence in the time 

domain. Accordingly, we introduce the concept of a time sequence (TS) for a single object 

(or entity). Further, the set of TSs for an object set forms the basic construct of our model 

which we call a time sequence collection (TSC ). For example, the set of all salary time 

sequences for a set of employees forms the salary TSC. Simple TSCs are constructs that 

have a surrogate, time, and attribute associated with them, denoted as a triplet (S, T, A). 

For the salary history of employees, this triplet may be (employee_id, month_year, salary). 
-

Complex TSCs allows multiple attributes to be associated with the same surrogate and time 

pairs, and are denoted as (S, T, A). Complex TSCs are usually useful for representing syn­

chronous temporal attributes, such as multiple measurements taken at the same time (e.g., air 

quality measurements: nitrogen, carbon dioxide, etc.) 

Naturally, a TSC can be accessed on any combination of its surrogate, time, and attri­

bute values. For example, "find the employees that had a salary more than 30k in July 

1988'' is a query that accesses both the time and attribute components of the salary TSC . 

As will be discussed below, there are some specific assumptions that can be made ·regarding 

the access patterns of temporal data which greatly influence the choice of physical structures. 

One of the essential conclusions that was reached in our previous work is that TSCs 

should have certain meta-data properties. These properties characterize the semantics and 

the interpretation of the TSC values, and have a profound effect on physical data structures 

chosen to implement a TSC . Below is a brief description of these properties. 

2.1. TSC properties 

There are four properties of interest [Segev & Shoshani 87]: 

(1) Time granularity: this property specifies the points in time that can potentially have 

data values. For example, if salaries are assigned at increments of months, then the 
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salary TSC granularity is months. Note that time points do not necessarily have 

values (e.g., salaries do not usually change every month for an individual.) 

(2) Life span: the life span specifies the range of valid time points of a TSC. The life 

span implies that some physical mechanism is necessary in order to distinguish 

between existence and non-existence of time points in the TSC . The life span . 

definition can be fixed or vary over time. In the latter case, the life span is either 

extended continuously to "current-time" or it forms a "moving-window". 

(3) Type: the type of a TSC can be thought of as specifying the behavior of time 

sequences in the TSC. For example, a type "step-wise constant" (SWC) can be 

associated with the salary TSC, to mean that the values for time points that do not 

have explicit data values are determined from the last data value. Other useful types 

are "discrete" and "continuous", which carry the obvious meaning. A user defined 

type is also allowed. 

(4) Interpolation rule: this property is associated with the type. For the SWC type, the 

rule is as was described above. For the discrete type, the rule is simply that missing 

values cannot be interpolated. For the continuous type, there is a default continuous 

function to interpolate values. For the user defined type, an interpolation rule must 

be supplied by the user. 

(5) Regularity: A TSC is regular if for each time point of the given granularity, a data 

value has been. provided, that is, there is no need to interpoiate. This property also 

provide semantic information to the user; for example, one may want to apply cer­

tain statistical analysis only to collected data rather than to interpolated data. 

The physical implication of the above properties is that we need to support the interpo­

lation rule according to the TSC 's type and granularity. In non-temporal systems the lack of 

an entry (e.g., there is no entry for some project and some part) implies that the information 

does not exist. In contrast, in order to support a TSC structure, the lack of an entry requires 

the interpolation of the value. For example, if there is no entry for the salary of John in 

June 1988, it has to be inferred. As will be discussed later, this requirement affects directly 

the indexing structures. 

2.2. Time points, event points, and change points 

Recall that we described time points as points that can potentially have a data value. 

Time points are defined by the granularity of a TSC. As mentioned previously, a time point 

may have an explicit value associated with it, may have an implicit value dete~ned by the 
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interpolation rule, or may have no value (null). We refer to time points that have explicit 

data values as event points. For example, the time points where a new salary is assigned are 

considered event points. Clearly, the event points form a subset of the time points. Usually, 

one would want to store only the event points, and interpolate the values of the other time 

points when necessary. However, we may wish to interpolate valu~s ahead of time depend­

ing on the density of event points, where event density is defined as the ratio of event points 

to time points. In the case of the regular TSCs (mentioned above) the event density is 1. 

As the event density approaches 1, we may prefer to fully populate the TSC in order to use 

simpler data structures and indexing methods. These issues are discussed further in Section 

3. 

Now, suppose that consecutive event points have the same values. As can often occur 

with measurement data or statistical data (e.g., consecutive temperature values may be the 

same). In principle, we could apply a compression operator, so that all repeating "dupli­

cate'' values are removed, thus achieving better storage utilization. We call the subset of 

event points that is left change points. One should be careful with compressing out "dupli­

cate values" because it can result in loss of information. For example, two consecutive 

salary event points may signify "no raise", and the removal of the second event point 

(which is a duplicate value) would result in the loss of this information. Thus, a compres­

sion of duplicates should be a user selected parameter, as it depends on the semantics of the 

application. 

Change points are also important as part of a predicate over time sequences. For exam­

ple, one may be interested only in the times that employees change departments. In general, 

all three predicate conditions for finding time, event, and change points should be supported 

by physical structures. 

2.3. Temporal normal forms 

In [Segev & Shoshani 88] we discuss the issue of temporal normal forms in the context 

of a relational representation of the TSC model. We argue there that it is appropriate to 

impose the restriction on TSCs that any time slice (at some time point t) would result in a 

standard First Normal Form relation. We call this condition a First Temporal Normal Form 

(or ITNF). The practical implication is that for each instance of a surrogate and time point, 

each attribute has a single value (possibly null). While this requirement seems obvious, its 

enforcement may not be trivial depending on the physical structure chosen for the implemen­

tation of a TSC. We elaborate on this point in Section 3. A definition of another temporal 

normal form was proposed by [Navathe & Ahmed 86]. The logical implications of that 
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definition are discussed in [Segev & Shoshani 88]. 

2.4. Operators 

In [Segev & Shoshani 87] we discussed at some length the operators that should be 

applied to TSC s. They include various temporal predicates, aggregate functions in several 

dimensions, accumulation operators (such as a running average), and operators between mul­

tiple TSCs. The physical support of such operators is quite complex and is still under study. 

However, to illustrate the additional complexity that a temporal model introduces we discuss 

briefly below the implication of the aggregate functions. 

Operations over TSCs produce a new TSC. In particular, operators involving aggregate 

functions require the determination of a new granularity for the resulting TSC, and often a 

new type as well. For example, we may wish to aggregate over a TSC which represents 

deposits and withdrawals in some bank account, in order to generate a TSC for the running 

balance. The resulting TSC will have a type SWC while the original TSC is of type 

discrete. Alternately, getting a monthly sales figure ~om a daily sales TSC, changes from 

one granularity to another. A more difficult problem arises when we need to decrease the 

level of time granularity (e.g., estimate daily figures from monthly figures, assuming we 

know daily patterns). This problem is referred to as the "disaggregation problem" by statis­

ticians. Our work on these problems is in progress, and its description is beyond the scope 

of this paper. 

3. PHYSICAL DESIGN IMPUCA TIONS 

The problem of physical design of temporal databases still deserves a significant atten­

tion. In this section we discuss physical design issues, some of which has been addressed by 

works such as [Ahn & Snodgrass 86, Gunadhi & Segev 88a, Lum et al 84, Rotem & Segev 

87]. At an abstract level, physical design of temporal databases is similar to conventional 

database design in the sense that the desirable structure is a function of application require­

ments. There are, however, several important differences. For example, in temporal data­

bases, one expects that many queries will need the data ordered by the time attribute; also, 

the data itself is likely to be either static or append-only. We will first classify elements of 

the environment that affect the design, and list the major physical design choices. We will 

then discuss some of the combinations of environmental parameters and physical design 

choices. 

-5-
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3.1. Environmental parameters 

The following is a list of the parameters that affect the physical design. 

(1) Static vs. dynamic data. Static data represents non-updatable historical data with a 

fixed life span, while dynamic data arise in cases where temporal data have a vari­

able life span or a fixed life span with updatable data (i.e., missing or incorrect data). 

In the case of dynamic historical data, an important aspect is its append-only nature. 

(2) Sparse vs. dense data. We define two measures of density that have physical design 

implications. The first measure, event density (introduced in Section 2), is the ratio of 

the number of event points to the number of time points. The second measure is 

existence density, defined as the ratio of the number of existence points to the 

number of time points, where an existence point is a time point that has a non-null 

attribute value (either explicit or implicit). For a discrete sequence, all existence 

points are event points, and thus the two density measures are the same. However, 

for a SWC or a general continuous sequence, the two measures will differ if the two 

sequences contain null values. 

(3) Integration of temporal and non-temporal data. In the case where such an integration 

is required, a priority may be given to the processing of non-temporal data and the 

current portion of the temporal data. 

(4) Query types. This is the most influential parameter as far as the physical design is 

concerned. Queries can be classified as follows: i) Single-TSC queries; either point 

or range queries. The qualification part can refer to S , T, or A • or any combination. 

Note the T qualification can be either a value (e.g, June 3, 1988) or a relative posi­

tion (e.g., third from the beginning). ii) Multi-TSC queries. These queries involve 

some kind of a join plus any of the qualifications of single-TSC queries. 

3~. Physical design options 

The physical design options can be classified as follows. 

(1) Record structure. We consider here the possible options for extending existing rela­

tional systems. In order to minimize changes to current systems, we have chosen to 

have a normalized tuple as the physical data unit. 

(2) Sorting. A major issue is whether to have the data sorted by time (either physically 

or logically), and if so, whether the time will be the major sort key or a minor 

(where the primary order is by surrogate). 
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(3) Indexing structures. 

i) Single attribute indexing. The two main choices here are hashing (which also 

determines 
the placement of data records) or trees (e.g., B-trees). 

ii) Multi-attribute indexing. There are several options for providing indexing struc­

tures: 
a) Separate structures. In this case each attribute is indexed separately. A multi­

attribute access can be done by intersecting pointers from multiple indices. 

b) Joint structures. The indexing is done directly on the combination of several 

attributes. 

c) Multi-level structures. Separate structures are combined in a hierarchical 

fashion. For example, the leaves of a B+ tree index of one attribute point to a B+ 

tree index of another attribute. 

The above structures have one or more component. In general, each component 

can be one of two indexing types: either a tree (e.g., R-trees) or a non-tree (e.g., 

grid files). 

The foregoing taxonomy of environmental parameters and physical structures, though 

general, serves as a helpful framework for investigating the physical design problem. In this 

paper, we discuss only some the issues; the complete discussion is given in [Gunadhi & 

Segev 88a and 88b]. It should be noted th~t we are interested in databases containing a large 

number of history records. Below is a summary of our conclusions. 

3.3. Query types 

We anticipate that most of the temporal queries will qualify on S and T (i.e., data 

records for surrogates at specific time points); if T is absent from the qualification, it means 

that the query needs the whole history. Moreover, we don't anticipate frequent range 

qualifications on S. A qualification on A is likely to be combined with either a T or ST 

qualification (e.g., the data of employees who earned more than 30K at a certain time point). 

Consequently, range queries are more likely to qualify on T and/or A. In databases which 

are event-oriented, queries that qualify only on T (i.e., what happened at certain time 

points?) are more likely; in our analysis, however, we assume that these queries are secon­

dary in importance. 

The above discussion implies that we are interested in supporting primarily queries that 

qualify on ST (note that this is the primary key of the data tuples), or TA, or STA. 

-7-
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3.4. Ordering of the data records 

Given the above query types we exclude a primary order of data records by time, but 

rather have the data sequenced primarily by surrogate and secondarily by time. If the data is 

static, physical clustering is the best choice; if it is dynamic, an indexing structure may be 

required to enable access to data in the desirable order. 

Note that if the query type do not qualify on the surrogate (i.e., T or TA 

qualifications), then a primary order by time is desirable. Furthermore, in this case, since 

the data is append-only we can keep it in contiguous blocks (a clustered index) with a fill 

factor of (or approximately of) 100%. 

3.5. A static environment 

If the data is static, dense, and without many contiguous duplicate values, then the 

optimal solution is to have it organized as a two dimensional array linearized row-wise 

(rows and columns representS and T respectively). An index on A may still be required. If 

the data is sparse, a direct access by ST cannot be calculated, and an index is required (we ·. 

exclude hashing on ST because of the high likelihood of range qualifications on T). In the 

case where there are many contiguous duplicate values, compression is useful. It should be 

noted, however, that the compression scheme should presetve the distinction between event 

points and interpolated points. The only exception to this is a regular TSC where we know 

that all points ~ event poin.ts. 

3.6. A dynamic environment 

Given that we are not interested in T as the primary ordering attribute, physical cluster­

ing in order of ST may cause a problem. If the database is append-only and the rate of 

growth is low, an indexed-sequential organization is appropriate. If the rate of growth is 

high, long overflow chains my result, and an unclustered index should be used. 

3. 7. Indexing 

The most important environmental parameter that affects indexing is the query types. 

Our current conclusions (the details are given in [Gunadhi & Segev 88a and 88b]) are the 

following: 

( 1) For a large number of surrogates and a significant number of queries that qualify on 

a single S, we excluded a grid type file for ST or ST A dimensions. The reason is 

that there will be a partitioning line for each surrogate value, and if the partitioning 

information fits in main memory, it implies that we can also store the multi-level 



LBL-26080 

S rr index trees in main memory. A grid type file can be constructed on the ST or 

ST A dimensions if there are range queries on S and queries that qualify on a single 

S can be compromised. Grid file types are a viable option _on the TA dimensions 

(e.g., the brick file in [Rotem & Segev 87]). 

(2) ForST qualifications we prefer to have a multi-level B+ tree index, where the leaves 

of the S tree point to T trees. This choice enables integration of historical data with 

current and non-temporal data such that updates to the latter are separable from the 

temporal structures. In addition, the total storage cost is frequently lower for the 

multi-level structure. 

(3) It is inefficient to have time index on points other than event points (in the case of a 

SWC sequence, indexing event points is equivalent to indexing time intervals, where 

the terminal points of an interval are event points). The reason. is that we can inter­

polate in order to find values at points other than event points. 

(4) For a TSC with a high existence density, there is no point in having a separate; T 

index (in the case of a multi-level index a T index under an A or S index can still 

be useful). The reason for the above observation is that in a T index with high 

existence density, aT value of the inaex will point to data records in a non-selective 

way. The extreme case is when the the density is 1, and thus for each time point in 

the lifespan all the surrogates have a value. 

3.8. lTNF Enforcement 

As was discussed in Section 2, enforcing 1TNF of a TSC implies that only one attri­

bute value is allowed for a given combination of S and T values. t The mechanism for 

enforcing 1 TNF is dependent on the record structure. For example, there are proposals that 

claim that it is more des~ble for access efficiency to store time sequences as tuples contain­

ing intervals. If such a structure is chosen, then a mechanism has to be added to ensure that 

intervals of the same surrogate do not overlap, so that the 1 TNF condition is not violated. 

On the other hand, if one choses to store tuples with time points rather than intervals, then 

this condition can be simply enforced by existing mechanisms of the relational model, i.e. by 

defining the surrogate and the time as a composite key. 

t In the case of A , only a single combination of A values is allowed for a given canbination of S and T values. 
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